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1 Task 2: Distribution of saturation times
As part of the evaluation of SKB’s license application, SSM has requested that the 
distribution of the buffer’s saturation time in all the deposition holes is analysed. Here we use 
data from groundwater models of the Forsmark repository, and couple this with thermo-
hydraulic models of the buffer saturation process in deposition holes and hydraulic models of 
the saturation process in the tunnel backfill to estimate the distribution of saturation times.

1.1 Background – Summary of results from SR-site
In task 3 of the SR-site THM modelling report (Åkesson et al. 2010) several models were 
constructed to estimate the maximum and minimum saturation time for three different types 
of deposition holes. These were:

- Deposition holes intersected by a single fracture at the mid-height of the canister 
(CMH-fracture)

- Deposition holes with no fractures, but where the tunnel just above the deposition hole
is intersected by a single fracture (T-fracture)

- Deposition holes with no nearby fractures, and no nearby tunnel fractures (unfractured 
rock)

The models simulated thermo-hydraulic (TH), but not mechanical processes in the buffer, 
thus neglecting the consequences of the swelling of the bentonite buffer. To estimate the 
uncertainty introduced with this simplification, two models were constructed for each case: 
one with the buffer in the installation state and one with the buffer in a radially homogenized
(extreme final) state. The assumption, supported by the findings in Task 3 of Åkesson et al. 
(2010) is that the actual time to reach full saturation is bounded by the saturation times found 
in these two models.

Furthermore, in Task 2 of Åkesson et al. (2010) the saturation time of the tunnel backfill was 
investigated using hydraulic models. Of primary interest for the present study is the models 
used to analyse the saturation time when water is only transported to the tunnel via fractures.

In Åkesson et al. (2010) no attempt to couple the results of Task 2 and 3 with the expected 
distribution of fractures intersecting deposition holes and deposition-hole tunnels in the 
Forsmark repository were done. Thus, the distribution of saturation times for all deposition 
holes was not evaluated. Here such an evaluation is presented; the data on the expected inflow 
characteristics are taken from groundwater models of the Forsmark repository prior to 
installation (Joyce et al. 2013). These are similar to the models of the excavation phase 
presented as part of SR-Site (Svensson & Follin 2010), but in difference to those, where a 
continuum model was used to describe the flow properties of the rock, Joyce et al. (2013) 
have implemented a discrete fracture network. This means that individual fractures are 
represented, and thereby also the fracture intersections with deposition holes and tunnels. The 
statistical fracture model used is taken from the modelling of the operational phase during 
periods with temperate climate conditions presented in Joyce et al. (2010). 

1.2 Groundwater models fracture statistics
We use groundwater models of the Forsmark repository where the period after excavation but 
before installation of the canister with spent fuel and the clay buffer (i.e. the inflows are 
measured during atmospheric conditions in the tunnels/deposition holes) was simulated, and 
analyse the fracture statistics (such as the fraction of deposition holes intersected by fractures, 
the fracture inflows and the distance from each deposition hole to nearby tunnel-intersecting 
fractures).
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These open-repository fracture flows are then used to calibrate Code_Bright models, where at 
first atmospheric conditions are prescribed in both the deposition hole and the tunnel. 
Thereafter, the tunnel backfill/deposition-hole buffer is introduced and the saturation time 
calculated.

When studying the properties of the fracture population in the groundwater models, three
main differences with the models in Åkesson et al. (2010) can be identified:

1) no matrix flow is included in the groundwater models,

2) most fractures intersecting deposition holes and tunnels have considerably lower 
inflows than what was used in Åkesson et al. (2010), 

3) most deposition holes are not intersected by fractures and are situated quite far 
away from the nearest tunnel fracture. Thus, to estimate the saturation-time 
distribution, the tunnel-fracture separations analysed (6m and 24m) in Åkesson et 
al. (2010) appears to have been too small.

These three points are discussed in further detail below.

1. Matrix flow
The perhaps most influential uncertainty in this work is the rock-matrix flow. Measurements 
on intact (unfractured) borehole cores from Forsmark (Vilks 2007) suggest that intact rock 
samples on the decimetre-size scale have hydraulic conductivities between KM = 5∙10−12 –
4∙10−14 m/s. However, in the groundwater models, all water is assumed to be transported in 
fractures. While the matrix flow may be unimportant when studying the transport of 
radionuclides out of the repository (as is the main goal of the groundwater models), it can, 
depending on its magnitude, almost completely set the distribution of saturation times, ts, in 
the repository.

As the value of the matrix conductivity in Forsmark is uncertain, the distribution of saturation 
times has here been calculated assuming no matrix flow (i.e. water to the deposition holes and 
tunnels only enters through fractures). Then, Code_Bright models with different values of the 
matrix conductivity (KM = 10−11 – 10−14 m/s) have been used to calculate the saturation time 
tS(KM) if water only enters via the matrix. The cumulative distribution of saturation times for a 
particular value of KM is then assumed to be identical to that with no matrix flow for t <
tS(KM) and equal to 1 for t > tS(KM).

2. Fracture inflows in the groundwater models
The cumulative distribution of inflows in deposition-hole-intersecting fractures, qDH, is shown 
in the left panel of Figure 1. About 60% of all these fractures have qDH < 10−4 L/min. In 
Åkesson et al. (2010), the saturation time was calculated for qDH = 0.1 L/min and 10−3 L/min,
respectively. 

The cumulative distribution of inflows through tunnel-intersecting fractures (qTF) is shown in
the right panel of Figure 1. As can be seen, the tunnel-fracture inflows vary between 
approximately qTF = 10−6 and qTF = 10 L/min. It is important to note that in the groundwater 
models used here, grouting is not included and tunnel-intersecting fractures with inflows 
higher than the prescribed limit of 0.1 L/min (SKB 2010a) are included. If grouting were 
included this could change the inflows into the tunnels by reducing the inflow through high-
flowing fractures and possibly (by redistribution of flow) increasing the inflow through low-
flowing fractures. Hence, depending on how high-flowing fractures are handled in the 
Forsmark repository, the tunnel-backfill-saturation process could, in some tunnels, be rather 
different than the estimates presented in this report. 
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The models of the tunnel backfill saturation process presented in Åkesson et al. (2010) were 
set up using fractures with open-repository inflows equal to 0.1 L/min and 10−3 L/min only,
hence to better represent the inflows expected in the repository we have here also included 
tunnel-intersecting fractures with qTF = 10−5 L/min.

Figure 1. Cumulative distribution of inflows (during atmospheric conditions in the 
repository) through deposition-hole intersecting fractures (left panel), and through tunnel-
intersecting fractures (right panel), as determined in the groundwater models of the Forsmark 
repository.

3. Fracture separation
The majority (about 90%) of deposition holes in the groundwater models are not intersected 
by fractures1. Furthermore, the vast majority of these deposition holes are situated far away 
from the nearest tunnel fracture.

To quantify the tunnel-fracture separation, L (see Figure 2), we can construct the cumulative 
distribution. In this report we will use the quantity L/2, i.e. the fracture separation divided by 
2, as this is the quantity which is varied in the Code_Bright models presented in Åkesson et 
al. (2010) and below.

