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ABSTRACT (ENGLISH) 

This report describes preliminary verification and demonstration of the geostatistical inference 
code, INFERENS Version 1.1. This code performs regularization of packer test conductivities, and 
iterative generalized least-squares estimation (IGLSE) of nested covariance models and spatial 
trends for the regularized data. Cross-validation is used to assess the quality of the estimated 
models in terms of statistics for the kriging errors. The code includes a capability to generate 
synthetic datasets for a given configuration of packer tests; this capability can be used for 
verification exercises and numerical experiments to aid in the design of packer testing programs. 

The report presents the results of a set of verification test cases. The test cases were designed to 
test the ability of INFERENS 1.1 to estimate the parameters of a variety of covariance models, 
with or without trends. This was done using synthetic datasets. 

The verification exercises confirmed the functionality of the fitting algorithms, for intrinsic models 
with simple isotropic, simple horizontally isotropic, or nested isotropic covariances. The code also 
was successful in estimating models with spatial trends and simple isotropic or horizontally 
isotropic covariance. The more general forms of statistical anisotropy which are supported by 
INFERENS 1.1 were not adequately tested. 

Verification of the fitting of more complex models, with nested anisotropic covariances, was not 
successful, primarily because the configuration and quantity of measurements in the synthetic 
datasets were not adequate for definition of the more complex models. 

This report also describes an application of INFERENS 1.1 to the dataset from the Finnsjon site. 
The results are roughly similar to those obtained previously by Norman (1992a) using INFERENS 
1.0, for the comparable cases. The actual numerical results are different, which may be due to 
changes in the fitting algorithms, and differences in how the lag pairs are divided into lag classes. 

The demonstrations confirm the result previously obtained by Norman, that the fitted horizontally 
isotropic models are less good, in terms of their cross-validation statistics, than the corresponding 
isotropic models. The use of nested covariance models is demonstrated to give visually improved 
fits to the sample semivariograms, at both short and long lag distances. However, despite the 
good match to the semivariograms, the nested models obtained are not better than the simple 
models, in terms of cross-validation statistics. 

These seemingly paradoxical results are explainable by the fact that the model fitting is performed 
by minimizing a weighted sum of the squared differences between the model covariance and the 
sample covariance, while the cross-validation statistics are calculated from the kriging errors using 
the fitted models. The optimum model in terms of cross-validation statistics is not necessarily 
coincident with the least-squares match to the sample covariance. 

The use of direct fitting to the data pairs, rather than binned estimates (lag-class) of the 
semivariogram, in general is seen to yield poorer fits, as measured by the cross-validation 
statistics. This is interpreted as indicating that the direct-fitting approach is less robust. The 
relatively poor results achieved by direct fitting are problematic, since geostatistical inference 
using lag classes has been demonstrated to be highly sensitive to the arbitrary choice of lag 
classes. 
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ABSTRACT (SWEDISH) 

Rapporten innehaller preliminar verifiering av samt demonstrationskorningar med den geostatis­
tiska programkoden INFERENS, Version 1.1. Programmet utfor regularisering, uppskalning, av 
konduktivitetsdata fran borrhfilstester. Vidare utfors iterativ, generaliserad rninsta-kvadrat 
uppskattning (IGLSE) av nastlade kovariansmodeller och rumslig trend for de regulariserade data. 
S k "cross-validation" anvands for att berakna kvaliten for de skattade modellerna uttryckt i sta­
tistik for felen vid kriging. Programkoden kan aven generera syntetiska data for en given borr­
hfilskonfiguration. Denna mojlighet kan utnyttjas for verifiering samt for numeriska experiment 
i samband med framtagning av borrhfilsdesign. 

Resultaten fran ett antal verifieringsfall presenteras. Testfallen togs fram for att prova formagan 
hos INFERENS 1.1 att skatta parametrar for ett antal olika kovariansmodeller, med och utan 
trend. Detta genomfordes med hjalp av syntetiska data. 

Verifieringen bekraftade funktionen hos anpassningsalgoritmerna for enkla isotropa intrinsiska, 
for horisontellt isotropa samt for nastlade isotropa kovariansmodeller. Programmet lyckades ocksa 
framgangsrikt skatta modeller med rumslig trend samt med isotrop eller horisontellt isotrop 
kovariansstruktur. Den mer generella form av statistisk anisotropi som implementerats i 
INFERENS 1.1 har ej verifierats inom projektet. 

Verifiering av de mer komplexa statistiska modellerna, med nastlade anisotropa kovarianser, 
lyckades ej. Orsaken till detta ar att konfigurationen av borrhfil och antalet data ej var tillrackligt 
for dessa modeller. 

Rapporten beskriver aven praktisk tillampning av INFERENS 1.1 pa borrhfilsdata fran Finnsj6n. 
Resultaten blir, for de jamf6rbara fallen, liknande de som erh6lls i en tidigare studie, Norman 
(1992a), dar INFERENS 1.0 anvandes. De numeriska vardena ar dock olika vilket kan forklaras 
av forandringar i anpassningsalgoritmerna och skillnader vid indelningen is k lag-klasser. 

Tillampningen bekraftar tidigare slutsatser av Norman, att de horisontellt isotropa kovariansmo­
dellerna ar samre, nar det galler "cross-validation" statistik, an de motsvarande isotropa modeller­
na. De anvanda nastlade modellerna ger visuellt forbattrad passning nar sernivariogram betraktas, 
for bade korta och langa s k lags. Trots denna battre passning for sernivariogram sa ar "cross­
validation" statistiken samre. 

Detta resultat kan forefalla paradoxalt men kan forklaras av det faktum att modellanpassningen 
utfors genom rninimering av en viktad kvadratsumma av skillnaden mellan modellkovariansen 
och den samplade kovariansen. "Cross-validation" statistiken baseras daremot pa felet vid kriging­
skattningen dar de anpassade modellerna anvands. Sfiledes ar inte den optimala statistiska 
modellen, baserad pa "cross-validation" statistik, med nodvandighet sammanfallande med 
resultatet fran rninsta-kvadrat passning av samplade kovarianser. 

Anvandandet av direkt anpassning mot data i stallet for anpassning klassvis, lag-classes, vid 
kontruktion av sernivariogram, ger generellt samre resultat nar det galler "cross-validation" 
statistik. Detta kan tolkas som att den direkta anpassningsalgoritmen ar mindre robust. Detta ar 
relativt problematiskt eftersom geostatistisk passning med anvandande av s k lag-klasser har visat 
sig vara kansligt for den relativt godtyckliga indelningen i klasser. 
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1. INTRODUCTION 

This report describes preliminary verification and demonstration of the computer code INFERENS 
1.1. This work was performed for Svensk Karnbranslehantering AB (SKB) by Golder Geosystem 
AB (GGAB). Preliminary verification of INFERENS 1.1 was performed by generating synthetic 
datasets, and testing the ability of INFERENS 1.1 to deduce the models used to generate the 
synthetic datasets. The code was demonstrated by fitting a variety of models to conductivity data 
from the Finnsjon site. 

INFERENS 1.1 was developed as a tool for estimating stochastic models based on borehole 
conductivity data. The code performs simultaneous, iterative generalized least-squares estimation 
(IGLSE) of nested covariance models (as defined in §2.1) and trend functions (as defined in §2.2) 
for packer test conductivity (K,,) datasets. 

INFERENS 1.1 is an extension and modification of INFERENS 1.0, which is described by Norman 
(1992a,b). The original code included modules to perform the following functions: 

• Regularization of KP data from overlapping and/or mismatched 
packer intervals, based on the steady-state formula of Moyes (1967). 

• IGLSE of sirn:!le semivariogram models (isotropic or horizontally 
isotropic) and trend functions, using binned (lag-class) estimates of 
the sample semivariogram. 

• Cross-validation (referred to as jackknifing) to estimate statistics for 
the kriging errors associated with a fitted semivariogram and trend. 
model. 

• Monte Carlo simulation of stochastic functions, based on the fitted 
models, to estimate the distribution of the cross-validation statistics 
in order to perform significance tests on the observed statistics. 

An analysis of data from Finnsjon by Norman (1992a) using this code suggested that the relatively 
simple types of covariance models supported by INFERENS Version 1.0 may not be adequate for 
describing the covariance structure at an actual site. In that study it was found that, for every one 
of the fitted models, the hypothesis that the model was correct could be rejected at 
the 95% confidence level, based on the cross-validation statistics. 

In other words, the models fitted using INFERENS 1.0 were not acceptable as kriging predictors 
of the hydraulic conductivity field, at a 95% confidence level. This finding, together with an 
observation of a possible nested covariance structure in the Finnsjon data, motivated furtehr 
development of INFERENS to allow fitting of more complicated models. 

Norman (1992a) also observed that the fitted models were strongly dependent on the arbitrary 
choice of lag-class divisions (bins) in the fitting process. This observation motivated further 
development of INFERENS to allow fitting without the need for arbitrarily defined lag classes. 
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A new version, INFERENS 1.1, was developed during 1992 to address the issues raised by the 
work of Norman (1992a). The capabilities of the original version were extended in INFERENS 1.1 
to include: 

• More general forms of geometric anisotropy for covariance models. 

• Nested covariance models as defined in Section 2.1. 

• Optional fitting directly to the data, rather than lag-class estimates. 

• Optional constrained optimization, by holding a subset of the 
covariance model parameters fixed during optimization. 

• Ability to generate synthetic datasets, based on an assumed 
covariance model, to facilitate verification of the fitting algorithm. 

