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ABSTRACT

The origin of this study was to find a good, or even the best, stochastic model for the
hydraulic conductivity field at the Finnsjo site. The conductivity fields in question are
regularized, that is upscaled. The reason for performing regularization of measurement
data is primarily the need for long correlation scales. This is needed in order to model
reasonably large domains that can be used when describing regional groundwater flow
accurately. A theory of regularization is discussed in this report.

In order to find the best model, jacknifing is employed to compare different stochastic
models. The theory for this method is described. In the act of doing so we also take a
look at linear predictor theory, so called kriging, and include a general discussion of
stochastic functions and intrinsic random functions. The statistical inference methods for
finding the models are also described, in particular regression, iterative generalized
regression (IGLSE) and non-parametric variogram estimators. A large amount of results
is presented for a regularization scale of 36 metre.
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1BA D

The basic assumption of a continuum model of groundwater hydrology is :

The volume averaged water velocity is proportional to the directed rate of
change of the volume averaged hydraulic head. The proportionality constant,
that may be different in each point, is called hydraulic conductivity.

The size of the volume over which the volume averages are taken will be referred to as
the averaging scale. This law of proportionality is called Darcy’s law after the person
who performed the first experiments to establish it [Darcy, 1856]. There are also
theoretical derivations of this physical law, see for instance [Gray and O'Neill, 1976] or
[Whitaker, 1985]. These derivations, as well as the original experiment, take place in a
so-called porous medium and it is an open question whether fractured crystalline rock
can be considered to behave as a porous medium. We will not go further with this
subject here or elsewhere in this report but only stress the fact that, the larger the
averaging scale, the more likely it is that the porous media model is valid, or to put it
differently, that such a concept as conductivity in fact exists for fractured rock. The
limiting case of a infinitely large averaging scale corresponds to a spatially constant
value of the conductivity.

Note that the averaging volume need not be a REV and that the averages may be
weighted averages in the sense of [Marle, 1967] see also [de Marsily, p 15-19]. The two
crucial things about the size of the averaging volumes is first, the existence of the
conductivity and second that, the results may be dependent on the chosen scale. This
last point may be perceived as troublesome when considering, for instance, that water
travel time may be dependent on the averaging scale. The explanation for such a scale
effect is of course that the tortuosity of the stream lines decreases with increasing scale.
Thus any subsequent model such as a transport model based on the results of a
stochastic continuum model must explicitly consider the averaging scale.

It is not particularly bold to claim that there will always exist large uncertainty about
the hydrological parameters of any model pertaining to subsurface hydrology.
Therefore it is natural to view the parameters as stochastic functions. In the case of the
continuum model the spatial conductivity function thus will be considered to be a
stochastic function. The gain with this is that one can model the spatial variation of the
parameters and also quantify the uncertainty in the model output instead of having to
perform a large number of ad hoc variations of deterministic models. On the other hand
the solution of problems involving stochastic functions requires much more computer
resources and one is still not freed of the necessity to perform variations among models
but this time models of stochastic functions.
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Previous hydrologic analysis performed by SKB has often used these porous media
madels but without the consideration of averaging scale and with the spatial variation
modelled solely by fracture zones as identified and quantified by geologists. For a
recent example see [Lindbom et al, 1991].

In order to use a stochastic continuum model for the particular task of modelling the
groundwater situation at a hypothetical site, one would like to translate all site-specific
knowledge into site specific-conductivity. Ideally all knowledge, such as for instance
inferred fracture zones, flow measurements, cross hole test, fracture statistics etc.
should be collected into the distribution of the conductivity seen as a stochastic process.
This is not simple. For instance one attempt, among many others, in this direction is
that of [Clifton and Neuman, 1982] who used measurements of hydraulic head to, in
part, determine the distribution of hydraulic conductivity.

Thus for simplicity this work relies entirely on stationary single hole packer test
measurements. Clearly the rate at which water can be pumped into the rock at a given
overpressure is related to the conductivity in the surroundings of the location of the test.
The precise relation however is not at all easy to find. In order to simplify the analysis
and the implementation of a stochastic model, the following assumption is added to the
previous:

A packer test can be evaluated by Moye’s formula to give the hydraulic
conductivity at an averaging scale that is related to the length of the packed
off section and at a point in space identical to the midpoint of the
measurement section.

This assumption can certainly be criticized. One has only to look through the
assumptions done in the derivation of Moye s formula in Appendix C or in [Moye,
1966] or to consider the likelihood of the event that two borehole sections horizontally
adjacent to each other give large differences in estimated conductivity due to local
fracture closure. If this latter phenomenon is common in reality the above assumption
may be invalid since one may easily construct examples where the conductivity drops
from high values to zero over very short spatial lengths. Clearly this would be
inadmissible with the notion of a large scale conductivity. On the other hand the
likelihood for this phenomenon decreases with the length of the section.

To improve the situation other similar but more elaborate ideas based on cross-
correlation between packer tests and large scale conductivities has been proposed in
[Norman and Geier, 1991] . The advantage with such an approach is that one can
accomodate the relation between the conductivity measured by means of a packer test
and Moye s formula and the actual effective conductivity in the vicinity of the
measurement location. In order to simulate both the packer tests and the effective
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conductivities the analysis starts from a discrete fracture model. However, this effort
has been comleted within this study.

With these two basic assumptions the problem at hand is a so-called statistical inference
problem, i.e. to deduce a model in terms of a stochastic function from a set of attained
values, what is known as a sample. This model could for instance consist of an
expectation value or trend function together with a second-order moment function
describing the fluctuation of the residuals and an assumption of second-order
stationarity. This type of model will be considered below together with so-called
intrinsic models.

One standard method for statistical inference methods is regression which consists
essentially of giving a model in terms of a finite number of parameters which are then
determined by minimizing some error with respect to the observed values. In the
ordinary case, regression assumes that the residuals are uncorrelated, which of course is
totally illogical in our case. In this work we instead utilize iterative generalized least
square regression (IGLSE) as for instance described by [Neuman and Jacobsson, 1984].
Other known methods are the maximum likelihood (ML) restricted maximum
likelihood (RML) , see for instance [Loaiciga et al, 1988], or generalized covariances
(GCQ), see for instance [Kitanidis, 1983] or [Delfiner 1976]. A difficulty which is not
taken into account in this work, or in the other ones mentioned in this section, is the fact
that the measurements are censored by the presence of a measurement limit. An attempt
to account for this is given by [Lovius et al, 1990].

The drawback of a parametric method, such as those mentioned above, is of course that
the choice of the parameterized model can be erroneous, thus nullifying the value of the
subsequent analysis. One way to analyze the situation is what is known as residual
analysis, see [Draper and Smith, 1966]. However in this work we employ another,
somewhat less well-known, method known as cross-validation or jacknifing, [Russo
and Jury, 1987]. The main idea in this approach is to test the assumed model by
removing measured values, and then to predict them using the model and employing a
linear predictor, so-called kriging. This results in a vector of kriging errors which can
be analyzed statistically to give a measure of the "goodness" of the tested model.

The origin of this study was to find a good, or even the best, stochastic model for the
conductivity field at the Finns;jo site. Therefore all measurements used are taken from
this site as found in the SKB database GEOTAB. A description of the features specific
to this site is contained in [Ahlbom and Tiren,1991], [Ahlbom et al, 1988] and
[Andersson et al, 1991]. In order to perform the calculations the program INFERENS
was written in FORTRANT77 as a part of the work. The studied averaging scale was
mainly chosen to be 36 metre since it was found suitable for groundwater flow
modelling on the scales needed to describe the regional groundwater situation.



EGULARIZA

2.1 Regularization

The precise form of the fundamental assumption of stochastic analysis performed by
HYDRASTAR is that :

A packer test can be evaluated by Moye s formula to give the conductivity at
an averaging scale that is related to the length of the packed off section and at
a point in space identical to the midpoint of the measurement section.

Thus what is needed in order to vary the scale is a methodology to add stationary
conductivity measurements together to achieve new sets of measurements on packer
intervals other than those originally used. The primary advantage with the increase of
averaging scale is that the correlation scale of the studied parameter, in this case the
conductivity, increases and thus makes it possible to study a larger domain. Hence if
one want to study regional flow fields, which is also a necessity due to the need to find
natural boundary conditions, regularization is imperative. Of course it is to be noted
that the cost of increasing the averaging scale is the loss of resolution.

Moreover there are other interesting questions. In general the set of measurements
performed at a site is on different scales, that is different packer interval lengths. For
instance at the Finnsjén site the measurements are predominantly performed for two
and three meter sections. The question arises whether these measurements can be
considered as being from the same population, or if there is a systematic difference due
to the difference in scale. Secondly we may ask how dependent our results are on the
scale which we are using, that is, in the case of packer measurements, what packer
interval lengths are used.

Let us first describe a mathematical model for a packer test. A similar model and
subsequent numerical calculations has been developed by [Braester and Thunvik,
1982]. Figure 2.1.1 shows a rock block with a drilled hole in which a packer test is
performed and a cylindrical coordinate system. The z- axis of the cylindrical coordinate
system coincides with the borehole. The natural head field (after the drilling) is denoted
by ho(x) and is assumed to satisfy the steady-state hydrology equation

VK(xX)Vh(x)=0

along with the boundary conditions

h(x)= x,
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for x at the groundwater surface, here x3 denotes the vertical coordinate of x. Moreover
it seems safe to assume that along the borehole the hydraulic head equals a given
constant, namely the groundwater level in the borehole.

As the next step insert the packers, without disturbing the natural field and pressurize
the section between the packers to an overpressure Ap;. This overpressure corresponds
to a head difference Ah; = Ap1/pg. Let us now write the head field during the steady
state part of the packer test as hp(x) + Ah1-hi(x) where hj(x) satisfies

VK(x)Vh(x)=0

and
[ hy(x)| =1 z<z<Sz+L,
p=>,
oh(x) 1 ohyx) {zl +L<z<z+L+d
o - AR 9 -d<zg
4 (4 p=p, h op p=p, 4 2317
oh(x) z>z,+L+d
ap =0 z—-d>z
p=>, !
L h(x)=0 elsewhere on the boundary

where we introduced z; as the position of the lowest point of interval between the
packers, d as the length of the packers and L as the length of the interval between the
packers. The phrase "elsewhere on the boundary" is used to denote the boundary of the
domain in question minus the borehole wall. For this analysis it should be interpreted as
the groundwater surface. The third equality in the boundary conditions above expresses
a basic approximation in this analysis, namely that the leakage back into the borehole
induced by the test is negligible. The fourth equation implicitly states the assumption
that the groundwater surface is assumed to be unchanged. Note that we supress the
angle ¢ from the notation but that the analysis do not assume that any of the involved
fields are independent of ¢.

Next we will make the reasonable assumption that the natural head gradients are small
in comparison to the applied difference head Ah; i.e.
1 Fh(x)

A%, 3p =0 z-d<z<z+L+d

P=A 2.1.1

so that we may write the boundary conditions of hj(x) as

’hl(X)lp=p" =1 zSz<5z+1L
Jahl(x) 0 {z>z,+L1
= z >
% p=>p, 1>
| h(x) =0 elsewhere on the boundary
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Similar assumptions are made by [Braester and Thunvik, 1982]. However they do not
perform the above division in hg and h; but assume that the natural conditions are given
by a constant potential i.e. hg=const and treats the actual head field divided into two
cases

No flow through the borehole wall at the packers. A constant potential along
the rest of the borehole wall.

No flow through the borehole wall i.e. the borehole is sealed.

Thus the equations resulting from our analysis above is much like the the second case
of [Braester and Thunvik, 1982] but freed of the somewhat unrealistic assumtion that
hg=const . We note also that the assumptions made in 2.1.1 is slightly stronger than
necessary for our immediate purposes, we will however make use of the remaining part
of the assumption later on. Another test performed at the location z; is treated
analogously i.e. it results in a field ho(x) + Ahy-ha(x) where

VE(X)Vh(x)=0

and
’hz(x)l‘mpv =1 ,Sz2<z,+L,
) oh(x) o {zz+ L,<z
ap z,> 2z
p=p,
L By(x) =0 elsewhere on the boundary )

Now the idea is to show that the function hg(x) + hj(x) + h(x) is an approximation to
the field h142(x) arising as a result of both packer tests being performed at the same
time with unit difference head. Since the aim is to predict the result of a packer test of
length L1 + L3 the case of the measurement sections being adjacent,i.e. z; +Lj =z is
treated below. This case is also depicted in figure 2.1.2. The case of non adjacent
sections will be treated in section 2.1.1. 1

lin this connection we might ponder over the overall aim of the analysis. As the reader realizes this is to
use the assumption in the beginning of the current chapter, the result of the current analysis together with
Moyes formula to obtain an estimate of the effective conductivity on a large averaging scale at the center
of the measurement section. With this ultimate goal in mind there does not seem to be much sense in
requiring that the measurement sections should be adjacent. That is only needed to simulate a packer test
performed with a larger packer interval length not to obtain the effective conductivity. Thus what one
should wish for is a formula that connected a set of packer measurement with the effective conductivity

of a rockblock containing them.



Figure2.1.1 Showing a borehole and the corresponding cylindrical coordinate
system.
A A 0 112 >
do 1, :
0 1 '
> |
| h1+h2
!
|

} l
I [
h1 | h2 !
I |
I !

z2=z1+L

Figure 2.1.2. Showing the summing of two packer test responses.

To this end we first note that
z + Ll <z

0< hl(x)l <1 for {z <
p=>, 1
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and similarly for ha(x) . This is true since if there was a point along the borehole not
satisfying the above inequality then there would exist a extremal value of hj(x)
somewhere along the borehole outside the injection interval2. This point would then act
like a source or a sink, contradicting the no-flow conditions.

