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Abstract

Nuclear waste, deposited in canisters in rock, produces heat that will induce a buoy-
ancy flow of groundwater in fractures. The radioactive material may then, in case of
leakage, possibly reach the biosphere. The groundwater density will increase downwards
with an increasing salt content. This density increase counteracts the thermal buoyancy,
and it may create a natural barrier for the repository.

The aim of the study is to analyse this barrier effect and to assess the extent of upward
flow. The coupled flow process for groundwater, salt and heat is studied. The equations
have been analysed in great detail, and a numerical model has been developed for the
case of groundwater flow in a fracture or crack plane.

The largest upward motion from the repository has been determined with the model
for a wide range of heat release. Approximate formulas, which are shown to be sufficiently
accurate for assessments, have been derived.

There is a very clear barrier effect. In a reference case with a salt concentration
increase of 2% per km downwards, and with as much as 300 canisters (releasing all in all
0.32 TWh) placed in a limited region, the largest upward movement of groundwater from
the repository region became 150 m. The result is remarkably insensitive to variations of
the involved parameters (heat release, distance from canisters to fracture plane, considered
time, salt concentration gradient, thermal expansivity, hydraulic conductivity of flow plane
and so on).
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Chapter 1

Introduction

Nuclear waste, deposited in canisters in rock, produces heat that will induce a buoyancy
flow of groundwater in fractures. The radioactive material may then, in case of leakage,
eventually reach the biosphere.

There is often a significant increase downwards of the salt concentration of the ground-
water. This means that the water density increases downwards. The density increase will
counteract the thermal buoyancy. This may create a natural barrier that prevents the
groundwater of the nuclear waste region ever to reach the ground surface.

These ideas from SKB are presented in Juhlin and Sandstedt (1989). Hodgkinson
(1980) presents an investigation of thermally induced convection without any salt gradi-
ents.

This study, which is a first step, is made in order to investigate the idea of a salt
gradient barrier and to try to assess how far below the ground surface the store must
be placed for any given salt gradient. Other important questions are the limits on heat
release and the best way to place the canisters under different restraints.

The report contains quite a lot of different analyses that may require some time to
digest. Therefore, there is a rather detailed survey of the line of thought and the main
results in the last chapter. The reader is adviced to read Chaper 7 first.



Chapter 2

Governing equations

The governing equations for the coupled flow problem are discussed in this chapter. A
general reference for flow in porous media is Bear (1972).

2.1 Equations for water, salt and heat

The mass balance equation for the groundwater reads:

3} "
57 (Vopw) + V- (pudu) = 0 (z1)

We start in this chapter with the case when the ground is treated as a homogeneous,
isotropic porous medium. The volumetric groundwater flow is then given by Darcy’s law:

- k A
o=—"7m (VP +gpu2) (2.2)
There is a corresponding balance equation for the salt:

0 o
7 (Vopu) + V- (cpudu) = 0 (2.3)

The second term concerns the convective salt flow ¢p,,g;,. We have here neglected disper-

sive (and diffusive) flow of salt.
Finally, there is a heat balance equation, which determines the temperature:

10T 9T 0°T  &T  h(=z,y,z,t) h

—— = s = VAT 4 2.4
a ot 8x2+8y2+8z2+ A +/\ (24)
Here, h denotes the prescribed heat sources. The ground is assumed to be thermally
homogeneous. The convective heat flow (¢,(T — T.f) - pu i) is neglected. This is a very
reasonable approximation, since we are dealing with very small groundwater flows.

[S)



The following notations are used in the above equations:

t time (s)

Vi pore volume (m2 /m®)
Pw density of water (kg/m?)
V= (%, %, z%) gradient operator (m™1)

G = (Quzs Gy, quz) volumetric groundwater flow (m3 /m?s)
k intrinsic permeability (m?)

Yo dynamic viscosity of water (kg/ms)
P water pressure (Pa)

g =9.81 standard gravity (m/s?)

z vertical unit vector pointing upwards (-)

¢ salt concentration (kg,/kgw)
a thermal diffusivity of the ground (m?/s)

T temperature (°C)

z,y horizontal coordinates (m)

z vertical coordinate pointing upwards (m)

A thermal conductivity of the ground ~ (W/mK)

Here, m® denotes cubic meter of water, kg, kilogram of dissolved salt and kg,, kilogram
of water including the dissolved salt.