This document describes the results of running a set of verification test cases. The cases were 
designed to test the ability of the fitting algorithm to correctly estimate the parameters each of 
the different covariance models and trend functions supported by INFERENS 1.1. This document 
also describes an application of INFERENS 1.1 to the dataset from the Finnsjon site, and compares 
the results with those obtained using INFERENS 1.0 (Norman, 1992a). 
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2. FUNDAMENTAL CONCEPTS 

The general form of stochastic function supported by INFERENS 1.1 is: 

Y(xlp,P) - Y(xlp) + T(xlP) (2-1) 

where y (xlp) is a stationary function with nested covariance defined by the parameter vector 

p, and the T(xlP) is a linear function of x, parameterized by the vector {J, which is constructed 
as the sum of Nr trend functions. The terms in boldface are defined in the following sections. 

2.1 Covariance models 

A nested covariance is defined as a linear combination of ordinary covariances: 

N 

C(u9) - L a"C"(u9) 
n-1 

(2-2) 

where uij = X; - xj is the lag vector between two points, the a" are constant factors, and each 
component model Cn(u;j) is a spherical or exponential covariance model with geometrical 
anisotropy. In this report, it is assumed in general that an = 1.1 

Nested covariance models can be used to represent more complex correlation structures than can 
be represented with ordinary covariance models. In the simplest case this could be a field formed 
by superposition of two processes with isotropic covariance and contrasting ranges. This case was 
suggested as a result of the analysis of the Finnsjon data by Norman (1992a). More elaborate 
structures, e.g. the correlation structure which could result from three orthogonal sets of fracture 
zones, could be constructed by superposing anisotropic models. 

Note that ordinary covariance models are a subset of nested covariance models (with N = 1). 
Therefore statements made herein, concerning nested covariance models, will also pertain to the 
case of ordinary covariance models. 

The geometrical anisotropy for the nth component model is defined in terms of a 3x3 anisotropy 
matrix G which maps each lag vector into an isotropic covariance space: 

h .. - GU .. 
'"1 n '1 

(2-3) 

where hnij is the lag vector in the isotropic covariance space corresponding to the nth component 
model. 

Each exponential or spherical covariance model is defined in the corresponding isotropic space, 
in the conventional manner. 

This entails no loss of generality, as the same effect can be represented by scaling the sills. 
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An exponential model is of the form: 

A spherical model is of the form: 

0 

O < h .. < 1/.l 
n9 n 

h .. ~ 1/.l 
ntJ n 

} 
where: 

hnij = I hnij I = the magnitude of the lag vector in the nth isotropic space. 
Vn = the variance of the nth component model. 
An = 1/an, where an is the range of the nth component model. 

The practical range for an exponential model is defined as a'" = 3an-

(2-4) 

(2-5) 

A stochastic function with nested covariance can be constructed as a linear combination of 
mutually independent, component functions. This gives a straightforward way of simulating log 
conductivity fields with nested covariance, in INFERENS and HYDRASTAR, as the sum of 
independent turning bands simulations of the component models. 
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2.2 Trend functions 

The general form of trend function supported by INFERENS 1.1 is: 

NI 
T(x I ,8) - E T;(x I ,8) (2-6) 

i-1 

where the T;(xlJ1;), i = 1,2, ... ,Nr are component trend functions. INFERENS 1.1 performs fitting 
,-vith respect to the /1; on the following types of component trend functions: 

Constant trend: 

(2-7) 

Linear trend with respect to depth (the coordinate x3 or z): 

(2-8) 

Logarithmic trend with respect to depth: 

(2-9) 

where A is a constant. 

Characteristic function defined with respect to a given domain D: 

y - { 1, 
0, 

x € D} 
XltD 

(2-10) 

The domain may be any particular one of the zones defined in the INFERENS task description 
file. Zones are defined as convex domains formed by the intersection of two or more half-spaces. 

The linear trend is sometimes referred to as an exponential trend (Norman, 1992a) since in the 
case that Y(x) = log10 K(x), the resulting conductivity field is of the form: 

(2-11) 

where log J< _ y is a random factor. The logarithmic trend is also referred to as a potential 
10 

trend since, in the same case, the conductivity field is of the form: 

(2-12) 
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2.3 Fitting algorithm 

INFERENS provides several alternative methods for estimating the vector of trend parameters, 
{3, and the vector of covariance model parameters, p. All of the alternative methods are based on 
the method of iterative generalized least-squares estimation, or IGLSE. Several alternatives 
pertain to specific steps in the IGLSE algorithm: 

• Direct or lag-class fitting. 

• Constrained fitting and/or log-space fitting. 

The basic IGLSE algorithm used in INFERENS 1.1 is as follows: 

Step 1: Initial estimate of covariance model parameters P<il for iteration i = 
1. 

Step 2: Initial estimate of trend parameters Peil for iteration i = 1. 

Step 3: Calculate the vector of residuals y: Yi = Y(x) - T(xJPciJ) for the jth 
data point, j = 1,2, ... ,M. 

Step 4: Nonlinear least squares estimation to optimize the covariance model 
for the residuals Cy(h IP<il) = E[y(x)y(x+h)]. 

Step 5: Estimation of /J(i+IJ by generalized least squares estimation (GLSE), 
assuming the covariance model Cy(h IPCiJ). 

Step 6: Test for convergence with respect to /3. If 'PcHiJ - /J<JI > € 13, where 
€ 13 is a specified tolerance, then repeat Steps 3 - 6. 

In the case where no trend functions are defined (Nr = 0), the algorithm reduces to just Steps 1 
and 4, i.e. non-linear least-squares estimation of p. In the non-trivial case Nr > 0, the initial 
estimate /J(J) is obtained by ordinary least squares regression (OLSR), which is equivalent to 
assuming, in this step, a pure nugget effect for the covariance model.2 

Depending on the choice of search method (as specified in the task description file), INFERENS 
may be used to automatically run the IGLSE process repetitively, each time beginning with a 
different initial estimate P(J)· If "no search" is specified, then IGLSE is performed just once, using 
the p(l) which is specified in the task description file. If a grid-based search is specified, then the 
IGLSE estimation is performed repeatedly for different choices of P<w which are taken from a 
uniformly-spaced grid in the NP parameter space (Figure 2-1). 

2 This is a change from INFERENS 1.1, where /J(J) had to be supplied as input. It is difficult 
to imagine a case in which the user could supply a better initial guess of {3, a priori, than the 
OLSR estimate. However, as seen from the results of verification runs given in Section 3.2, there 
may be a need to randomize /3(1) in certain cases. 
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The optimization of the covariance model parameters in Step 4 may be defined in terms 
minimizing either: 

(2-13) 

or 

(2-14) 

where y(u) = C(O) - C(u) is the semivariogram function, and wifk, ciflc, and r ifk are, respectively, the 
assigned weight, the centroid, and the sample estimate of the semivariogram for the lag class Lijk, 
as defined below. Optimizing with respect to R0 is termed direct fitting. Optimizing with respect 
to RL is termed lag-class fitting. 

A lag class is defined as a subset of the 3-D lag space. In INFERENS 1.1 the lag class divisions are 
defined in terms of spherical coordinates, as depicted in Figure 2-2. A given lag vector u is said 
to be a member of the lag class L;"' if the components of u (in spherical coordinates) lie within the 
intervals: 

'i-1 
::; u < r. 

r I 

0. I ::; ue < e (2-15) 
J- } 

</>k-1 ::; uip < </>k 

where: 
r; = the ith radial lag class divisor, i = 0,1, ... ,N, 
ej = the jth latitudinal lag class divisor, j = 0,1, ... ,N8 

<l>k = the kth longitudinal lag class divisor, k = 0,1, ... ,Nip 

The fitting in Step 3 may optionally be performed with respect to a subset of the covariance 
model parameters p, with the remaining components set to fixed values. This is referred to as 
constrained fitting. For example, a simple isotropic covariance model with parameters p1 = V and 
p2 = l (the variance and inverse range, respectively) could be fitted with p1 set to some fixed 
value of V, so that only p2 would be allowed to vary during fitting. 

The set of non-negativity constraints p; > 0, i = 1,2,. .. ,Nr can be applied by performing the fitting 
in log parameter space, i.e. by performing the optimization with respect to an auxiliary parameter 
vector q with components qi = log p;. This method, referred to as log-space fitting, is generally 
recommended since negative p; are implausible.3 

3 Log-space fitting is furthermore recommended as safer; there is a chance that a 
subprogram to calculate the value (or a partial derivative) of the objective function could produce 
a floating point error if passed a negative argument. Such an error could conceivably occur with 
ordinary fitting, but not with log-space fitting. 
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2.4 Cross-validation statistics 

Cross-validation is a method for assessing the "goodness" of a given (presumably fitted) statistical 
model. The basic idea is to measure the goodness of the model by dividing the dataset into two 
portions, and then to use the first portion to predict the second portion of the dataset (Efron, 
1982). A rather common approach (which is the one used in INFERENS) is the so-called "delete 
one" approach, in which the first portion of the dataset contains all the data points except one. 
The prediction errors can be analyzed in various ways to give a statistical assessment of the 
goodness of the model. 

In the case of INFERENS, kriging is used to predict each deleted data point, in turn, based on the 
remainder of the dataset and the fitted covariance model. This gives a vector € of prediction 
errors (or "cross-validation errors," see Samper & Neumann, 1989), with components: 

(2-16) 

where Y(x;) is the kriged estimate of Y(x;), for each point X; in the dataset, i = 1,2, ... ,M. 

The vector of prediction errors € can be summarized in terms of various scalar statistics. The 
scalar statistics calculated by INFERENS are the mean reduced error, the mean square reduced 
error, and the mean square error, which are defined respectively as: 

(2-17) 

MSRE - 2_ t ~ 
M ;.1 

(2-18) 

M 

MSE - 2. L ~ 
M ;.1 

(2-19) 

where 

€. 