Thus hj(x) + ha(x) satisfies

VK (xX)V(h(x) + h(x)) =0

and
(1< (h(x) + hz(x))|p=P <2 zSz<8z+ L+ 1L,
I(h(X) + hy(x)
4 (h ” 2 )g =0 z<z,z>z+L+L,
P=R
Lh(x) + h(x)=0 elsewhere on the boundary

whereas for the solution h342(x) of the problem posed by a packer test performed over
the section length L1 + L2 we would require that

'h1+2(x)| =1 z<z<z+ L +L,
P=5,
oh . (x)
<_h’a;;__ =0 z<z,z2>z,+L+1L,
P=p,
AL (x)=0 elsewhere on the boundary

Thus it is clear that

h,,(X) < h(x) + h(x) <2k (X) z£z<z+ L+ 1L,

and that this double inequality implies that3

2Since it is clear that any function h(x) that satisfies VK(x)Vh(x)=0 cannot have a local maximum in the
interior of the domain of interest i.e it has to attain its extremal values on the boundary.

3Thisisa consequence of the statement: If the function h(x) satisfies VK (x)Vh(x) =0 and

h(x)lpmzo 2<z2<z +L +L,

—Q% =0 z<zl,z>zl+L‘~1¥-L2
p=n,

hix)=0 elsewhere on the boundary

then the flow from the section {z],z1+L1+L1] is nonnegative.i.e
"1""1*[‘2
2 >
;" K(x)aph(x)p,dz >0
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zl-l»Ll+L2 :x+L1+L2

[ K(x);%-hm(x)pwdz < | K(x)%(hl(x)+ hy(%)) podz <

5

'1+L1+Lz

2 | k (x)-é%- h,(X) p,dz

As the notation suggests these integrals are taken over the part of the surface of the
borehole between the packers. Expanding the middle term, using again the assumption
that the leakage flow is negligible, and turning the inequality inside out we have

1
29t 9) £4,,549+gq, 212

where
z+L
1 1

g= | K(x)b% h(x)p, dz

1
b4

z +L
o,= [k (x)-—(%— h(x) p,,dz

2
are known quantities proportional to the measured flows per applied difference head
unit and

:l+L‘+ L2

ql+2 = j K (X)-é% h1+2(x)Pde

1

is the flow per difference head unit that would be measured if the test was performed on
the section L1 + Ly. It is to be stressed here that this is the crucial point where we made
strong use of the no-leakage assumption since we used that

’2+Lz

| K@ghmpd: = [KZ-hx)p.dz =0

z
2 1

2, -D-Ll

It is moreover clear that an analysis such as this must make this kind of assumption
since the leakage flows are not generally measured.

That the expressions for the q:s above are proportional to flow per difference head from
a pressurized section follows from the assumption 2.1.1 since the flow from a
pressurized section, the section [z1, z;+L1] say, can be written

2 +L
0) ' Oh(x)  Oh(x)
G= = | K(x)( Alhl 3; + ’gp )p,,dzz

1
1
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x‘+Lx
Jh(x)
[ K5 p.dz
5 : 2.13

Now Moye s formula C.1, see appendix C or alternatively [Moye, 1967], can be written
in terms of q = Q/2rAh where Q is the measured flow as

- i-(2)

and thus

(L + L)K,,,<(q,+ qz)(l - “‘(@%ﬂg)%

o Lk LK,
(l () (1-"'(%))+(1"1"(2’€: D :
Introducing

. ((mrm)) LK,
R ) )

we thus have the result that

1
7K < K1y S Koy 2.14

reg 142 —
and hence

3
K,,= ZK reg

is a reasonable estimate but in this study we have used the more conservative K142 =

Kreg

These results easily generalizes to n adjacent sections with the value of Kreg replaced
by

41t may be argued that this is not conservative since choosing a certain value as a representative of a
interval of possible values leads to an underestimation of the variance which in the end may lead to a

more homogeneous conductivity field and thus less possibility of "fast flow paths”.
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2 g,
TR H(E)

i=1 i

but due to presence of n added interval the estimate 2.1.4 instead becomes

1

-".K"S s Kl+2+...+u < K"l. 2.1.5

This is, however, a very pessimistic estimate since if we, in analogy with the above
discussion, defines the scaled head response from the j:th packer test participating in the
regularization by hj(x), the corresponding packer interval length by L; and the packer
length by d it is reasonable to assume that the hj(x):s are almost constant equal to zero
outside the packers so that if d<L; the analog of 2.1.4

1
EK": s K1+2+...+n s K"l 216

would still hold.

We note that in the common case of constant section length L =L for all i the
regularized conductivity value equals

(%), g,

()"

i.e. a corrected arithmetic mean value of the individual conductivity measurements.
This behaves much different from the widely used geometric average. What is most
striking is that the high measurement values dominate the sum and thus a plot of
regularized measurements along the borehole tend to be constant in intervals, see the
figures in section 2.2. This is rather natural if one consider how the conductivity of an
averaging volume would vary when moved over a highly conductive fracture. We
remark also that the size of the correction factor is of the order of one.

Kreg =

2.1.1 Imperfect match in regularization

We must consider two kinds of mismatch, positive (i.e. z; + L1 > z3 ) and negative i.e.
(z1 + L1 <z3 ), where the notation refers back to the two-measurement situation in the
previous section. In the case of several sections added together with positive mismatch
it is clear that 2.1.5 will always hold regardless of the magnitude of the overlap. On the
other hand, following the reasoning above i.e. the assumption of constant zero head
along the borehole outside the packers in each separate packer test, the estimate does
not deteriorate provided that packed off sections, including the packers, does not
overlap more than twice in which case 2.1.5 will still hold. The situation in the case of a
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negative mismatch is much worse since there is no way to estimate the flow that would
have resulted from the gap. Declining any further theoretical analysis, which could be
done in the positive-overlap case, we accept the following definition.

Let us denote a measurement by the triple (z;, L, K;j) where, as before, zj denotes
borehole coordinate of the lowest point of the packer test, Lj denotes the length of the
packer interval used and K;j denotes the obtained conductivity value according to
Moye’s formula. With a set of measurements {(z;, Lj, Kj),i=1,2,...,n} we associate
an interval along the borehole Ireg and a length Lyeg by

L,= ( min (z,), min(z,) + S)

1Si Sa 1€i Sa

and

Ly = 12:}8;)'(‘( z, + Li) - !IST}ISH“( z;)
where S is the target regularization scale. The borehole interval Ireg is the packer
interval of the packer test we are approximating whereas the interval (min(z;), min(z;) +
Lreg) is the interval of the approximation itself with its positive and negative
mismatches.

Now such a set of measurements is said to constitute a regularized measurement on the
scale S at the positive tolerance level £p and the negative tolerance level €, precisely if

+

(& )
+ -—
en:_‘[\E%“.-’i +L)) 1) < EPS 2.1.1.1

(M )
e;‘t=j 2%:.: +L) -1 +|S —Ln < eus
i 2P 2.1.12
where y; denotes the characteristic function for the interval I for any interval I i.e. the
function that is equal to one in the interval and identically zero outside and where (-)*
means max(-,0) and (-) means -min(-,0). The integrals extend over the interval (min(z;),

min(z) + Leeg).

In words this would amount to saying that the set of measurements {(zj, Lj, Kj),i=1, 2,
..., n} is aregularized measurement on scale S if the sum of all positive mismatches is
less than epS and the sum of the negative mismatches is less than epS. The reason for
including the term | S - Lyeg | in the expression for the negative error is that it always
represent a section from which the induced flow cannot be estimated in contrast with
the positive type mismatch. Note that this in particular implies that

|S—L

< g8

reg
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The pair &y , &p are chosen tolerances. As is clear from the above discussion it is highly
recommended to take €p << €p. Finally then the value of the regularized measurement is

taken to be

(o2)s e
M

where py is assumed to be a constant. Also in the case the conductivity K| is below the
measurement limit the value of the limit is substituted for the true conductivity value.

2.1.2 When are two measurements identical ?

The question in the heading arises because in certain situations it may be possible to
patch together measurement sections satisfying the constraints of 2.1.1.1 and 2.1.1.2 in
such a way that the resulting sections cover essentially the same part of the borehole. In
spite of this the values obtained can be quite different. This is to be compared with the
hypothetical situation that one performs the same measurement several times but
obtains different answers due to uncontrollable factors i.e. what is usually referred to as
measurement errors. This line of reasoning could be used to estimate the uncertainty of
the regularized measurements but we will not pursue this any further in this report.

We will use the following definition. Two regularizations {(z;, L;, Kj),i=1,2,...,n}
and {(z;", L, K;),i=1,2,...,n"} represent the same measurement if

max(z, + L) - max(z" + L".)l+

- * 7
Y — min <
1Sisa 1<i <o min (%) (Z')I €S

1Sigsa 1isx

and the value of this measurement is taken to be the arithmetic mean value of the two
associated regularized conductivities i.e.

Ko+ Ko,
2

The extension to several regularizations is straightforward.

2.2 The effect of regularization

In this subsection we present some graphs on original and regularized measurement
sections. The shown interpreted zone intersections are taken from [Ahlbom and Tiren,
1991]. The conclusions drawn from these graphs are discussed in the next section.
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Histogram of X1: 10log conductivity
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Histogram of X1: Column 1
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Figure22.9. Histogram of all (1815) 36 m measurements of log conductivity.

2.3 Conclusions

As pointed out by geologists the high conductivities in zone 2 are located at the upper
and lower bounding surface of the zone. It is shown by the above graphs that this
quality holds for the regularized measurements, at least up to 36m, as well. The graphs
also show that the high conductivity values are (almost) confined within the interpreted
zone boundaries. Thus a trend function for zone 2 should be bimodal, contrary to the
one used below, which corresponds solely to the geometric characteristics of the zone.
However another important feature shown in the above graphs is that there exists bands
of high conductivities outside the interpreted zones as well. This shows the difficulty
with the use of trend functions to describe bands of high conductivities. That is, one
may find them in the interpreted zones but, on the other hand, they may be outside the
interpreted zones completely. This, together with the simplicity, suggests that trendless
or intrinsic models are most suitable.

As for the histogram the effect of the regularization is to slightly diminish the range of
the conductivity values and to even out the shape. Also there is an increase in average
log conductivity with increasing scale. However the most striking feature of these
histograms are that they do not look as if taken from a normal distribution, which is a
usual assumption in the literature, and also in this work. Thus it would be a worthwhile
effort to find new Gaussian transforms. In this connection we remark that the
regularization formula does not preserve log-normality thus the possible finding of a
Gaussian transform should be done separately on each scale.
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HASTIC F TION

3.1 General

In this report it will mostly suffice to think of a stochastic function Y as a function of
two arguments Y (X, ®), the space argument x, and the event space argument ®. For
fixed x the function is an ordinary stochastic variable and for fixed it becomes a

spatial function, a realization. Let us take the opportunity to introduce some notation
below that will be used throughout the report.

Define
m,(x) = E[Y (x, )]

where E[ - ] denotes the expectation value operator. A primed quantity will always
denote the mean removed form so for instance
Y (x, 0) =Y (x, 0) = E[Y (X, ®)]

and Cy(x, &) is the centered covariance function of Y the definition of which can be

written as
C,(x,8) = E[Y'(x+E, @)Y (x, ®)]

where & denotes the vector separating two points of consideration, the so-called lag

vector. A stochastic function is said to be weakly (or second order) stationary if the
expectation value function my(x) and the centered covariance function Cy(x, E)is

independent of x i.e. if

{my(X>= m,
Cy(x,8) = C,(§)

Finally o(x) is the standard deviation at x i.e. if Y is weakly stationary

0, (x)" = C,(0)
In the above notational definitions Y(x) may be replaced by any other stochastic
function without altering the meaning of the notation however the index will be

dropped when it is apparent by context which stochastic function is referred to.
Furthermore the dependence on the event space variable ® will be suppressed from now

on. For a more thorough description of random function see appendix A.

3.2 Intrinsic random functions
A stochastic function Y(x) is said to be intrinsic if the following requirements hold:

@) The second order moment of an increment
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% (® = [ x+&) - ¥ )] 321
exists and is independent of x. The function v(x) is known as the
semivariogram.

(i1) The first order moment of the increment is zero i.e.
E[Y (x+§-Y(x)]=0 322

Note that the condition above is a much weaker condition than to require weak second
order stationarity. In particular an intrinsic random function need not to have a finite
variance i.e. need not to be of second order. In case the stochastic function has a finite
variance the semivariogram is closely related to the covariance function since

(& = el B - Y ']=
E[(Vx+ 8 - Yo) 1=

o(x)’ = C, (&) 323
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4 KRIGING

Assume that we have a random function Y(x) which is known at a number of points,
the data support, x;, i=1,2,..., N. What is the best linear unbiased estimator Y*(x)

N
Y (x) = 24,(0F (x,)
=l 4.1
of Y(x), given this information, in the sense that the centered variance of the

interpolation errori.e.

vivey - rol= Elir - v - Elr o - ¥ o)1

should be minimal ? Here V[ - ] is the centered variance operator. The multiplicators
Ai(x) appearing in 4.1 will be referred to as the kriging weights at x. These are functions
of the point of estimation, x. The reader is urged to make clear the difference between
the estimator Y(x)*, which is a stochastic variable, and the estimate y*(x) which is
realization of Y(x)*. The estimator in 4.1 is the so-called kriging estimator and the
process of employing it for estimating for instance level curves of a stochastic function
is known as kriging.

There are a number of different approaches to this simple problem and we shall
consider them one by one.

4.1 Residual kriging

Here we assume that the trend is known i.e. in some way estimated. We may then work
with the residual process Y (x) = Y(x) - E{™ )] only. Since the expectation of both the
residual and any linear estimator of it then becomes zero the centered variance of
interpolation error above is written as

Id Y ' 4 ’ * 7 2
vlrm - ¥o) = el ey - ¥o) )=
z 1'.(x)lj(x)C (x:-x;) —221l.(x)C (x;,—x)+ C(0)

i, j=1

By differentiating with respect to Aj(x) we see that the centered variance is minimized>

when

5That this stationary point is in fact a minimum follows, since a covariance function is always positive

definite.
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N
z_%lj(x)C(x‘.—xj)=C(x‘.-—x) i=1...N

which are the so-called kriging equations. Inserting this equality into the above
expression for the interpolation error, we obtain the kriging variance as

El(r - Ym) ]= co-Tame, -x

i=1 .