                                                
1This statement is only correct if EDZ (Excavation Damaged Zone) fractures are not included. 
In SR-site it is assumed that no significant EDZ will be present in Forsmark, and the same is 
assumed here. In section 1.5 a short discussion on the possible effects of a highly unrealistic 
EDZ is included.
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Figure 2. The tunnel-fracture separation, L, is defined as the separation between two 
fractures, as measured from the  point were they intersect the deposition-tunnel central axis.

The cumulative distribution of L/2 can be constructed in two different ways: 1) by analysing
the fracture separations from the point of view of an observer sequentially positioned in each 
and every tunnel, or 2) from the point of view of an observer sequentially positioned in each 
and one of the deposition holes. In the first case, each fracture separation is only counted once 
and it results in the distribution identified by the black solid line in Figure 3. In the second 
case, each large fracture separation will be counted many times, as more deposition holes are 
situated between fractures with large separations than between fractures with small 
separations. The resulting distribution is the red solid line in Figure 3, which reaches a value 
of one at L/2 ≈ 260m. When analysing the saturation-time distribution, the interesting statistic 
is the second one.

It should be noted that we have only considered the value of L/2 for the two fractures situated 
closest to the deposition hole; if these have very low inflows, fractures further away have to 
be considered when analysing the tunnel-backfill-saturation time at a given position. In 
principle this could lead to that larger separations than L/2= 260m should be considered;
however, with the data analysed here this was not the case.

As is seen, the majority (about 80%) of deposition holes are situated between fractures with 
10 m ≤ L/2 ≤ 100 m, whereas in Åkesson et al. (2010) only L/2 = 3 and 12 m were 
considered.
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Figure 3. Distribution of tunnel-fracture separations, where the tunnel-fracture separation, L, 
has been divided by a factor of 2. The black line shows the distribution from the point of view 
of an observer standing in the tunnels and the red line shows the distribution from the point of 
view of an observer standing in the deposition holes.

When considering the saturation time of the tunnel backfill, at any given deposition point, it is 
to a first approximation set by 1) the separation between the two nearest surrounding fractures 
(L/2), 2) the inflow through these fractures (qTF), and 3) the distance to the nearest fracture 
(dmin). In practice this method gives too slow saturation times, as more distant but higher 
flowing fractures can lead to a shorter saturation time, which partially can be handled by 
analysing all fractures/fracture pairs in the tunnel (this is further explained in section 1.5).

The distance to the nearest fracture (dmin) is of little significance when L/2 is small, but 
dominant when L/2 is large. This can be illustrated using the models of the tunnel backfill 
saturation phase which were presented in Task 2 in Åkesson et al. (2010). As part of that task, 
the saturation of the tunnel backfill was studied in the case where water only entered through 
equidistant fractures. Two fracture separations were investigated (L/2= 3 and 12 meters) using 
the geometry seen in Figure 11. The saturation profile at several different points in time after 
installation is shown in Figure 4 (left panel: L/2=3m, right panel: L/2=12m). As can be seen,
the saturation profile in the two cases is rather different. When the fractures are relatively 
close to each other (L/2=3m, left panel) the saturation profile is rather shallow, and the entire 
buffer segment between the two fractures reach full saturation at approximately the same 
time. However, for larger fracture separations, a clear “saturation front” is seen in the tunnel 
backfill, with the parts close to the fracture reaching full saturation much faster than the parts 
further away.
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Figure 4. Saturation profiles at the center of the tunnel backfill at different points in time 
after installation. The models are constructed with a symmetry plane in between the two 
fractures (see Figure 11), which, in these two models, were calibrated such as to give 10−3

L/min each under atmospheric conditions in the tunnel. The left panel depicts the evolution 
when the two fractures are separated by a distance of 6m, while the right panel depicts the 
evolution when the fractures are separated by 24m.

1.3 Estimate of saturation time for different deposition holes
The saturation time of each deposition hole will here be calculated assuming none (or very 
small) matrix flow. The effect of the matrix flow is then taken into account when constructing 
the total distribution of saturation times.

We start by dividing the deposition holes into four different classes:

1) deposition holes which are intersected by one or more fractures, which set the 
saturation time,

2) deposition holes with no fractures, which are situated in between two tunnel fractures 
with small separation,

3) deposition holes with no fractures, which are situated in between two tunnel fractures 
with large separation, and

4) deposition holes with no fractures, which are situated in a tunnel with no fractures

Considering the deposition holes in class 1, the modelling done in Åkesson et al. (2010), 
where the saturation time was calculated due to water inflow through a fracture intersecting 
the deposition hole at mid height of the canister, gives a good estimate of the saturation time 
if the fracture inflow under atmospheric conditions is around 10−4 L/min or higher and a
significant matrix flow is present. However, as can be seen in the left panel of Figure 1, the 
majority of deposition-hole-intersecting fractures have much lower inflows. Thus, to properly 
cover the range of inflow configurations found in the groundwater models, we must update
the models from Åkesson et al. (2010) by including a very low matrix flow, and add a model 
with a low-flowing fracture. 
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It should be pointed out that some of the deposition holes that belong to class 1 will have such 
a low fracture inflow that the saturation time is actually set by nearby tunnel fractures (i.e. the 
deposition hole is saturated by water entering via the tunnel backfill). Here this is handled by 
comparing the saturation time as calculated from deposition-hole-intersecting fractures and 
tunnel-intersecting fractures separately, with the assumption that the shortest one is valid. In 
reality the two inflows will add up, potentially leading to significantly shorter saturation 
times. The number of deposition holes which this is the case for is, however, low, and thus 
have small impact on the shape of the cumulative distribution curve of saturation-times.

Concerning deposition holes belonging to class 2 and 3, we can estimate the saturation time 
by calculating the time it will take until the tunnel backfill is saturated above the deposition 
hole. Models for two fracture separations were analysed in Task 2 of Åkesson et al. (2010); 
these are here supplemented by 18 additional models, which better cover the range of fracture 
inflows and fracture separations present in the groundwater models.

Deposition holes belonging to class 4 will be saturated either through matrix flow or,
alternatively, by water passing through the tunnel plug into the deposition tunnel from the 
transport tunnels. In the latter case, we have no way of estimating the time until saturation in 
this report, and thus when zero matrix flow is assumed, the saturation time of the class 4 
deposition-holes will be set to infinity. This is, however, of little importance for the 
saturation-time distribution, as the fraction of deposition holes belonging to class 4 is less than 
one per cent.

1.4 Additional models
As mentioned above, several new models were constructed (with respect to those presented in 
Åkesson et al. 2010) to better represent the inflow characteristics in the groundwater models.
Below we first discuss the additional models of the deposition-hole saturation process, where 
after we describe the additional models of the tunnel-backfill saturation process.

