P-05-45

Oskarshamn site investigation

Inventory of the marine fauna attached to hard substrates in the Simpevarp area

Ronny Fredriksson, University of Kalmar

February 2005

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-05-45

Oskarshamn site investigation

Inventory of the marine fauna attached to hard substrates in the Simpevarp area

Ronny Fredriksson, University of Kalmar

February 2005

Keywords: Sessile epifauna, Mytilus edulis, Biomass estimation, Hard bottom, Fauna, Map, GIS.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

The sessile macro fauna, with focus on *Mytilus edulis*, attached to hard substrates was studied in the Simpevarp area in November, 2004.

Usually, hard bottom substrate changed into a soft substrate at a water depth between ten and thirteen metres at the visited locations. If suitable substrate occurred at exceeding water depths the covering degree of *Mytilus edulis* was usually moderate. The covering degree of *M. edulis* decreased with water depth. Occurrence of red algae in the samples affected the size structure of *M. edulis*. The mean weight per *M. edulis* specimen decreased with an increasing biomass of red algae. Both the abundance and biomass of the sessile epifaunal community was dominated by the filter feeding bivalve *M. edulis*. Both parameters showed a linear trend towards the estimated covering degree of *M. edulis*. This made it possible to use the equations of the trend lines when calculating the total biomass and abundance of the studied area. The total estimated biomass of *M. edulis* in the area studied was approximately 4,500 metric tons, or 96% of the total sessile epifaunal biomass.

Sammanfattning

I november 2004 genomfördes en inventering av sessil epifauna inom SKB's regionala modellområde vid Simpevarp, Oskarshamn.

Vid de besökta lokalerna övergick hårt substrat till ett mjukt på ett djup av vanligtvis 10 till 13 meter. Om det fanns lämpligt substrat på större djup var täckningen av *Mytilus edulis* vanligtvis låg. Täckningen av *M. edulis* minskade med ökat djup. Förekomst av rödalger i proverna påverkade medelstorleken för *M. edulis*. Medelvikten per mussla minskade med ökad biomassa av rödalger. Både biomassan och abundansen dominerades av *M. edulis* och båda dessa parametrar visade ett linjärt samband mot täckningsgraden av *M. edulis*. Den totala biomassan av *M. edulis* i området beräknades till cirka 4 500 ton. Detta motsvarar 96 % av den totala biomassan av sessil epifauna.

Contents

1	Introduction	7
2	Objective and scope	9
3 3.1	Equipment Description of equipment	11 11
4 4.1 4.2 4.3 4.4	Execution General Execution of field work Analyses and interpretations Nonconformities	13 13 14 14 14
5 5.1 5.2 5.3 5.4	ResultsField observationsQuantitative samples5.2.15.2.2Abundance5.2.3Biomass5.2.4Occurance of red algaeComparison with other regional studiesGIS layer and total abundance and biomass estimation	15 15 16 16 16 16 17 18 19 20
6	Discussions	23
Refe	erences	25
Арр	endix 1 A brief description of method used	27
Арр	endix 2 Field observations	29
Арр	endix 3 Analyzed samples	41
Арр	endix 4 Quantitative samples	42
Арр	endix 5 Abundance and biomass estimations	44

1 Introduction

This document reports the data gained in the activity *Inventory of the marine sessile epifaunal community attached to hard substrates in the Simpevarp area* which is one of the activities performed within the site investigation at Oskarshamn. The work was conducted according to activity plan AP PS 400-04-098 (SKB internal controlling document).

The blue mussel, *Mytilus edulis*, dominates the animal biomass on sub-littoral rocky surfaces in the Baltic proper /Westerborn et al. 2002/. On hard substrates M. edulis occurs in fairly dense populations down to a depth of 30 metres /Tobiasson, 2003b/. The low salinity of the Baltic Sea excludes many of the predators feeding on M. edulis. Even though Eider ducks (Somateria mollissima) can graze to a relatively high extent on *M. edulis* populations, mainly food resources and intraspecific competition regulates the *M. edulis* population. On a regional scale the salinity is a strong restricting factor to the distribution of marine fauna in the Baltic Sea /Westerborn et al. 2002/. The low salinity in the Baltic Sea affects and restricts physiological functions in *M. edulis* which, among other things, results in a slower growth rate compared to e.g. the west coast of Sweden. On a local scale, availability of suitable substrate and different physical disturbances, like wave exposure and ice scouring, are important physical factors structuring populations on hard substrates /Gilek et al. 2001/. In the Baltic Sea, M. edulis produces less byssus than in a more marine environment /Littorin and Gilek, 1999/. Since the stability of M. edulis patches directly depends upon the strength of the attachment to the substrate, mussels in the Baltic Sea are more sensitive to wave exposure /Gilek et al. 2001/. Thus, wave exposure could be expected to play a significant part in structuring the *M. edulis* community, at least in more exposed and shallow areas. Another important factor structuring the M. edulis community is the availability of food particles. Since *M. edulis* is a filter feeder, water movement is important in that way that it increases the food availability. Increasing flow speed have been shown to favour intake and growth of *M. edulis* due to higher availability of phytoplankton /Gilek et al. 2001/.

In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents.

Activity plan	Number	Version
Inventering av marin hårdbottenfauna	AP PS 400-04-098	1.0

Table 1-1. Controlling documents for the performance of the activity.

2 Objective and scope

The aim of the study was to estimate the distribution, composition, abundance and biomass of sessile epifauna associated to hard substrates within the regional study area in Oskarshamn Simpevarp. Focus was placed on the bivalve *Mytilus edulis*. Another objective was to illustrate the distribution of *M. edulis* in a GIS layer and by means of this layer and quantitative samples estimate the total abundance and biomass in the area studied.

3 Equipment

3.1 Description of equipment

- Sea terrier aluminium boat (6.5 m) with a Suzuki DF60 motor (Figure 3-1).
- dGPS, Raytheon L755.
- Standard Scuba diving equipment with a normal oxygen mixture.
- Measuring tape, 100 metres.
- Square shaped aluminium frame with an area of 0.04 m² (Figure 3-2).
- Scraping iron.
- Analytic sieves with mesh sizes 11.2; 5.6 and 1 mm.
- Check patterned vessel (30×22 cm) with 35 equally sized squares (Figure 3-3).
- Stereo microscope, zoom $0.5 \times -4.0 \times$.

Figure 3-1. Sea terrier aluminium boat.

Figure 3-2. Sampling frame.

Figure 3-3. Check patterned vessel.

4 Execution

4.1 General

The inventory and sampling of the sessile epifaunal community was conducted along six diving transects and six complementary point dives. The location of transects and point dives is presented in Figure 4-1. The location of transects and point dives was chosen by means of topographic charts and previous reports, where occurrence of *Mytilus edulis* was noted /Tobiasson, 2003a,b Fredriksson and Tobiasson, 2003/.

Figure 4-1. Locations of transects and point dives.

4.2 Execution of field work

The positions of each transect and point dive was determined by a dGPS. The dGPS displayed the positions in WGS84 with a precision of at least 8 metres. The received positions were transformed to RT90 using the software FME Universal Translator from Safe Software. Sampling was performed by means of a frame with an area of 0.04 square metres and a scraping iron. The scraping iron was used to remove the attached fauna from the substrate. Samples were collected on the basis of *M. edulis* covering degree. Ten samples were collected in covering degrees 5, 10, 25, 50 and 75%. Only eight samples were collected in *M. edulis* coverage of 100% due to difficulties in finding patches with this coverage degree. Samples were preserved by means of freezing. Five randomly chosen samples from each covering degree were analyzed regarding macro fauna. The remaining samples were kept frozen for future need. Before analysis, samples were sieved through three different mesh sizes, 11.2; 5.6 and 1 mm, where the 1 mm sieve functioned as a collector. Thus, any possible fauna passing this sieve were not analyzed. Each fraction was analyzed separately. When fractions contained a large amount of specimens they were sub-sampled. Sub-sampling was made in a checked patterned vessel with 35 equally sized squares. Fauna in seven squares were collected and the results were multiplied by five to obtain total abundance and biomass. Analyzed samples were dried in 60°C during a seven day period to obtain dry weight. Method for abundance and biomass estimations by means of GIS is presented in Appendix 1.

See Appendix 1 for more details regarding method.

4.3 Analyses and interpretations

The covering degree of *Mytilus edulis* was correlated against water depth. The covering degree of *M. edulis* has been shown to decrease with increased water depth /Tobiasson et al. 2004/. The equation gained from the correlation was used to calculate the *M. edulis* covering degree at different water depths. However, at water depths less than three metres a template value of 5% was used. At shallower water wave exposure decreases the amount of *M. edulis*. Wave exposure is an important structuring factor of *M. edulis* distribution /Gilek et al. 2001/. The abundance and biomass of *M. edulis* separately and all sessile epifauna together were correlated against the covering degree of *M. edulis*. The equations gained during correlations were used in the GIS modelling.

4.4 Nonconformities

No nonconformities to report.

5 Results

5.1 Field observations

In none of the examined diving transects did *M. edulis* occur, to a great extent, at depths below vegetation limit. Bottoms with suitable substrate, where *M. edulis* occurred, were also occupied by Red algae (Appendix 2). Thus, quantitative samples collected in this study did all contain Red algae to a various degree (Appendix 4).