4.2 Kriging in the locally stationary case

If one does not know the trend or wants to avoid estimating it, one can instead make the
assumption that the trend is locally stationary . This means that for the task of
determining the best linear estimator of Y at x, Y*(x), one makes the assumption that in
a neighbourhood of x, the trend E[Y(x)] is unknown but approximately equal to a
constant. To this neighborhood there corresponds a set D(x) of measurement locations
defined by the requirement that the points in D(x), i.e. {X};c D(x)> belongs to the
neighbourhood. The question of finding the best linear unbiased estimator is then
restricted to using only points in D(x) i.e. Y(X)* is given by

Y(x)' = 2 A,(x)Y (x )

ieD(x) ) 42.1

The set D(x) is usually called a kriging neighbourhood and can also be used, in general,
to restrict the size of the kriging equation system by taking only the closest points into
account.

With these assumptions we easily see that in order to ensure that the linear estimator
should be unbiased , that is have the correct expectation value , we have only to require
that

2 Am=1
jeD(x) . 4.2.2

Next, with this in mind, we can write the centered variance of the interpolation error as

vlr ey - v = Eltray - v ]=

E ( Y AXY(x))- Y(x)ﬂ:

ieD(x)

( T amr o) - mex)) - @ = meo) |

jeD(x)

2 A®ALEC (x,-x;)-2 X 4L(C (x,—x)+ C(0)

i, jeD(x) ieD(x) 42.3
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in principle as before. Note the use of the assumption of local stationarity in the third
equality above i.e. we used

mx)- 2, A,(x)m(x =0
jeD(x) 4.24

which is equivalent with the assumption a if Y is locally stationary.
The minimization of this interpolation error 4.2.3 under the constraint of unbiasedness
4.2.2 is obtained by differentiating the Langrangian function

2 A4 xC (x:—%;)-2 Y 4(C (x,-x)+ C(0)+

i,jeD(x) ieD(x)

u(x)[ 2 Ax)- 1}

jeD(x)
which leads to the linear system for determining a stationary point5

[ z /‘lj(x)C(x‘.—xj)+ u(x) = C(x, - x) i € D(x)

jeD(x)
1 Y Am=1
ieD(x) 425
where p(x) is a Lagrange multiplier for the kriging system at x. The interpolation error
associated with the above approach is given by inserting the kriging system into the
expression for centered variance of the interpolation error 4.2.3 as
. 2
E[(Y (x) - Y (x)) ]= C(0) - u(x) - 2 A(x)C(x,—x)
ieD(x) .
The above approach can be generalized to more general forms of local trend. That is,
instead of assuming that the trend is locally constant we may assume another, more

complicated, form. The most common form of the local trend is a second order
polynomial, where we assume that locally the expectation of Y(X) is given by

ElY(X)]=m,+m ex+m,ex"x

where myg is a constant scalar, m; is a constant vector, my a constant symmetric matrix
and e signifies the inner (tensor) product 7. The nonbias equation 4.2.4 is thus replaced

by

6Which is also a minimum since if C is positive semi definite it is positive semi definite on any subspace

as well.

7The outer matrix (tensor) product is defined as: Let §1 and S be two arbitrary NxM matrices then
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m{x— >, }L‘.(x))+m10(x— Z l‘.(x)x‘.)+m2(x7x-— Y }.‘.(x)xirx‘.)=0

j€D(x) jeD(x) jeD(x)

or since we want this to hold independent of the choice of mg, m; and my with the ten
conditions

(1- X, A(x)=0
jeD(x)
Ix- Z Ax)x, =0
jeD(x)
X' x - 2 li(x)xirx‘.=0
L jeD(x)

and thus the number of Lagrange multipliers is likewise increased to ten. This is known
as universal kriging. The disadvantage of this approach, independent of the the number
of constants to describe the trend (also in the main case of one constant above), is that
one must estimate the form of the covariance function of the residuals. First of all this is
a difficult task and secondly, if one completes the task, one obtains the trend as a part of
the result. See section 6.3 below and [de Marsily, 1986, pp 310-312].

4.3 Kriging in the intrinsic case

When using intrinsic random functions in relation to kriging, one usually assumes that
3.2.2

E[Y (x+§-Y(X)]=0

holds only locally. This equation is equivalent to the corresponding assumption made
on the expectations in the section above.

To derive the kriging system in this case one first notes that the condition for
unbiasedness again becomes

2 4m=1
jeDx) . 43.1

And because of this, one may express the (centered) variance of the kriging error as
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vy - ran’l= Elr oy - v ) l=

E( 2 A (x) - Y(x))l]=

ieD(x)

E( 2 AM[Y (x,) - Y(x)])1]=

ieD(x)

Y A, EE[(Y (x,)= Y@)Y (x,)~ ¥ ()]

i, jeD(x)

Now what is needed is the following observation
AY(x,) =Y @)Y (x,)- Yx))=

2

@ (x,)- Y(x))2+(Y(xl.)- Y (x) = (Y (%)~ Y (x;)

Making use of this identity we can express the variance of the interpolation error in
terms of the semivariogram as

2 Y AYE,-x)- X A®AL®Y(X,-X))

ieD(x) i,jeD(x)

and differentiation of the corresponding Lagrangian function, incorporating the side
condition 4.3.1, with respect to the kriging weights gives the kriging system
2 }.j(x)y(xi—xi)— H(X) =7 (X, —X) i € D(x)

jeD(x)

2 Am=1
ie D(x) . 4.3.2

where p(x) again is a Lagrange multiplier for the kriging system at x.

The interest in this derivation is mainly in the differences between it and the derivation
for the locally constant case. The kriging variance is obtained as previously by inserting
the kriging system into the expression for the variance of the interpolation error to give

)y A (x)y (%, —x)— u(x)

ieD(x)

For an alternative and more elegant derivation of the results of this section see appendix
A.
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4.4 Solution of the kriging equations

First of all let us stress the fact that any covariance matrix C = {C(xj - Xj) }, j is positive
semidefinite, a fact that which we have already used extensively. This is easily seen
since

AN Ch= X ACy(x,-x)A = V[ Y AY(x ,.)]zo

1Si,jSn 1Si Sn 8

This is an important quality to keep when solving the kriging system. Now the kriging
matrix i.e. the matrix in the solution in the kriging system 4.2.5 or its corresponding
generalization to universal kriging is

D [ C X ]

Lx" o 44.1

or in the case 4.3.2 9
D [ r X }

Lx" o 442
are both indefinite and thus it is good strategy to write the solution of the kriging
system

M0 T[]

H(x) 1 443
or

A(x) ]_[ Y(x) ]

px) 1711 4.4.4

in terms of the inverse of the covariance matrix, C-1. In the first case 4.4.1 we note that

o< o Ly xrex]o )
IxT o X" =x"c'x]lo 1

and thus the solution to the kriging system 4.4.3 can be written

1-X"Ce(x
p= < (x)

Ax) =Cle(x) - uw

8 An analogous property holds for the semivariogram namely it is conditionally negative semidefinite, see
Appendix «airf».

90r its generalization to intrinsic random functions of order higher than zero,see Appendix «irf».
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where we introduced
w=C"X
s=-X"C'X.

We call the vector w the "Lagrange correction vector” since it arises from the Lagrange
multiplier formulation of the minimum variance formulation above.

In the case 4.4.2, where the matrix I results from a semivariogram without a sill, a
pseudo covariance [Journel and Huijbregts, 1978, p 306] Cp(x) is defined by

7(8)=.Co= C,(8)
and thus
C,=Cll' -T 445

where Cp is a constant greater than the maximal element of I'. Note however that it is
not certain that the resulting matrix is positive definite.
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MODELS OF ASTIC FUNCTI

In this chapter some characteristics of models of stochastic functions will be discussed.
The main difference between the models employed in this work is whether a trend is
explicitly modelled, in which case we will talk of a residual type model, or if the trend
is modelled implicitly by a local stationarity assumption as described in section 4.2.
This latter case is referred to as, somewhat misleading, the intrinsic case.

5.1 Covariance models.

As discussed in section 3 and appendix A many properties of a stochastic function can
be explainéd if one knows the semivariogram. However, as we have already seen, not
any function can be chosen as a semivariogram or for that matter a covariance function.
Two models that guarantee the definiteness properties are presented in this section and
will be used in our subsequent work. These models are both what is referred to as
transition models [Journel and Huijbregts, 1978] which means that they possess a
finite variance and thus have equivalent formulations in terms of covariance functions.

The models are basically isotropic. The first one is the so-called spherical model and is

written in the form of a covariance function as

ce) = [V(l— 3“5“+ ;Ili!l’) o<|e|< a
0 lell> a 5.1.1

and the the other is an exponential model

C(&) = Vexp(— AED Ve 512

where in both these expressions V signifies the variance, & is the vector separating two
measurement points, i.e. the lag vector and a and A are parameters determining the
range of the stochastic function with the corresponding covariance function.10 The
range, or correlation length, of a stochastic function Y(x) is the maximal distance
separating two points xj and x2 over which the the stochastic variables Y(x1) and Y(x2)
are correlated. We note that as a rule of thumb the practical range of a stochastic
function with an exponential covariance function is 3/A whereas for a stochastic

function with an spherical covariance function the range is equal to a.

A simple way to model stochasticly anisotropic fields is to use so-called geometrical

anisotropy i.e. to write

10These models could of course have been stated in the semivariogram form, see «sfung.c».
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C(§) = C,(GF)

where Cig, is an isotropic model and G is the matrix of geometrical anisotropy. This
will transform the level surfaces of the covariance functions from concentric spheres to
confocal ellipsoids. The mapping

n=G§

will be said to transform the (lag) space into the isotropic (lag) space. In this work we
will restrict G to the form

A, 0 0
G=|0 4 0
0 0 4

This means that the resulting covariance ellipsoids have two main axes in the horizontal
plane and one orthogonal to it.

1,0 1
0,8 1
E tial
0.6 - xponentia
0,4 1
0,2 4
Lag distance
0,0 v T v T v 1
0 1 2 3
Figure 5.1.1 Showing the exponential and spherical variogram models. They
both have finite variance equal to 1.0 and practical range equal to
3.0.

Further models of covariance functions can be obtained by adding covariance functions
of the above classes to obtain what is known as nested models [Journel and Huijbregts,
1978]. This however will not be employed in this work.

5.2 Kriging neighbourhoods

Kriging neighbourhoods are discussed in chapter 4. The particular form of these
employed in this study are inclined slices, see figure 5.2.1, for instance the kriging
neighbourhood for the point x1 is given by
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D(xl)={xeR3: - OS(x—x,(xl))Oﬁs w +o}

where the width w and the overlap o are positive real numbers, n is the normal of the
slices and xp(x1) is a point defining a kriging set!l . The kriging set containing the point
X1, E(x1) is defined as

E(x1)={xeR3:OS(x—x,(xl))0ﬁ< w}

and thus consists of slices of width w inclined in the same dirstion as the kriging
neighbourhoods. This implies that the kriging neighbourhood is unchanged for all
points in a kriging set

D(x P(x )+ sfi +b) = D(x)

if s < w is a real number and b is any vector orthogonal to the kriging neighbourhood
normal nA. The function xp(x1) is chosen so that the set of all kriging sets is mutually
disjoint, i.e. there is no point that lies in two kriging sets, and covers the domain of

interest. 12

Since, as explained in chapter 4, the primary requirement on a kriging neighbourhood is
the constancy of the expected value function this choice of kriging neighbourhoods is
motivated by the well known decrease of hydraulic conductivity with increasing depth.
This decrease will thus be achieved without the use of an explicit trend function. Also
inclination of the slices can be motivated by an assumption that the level surfaces of the
hydraulic conductivity is oriented parallel with the subhorizontal zone 2.

11This is a nonstandard notation invented by the author.

121t may be mentioned here that HYDRASTAR.1.1 allows the definition of primary kriging
neighbourhoods and sets prior to the slicing defined here. This can be used to treat the zones as different
from the rest of the rock. This possibility has not been used here however.



Figure52.1 Showing a kriging set and a corresponding kriging neighbourhood.
o Nodes inside the kriging set i.e. € E(x1).
® Nodes outside the kriging set.

Measurements inside the kriging neighbourhoodi.e. €
D(x1).

O Measurements outside the kriging neighbourhood.

As for the parameter w it should not be too small in comparison to the correlation scale
of the stochastic function considered. On the other hand it should not be too large in
view of the constancy requirement.

5.3 Trends

If one does not believe that a zero:th order intrinsic model, even using kriging
neighbourhoods, is sufficient for describing the phenomenon at hand one may want to
include the expectation value functions explicitly in the analysis. In this work we will,
for simplicity, confine ourselves to the use of linear models. That is we assume that we

may write

my (x) = 6(x)" B 53.1
where B is a Mx1 vector of multiplicators and ¢(x) is 2 Mx1 vector of basis functions.
The choices of the basis functions is done based on examination of the general

appearance of measurement data. The following basis functions will be utilized in the
different trend models:

A constant trend ¢i(x) = 1.
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Exponential type trend function ¢;(x) = x-z where Z is unit vector pointing
downward.

Potential type trend function ¢j(x) = log(c + x-z ) where ¢ is a given constant.

Characteristic trend function ¢;(x) = I(x € zone 2 ) where I is an indicator
function that equals one if the condition in parenthesis is fulfilled, zero if not.
In Appendix E we discuss the geometrical characteristics of zone 2.

The reason for the names exponential type and potential type is obvious since they are
models for the log conductivity. See sections 9.4 and 9.5.

Denoting the data support by
N
=1

{*:},

and replacing the functions defined above by vectors containing the values at the data
points as components we write 5.3.1 as

m, =Xf 53.2
where X is a NxM matrix which we name the trend matrix. The columns of X are the

basis functions above evaluated at the data points. It is essential for the regression
analysis which follows that the columns are linearly independent.
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T L RENCE

6.1 Non-parametric variogram estimator

First we define a spherical coordinate system for the lagspace in terms of a given basis
system {xA, yA, zA} where z* is directed upward by referring to figure 6.1.1.

Figure 6.1.1 Defining a spherical coordinate system for the lag space.

Secondly, in order to estimate a semivariogram, we divide the lagspace into lag classes
Lj, j defined by

<— > < %-e}._,
le]” - (28) o )}

1<i<R,1<j< 6 6.1.1

L., ={§=r,~-f <l < r2un(-0)s—2)

where r; are the radial lag class delimiters, 6; are the angular lag class delimiters ordered
in an increasing sequence, R is the number of radial lag classes and © is the number of
angular lag classes. Since we define 6; to be an increasing sequence the ordering of the
angular lag classes as defined by 6.1.1 is from the most horizontal to the most vertical.