1.4.1 Additional models of the deposition-hole saturation process
The hydration of the buffer in a deposition hole intersected by a single fracture was analysed
in Task 3 of Åkesson et al. (2010). Two fracture transmissivities were used, corresponding to 
fracture inflows under atmospheric conditions of qF = 0.1 L/min and qF = 10−3 L/min. The 
simulations also included matrix flow, with Km = 10−11 m/s and Km = 10−12 m/s, respectively. 
Two combinations of these fracture transmissivities and matrix conductivities were modelled: 
qF = 0.1 L/min with Km = 10−11 m/s and qF = 10−3 L/min with Km = 10−12 m/s. For the 
purposes here, however, we would like to know the time until full saturation in the buffer for 
qF = 0.1 L/min, 10−3 L/min and 10−5 L/min in the case of a very small matrix flow. 

The models presented use the same geometry and mesh, as well as material parameters and 
initial/boundary conditions, as was used in Åkesson et al. (2010). For completeness they are 
briefly described below; for a more in-depth description, as well as motivation for the values 
used the reader is directed to Task 3 in Åkesson et al. (2010). 

Material parameters
The constitutive laws used are:

Liquid and gas density

�� = 1002.6 ∙ exp[4.5 ∙ 10��(�� − 0.1	MPa) − 3.4 ∙ 10���] (1-1)

�� =
0.018��

8.3143(273.15 + �)
∙ �� (1-2)
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�� = 130675 ∙ exp �−
5239.7

273.15 + �
� (1-3)

�� = exp �
−0.018 ∙ ��� − ���

8.3143 ∙ (273.15 + �) ∙ ��
� (1-4)

Conductive heat flux

�� = −�∇�
(1-5)

� = ���� ∙ �� + ���� ∙ (1 − ��) (1-6)

Retention behaviour, Van Genuchten

�� = �1 + �
��
��
�
� (���)⁄

�

��

�� = �� − ��

(1-7)

Flow through porous medium

�� = −
� ∙ ���
��

∇�� (1-8)

Buffer materials: ��� = ��
�  (1-9)

Rock materials:			��� = ��� �1 − �1 − ��
� �⁄ �

�
�
�

(1-10)

�� = 2 ∙ 10���exp �
1808.5

273.15 + �
� (1-11)

Vapour diffusion

��
� = −����(1 − ��)��

��∇��
�

(1-12)

��
� = � ∙ 5.9 ∙ 10��

(273.15 + �)�.�

��
(1-13)

The models simulate thermo-hydraulic, but not mechanical processes in the buffer. This 
introduces an uncertainty in the saturation time, as the swelling of the buffer and its effect on 
the void ratio distribution and hydraulic properties of the clay are not included. To estimate 
the effect of this simplification two “mechanical” states of the buffer were modelled; 1) the 
initial state and 2) the homogenised state. In 1) the buffer is modelled in the state it had just 
after installation, while in 2) it is modelled in a theoretical final state, where the buffer has
swelled (radially) and homogenised in that direction. The parameters used to describe the 
buffer in the initial state models are summarised in Table 1-1, while the parameters in the 
homogenised models are found in Table 1-2. 
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Table 1-1. Data used for initial state MX-80 materials. Directly adopted from the values 
used in Åkesson et al. (2010).

Parameter
Buffer ring 

n=0.36
w=17%

Buffer 
cylinder 
n=0.61
w=17%

Buffer 
pellets 
n=0.61
w=17%

Backfill
block

n=0.39
w=17%

Backfill
Pellets
n=0.61
w=17%

Thermal
conductivity

λdry

λsat

(W/mK)

0.7
1.3

0.7
1.3

0
1.3

0.7
1.3

0
1.3

Specific heat c (J/kgK) 800

Solid density ρs (kg/m
3
) 2780

Intrinsic
permeability

k (m
2
) 1.2∙10

−21
2.0∙10

−21
5.2∙10

−19
2.1∙10

−21
5.2∙10

−19

Relative
permeability

krl (-) Sr
3

Vapour diffusion
tortuosity

 (-) 1

Water retention
curve

P0 (MPa)
λ (-)

67.2
0.48

43.5
0.38

0.508
0.26

37.2
0.34

0.162
0.19

Table 1-2. Data used for homogenized MX-80 materials. Directly adopted from the 
values used in Åkesson et al. (2010).

Parameter

Homog. Buffer
cylinder 
n=0.419 
w=17%

Homog. 
Buffer ring

n=0.435 
w=17%

Homog. 
Backfill 
n=0.454 
w=17%

Thermal
conductivity

λdry

λsat

(W/mK)

0.7
1.3

Specific heat, C (J/kgK) 800
Solid density ρs (kg/m

3
) 2780

Intrinsic
permeability

k (m
2
) 4.2∙10

−21
6.0∙10

−21
8.9∙10

−21

Relative
permeability

krl (-) Sr
3

Vapour diffusion
tortuosity

 (-) 1

Water retention
curve,

P0 (MPa)
λ (-)

15.19
0.25

8.93
0.22

5.85
0.21

To determine the properties of the Homogenized Backfill the tunnel geometry was obtained as 
an average of the measures of the “Theoretical section” and the “Maximum fall out” as
defined in the Backfill Production Report (SKB 2010a). The “Averaged” geometry was then 
used to find suitable properties of the homogenized tunnel backfill materials: backfill blocks 
and pellets. 

The parameters used to model the rock and canister materials are found in Table 1-3. The 
value of the rock intrinsic permeability deserves some discussion. The goal of this modelling 
is to quantify the saturation time due to fracture wetting without significant matrix flow. Thus, 
in principle the intrinsic permeability of the rock should be set as low as possible. However, 
setting too small a value leads to unrealistically high liquid pressures in the rock around the 
deposition hole, due to the increased temperature that causes the water to expand (see 
equation 1-1) in combination with the low permeability, which prevents the water to flow 
away from the warm zone. Using the value 10−21 m/s is a good compromise which leads to a 
very low matrix flow, while avoiding high pressures in the rock.
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Table 1-3. Data used for the rock, fracture and canister materials. Directly adopted 
from the values used in Åkesson et al. (2010).

Parameter
Rock 

n=0.003
Fracture

n=0.99
Canister
n=0.0001 

Thermal
conductivity

λdry = λsat

(W/mK)
2.8 2.8 90

Specific heat C (J/kgK) 770 770 480

Solid density ρs (kg/m
3
) 2277 2277 7500

Intrinsic
permeability

k (m
2
) 10

−21
4.3∙10

−15

4.3∙10
−17

4.3∙10
−19

-

Relative
permeability

krl (-) λ= 0.6
(*)

Sr
3

-

Vapour diffusion
tortuosity

τ (-) 1 1 -

Water retention
curve

P0 (MPa)
λ (-)

1.74
0.6

1.74
0.6

-

(*) 
van Genuchten is used, see equation 1-7.

Geometry, initial and boundary conditions
The geometry is a two-dimensional axisymmetric representation of a single deposition hole, 
with the backfilled tunnel and nearby host rock; it is shown in Figure 5.