€ -i 

t 

(2-20) 

As discussed by Norman (1992a, p. 47), if the model is correct then MRE ~ O and MSRE ~ 1. 

In the limit as M ➔ oo, these values should be obtained when the model is correct. However, in 
working with finite datasets, the values of MRE and MSRE will be randomly distributed around 
MRE = 0 and MSRE = 1. In other words, for a finite dataset values of MSE "' 0 and MSRE ,;, 1 
can be expected, even if the model is correct. In order to know if a given deviation from the 
expected values is significant, these distributions must be characterized. 
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INFERENS includes the possibility to estimate the distribution of MRE, MSRE, and MSE 
empirically, by the Monte Carlo method. This is done by generating random realizations of the 
fitted model, and, for each realization, calculating the measures MRE, MSRE, and MSE. This 
feature (referred to as the TESTJACK feature) produces estimates of the expected value, variance, 
and user-specified quantiles for the distributions of MRE, MSRE, and MSE. The significance of 
an observed value of any of these can be assessed by comparison with the empirical distribution. 
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3. VERIFICATION OF ALGORITHMS FOR MODEL ESTIMATION 

INFERENS Version 1.1 includes the capability to generate a synthetic set of regularized, log 
conductivities, for a specified nested covariance model (or simple covariance model), with or 
without trend functions. To simulate a trend-free function Y(x) with nested covariance, 

independent realizations of the component functions Y.(x) are generated using the turning bands 
I 

(TUBA) method. These are summed to give a single realization of Y(x). If trend functions are 

specified, these are added to the realization of Y(x) to give the function Y(x). 

This simulation capability is useful for verifying the performance of the IGLSE fitting algorithms, 
and for identifying the type of data support needed4 to resolve the parameters of a given type 
of model. The simulator is also used during Monte Carlo estimation of the mean and variance of 
the cross-validation measures MRE, MSRE, and MSE. 

Ideally the simulator itself should be properly verified, prior to using it to verify the INFERENS 
fitting algorithms. Verification of the simulator is not, however, a trivial exercise. The nested 
model simulation routines in INFERENS are based on the turning-bands simulation routines in 
HYDRASTAR, which were themselves the subject of a lengthy verification exercise (Verification 
of HYDRA.STAR, SKB TR 91-27, Section 6.2.). 

At the conclusion of that study, there remained questions regarding the significance of the 
observed deviations of the simulated sample variogram from the theoretical variogram. Some 
ideas have been suggested (Norman, personal communication, 1993) but could not be applied 
within the scope of this project. Verification of the simulator was therefore limited to visual 
comparisons. 

The following notation is used for the sake of brevity, in discussing the results of the test cases: 

y = the input (theoretical) semivariogram = y(u). 
r = the sample variogram for the synthetic dataset = r(u) 
? = the fitted (estimated) semivariogram = ? (u). 

In the discussion of verification cases for exponential covariance models, the term "range" is 
understood to mean the practical range 3/1. 

Five different test cases were devised for verifying the fitting of trendless models. The fitting of 
models with trends was verified by adding a trend function in each case, and performing IGLSE 
fitting. 

4 e.g. the total number of measurements, the number of boreholes, the spacing between 
boreholes, the inclinations of the boreholes, and the spacing between regularized measurements 
within the boreholes. 
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The basic procedure in each case was to: 

1. Simulate a stochastic function on a regular grid of boreholes. 

2. Estimate a covariance model from the synthetic data. 

3. Calculate r and ? . 
4. Visually compare these with y. 

The verification cases were designed to test INFERENS 1.1 for a representative selection of the 
covariance models supported by the code, including simple isotropic models, simple horizontally 
anisotropic models, and several types of nested models, with and without superposed trend 
functions. 

The set of verification cases is however not comprehensive. In particular, simple models with 
more general types of anisotropy (than horizontally isotropic) have not been tested individually, 
but only as components of complicated, nested models. If the ability of INFERENS to fit these 
complicated models were more clearly verified, there would be adequate confidence in 
INFERENS's ability to fit the components of these models. However, since the results of the most 
complicated verification cases are rather unclear, verification of the general anisotropic models, 
separately, is recommended. 

The verification runs have been documented by software application memoranda (SAMs) which 
give the names and locations of input and output files, as well as other information which would 
be necessary for repeating or extending these verification runs. In the text which follows, the 
SAMs for each computer run are referenced by filing number (e.g. SAM 92-865-001). 
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3.1 Estimation of covariance models without trends 

INFERENS 1.1 handles the relatively simple task of fitting a covariance model without trend 
functions, to regularized conductivity data. The fitting is performed by nonlinear least-squares 
regression. The algorithms for this simple task are applied in each step of the more complex task, 
of fitting a covariance model with trend functions. In the case of fitting an intrinsic model, this 
simple task constitutes the entire fitting problem. 

Five different test cases were designed to check the performance of INFERENS 1.1 for fitting a 
covariance model without trends. The cases and results are described, in order of increasing 
complexity, in the following sections. Except as noted, all fitting was performed without use of 
lag classes (i.e. direct estimation) and in log-parameter space. 
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3.1.1. Test Case 1. Simple isotropic model 

The purpose of Test Case 1 is to check that the fitting algorithms function correctly, for the 
simplest type of models supported by INFERENS 1.1. 

The following input parameters were used for generating synthetic datasets: 

Range = 75 m 
Sill = 1.5 

Both exponential and spherical models were tested. The synthetic regularized data were generated 
for 3 m measurement spacings, on a 2 x 2 grid of 500 m long, vertical boreholes, with 100 m 
spacing between holes in the X and Y directions (Figure 3-1), giving a total of 664 data points. The 
following results were obtained: 

Exponential covariance: testcase le (SAM 92-865-009) 

Fitted model: 

Range = 35.0 m 
Sill = 1.52 

Cross-validation statistics: 

MRE = -0.00706 
MSRE112 = 0.649 
MSE112 = 0.401 

Spherical covariance: testcase 1 ~ (SAM 92-865-010) 

Fitted model: 

Range = 62.7 m 
Sill = 1.15 

Cross-validation statistics: 

MRE = 0.00045 
MSRE112 = 1.04 
MSE112 = 0.301 

Figures 3-2a,b show y, r, and 'y for these cases. 

For the exponential case, the estimated variance is close to the input variance, but the (practical) 
range was underestimated by a factor of two. For the spherical case, the estimated range is close 
to the input range, but the estimated variance was 23% less than the input value. The cross­
validation statistics for the exponential case are poor in comparison with the spherical model. 
Their significance should be checked by use of the TESTJACK feature as described in Section 2.4. 
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The plots suggest that a main cause of the discrepancy between input and fitted models is the 
difference between the sampler and the input y. In both cases, the sum of the squared residuals 
(SSR) was less for the fitted values, than for the input values of the parameters. Thus the 
underestimate of the range is not because INFERENS failed to find a minimum SSR close to the 
input values in the parameter space. Rather, the parameter values which correspond to the least­
squares criterion are different from the input values. 

Possible causes for this discrepancy include: 

• Error in the stochastic function simulation routines. 

• Deficiencies in the minimum-SSR criterion as a criterion for 
estimating covariance models. 

• Difference between model covariance and sample covariance for a 
finite realization. 

The first of these seems unlikely since, for the simple covariance models considered here, the 
simulation routines are the same as in HYDRASTAR Version 1.1, and have been subjected to 
verification in this regard. A simulation of the exponential model for a larger borehole grid (see 
below) indicates that the match between randy improves with increasing data support. 

The second possibility exists in theory because least-squares estimation disregards the correlation 
between values of the sample semivariogram (Samper and Neuman, 1989). The possibility was 
therefore explored that least-squares fitting gives systematically low estimates of the range, for 
exponential models. This was done by generating multiple realizations of the exponential model 
(using different seeds for the random number generator) and fitting the model to each realization. 

For 10 unique realizations, the following were observed (SAM 92-865-017): 

Range Variance 
(m) 

Minimum 34.5 1.06 
Maximum 88.3 1.76 
Median 48.2 1.41 
Mean 54.6 1.39 
Standard dev. 16.9 0.26 

It is seen that the results vary considerably between realizations, for the number and 
configuration of borehole measurements which were simulated. Judging from the median value, 
there may be a tendency to underestimate the true range by a factor of about 1.5. However, an 
experiment using a larger number of realizations is needed to determine whether this tendency 
is truly systematic. 

The third cause, the effect of a finite realization, can be investigated by increasing the size of the 
data support (i.e. the number of synthetic boreholes). To investigate this, the test case for an 
exponential model was repeated using a 4 x 4 grid of synthetic boreholes (Figure 3-3). 
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Exponential covariance: testcase le {4 x 4 grid) (SAM 92-865-045) 

Fitted model: 

Range 
Sill 

= 59.5 m 
= 1.40 

Cross-validation statistics: 

MRE = -0.00965 
MSRE112 = 0.902 
MSE112 = 0.416 

Figures 3-4 shows y, r, and ? for this case. There is clearly an improvement in the match of y 

and r, for the larger sample size. The estimated ? is also closer to y. 

These results suggest that the main cause of the disagreement between y and ? , for the smaller 
borehole grid, is the limited size of the realization. In both cases the fitted variogram ? is visually 
at least as good an approximation tor as is the input model y. Thus the fitting algorithm, which 
is the main subject of this exercise, appears to function properly. The improvement of the match 
with increased data support indicates that both simulation and fitting routines are functioning 
properly for this type of model, and that the main issue is convergence of the sernivariogram for 
the simulated dataset. 