Since the semivariogram is symmetric!3 it is only necessary to let 6 vary from 0 to ©/2
thus the lag class delimiters always satisfy 61 = 0 and 8¢ = 7/2, also trivially rg is
always chosen equal to zero. Note in particular that there is no radial lag class defined
by the sole condition of being greater than rr. The lag space could also be divided in
the ¢ -direction as defined by figure 6.1.1, i.e. the angle in the horizontal plane, as well.

However on the interest of simplicity this has not been done, see also the next section.

As a nonparametric semivariogram estimator we use

13That is &) = W(-E) which implies ((1,0) = Y(r,-0) with 0 as defined by figure «nve.A».
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= ql{—L Yy x+8) - ]’

€L, ;

where the sum for each i, j is taken over all pairs of measurement points such that the
vector connecting them belongs to Lj j and | - | denotes as always when applied to a set
the number of points in (or more general, size of ) the set. Note that lags between
different holes participate as well as lags between points in a single hole. Each estimate
T, j is interpreted as the value of the semivariogram at the centroid of the lag class. This

centroid is defined by

r .= erV/jdV

4.7

Li J LI g 6.1.2
and

6,,= [6av/[av
L, Lo 6.1.3

In the case that the lag class is given in spherical coordinates by 6.1.1 this is expressed

as

;= 3(’;'4— ri-14)
o 4('}3— ri—la)

and

- 6,cos 9}. + 6,_,cos Bj o tsin 6, —sin 6,

i cos 6., —cos 6,
J = J

Other nonparametric estimators, mentioned in [Russo and Jury, 1987], are developed in
[Cressie and Hawkins, 1980] and [Omre, 1984].
6.1.1 Fitting of variogram models

From the discussion in section 5.1 it follows in general that our semivariogram models
can be written Y(V, G, £) where V is the variance, G is the matrix of geometric
anisotropy and & , as always, denotes the lag vector. In particular the anisotropic

exponential variogram model is

r (€)= V( l-exp(- \/&3' [élz‘r éz]+ Pig 532)). 6.1.1.1

The fitting of such a model to the nonparametric semivariogram estimates I'i jis done
by minimizing the weighted square norm

minv,c ZW;,,' rv ’G’&n’.j) - I:,j)z
ij .

6.1.1.2
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Here §;, j are the representative point of the lag class i, j as defined by the averages 6.1.2
and 6.1.3, Wj, j are the weights of each estimated semivariogram value T, j and is set
equal to the number of lags participating in the lag class i, j.

The motivation for this choice is that roughly this situation is equivalent to weighted
regression where one minimize

(T-v¢,G) C(T-y¥,G)

Here T is the vector {T5, j}i, j, Y(V, G) is the vector {(V, G, &, j)}i,jand Cis the
covariance matrix of I" i.e. C = E[TTT]. Now the variance of I'j j, that is a diagonal
term of C, should be proportional to 1/N;, j if the Iy, j were independent.

The solution to the problem posed by 6.1.1.2 is obtained by the use of a conjugate
gradient method as described in [Press et al, 1989, chap. 10].

It is to be pointed out here that the method described here has a number of
disadvantages which unfortunately was not understood at the time of implementation.
The use of lag classes certainly speeds up the calculation of the target function and its
gradient but it makes the analysis somewhat arbitrary since the optimum depends on the
choice of the lag classes and also on the choice of the weights and representative point
for each lag class. A better approach would be to minimize

ming g X (¥V,G.x, -x )= ¥ (x,)Y (x,))’

(i.j)
as suggested in [Kitanidis, 1983], where x; are the measurement locations and the sum

is over all unique pairs.

6.2 Regression

This section contains a summary of our needs from the theory of regression analysis.
The material is certainly contained in [Draper and Smith, 1966] or [Placket, 1960]. It is
inserted for easy access of the reader and a reader familiar with the material could skip
the section.

6.2.1 Normal equations

We will assume throughout that Y = log(K) is a Gaussian process. This assumption
paves the way for deriving the normal equations by maximum likelihood. In fact let Y
denote the stochastic vector obtained by restricting the stochastic function Y to all
measurement points {x;}i=1,...N and let y denote our realization of Y then the
"probability for the outcome" y for a given parameter vector B, the so-called likelihood

function L(y, P), is
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Ly )= 1 exp(_(y—xmg(y—xm)

(27)"det( C)
differentiating with respect to B and setting the deriviative equal zero we obtain directly

X C(y -XB)=0

or
T -1 T -1
XCXp=XCy 6.2.1.1
with solution
-1
B=(x"c™x) x'Cy 6.2.12

As an alternative, distribution-free derivation we show that the estimator 6.2.1.2 is the
unbiased estimator of B with the least variance. This is known as Gauss theorem and

may be shown as follows.
Assume that
B=zy

is a linear unbiased estimator of B where B, the process Y and the data support is
connected by the equation

ELYI=XB, 6.2.1.3
The requirement for nonbiasedness is written as

E[B]=zEIY1=p
i.e. using 6.2.1.3

ZXp=P
or better, since we want the above equality to hold for all B,

ZX =1,

where Iy denotes the M by M unit matrix.

Moreover the centered variance of the estimator is

o £{(B- EBD(B- E[B) = w(zc,27)



41
where tr(-) denotes the trace operator. 14

Now minimizing this variance taking the requirement of the nonbiasedness into account
amounts to finding a stationary point to the Langrangian

LZpy=1w (ZC,Z") +(ZX -1,) ot
where now dot stands for outer matrix (tensor) product. 15

Differentiating this we obtain16

[aL(Z’u)(Z, ,62)=2r(§2C,2") + §ZX o p=0

1%(1”)(2, , ) =(ZX -1,)¢ 8p=0

Now since
r(82C,Z )= 62C,Z 1,

and, as is easily established, it is true for general matrices Sy, S and S3 that
$S,8,=55, ¢S,

provided that both sides of the equation is defined, the stationarity condition translates
into

[9 (Zw)
(Zu)

—57—~(Z 1, § Z) = (2ZC, +pX" ) e §Z =0

——(Z, 1, 6p)=(ZX -I,)e dpu=0

The fact that 8Z and &y are arbitrary is now used to derive the system of equations

14The trace operator is defined as: Let S be a general NxN matrix then
N
r(S$)=25,,
i=1
15The outer matrix (tensor) product is defined as: Let S1 and S be two arbitrary NxM matrices then

s- 235,

i=lj =l i

16This is in the Frechet sense i.e the derivatives is interpreted as linear operators on 8Z and 8yt

parameterized by Z and 1L For a nice treatment of Frechet derivatives see [Ladas and Lakshmikantham,
1972, chapter 1]
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2ZC, +pX' =0
ZX-1,=0
for points of stationary for the Lagrangian.

If we multiply the first equation from the right with one half times Cy-1X and subtracts
the result from the second equation it follows that |t = 22(XCy1X)-! and thus it follows

that Z = (XCy 1X)-1XTCy-! which is precisely 6.2.1.2 that is obtained in the derivation
using the normal distributional assumption.

6.2.2 Variance of the parameters

Introduce the variance operator in terms of the expectation value operator as

v[B]= e[(F- EBD(K - e8] £[pp]

where primed quantities always denotes the mean removed form of a stochastic entity.
Since it follows from 6.2.1.2 that

-1
F=(x"v'x) X' vy 62.2.1
the variance matrix of the parameters is easily calculated as

elpp )= (x"vix)” 6.2.2.2

6.2.3 Variance of the estimate.

Since the estimator BA is unbiased

e[Y]=xe[B]

and thus
A A AN/A AT T
o8] (& - E8DG& - YD) - xe [ Jx
so by 6.2.2.2 we may write

v[§]=x(x"vx) X

6.2.4 Confidence ellipsoid

First we note that the parameter vector B/ is Gaussian since it is linearly related to Y by
6.2.2.1. Hence in particular any component of B/, B, is normally distributed with
expectation value E[B*]; and variance V[B*];, ; . Invoking standard mathematical
statistics we derive a 100(1 - o) confidence ellipsoid for the vector B/ as



43

T
(B-8) xc™'x"(B-p) <
N - -
[-I—V—__—M——:Kyrc 1y -—ﬁXC 1y)F(M, n—-M,1- a)
where as usual N is the number of measurements, M is the number of parameters used
to describe the trend function and F(M, N-M, -) is an F distribution with (M, N-M)

degrees of freedom. This result is stated, but not proved, in [Draper and Smith, p 108].
A more comprehensive derivation of these results are found in [Plackett, 1960].

6.3 lterative Generalized Least Squares Estimation
Let us write the logarithm of the hydraulic conductivity Y as
Y (x)= m(x)+ Y (x)
where m(x) again denotes the deterministic drift component i.e.
m,(x)= E[Y (x)]

and primed quantities as always signify mean removed form. Assume in the following
that the residual Y~ is a second-order stationary stochastic function, see 3.1.

If the drift component m(x) were known, we would be able to retrieve structural
information and estimate Y at unmeasured locations using residual kriging and the
residual variogram 3.2.1

4 ’ 2
7%, ) =3Ef x+ &) ¥ (x)]

or analogously the covariance function. Since this is not readily available one could use
the variogram of Y Yy(x, &) as an approximation of yy*(§). This leads to the error

% %)= %, E) =3m & +E)- mx)]

as easily verified by expanding ¥y (x, &) and substituting yy(§). If this error is small in
comparison with the variance of Y for points in the lagspace x such that | x | is less
than the correlation scale of Y~ we could use the local stationarity assumption of section
4.2. If this is not the case one should try to estimate the trend.

Thus we write the trend using a linear model as
m, (x)=Xp

where now the vector my(x) signifies the Nx1 vector obtained by evaluating the
function m(x) at all measurement locations the remaining notation has previously been

explained in section 6.1.
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As explained in section 6.2.1 the maximal likelihood or the minimum variance
equations for B are

T ~-1 T ~-1

In the most common case of regression the assumption is that the residuals are
independent. This would in the above equation correspond to the case that

C= o1 6.3.2

where 1 is the NxN unity matrix. In our case however there is certainly no ground for
such an assumption, since on the contrary we plan to use the covariance function of Y’
for simulating the process. To use the assumption expressed in 6.3.2 and then estimate
the covariance function of the residual for subsequent use for simulation purposes is
self contradictory.

Since neither the drift nor the true covariance function is known this calls for an
iterative procedure. Starting with an initial estimation and fitting of the semivariogram
we solve the system 6.3.1. We then calculate the residuals and estimate the
corresponding residual semivariogram which is then used to recalculate the drift
components B etc. The iterative procedure is halted when the difference in the
regression parameters P in two successive iterates is tolerably small. This method has
previously been employed in for instance [Neuman and Jacobsson , 1984] and [Lovius
etal., 1990]
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7JA IFIN

As discussed above in section 5 there are many possible models for a stochastic
function meant to explain the pattern of the observed conductivities. After the choice of
model has been made, methods for estimating the model parameters, as for instance
those described in chapter 6, are employed. These methods are constructed in order to
produce, in some sense, a best estimate of the model parameters. In simple cases,
always using an a priori assumption on the distribution on the sample itself, one may
derive the distribution of the estimator and thus produce confidence intervals etc. see
section 6.2.4 for example. If the situation is to complicated for the actual derivation of
the distribution of the estimator, simulation or distribution free methods such as the
Chebyshev inequality may be used.

Such a procedure however does not tell you if the a priori assumptions are any good,
see for instance [Draper and Smith, p. 41]. If one is interested testing these a priori
assumptions or in finding the best model it is imperative to have a way to say " Model
A is no good" or similarly a way to order models by statements of the kind “Model A is
better than Model B”. In the sequel we let model mean the a priori model together with
some parameter estimates, for instance those obtained by the methods described in
chapter 6. Note however that in the case of intrinsic functions the form of the kriging
neighbourhoods constitutes an important model characteristic that cannot be estimated
but only chosen and evaluated by the methods to be described.

Here a method known as cross-validation or jacknifing will be described. The objective
is to measure the predictive capabilities or the “goodness® of a given stochastic model
with given parameters . The technique is based on removing one sample point at a time
and then to use the suggested model and the remaining sample points to predict the
removed value with kriging. In this fashion one obtains a vector of kriging errors which
can be analyzed statistically. The method is similar, at least as the objectives are
concerned, to the examination of residuals in regression analysis see [Draper and Smith,
p. 141-183].
Let us start by refreshing the notation used in section 4. Removing the I:th data point
where 1 £ I <N the kriging equations for predicting the value at the I:th data location
becomes

[jeb(g),jdlj(XI)C (x i xj) + u(x,)=C(x,—x)) ieD(x),i=#l

Ajx)=1

ieD(xI),jﬂ

which leads to the kriging estimate
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V= X R ()

jeD(x'),j¢
and the kriging error
g = Y(x,)—Y'(xl)=Y(x,)- 2 lxj(xl)y(xi)

jeD(x ).j»
We note that including the nonbias condition above are strictly speaking unnecessary
when the model includes a trend, since we then could use residual kriging. It is clear
however that the inclusion of it does not affect the results of the jacknifing procedure.
This is true since the assumptions done in deriving the kriging system above is certainly
valid but of course the estimator is not the best since it would be improved by removing
the nonbias condition.

From the section 4 it follows that the two first moments of the kriging error component
€ are

E[g]=0 7.1
and
E[Esz]': C0) - pu(x,) - )) A4(x)C(x;—x))
ieD(x),jwl 7.2

respectively. We stress again the fact that these results follow only if the a priori
assumptions are correct. That is:

(i) The log conductivity process or residual process has the covariance
function C(-).

(ii) The expectation value E[Y(x)] or E[Y "(x)] is constant in D(x).

Defining the reduced kriging error vector by

E.
=—p—= i=12..,N
VE[&] 73

we introduce the three jacknifing measures mean reduced error, mean square
reduced error and mean square error

1 N
MRE = W—Eé"

15,2
MSRE =—-28,

i=1
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N
2
£,
13

1
MSE = 7‘. :
Assuming that the model is correct it follows from 7.1 and 7.2 that MRE = 0 and MSRE
= ( In fact we know that if the model is correct then

E[£]=0 7.4

and

e[e]=1 _ 1.5

Now it would be tempting to assume that the kriging errors are normally distributed and
perform a t-test, [Fisz, 1963, p. 348] to check the validity of the hypothesis that 7.4 and
7.5 holds. However since the kriging errors are not independent!? this does not seem
correct. This will be further discussed in chapter 8.