The initial conditions prescribed are taken from Åkesson et al. (2010). They are:

Parameter Initial liquid 
pressure 

Porosity Initial 
temperature 

Unit [MPa] [-] [°C]

Rock/Fracture 4 - 5.21) 0.003 15
Buffer rings -46 0.36 15
Buffer blocks -46 0.38 15
Buffer pellets -46 0.64 15
Backfill blocks -46 0.39 15
Backfill pellets -46 0.64 15
Canister -46 0.00012) 15
1) Linear vertical distribution between upper (4MPa) and lower (5.2MPa) boundary 
2)When using Code_Bright all materials must have a porosity. As the canister in reality has 
zero porosity a very low value is prescribed here.
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Figure 5. Geometry and boundary conditions used to model the saturation process in a 
deposition hole intersected by a single fracture at canister mid height. The figure is adapted 
from figures 3-3 and 3-6 in Åkesson et al. (2010).

Two types of thermal boundary conditions are used, a heat flux on the canister and a 
prescribed temperature on the upper and lower boundaries (on the vertical boundary adiabatic 
thermal conditions are prescribed). In Åkesson et al. (2010), all models were saturated within 
3 000 years. For some models analysed here this was not the case, hence the boundary 
conditions had to be evaluated for considerably longer time periods (t = 30 000 years).

The canister heat load is prescribed on two vertically orientated concentric cylinders within 
the canister material. 1/3 of the total heat load is prescribed at the radial distance r = 0.105 m 
and 2/3 of the total heat load at r = 0.315 m. This is done to mimic the real case, where four 
fuel elements are placed in the inner part and eight in the outer part of the canister.

The heat load (i.e. the canister power) is prescribed according to the expression reported in 
Hökmark et al. (2010):

�(�) = �(0)� ��exp	(−�/��)
������

���
, (1-14)

where P(0) = 1700 W, imax = 7 and the parameters ai and ti have the values shown in Table 
1-4. We here assume that it is valid for t ≤ 30 000 years, the graph in Figure 6 shows the
values during this time span. 
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Table 1-4. Decay function coefficients and the corresponding canister power graph.

i 1 2 3 4 5 6 7

ti 20 50 200 500 2000 5000 20000

ai 0.060 0.705 -0.055 0.250 0.025 -0.009 0.024

Figure 6. Canister power as calculated using equation 1-14.

The temperature prescribed on the upper and lower boundaries are taken from a thermal 
model of the entire repository used in the THM report concerning the geosphere, as presented 
in Hökmark et al. (2010). That model simulated the entire repository with surrounding rock 
mass, assuming a canister distance of 6m - 6.8m (depending on the position within the 
repository) and a rock thermal conductivity equal to 3.57 W m−1 K−1. The temperature change 
60 m above/below the repository level is shown in Figure 7 (red and blue solid lines). As can 
be seen the evolution is almost identical, hence the same temperature could be prescribed on 
both boundaries (black dashed line in Figure 7). Data for t>10 000 years have not been 
directly evaluated at +/- 60 m above/below the deposition holes, but the temperature evolution 
on the deposition-hole wall in similar models is available in Hökmark et al. (2010). The 
results suggest that the temperature reaches its original value (T=15°C) about 100 000 years 
after installation of the spent fuel, and that the trend, as plotted on a semi-log plot, is close to 
linear between 10 000 and 100 000 years. As such the temperature boundary condition has 
been extrapolated as is shown in Figure 7. It should be noted that the temperature at the 
boundary is less than 4°C above its original value of 15°C in this time interval. As such, any 
small errors in the temperature boundary condition should have a very small effect on the 
thermo-hydraulic evolution in the buffer.
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Figure 7. Temperature change at the upper (red line) and lower (blue line) boundary of the 
model, taken from a thermal simulation of the entire repository presented in Hökmark et al. 
(2010). The dashed black line is the temperature boundary condition prescribed on the 
boundary in the Code_Bright models.

The hydraulic boundary condition was evaluated from a hydraulic model of the entire 
repository, presented in Åkesson et al. (2010). It showed that at both the upper and lower 
boundaries of the model used to simulate the evolution of a single deposition hole, the liquid 
pressure was close to hydrostatic at all times. Furthermore, evaluation of the single-
deposition-hole model showed that a no-flow condition on the lower boundary gave a correct 
evolution. As such, the only hydraulic boundary condition used in the model is that a liquid 
pressure of 4 MPa is prescribed on the upper boundary of the geometry.

1.4.1.1 Parameter variations explored
The main parameter to be investigated here is the fracture transmissivity, TF. However, it is
more correct to state that the importance of variations in fracture inflow was explored, as the 
values of these, as measured under atmospheric conditions, were used to calibrate the 
transmissivity. Aside from different fracture transmissivities, one extra (with respect to the 
models presented in Åkesson et al. 2010) value of the matrix hydraulic conductivity was 
modelled, Km = 10-14 m/s. The different models analysed are summarised in Table 1-5 below.
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Table 1-5. Additional models constructed to explore the effect of deposition-hole 
intersecting fractures on the buffer’s saturation time.

Model name Matrix conductivity
Km [m/s]

qF
[L/min]

I/H1)

Km14_qF1_I 10−14 0.1 I
Km14_qF1_H 10−14 0.1 H
Km14_qF3_I 10−14 10−3 I
Km14_qF3_H 10−14 10−3 H
Km14_qF5_I 10−14 10−5 I
Km14_qF5_H 10−14 10−5 H
Km14 _I 10−14 - I
Km14 _H 10−14 - H
1) I = Installation state, H = Homogenised state

1.4.1.2 Results
In accordance with Åkesson et al. (2010), the saturation time (here defined as the time from 
buffer installation until the buffer reaches 99% saturation) was measured in four pre-
determined points (P1 – P4) as well as in the last point to reach full saturation. The positions 
of points P1-P4 are illustrated in Figure 8. It should be noted that due to limitations of the 
post-processor used, the saturation has to be measured on the second node from the edge of 
the buffer material (the same is true for the models presented in Åkesson et al. 2010).

Figure 8. Schematic overview of the position of the four points in the buffer where the 
saturation time is recorded in each model.

In Figure 9 the time to reach full saturation in the six models with Km = 10−14 m/s and a single 
fracture is shown. The saturation times are rather long, with a time to saturation of 679 - 1 579
years for qF = 0.1 L/min up to 2 035 - 2 551 years when qF = 10−5 L/min. Furthermore, it can 
be observed that the results of the models with qF = 0.1 and 10-3 L/min are rather similar, 
hence in these cases the buffer limits the fracture flow.

Another important aspect here is when we define the deposition hole to be saturated. As is 
seen in Figure 9, points 3 and 4 are in general saturated much faster than points 1 and 2. 
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Hence, if we defined the saturation time as the time until saturation just around the canister 
the result would be rather different from if we define it as the time until the buffer in the entire 
deposition-hole is saturated. Following the procedure used in Åkesson et al. (2010) we will 
here use the latter definition, i.e. the saturation time is defined as the time it takes to saturate 
the buffer in the entire deposition hole.

Figure 9. Time to 99% saturation [in years] in models with a matrix conductivity equal to 
10−14 m/s and a fracture flow of qF = 0.1 L/min (qF1_I, qF1_H), qF=10−3 L/min (qF3_I, 
qF3_H) and qF=10−5 L/min (qF5_I, qF5_H). A description of the parameter variations 
between the models is shown in Table 1-5.