The observations of *M. edulis* covering along transects showed a relation between covering and water depth. Figure 5-1 illustrates the percentage share of suitable substrate used by *M. edulis* at different observation depths. A mean from observations within a one metre depth interval was used. The percentage value for the amount of substrate used by *M. edulis* was calculated by dividing the *M. edulis* covering with the amount of suitable substrate presented in Appendix 2. The trend points toward a decreasing average *M. edulis* covering with increasing water depth. Figure 5-1 only presents observations from transects LSM000509 to LSM000513 and point dives PSM006933 to PSM006937 (Figure 4-1). Transect LSM000514 and point dive PSM006938 are not included in this analysis due to differences in environmental conditions. For example was much of the hard substrate at diving transect LSM000514 covered with a thick layer of decomposed organic matter. All observations from a water depth less than three metres were excluded due to effects from wave exposure.

Figure 5-1. The percentage share of suitable substrate used by M. edulis, at different water depth. This figure shows observations, deeper than three metres, from transects LSM000509 to 513 and point dives PSM006933 to 6937.

5.2 Quantitative samples

5.2.1 Species

In total, 22 taxa were found in the samples from the studied area (Appendix 4). Taxa from all functional groups were represented in samples from all covering degrees. Because of the fact that the samples contained Red algae the number of species was a bit higher than expected. For example, *Gammarus* sp. and *Idotea* sp. are taxa that are likely to have come from the Red algae present in the samples since they normally live associated to this vegetation.

5.2.2 Abundance

Table A4-1 in Appendix 4 presents the mean abundance of epifauna in the different covering degrees. Abundance is presented both on species and trofic level, as well as a total mean for the different covering degrees. *Mytilus edulis* was the taxa with the highest abundance in all sampled covering degrees. However, the contribution from the gastropod *Hydrobiidae* was significant, especially in sites with lower *M. edulis* covering degrees. In the covering degrees between 25 and 100% the contribution from *M. edulis* to the total abundance was about 80%. The contribution from *M. edulis* in the lower covering degrees was less pronounced. Figure 5-2 presents the total *M. edulis* abundance and visualizes the distribution between different fractions. The major part of the specimens was consequently located in the 1 mm fraction.

The abundance showed a linear relation to the covering degree of *M. edulis* (Figure 5-3). This applies both to the total as well as to the *M. edulis* abundance. The abundance in the covering degree 50% is a bit low in relation to the other covering degree classes. The relation was strong with a regression coefficient of 0.91 for both the total abundance and the *M. edulis* abundance. The strong relation makes it possible to use the equations of the lines in the GIS model, estimating the total and *M. edulis* abundance in the studied area. These equations are presented in Figure 5-3.

Figure 5-2. Mean M. edulis *abundance and distribution among the fractions in the different covering degrees.*

Figure 5-3. M. edulis *and total abundance correlated against* M. edulis *covering*. *Interception for trend line set to zero*.

5.2.3 Biomass

Table A4-2 in Appendix 4 presents the mean biomass in different covering degrees. Biomass is presented both on species and trophic level, as well as a total mean for the different covering degrees. *Mytilus edulis* completely dominated the biomass. Only in the covering degree 5% the contribution from *M. edulis* was below 90% (Appendix 4). Figure 5-4 presents the total *M. edulis* biomass and visualizes the distribution between different fractions. The major part of the biomass was found in the 5.6 mm fraction.

The relationship between the covering degree of *M. edulis* and the biomass was linear (Figure 5-5). This applies both to the total and the *M. edulis* biomass. The biomass in a covering degree of 10 and 25% are a bit higher in relation to the other covering degrees. However, as for the abundance the relation was strong with a regression coefficient of 0.95 both for the total biomass and the for *M. edulis* biomass. The strong relation makes it possible to use the equations in Figure 5-5 when estimating the total and *M. edulis* biomass in the studied area by means of the GIS model.

Figure 5-4. Mean M. edulis *biomass and distribution among the fractions in the different covering degrees.*

Figure 5-5. M. edulis *and total biomass correlated against* M. edulis *covering*. *Interception for trend line set to zero*.

5.2.4 Occurance of red algae

Since *M. edulis* occurred along with Red algae in the studied area the samples collected in this study contained Red algae to various extents. The presence of Red algae in the samples had a visible effect on *M. edulis* abundance. This was extra evident in the *M. edulis* covering degrees between 25 and 75%. The increase in abundance was mainly dependent on an increase of smaller specimens in the 1 mm fraction. Figure 5-6 shows how the average weight of *M. edulis* specimen decreased with increasing Red algae biomass in the samples from the covering degree 75%.

Figure 5-6. Mean biomass per M. edulis *specimen in samples with different biomass of Red algae. Example from the covering degree 75%.*

5.3 Comparison with other regional studies

For comparison a *Mytilus edulis* study on Utgrunden south east of Kalmar was used /Tobiasson et al. 2004/. The study was performed by the University of Kalmar in December, 2003. Utgrunden is an esker located between Degerhamn on Öland and Bergkvara on the main land. Quantitative samples of *M. edulis* were collected from six stations. Each station was sampled at three depths (8, 10 and 12 metres). Three samples were collected at each station and depth. Before analysis samples were sieved using mesh size of 4 mm. Specimens passing trough the sieve were sub-sampled and counted (not weight). Specimens not passing through the sieve were counted and the biomass was determined as wet weight.

Abundance

Since samples from Utgrunden were collected with the water depth as a starting point the number of samples among the different covering degrees varied. Twelve samples were collected from the covering degree 50%, nine from covering degrees 50–75, 75 and 75–100% respectively. From the covering degrees 25–50 and 25% respectively, six samples were collected and from 10% three samples. The resemblance between the study from Utgrunden and this study was good regarding abundance, although the abundance at higher covering degrees tend to be a bit higher in this study (Figure 5-7).

Biomass

Since the biomass of *M. edulis* in the study at Utgrunden was measured as wet weight, the two studies will not be fully concordant. To make the comparison possible a dry weight/wet weight index was calculated. Data from the SKB site investigation study of submerged vegetation by Fredriksson and Tobiasson in 2003 was used. Totally 34 samples were used in the calculation. The dry weight was calculated to be 40.4% of the wet weight (median) with a first and third quartile of 36.4 and 43.5 respectively. Furthermore, since the fraction passing through the four millimetre sieve, in the study on Utgrunden, was not analyzed regarding biomass, the comparison between the studies was even more difficult. Figure 5-8 presents the *M. edulis* biomass as the sum of the 11.2 and 5.6 millimetre fraction from this study and the specimens not passing through the four millimetre sieve in the study from Utgrunden. Thus, the smallest specimens from both studies are left out from the comparison. The biomass was consequently higher in the samples from the area around Simpevarp. Only for the covering degree 10% the *M. edulis* biomass from the two studies were on level.

Figure 5-7. M. edulis abundance at different covering degrees.

Figure 5-8. M. edulis biomass (gDW/m^2) at different covering degrees.

5.4 GIS layer and total abundance and biomass estimation

When the total abundance and biomass in the area studied were calculated the equations presented in Table 5-1 were used.

Equation	Input = X	Output =Y	Purpose
y = -6.15x + 103.33	Water depth (m)	M. edulis covering (%)	Estimating the <i>M. edulis</i> covering at different depths.
y = 726.43x	M. edulis covering (%)	Total abundance per square meter	Calculating the total abundance at different covering degrees.
y = 579.74x	M. edulis covering (%)	<i>M. edulis</i> abundance per square meter	Calculating the <i>M. edulis</i> abundance at different covering degrees.
y = 15.20x	M. edulis covering (%)	Total biomass (gDW) per square meter	Calculating the total biomass at different covering degrees.
y = 14.6x	<i>M. edulis</i> covering (%)	<i>M. edulis</i> biomass (gDW) per square meter	Calculating the <i>M. edulis</i> biomass at different covering degrees.

 Table 5-1. Equations used in the GIS model. Variables and purpose.

Figure 5-9 presents the distribution and covering degree of *M. edulis* in the area studied. According to the equation calculating the *M. edulis* covering degree at different depths, the covering degree should reach a zero value at a depth between 16 and 17 metres. Therefore the distribution of *M. edulis* was estimated to a depth of 16 metres maximum. This equation was not used at depths between zero and three metres due to effects from wave exposure. Instead a template (estimated from an earlier investigation /Fredriksson and Tobiasson, 2003/) value of 5% was used for this depth interval.

Table A5-1 in Appendix 5 presents the results from the estimation of abundance and biomass in the total area. The total biomass of sessile epifauna in the area was estimated to almost 4,500 metric tons dry weight. *Mytilus edulis* constituted approximately 96% of this biomass. Also the abundance was dominated by *M. edulis*, however not to the same extent as for the biomass. About 80% of the total abundance consisted of *M. edulis*. The estimated total abundance of *M. edulis* in the area was about 170 milliard specimens.

Figure 5-9. Map of the Simpevarp and biomass of hard bottom fauna (gDW/m^2) . Black line indicates the area in which extrapolation of hard bottom fauna was made.