On the following pages some typical results from a jacknifing calculation are presented.
Shown is the original measurements and the successive prediction errors when
removing one point at a time. One notes that

@ The errors are neglizible on the flat portions of the conductivity plot.

(i) There are large errors occurring in negative positive pairs at points where the
conductivity plot shows rapid changes. This is very clear when studying figure
7.2.

This explains the fact, observed in chapter 9, that the jacknifing measure MSE is
independent of the model choice since the sum of non reduced error is dominated by

the very large errors in top graph of figure 7.2.

17That the kriging error cannot be uncorrelated in general is easily shown by a counter example.
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Jacknifing error
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Figure 7.1 Jacknifing errors and original regularized measurements in kfiOl.
The estimates are calculated using the exponential isotropic model
in section 9.1.2 and measurements regularized to 36m from all
boreholes.
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Jacknifing error
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Figure 72 Jacknifing errors and original regularized measurements in bfi0l.

The estimates are calculated using the exponential isotropic model
in section 9.1.2 and measurements regularized to 36m from all
boreholes.
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7.1 Calculation of the jacknifing measures using Woodbury’s formula

The ordinary kriging system 4.2.5 can be written as

w0 ][ 7] 2

where

D [01]
1170

and where in turn C as usual denotes the NxN covariance matrix {C(x; - Xj)}i, j=1,N
c(x) is the vector {C(x; - X)}i=1, N and 1 is the Nx1 vector with all elements equal to

one.

As previously stated what we want to do is to remove one data point , the I:th say where
1 <I<N, and thus solve 7.1.1 with

C={C(xi=x)},

e(x)={C(x;-x 1)}“1

Clearly this corresponds to replacing the I:th row and column in D with zeros leaving
an arbitrary nonzero element at the location (I, I), and neglecting the value of A1 . We

will show that this is in fact a two dimensional perturbation of D. Let us denote the I:th
column of D by d}. By symmetry the I:th row of D is equal to djT. Denoting the I:th
(N+1)x1 unit vector e}, and letting p stand for an arbitrary nonzero number, it is clear
that the matrix

P=e,d,T —-e,(p+ dm)elr +d,e,T
has at most two dimensional rank since it may be written
T T
P=UV =[e,d ][d, —-(p+d ,)e,e,]

and that the I:th row and column of the matrix D - P has only one non-zero element
namely the diagonal element which is equal to p. !® Thus the jacknifing equation can be
solved using Woodbury’s formula, see appendix D. Denoting D-1 with B and the
columns of B with by we have trivially

so that

18 We note that the perturbation is one dimensional in the particular case df = o2ey.
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(v* BU)m:dere' -(p+d )e, Be, =1-(p+4d, ),

T
(VTBU)Lz:d’ Bd, —(p+ dI.l)elTBdlz dl',—(p-i' dl,l) =—-p

s

T T
(V'BU), =e,"Be,=b,,

and

(V'BU),,=¢,"Bd, =1

and thus -

-b 0

1,1

I-V’D“U=[(p+d"’) bri p}

This matrix is nonsingular if by, 1 is non zero since the number p is always chosen to be

non-zero.

Now, we derive the solution of the original kriging system 7.1.1 when x = Xy is e.
From Woodbury ‘s formula D.2, the kriging weights A| for determining the kriging

estimate at the measurement point X are
-1
-1 T =1 T
A, =e, +D'U(I-V'DU) Ve, 112

Now by Cramer’s rule

S | lO -p
(I VD U) ‘Pb,,l bl,l (p+d,_,) bl.l

so first

-1
BU(I- V' D7'U) =[-;—e,,—-51—b,+(1+ ;;’)e,]

1,1

and second
T - D
A% e,=[1 ]

which together imply that
d

-1
-1 T -1 T 1 I
DU(I- V' D'U) Ve, =-3—b, +—e,

1,1

so that from 7.1.2 we obtain

d
%)
A, = b“b,+1+ 7R
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and in particular,

A= D

which we knew all along. The kriging weights are given by

1 .
K,.i=—'b—-—b1". i#1

1,1

Now in order to calculate the jacknifing measures MRE and MSRE we need to
calculate the normalized kriging error. That is we need to express the variance of the
kriging error. From section 4 it follows that the variance of the kriging error in general
is given by

E[(Y (x) =Y (x))z]= C(0) — u(x)- 2 A2,(x)C(x ;- Xx)

ieD(x)

and thus with the current notation

L] 1
E[(Y (x)) -Y (xl))z]= d, - le.idl,i =d, , + b zbl.idl.i =

inl 1.1 w1

1
4 ,+ -b—l—l-(l— dl.lbl.l) =

1

b

LI
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NG MODEL ISTE FIN

As a preliminary step we derive the expected value and the variance of the MRE and
MSRE, based on the simplifying assumption that the reduced errors are normally
distributed and uncorrelated. Subsequent analysis without these assumptions show that
these preliminary estimates are inaccurate, and therfore the following should be viewed
only as a simplified demonstration of the analysis approach. The second part of this
section gives more correct formulae.

Assume that our a priori model is correct, i.e. that the observed values of hydraulic
conductivity together constitute a realization of the considered model. If we add the
assumptions that the reduced kriging errors, as defined in 7.3, belongs to N(0, 1)1? and
that the error made when treating them as uncorrelated is not too large we have

wa <0 )
N*MSRE € xN)

where %2(N) indicates a y2-distribution with N degrees of freedom, N is as always the
number of measurements. Since the number of measurements, in a geohydrological
investigation in general, and at the Finnsjon site in particular, is quite large it is
appropriate to use asymptotic theory. Thus it may be shown20, that as the number of
degrees of freedom goes to infinity, the random variable (2N * MSRE)!/2 has the
asymptotic distribution N((2N - 1)1/2, 1). Thus we will henceforth assume that

1 1
MSRE'? N( /1———,———)
€ 2N 2N ).

In particular this leads to the result that
VIMRE] _
viMsre™]

Moreover the confidence intervals become independent of the model tested. This is an
advantage over the simulation approach described below. Thus

19This clearly follows (by the linearity of the formula for the kriging error) from the original assumption
that the stochastical function involved, that is in our case the logarithm of the hydraulic conductivity, is a
Gaussian process.

20[Fisz, 1963, p 342] gives the reference Fisher, R. A., Theory of statistical estimation, PCPS 22, 700
(1925).
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1.96 _1.96

MRE €[~ 77 )

1.96 1. 196
MSRE" €| [1- 5+ - , /1——+———]
§ e[ 1-3N /2N 2N " /2N

are 95% confidence intervals for MRE and MSRE1/2 respectively. In a large number of
the calculations of the jacknifing measures shown in section 9 the number of
measurements is N = 1815. In that case the confidence intervals are [-0.046, 0.046] for
MRE and [0.967, 1.033] for MSRE!/2,

Note that we cannot treat MSE in this way since its distribution is dependent on the
tested model as well as the location of the data points.

If the above assumptions seems inadequate one may perform repeated simulation of a
process corresponding to the examined model on the actual measurement points
together with subsequent jacknifing. In that way we derive an experimental distribution
for the jacknifing measures. Either the approximate analytical above or the
experimental distribution, can then be used in conjunction with the actual jacknifing
measures to test the hypothesis:

HO: The measurement values stem from the given stochastic model.

In principle this should be done by finding an event (domain) in the (MRE, MSRE,
MSE) -space that has probability measure a. If our actual value of (MRE, MSRE,
MSE) is outside this event we can reject the hypothesis HO on the 1 - o level. However

to regard the stochastic vector (MRE, MSRE, MSE) is too laborious and we settle for
deriving the a and 1 - o quantiles of the distributions of MRE, MSRE MSE separately,

as above, and reject the hypothesis HO if some of the jacknifing measures lie outside
these confidence intervals.

This idea could be applied for any measure whatsoever, or for instance for the sample
vector itself or the model parameters. The point is however to find good measures as
the above measures hopefully are. To regard the sample itself is obviously impractical .

A more down-to-earth reason for performing this analysis of the distribution of the
jacknifing measures is of course that it is vital to determine what a mismatch in one of
the jacknifing measures implies about the model inaccuracy. For instance say that two
different models give the measures (MRE], MSRE1, MSE}) and (MRE2, MSRE3,
MSEj) where (say) MSE; = MSE; and

IMRE; I>IMREy >0
implying that model 2 is the better but

I1-MRSE;121>11-MRSE;121>0
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implying the converse. The straightforward solution is within reach if one knows the
variances (V[MRE;], VIMSRE1/2], V[MSE1/2]) and (V[MRE], VIMSRE21/2],
V[MSE31/2]) of the measures because then a reasonable combined measure can be

defined as for instance

(MRE|  |1- msre,"]  |msE,"* - E[MsE,"]
+ 7+ - V7

J. = 12 172 3
VIMRE]  y[Mmsre'] v[mse,"”]

or more simply

IMRE|  |1- MSRE, "1
+ 1/2

J. = 12
VIMRE]  y[msre'] 8.1

1

where we, in both of the formulas above, tacitly assumed that V[MRE] and V[MSRE]
are independent of the model. Thus model 1 is taken to be better than model 2 if

J1<Ja.
8.1 Simulations

The first requirement to fulfill in order to perform the task formulated above is to be
able to simulate from all inferred models. This was not done because it was not deemed
to be critical. Instead in order to get a grip on the situation simulations has been done
for the intrinsic models only with the following results.

8.1.1 Spherical isotropic
Using the model in 9.1.1.1 we obtain after 100 realizations:

E[MRE] = 0.230E-3
V[MRE]1/2 = 0.139E-2
E[MSRE!72] = 0.995
V[MSRE12]1/2 = 0.255E-1
E[MSE!72] = 0.164
V[MSE!2]12 = 0.439E-2

so that approximately

vIMRE]” 1
vimsre@l 1%

Assuming that the jacknifing measures are normally distributed we get the following
95% confidence intervals.
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MRE € [-2.49E-3, 2.95E-3]

MSRE!2 € [0.945, 1.045]

MSE12 € [0.155, 0.173]
8.1.2 Spherical ani :

Using the model in 9.1.1.2 we obtain after 100 realizations:
V[MRE] 12 = 0.131E-2
E[MSRE!/2] = 1.00
V[MSREVZ] 12 = 0.242E-1
E[MSE!2] = 0.166
V[MSE!2]12 = 0.460E-2

so that approximately

VIMRE]" 1
vimsre®l 1%

Assuming that the jacknifing measures are normally distributed we get the following
95% confidence intervals.

MRE € [-2.56E-3, 2.56E-3]
MSRE1/2 € [0.953, 1.047]
MSE12 € [0.157, 0.175]
Using the model in 9.1.2.1 we obtain after 100 realizations:
E[MRE] = -0.285E-3
V[MRE]!/2 = 0.172E-2
E[MSRE!/2] = 1.01
V[MSRE!2]1/2 = 0.195E-1
E[MSE!/2] = 0.216
V[MSE1/2]122 = 0.480E-2

so that approximately
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VIMRE]D" 1
V[Msmz‘”]”2 113

Assuming that the jacknifing measures are normally distributed we get the following
95% confidence intervals.

MRE € [-3.66E-3, 3.09E-3]
MSRE!2 € [0.972, 1.048]
MSE!2 € [0.207, 0.225]
Using the model in 9.1.2.2 we obtain after 100 realizations:
E[MRE] = 0.216E-4
VIMRE]12 = 0.140E-2
E[MSRE!?2] = 1.01
V[MSRE1/2]1/2 = 0.220E-1
E[MSE12] = 0224
V[MSE!/2]122 = 0.546E-2

so that approximately

VIMRE]” 1
7~ 15.7

vIMsre'™?]

Assuming that the jacknifing measures are normally distributed we get the following
95% confidence intervals.

MRE € [-2.72E-3, 2.77E-3]
MSRE12 € [0.967, 1.053]
MSE!2 € [0.213, 0.235]

8.2 Conclusions

Since the number of measurements in the above simulations are 1815 the theoretical
value for VIMSREY2]1/2 equals 0.166E-1 which is lower than what is obtained in the
simulations above but of the same order whereas the value for VIMRE]/2 in the
simulations above is one order of magnitude to small compared to the theoretical value
0.235E-1. The only explanation for this fact at hand is that the treatment of the kriging
errors as uncorrelated and normally distributed gives totally incorrect results. Thus the
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analytical treatment should only serve as a model for the analysis. The use of a normal
distribution to derive a confidence interval in the first part of this section is thus of no
importance, since what will used below is only the approximative relation between
V[MRE]!/2 and V[MSRE1/2]1/2.

Since the distribution of MSE cannot be considered to be independent of the tested
model, its value as a measure of the model fit is limited. Also, as explained previously,
MSE does not vary among the models. Thus it seems consistent to choose

J =15|MRE|+ [1- MSRE"]

as a comparative measure between models analogously to 8.1. The value 15 is the
approximate average of the values of VMSRE!/2]/2/V[MRE]/2 obtained above.
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9 RESULTS

Since the objective of this work was to find the best model for the stochastic
conductivity field at the Finnsjon site, it was necessary to test a lot of models. The
results of this testing are shown below, with a section for each case. We stress that all
results shown refer to measurements regularized to the 36m scale. Some miscellaneous
results on other scales are found in appendix F.

As pointed out previously, some arbitrary choices have been included in the analysis.
The most important of these are |

Kriging neighbourhoods.

Weights used in the variogram fitting
The division into lag classes.
Regularization tolerances.

The sensitivity for some of theses choices are illustrated in section 9.2. It may again be
pointed out that the division into lag classes is in some respects unfortunate, since it
introduces arbitrariness into the analysis both directly and also indirectly through the
choice of weights in the fitting, see section 6.1.

In all the cases (sections) below the following input was used, if the contrary is not
explicitly stated.

Normal of the kriging neighbourhoods = (0, 0, -1).
Width of the kriging set = 20m.