In Figure 10, the saturation time due to only matrix flow is shown for KM = 10−11, 10−12, 
10−13 and 10−14 m/s. Only the models with 10−14 m/s were done as part of this report, the 
results for the other six cases are taken from Åkesson et al. (2010). The models have been re-
named to fit the nomenclature in this report, although their original names are also included in 
Figure 10. As can be seen the saturation time scales rather well with the matrix conductivity, a 
decrease of KM with a factor of 10 leads to an increase in saturation time of roughly a factor of 
10.

It is also important to compare the saturation time for KM = 10−14 m /s and no fracture (17 742 
– 21 872) with the maximum saturation time seen when including fractures (1 941 – 2626 for 
qF = 10-5 L/min). This indicates that the matrix plays a very small role in saturating the buffer 
in the fracture models.
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Km14_
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Km14_
qF5_H

pt(1) 322.9 1569.3 328.4 1579.4 834.7 2606.9

pt(2) 638.4 1547.3 650.6 1557.2 1938.8 2584.7

pt(3) 27.7 521.9 27.9 529.0 55.4 1316.3

pt(4) 1.7 32.1 1.9 31.8 7.1 35.6

pt(last) 636.2 1585.9 650.6 1596.0 1940.8 2625.9
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Figure 10. Time to reach 99% saturation [in years] in the deposition-hole buffer in models 
with only matrix flow (i.e without a fracture). The models with matrix conductivity equal to 
10−13 m/s and above were done as part of Åkesson et al. (2010) and the results are taken 
directly from that report. The model identifiers used in that report are included inside 
parenthesis in the figure.

1.4.2 Additional models of the tunnel-backfill saturation process
Setup
The models presented here to analyse the tunnel-backfill saturation process used the same 
type of geometry and the same material parameters (with the exception of one additional 
value of the fracture transmissivity) as the models in Åkesson et al. (2010). An example of the 
geometry is shown in Figure 11, where the model with L/2 = 3 is shown. 

Figure 11. Geometry used when modelling fracture wetting of the tunnel backfill. In this 
particular model the inter-fracture distance (L) was 6m. To achieve a relevant liquid pressure 
at the intersection of the no-flow boundary (r=10m) the fracture length is set to 80m. A more 
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in-depth description of the geometry shown here and how it was constructed can be found in 
section 2.3 of Åkesson et al. (2010).

Several different models were constructed, varying the fracture half separation, L/2. The 
values of L/2 were chosen so as to represent the cumulative distribution of L/2 (f(L/2), see red 
solid line in Figure 3). The values of L/2 modelled, and the corresponding value of f(L/2) are 
listed in Table 1-6. As can be seen the distribution is better mapped for f(L/2) > 0.80; this is 
motivated by the large variations in saturation time in this region.

Table 1-6. Range of L/2 modelled and the correponding values of the cumulative 
distribution function of L/2.

L/2 [m] f(L/2)

3 0.03
20 0.20
38 0.40
60 0.60
90 0.80
130 0.90
170 0.95
260 0.99

The only difference in geometries between the models is that the backfill, pellets and rock 
materials were extended away from the fracture to the corresponding fracture half separation. 
The material parameters are summarized in Table 1-7. The constitutive laws used are the 
same as the hydraulic constitutive laws summarised in equation 1-1 to 1-11.

Table 1-7. Material parameters used when modeling the tunnel-backfill saturation
process. Directly adopted from the values used in Åkesson et al. (2010).

Parameter Backfill
block

e=0.635
w=17%

Backfill
Pellets

e=1.780
w=17%

Homog. 
Backfill 
e=0.74 
w=17%

Homog. 
Backfill 
e=0.91 
w=17%

Rock 
matrix 

Fracture 
material

Porosity n (-) 0.388 0.64 0.425 0.476 0.003 0.003

Intrinsic 
permeability

k (m
2
) 2.1x10

−21
5.2x10

−19
4.8x10

−21
1.5x10

−20
5x10

−20 1)

Relative 
permeability

kr (-) Sr
3

Sr
3

Sr
3

Sr
3 vG

†
:

λ = 0.6
vG

2)
:

λ = 0.6

Water retention 
curve

P0 (MPa)
λ (-)

37.2
0.34

0.162
0.19

11.6
0.23

3.45
0.20

1.74
0.6

1.74
0.6

1)
Three variations: 2.5x10

−15
m

2
(0.1 L/min) , 2.5x10

−17
m

2
(10

−3
L/min) and 2.5x10

−19
m

2
(10

−5
L/min) 

2)
vG: van Genuchten relative permeability law, see equation 1-10.

The models of the tunnel backfill saturation process done for this report are summarized in 
Table 1-8. There, qTF is the tunnel fracture inflow in L/min as measured during atmospheric 
conditions.
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Table 1-8. Overivew of models of the tunnel backfill saturation process.

     qTF

L/2
10−5 10−3 10−1

3 TB_Q5_L3 TB_Q3_L3 TB_Q1_L3
20 TB_Q5_L20 TB_Q3_L20 TB_Q1_L20
38 TB_Q5_L38 TB_Q3_L38 TB_Q1_L38
60 - TB_Q3_L60 TB_Q1_L60
90 - TB_Q3_L90 TB_Q1_L90
130 - TB_Q3_L130 TB_Q1_L130
170 - TB_Q3_L170 TB_Q1_L170
260 - TB_Q3_L260 -

Results
The results from the models were quantified by measuring the time until Sl = 0.99 at distance 
dmin from the fracture at r = 2.55 m (i.e. in the pellets column). Here dmin = n·6 m, where n
goes from 1 up to nmax, such that (L/2 – 6) ≤ nmax∙6 m < L/2. In the cases where nmax∙ dmin ≠ 
L/2, the time until Sl = 0.99 at L/2 m from the fracture in the pellets column (r = 2.55 m) was 
also measured and recorded.

In Figure 12, the results from models with qTF = 10−3 L/min (solid lines) and qTF = 0.1 L/min 
(dashed lines) are shown. As can be seen, the results for the two fracture inflows are rather 
similar. The cause is that for such high inflows, the bentonite limits the inflow, as it 
effectively acts as a seal on the fracture.

Figure 12. The graph shows the saturation time as a function of distance to the nearest 
fracture, for seven different fracture separations. Solid lines correspond to a fracture inflow 
(under atmospheric conditions) qTF = 0.1 L/min, and dashed lines to qTF=10-3 L/min.