The question of whether the observed discrepancy between y and r is significant (i.e. whether 
the simulated dataset is incorrectly generated) is a question of concern for HYDRASTAR 
verification, and deserves further consideration. Ideas regarding a significance test have been 
suggested (Norman, memorandum 93-02-17) but have not been implemented. This issue must be 
addressed before quantitative statements can be made regarding the veracity of the INFERENS 
fitting routines. 
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3.1.2 Test Case 2. Simple horizontally isotropic model 

The purposes of Test Case 2 are to check that (1) the horizontally isotropic type of model is 
handled correctly, and (2) the fitting algorithms function correctly for the components of the 
matrix of geometric anisotropy. The following input parameters were used for generating 
synthetic datasets: 

Range = 75 m 
Sill = 1.5 
G = 0.2 0 0 

0 0.2 0 
0 0 5 

In standardized form, the range and anisotropy matrix become: 

Range = 128.2 m 
G = 0.342 O 0 

0 0.342 0 
0 0 8.55 

This model has relatively strong correlation in the horizontal direction. Possibly this covariance 
structure could be representative of a rock mass dominated by approximately horizontally 
extensive, highly conductive features. 

Both exponential and spherical models were tested. The synthetic regularized data were generated 
for 3 m measurement spacings, on a 2 x 2 grid of 500 m long, vertical boreholes, with 100 m 
spacing between holes in the X and Y directions. The following results were obtained: 

Exponential covariance: testcase 2e (SAM 92-865-011) 

Fitted model (standardized form): 

Range = 138.4 m 
Sill = 1.20 
G = 0.402 0 0 

0 0.402 0 
0 0 6.19 

Cross-validation statistics: 
MRE = 0.0363 
MSRE112 = 1.33 
MSE112 = 0.902 
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Spherical covariance model: testcase 2s (SAM 92-865-012) 

Fitted model (standardized form): 

Range = 98. 9 m 
Sill = 1.41 
G = 0.376 0 O 

0 0.376 0 
0 0 7.06 

Cross-validation statistics: 
MRE = -0.0185 
MSRE112 = 0.917 
MSE112 = 0.62 

Comments 

Figures 3-5a,b showy, r, and ? for these two cases. In both cases, INFERENS produced model 
estimates which are close to the input models in terms of range and anisotropy. For the spherical 
case there is also good agreement in terms of variance. However, the estimated variance for the 
exponential case is 20% below the input model variance. 

The good estimates of anisotropy are somewhat surprising in view of the type of data support, 
in which the non-vertical lags are represented only for distances close to the borehole spacing. 
Although the results are encouraging, further verification should be carried out using a simulated 
borehole configuration which gives better sampling of these lags (e.g. one with inclined holes). 

The cross-validation statistics MRE and MSRE appear to be less good than for the isotropic 
models, in terms of the absolute deviations from the expected value of these statistics, i.e. in terms 
of I MRE I and 11 - MSRE112 I. However, in comparing among models one needs to take into 
account, for each model, the expected distributions of these statistics, for the particular sampling 
configuration, if one assumes that the model is correct. At a minimum estimates are needed of 
the variances V[MRE] and V[MSRE112]. 

Norman (1992a) demonstrated empirically, that the variances of cross-validation statistics for 
anisotropic models are approximately the same as for isotropic models, at least for the sampling 
configuration and parameter values which were treated in that study. However, the sampling 
configuration for this verification case is different from that considered by Norman (1992a), and 
furthermore the earlier study was restricted to fairly moderate anisotropy (a factor of 4). 

In the present study, the dependency of V[MRE] and V[MSRE112] on degree of anisotropy was 
explored by Monte Carlo simulation of the distributions of MRE and MSRE, for varying degrees 
o anisotropy. In all cases the underlying model was exponential, with V = 1.5 and a (practical) 
range of 75, and 100 realizations were produced. The following results were obtained for four 
different cases, given in order of increasing anisotropy (SAM 92-865-052): 
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Run g3/g11 E[MRE] V[MRE]112 E[MSRE] V[MSRE112] 112 

4 1 0.0028 0.0081 0.991 0.052 
2 8 0.0020 0.0171 0.994 0.048 
1 25 0.0045 0.0210 0.998 0.041 
3 1000 -0.0122 0.0438 0.991 0.045 

It is interesting to note that V[MRE] increases with increasing anisotropy, whereas V[MSRE112] is 
approximately invariant. Both V[MRE] and V[MSRE112] are considerably larger than the 
corresponding estimates for models fitted to the Finnsj6n dataset by Norman (1992a). This is 
presumably an effect of the smaller range and (perhaps more importantly) the smaller data 
support in the test case. The relative invariance of V[MSRE112] between models was also observed 
by Norman. These results suggest that alternative models could just as well be compared on the 
basis of MSRE112 alone. 

For Run 1, which is directly comparable to the case of exponential covariance (testcase_2e), the 
5% and 95% quantiles of the simulated distributions were: 

Quantile 
5% 

95% 

MRE 
-0.0280 
0.0425 

MSRE112 

0.922 
1.06 

On this basis the observed MRE of 0.0363 for the exponential case would not be rejected at the 
90% confidence level (using a two-sided test), but the MSRE112 of 1.33 would be rejected at the 
same level. The observed MRE and MSRE112 for the spherical case would also be rejected at the 
90% level, if the distributions of the jackknifing statistics in this case were assumed to be the same 
as for the exponential model. Thus the fitted models are unsatisfactory from a cross-validation 
point of view. 
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3.1.3 Test case 3. Nested isotropic models 

Test Case 3 is a relatively simple form of nested model, designed to test for bugs (or other more 
fundamental problems) in the nested model simulation & estimation algorithms. The test case 
model is a summation of 3 simple covariance models (the submodels), each of which is isotropic. 

The following input parameters were used for generating synthetic datasets: 

Subrnodel 1 Range = 200 rn 
Sill = 0.25 

Subrnodel 2 Range = 100 m 
Sill = 0.5 

Submodel 3 Range = 50m 
Sill = 1.0 

Both exponential and spherical submodels were tested. The synthetic regularized data were 
generated for 3 rn measurement spacings, on a 2 x 2 grid of 500 m long, vertical boreholes, with 
100 m spacing between holes in the X and Y directions. The following results were obtained: 

Exponential covariance: testcase 3e (SAM 92-865-013) 

Fitted model: 

Submodel 1 Range = 50.0 m 
Sill = 0.345 

Submodel 2 Range = 50.1 m 
Sill = 0.516 

Subrnodel 3 Range = 51.1 rn 
Sill = 0.609 

Cross-validation statistics: 

MRE = -0.0111 
MSRE112 = 0.983 
MSE1/2 = 0.504 

Spherical covariance: testcase 3s (SAM 92-865-014) 

Submodel 1 Range = 64.1 m 
Sill = 0.241 

Submodel 2 Range = 65.1 m 
Sill = 0.404 

Submodel 3 Range = 67.5 rn 
Sill = 0.677 

Cross-validation statistics: 

MRE = 0.00695 
MSRE112 = 1.12 
MSE112 = 0.343 
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Figures 3-6a,b showy, r, and ? for these cases. In both the exponential and the spherical cases, 
the nested conjugate-gradient fitting algorithm failed to resolve the separate submodels. Instead, 
all three estimated submodels, in each case, had nearly identical range estimates. In effect, a single 
isotropic model was fitted with a variance equal to the sum of the nested variances, and a range 
corresponding to the dominant range of the nested simulation. This result was obtained even 
though a grid-based search was used which ensured that each step in the search started with 
contrasting ranges for the submodels. 

Judging from the sample semivariograms yin Figures 3-6a,b, this size of sample does not give 
enough information for fitting the nested model. This is not surprising in view of the dependence, 
even for the simple isotropic models (Section 3.1.1), on the realization. 

This test case was repeated for a 5 x 5 grid of vertical boreholes, with the same spacing between 
holes as before. The fitting was performed with respect to lag-class estimates of the semivariogram 
(i.e., y as shown in the figures) because fitting directly to the ea. 4000 data points in this case 
would have been too slow. The models thus estimated were: 

Exponential covariance (SAM 92-865-041) 

Fitted model: 

Submodel 1 Range = 139.6 m 
Sill = 0.456 

Submodel 2 Range = 87.0 m 
Sill = 0.976 

Submodel 3 Range = 51.4 m 
Sill = 0.367 

Spherical covariance (SAM 92-865-042) 

Sumbodel 1 Range = 143.8 m 
Sill = 0.854 

Submodel 2 Range = 76.1 m 
Sill = 0.331 

Submodel 3 Range = 15.9 m 
Sill = 0.626 

Figures 3-7a,b show y, r, and ? for these cases. Cross-validation failed in both cases because of 
a memory allocation failure (The dimension of the array RDYN apparently needed to be 
increased). 

In both cases, three submodels are distinguished, although these are not the same as the input 
submodels. In the exponential case, ? is a moderately good approximation to bothy and r. In 
the spherical case, there is a noticeable discrepancy in the lag range from 10 to 50 m, but the fit 
of ? to r at medium and long lags is visually good. 
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An interesting point is that the match of r to y is best at the shorter lags, which have lower 
weights (i.e. fewer number of observations). For the longer lags, despite the large number of 
observations, the simulated r has large discrepancies in relation to y. This probably is because 
the observations at long lags are highly interdependent, because of the clustering of 
measurements along the boreholes, and the correlation of those measurements on a small scale. 
An improved weighting scheme, taking into account the interdependence of the observations over 
long lags due to the correlation, is desirable. 