Distance from the kriging set to the boundary of the kriging
neighbourhood = 150m.

Minimal number of points in a kriging neighbourhood = 2.
Number of radial lag classes = 91.

Number of angular lag classes = 3 (in the anisotropic cases, in the isotropic
one angular lag class was used. ) The division was [0°, 30°], [30°, 70°], [70°,
90°]. Note that the angles are measured from the horizontal plane.

Weights in the variogram fitting: 1/nj, jlﬂ where n;, jis the number of lags in a
lag class.

Positive regularization tolerance = 0.02.

Negative regularization tolerance = 0.041.



9.1 Intrinsic models
9.1.1 Spherical type variogram

1.1.11 ic model

Fitted model:
Range = 267.6
Variance = 1.74

As previously stated in chapter 5.1 the range of a spherical model is defined as a, see
5.1.1. In general the range will be the preferred way to present the results below instead
of using the parameters a and A.

Jacknifing measures:
MRE = 1.80E-3
MSRE12 = 1.24
MSE12 = 0.1917
J = 0.267

For a look at these variograms see figure 9.1.1.1.1.

9.1.1.2 Ani . jel
Fitted model:
Variance = 1.75
Horizontal range = 307.7
Vertical range = 2578
jacknifing measures:
MRE = 1.66E-3
MSRE12 = 1.23
MSE12 = 0.192

J = 0.2549



61

For a look at these variograms see figure 9.1.1.2.1.

9.1.2 Exponential type models
1211 ic model

Fitted model:
(Practical) range = 107.2 (321.6)
Variance = 1.76

The range for a exponential model is defined, somewhat illogically but in
correspondcncc with the spherical model as 1/A, using the notation of 5.1. This cannot
be compared with the corresponding range for the spherical model. Instead to compare
with the spherical range use the value inside the parenthesis which refers to the
practical range i.e. in the notation of 5.1 3/A See figure 5.1.1.

Jacknifing measures:
MRE = 1.27E-3
MSRE12 = 0.957
MSE!2 = 0.192
J = 0.062

For a look at these variograms see figure 9.1.2.1.1.

9.1.2.2 Ani . jel
Fitted model:
Variance = 1.88
(Practical) Horizontal range = 377.3 (1132.1)
(Practical) Vertical range = 94.3 (283.0)

As for the isotropic case the ranges are defined as 1/Ay, and 1/A, for the horizontal and
vertical ranges respectively and the practical ranges three times these values. See
section 5.1. jacknifing measures:

MRE = 0.804E-3
MSRE1/2 = 0.905
MSE12 = 1.92

J = 0.107

For a look at these variograms see figure 9.1.2.2.1.
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lag class.
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Figure 9.1.12.1 Variogram fit in the spherical anisotropic model. The plots show
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9.1.3 Conclusions for the intrinsic models

In the isotropic case the exponential model displays a much better fit than the spherical
model. This is also reflected in the jacknifing measures. Note also that the peaks of the
nonparametric variogram estimates at short lag distances is accompanied with rather

low weights.

The calculated jacknifing measures together with the results obtained from the
simulations shown in section 8 make it possible to reject all the intrinsic models on the
95% level.

The fitting of the anisotropic variogram is a delicate matter. The fitted spherical
variogram shows almost no anisotropy at all whereas the fitted exponential variogram
shows a anisotropy ratio of four. The horizontal range of exponential anisotropic
variogram is approximately four times the range of the fitted isotropic variogram. Such
a difference is likely to have a very large impact on the results of a simulation.

Since the fitting of a anisotropic variogram model includes any isotropic model the fit
should be better. Nevertheless the jacknifing measures are worse. This shows that the
process of finding the variogram as described in sections 6.1 and 6.1.1 does not lead to
the best model from a jacknifing point of view. Unfortunately the idea to minimize the
jacknifing measure with respect to the model parameters is untractable for large
inference problems as the one described in this report.

9.2 Sensitivity

There are unfortunately some arbitrary choices involved in the results described above.
First, and also most important, is the choice for kriging neighbourhoods.

9.2.1 Sensitivity for kriging neighbourhoods

Since the choice of kriging neighbourhoods is an important part of the model it seemed
well worth an effort to try to find good choices of these. However variations performed
using alternate inclination parallel to zone 2 and varying the width of the kriging
neighbourhoods from 255m down to 70m do not give any significant change in the
jacknifing measures. In fact the following results were obtained:

The input:

Normal of the kriging neighbourhoods = (-0.239, -0.149, -1.00). This is the
approximate normal of zone2. [Andersson et al, 1991}

Width of the kriging set = 85m

Distance from the kriging set to the boundary of the kriging
neighbourhood = 85m.
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Minimal number of points in a kriging neighbourhood = 32.

Tested model: Exponential isotropic, variance = 1.76, range = 107.2

Gave the output:
MRE = 0.139E-2
MSRE12 = 0.957
MSE!2 = 0.192
J = 0.064
The inputé

Normal of the kriging neighbourhoods = (0.0, 0.0, -1.00).
Width of the kriging set = 10m

Distance from the kriging set to the boundary of the kriging
neighbourhood = 35m.

Minimal number of points in a kriging neighbourhood = 2.

Tested model: Exponential isotropic, variance = 1.76, range = 107.2

Gave the output:
MRE = 0.131E-2
MSRE12 = 0.957
MSE12 = 0.191
J = 0.063

9.2.2 Sensitivity for different fitting strategies

Because of the particular form of the data support i.e. the strong clustering of data in the
boreholes, and the large information voids in between, one might suspect that what is
important is the variogram fitting for short lags only. To check this assumption we
performed the jacknifing analysis using the model that behaved the so far most
favorable i.e. the isotropic exponential model with the fitting only taking the lags
shorter than 130 m into account. As seen below in figure 9.2.2.1 this gives a nice fit for
the variogram parameters

0.94

Variance

(Practical) Range = 253 (75.9)
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but from a jacknifing point of view this model behaves poorly since the calculated
jacknifing measures are

MRE = -0.145E-2
MSRE12 = 0.638
MSE12 = 0.195
J = 0.384.

The kriging neighbourhoods used for this result was as previously 320m wide, which is
perhaps too wide, so we repeated the analysis with the width instead being 160m which
yielded

MRE = -0.387E-3
MSRE12 = 0.638
MSE!2 = 0.193
J = 0.369.

i.e. no substantial improvement.

Data from "r_130.w_320"

3 -
- Estimated valu
- Fitted value

5 - o Weight

Lag distance

. v r v Y
0 25 50 75 100 125 150

Figure 9.2.2.1 Variogram fit using only the lags up to 130 m.

Thus it seems as if the advantage of having a close fit at the short lags is totally
nullified by not having the possibility of representing the true variance of the stochastic
function. Thus the obvious generalization of the above study would be to introduce
nested models. [Journel and Huijbregts, 1978].
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9.2.3 Sensitivity for lag class division

Using five lag classes each having an opening angle of 18° the results changed
drastically compared with the results in section 9.1.2.2. We obtained the fitted model

Variance = 2.14
(Practical) Horizontal range = 2290.0
(Practical)Vertical range = 3540

which corresponds to a anisotropy ration of 6.5. These results further underline the
difficulties in estimating the correlation lengths for anisotropic covariances and the
large arbitrariness introduced by the introduction of lag classes.

9.2.4 Conclusions

It is dissapointing to conclude from section 9.2.1 that the the jacknifing measures are
insensitive to the choice of kriging neighbourhoods. This may be due to the fact that the
measurements are so strongly clustered and that thus the estimation for each removed
measurement is dominated by its nearest neighbours. A possible remedy would be to
remove a larger set of measurements.

From section 9.2.2 we point out that the type of fitting shown in figure 9.2.2.1 is what
one would risk being close to if one restricted the lags to interhole instead of using also
intrahole lagvectors. As the corresponding jacknifing measures show this results in a
worse model.

Finally we note again that it is difficult to estimate correlation lengths in the anisotropic
case and that the estimates are very sensitive to the lagclass division.

9.3 Residual models

9.3.1 Potential type trend function
The trend function is of type
log(K)= B,— Blog(B,+z)+ BI{(x,y,z)€ zone 2}

with z being positive downward (m. b. s. 1). Alternatively, which is the reason for the
name of the trend type,

-b
[bobz(b3+z) ' if (x,y,2) € zone2

-b

bo(b3+ z) Yif (X,y,2) € zone 2

with
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4 po
b,= 10
|6= 5
ﬁZ
, =10
b, = i

Note carefully however that we fit the function E[logK] to the measured values log(K;)
and that this is not equivalent with fitting the model for EflogK] to the measured values
K;.

The regression performed with this trend function is not complete in that the parameter
B3 is set to the value 40.0 which is approximately the least value to keep ( B3 +z )
strictly greater than zero. The inclusion of B3 as an ordinary regression parameter would
lead to a nonlinear regression problem. This generalization is of course highly desirable
but has not been included in this work.

.3.1.1 Spheri vari i ic model

Fitted model, semivariogram parameters:

Range = 106.2

Variance = 1.25
Trend parameters:

Bo = -2.07

B1 = 2.07

B2 = 0.074

B3 = 40.0

For a look at these variogram see figure 9.3.1.1.1. The jacknifing measures are:

MRE = 1.40E-3
MSRE12 = 0.923
MSE!2 = 0.192

J = 0.098
.3.1.2 Spherical vari i ic model

Fitted model, semivariogram parameters:

Variance = 1.20
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Horizontal range = 2414

Vertical range = 794
Trend parameters:

Bo = 222

B1 = 2.05

B2 = 0.054

B3 = 40.0
Jackniﬁng‘mcasures:

MRE = 7.34E-4

MSRE!2 = 0.847

MSE!2 = 0.192

J = 0.164

93.13E ial . . . iel

Fitted model, semivariogram parameters:

Variance = 1.29

(Practical)Range = 619 (185.7)
Trend parameters:

Bo = -2.49

B: = 1.93

B2 = 0.064

B3 = 40.0

For a look at these variogram see figure 9.3.1.3.1. The jacknifing measures are:

MRE = 0.141E-2
MSRE12 = 0.849
MSE!2 = 0.191
J = 0.172

9.3.1.4 Exponential type variogram. anisotropic model

Fitted model, semivariogram parameters:



Variance

(Practical) Horizontal range

(Practical) Vertical range

Trend parameters:

Bo
B1
B2
B3

Jacknifing measures:

MRE
MSRE12
MSE12

J

72
1.22
= 80.8 (242.3)
440 (132.0)

-2.465
1.966
0.075

40.0

0.106E-2
0.759
0.191
0.257
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Showing spherical isotropic variograms for the residuals after
removal of a potential type trend. The table shows the extremal
points on the 95% confidence ellipsoid according to section 62 4.
Note in particular that this results implies that the hypothesis: " The
contrast parameter 32 is zero.” cannot be rejected on the 95%

Figure 93.1.1.1

level.
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Figure 9.3.1.3.1  Showing exponential isotropic variograms for the residuals after
removal of a potential type trend. The table shows the extremal
points on the 95% confidence ellipsoid according to section 6.2 4.
Note in particular that this results implies that the hypothesis: " The
contrast parameter 32 is zero.” cannot be rejected on the 95%

level.
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9.3.2 Exponential type trend function
The trend function is of type
log(K)= B,— Bz + Bl {(x,y,2) € zone 2}
or alternatively, which is the reason for the name of the trend type

K= bobzbl_‘ if (x,y,z)€ zone2
bb = if (x,y.,z) e zone2

with
4 Apo
b= 10
[4=14
p2
b,=10
~b3= B

Note again that we fit the function EflogK] to the measured values log(Kj) and that this
is not equivalent with fitting the model for E[logK] to the measured values K;.

2.1 Spheri vari i ic model
Fitted model, semivariogram parameters:

Range = 974

Variance = 1.22

Regression parameters:

Bo = -5.85
B1 = 0.0046
B2 = 0.072

For a look at these variograms and the confidence intervals of the regression parameters
see figure 9.3.2.1.1. The jacknifing measures are:

MRE = 0.655E-3
MSRE12 = 0.897
MSE12 = 0.192

J = 0.113
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Semivariogram parameters:

(Practical) Range = 58.2 (174.6)

Variance = 1.25
Regression parameters:

Bo = -5.95

B1 = 0.0044

By - 0.063

For a look at these variograms and the confidence intervals of the regression parameters
see figure 9.3.2.2.1. The jacknifing measures:

MRE = 0.869E-3
MSRE1/2 = 0.837
MSE!2 = 0.191

J = 0.176
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Extremals for B¢ | Extremals for B; | Extremals for B

Bo 526 |-6.451 |-5.351 |-6.357 |-5.888 |-5.820
B1 0.006 |0.003 10.007 |0.003 |0.005 |0.005
B2 0060 (0084 |0.068 |0076 | 0.281 | -0.137

Figure 9.3.2.1.1  Showing spherical isotropic variograms for the residuals after

removal of a exponential type trend. The table shows the extremal
points on the 95% confidence ellipsoid according to section 6.2 4.
Note in particular that this results implies that the hypothesis: " The
contrast parameter B2 is zero.” cannot be rejected on the 95%

level.
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Bo 525 |-6.65 1-537 |-653 |-598 |-592
B1 0.006 ]0.003 {0.007 [0.002 ]0.004 |0.004
B2 0054 {0071 |0.06 |0066 | 027 -0.15

Figure93.22.1  Showing exponential isotropic variograms for the residuals after
removal of a exponential type trend.The table shows the extremal
points on the 95% confidence ellipsoid according to section
6.2.4.Note in particular that this results implies that the hypothesis:
”The contrast parameter B2 is zero.” cannot be rejected on the

95% level,
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9.3.2.3 Conclusion for the residual models

Looking at the variogram fits in figures 9.3.1.1.1 and 9.3.1.3.1 one sees, admittively
with some effort, that the spherical model gives the better fit. This is reflected in the
jacknifing measures which gives the spherical model as the best. As in the intrinsic case
the anisotropic models behave worse than the isotropic. The potential type trend
function gives overall better results than the exponential type.
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This report has shown that :

It is possible to perform regularization of packer measurements given the
assumption that the leakage due to the test is negligible, see section 2.