Not included in Figure 12 are the results from the three models with qTF = 10−5 L/min (see 
Table 1-8). For such a low inflow one might assume that the saturation time is entirely 
controlled by the flow in the fracture, i.e. the bentonite can, at all times during the hydration 
process, take in all the water which the fracture provides per unit time. Hence, the buffer does 
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not limit the inflow from the fracture. Under such conditions, the saturation time can to a 
good approximation be calculated analytically, by dividing the total available pore volume in 
the buffer with the steady-state fracture flow:

�� =
��

���
. (1-15)

Here, Vp is the total available pore volume. We are, however, interested in the saturation time 
as a function of L/2, and hence we re-write equation 1-15 on the form:

�� =
�� × 2 × �/2

���
, (1-16)

where, AT is the available pore area of the deposition tunnel. Taking the value AT = 5.9 m2

(which is valid for the case of maximum fallout (see e.g. Åkesson et al. 2010) we find:

�� = 2.245 × 10�� ×
�/2

���
	years, (1-17)

where qTF is measured in units of L/min. If we assume that qTF, as measured during 
atmospheric conditions, is unchanged by the tunnel backfill, we can thus calculate tS given qTF

using equation 1-17.

The results from the three models with qTF = 10−5 L/min are shown in Figure 13. Also shown 
is the saturation time for each value of L/2 as calculated using equation 1-17. As is seen, the 
agreement is very good between the analytical solution and the numerical models. This 
reinforces the assumption made when deriving equation 1-17, that the fracture flow, for such 
low inflows, is not significantly changed by the presence of the tunnel backfill.

Furthermore, the numerical simulations with qTF = 10−5 L/min show that the tunnel backfill 
reaches full saturation on a rather similar time-scale at all distances from the fracture (see 
Figure 13), hence tS is independent of the distance dmin between the fracture and the 
deposition hole, and hence to a good approximation only depends on the fracture half 
separation, L/2.
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Figure 13. The graph shows the saturation time as a function of distance to the nearest 
fracture, for three different fracture separations. Solid lines correspond to a fracture inflow 
(under atmospheric conditions) of qTF = 0.1 L/min. The dashed line is an evaluation of 
equation 1-17, which is used to determine the saturation time at distance L/2 from the 
fracture.

The perhaps biggest limitation of the models presented here and in Åkesson et al. (2010), with 
respect to calculating the saturation-time distribution is that we, because of the assumed 
symmetry, are not able to directly simulate the saturation process between two fractures with 
significantly different inflows. This is a common situation in the groundwater models and as 
such needs to be handled.

Comparing the saturation times for the same values of L/2 for fractures with different inflows 
it can clearly be seen that the models with qTF = 10−3 L/min (Figure 12) are saturated much 
faster than the models with qTF = 10−5 L/min (Figure 13). 

Two examples of this are shown in Figure 14. In the left-hand graph, the ratio of saturation 
times for models with fracture inflow between qTF = 10−5 L/min (blue line) - 10−6 L/min (red 
line) and qTF = 10−3 L/min is shown. As can be seen, the difference in saturation time between 
the different fractures is greatest for small values of L/2, whereas it decreases significantly at 
larger values.

In the right-hand graph, the saturation time of models with qTF = 10−5 L/min (blue lines) -
10−6 L/min (red lines) are shown, where tS have been normalised to the saturation time from 
the model with qTF = 10−3 L/min and L/2 = 170 m (dashed lines) and L/2=260 m (solid lines). 
The critical point here is that for fractures with qTF ≤ 10−6 L/min the inflow is so low that if a 
fracture with qTF  ≤ 10−3 L/min is present anywhere in the tunnel, the latter will set the 
saturation time close to the low-flowing fractures, even if these are situated only a few meters 
apart. For fractures with qTF = 10−5 L/min the situation is somewhat more complicated, as 
these, if relatively closely spaced, can dominate the saturation process if the high-flowing 
fracture is far away.

However, we can conclude that for pairs of fractures where one has an inflow of qTF ≥ 10-3

L/min and the other fracture’s inflow is considerably lower, the saturation process is 
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completely dominated by the high flowing fracture. Thus, without simulating the situation, the 
best approximation is to ignore the low-flowing fracture and calculate the saturation time due 
to the presence of the high-flowing fracture only. This is done by taking L/2 as the distance 
between the fracture and the tunnel entrance or end (depending on which side of the fracture 
the deposition holes is situated) and taking the distance between the deposition hole and the 
fracture, dmin, into account when reading off the saturation time from the models of the tunnel-
backfill saturation (Figure 12).

Figure 14. The left-hand graph shows the ratio of saturation times as function of L/2 for 
different fracture flows (blue lines: qF=10-5 L/min, red lines: qF=10-6 L/min). The right-hand 
graph shows the saturation time for a fracture with inflow qF, normalized to the saturation 
time measured for a fracture with qTF=10-3 L/min and L/2=170 m (solid lines) and L/2=260 m 
(dashed lines).

In the situation where no high-flowing fractures are present, and hence the saturation time 
above a deposition hole situated in between two low-flowing fractures needs to be calculated, 
the approach used below is to take the average inflow of the two fractures and use this in 
equation 1-17.

1.5 Distribution of saturation timescale
Using the model results presented above we are able to construct the expected distribution of 
saturation times. As a baseline we first construct the distribution assuming that no matrix flow 
is present. It is constructed using the following algorithm:

1) For each fracture realisation (i.e. the four different equi-probabilistic groundwater 
realisations r0, r2, r3 and r5 in Joyce et al 2013) all deposition holes are looped over

2) Each deposition hole is checked for intersecting fractures, 

i. If there are intersecting fractures with an inflow higher than 0.1 L/min, the 
deposition hole is discarded

ii. if there are fractures with an inflow below 0.1 L/min, the saturation time tS_DHF 

is taken from the results of the corresponding Code_Bright model
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3) Then, the saturation time in the pellets column of the tunnel backfill just above the 
deposition hole, tS_TF(xDH) is analysed. This is done by looping over all tunnel 
fractures individually  and calculating tS_TF(xDH) in two ways:

i. Under the assumption that the fracture in question is the only one intersecting 
the tunnel and thus L/2 is the distance between the fracture and the tunnel 
entrance/end.

ii. By pairing up the fracture in question with all other fractures in the tunnel 
separately. Here it is vital to take into account the difference in inflow between 
the fractures. Given two fractures with inflow qTF1 and qTF2 we use the 
following approach

a) If both qTF1 and qTF2 are greater than 10−4 L/min the saturation time is 
taken from the results presented in Figure 12.

b) If both qTF1 and qTF2 are less than 10−5 L/min the saturation time is 
calculated using equation 1-17 and by setting ��� = (���� + ����) 2⁄ .
The tunnel is then assumed to reach full saturation simultaneously 
between the two fractures.

c) If one fracture has an inflow greater than 10-4 L/min while the other 
doesn’t, the ratio qTF1/qTF2 is evaluated. If 0.1 < qTF1/qTF2 < 10, the 
saturation time is again calculated by taking the average inflow 
between the two fractures, now using the results presented in Figure 
12. However, if qTF1/qTF2 > 10 or qTF1/qTF2 < 0.1 the fracture pair is 
discarded.

The actual tunnel-backfill-saturation time at the position of the deposition hole is then
taken to be the minimum value found.

4) The saturation time of the deposition hole is then taken as tS = min(tS_DHF, tS_TF)

5) If no fractures intersect the tunnel or the deposition hole, the saturation time is set
equal to infinity.