The properties of water depend on its state. In general, the density p,, and the vis-
cosity g, are functions of T, ¢, and P. The buoyancy force —gp,2 in the Darcy law
will change when T and c change. The groundwater flow is coupled to the time-varying
temperature and salt distributions.

2.2 Independent thermal process

The thermal process, Eq. (2.4), depends on the heat sources, but it is independent of
the groundwater flow and the salt distribution. This is due to the fact that the convective
heat flow can be neglected in the present applications. The uncoupled thermal processes
can be solved independently. The temperature field T(z,y, z,t) is from this solution a
given function in the remaining problem for groundwater and salt.

The initial temperature is given by the undisturbed ground temperature T, or T,(z)
with an increase downwards according to the geothermal gradient:

im0 = To(2) (2.5)

The canisters are located far below the ground surface. The influence from the conditions

at the ground surface can then be neglected.
Let T"(z,y,2,t) denote the deviation from the undisturbed ground temperature:

T(Iaya Z,t) = T”('T9 y,Z,t) + TO(Z) (26)

3



The initial condition and the boundary condition far away from the depository in all
directions for the ezcess temperature T become:

T”lt=0 - 0 T”linﬁnity = 0 (2.7)

A dimensionless temperature 7' will also be used. Let 7} be a suitable temperature
level from the heating caused by the heat sources h(z,y,z,t). The dimensionless ezcess
temperature T" is given by:

T"=T,-T T=T()+T,-T (2.8)

2.3 Further assumptions. Basic equations

We will make a few further assumptions for the groundwater and salt flow process.
We use Boussinesq’s approximation in which the groundwater density is taken constant
in all terms except in the buoyancy term gp, 3:

Pw = Puwo e€xceptin gp,Z = gp,(T,c)2 (2.9)

In the buoyancy term, the density is a function of temperature and salt concentration.
The dependence on the pressure P can be neglected in the present applications.

Equation (2.3) for salt mass balance can now be written (since p,, and the porosity V,
are constant):

0
2LV () =0 (2.10)
ot

The salt with the concentration c is displaced with the filtration velocity ¥y (m/s):
5 = q (2.11)
Vg = V;,qw .

The velocity ¥y is obtained from Darcy’s law (2.2):

. k .
U= [VP + gpu(T,c)?] (2.12)

The divergence of ¥y is, according to Eq. (2.1) with V,p,, constant, zero:

L _ Ovgr | Ovpy | Ovy,
V. = B + 3 + £ =0 _ (2.13)

The viscosity g, depends on T and ¢. See Section 3.5. The present applications
concern temperatures from 10 to 100°C, in which range the viscosity varies by a factor
4.6. The larger variations concern a rather limited region near the heat sources. Our
main interest is, however, the behaviour at larger distances.

We will use a constant value for the viscosity:

4



Fw = Huwo (2.14)

With this crucial assumption, the factor k/(V,u,,) in (2.12) becomes constant, and we
will be able to use analytical expressions for the groundwater flow. Then we get from
(2.12-13) the following equation to determine the pressure P(z,y, z,1):

V2P + gQ’i’-”- =0 (2.15)
0z

This is a Poisson equation with the source term given by the derivative of p, (T, c) with
respect to z:

Opuw Opw\ OT Opy, dc
—_—=l—a=] = -_—] = 2.16
9z (a:r)c 3z+(8c . 0z (2.16)
The equations for the groundwater pressure and the salt concentration are now:

2 Ipw

VP+g_=O Pw=Pw(T,C)
0z

ac - Ird
’67+V-(cvf)=0 (2.17)
= -t (VP + gpuz)

T Vot v

We have the following alternative forms for the first two equations:

V"l_)‘f:O %+1}}-ch0 (218)
ot
The temperature T'(z,y, z,t) is obtained independently. See Section 2.2.

The initial concentration at ¢ = 0 is equal to the undisturbed value ¢,(z):
€limo = ¢o(2) (2.19)

The concentration ¢,(z) increases downwards: dc,/dz < 0.