It is possible to use jacknifing as a criterion on model "goodness", see section
7. Woodbury's formula is a useful tool when calculating the jacknifing
measures. This gives hypothesis tests far superior to those obtained by
analytical formulae, which require adoption of invalid assumptions.

It is possible to perform hypothesis testing of model consistency with
jacknifing, see section 8.

Some problems with the approach has also been identified:
It is difficult to estimate correlation lengths in the case of anisotropic models.

One should not divide the lag space into lag classes since this introduces a lot
of arbitrariness in the analysis, see section 6.1 and 9.2.2.

In using models like the potential type one should be able to perform nonlinear
regression, see section 9.3.1.

In the specific case of the Finnsjon site the choice of basis functions for
regression could be improved upon, in particular with respect to the
description of zone 2, dividing it into a upper and lower part. See the figures
224102.2.6.

The jacknifing procedure is certainly disturbed by the fact that the
measurement points are so strongly clustered. One result that points in this
direction is the unsensitivity of the jacknifing measures for variations in the
choice of kriging neighbourhoods, see section 9.2.1. Clearly what one is
interested in is the prediction capabilities of a model over long ranges. In the
current approach, the close-range estimates totally dominate the picture. A
possible remedy would be to remove more than one point at a time.

The use of intrahole lag vectors is preferred to the sole use of interhole
lagvectors, see section 9.2.2 and 9.2.4.

The process of finding the variogram as described in sections 6.1 and 6.1.1
does not lead to the best model from the jacknifing point of view, see section
9.1.3.

The results of the calculations on the 36 m scale gives the following conclusions:
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The best model found is the exponential isotropic one without an explicit
trend. (J = 0.062)

The best residual model found is the spherical isotropic one using an potential
type trend. (J = 0.098)

The anisotropic models are in general worse than the isotropic.
The exponential-type trend is worse than the potential type trend.

The hypothesis that the expectation value in zone 2 is equal to the expectation
value in the rock mass cannot be rejected on the 95% confidence level. No
other level of confidence has been studied.

The hypothesis that the estimated model is correct can be rejected at the 95%
level of confidence for all isotropic models and thus all models.

Especially the last point is not satisfactory since it means that we have not found any
sufficiently good model. The following measures could be taken in the future to
improve the situation:

Covariance model fit is rather poor and could be improved with nested models.
Non-transition models could also be tried, see however 4.4.

As noted in section 2.2 the distributions are not especially normally
distributed. Therefore one might try to find a suitable transform other than the
simple logarithmic transform used that produces values which better fit a
normal distribution.

The kriging neighbourhoods could be improved by first dividing the rock into
rock mass and zone 2 before applying the slicing procedure described in
section 5.2.
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The objective of this appendix is to explore the theory of intrinsic random functions in
more detail. In order to do that we have to start with some more exact definitions of a
stochastic function.

A.1 Mathematical definition of a stochastic function

First we define what we will mean with a stochastic function. In order to do that we
first introduce the event space  which is a so-called measure space. The meaning of
that notion is that there is defined an c—algebra X2! of subsets to Q. The sets in this

algebra are known in the language of probability theory as events. Finally there also
exists a positive probability measure P defined on the members of R such that P(Q2) = 1

and that
7(0) =27

if the sets Oj are disjoint, that is the events O; are independent.

We define the space L(£2, X, P) as the real (or complex) valued functions X that are
measurable with respect to 822, In the language of probability theory X is a stochastic
variable. We also define L2(Q, X, P) as the subset of {Xe (R, X, P)} whose members

satisfy

JX (a))zdP(w)< oo
a . All

Then X is a stochastic variable with the extra quality of having a finite variance.

Now define a stochastic function on R3 as a mapping

Y:R’5 LYQ,R,P) A.12

21A collection R of subsets of a set Q is said to be a G-algebra in Q if X has the following properties
@) Qe X

(ii) If Oe R then OCe X where OC denotes the complement of O relative to Q.

(iii) Ifozk:pl. andifeach O;je X thenO e R.

22 A realvalued function F is measurable with respect to R if for every open set O in R the inverse image
F-1(0) belongs to R.
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this is to say that a stochastic function is a mapping that assigns a stochastic variable to
each point x € R3. This can of course also be written in the same manner as in chapter

3ie. as Y(x, o).

In order to avoid misunderstanding it is appropriate to insert a short discussion of the
event space L. The element or "points" ® of Q can be taken to consist of mappings
@:R3 — R! 23, The mapping A.1.2 is then the map Y:x = Y(x)(®) = &(x). Thus in
particular the distribution function of the stochastic variable Y(x) is P(Y(x) £ ) =
P({® : o(x) < a}) and the requirement A.1.1 is reformulated as

[oxy’dr (@) < =
2 A13

for all x € R3. The formulas A.1.3 and A.1.1 are usually expressed by the phrase that
the stochastic function is of second order. Note that this has nothing to do with
stationarity.

After these preliminaries we define the expectation value function or trend of a second
order stochastic function as

my(x)= E[Y (x)] =!Y(X, @)dP(®) < &
Q2

and the covariance

CF(xl’xl) = E[(Y(x )~ My (X 1))(Y (x,)— mr(xz))] =

[T (xp 0) = m (x ) (%, @) = my(x,))dP (@)dP (@) <=

That these integrals exist as finite values is a consequence of the second-order
assumption and the Cauchy Schwarz inequality. Finally Y(x) is a weakly (second
order) stationary stochastic function if my(x) is a constant and Cy(x;, x2) depends
only on the difference x; - x3.

A.2 Mathematical definition of intrinsic random functions

To make the definition of an intrinsic random function precise we follow [Matheron,
1973] and start by introducing the class A of measures on R3 with finite support i.e.

measures A such that

23That is we take Q to consist of all possible realizations. This is equivalent to take the sample space
equal Ng = {1,2,3,4,5,6] in the standard example case of tossing of a die and Ng®Ng®... in the case of
an infinite, or undetermined, number of tosses.See [Doob, 1990].
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holds for any continuous function f:R3 —R. The above sum contains only finitely many
terms. Next we define a translation operator 7¢ on this class of measures by the

requirement that
[£@d(@aym=2f (x, +O)A,

should hold for all continuous functions f.24

Now define A “ as the class of all finitely supported measures A which annihilate the
constant functions, i.e. measures A such that

faa=2a=0
T A2.1
We will say that Z is a generalized second order random function on A’ if itisa
linearmap Z:A — L2, R, P).

A generalized random function on A’ is an intrinsic random function of order zero if
the stochastic function (of x) Y(t,A) is second-order stationary for any choice of A in
A'. That this stochastic function is second-order stationary is equivalent to the

requirement that
Elz)z(M] = E[z(g2)Z(34)]

for any choices of measures A and A" in A”. Expanding this gives
R o " n
E[Zliz (x )2, Z(x’}.)] = E[ZA‘. Z(x, +E) XA Z(x, + g)J
i=1 j=1 i=1 j=t

and thus in particular
2 2
E[(Z(Xl)— Z(xz)) ]: E[(Z(O) - Z(x2 _xl)) ]= 2)'(x2—x D
where Y(h) is the semivariogram of Z. This shows that the above definition of an
intrinsic random order function implies the definition in section 3.1.

24The choice of the continuous functions is natural since the measures of compact support is the dual

space of the continuous functions.
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Conversely let us show that this definition of an intrinsic random function follows from
the definition of an intrinsic random function as contained in 3.2.1 and 3.2.2 in the case
of zero order. In fact

elz()z(2)] =
E[Zui).‘.).'jZ(xi)Z(x'j)]=— %E[Euilil'j(Z(x‘.) - Z(x'j))’}-_—

i=1j=1 i=1j=1

—iilﬂ;y(xi -X))

i1l A22

where we used A.2.1 and 3.2.2 in the second equality. Clearly this and 3.2.1 proves our
case and it also shows in particular by choosing A =A.” that the semivariogram is

conditionally negative semi-definite, i.e. that
- ZZA‘.XI.)'(X,. -X;) 20
i=1j=1
for any A in A” and that the semivariogram is the generalized covariance of order zero
as defined in {Matheron, 1973, p 450] and [de Marsily, 1986, p 314].
A.3 Representations of an intrinsic stochastic function

As seen there is a major difference between stochastic functions as defined in section
A.1 and intrinsic stochastic functions in that the latter are defined on a space of finite
measures. Now we say that a stochastic function Y(x) is a representation of the
intrinsic random function Z(A) if

zZ()=[Y(xdi(x) Vied

First we consider the question of the existence of a representation. It would be tempting
to put A = 8(x - x) in the above formula, where &(-) is the Dirac measure, but this
measure does not belong to A' . However this is easily rectified by taking

Ax)= 6(x—x) - 6(x)
where x” is an arbitrary point and thus deriving as a necessary condition
ZEGx-x)-6(x) =Y x)-Y(0)

We easily see that this condition is also sufficient since taking any measure A in A' then
integrating the above formula with respect to x” we have

[y @aax) = [ 2(6 (x -x) - §(x)aA (%) A3.1

since obviously
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[ @aax)= Y (0 fdrx)=0

Now since A is a finite measure the right hand side of A.3.1 is written

2Z(8(x-x )= SW)A,

for some set of points {x’j} and moreover since, by definition, Z is a linear mapping
this is equal to

Z(Z(S(x —x’j) - 5(x))1i)

Finally it is clear that
2(8(x-X,) - SN, =248 (x-% )= A(X)
and thus

[r )ar(x) = z(a)

which was what we wanted to show.

Now the above reasoning can also be used to obtain all representations of an intrinsic
function Z. To that end let us assume that Y; and Y2 are two representations of the
intrinsic random function Z. Thus by definition

[rmarm=[rmdix) vied

and in particular choosing A € A’ as
Ax)= §(x-x)~ 8(x)

we have
&(x) = g,(x)+ X

for all points x” and where X is a stochastic variable given by i.e
X =(7,00)- Y(0)) e LY(2,R,P)

Note that the integrals written here all refer to functions with values in the Hilbert space
L2(Q, R, P). A very nice discussion of such (abstract) integrals is found in [Ladas and

Lakshmikantham, p 1- 20].
A.4 Relations to kriging

As pointed out in [Delfiner, 1976, p. 57] and as shown in section A.2 an intrinsic
function (of order zero) is an equivalence class of stochastic functions that differ only
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by an arbitrary trivial random function X(w)-1. Furthermore the key equation is the
special case of A.2.2 withA'= A

E[Y (l)z] =— 22&.1}.7(){ i =%))
i=lj=1
since this may be interpreted as expressing estimation error solely in terms of the
variogram. In fact choosing A such that
[f@a=rm- X amrx))

ieD(x)

for any continuous function f(x) where the weights A; satisfy the nonbias condition, we
see that the kriging error is expressible as

E[(Y - 2 AMY(x i)ﬂ:

ieD(x)

22'i1,.<x)y(x -x,)- PN AL, ()Y (X, - X )

i=lj=1 i=1j=1

Thus the point, [Delfiner, 1976}, hat if the interest is to predict the values of the
intrinsic random function, we do not need the covariance of a representation but only
the variogram (generalized covariance) which is the covariance for the intrinsic random

function.
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ND '/

The borehole information was retrieved from the SKB database GEOTAB.

The table SHSINJCD contains conductivity measurements data. Here we chos the
columns IDCODE, , SECLEN, SECUP and K. IDCODE contains the name of current
hole SECLEN the length of the packer section (c.f. next appendix), SECUP gives the
length to the upper boundary of the measurement section along the hole and K contains
stationary values of the measured conductivity.

To get the coordinates of the measurement points in the so-called "local grid" system
the table mentioned above has to be combined with the table BOREHOLE which gives
the coordinates in intervals of ten meters along the holes. From this table we selects the
columns XCOORD YCOORD and ZCOORD. The value of these coordinates are
interpolated to upper measurement section using the GEOTAB "#" command when
issuing the WHERE statement. The selected columns are then stored as a temporary
table (here called TMPTB1). To perform this we type (our command are given in bold
face, comments inside "<"):

R>select shsinjcd bhcoord

select columns:1, 6, 14-16, 3, 2 <the choice are given in a menu not listed here>
where: :1 like *FI* and :1=:12 and :3 # :13 <data from Finnsjén has FI in the name>
Output to ?( Screen, Table, Both(S&T), Formatted file, Printfile )T

Name of temporary table:tmptbl

No, of columns in primary key ? (all) <just hit return>

Now , the column ZCOORD in table BHCOORD does not contain the depth in the
"local grid"” system but rather the depth below the ground level. The relations to the
fixed entity - meters below sea level - are given in the table BOREHOLE where the
column Z gives the ground level for each borehole. We now combine the tables
TMPTB1 and BOREHOLE in a new temporary table (TMPTB2) containing the offset
value Z not only once per borehole (as in table BOREHOLE) but for each measurement
point. This temporary table is now selected. A new column is opened using the "+"
command when selecting column. This column are then specified to give the depth
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below the sea level i.e. ZCOORD-Z. The final result is then saved as an ascii file,
which can be split in one file per borehole and sorted by ascending values in the
SECCUP column to obey the HYDRASTAR format. The remaining GEOTAB steps to
generate the output ascii file are as follows:

R>select tmptb1, borehole

select columns: 1-7, 15

where: :l=;8

Output to ?( Screen, Table, Both(S&T), Formatted file, Printfile )T
Name of temporary table:tmptb2

No, of columns in primary key ? (all) <hit return>

R>select tmptb2

select columns:1-4

select columns:+

Enter column heading: mbsl

Enter expression: :3 - :8

select columns:6-7

where: <no condition just hit return>

Output to ?( Screen, Table, Both(S&T), Formatted file, Printfile )F

Select: 1 <the choice from menu is for ascii file>

Outputfile:out
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Ascii conversion completed, output file : out.asc



APPENDIX C. MOYE'S FORMULA

This appendix derives Moye's formula [Moye, 1967] and is inserted solely for the
conveniance of the reader.