6 Discussions

Both the abundance and biomass of sessile fauna attached to hard substrate in the Simply area were dominated by *Mytilus edulis*. Especially the biomass consisted almost exclusively of *M. edulis*, which corresponds to what have been seen in earlier studies /Gilek et al. 2001; Westerborn et al. 2002/. However, in the lower M. edulis covering degrees the gastropods Hydrobiidae and *Theodoxus fluviatilis* made a substantial contribution to the total biomass (Appendix 4). The substantial contribution from these species in the lower *M. edulis* covering degrees was extra evident when looking on the abundance. For example did approximately 40% of the total abundance in the 5% covering degree consist of Hydrobiidae. Its difficult to point out any link between the amount of red algae with the amount of Hydrobiidae in the samples since this gastropod can appear both as epifauna and infauna, for example on sand bottoms /Boström and Bonsdorff, 1997/. All quantitative samples were collected by the same diver. This should guarantee a stringent assessment of the *M. edulis* covering degree at the sampling sites. On the other hand, assessment along transects and on point dives were made by three different divers. This might lead to a divergent assessment among readings and could affect the results presented in Figure 5-1. However, since the mean from several readings at a certain depth interval was used, this effect should be reduced.

The occurrence of red algae in the samples was relatively high. Furthermore, the biomass of red algae varied to a great extent among the samples. The presence of red algae resulted in a more diverse composition of species. For example it's likely that taxa like *Idotea* sp. and *Gammarus* sp. were found due to the presence of red algae since they normally live associated to vegetation /Pavia et al. 1999/. The red algae also co varied with the size composition of *M. edulis* in the samples. With increasing biomass of red algae the mean biomass of each *M. edulis* specimen decreased. This was probably due to an increased amount of small specimens associated with the algae present in the samples. This phenomenon was extra evident in the covering degrees between 25 and 75%.

The abundance in the 50% M. edulis covering was a bit low compared to the other covering degrees (Figure 5-3). This is a source of error when the equations of the trend lines presented in Figure 5-3 is used to estimate the total and *M. edulis* abundance in the studied area. Regarding biomass the values for the covering degrees 10 and 25% was a bit high compared to the other covering degrees (Figure 5-5). This, just as for abundance, can be considered as a source of error. This exemplifies the difficulty to compare the covering degree with the abundance and biomass separately since a low abundance can be compensated by large mussels covering more and vice versa. /Gilek et al. 2001/ reported that samples with low biomass of *M. edulis* mainly consisted of small mussels, while samples with a high biomass mainly consisted of large specimens. Thus, a high abundance of *M. edulis* does not necessarily result in a high biomass. Furthermore, the covering degree of *M. edulis* is a subjective assessment that could vary among those who collect samples. In this study one diver collected all samples which should minimize the discrepancy between assessments. Despite these difficulties the correlation between both abundance and biomass and the covering degree in this study was strong which should result in a reliable estimation of the total abundance and biomass.

The comparison with Utgrunden regarding *M. edulis* biomass is uncertain for several reasons. First, the biomass from Utgrunden is recalculated from the wet weight by means of a template value. This template value was calculated by means of data from a SKB site investigation /Fredriksson and Tobiasson, 2003/. The size of the mussels was not taken into consideration when calculating the index. This could be a source of error since different sizes of *M. edulis* has a different meat weight and shell weight ratio. Also, different sieving techniques were used in the two studies. Samples from the Utgrunden study was sieved through a four millimetre sieve. Specimens passing this sieve were only analyzed regarding abundance, not biomass. The closest mesh size used in this study was the 5.6 millimetre sieve. Despite the wider mesh size the *M. edulis* biomass was higher in the samples from the Simpevarp area. The uncertainties in the comparison make it hard to say what this discrepancy derives from. Furthermore, another possible source of uncertainty in the Utgrunden study is that several divers made the assessment about *M. edulis* covering degrees and collected samples. This makes the connection between the covering degree and biomass more uncertain.

The distribution of *M. edulis* was estimated down to a depth of 16 metres maximum. About nine percent of the suitable substrate was located at depths exceeding 16 metres and was therefore excluded. According to the field observations in Appendix 2, *M. edulis* is not so abundant at this depth. It can therefore be assumed that the loss should be minimal when excluding depths exceeding 16 metres. Another uncertainty in the interpretation was the merging of depth interval between 0 and 3 metres and the template value of a covering degree of five percent. Areas within this depth interval occur at many different locations in the area. Thus, these bottoms are exposed for a various amount of wave exposure, structuring the *M. edulis* community. The *M. edulis* abundance can certainly vary a great deal depending on the location.

The assessment on the amount of suitable substrate is a bit uncertain. The classification of the substrates from Geological Survey of Sweden was made from the dominating substrate from the surface down to a depth of 50 centimetres /Pers. comm. Ingemar Cato, Geological Survey of Sweden/. Therefore it's impossible to know if there is a, for example, thin layer of sand or clay on top of an area classified as hard substrate. This could lead to an overestimated amount of suitable substrate. The classification from Marin Mätteknik AB on the other hand was based on the surface substrate /Pers. comm. Olof Nilsson, Marin Mätteknik AB/. Regarding substrate estimation, approximately 60% of the area studied was estimated by Geological Survey of Sweden and 40% by Marin Mätteknik AB.

The area of the different covering degrees was calculated based on a two dimension image of the bottom. In reality, *M. edulis* also occur on vertical surfaces. Since the variation in bottom structure was not taken into consideration, the amount of suitable substrate in this perspective was somewhat underestimated.

In this study the covering degree of *M. edulis* was the parameter correlated against water depth which then in the long run was used to calculate the biomass and abundance of sessile epifauna. It was not suitable to correlate the biomass or abundance directly against the water depth since the samples were collected on the basis of the covering degree, not water depth. Thus, no effort was made to cover all water depth during sampling.

References

Boström C, Bonsdorff E, 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. J. Sea Res. 37: 153–166.

Elhammer A, Sandkvist Å, 2005. Oskarshamn site investigation. Detailed marine geolocical survey of the sea bottom outside Simpevarp. SKB P-05-35, Svensk Kärnbränslehantering AB (in press).

Fredriksson R, Tobiasson S, 2003. Inventory of macrophyte communities at Simpevarp nuclear power plant – Area of distribution and biomass determination. SKB P-03-69, Svensk Kärnbränslehantering AB.

Gilek M, Littorin B, Saetre P, 2001. Spatial patterns of abundance and growth of *Mytilus edulis* on boulders in the Northern Baltic Sea proper. Hydrobiologica 452: 59–68, 2001.

Ingvarsson N, Palmeby A, Svensson O, Nilsson O, Ekfeldt T, 2004. Marine survey in shallow coastal waters. Bathymetric and geophysical investigation 2004. SKB P-04-254, Svensk Kärnbränslehantering AB.

Littorin B, Gilek M, 1999. A photographic study of the recolonization of cleared patches in a dense population of *Mytilus edulis* in the northern Baltic proper. Hydrobiologica 393: 211–219, 1999.

Naturvårdsverket, 1986. Recipientkontroll vatten. Del 1, Undersökningsmetoder basprogram. Naturvårdsverket Rapport 3108.

Pavia H, Carr H, Åberg P, 1999. Habitat and feeding preferences of crustacean mesoherbivores inhabiting the brown seaweed Ascophyllum nodosum (L.) Le Jol. And its epiphytic macroalgae. J. Exp. Mar. Biol. Ecol. 236, 15–32.

Tobiasson S, 2003a. Tolkning av undervattensfilm från Forsmark och Simpevarp. Mars 2003. Högskolan i Kalmar. Rapport 2003:6.

Tobiasson S, 2003b. Översiktlig inventering av vegetation, bottendjur och bottenförhållanden vid planerad vindkraftsanläggning vid Kårehamn, Öland. Rapport 2003:7, Högskolan i Kalmar.

Tobiasson S, Rosberg L, Engkvist R, Nilsson J, 2004. Blåmusslor och sjöfåglar vid Utgrunden. Finns det ett samband? Rapport 2004:1, Högskolan i Kalmar.

Westerbom M, Kilpi M, Mustonen O, 2002. Blue mussels, *Mytilus edulis*, at the edge of the range: population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Marine Biology (2002) 140: 991–999.

A brief description of method used

Diving transects

The method used is a modified variant of BIN V R112-113 /Naturvårdsverket, 1986/.

Environmental records

Besides direct sampling, following environmental factors were registered.

- Wind direction.
- Wind force (m/s).
- Wave altitude (m).
- Water temperature (°C).

Location of profile

The measuring tape was fastened at either the shore line or at the shallowest part of a shoal. It was then drawn out until the water depth was stable or to a maximum of 100 metres. Divers followed the measuring tape from the deepest part until reaching the zero point. The position at both starting and ending point was recorded.

Ocular records

All observations along the profile were made within a 3–5 metres wide zone at each side of the measuring tape, depending on the visibility.

Water depth and distance from starting point were registered for:

- The covering degree for *Mytilus edulis* according to a seven point scale, (+) for occurrence, 5, 10, 25, 50, 75 and 100%.
- The covering degree for dominating submerged vegetation according to the seven point scale described above.
- Substrate, sort and covering.