The ground surface, lying far above the active flow region, is neglected, and we treat
the ground as infinite in all directions. The flow tends to zero as the distance to the
depository tends to infinity:

T =0 2492422500 (2.20)

The complete problem involves the three functions 7'(z,y, z,t), P(z,y, z,t), and
c(z,y,z,t). Expressed explicitly in these functions, the equations become:

10T, h
dar =V Ity

dp, OT dp, dc

T 5 "9 8z "

V2P +g



de k

i V;#WV Ac[VP +gpu(T,c)2]} =0 (2.21)

T|,., =T.,(2) ¢li=p = co(2)
The main assumptions in the above formulation are:
1. The ground is a homogeneous, isotropic porous medium.

2. The water viscosity y,, is constant.

3. Salt dispersion and diffusion are neglected.

There are a few other assumptions, which are judged to be very well satisfied in the
present applications:

4. Convective heat transfer is negligible.

5. Boussinesq’s approximation, using constant p,, except in the buoyancy term, is valid.
q'sapp s g p P

2.4 Deviation from equilibrium

The process starts with heat release from ¢ = 0. There is an equilibrium state before
this time:

z

t<0: T=Tyz) c=co2) (‘;c"go)

pu = pu (To(2), e0(2)) = 2,(2) (2.22)

For the hydrostatic pressure P,(z} we have according to Eq. (2.15):

d*P, dp,
dz? R dz 0
P,(z) = P,(z,) — g/z po(z")dzZ' (2.23)

In equilibrium with negligible regional flow, the groundwater flow is of course zero:

—

VP,(z)=—gp,(2); < ;=0 (2.24)

We will in the following consider the deviations from equilibrium. These ezcess vari-
ables are denoted T”, ¢" and P’

T(z,y,2,t) = To(2) + T"(z,y, 2, 1)

~~
o
[\
)]
N’

c(z,y,z,t) = co(z) + (2, v, 2, 1)



P(z,y,z,t) = P,(2) + P"(z,y, 2,t)

The groundwater flow is driven by the excess density p”:

P = pu (To(2) + T, co(2) + ") = pu (To(2), ¢5(0)) (2.26)
We get from the difference between Egs. (2.15) and (2.23):
apll
2 pit el
VP 495 =0 (2.27)

The flow &; depends, in accordance with Eqs. (2.12) and (2.24), on the excess variables
only:

- k " "a
U = Voo, (VP" + gp"%) (2.28)

The basic equations for the deviations from initial equilibrium are now:

1! 8 " ’ 1
VP 4go—=0 0" = pu () + T co(2) ) = pu (Te(2), co(2))
8 /4 .
V- (fele) + )] =0
t
Tp = — VP" +gp"2 2.29
T ( ) (2.29)
cllltzo — 0

All excess variables tend to zero at infinity. It should be noted that the groundwater flow
involves the excess variables only, while the convective salt flow involves the total salt
concentration ¢,(z) + ¢”.

2.5 Linearized water density

The water density p,, depends on the temperature T and the salt concentration c. The
partial derivatives define the thermal expansion coefficient ar (1/K) and a corresponding
coefficient o, (1/(kgs/kgw)) for the relative density increase with the salt concentration
c:

apw 0/01.0
o = - R = 2
<8T >c PuwoXT ( Bc )T Pwolc (u30)

We now assume that these two coefficients are constants. Then the excess density p”
becomes a simple linear function of ¢ and T”, Eq.(2.26):

7



p" = puoacd” — puoarT” (2.31)

The basic equations (2.17) or (2.29) for P” and ¢ now become:

ac” aTr”
VP 4 9Puotte— = gPuoar—— =0
ac”’
5 T V- (co(2) + 5] =0 (2.32)
'l-;f = (VP” + ngoO’cC”i - gpwoaTT”‘é)

pHwo

The temperature T is determined independently. The initial value of ¢’ at ¢ = 0 is zero.
The second equation may in accordance with Eq. (2.18) be written in the alternative
form:

(4
& s (%fz-z + Vc") ~0 (2.33)

2.6 Dimensionless formulation

It is quite convenient to use a dimensionless formulation. A length Ly, a time ¢;, and
so on, are used:

Length L,: z/Ly, ... dimensionless coordinates

L,V dimensionless gradient
Time t,: t;0/0t dimensionless time derivative
Pressure P;: P’ = P”/ P, dimensionless excess pressure

Temperature Ty: 71" = T"/T; dimensionless excess temperature
Concentration ¢;: ¢ = ¢’/c¢; dimensionless excess concentration
Velocity vy;: vy = vy /vs1 dimensionless filtration velocity