We study the packer test by using the mathematical model expressed by the formulas
2.1.4 and 2.1.5. In particular we repeat the approximation that the flow per difference
head q is written using the notation of section 2.1 as

:+Q
_ o, _ ‘ 1 Ohfx) OJh(x)
q;---A—’—z;— I K(X)(Ahl ap + ap )pwdzz
x‘+Ll ahl(x)
J Koo, pude
" : C.1

Now the flow resulting from the overpressure is assumed to be purely cylindrical up to
a radial distance of L/2, see fig C.2. Assuming the conductivity to be a constant K in a
neighbourhood of the packer test we solve the steady state hydrology equation in a
cylindrical system of coordinates shown in 2.1.1 to obtain for the head

h(p)= Aln(p) + B

where A and B are constants to be determined, and for the radial component U, of the
Darcy velocity

A
Up( p)=- K 1_p—
— -
P11
|
|
|
|
L
I i
| |
| L2 |
- |
Figure C.2 Illustrating a packer test and the corresponding derivation of

Moye s formula.
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Since the total flux Qg is known we have

o

A== 3K,

and the head on the boundary of the pressurized section is by the boundary conditions
2.1.5 given as

h(p,)=Ah,
This gives

2”2}(1 ln(pw)

B=Ah+
and thus
_ QI pw
h(py=Ah+ 30K 1"(77)_

Assume that the flux changes abruptly from radial to spherical at p =r=1/2 . For
spherical flux in a homogeneous medium we have for the head

Wr=4+8

and for the Darcy velocity

A

U(r)= K—
(=X

It follows from the boundary conditions 2.1.5 and the underlying assumption that the

position of the measurement is far from the the boundary that
lim £(r)=0

r e

giving B = 0 above. Next transferring the head from the radial case at p =r = L/2 gives

- Ll Ql 2pw
A_TAhl-*-Rm( T )

1

and thus if we equate the total flow in the radial and spherical regions we get

Ll 2pw
g = 47[K1—2-A h,+ Qn L

from which we derive Moye’s formula

olE) (1)

=q
l 2L Ah, " 27, c2
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APPENDIX D WOODBURY'S FORMULA
First let us define an r-dimensional perturbation of a matrix C as any matrix C' such
that
c'=Cc-uv’

where U and V both have r linearly independent columns. The reason for the name 1-
dimensional is that the matrix UVT with the stated restrictions is a general form of a
linear map with r-dimensional range. 25

Woodbury ‘s formula concerns the solution of a linear system of equations
Cr=c

in terms of the inverse of the matrix C. Generally speaking this is very useful when
we have some knowledge of C such as for instance a factorization and want to solve a
system of equations involving C'. Thus let us try to solve

(c-uvha= c
Multiplication from the left with C-1 gives
A-c'u(via)=cc D.1

Now the idea needed is to see that we may express VTA in known quantities. Thus
multiplying with VT from the left we have

Va-vicu(va)=v Ce
so that
-1
Via=(1,-vVCc'u) vV Cle

where I is the rxr identity matrix. Inserting this in D.1 we obtain Woodbury s formula

25 In order to see this assume that B:R1->R™ and dim(Range(B)) = r. Take any nxr matrix U such that
the columns of U spans Range(B), denote the columns of U by u;. Since {u;} spans Range(B),

BA = Ibj(A)u; for any A and it is easy to see that the the bj:s must be linear functionals. It follows by
Riesz theorem that there exist vectors v; such that bj(A)=v; AT for all j in [1.1]. Since the uj:s are linearly
independent the kernel of B, N(B) is equal to the orthogonal complement of the span of the v; denoted
span[{v; }1+. Hence dim(N(B))=n - dim(span[ (v; }]) and since it is always true for linear mappings that
dim(N(B)) + dim(Range(B)) = n it follows that dim(span{{v; }]) = r i. that the vectors v; are linearly
independent.
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-1
A=Cle+C'U(I,-V'C'U) V Ce D2
or equivalently
-1 -1
(c-wv?) =clr+u@, -v c'v) v’]‘

A necessary and sufficient condition for the inverse of C' to exist is that C itself
together with the rxr matrix I - VIC-1U are nonsingular.
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PPENDI LANE E D

In [Andersson et al, 1989, Table 4.3] the estimated intersection with the boundaries of
zone?2 are given for the boreholes at the Finnsjé site. These estimates are only based on
conductivity measurements and therefore differ from the results in [Ahlbom et al,
1988], where also other mi«thods of localizing the zone boundaries, such as radar and
salinity measurements, are taken into account. We use the conductivity measurement
based method, because it is the trend of conductivity we wish to model for the zone.

The upper and lower zone boundaries are estimated by fitting planes to the intersections
using linear regression. Using only one plane for each of the two boundaries gives a
poor fit, however.

Instead the boundaries are modelled with two different planes each. One plane contains
all the borehole except the peripheral KFI07 and a second hole. This second hole is
chosen so as to maximally reduce the sum of the square residual. The borehole found
by this criterion was KFI06 for the upper boundary and HFIO1 for the lower.

For KFI07 and the KFI06 we construct two planes that intersect the holes in the
positions specified. The observed and calculated values of intersection for upper and
lower boundaries are given in the following tables.

Borehole Observed z Regression z

BFI01 210 207

BF102 168 163

HFI01 80 73

KFI105 98 103

KFI09 82 88

KFI11 191 193

Table E.1 Upper boundary of zone2 excluded holes KFI06 and KFI07

regression expression: z = 538. 8 - 0.259x - 9. 235*10-2y. Here (x,
¥, z) denote the local grid coordinate system and in particular z is
m.b.s.1.26

26Note that the the hole KFI10 does not participate in the calculation due to an flaw in the
communication between the author and one of his coworkers. However this do probably not influence the

results in any larger extent.
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Borehole Observed z Regression z

BFIO1 321 317

BFI02 245 260

KFIOS 204 193

KFI06 241 243

KFI109 153 156

KFI11 . 305 301

Table E.2 Lower boundary of zone2 excluded holes HFIOI and KFI07

regression expression z = 725. 6 - 0. 3367x - 8. 947*10-2y. Here (x,
¥, z) denotes the local grid coordinate system and in particular z is
m.b.s. L

Note that in the actual inference procedure, the geometry in the . zone and . zonex files
is defined so that, for the holes KFI06 and KFI(7, use the planes intersecting the holes
in the specified position rather than the planes derived by linear regression for both the
upper and lower zone boundaries. This means that HFIO1 should participate and KFI06
should be excluded from the regression calculation for the lower zone boundary. This
error cannot, however, corrupt the results significantly for the following reasons:

In [Andersson et al, 1989] Table 4. 3 the lower intersection with the zone is specified to
125+ m indicating at least 125 m. Using the regression equation above for the lower
boundary gives the value 148 m. Furthermore, due to great variation of the
measurement section lengths in this hole, the regularization has succeeded only for
sections above the upper boundary, so no part within the zone participates in the actual
calculation.

Excluding KFI06 from regression calculation for the lower boundary of the zone just
leads to slight modifications of the figures for the regression z in the table above. The
greatest difference is for BFI01 where the estimated value changes by less that 3 m.
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P D ESSI NN

A simple regression analysis has been made on data from the Finnsjén site.
Measurements was regularized to 6,18,36 and 48m. In the 6 and 18 m case data from all
drill holes were used but in the 36 m and 48 m case the two meter measurements from
kfi0S was excluded.

The trend funtions used are of two types, potential and exponential, for each of which
ordinary and iterative generalized regression was performed. The covariance functions
presented here and used in the iterative generalized regression is isotropic and of
spherical type.

Potential trend funktion
The trend function is of type
log(K)= B— Blog(B+z)+ BJ{(x.y,2)€ zone 2}

with z being positive downward (m.b.s.l). Alternatively which is the reason for the
name of the trend type

-b
fbobz(b3+z) " if (x,¥,2) € zone2
-b

by(b,+ z) bif (X,y,2) & zone2

with
4 ﬂo
b,= 10
4bl= ﬂ
B,
b,=10
b= B,

The regression performed with this trend function is not complete in that the parameter
B3 is set to the value 40.0 which is approximately the least value to keep ( B3 +z)
strictly greater than zero. The inclusion of B3 as an ordinary regression parameter
would lead to a nonlinear regression problem. This generalization is of course highly
desirable.

Results 6 m
in ion

Regression parameters (figures within parenthesis are excluding 3m measurements in
kfi05):
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BO = -2.96(-3.08)
B1 = 2.06(2.01)
B2 = 1.19(1.05)
B3 =40.0

I ive generali ion
Spherical type isotropic covariance: Variance = 1.82, Range = 40.49
Spherical type isotropic residual covariance: Variance = 1.33, Range = 14.5
Regression parameters:
B0 =-3.02
B1=202

B2 = 0.903
B3 = 40.0

Results 1S m

Ordi .
Regression parameters:
po=-2.13
B1=225
B2 =1.51
B3 =400
Iterative generalized r ion
Spherical type isotropic covariance: Variance = 1.91, Range = 195.7
Spherical type isotropic residual covariance: Variance = 1.33, Range = 53.9
Regression parameters:
BO=-1.82
p1=231

B2 =0.261
B3 =400

Results 36 m

Ordin .
Regression parameters (figures within parenthesis is from excluding all measurements
in kfi05):

B0 =-1.95(-2.16)

B1=223(2.16)
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B2 = 1.58(1.48)

B3 =40.0
Extremal points on the 95% confidence ellipsoid:

Extremals for B0 Extremals for B1 Extremals for 2
2.40 -6.31 2.38 -6.28 -2.28 -1.63
4.03 0.4 404 0.42 2.18 228
1.48 1.68 1.54 1.62 2.87 0.29

Important note: Since the derivation of a confidence ellipsoid rests entirely on the
validity of the assumed model the above figures are of no value from a statisticians

point of view since the assume model in ordinary regression is that the residuals are
uncorrelated.

Iterati lized .

Spherical type isotropic covariance: Variance = 1.74(1.63), Range = 267.4(203.9)
Spherical type isotropic residual covariance: Variance = 1.25(1.22), Range =
106.2(87.4)

Regression parameters:
BO =-2.07(-2.08)

B1=2.07(2.09)
B2 = 0.074(0.090)
B3 =400
Extremal points on the 95% confidence ellipsoid:

Extremals for B0 Extremals for Bl Extremals for §2
243 -8.46 235 -8.37 -3.02 -3.00
3.94 -0.56 3.98 -0.59 1.70 1.69
0.025 0.026 0.026 0.025 0.26 -0.21

Note in particular that this results implies that the hypothesis: “"The contrast parameter
B2 is zero.” cannot be rejected on the 95% level.

Its 48 m

in regression

Regression parameters:
B0 =-1.89
B1=222
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B2=1.64
B3 =400
Iterative generalized r ion
Spherical type isotropic covariance: Variance = 1.68, Range = 309.7
Spherical type isotropic residual covariance: Variance = 1.23 , Range = 182.4
Regression parameters:
B0 =-2.32
B1=193
B2 =0.027
B3 =40.0
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Exponential trend function
The trend function is of type
log(K)= B,— Bz + BJ {(x,¥y,2) € zone 2}
or alternatively, which is the reason for the name of the trend type

K< bobzbl-' if (x,y,z)€ zone2
bb ™~ if (x,y,z)e zone2

with

r .ﬁ'

b,= 10

Jblzﬂ
ﬁz

b, =10

b= B

Results
in ion
Regression parameters:
B0 =-6.48

B1 =0.00403
B2 =1.358

Iterati neralized ion
Spherical type isotropic covariance: Variance = 1.91, Range = 195.7
Spherical type isotropic residual covariance: Variance = 1.32, Range = 52.6
Weighted regression parameters:

B0=-6.17

B1 = 0.00456

B2 =0.245
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Compilation of results

Potential trend funktion

Ordinary regression
Scale Bo B1 B2
6m -2.96 2.06 1.19
18m -2.13 2.25 1.51
36m : -1.95 2.23 1.58
48m -1.89 222 1.64

I ive generalized r ion

Nonresidual Residual

Scale Y R v R Bo B1 B2
6m 1.82 40.5 1.33 14.5 -3.02 2.02 0.903
18m 1.91 195.7 1.33 539 -1.82 231 0.261

36m 1.74 267.4 1.25 106.2 -2.07 2.07 0.074
48m 1.68 309.7 1.23 182.4 -2.32 1.93 0.027
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LIST OF NOTATION

A Signals that this is an estimate or signals this is a unit vector.

¢ A mean removed form.

* Kriging estimate.

B Inverse of the kriging matrix.

pA An estimate of the parameter vector in regression.
b Generic vector.

B The parameter vector in regression.

C Generic notation for a covariance matrix.
c Generic notation for the covariance vector
C() Covariance function.

D Kriging matrix.

d Packer length.

D(x) Kriging neighbourhood.

Ah Packer test difference head.

Ap Packer test overpressure.

E(x) Kriging set.

E[-] Expectation value operator.

f(x), g(x) A generic function

F() A F-distribution function.

¢i Basis functions for linear regression.

G The matrix of geometrical anisotropy.

Y(-) The semivariogram.

Ul Coordinate vector in the isotropic (lag)space.

h(x) The hydraulic potential

J Joint jacknifing measure.

K(-) The hydraulic conductivity for a certain averaging scale viewed as a

stochastic process.
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L) Lagrangian multiplicator function or Likelihood function
Li Packer interval.

M The number of trends in a linear model.

m(:) Expectation value function.

MRE Mean reduced error.

MSE Mean square error.

MSRE Mean square reduced error.

N " Number of measurements.

n Normal of the kriging neighbourhoods and sets.

Nin Number of measurements in the kn:th kriging neighborhood.

o,w Overlap and width in the definition of kriging neighbourhoods and sets.

e Number of angular lag classes

Q Packer test flow

q Q/Ah

R Number of radial lag classes

Pw Borehole radius.

S Generic real.

U(-) The Darcy velocity for a certain averaging scale viewed as a stochastic
process.

V[-1] Centered variance operator.

Q Event space.

A4 A Weights

X A stochastic variable.

£ Generic notation for a lag vector

X Generic notation for a point in space.

xA, yA, zA  Basis system.

Y The stochastic vector obtained by restricting the function Y( - ) to a set of
spatial points.

y A realization of Y.



Y(-)

Z(-)
{x:(")}
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The stochastic process defined by Y( - ) = log(K(- )). Also used as a
generic notation for a stochastic process or a representation of an intrinsic
random function.

Coordinate corresponding to zA.
Normal vector pointing upward.
An intrinsic random process.

The set of all x such that (-)
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