The resulting saturation time is calculated for all deposition holes in all four groundwater 
model realisations of the Forsmark repository, and the cumulative distribution is then 
calculated. The result is the grey solid line in Figure 15. As can be seen the distribution has a 
tail towards very long saturation times, these deposition holes are situated in tunnels with very 
few and low flowing fractures. A small fraction (less than one per cent) of the deposition 
holes has an infinitely long saturation time; these are the deposition holes situated in tunnels 
with zero intersecting fractures.

It is, however, unrealistic to exclude matrix flow when calculating the distribution of 
saturation times. Measurements of the hydraulic conductivity on borehole cores from 
Forsmark suggests that unfractured rock samples have hydraulic conductivities between KM = 
5∙10−12 – 4∙10−14 m/s under the conditions which prevail at repository depth. The saturation 
time of a deposition hole in the absence of fractures (i.e. through matrix flow only) has been 
calculated for Km = 10−11, 10−12, 10−13 and 10−14 m/s using Code_bright models (see section
1.4.1). These results are included in Figure 15 as the coloured intervals, which are bounded by 
the lower (dashed lines) and upper (solid lines) limits on the saturation time as calculated 
from the installation and homogenised models, respectively.

For a given value of Km, the cumulative distribution, f(tS), has the shape of the “Only 
fractures” distribution (grey solid line) for t < tS(KM) , while for t ≥ tS(KM) it equals one.

P
D

F
 r

en
de

rin
g:

 D
ok

um
en

tID
 1

41
58

79
, V

er
si

on
 1

.0
, S

ta
tu

s 
G

od
kä

nt
, S

ek
re

te
ss

kl
as

s 
Ö

pp
en



25

While this treatment is somewhat inaccurate since, if it is significant, the matrix flow will 
contribute to the fracture wetting and thereby change the shape of f(tS) for t<tS, the error 
introduced should be relatively small.

Figure 15. The solid grey line identifies the cumulative distribution of saturation times, f(tS), 
in the Forsmark repository calculated assuming no matrix flow. The colored lines identify the 
time interval within which all deposition holes will reach full saturation if the matrix 
hydraulic conductivity has the value Km=10-exp, where exp = {11, 12, 13, 14). The dashed 
black line identifies the distribution of saturation times if no flow resistance was present in the 
tunnels (see text).

Finally,  given the rather long saturation times of a large fraction of deposition holes, it can be 
useful to estimate how quickly the saturation process would go if the water entering the 
tunnels via fractures had direct access to all parts of the tunnel instantaneously. An extremely 
transmissive and fully connected (along the tunnel axis) Excavation Damaged Zone (EDZ)
could in theory lead to this situation. However, in Forsmark this will not be the case, as the 
design and construction of the repository will not allow for a highly connected EDZ to be 
present. More specifically the current design criteria specify that the “Excavation-induced 
damage should be limited and not result in a connected effective transmissivity, along a 
significant part (i.e. at least 20–30 m) of the disposal tunnel and averaged across the tunnel 
floor, higher than 10-8 m2/s” (SKB 2010b). As an upper bound on how fast all deposition 
holes in theory could be saturated it is, however, still an interesting exercise.

If water entering through tunnel fractures is redistributed along the entire tunnel 
instantaneously, the saturation time of all deposition holes is to a first approximation given by 
the available pore volume in the deposition holes divided by the total tunnel inflow. However, 
this is only valid in tunnels with high inflows. If the total inflow is low, the water has time to 
redistribute within the bentonite, thereby leading to moisture equilibrium. The result is that 
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the saturation time is given by the total available pore volume in the tunnel (i.e. tunnel-
backfill pore volume + deposition-hole pore volume). Then the saturation time can be 
calculated as:

�� =
��,������

�������
	. (1-18)

Here Vp,tunnel is the total available pore volume in the tunnel and qtunnel is the total inflow 
(through all fractures intersecting the tunnel in question) into the tunnel.

The available pore volume in the tunnel is taken to be the average volume of all tunnels 
(including deposition holes) and it is equal to 1.247∙106 L (see Appendix). Calculating the 
saturation time using equation 1-18, with the data on fracture inflows as given in the 
groundwater models of Joyce et al. (2013) as input, result in a saturation time less than 6.9 
years for approximately 35% of all deposition holes. This time is shorter than the saturation 
time of a deposition hole with free access to water (see Åkesson et al. 2010) and thus not 
valid. In these cases, the saturation time is therefore set equal to 6.9 years. The resulting 
distribution is shown as the black dashed line in Figure 15. It can be considered as an upper 
limit on how fast the deposition holes in the repository could become fully saturated in the 
absence of matrix flow. As can be seen in Figure 15, even for this extremely unrealistic case a 
significant fraction of deposition holes still takes a very long time to saturate.

1.6 Conclusions
The distribution of saturation times expected in the Forsmark repository has been analysed 
using a combination of 1) fracture data from groundwater models of the site and 2) 
Code_Bright models of the saturation process of both the deposition-hole buffer and the 
tunnel backfill. The resulting distribution is shown in Figure 15.

As can be seen in Figure 15  the flow properties of the so-called matrix flow are crucial when 
determining the distribution of saturation times. Measurements of the hydraulic conductivity 
of the matrix (Vilks 2007) suggest that it lies between KM = 5∙10−12 – 4∙10−14 m/s. In this 
range of values the effect can be summarised as:

 High matrix conductivity (Km ≥ 10−11 m/s): only a tiny fraction of the deposition 
holes are saturated through direct fracture flow and none through water entering the 
deposition hole via the tunnel backfill. All deposition holes will have reached full 
saturation within approximately 27 years or less.

 Intermediate matrix conductivity (10−12 > Km ≥ 10−13 m/s): between 10% and 30% 
of the deposition holes are saturated trough fracture flow or via water entering via the 
tunnel backfill. The remaining deposition holes are saturated primarily via matrix 
flow, all deposition holes are saturated between approximately 177 and 1760 years.

 Low matrix conductivity (10−13 < Km ≥ 10−14 m/s): A significant fraction (30-60%) 
of all deposition holes are saturated via fracture flow or by water entering via the 
tunnel backfill. All deposition holes will have reached full saturation within
approximately 22 000 years.

 Extremely low matrix conductivity (Km < 10−14 m/s): If the matrix conductivity 
would be extremely low almost all deposition holes will be saturated through fracture 
flow. Deposition holes situated in tunnels where there are no fractures will reach full 
saturation at a very late time, possibly after 106 years.
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2 Task 1.5: Hydraulic connection between deposition 
holes

As part of the evaluation of SKB’s license application, SSM has requested a clarification of 
the impact that hydraulically connected deposition holes may have on, for example, the 
saturation time. By hydraulic connection we here refer to the situation where two or more 
deposition holes are intersected by the same fracture. To analyse this question we must first 
answer two questions: 1) for which types of fractures is a hydraulic connection between two 
or more deposition holes important and 2) how common are such deposition holes in the 
Forsmark repository.