The first equation of (2.32) becomes in a dimensionless form:

1
[2vep y JPwoleCrin ’”";:C‘L L. (LI% - ‘ZT;‘? L %—Z—) =0 (2.34)

For the second equation of (2.32) we use the alternative form (2.33). The dimensionless
form becomes:

BC, tl - dco Ll ~
ty — —_— . —_— V ! = )
1 81’ + lef (dz 612+L1 C) 0 (2 35)

For the filtration velocity we get, using the last equation (2.32):

iy . t k Pl [ gpwoacclLl ( aTTl ~
Tr=—— s — e | [ VP! Zrwoc A1 [ T') J 2.36
L, o Ly Vpﬂwa L ! + P ¢ a.Cy g ( )




The =>ove equations give directly a natural choice for the scale factors L1, ¢ and so on.
We assume for simplicity that the undisturbed salt gradient is constant:

_ de,
dz

= ¢J = constant (2.37)

In accordance with equation (2.35), we choose:
o=l (2.38)

The factor before  is then -1. The constant ¢, is positive, since the gradient dc,/dz = —c;

must be negative. Then the water density increases downwards and the salt stratification

is stable. (Actually, stability requires that p(z), Eq.(2.22), increases downwards.) The

concentration ¢; is equal to the undisturbed concentration difference over the height L.
The pressure factor P, is in accordance with Eqs. (2.34) and (2.36) chosen as:

P, = gpyoacci Ly (2.39)

Physically, this is the excess pressure from the salt with the concentration ¢; over the

characteristic height L,.
The scale factor ¢, for time is determined in the following way. The second and third

factors on the righthand side of (2.36) give a characteristic filtration velocity:

k k wo'™tc
vj1 = B kgpuweccar (2.40)
‘/pﬂwo Ll ‘/pl"wo

Here, P,/ L, is a characteristic pressure gradient. The time {; is now chosen as:

or, with t; = t.:

Ll va,uwo

—_— = —— 2.41
Vs kgpwoaccg ( )

. =

We use the particular notation ¢ for this characteristic time-scale. It is a fundamental
quantity. It is important to note that ¢, is determined by the groundwater flow parameters
and the salt gradient only. It does not depend on the length L; and the thermal process.

The length L, is still free. It may be chosen so that the factor before 7" in (2.36) and

(2.34) vanishes:
ClTTl = ;.1 (242)

or with (2.38):

CYTTl
L1 = ] ( 43)

z




The quantity arT; is the relative density change when the water temperature is increased
T °C, while a.¢; is the relative density change for a concentration change ¢;. The length
L, is chosen so that a.c, equals a7}, which means that the two density variations become
of the same order.

With these choices, the flow equations (2.34-36) become:

ad or’
2v72 p/ bl —_— =
LVIP 4 Lig— Li5— =0
tC%tc: + 0 (-2+ L;Vd) =0 (2.44)
Ty = ~L\VP — 34Tz

The first equation means that V - Uy = 0. The second equation may then be written in
the original form:

oc
i n

This means that the dimensionless undisturbed salt distribution is —z/Ly; i.e. thereis a
unit gradient in the length scale L,.

+L,V- K~%l + c') 5’}} =0 (2.45)

2.7 Summary of equations
We will here summarize the complete set of equations. The coordinates are scaled
with the length L;, and the time with the characteristic time t.:
f=z/L, y=y/L, =z/IL t'=t/t,

The temperature T, pressure P, salt concentration ¢ and filtration velocity v, are
scaled in the following way:

T(z,y,2,t) =To(2) + T, - T'(2', ¢/, ', t')

P(z,y,z,t) = P,(z) + P, - P'(<',y/, 2, t')

o(z,y,2,t) = co(2) +c1 - (2, ¢, 2/, ) | (2.46)
Us(z,y, 2,t) = vy - Ty’ y', 2, ¥)

The following constants are used:

aTT1 V. Huw
L’l = > tc = __p_ﬁ_a c, = ng
ol kgpuoc.co

10



L
P = gpwoacclLl V1 = 71_ (247)
<
The temperature field T or T’ is determined independently of the other processes by
the prescribed heat sources. The temperature factor T or the length L; may be chosen
freely.
The dimensionless equations for pressure, salt concentration and filtration flow are:

acd oT'

(V)P + Py i 0 (2.48)
ac

stV (=2 + )] =0 (2.49)
= -V'P — 3+ T (2.50)
cl,.o =0 T’ given independently (2.51)

All variables vanish at infinity. The solution is a function of the dimensionless coordinates
and the dimensionless time. It is noteworthy that the equations do not contain any
intrinsic parameters. A number of parameters will, however, arise from the temperature
field.