31 

3.1.4 Test case 4. Nested anisotropic models 

The main purpose of Test Case 4 is see whether nested anisotropic models can be resolved by the 
fitting algorithms, for a given level of contrast and sampling density. Test Case 4 is formed as the 
summation of 3 horizontally isotropic submodels, with contrasting range and sill values, and 
mildly contrasting degrees of anisotropy. The following input parameters (with range and 
anisotropy converted to standardized form) were used for generating synthetic datasets: 

Submodel 1 

Submodel 2 

Submodel 3 

Range = 342 m 
Sill = 0.25 
G = 0.117 0 

0 0.117 
0 0 

Range = 155 m 
Sill = 0.5 

0 
0 
2.924 

G = 0.194 
0 

0 0 
0.194 0 

0 0 1.939 
Range = 57 m 
Sill = 1.5 
G = 0.617 0 0 

0.617 0 0 
0 0 1.235 

The case of exponential submodels was tested. The synthetic regularized data were generated for 
3 m measurement spacings, on a 2 x 2 grid of 500 m long, vertical boreholes, with 100 m spacing 
between holes in the X and Y directions. The following results were obtained: 

Exponential covariance: testcase 4e (SAM 92-865-015) 

Submodel 1 Range = 230.2 m 
Sill = 1.998 
G = 119 0 

0 119 
0 0 

Submodel 2 Range = 35446 m 
Sill = 0.157 
G = 0.003 O 

0 0.003 
0 0 

Submodel 3 Range = 46.0 m 
Sill = 0.005 
G = 1.28 0 

0 1.28 
0 0 

0 
0 
0.00007 

0 
0 
99512 

0 
0 
0.61 

The fitted model 9 is nonsensical, and bears no resemblance toy, probably because of the small 
data support relative to the complexity of the model. The huge range in the second submodel 
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caused INFERENS to stop and give an error message during cross-validation, because the range 
was more than an order of magnitude larger than the specified width for the kriging 
neighbourhoods. 

A more reasonable model found by the grid-based search, which gave a very slightly worse fit 
in terms of SSR, was in effect a 2-level nested model: 

Submodel 1 Range = 47 m 
Sill = 1.49 
G= 1.689 0 0 

0 1.689 0 
0 0 0.351 

Submodel 2 Range = 99 m 
Sill = 0.01 
G= 1 0 0 

0 1 0 
0 0 1 

Submodel 3 Range = 16.0 m 
Sill = 1.38 
G= 1.006 0 0 

0 1.006 0 
0 0 0.988 

The first fitted submodel resembles the dominant submodel in the input. The other significant 
submodel, however, bears no relation to the input model. The most likely reason is the small size 
of the data support. 

This test case was repeated for a 5 x 5 grid of vertical boreholes, with the same spacing between 
holes as before. As described previously, the fitting was performed with respect to lag-class 
estimates of the semivariogram to make the run time feasible. The model thus estimated was: 

Exponential covariance: testcase 4e (SAM 92-865-043) 

Submodel 1 Range = 130.3 m 
Sill = 0.390 
G = 0.0003 0 O 

0 0.0003 0 
0 0 l.21xl08 

Submodel 2 Range = 80.0 m 
Sill = 0.258 
G = 0.332 0 0 

0 0.332 0 
0 0 9.10 

Submodel 3 Range = 20.1 m 
Sill = 0.373 
G = 0.338 0 0 

0 0.338 0 
0 0 8.75 
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With the larger data support, the fitted model begins to look more reasonable but is still far from 
the input model. The first fitted submodel has an excessively high degree of anisotropy. The other 
submodels have approximately the correct degree of anisotropy. The sum of the sill values for the 
fitted model is, however, just 1.02, whereas the total sill for the input model is 2.25. Thus this 
fitted model is far off in terms of representing the variance of the input model. Figure 3-8 shows 
a comparison of ? and r, illustrating this lack of agreement. 

In summary the results of the fitting for a 3-level nested model with horizontal anisotropy are not 
satisfactory. The problem is probably not due to a bug in the fitting algorithm for horizontally 
isotropic models, since these were handled reasonably well in Test Case 2. The problem is also 
probably not due to a bug in the handling of nested models, since Test Case 3 produced ? 
which, though not identical to the input y, were representative of the simulation r. Therefore 
the problem is believed to be algorithmic (e.g. false convergence of the nonlinear regression). 

Further investigation of this case is needed. However, the case of nested, horizontally isotropic 
models may be excessively complicated in relation to its practical interest. This work has been 
deferred in order to proceed with other verification cases. 
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3.1.5 Test case 5. Nested anisotropic models with different alignment of anisotropy 

Test Case 5 is designed to represent the situation of three mutually orthogonal sets of fracture 
zones (in this case, conveniently aligned perpendicular to each of the coordinate axes). The main 
purpose is to see if the distinct nested levels can be resolved by the fitting algorithms, for a given 
level of contrast and sampling density. 

The following input parameters (with range and anisotropy converted to standardized form) were 
used for generating synthetic datasets: 

Submodel 1 Range = 342 m 
Sill = 0.5 
G= 0.117 0 0 

0 0.117 0 
0 0 2.924 

Submodel 2 Range = 86 m 
Sill = 0.5 
G= 0.464 0 0 

0 4.64 0 
0 0 0.464 

Submodel 3 Range = 65 m 
Sill = 1.0 
G= 4.64 0 0 

0 0.464 0 
0 0 0.464 

The case of exponential submodels was tested. The synthetic regularized data were generated for 
3 m measurement spacings, on a 2 x 2 grid of 500 m long, vertical boreholes, with 100 m spacing 
between holes in the X and Y directions. The following results were obtained: 

Exponential covariance: testcase Se (SAM 92-865-016) 

Submodel 1 Range = 115.2 m 
Sill = 1.01 
G = 1.29 0 O 

0 1.29 0 
0 0 0.596 

Submodel 2 Range = 23.8 m 
Sill = 0.64 
G = 0.024 O O 

0 166. 0 
0 0 0.254 

Submodel 3 Range = 263.1 m 
Sill = 0.01 
G = 0.55 O O 

0 0.34 0 
0 0 5.3 



35 

Cross-validation statistics: 

MRE = 0.000386 
MSRE112 = 1.04 
MSE112 = 0.419 

The third submodel is negligible due to the near-zero variance, so in effect the fitted model is a 
two-level nested model, consisting of an approximately isotropic model with slightly extended 
range in the Z direction, and a second component with strong anisotropy giving enhanced 
correlation in the X direction and, to a lesser extent, the Z direction. 

Thus the nested fitting algorithm has succeeded in distinguishing the main anisotropy of the 
input model (the strong correlation in the Y direction, in Submodel 3, is partly cancelled by the 
reduced Y-direction range in Submodel 2). However, the resolution possible for this level of data 
support seems to be rather limited. 

Due to the rather complicated model, it is difficult to construct plots to compare y, r, and ? . 
However, the cross-validation statistics for this model are very good, indicating that the fitted 
model is an excellent kriging predictor of the simulated data set. Thus, despite the dissimilarity 
between the input model and the fitted model, on a component-by-component basis, INFERENS 
appears to have succeeded in converging to a fitted ? which is a good approximation tor. 

This test case was also repeated for a 5 x 5 grid of vertical boreholes, with the same spacing 
between holes as before. As described previously, the fitting was performed with respect to lag­
class estimates of the semivariogram to make the run time feasible. The model thus estimated was 
(SAM 92-865-044): 

Submodel 1 Range = 300.2 m 
Sill = 2.32 
G= 0.927 0 0 

0 0.927 0 
0 0 1.16 

Submodel 2 Range = 444 m 
Sill = 0.01 
G= 1.08 0 0 

0 8.48 0 
0 0 0.109 

Submodel 3 Range = 445 m 
Sill = 0.01 
G= 1.01 0 0 

0 0.48 0 
0 0 2.06 

The last two submodels are negligible, and so the resulting model is essentially a simple, isotropic 
model with a range of 300 m. The cross-validation check failed (because of a memory allocation 
error -- apparently the dimension of RDYN needed to be increased, as for Case 3). 
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3.2 Simultaneous estimation of covariance models and trend functions 

The test cases described above were extended to test IGLSE fitting of trend functions and 
covariance models. The IGLSE test cases were constructed by adding three known trend functions 
to each of the test cases described in the previous section: 

Constant trend function: {3 1 = -6.0 
Logarithmic trend function: {3 2 = 2.0 
Zone trend function: {33 = 1.0 

(Constant A = 40) 
(Horizontal zone from 175 to 275 m depth) 

The simulation of the trend functions was checked visually by plotting the simulated data as a 
function of depth, and by plotting the residuals (after subtracting the known trend) versus depth. 

Preliminary attempts at fitting trend functions, during debugging, included trend functions in 
combination with the more complicated test cases (4 and 5) described in the previous section. 
However, due to the difficulties experienced in fitting the intrinsic versions of the nested model 
test cases, in the final runs no attempt was made to fit trend functions with test cases 4 and 5. 

The results are given below. The input model for each IGLSE test case (e.g. testcase_letf) is 
identical to the corresponding intrinsic case (e.g. testcase_le), except for the addition of the trends. 

The data support for the IGLSE test cases was a 3 x 3 grid of 500 m deep boreholes, with 100 m 
spacing in the X and Y directions. 