Sampling

Quantitative sampling was carried out by means of a 0.04 m^2 (20×20 centimetres) frame. From each covering degree, with *Mytilus edulis* as a starting point, ten samples were collected. All samples were collected by the same diver.

Point dives

The shallowest part of a shoal, identified by an echo sounder, or the water edge was used as a starting point. The diver swam towards deeper water, until the slope decreased or because of absence of suitable substrate. The same observations as for the diving transects were made, but within more broad depth intervals.

GIS

A polygon shape file describing the suitable substrate at different depth was created by means of polygon shape files describing the bottom substrate and grids describing the water depth. The original files were created by Geological Survey of Sweden /Elhammar and Sandkvist, 2005/ and Marin Mätteknik AB /Ingvarsson et al. 2004/. The new polygon shape file was created as follows. From the shape files describing the bottom substrate, suitable substrate for *M. edulis* was extracted. A depth grid was created by means of topographic lines. Depth grids were then converted into polygon shape files to obtain surfaces. By clipping the depth polygons based on the substrate polygons a new set of polygons describing suitable substrate at different water depths was created. Polygons with same depth were unified to a single polygon for which the area was calculated. This was made from three to sixteen metres within one metre intervals. Polygons representing a water depth less than three metres were unified to a separate polygon. The covering degree for a depth interval was calculated as a mean between the highest and lowest depth. e.g.the mean of the covering for eight and nine metres. By means of the polygon layer with substrate and depth, the total abundance and biomass for the area, shown in Figure A1-1, was estimated.

All operations were made in Arc View 3.3, by Environmental Systems Research Institute, Inc.

Appendix 2

Field observations

<u>AP F</u>	PS 4	00-04	<u>098</u>																	Hà	ögsk	olan	iKa	Imar
																		Ins	t för B	iologi	& M	iljöve	tens	skap
Fältp	rotok	oll, tra	nsekt	dyk																				
Lokal	LSM	000509			profil 1				Områd	le :	Simpev	/arp			GPS-p	oosition :	1553307		GPS	-positio	on :	15533(58	
(ID-nr oc	h namn	0													(o-pun	kt)	6365018		(Yttr	e)		636494	48	
Datum	2	004-11	.02		Tid :	9:55 -	10:35						avst	djup	storlek	myt.täckn				Vatter	ntem) :	8	°C
Dykare	e :	Tobias,	Jonas,	Sanna							pr	over :		13		5								
							vatte	nstånd	-0	,1				12,1		10	TÂNGOB	SERVATIONER	Ögb.			Rekryt.		
					1	07								11,8		10	Free Alignetic	4	Link			U. No. 1511		
häring	ca: 1	 NN	vi	Vinαrikt ndstvrka	V ·	nv 1	Just	.van.st.	J					10.3		20	Fuc.tackn.	1111	Ugb.			Los, Fuo	2	
utg. pkt	0-	punkt		våghöjd	()	lai	ndfoto :	N					9,1		25	Sub/Täckn.	1m	UgF			Betn. sk	ada	
							UV-fo	to/film :	N					9,4		50								
														6,9		75			UgS			Slam		
														6,2		50								
Täckn i S	%.0,1,5	10,25,50,7	5,100.	Bedömr	ing 0, 1,	2,								5,4		100			UgR			Pāväxt		
Linieta	xerin	a																		++				
UNDRE	E GRÄ	s NS för:																						
		ubstrat	äckning	ucus erratus	phacelaria	ilayella			olysiphonia Icoides	hyllophora	urcellaria mbricalis	eramium	ladophora pestris			lytilus	Annairl							
avstand	i: ajup	· · ·	⊢ 100	шō	0		$\left \right $			<u> </u>	<u> </u>		02			≥	Annark	ung 		++			—	
	4,/	н	100				$\left \right $		10		1	75				50	+ block (stora)		++				
8	5,4	н	100			1	$\left \right $		10		1	/5			-	/5	+ block (stora)						
16		н	100						50	1	1	25				75	_			++				
	8,3	н	100			1			/5	1	1					50			_	++				
	9,1	н	100						75-100	1	1				-	10	_			++				
35	9,7	н	100	1		1			75	1	1				-	5-10								
50	9,8	BI	100	1			\vdash		75	1	1					5-10	_							
65	12,5	BI+St	100	1	1				75	1	1					10								
68	12,8	BI+St	100		1				10	1	1		1			1	sten 25%	+ block 75%	6, Polys	iph fuco	oides I	ösligga	ande i	75%
73	13,1	BI+smSt	100						10							1	småsten	+ block 1009	6, Polys	siph fucc	oides	lösligga	ande	75%
85	13	smSt	75	1					10				1			1	småsten	75% isand						
																								-
																				+ +				
																								-
																				+ +				-
																				+ +				
Andra	statio	nsobserv	/atione	er:																				

<u>AP F</u>	PS 4	00-04-	0 <u>98</u>																		Hög	jskol	an i k	almar
																			Inst	för B	iologi 8	۰Miljö	vete	nskap
Fältp	rotok	oll, trar	nsekte	dyk																				
Lokal	LSM	000510			profil 2				Områ	de:	Simpe	/arp			GPS-p	osition :	155408	6		GPS	-position	: 15	54107	
(ID-nr oc	h namn)													(o-pun	kt)	636272	4		(Yttre)	636	<u>2756 کر</u>	
Datum	2	2004-11-	02		Tid :	11:35	- 12:15						avst	djup	storlek	myt.täckn					Vattent	emp :	8	°C
Dykare	e:	Tobias, J	onas, S	Ganna							р	over:		18,2		5								
							vatter	nstånd	-0	,1				17,2		5	TÂNGO	BSEF	VATIONER	Ögb.		Rek	ryt.	
									<u> </u>					13,2		10				_				
	- 10			vindrikt		N	Just	.vatt.st.	J					12,6		10	Fuc. täck	n.1m		Ugb.		Lös	, Fuc	
bäring	i ca 1U		Vi	ndstyrka		1			N					10,6		10						<u> </u>		
utg.pkt	: 0.	punkt		väghöjd		J	lai	ndfoto :						10,1		25	Sub/Täck	m.1m		UgF		Bet	1. skada	à
							UV-TO	to/film :	IN					9		75			_				—	
														9,2		50		_		Ugs		Slar	n	
Töoko i S	× 015	40.05.50.74	: 100	Dedäme	ina 0.4	2								5,0	<u> </u>	75				LIAR				
Tackint	%. 0,1,5	10,20,00,73	o,100.	Decionin	ing o, r,	<i>z</i> ,								1.0,7		50				Ugr		- Fav	axi	
Liniots	avorin								li l														—	
UNDR	E GRÄ	9 NS för:																_						
									<u>.</u>															
		.	5		ari				<u>و</u> ۳	j ë	alis alis	Ē												
		tra	Ē		8				des j	b	lice IIa	mir.				S S								
		sqn	äck		h d				50	돌	l ū d	era				, AFI	0							
avstāno	1 djup	٥.	μ		ज				<u> a</u> 5	<u> </u>	토 크	Ū				Σ	Anma	rknir	ig				—	
	5,3	н	100						25		5	25				50				_				
11	9,2	н	100						25		5	25				50				_				
22	10	H+BI	100						75		1					25		_		_			—	
	13,2	н	100						75		1					10				_				
36	14,2	H+BI	100						50		1					5-10		_		_				
43	16,9	H+BI	100		10				10	10	1					5-10		_		_				
52	18,4	BI	100		10				5-10	10						1								
53	18,4	Gr+smSt	75						5								lösa röd	la (P	oly.fucoide	s domir	nerar) 100	%		
																								-
	-																			-				
																								-
																								-
																							-	-
Andra	statio	nsobserv	atione	r:																				