The dimensionless total salt concentration is given by —z’' + ¢. We will use a special
notation:

E=—2+¢ (2.52)
Equation (2.49) may then be written:
gé¢

% + V' (e7}) =0 (2.53)
We have the following alternative form for Eqgs. (2.48) and (2.49):
Vo =0 (2.54)
Jod
%ﬁ + (=24 V') -7, =0 (2.35)

The index ’ is cumbersome. We will sometimes in the following drop it. The basic
equations (2.48-2.51) then read:

dgc 0T

2 _—— — =
VP + % 5, 0
Jc "
3 +V - [(—z2+4)0] =0 (2.56)

5y = —VP—ci+T3

clig=0 T given independently

11



Chapter 3

Water flow in a plane

Chapter 2 dealt with three-dimensional flow in a homogeneous porous medium. We now
limit the groundwater flow to two-dimensional flow in a plane. The plane may be a
fracture zone, which is essentially limited to a plane. It may also be a single fracture or
a number of (interconnected) parallel fractures.

The flow plane is assumed to be infinite: y = 0,~00 < £ < 00,—00 < z < 0o. The
ground surface is assumed to lie far above the region of interest so that the boundary
conditions can be ignored. The flow and salt variables P, ¥; and ¢ are functions of z, z
and t. The temperature field is of course three-dimensional, but we are only interested in
the temperature T'(z,0, 2,t) in the flow plane y = 0.

In this two-dimensional case, the radial distance from the center is:

r=Vz?+ 22 (3.1)

3.1 Governing equations

Let ¢° denote the volumetric groundwater flow integrated over the width of the fracture
zone. lts dimension is m® of water/(m-s). Darcy’s law (2.2) for the flow in a vertical plane
reads:

C
= —— (VP +gpu?) (3.2)
Here, k° is the intrinsic hydraulic conductivity for the fracture zone.

The Darcy equation above refers to the case of a vertical plane with the gravity force
gpwz. This force is reduced by the factor cos(¢.) when the plane is inclined an angle ¢,
to the vertical line. We will in the following give the equations for a vertical plane. The
gravity g is to be replaced by g cos(¢,), if the plane is inclined.

The filtration velocity (2.11-12) is obtained by dividing ¢* by the water volume vy
(m? /m?, o). Eq. (2.12) becomes:

l.C

Uy = Ve (VP + gpu2) (3.3)

p
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In the two-dimensional case, we shall replace k/V, by k¢/V;.

The fracture zone may sometimes be regarded as a homogeneous porous medium with
a width B. Then we have:

P
k° = Bk ¢ = —_—= .
Bk Vi=BV, = V=V (3-4)

Another idealized case is a number N, of parallel cracks, each having the constant

width d. We assume laminar flow. Then from Poiseuille’s law we have:

e @ :

§°=N.-(-) T (VP +gput) (3.5)
This gives:

c NCds c

k= 5 Vy,=N.-d (3.6)
Thus, for parallel planes, each with the width d, we have:

ke d2

V_pc == (3.7)

It is interesting to note that this quantity is independent of the number of planes.

Thus, the final equations in Section 2.7 are also applicable in the two-dimensional
case. The y-coordinate vanishes. The quantity k/V,, is replaced by k°/V; or d?/12. For
an inclined plane g is replaced by g cos(¢.).

3.2 Flow for any density distribution p’(z, z)

The excess density p” due to excess temperature and salt concentration is for any
particular time a function of the coordinates: p” = p"(z,z). As a prerequisite for further
studies, we will here study the pressure and flow fields for any density distribution.