The estimated 95% confidence ellipsoids for the f3i were unbelievably huge in all cases. The 
mathematics and code for calculating the confidence ellipsoids needs to be checked. However, 
since this calculation is performed at the end of the fitting, it does not affect the quality of the 
results given here. 
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Exponential covariance: testcase letf (SAM 92-865-020) 

Fitted model: 
/31 
/32 
/33 
Range 
Sill 

= -5.364 
= 2.215 
= 1.233 
= 63.209 
= 1.5748 

Cross-validation statistics: 
MRE = -0.0165 
MSRE112 = 0.866 
MSE112 = 0.41 

Spherical covariance: testcase lstf (SAM 92-865-021) 

Fitted model: 
/31 
/32 
/33 
Range 
Sill 

= -7.362 
= 1.49 
= 0.8877 
= 75.969 
= 1.6439 

Cross-validation statistics: 
MRE = -0.00388 
MSRE112 = 0.943 
MSE112 = 0.297 

Figure 3-9a,b show the input and fitted trends for the two cases. The fitted covariance and trend 
models are in both cases reasonably close to the input models. For this model there is some 
redundancy in the model: 

IogK - /31 - fi)og(A+z) + fii(x,y,z) (3-5) 

which can be seen if this is written in the form: 

logK - t, 1 - fiJ(z) + fi/(x,y,z), 1.6 < f(z) < 2.73 (3-6) 

for the tested case of 500 m deep boreholes and A = 40, or: 

logK - (fi1 - 1.6fiJ + /3/f(z) -1.6) + fi/(x,y,z) (3-7) 
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Therefore it is appropriate to compare estimates of (/31 - 1.6 /3;) and /3 2 with the input values. On 

this basis, it is seen that the term (/31 - 1.6 {3;) is estimated within about ±6%, and /3zand/32 both 

within ±25%. In the exponential case both {3 2 and /3 3 have been slightly overestimated, while in 

the spherical case both have been slightly underestimated. However, as seen in the figures, the 

composite trend is within 0.25 log m/s, i.e. within about 20 percent of the standard deviation of 

the random component. 
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Exponential covariance: testcase 2etf (SAM 92-865-022) 

Fitted model: 
/31 
/32 
/33 
Range 

= -14.73 
= -1.312 
= 1.185 
= 107.24 
= 1.3256 Sill 

G= 0.777 0 0 
0 0.777 0 
0 0 1.66 

Cross-validation statistics: 
MRE = 0.00903 
MSRE112 = 1.02 
MSE112 = 0.438 

Spherical covariance: testcase 2stf (SAM 92-865-023) 

/31 = -5.068 
/32 = 2.352 
/33 = 0.8592 
Range = 93.733 
Sill = 1.3508 
G= 0.653 0 0 

0 0.653 0 
0 0 2.35 

Cross-validation statistics: 
MRE = -0.00259 
MSRE112 = 1.09 
MSE112 = 0.43 

In both cases the covariance models, including anisotropy, seem to be properly estimated, in view 
of the level of data support. In the spherical case, the grid-based search found two distinct local 
minima; the parameter estimates for the better fit are the ones reported above. 

The input and fitted trends are shown in Figure 3-lOa,b. 

In the exponential case, all searches converged to the same optimum, with (/3 1-/3.J and /32 far from 
the input values, while /3 31 representing the zone effect, was estimated close to the input value. 
The composite fitted trend is far from the input model at shallow depths, as shown in Figure 3-
lOa, although at depth the composite input and fitted trends are close to each other. 

The spherical case, on the other hand, yielded a very good match as is evident from Figure 3-lOb. 

Despite the obvious disagreement for the exponential case, the cross-validation statistics are 
excellent, indicating that the fitted model yields a good kriging predictor of the simulated dataset. 
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This result should be seen as a caution against placing too much trust in the cross-validation 
statistics, as an indicator of the goodness of the overall model including trend parameters. 

Possibly the misleadingly good statistics are produced because the cross-validation employed 
horizontal kriging neighborhoods, which could take care of the error in trend estimation. A more 
stringent test of a model with trend functions might be to use global kriging (or equivalently, to 
make the kriging neighborhoods sufficiently large that all points are contained in a single 
neighborhood) of the residuals after removing the estimated trend. 

However, even global kriging, in connection with the "delete-one" cross-validation procedure, may 
not provide a sufficiently stringent test, since the kriged estimate at each deleted datapoint will 
be strongly dependent on the nearmost points in the same borehole, which have nearly the same 
value of the trend. Cross-validation by deleting larger sections of the dataset (e.g. a complete 
borehole) would probably provide a better test of residual models. 

The bad results in the exponential case indicate that even with a grid-based search for covariance 
model parameters, there is a chance for INFERENS to get stuck at an incorrect local minimum 
for the trend parameters. In INFERENS 1.1, the starting estimate for the parameter vector p, for 
each IGLSE search, is obtained by ordinary least squares regression, as described in Section 2.3. 
As a result the starting estimate of f3 is always the same for a given dataset, independent of the 
value of the covariance model parameter vector p specified by the grid-based search algorithm. 

The first step in the IGLSE process is thus always to search for the optimum p for the OLSR 
estimate of /3, starting from the grid-specified value of p. If this step always yields the same 
estimate of p, the fitted models will be identical for all starting points in the grid. As the results 
for the exponential case illustrate, when this happens the fitted model may not necessraily be the 
correct one. 

One possible improvement would be to introduce variable starting points /3, by using a random 
or deterministic perturbation of the OLSR estimate of /3. It would probably be better to have 
INFERNS do this automatically, rather than having the analyst supply a list of values (as is done 
for the grid-based search in p), since the analyst is not likely to have any more sensible estimate 
of /3, a priori, than is given by the OLSR estimate. 

Better yet, the fitting process could be converted from IGLSE to an ordinary, nonlinear least­
squares regression problem, treating the combined parameter vector P = [/3,p]. This would allow 
fitting of trend function parameters which lead to non-linear estimation problems (as discussed 
by Norman, 1992a). The code development for this consists mainly of eliminating the IGLSE 
routines, so the resulting code would be simpler. Some new routines would be required to 
calculate derivatives of the sum of residuals squared, with respect to the trend function 
parameters. 
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Exponential covariance: testcase_3etf 

Fitted model (SAM 92-865-024; run was aborted after 3 IGLSE steps): 
/31 = -4.334 
/32 = 2s664 
/33 = 1.327 

Submodel 1 Range = 54.4 rn 
Sill = 0.815 

Submodel 2 Range = 57.2 rn 
Sill = 1.008 

Submodel 3 Range = 51.8 rn 
Sill = 0.4842 

This test run was terminated early because it seemed to be converging toward results similar to 
testcase_3e, with a lack of distinction between nested subrnodels. 
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4. PRELIMINARY APPLICATION TO THE FINNSJON DATASET 

To demonstrate INFERENS 1.1, the code was applied to a dataset from Finnsjon which was 
previously analyzed by Norman (1992a), using INFERENS 1.0. The data consisted of hydraulic 
conductivity estimates from constant-head packer tests in the boreholes HFIOl, BFIOl-02, and 
KFIOl-11. The data were obtained from the GEOTAB database as described by Norman (1992a). 
The test section lengths represented in the raw data included 2 m, 3 m, 5 m, and 10 m intervals. 
The conductivity values as found in GEOTAB were from steady-state interpretations of the 
constant-head tests, using the formula of Moye (1967). 

These data were regularized using INFERENS prior to fitting each model. A regularization scale 
of 36 m was used in all cases. The kriging neighborhoods, kriging sets, and regularization 
tolerances used in these runs were identical to those used by Norman. For the lag-class estimation 
cases, only 40 radial lag classes were used (compared with 91 used by Norman) and, in the case 
of anisotropic models, more angular lag classes were used ( depending on the type of anisotropic 
model being treated). The weighting of the lag class estimates was proportional to the number 
of data pairs in each lag class. A slightly simplified representation of Zone 2, based on the two 
bounding planes fitted by regression in Appendix E of Norman. The demonstration runs were 
limited to the case of regularization on a 36 m scale, which was the case presented in detail by 
Norman. 

Certain of the cases are thus directly comparable to those considered by Norman, except for the 
minor differences in lag classes and Zone 2 definition. The other cases, however, are significantly 
different from those considered by Norman, either because direct fitting to the data (without lag 
classes) was used, or because new types of models supported by INFERENS 1.1 were used. 

The following sections present the results which were obtained for various types of covariance 
models and fitting methods, for both intrinsic models and potential-type trend models. 

For exponential models, the range values reported are the practical range equal to 3/l. In the case 
of isotropic models, the analyses are omni-directional rather than in a specific direction. 
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Case fiiein36: Isotropic exponential model (direct fitting_) (SAM 92-865-029) 

Range = 417.45 
Sill = 2.0139 

Cross-validation statistics: 
MRE = 0.00499 
MSRE112 = 1.06 
MSE112 = 0.193 

Case fiieil36: Isotropic exponential model Qag-class fitting) (SAM 92-865-030) 

Range = 499.86 
Sill = 1. 9705 

Cross-validation statistics: 
MRE = 0.0048 
MSRE112 = 1.17 
MSE112 = 0.193 

Case fiisin36: Isotropic spherical model (direct fitting) (SAM 92-865-031) 

Range = 389.65 
Sill = 1.7636 

Cross-validation statistics: 
MRE 0.00459 
MSRE112 = 1.54 
MSE112 = 0.193 

Case fiisil36: Isotropic spherical model Qag-class fitting) (SAM 92-865-032) 

Range = 405.79 
Sill = 1. 9027 

Cross-validation statistics: 
MRE = 0.00466 
MSRE112 = 1.52 
MSE112 = 0.193 

In both spherical and exponential cases the models obtained with and without lag classes are 
quite similar, and there is little difference in terms of the cross-validation statistics. In comparison 
with the results of Norman (1992a), these models have larger ranges (by a factor of 1.3 to 1.4) and 
slightly higher variance (by a factor of 1.1 to 1.15), than the results previously obtained by 
Norman (1992a). Presumably the differences are due mainly to the sensitivity to choice of lag 
classes, which was demonstrated by Norman. The cross-validation statistics are somewhat worse 
with the newer fits, suggesting that the particular lag-class division and weighting scheme used 
by Norman was more appropriate for estimating the best model for prediction using kriging. 
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4.1.2 Horizontally isotropic models 

Case fiiehn36: Horizontally isotropic exponential model (direct fitting) (SAM 92-865-025) 