AP F	PS 4	00-04	4-098																				н	lögsl	olar	iKa	lmar
																				Ir	nst f	ör Bi	iolog	i & N	liljöv	eten	skap
Fältp	rotok	oll, tr	ansek	tdyk																							
Lokal (ID-nr oc	LSM h namn	000511)			profil 3				Områ	de:	Simpe	evarp			GPS- (o-pur	position : hkt)	15: 631	52520 54017				GPS- (Yttre	- positi e)	on :	15524 6364(181 198	
Datum	20	04-11	-02		Tid :	13:35	- 14:15						avst	djup	storlek	myt.täckn							Vatte	entem	p:	8	°C
Dykare	:	Tobias	, Jonas	, Sanna	1						p	rover :		12,1		5											
							vatte	enstånd	-0	,1				12,2		10	T	ÂNGOE	SERV	ATION	IER	Ögb.			Rekryt		
				uin alvilat	N	NA7	hur		<u> </u>					9,8		5	Eur	täaka	1			Llark					
bäring	ca 33		vi	vinarikt ndstvrka		2	Jus	t.vatt.st.	J					86		25	Fuc	. tackn	. 1m			Ugp.			LOS, FI	JC	
utg. pkt	0-r	ounkt		våghöjd		 1,1	le	andfoto :	N					8,8		50	Sut)/Täckn	.1m			UgF			Betn. :	skada	
							UV-f	oto/film :	N					6,6		75											
														6,4		75						UgS			Slam		
														4,3		75		_	_								
Таскптэ	6.0,1,5	,10,25,50	1,75,100.	Bedomr	ning 0, 1,	2,								4,0		75		_				UgR			Pavax		
Linieta	ixerin	a																-									
UNDRE	E GRÄ	S NS för:																									
avstånd	djup	Substrat	Täckning	Fucus serratus	Sphacelaria		Aglaothamnion roseum	Rhodomela confervoides	Polysiphonia fucoides	Phyllophora	Furcellaria lumbricalis	Ceramium				Mytilus	Ar	ımärl	kninc	1							
0	4	BI	100		5		1	1	5		1	50				100											
9	4,2	BI	100		5		1	1	5		1	50				100											
24	5,6	BI	100				1		10		5	75				75											
33	6,8	BI	100				1		50	1	10	25				75	på	lodrät	a sido	or Myt	t 1009	%					
37	7,4	BI+St	100	1			1		50		10	25				75											
42	8	BI+St	100	1					75	1	1	10				50											
45,5	8,7	BI+St	100	1					75	1	1					25											
60	10.2	BI+St	100						75		5					25											
67	12.6	н	100						75	1	5					10		-									
72	13.2	BI	75						50	1	5					10	rol	nlan k	otten								
 	14.4	9119	50						5		1					5	en	Beton	i hår	t nack		and (n	⊥ Jan ho	tton)	cton 5	⊥ ∩%	
	14,4	10110									<u> </u>							asten	Than			and (p		lieny,	Sten 5	570	
																		-					-				
											-							-	-								
							-																				
Andra	statio	nsobse	rvation	er:														-									

APF	PS 4	00-04	-098																Högs	kolan	iKa	lmar
																	Inst	för B	iologi & N	/liljöve	tens	skap
Fältp	rotok	oll, tra	nsekt	dyk																		
Lokal	LSM	000512			profil 4				Områ	de:	Simp	evarp			GPS-	position :	1555038	GPS	-position :	155500)4	
(ID-nr oc	h namn)													(o-pur	nkt)	6366925	(Yttre	e)	636695	52	
Datum	2	004-11	-11		Tid :	9:10 - 9	9:55						avst	djup	storlek	myt.täckn			Vattenten	ip:	5	°C
Dykare	•:	Tobias,	Sanna,	Frasse							F	orover :		13,6		10						
							vatte	nstånd	-0	,2				13,3		50	TÂNGOBSERVATIONER	Ögb.		Rekryt.		
									<u> </u>					11,6		25						
la Ruima	00.10	Ε		vindrikt	s s		Just	.vatt.st.	J					12		5	Fuc. täckn. 1m	Ugb.		Lös, Fuo	>	
uta pdf	Ca 20	o nunkt		lustyrka Všeböid	<u> </u>	2	la	ndfata :	N					9.5		50	Sub/Tecko 1m	LIGE		Beto sk	ehe	
arg. pa	0	Junit		vagnoja			UV-fr	naroto : nto/film :	N				-	8.4		100		- Ogi		Detri. Sk	aua	
														8.3		50		UaS		Slam		
														7,2		75						
Täckn i S	6.0,1,5	,10,25,50,7	75,100.	Bedömr	ning 0, 1,	2,								7,4		100		UgR		Påväxt		
Linjeta	nxerin	g																				
UNDRE	E GRA	NS för:			_						_	_										
ouotône	diun	lubstrat	äckning	ucus erratus	phacelaria			chodomela onfervoides	'olysiphonia ucoides	'hyllophora	urcellaria umbricalis	eramium				Aytilus (Anmärkning					
	7 1	BI+St		5	10			5	<u> </u>	1		10			-	75	Annarding					
4.3	7.4	BI+St	100	5	1			5	25	1	1	10				75-100						
19	9.2	BI+St	100	1	· ·			5	25		<u> </u>					75-100						
24	10,1	BI+St	100	1					25		5					75	på blockens toppar My	tilus 10	0%			
29	11,7	BI+St i S	75					1	25		5					50						
40	13,6	BI	100						50							75	stora Bl					
48	14,8	StiS	75						10-25		1					10						
58	15,4	StiS	50						5		1					5	småsten (50%) i S					
Andra	statio	nsobser	vatione	er:																		

AP F	PS 4	00-04-0) <u>98</u>																				Н	ögsl	olan	niKa	almar	
																				Ins	st fö	ör Bi	olog	i & M	iljöv	eten	skap	
Fältp	otok	oll, trar	sekt	dyk																								
Lokal	LSM	000513			profil 5				Områ	de:	Simpe	varp			GPS	S-position :	1555	5407				GPS-	positi	on :	1555:	390		
(ID-nr oc	h namn)													(o-p	unkt)	6369	9852			((Yttre)		63697	794		
Datum	2	004-11-1	11		Tid :	10:15	- 11:20						avst	djup	storl	ek myt.täckn							Vatte	ntem	p:	5	°C	
Dykare	:	Tobias, S	anna,	Frasse							р	rover :		13,3		5												
							vatte	nstånd	-0	,2				13		5	TÂ	NGOB	SERV/	ATIONEF	ર (Ögb.			Rekryt			
						5.07	_							11,4		10	-											-
häring	ca 18	Π	vi	Vindrikt odstvrka		A	Just	t.vatt.st.	J					96		25	Fuc.1	tackn.	1m		-	Jgb.			LOS, FI	uc T		
utq. pkt	0	-punkt	¥1	våghöjd			la	indfoto :	N					9,1		50	Sub/I	fäckn.	1m		$-\mathbf{t}$	JqF			Betn. :	skada		-
							UV-fo	oto/film :	N					7,3		50						-						
														6,3		50					l	JgS			Slam			
T T 1 10		40.05 50.75	4.00	D 1"										4,6		25									.	<u> </u>		-
Tacknis	5. U,1,5	,10,25,50,75	,100.	Bedomr	11ng U, 1,	2,								4,3		/5						JgR			Pavaxt	1		
Linieta	xerin	a																									-	4
UNDRE	GRÄ	s NS för:																										
					<u>e</u> .			la des	ці.			_																
		Lat	ing	<u>s</u>	elai			voi	bho es		lari; cali	nium				o l												
		bst	동	cus	hac			nfer	lysi coid		l pri	Γaπ				filu												
avstånd	djup	- N	Ξä	Бu Se	တီ			원망	Ър		교道	ථ				Σ	Anr	närk	ning							<u> </u>		
0	0,9	St	100																									
2	0,8	St	100						1							1	orga	nisme	er bor	tspolad	de i s	skvalj	ozon					
10	2,2	BI	100		1				1			25				25												
14	4,8	BI	100					1	10		1	10				75												
17,5	6,6	BI	100					1	10		1	10				75	Bloc	kbran	ıt bör	iar								
26	8.7	StiS	25						10							5	25%	små	sten .	i sand								
32	93	StiS	5						5							1	ren «	sand	n lite	sten (5%)							1
47	97	Stis	- 25	5					5							10	nlan	hotte	n (25	% sm	aster	nisa	nd) 7/	5-100°	k lös !	Pol fu	c o Rh	undorr
62	10.2	St+BLiS	75	1					25		1					25		55116	,20	.o onie					1001			
68.5	11.9	St+BLi S	50						25		1					10	Junne	nå h	lock	Mytiluz	75	% mo	n toto					-
- 00,3	14.4	0.7013	- 50 - 15						 		<u> </u>							s pa u	iock	of color	o ru: ole:	70 me	nitota	n 1070		-		-
	14,1	5115	25												-		25%	sten	rsar	iu, mikt	siai	rrt						-
							$\left \right $		<u> </u>		-				-		_				-			<u> </u>	<u> </u>	<u> </u>		+
											-				-		_				-							-
					-						-				-		_				_				<u> </u>			-
															_		_							<u> </u>	<u> </u>			_
																								<u> </u>	<u> </u>	<u> </u>		
Andra	atatia	noohoozu	tions																		_							-
- uura	อเฉแบ	nsubscive	auone		1								1														1	