The excess density p” may with the use of (2.31) and (2.42) be written:

P” = pwoaccl(cl -1 T,) = PwolcCy * P'
p=c-T (3.8)

We use the dimensionless equations (2.56), in which the indices ' and ” are dropped. We
have with ¢ — T" = p' — p:

vep+ 22 g (3.9)
9z
7 = —VP — p? (3.10)

The variables P, p and @; are functions of z and z (for any particular time t). By
assumption, the excess density p(z, z) vanishes sufficiently rapidly for large radius r. We
require in the case of a radial density variation p = p(r):

/oo In(r)p(r)rdr convergent (3.11)
1

13



3.2.1 General solution

The Poisson problem (3.9) has the well-known integral solution, Courant and Hilbert
(1968):

P(z,z) = —al;/: dx'/_z dZ' In[(' — 2)" + (' - 2)?] - -a-’i(g;—z') (3.12)

The velocity field is obtained directly by derivation:

_ 0P 1 qeo g -z Op(z', 2')
=%z T Tar [-w dz ./—oo dz (' —z)2+ (2" —2)2 02 (3.13)
— op _ 1 o a [® -z ap(:r', zl)
=T TP T /-oo dz -/;oo dz (' —z)2+ (=22 0z p(z:2)

The source term of the Poisson equation is the derivative of p with respect to z. Let
U(z, z) be the solution for the source term p(z,y):

VU+p=0 (3.14)
The pressure P(r,z) is then the derivative of U(z, z) with respect to 2:

ou
0z
The solution of (3.14), for a density that tends to zero sufficiently rapidly, is:

P(z,z) = (3.15)

U(z,z) = —-% /j: dz’ [:: dz'-1n [(a:' -z 4+ (2 - 2)2} - p(’, 2") (3.16)

It is straightforward to verify by partial integration that (3.15) and (3.16) give (3.12).

3.2.2 General solution for p = p(r)

The temperature field from a single heat source at a point (0,y,,0) will become ro-
tationally symmetric: T(z,0,z,t) = f(r,t). This means that the corresponding density
depends on r only (at any particular time ¢). The case p = p(r) is therefore quite impor-
tant in the present applications.

In this case p = p(r), we start with the equation for U:

VU +p(r)=0 (3.17)

The solution U(r) depends on r only. In radial coordinates we have:

1d ( dU
dr

~T r———) +p(r)=0 (3.18)
The solution is obtained by two integrations:
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1’”

0

U(r)=A+ B-ln(r) — /r ;1,—1 [/(; r'p(r')dr'} dr" (3.19)

We require that U is regular at r = 0. The integration constant B must be zero. The
derivative of U becomes:

w_ 1 [ rotryar (3.20)
4]

dr r

For the pressure P(z,z) we get:

P(z,2) = (agi’")L = %g- (%:-)x - %g : ; (3.21)

This gives the pressure:

P(z,z)=— z . /(;r r'p(rYdr' r=Vz?+ 22 (3.22)

.'L'2+Z2

The corresponding flow field #; is obtained from the gradient of P, Eq. (3.10). The
flow field may after a few rearrangements be written in the following, quite illuminating

way:

Vfz = G;fizz—); +fo(r) (3.23)
z? - 22 p
Vs = T AR folr) =3 (3.24)

The radial function f,(r) is given by:

folr) = 5p(r) = /0 Crp(r)dr! = % /0 r(r’?%dr’ (3.25)

3.2.3 Dipole field

The first factors of vy, and vy, give a so-called dipole field. Let us investigate this.
Consider the pressure field:

z 3}
P(z,z) = Rl [ln (\/3:2 + z2)} (3.26)
This field has a dipole singularity at (0,0). The corresponding flow field becomes:

oP 2zz
Vfr = —-a—x = ‘(';:'5-*_—22)2' ( (.’I?,Z) # (070) ) (3‘27)
N A et 3.28
Viz =75, = (22 + 22)? (3.28)
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The isobars of (3.26) becomes:

__= 2, .2 % _
or
13\2 1 _
2 I L )
z +(z 2P) 7 | (3.30)

This is the equation for a circle with radius 1/|2P| and the center at (0,1/(2P)). The
isobars are circles which all have the z-axis as tangent at (0,0). The flow field will follow .
orthogonal curves. These are circles with the z-axis-as tangent at (0,0). The situation is
illustrated in Figure 3.1. o

Figure 3.1. Isobars (full lines) and flow lines (dashed) for the dipole field.