Range = 625.2 
Sill = 2.49 
G = 0.583 0 0 

0 0.583 0 
0 0 2.94 

Directional ranges: 
Horizontal range = 1072 m 
Vertical range = 212 m 

Cross-validation statistics: 
MRE = 0.00605 
MSRE112 = 0.710 
MSE112 = 0.196 

Case fiiehl36: Horizontally isotropic exponential model (lag-class fitting) (SAM 92-865-026) 

Range = 300.1 
Sill = 1.90 
G = 0.975 0 0 

0 0.975 0 
0 0 1.05 

Directional ranges: 
Horizontal range = 308 m 
Vertical range = 286 m 

Cross-validation statistics: 
MRE = 0.00524 
MSRE112 = 0.906 
MSE112 = 0.194 

Figure 4-3 presents fitted and sample semivariograms for the cases of lag-class and direct fitting. 
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Case fiishn36: Horizontally isotropic spherical model (direct fitting) (SAM 92-865-028) 

Range = 751.8 
Sill = 1.79 
G = 0.514 0 0 

0 0.514 0 
0 0 3.79 

Directional ranges: 
Horizontal range = 1463 m 
Vertical range = 198 m 

Cross-validation statistics: 
MRE 0.00506 
MSRE112 = 1.14 
MSE112 = 0.194 

Case fiishl36: Horizontally isotropic spherical model (lag-class fitting) (SAM 92-865-027) 

Range = 300.03 
Sill = 1.9052 
G = 0.975 0 0 

0 0.975 0 
0 0 1.05 

Directional ranges: 
Horizontal range = 308 m 
Vertical range = 286 m 

Cross-validation statistics: 
MRE = 0.00493 
MSRE112 = 1.28 
MSE112 = 0.193 

Comparison of the lag-class and direct estimates, in both exponential and spherical cases, shows 
a strong sensitivity of the results to lag class definition. The direct fitting give much higher 
anisotropy than the lag-class fitting, for the particular choice of lag classes used. In terms of MRE 
and MSRE, the best model appears to be the spherical model fitted directly to the data, which is 
better than the corresponding isotropic model. 

Curiously the directly-fitted, horizontally isotropic, exponential model is much worse than the 
corresponding isotropic model, in terms of MRE and MSRE. This observation is consistent with 
the results presented by Norman (1992a). 

The estimated degree of anisotropy for the directly-fitted models is similar to that estimated by 
Norman (1992a) for the exponential case. 
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4.1.3 Nested isotropic models 

Case fiien136: Nested isotropic exponential model (lag-class fitting) (SAM 92-865-033) 

Minimum SSR fit from grid-based search: 

Submodel 1: Range = 511.4 m 
Sill = 0.158 

Submodel 2: Range = 78.3 m 
Sill = 0.04 

Cross-validation statistics: 

MRE = 0.00119 
MSRE112 = 1.61 
MSE112 = 0.194 

In spite of giving the best fit in terms of SSR, this is a poor model as seen from th» variances and 
the cross-validation statistics. The second-best model, from the grid-based search, was much more 
reasonable: 

Submodel 1: Range = 499.2 m 
Sill = 1.359 

Submodel 2: Range = 99.2 m 
Sill = 0.579 

Comparison with the results obtained by Norman (1992a, Section 9.2.2) by restricting the fitting 
to lags less than 130 m, suggested that this could be a superior model. Figure 4-5a compares this 
model with the sample semivariogram. In comparison with the simple isotropic models presented 
above, this model gives a markedly better fit to the sample semivariogram at moderately short ( < 
100 m) lags. The model also represents the full variance at longer lags, which could not be 
achieved by fitting a simple isotropic model to just the shorter lags (Norman 1992a). 

Cross-validation statistics for this model were obtained by a second run of INFERENS (SAM 92-
865-051 ): 

MRE = 0.000555 
MSRE112 = 0.797 
MSE112 = 0.194 

This is definitely an improvement over the nested model given above, but it is still unacceptable 
(assuming that the distributions of MSRE112 is similar to that for the simple covariance models). 
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Case fiisnl36: Nested isotropic spherical model Qag-class fitting) (SAM 92-865-047) 

Minimum SSR fit from grid-based search: 

Submodel 1: Range = 405.8 m 
Sill = 1.328 

Submodel 2: Range = 49.8 m 
Sill = 0.569 

Cross-validation statistics: 

MRE = 0.00517 
MSRE112 = 0.858 
MSE112 = 0.194 

A comparison of the fitted model with the sample semivariogram (Figure 4-5b) shows that this 
gives a very close fit up to about 500 m. Visually this seems to be a better model than the nested 
exponential model, which is able to fit the rather sharp "kinks" in the sample semivariogram 
around 50 m and 400 m. However, in terms of cross-validation statistics this model is still not very 
good. 
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4.1.4 Anisotropic models 

The new possibility to fit an anisotropic model, with principal directions of anisotropy aligned 
with the X,Y, and Z axes, was demonstrated for cases of exponential and spherical covariance, 
using direct fitting to the data. The estimated models, as given below, are very similar to the 
corresponding cases with horizontally isotropic models. The estimated degree of statistical 
anisotropy in the horizontal plane is just 1.3 to 1.5, i.e. nearly isotropic. 

The cross-validation statistics are only marginally better than the corresponding horizontally 
isotropic cases. 

Case fiiexn36: Anisotropic exponential model (direct fitting) (SAM 92-865-049) 

Range = 632.1 
Sill = 2.475 
G = 0.663 0 0 

0 0.514 0 
0 0 2.93 

Directional ranges: 
Horizontal (X) range = 953 m 
Horizontal (Y) range = 1230 m 
Vertical range = 216 m 

Cross-validation statistics: 
MRE 0.00601 
MSRE112 0.717 
MSE112 = 0.196 

Case fiisxn36: Anisotropic spherical model (direct fitting) (SAM 92-865-050) 

Range = 681.1 
Sill = 1.892 
G = 0.766 0 0 

0 0.480 0 
0 0 2.72 

Directional ranges: 
Horizontal (X) range 
Horizontal (Y) range 
Vertical range 

Cross-validation statistics: 

= 889 m 
= 1419 m 
= 250 m 

MRE = 0.00490 
MSRE112 = 1.24 
MSE112 = 0.193 
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4.2 Models with potential-type trends 

Demonstrations were also performed of fitting to a potential-type trend function: 

logK - /31 - f3)og(A+z) + 13/(x,y,z) (4-1) 

as used in the trend function verification cases, where in this case I(x,y,z) = 1 only if the point 
is in Zone 2. This is the same type of composite trend function as was treated in Section 9.3.1 of 
Norman (1992a). Note however, that the numbering of the parameters is different. 

4.2.1 Isotropic models 

Case fipein36: Exponential isotropic model (direct fitting;) (SAM 92-865-037) 

/31 
/32 
/33 
Range 
Sill 

= -2.74 
= 1.648 
= 0.058024 
= 1490.3 
= 0.67254 

Cross-validation statistics: 
MRE = 0.00531 
MSRE112 = 3.45 
MSE112 = 0.192 

Case fipeil36: Exponential isotropic model Oag;-class fitting;) (SAM 92-865-035) 

/31 
/32 
/33 
Range 
Sill 

= -2.185 
= 1.978 
= 0.067171 
= 300.58 
= 1.4872 

Cross-validation statistics: 
MRE = 0.00299 
MSRE112 = 1.04 
MSE112 = 0.193 

Case fipsin36: Spherical isotropic model (direct fitting;) (SAM 92-865-048) 

/31 
/32 
/33 
Range 
Sill 

= -3.023 
= 1~564 
= 0.057546 
= 544.9 
= 0.643 

Cross-validation statistics: 
MRE = 0.00469 
MSRE112 = 3.02 
MSE112 = 0.192 
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Case fipsil36: Spherical isotropic model Qag-class fitting) (SAM 92-865-40) 

/31 
/32 
/33 
Range 
Sill 

= -2.558 
= 1.804 
= 0.059797 
= 300.18 
= 1.5021 

Cross-validation statistics: 
MRE = 0.0035 
MSREw = 1.47 
MSEw = 0.192 

In these fitted models, the estimated contrast between Zone 2 and the rock mass is in the range 
0.05 to 0.07 obtained by Norman (1992a). The strength of the trend with depth (/3.J is estimated 
to be about the same, or less than estimated by Norman. In the case of a lesser trend with depth, 
the constant part of the trend is estimated to be lower. 

Interestingly, in both cases the lag-class fitting yields better models in terms of MRE and MSRE. 
The cross-validation statistics are generally less good than for the models estimated by Norman. 
The models estimated by direct fitting, in particular, have MSRE which is much too high. 

Figures 4-6 and 4-7 show comparisons of these models with the sample semivariograms for the 
residuals. The best fit, visually, is given by the exponential model fitted using lag classes, which 
also happens to have the best cross-validation statistics. The spherical lag-class model is less good 
for the shorter lags. 

Both of the direct-fitted models have sills which are much too low. Possibly this is a manifestation 
of non-robustness in the direct-fitting algorithm, due to a group of data pairs which have very 
strongly correlated residuals, after removing the trend. Unfortunately there are so many data that 
it is not feasible to produce a plot of y(x;)y(x) for all data pairs, which could show the outliers 
which may be the source of the non-robustness. 
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4.2.2 Horizontally isotropic models 

Case fipeh136: Exponential horizontally isotropic model (lag-class fitting) (SAM 92-865-034) 

This run crashed after the second step of the grid-based search, due to undetermined causes. The 
best fit obtained from the first two steps was: 

/31 
/32 
/33 
Range 
Sill 
G= 

= -1.660 
= 2.253 
= 0.121 
= 98.5 
= 1.132 
0.951 0 
0 0.951 
0 0 

Directional ranges: 
Horizontal range 
Vertical range 

0 
0 
1.105 

= 104 m 
= 89 m 

No cross-validation statistics were calculated for this model. 