<u>AP F</u>	PS 4	00-04	1-098																					Hög	skolar	ιiKa	almar
																					Ins	t för E	Biol	ogi &	Miljöv	eten	skap
Fältp	rotok	coll, tr	ansek	tdyk																							
Lokal (ID-pr.oc	LSM h pamp	ບບບ514 ນ			profil 6				Områ	de :	Simpe	varp			GPS-	position akt)	:	1553 6369	616 789			GP	S-po reì	sition :	1553	608 817	
Datum	20	Ϋ́ በበ4-11	_11		Tid ·	11.35	- 12.20						aust	diup	storiek	myt täckr		0000					v	attenter	nn [.]	6	°C
Dukasa		T-1:				11.55	- 12.20						avot		SLOTICK	10							-			0	-
рукаге		Toblas	, Sanna	, Frass	ie 		vatte	nstånd	-0).2	p	rover :		5,0		5		TÂ	GOB	SERVA	TIONER	Öab			Rekrv	t.	-
														5,6		10									, , ,		
				vindrikt	s S	W.	Jus	t.vatt.st.	J					2,3		25		Fuc.t	äckn.	1m		Ugb.			Lös, F	uc	
bäring	Ca 5	nunkt	vi	ndstyrka Våaböid		1 n	1	ndfato :	N					2		50		Sub/T	äcko	1.00		LlaE	-		Beto	okada	
urg. pro	- 0-1	Juliki		vagnoju			UV-f	oto/film :	N									Subri	acian.			logi			Detri.	skaua	
																						UgS			Slam		
T 2 - 1 - 1 0		10.05.50	75 400	Deally																			_		D [®]		
Tacknis	6.0,1,5	0,10,25,50	75,100.	Bedomr	ning U, 1,	. 2,																UgR			Pava	1	
Linjeta	xerin	g																									
UNDRE	GRÄ	NS för:				_		-		_																	
		_	5										e a														
		strat	ίς.		laria								d d	por		<u>s</u>											
avstånd	diup	gng	Lac.		R I								Clad	J.c		Myti		Ann	närk	nina							
0	0.5	H+BI	100		10								25			5											
15	12	H+BI	100													25		nå lo	dräta	hloc	sidor f	50%					
3.5	2.2	H+BI	100										25	25		5											
8	4	H+BI	100													5		mkt	slam	. aam	malt fir	trådiat	täck	ker allt			
12	6.4	н	100													10		mkt	slam	. gam	malt fir	trådigt	täck	ker allt			
14.5	7.9	н	100													10		häll t	oöriar	. länd	re ut a	vttia (F	G)				
	- 1-	FG																		1		, . <u>.</u> .	-(
Andra	statio	nsobse	rvation	er:																							

AP F	PS 40	0-04	-098																		Hög	skolan	iKa	lmar
																			Inst	för B	iologi &	Miljöve	eten	skap
Fältp	rotoko	oll, pu	nktdy	k																				
Lokal (ID-nr oc	PSM 0 h namn)	06933			ounkt 1			Områ	de:	Simpe	evarp			GPS-J (o-pun	oosition: kt)	1553 6364	8738 1160			GPS (Yttre	-position : e)			
Datum	20	04-11	-02		Tid :	10:50 - 11	:00					avst	djup	storlek	myt.täckn						Vattente	mp :	8	°C
Dykare	:	Tobias	Jonas	l Sanna						n	rover :													
						v	attenstånd	-0	,1							TÂI	IGOB	SERVA	ATIONER	Ögb.		Rekryt.		
				التراج ماري	,	07	h	<u> </u>		_						Eur A		4		Link				
bäring	ca 300		vi	Vindrikt odstvrka		1	Just.vatt.st.	J								Fuc.t	аскп.	1m		Ugp.		LOS, FU	1C	
utg. pkt	0-p	unkt	1	våghöjd			landfoto :	N								Sub/T	äckn.	1m		UgF		Betn. s	kada	
						ι ι	IV-foto/film :	N																
																				UgS		Slam		
Täckn i S	60151	0 25 50 7	75 100	Bedömr	ina 0.1	2														LlaR		Påväyt		
Tucktin	0.0,1,0,1	0,20,00,1	5,100.	Dealonn	iing 0, 1,	<u> </u>														logit		Fuvunt		
					_											_								
								-iñ	ora	<u>e</u> . <u>e</u> .	ε													
		itrat	uiu	tus				des	do do	rica -	min.				S									
djupin	tervall	sqn	äck	ucu				lo' ol h	hyll	l in di	era				4ytil	Ann	närk	nina						
50				μo			_	<u> </u>	<u> </u>		25				75		nain	ning		-				
7.5	7,5 0		100	10				75	1	5	20 E			-	50									
- 7,5	10		100	ι0 Σ				50	1	5	5				- 50 - 15									
10	12	BI	75					25	1	1				-	10					-		_		
12	10		15					23		<u> </u>				-						-		_		
										-				-						-		_		
					-																			
Andra	station	sobser	vatione	r:																				

<u>AP F</u>	PS 40	0-04	<u>098</u>																	Högs	kolan	iKa	lmar
																		Inst	för Bi	ologi & N	liljöve	ten	skap
Fältp	rotoko	oll, pu	nktdy	k																			
Lokal	PSM (06934		F	ounkt 2				Områ	de:	Simpe	evarp			GPS-	position :	1553951		GPS-	position :			
		04.44	00		T 1	40.00	42.40								I(o-pun		0303341		(True) V			00
Datum	20	104-11-	-02		11a :	13:00	- 13:10						avst	djup	storlek	myt.tackn				vallenten	р.	8	
Dykare	:	Tobias	, Jonas,	Sanna			watter	ot å o d	0	1	P	rover :					TÂNCOR		Örek		Delaut		
							vallen	Istand		, I							TANGOD	SERVATIONER	Ogu.		Rekryt.		
				vindrikt	V	Ň	Just.	vatt.st.	J								Fuc. täckn.	1m	Ugb.		Lös, Fr	IC	
bäring	ca 20	<u> </u>	Vi	ndstyrka		1																	
utg.pkt	<u> </u>	unkt		väghöjd			lar	idfoto:	N N								Sub/Täckn.	1m	UgF		Betn. sl	kada	
							0,4-10	.0711111 .	14										UgS		Slam		
Täalua i O	04.54	0.05.50.7	5 4 0 0	Dedžere	in n 0, 4														Ling		DB		
таскніть	6. U,1 ,5,1	0,25,50,7	5,100.	Deaornin	ling 0, 1,	2,													Ugr		Pavaxi		
															_								
									æ														
									i o i i	io ra	<u>≞</u> . g.	ε											
		strat							des	l de	ellar rica	min.				S							
djupin	tervall	gng	äck						oly.	hy l	ļ ā ģ	era				4ytil	Anmärk	nina					
4	a lieu	H+BI							25	1	<u> </u>	50				50		mig					
	8	H+BI	100						75	1		5				75							
8	10	H+BI	100						75	1		1				25			-				
10	11	H+BI	100						75	1	1	1				5							
											<u> </u>					_							
	_																						
Andra	station	sobserv	/atione	r:																			

AP F	PS 40	0-04	-098																			Högsi	kolan	iKa	lmar
																			In	st för	Biolo	gi & N	liljöve	tens	skap
Fältp	rotok	oll, pu	nktdy	ĸ																					
Lokal (ID-nr oc	PSM (h namn)	06935		ŀ	ounkt 3				Områ	de :	Simp	evarp			GPS-j (o-pun	position: htt)	15: 63	53946 65515		GI	PS-posi ttre)	tion :			
Datum	20)04-11	-02		Tid :	14:35	- 14:50						avst	djup	storlek	myt.täckn					Vat	tentem	ip :	8	°C
Dykare	• :	Tohias	Jonas	t Sanna							r	prover :												-	
							vatte	nstånd	-0	,1							Т	ÂNGO	SERVATION	ER Ög	ıb.		Rekryt.		
				uiodeild	N	NAZ	luce	tuattat									Eur	täaka	1.00						
bäring	ca 150)	vi	ndstyrka		2	Jus	i.vaii.si.	J								Fut	. Lackii	. 101	log	<i>D</i> .	_	LUS, FU	C	
utg. pkt	0-p	unkt		våghöjd	0	l,2	la	ndfoto :	N								Sul	o/Täckn	. 1m	Ug	F		Betn. s'	kada	
							UV-fi	oto/film :	N									-		Ua	<u> </u>		Slam		
																					5		Siam		
Täckn i 9	6.0,1,5,1	0,25,50,7	75,100.	Bedömr	ing 0, 1,	2,														Ug	R		Påväxt		
							5																		
							uni uni		Dia		<u>م</u> . ص		<u> </u>												
		trat	uiu	s sn			n a		les l		ical		riefi			<u>دم</u>									
djupin	itervall	sqn	äck	ucu			glac		lo j		l and		akte			lytil	A.	əmörl	mina						
ovre	neare		100	шö			42				<u> </u>				-	≥		IIIan	kiiny						
	10		100	1			'		75		1		<u> </u> '		-	70 50		_							
10	11	01711	10.05	1					10		10					50	10	75%	oton i cond						
10		3113	10-20	1							10				-			-2070 :	sterrisariu		-	-			
															-										
																						-			
A																									
Andra	station	sobser	vatione	r:																					1