2.1 Relevant fracture flows 
The main effect of the hydraulic connection is here assumed to be that the buffer in deposition 
holes upstreams in the fracture effectively dries out the fracture, significantly decreasing the 
fracture flow downstream. To approximately quantify when this effect may become important 
we must look at two aspects:

1) The minimum required fracture flow: In order for the hydraulic connection to be 
important it must be that the fracture intersecting the deposition holes have a high 
enough flow to be important for the saturation of the deposition hole.

2) The maximum fracture flow that can be absorbed by a single deposition hole: If the 
fracture flow is considerably higher than the flow which the bentonite can take up per 
unit time, the potential decrease in fracture flow due to water uptake in other 
deposition holes will not change the hydration evolution in the deposition hole 
considered. 

We analyse these two limits on the fracture flow in further detail below.

2.1.1 The minimum required fracture flow 
As a lower limit on the fracture flow which is interesting in this context, we can compare the 
saturation time due to fracture flow with the saturation time due to matrix flow. The 
magnitude of the matrix flow is set by the hydraulic conductivity of the matrix. The actual 
value of the matrix hydraulic conductivity in the Forsmark repository is, however, uncertain; a 
topic which was discussed in more detail in section 1.2 above. As a reference we here assume 
that, on the scale used in the Code_Bright models of a single deposition hole as presented in 
section 1.4.1, it is not lower than Km = 10−13 m/s.

The saturation time for Km=10−13 m/s was calculated in Task 3 of Åkesson et al. (2010). The 
saturation time is, however, not given as a single value, but rather as a minimum and 
maximum time, where the uncertainty arises from the swelling of the bentonite, which is not 
included in the models. The saturation time for Km = 10−13 m/s is calculated to be between 
1476 and 1760 years. 

In section 1.4.1, the saturation time due to a single fracture flow is calculated. In these 
models, the matrix conductivity was set equal to Km=10−14 m/s. Such a low value means that 
the matrix flow is extremely small, without the presence of a fracture it results in a saturation 
time between 17 742 and 21 873 years. Hence, when including a fracture in models with 
Km=10−14 m/s the deposition hole is primarily hydrated through the fracture. The results of 
these models are:
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Table 9. Time to 99% saturation in the deposition-hole buffer (see also section 1.4.1).

Km [m/s] q
F,0

1) [L/min] t
S

[years]

10−13 2) 1 476 – 1 760

10−14 2) 17 742 – 21 873

10−14 10−1 636.2 – 1 585.9

10−14 10−3 650.6 – 1 596.0

10−14 10−5 1 940.8 – 2 625.9

1) The fracture flow as measured during atmospheric conditions in the deposition hole
2) No fracture was included in these models

The results show that in deposition holes with fracture inflows less than 10−3 L/min (under 
atmospheric conditions), the saturation time is similar to that of a deposition hole which is not 
intersected by a fracture, but where Km = 10−13 m/s. Thus, in these holes the effect of any 
connections with other deposition holes does not significantly change the saturation evolution.

2.1.2 The maximum fracture flow 
In the case of high fracture flows, the bentonite will very quickly reach full saturation just in 
front of the fracture. After that the inflow from the fracture cannot proceed faster than the rate 
at which water can be transported inside the bentonite to unsaturated parts of the buffer. This 
effectively puts a limit on the maximum inflow that a fracture can provide during the 
saturation process of the buffer. This effect is clearly seen in the model results presented in 
Table 9. The saturation time in the presence of a fracture with inflow (under atmospheric 
conditions) of 0.1 L/min is very similar to the saturation time in the presence of a fracture 
with inflow equal to 0.001 L/min. This can be further seen if we plot the volumetric liquid 
flux through the fracture from all three fracture models included in Table 9; this is shown in 
Figure 16. The liquid flux is almost identical in the two models with qF,0 = 0.1 and 10−3

L/min, whereas it is considerably lower in the model with qF,0 = 10−5 L/min. This suggests 
that the inflow is limited by the bentonite in the first two cases, but not in the latter.

Furthermore, it can be noted that the inflow into the bentonite is significantly lower than the 
open fracture inflow in the models with qF,0 ≥ 10−3 L/min, hence such fractures should not dry 
out even if connected to multiple deposition holes. 

2.1.3 Range of relevant open fracture inflows
We may thus conclude that the case where a fracture intersects multiple deposition holes can 
only have a significant effect on the saturation process if the fracture flow, as measured 
during open conditions, is approximately between 10−3 and 10−4 L/min, assuming that Km ≥ 
10−13 m/s in the Forsmark repository, as is indicated by measurements of the hydraulic 
conductivity of bore hole samples taken at the site (Vilks 2007).
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Figure 16. The flow through the fracture as function of time after installation of the buffer in 
the Code_Bright models discussed in section 1.4.1. 

2.2 Prevalence of hydraulically connected deposition holes
To understand how common it will be that several deposition holes are intersected by a given 
fracture, we can use groundwater models of the Forsmark repository. In these, a fracture 
network has been generated given the data obtained from the surface-based site investigations 
at Forsmark. Here the fracture realisations r0, r2, r3 and r5 (which are equi-probabilistic 
realisations of the same DFN) from Joyce et al. (2013) have been used. More specifically we 
use the inflows and statistics on fractures intersecting deposition holes from these four 
realisations.

A first estimate of the prevalence of hydraulically connected deposition holes is given by the 
fraction of deposition holes that are intersected by one or more fractures. Taking all the data 
available from the groundwater models, neglecting EDZ fractures, and excluding deposition 
holes that share a fracture with four or more other deposition holes in the same deposition 
tunnel (as motivated by the Extended Full Perimeter Intersection Criterion) we find that about 
10% of all deposition holes are intersected by fractures.

However, as we are only really concerned with fractures where 10−4 < q
F

< 10−3 L/min, this 

fraction falls to 2.6%. Half (1.3%) of these deposition holes are intersected by a fracture 
which intersects at least one or several deposition holes.

2.3 Effect of hydraulic connections
The fraction of affected deposition holes (1.3%) is thus small enough that even if the effect on 
their saturation process were significant, the distribution of saturation times would hardly be 
affected.
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Looking at the effect on the saturation time for an individual deposition hole we can again 
consider the numbers in Table 9. A deposition hole intersected by a single fracture with a flow 
of qF=10−3 L/min is saturated about twice as fast as compared to the case with no fracture but
with a rock matrix conductivity of Km=10−13 m/s. Hence, for a given deposition hole 
intersected by a fracture which also intersects other deposition holes, the maximum effect, 
which occurs if a relatively high flowing fracture (qF=10−3 L/min) is entirely dried out by the 
buffer in other deposition holes and hence all the water enters via matrix flow, is at most a
doubling of the saturation time.

The effect of hydraulic connections between deposition holes is thus, in the most extreme 
case, that the deposition holes in question are saturated via matrix or through tunnel backfill 
flow rather than through fracture flow. Since, as is discussed in Chapter 1, the majority of the 
deposition holes in the Forsmark repository will be saturated via matrix flow or by water 
entering via the tunnel backfill, deposition holes with hydraulic connections, where the 
saturation process is slowed down significantly, will behave as if they belong to one of these 
categories instead.
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Appendix
Calculation of the average available pore volume in the deposition tunnel (MathCad excerpt):
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