Case fipehn36: Exponential horizontally isotropic model (direct fitting) (SAM 92-865-035) 

/31 
/32 
/33 
Range 
Sill 
G= 

= -2.311 
= 1.919 
= 0.062 
= 785.28 
= 1.4267 
0.614 0 
0 0.614 
0 0 

Cross-validation statistics: 

0 
0 
2.65 

MRE = 0.00298 
MSRE112 = 1.10 
MSE112 = 0.192 

Directional ranges: 
Horizontal range 
Vertical range 

= 1279 m 
= 296m 

The direct-fitted, horizontally anisotropic exponential model has surprisingly large ranges in both 
vertical and horizontal directions. The cross-validation statistics are somewhat worse than the best 
isotropic, exponential model fitted using a potential-type trend. Figure 4-8 compares the fitted 
model with the semivariograms for different angular lag classes. 
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Case fipshl36: Spherical horizontally isotropic model (lag-class fitting) (SAM 92-865-038) 

/31 = -1.753 
/3 2 = 2.205 
/33 = 0.071 
Range = 294.01 
Sill = 1.1987 
G = 0.499 0 0 

0 0.499 0 
0 0 4.02 

Cross-validation statistics: 
MRE = 0.00205 
MSRE112 = 0.845 
MSE112 = 0.194 

Directional ranges: 
Horizontal range 
Vertical range 

= 589 m 
= 73m 

Case fipshn36: Spherical horizontally isotropic model (direct fitting) (SAM 92-865-039) 

This run was killed after completing just 3 steps of the grid-based search, in 4 days of run time 
on the Convex. On the last step the IGLSE process for estimating /J seemed to be rather unstable. 
The first steps of the grid-based search produced models with extreme anisotropy, e.g: 

/31 = -3.926 
/32 = 1.253 
/33 = 0.1126 
Range = 414.5 
Sill = 0.9703 
G = 3130. 0 0 

0 3130. 0 
0 0 1x10·7 

and 

/31 = -0.9755 
/32 = 2.616 
/33 = 0.7482 
Range = 553.0 
Sill = 1.378 
G = 5x10-3 0 0 

0 Sxl0-3 0 
0 0 3xl04 

The model estimated by lag-class fitting, on the other hand, had a reasonable degree of anisotropy 
and fairly good cross-validation statistics. Figure 4-9 compares this model with the semivariograms 
for different angular lag classes. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Verification cases 

The verification exercises described in Chapter 3 of this report confirmed the functionality of the 
algorithms for fitting simple isotropic, simple horizontally isotropic, and nested isotropic models. 

The code was also successful in fitting nested isotropic models, in that the fitted nested 
semivariogram gave a good match to the sample semivariogram. However, the fitting of these 
models was found to be a somewhat difficult process. Firstly, a substantial amount of data is 
required to allow resolution of more than one component model. Even when the quantity of data 
is sufficient, the fitting algorithm may still, in some cases, produce a solution which represents 
only the dominant component of the nested model, due to the occurrence of local optima. 

The verification exercises to test fitting of more complicated nested models, with anisotropic 
submodels, gave mixed results. Further verification exercises, and experiments with synthetic data, 
are needed to determine what type of data support is required for these models. 

The verification performed thus far is mainly qualitative. Quantitative verification will require 
development and implementation of statistical tests for the significance of discrepancies between 
the sample semivariogram and the input model, for the simulated datasets which are used to test 
the fitting routines. 
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5.2 Demonstration using the Finnsjon dataset 

The results obtained for the Finnsjon dataset confirmed several of the results and conjectures of 
Norman (1992a): 

The contrast between Zone 2 and the surrounding rock was found 
to be of approximately the same magnitude as estimated previously. 

The sensitivity of anisotropy estimates to arbitrarily chosen lag 
classes was confirmed by comparisons between the results of lag­
class and direct fitting. 

The anisotropic models were generally worse, in terms of cross­
validation statistics, than the corresponding isotropic models. 

However, two of the extensions to the code which were made following that study gave 
disappointing results: 

The use of direct fitting, rather than arbitrary division of the data 
pairs into lag classes, was apparently less robust, and in general 
gave less good solutions in terms of the cross-validation statistics. 

The use of nested models gave better results in terms of goodness 
of approximation to the sample variogram. However, the models 
which were obtained were still not very good in terms of their 
cross-validation statistics. 

The seemingly paradoxical result that higher-order models (e.g. nested or anisotropic) do not 
generally yield better cross-validation statistics than the simplest models (even though they 
incorporate more adjustable parameters), is explainable by the fact that the optimum model in 
terms of cross-validation statistics is not necessarily coincident with the least-squares match to the 
sample covariance. 

The demonstration cases included a more generalized anisotropic model (with principal axes of 
anisotropy aligned with the coordinate axes). The results were quite close to those for the 
horizontally isotropic models, indicating that the covariance is approximately isotropic in the 
horizontal plane. 
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5.3 Practicality of fitting algorithms and techniques 

The grid-based search algorithm was found to provide a useful, automatic way of exploring the 
parameter space. In many of the verification and demonstration cases, a grid-based search yielded 
multiple solutions representing local optima, in terms of the least-squares criteria. 

In a few cases multiple local 0ntima were in fact found by the grid-based search, confirming the 
need for a thorough exp le: v "on of the parameter space to give a better chance of locating the 
global optimum. Unfortunately the runtime is proportional to the number of starting points in 
the search. Hence for the more complex models, as the number of model parameters increases 
there are limits to how thoroughly the parameter space can be investigated. 

Direct fitting is apparently not practical for nested anisotropic models, and the large datasets (ea. 
4000 data points) which are required to support them. For this scale of problem, lag classes must 
be used (if the runs must be limited to, say, 20 CPU-hours on the Convex). 

Direct fitting is also not practical when trend functions and covariance functions are being 
estimated simultaneously (IGLSE), for covariance models more complicated than simple isotropic 
or horizontally isotropic. 

A comparison of the results obtained for lag-class and direct fitting shows that often the models 
estimated by lag-class fitting are better kriging predictors, as measured by the cross-validation 
statistics. It is speculated that properly (or fortuitously) chosen lag classes and weighting schemes 
may, in effect, give more robust estimates of the covariance functions. The direct fitting method 
may be influenced by outlier data pairs. The effects of these outliers would be diminished for lag­
class fitting would be diminished by the averaging within lag classes. 

The apparent non-robustness of direct fitting is a major barrier for objective inference of site 
models, in view of the sensitivity of fitted models to lag class definition. Possible solutions which 
might be investigated include: 

Optimization with respect to the log-likelihood of the kriging errors 
for a model, as described by Samper & Neuman (1989), rather than 
fitting to the sample semivariogram. 

Incorporation of robust estimation techniques in the direct-fitting 
algorithm. 

The first of these has the further advantage of directly optimizing the crucial aspect of the 
covariance model (namely its goodness as a kriging predictor), which is directly related to the idea 
of measuring the goodness of the model in terms of cross-validation statistics. Most of the 
subroutines needed to implement this approach have already been developed, for the calculation 
of cross-validation statistics. However the practicality of the method for large datasets ( comparable 
to that for Finnsjon) is questionable, since each step in the estimation requires a new solution of 
the kriging equations. 

Robust estimation techniques can be implemented fairly easily in the existing code. The simplest 
approach is to convert from the L2 norm (i.e. the least-squares criterion), to an L1 norm (i.e., the 
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sum of the absolute errors). However this gives an objective function with discontinuous first 

derivatives, which might produce instability in the fitting. A better solution may to instead 

minimize the sum of some robust function of the residuals, e.g. the bisquare function: 

{ (1-r2)2, In :s; 1} 
f(r) - 0 f lrl > 1 

(5-1) 

where r is the residual for a given lag, normalized, say, by the standard deviation of the residuals. 

The accuracy of the semivariogram fits could perhaps be improved by a more appropriate 

weighting scheme for between-hole lags. The sample semivariograms for the synthetic datasets 

used in verification show good agreement with the input models for short lags, but poor 

agreement for the longer lags, despite the fact that there are many more data pairs (i.e. samples) 

for the longer lags. If the simulation routines are not grossly in error for the longer lags, then the 

observed disagreement can only be explained as being due to an insufficient number of 

independent samples at long lags. 

The problem seems to be due to the strong clustering of the measurements along boreholes. The 

increments of the log conductivity for lags from two adjacent intervals in a borehole (see Figure 

5-1 for notation) have covariance: 

(5-2) 

which is typically of the same order as C(h), the covariance of the function which is being 

estimated for the intrahole lag h. However, the between-hole increments for two adjacent sections 

have covariance: 

(5-3) 

which, for H > h, is typically many times larger than C(H), the covariance being estimated for the 

interhole lag H. In other words the short-range correlation between clustered data pairs obscures 

the relatively small, long-range covariance, so that many more measurements are needed to 

estimate the long-range covariance correctly. 

In INFERENS 1.1, all data pairs are arbitrarily assigned equal weight in direct fitting.A weighting 

scheme which takes into account the strong correlation of neighboring interhole data pairs, 

relative to the magnitude of covariance for those lag distances, would give more appropriate 

emphasis to the intrahole lags. 

Synthetic dataset generation is a new capability which was developed to facilitate code 

verification. This capability can readily be applied to a systematic study of data requirements for 

covariance model estimation, i.e. to determine the sampling density and/or quantity of data 

necessary to estimate a given type of covariance model, to within a given tolerance. 
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