API	PS 4	00-04	-098																		Högs	kolan	iKa	mar
																			Inst	för Bi	ologi & N	liljöve	tens	kap
Fältp	rotok	oll, pu	inktdy	/k																				
Lokal	PSM	006936			punkt 4				Områ	de:	Simp	evarp			GPS-	position :	155	6831		GPS-	osition :			
(ID-nr oc	ch namn)													(o-pu	nkt)	636	6933		(Yttre)				
Datum	<u> </u> 2	004-11	-11		Tid :	14:15	- 14:30						avst	djup	storlek	myt.täckn					Vattentem	p:	5	°C
Dykar	e:	Tobias	, Sanna	, Frass	e						F	orover	:	7,1		100								
							vatte	nstånd	-0	,2				7,6		100	1/	ÂNGOB	SERVATIONER	Ögb.		Rekryt.		
				vindrikt	i s	sw.	Jus	t.vatt.st.	J					7	-	100	Fuc	. täckn.	1m	Ugb.		Lös, Fu	с	
bäring) ca 33	0	vi	ndstyrka		4								7,4		100								
utg.pk	t 0-	punkt		våghöjd),3	la LIVA	ndfoto :	N								Sub	/Täckn.	1m	UgF		Betn. sł	ada	
							0.4-10	otovnim .	14											UgS		Slam		
Täckn i '	%. 0,1,5	,10,25,50,	75,100.	Bedömr	ning 0, 1,	2,														UgR		Påväxt		
																		_						
							5																	
					g.		jä a	des des	onia.		<u>د.</u> م													
		trat	ning	s na	Cela		E Ha	ome Noi	des l		ellari ical					<u>9</u>								
djupir	ntervall	sqn	äckı	ucu:	pha		glac	hod	olys tcoid							1 Jytilt	A	märl	ning					
GOVICE		0 1	100	шö	0		4 2								-	≥ 75		Пан	Jing					
8.1	<u> 0,1</u> 0,2	BI	100	1	-		1	1	25		5				-	75								
92	12	BI+H	100		1		<u> </u>	1	50		5					50		-						
12	14.5	BI+H	100		<u> </u>				25		5					25		-						
		BI	10						5							5	Blo	ck.is:	and					
					L										L									
															_			_						
					_										<u> </u>									
					-						<u> </u>		<u> </u>		-									
Andra	statio	nsobser	vatione	er:																		+ +		

APF	PS 40	0-04	·098																Högs	kolan	iKa	lmar
																	Ins	t för B	iologi & N	/liljöve	tens	skap
Fältp	rotoko	oll, pu	nktdy	ĸ																		
Lokal	PSMC	06937			punkt 5				Områ	de:	Simpe	/arp			GPS-	osition :	1555368	GPS	-position :			
(ID-nr oc	h namn)														(o-pun	kt)	6368955	(Yttro	e)			
Datum	20	04-11	-11		Tid :	13:10	- 13:20						avst	djup	storlek	myt.täckn			Vattenten	ip:	5	°C
Dykare	:	Tobias	, Sanna	, Frass	e						рг	over :										
							vatte	enstånd	-0	,2							TÂNGOBSERVATIONER	. Ögb.		Rekryt.		
				vindrikt	S	W	Jus	t.vatt.st.	J								Fuc.täckn.1m	Ugb.		Lös, Fu	с	
bäring	ca 110		vi	ndstyrka	:	2																
utg. pkt	0-p	unkt		våghöjd	0	<u>,1</u>	la la	andfoto :	N								Sub/Täckn. 1m	UgF		Betn. sł	kada	
							UV-f	oto/film :	N									UgS		Slam		
T 2 - 1 - 1 6		0.05.50.5		D- IV	1															D		
Tacknis	%. U,1,5,1	0,25,50,7	5,100.	Bedomr	ning U, 1,	2,														Pavaxt		
		at	Ð	w	snso		amnion	nela oides	honia s		aria alis	m	Jora									
djupir övre	itervall nedre	Substra	Täcknii	Fucus serratu	Fucus vesicul		Aglaoth roseum	Rhodor conferv	Polysip fucoide		Furcell: lumbric	Cerami	cladopt			Mytilus	Anmärkning					
0	1	н	100		5							75	1			10	Fucus som stumpar +	• nyrekr				
1	1,3	н	100		5				5		1	50				10	Fucus sliten					
1,3	2,2	H+BI	100		25-50				25		1	5				10	Fucus nyrekrytering fr	ekvent				
2,2	2,5	H+BI	100		10				25		5					25	Fucus betad					
2,5	2,8	BI	100		5			1	50		5					25	Fucus betad					
2,8	5,2	BI	100	1	1		1	1	75-100		10					10						
5,2	8	BI	100	10	1		1	1	75		10					25						
8	9,2	BI	100	5	1			1	75		5					25						
9,2	10,3	BI	50	1					50		5					10						
10,3	11,5	BliS	10						10		1					5						
Andra	station	sobserv	/atione	r:																		

<u>AP F</u>	PS 40	0-04	<u>098</u>																		Högs	kolan	iKa	lmar
																			Inst	för B	iologi & N	/liljöve	tens	skap
Fältpr	otoko	oll, pu	nktdy	k														_						
Lokal	PSM 0	06938		F	punkt 6				Områ	de:	Simpe	varp			GPS-p	osition :	155	4352		GPS	position :			
(ID-nr ocl	n namn)														(o-pun	kt)	636	9997		(Yttre	9)			
Datum	20	04-11	-11		Tid :	12:30	- 12:40						avst	djup	storlek	myt.täckn					Vattenten	ip:	5	°C
Dykare	:	Tobias	, Sanna	, Frass	e						р	rover :												
							vatten	stånd	-0	,2							T/	NGOB	SERVATIONER	Ögb.		Rekryt.		
				vindrikt	s	W	Just.v	/att.st.	J								Fuc	täckn.	1m	Ugb.		Lös, Fu	c	
bäring	ca 350)	vi	ndstyrka	:	2																		
utg. pkt	0-p	unkt		våghöjd	0	L1	land	dfoto :	N								Sub	/Täckn.	1m	UgF		Betn. sk	ada	
							UV-foti	o/Tilm :	N											UgS		Slam		
Täcko i %	0151	0 25 50 7	5 100	Bedömn	vipe 0.1	2														LlaR		Påvävt		
TGORTT A		10,20,00,1	0,100.	Deach		-,														ogit		I drukt		
			:						-															
					<u>ه</u>				.e															
		at	Bu		l so	<u></u>			bhor es		laria calis	ium	hors											
djupint	tervall	bstr	čk ni		cus	aye			lysij oide		l la cel	ram	d			tila								
övre	nedre	ß	- a		л ў Ц Х	ä			Ъ		10.1	ů	<u>-</u>		L	Σ	An	märk	ning					
0,4	1,3	н	100		75	5					_	5	5		_	5		_		_				
1,3	2,7	BI+H	75		5	10			5		1	1				10				_				
2,7	6,2	BI	25						5		1				-	5	på	block	Mytilus 25%					
6,2		FG									-				-			_						
											-				-									
											-				-			_						
											-				-									
											-				-							++		
											-				-									
											-				-									
Andra	station	sobserv	/atione	r:																				

Appendix 3

Analyzed samples

Covering degree Sample Transect Substrate Sampling depth (m) 5 LSM000509 1 Boulder 10.3 " 2 Boulder LSM000510 18.2 ,, 3 LSM000510 Flat rock 17.2 " 4 LSM000511 Boulder 12.1 ,, 5 LSM000513 Boulder 13.0 LSM000509 10 1 Boulder 12.1 ,, 2 LSM000511 Boulder 12.2 ... 3 LSM000514 Flat rock 5.8 ,, LSM000514 Flat rock 4 5.6 " LSM000509 Boulder 5 11.8 25 1 LSM000512 Boulder 11.6 " 2 LSM000513 Boulder 11.0 3 LSM000513 Boulder 4.6 ,, 4 LSM000513 Boulder 9.6 LSM000509 " 5 Boulder 9.1 50 1 LSM000513 Boulder 9.1 ,, 2 LSM000514 Flat rock 2.0 ,, 3 LSM000509 Flat rock 6.2 " LSM000511 Boulder 8.8 4 " LSM000510 Boulder 9.2 5

Table A3-1. Information about analyzed samples.

75	1	LSM000511	Boulder	6.6
33	2	LSM000511	Boulder	4.3
33	3	LSM000513	Boulder	4.3
33	4	LSM000509	Flat rock	6.9
33	5	LSM000511	Boulder	4.6
100	1	PSM006936	Flat rock	7.1
33	2	PSM006936	Flat rock	7.6
33	3	LSM000509	Flat rock	5.4
33	4	PSM006936	Flat rock	7.0
"	5	PSM006936	Flat rock	7.3

Appendix 4

Quantitative samples

	M.edulis covering	legree		5	1	0	2	25	E	0	7	75	1	00
		-	M	SE	M	SE	M	SE	M	SE	M	SE	M	SE
Carnivores	Nereis diversicolor MYSIS SP. Saduria entomon Callionus laeviusculus		20	9,4	25 10	25,0 6,1	100 25	61,2 25.0	25	25,0	50	50,C	25 25 25	25,0 25,0 25.0
	Crangon crangon DONACIA SP.		5	5 D			20	-0,0			25	25,C	- 20	20,0
		Total	25	7,9	35	23,2	125	79,1	25	25,0	75	50,C	75	30,6
Detrivores	Corophium volutator HYDROBIIDAE Macoma baltica	Total	1 350 25 1 375	664,1 25,0 670,0	5 2 690 15 2 710	5,0 1 385 7 15,0 1 381 7	1 450 25 1 475	392,5 25,0 400,0	2 160	823,9 823,9	6 475 50 6 525	3 156,2 30,6 3 177 4	14 325 125 14 450	1 511,2 39,5 1 493 0
Filter feeders	Balanus improvisus Leptocneirus pilosus	Total	5	5,0	2110	10017	25	25,0	25	25,0	200	200,0	14 400	1400,0
rinei reeders L L (Mytilus edulis CERASTODERMA SP. Mya arenaria	T	1 805 5 5	816,4 5,0 5,0	7 090 20 15	2 985,9 14,6 15,0	13 115 55	2 541,8 33,9	15 425 220	3 419,4 213,8	40 935 925	9 986,9 774,2	66 935 175 25	5 143,8 53,7 25,0
	11.1 12	Total	1 520	822,0	/ 125	29672	3 195	2509,7	156/0	322,1	42 050	9 526,3	6/ 135	5142,9
Herbivores	ldotea pantica Idotea granulosa JAERA SP. Theodcxus fluviatilis LYMNAEA SP.		35 330 25	10,0 223,5 15,8	600 5	48,5 367,4 5,0	310	127,1	55 710 30	26,9 425,3 16,4	325 100 1 750 5C	46,5 516,9 50,C	50 50 100 875	30,6 50,0 25,0 142,5
e		Total	390	233,3	665	412,6	490	237,8	795	413,9	2 225	651,2	1 075	145,8
Omnivores	Sphaeroma hookeri GAMMARUS SP. CHIRONOMIDAE		95	43,6	15 125	10,0 41,1	275	100,0	25 315 25	25,0 214,4 25,0	1 200	315,2	650	⁻ 99,2
2	en e constante e constante e a la constante e presentar e a constante e	Total	95	43,6	140	34,1	275	100,0	365	201,5	1 200	315,2	650	199,2
		Σ	4 005	1 591,5	10 675	3 702 0	15 56C	2798.8	19 0 15	3 965 0	52 035	13 098 5	83 385	5 501.3

Table A4-1. Mean abundance of sessile epifauna (number/m2) in the different covering degrees. Deviation oresented as Standard error.

10-10-10-10-10-10-10-10-10-10-10-10-10-1	21		6										40	otal
Average number of taxa (M ± SE)	6,2	1,07	6,2	0,73	5,4	1,12	5,8	0,37	7,2	0,73	7,8	J,86	6,4	0,35
					3									
M. edulis abundance share (%)		45	6	66	8	34	8	31	. 7	79	{	80		
	1.0				2				3		2			
Red algae biomass (gDW/m2)	31,7	17,96	31,2	12,64	43,6	17,32	53,0	17,44	190,8	61,60	99,4	1,39		

Carnivores Nera MYS Sad	eis diversicolor SIS SP. Iuria en:omon opius laeviusculus ngon crangon	M 0,01	0 011	M 0,00	SE	N	SE	М	SE	М	SE	M	SE
Carnivores Nere MYS Sadi	eis diversicolor SIS SP. Iuria encomon lopius laeviusculus ogon crangon	0,01	0011	0,00	ana								
Call	lopius laeviusculus ngon crangon			0,11	0,001 0,066	0,16	0,134	0 02	0,020	0,03	0,033	0,04 0,00	0,040 0,001
Crar	NACIA 2D	0,04	0 041		23	0,C1	0,010			0.05	0.063	0,02	0,018
DOI	Total	0.06	0.039	0.11	0.066	0.17	0 144	0.02	0.020	0,05	0,055	0.06	0.039
Detrivores Corr	ophium volutator	0,00	2054	0,00	0,001	0,17	4.040	45.45	4,420	6,00	44,000	0,00	4,000
Mac	coma baltica	0,56	2654 0563	1,02	1,018	0,22	0,075	10,45	4,120	0,81	0,791	1,66	4,639
	Total	7,20	2844	13,35	6,455	6,30	1,868	1C,45	4,120	25,51	11,790	39,43	5,108
Filter feeders Bala Lept	anus improvisus tocheirus pilosus	0,00	0 001	5		0,31	0,305	0 00	0,001	2,23	2,233		
Myt	til us edulis PASTOJEPMA SP	52,81	11,420	274,68	51,495	575,23	43,156	689,39	123,334	1002,65	61,695	1485,13	224,565
Mya	arenaria	0,04	0 040	0,49	0,492	0,41	0,200	1.05		5,01	0,000	1,36	1,360
2022 	Total	52,89	11,476	277,79	49,593	575 94	42,922	691,03	122,630	1014,49	61,959	1487,33	223,870
Herbivores Idote	ea baltica ea granulosa	0,16	0 073	0,30	0,193	1,06	0,703	0 41	0,295	1,07	0,373	0,49 0,00	0,401 0,003
The	RASP. odoxus fluviatilis MNAEASP	2,23	1 503	2,77	1,159	2,89	1,585	869	4,787	0,00 20,13 0.79	0,001 6,104 0,785	0,00 5,35	1,922
L114	Total	3.41	2 410	3.11	1 284	3 95	2 255	11 14	4 758	21.98	6.028	5.84	2 100
Omnivores Sph GAN	aeroma hookeri MMARUS SP.	0,22	0 075	0,02 0,12	0,013 0,054	0,18	0,095	0 00 0 29	0,001 0,178	1,30	0,317	2,57	0,730
CHI		0.22	0.075	0.13	0.052	0.18	0.095	0.00	0,001	1 30	N 317	2.57	0.730
<i>1</i> 2	Σ	63,78	15,317	294,49	53,345	586 54	43,067	712,93	124,433	1063,36	74,750	1535,23	224,710
A	rado numbor of taxa (M + CE)	62	1.07	62	0.73	51	1 12	E S	0.37	70	0.73	7.8	0.86

Table A4-1. Mean biomass of sessile epifauna (gDW/m2) in the different covering degrees. Deviation presented as Standard error.

													2	
													To	otal
Average number of taxa (M ± SE)	6,2	1,07	6,2	0,73	5,4	1,12	£,8	0,37	7,2	0,73	7,8	0,86	6,4	C,35
M. edulis biomass share (%)	8	33	9	93	9	98	9	97	9	14	9	97		
			24				8		25		Ş			
Red algae biomass (gDW/m2)	31,7	17,96	31,2	12,64	436	17,32	53,0	17,44	190,8	61,60	99,4	11,39		

Abundance and biomass estimations

	M.edulis covering degree		5	1	10	2	5	5	50	7	5	10	00
		M	SE	M	SE	M	SE	М	SE	M	SE	M	SE
Carnivores	Nereis diversicolor MYSIS SP. Saduria en:omon	0,01	0011	0,00 0,11	0,001 0,066	0,16	0,134	0 02	0,020	0,03	0,033	0,04 0,00	0,040 0,001
	Callopius laeviusculus Crangon crangon DONACIA SP.	0,04	0 041			0,C1	0,010			0.05	0.053	0,02	0,018
	Total	0,06	0 039	0,11	0,066	0,17	0,144	0 02	0,020	0,09	0,054	0,06	0,039
Detrivores	Corophium volutator HYDROBIIDAE Macoma baltica Total	6,63 0,56 7,20	2 654 0 563 2 844	0,00 12,33 1,02 13,35	0,001 6,579 1,018 6,455	6,22 0,08 6,30	1,849 0,075 1,868	1C,45 1C,45	4,120	24,70 0,81 25,51	11,892 0,791 11,790	37,77 1,66 39,43	4,639 1,047 5,108
Filter feeders	Balanus improvisus Leptocheirus pilosus Mytilus edulis	0,00	0 001	274.68	51,495	0,31	0,305	0 00	0,001 123.334	2,23	2,233	1485.13	224.565
	CERASTODERMA SP. Mys arenaria	0,04	0 036	2,61	2,573	0,41	0,256	163	1,584	9,61	8,535	0,84	0,351
Herbivores	Idotea baltica Idotea granulosa JAERA SP. Theadevus fluviatilis	0,16	11,476	0,30	49,593 0,193	1,06	42,922 0,703	0 41	0,295	1,07 0,00	0,373	0,49 0,00 0,00 5,35	223,870 0,401 0,003 0,001 1,922
	LYMNAEA SP. Total	1,03	0 965	0,04	0,043	3.95	2.255	204	1,303 4,758	0,79	0,785	5.84	2,100
Omnivores	Sphaeroma hookeri GAMMARUS SP. CHIRONOMIDAE	0,22	0 075	0,02 0,12	0,013 0,054	0,18	0,095	0 00 0 29 0 00	0,001 0,178 0,001	1,30	0,317	2,57	0,730
	Total	0,22	0 075	0,13	0,052	0,18	0,095	0 29	0,178	1,30	0,317	2,57	0,730
	Σ	63,78	15,317	294,49	53,345	586 54	43,067	712,93	124,433	1063,36	74,750	1535,23	224,710

Table A4-1. Mean biomass of sessile epifauna (gDW/m2) in the different covering degrees. Deviation presented as Standard error.

													10	la
Average number of taxa (M ± SE)	6,2	1,07	6,2	0,73	5,4	1,12	6,8	0,37	7,2	0,73	7,8	0,86	6,4	C,35
M. edulis biomass share (%)	8	13	9	13	9	98	9	97	9	14	9	17		
Red algae biomass (gDW/m2)	31,7	17,96	31,2	12,64	436	17,32	53,0	17,44	190,8	61,60	99,4	11,39		

Total