3.2.4 Two examples

As a first example for the above formulas we consider the case with a warmer circular
region:

_ ) P 0<r<mn o
Mﬂ—{o ">y (3.31)

Then we have:
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2

T T
r<nif(r) = S(=p) = [ r(=p)dr' =0
vpe=0 v = 321 (3.32)

r1 7‘2 p 7”.2
r>r1:f(r) =0 —/0 r'(—pr)dr’ = %—1 = ——’5;i

222z pyr? 2 -2 pymr? (3.33)

Vizr = y2 + 22 : % Vi = -(2:2 + 22)2 ’ o

We get the dipole field outside the circle r = r;. It may be noted that the strength
is (p17r2)/(27). The dipole strength is equal to the total weight p; - 77} divided by 2.
The flow field inside the circle r = r; is constant, p;/2, and directed upwards.

As a second example we consider the following density distribution:

p(r) = —pre" /1 (3.34)
Then we get:
T2p1 —r2/r2 T, —(r")2 /72 g1 141 T% r? —r2 fr2
fo(r) = ——¢ 1+p1/ r'e idr' = -5 1— {14 =]e ™ /1(3.35)
0 T3

The function within the brackets behaves as 3(r/r;)* near r = 0, and it increases towards

+1 for large r/r;.
The velocity field induced by the density (3.34) is according to (3.23-25):

2zzr? py 2\ _.2/2
= T T 1 — 1 — r /1‘1
vt (z2+22)2 2 + 1 €

(22 =2Hrf U WYY R TRy
L= mEn ply LD et Pt 3.36
K 2+ 22?2 2 tE)e TR (3:36)

3.3 Temperature and salt components

The dimensionless excess density p’ consists of the salt concentration and temperature
components, Eq.(3.8):

p=d-T (3.37)

Dropping the indices we have in accordance with (3.9,10):

dc 0T
vepy 29 o
P+32 Jz 0
Uy =-VP—-c2+T:2 (3.38)
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We get two components for pressure and flow :
P=Pr+P. 1—)} =vr+ 17, (339)

For the temperature component we have:

oT
2 _——_ =
V*Pr 57 0

Or = —-VPr+T: | (3.40)

The salt component is determined by the equations:

V?P, + %e _ 0 (3.41)
0z
U, = —VP.—c3 (3.42)

3.4 Dimensionless problem

Our final two-dimensional problem concerns an infinite plane —co < z < 00, —00 <
z < oo. The temperature field T(z,0, z,t) in the plane is obtained independently from

the prescribed heat sources.
The dimensionless groundwater flow process consists of two components. The compo-

nent from the temperature field is according to (3.40):

V2PT - %% =0 ir = ~VPr+Tz (343)

The flow field ¥ is determined from the results in section 3.2 and in particular 3.2.2, and
the temperature fields of Chapter 4. The flow field driven by salt concentration is the

solution of:

V2P, + % =0 U,=-VP —c¢? (3.44)
Finally, the temporal variation of the salt concentration is determined by:

%+V-[(—z+c)(5c+t7r)] =0

clieg =0 (3.45)

The total concentration is in the present dimensionless formulation with a linear undis-
turbed concentration gradient given by (2.52):

c=—z+c (3.46)
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Here, the undisturbed linear concentration, —z, has unit slope. The equations (3.45) may
be written:

9é D&
Z AV E(Fr+7)=0 <> zg?

o =0 (3.47)

Elimo = —2

This equation means that the material derivative D(é)/Dt is zero. A ‘salt particle’ p that
follows the flow U7 + ¥, does not change its concentration:

&(t) = 5(0) = 2|, (3.48)

3.5 Physical data

The reference water density is
Pwo = 1000 kg/m?3

The dynamic viscosity of pure water at ordinary pressure varies strongly with the tem-
perature. We have from Smith (1979):

T(C)| o 10 20 30 40 50 70 100
1054, (T) (kg/ms) [ 1790 1310 1000 798 654 547 403 282

The dependency on pressure is quite small. The viscosity increases by 1%, when the
pressure is increased from P = 1 bar to P = 100 bar, Smith 1979.

The water contains salt with the concentration ¢ (kgsai /Kgsolution). We use values for a
solution of sodium chloride, NaCl. From CRC Handbook (1971) we have for the relative
variation the dynamic viscosity with c:

c (kg,/kg) |0 0.01 0.02 0.05 010 0.15 0.20
po(c)/pu(0) |1 1.018 1.034 1.083 1.191 1.349 1.554

We see that the variation of viscosity with ¢ is rather modest.
In our models we use a constant value y,, for the dynamic viscosity. As a reference
value we will use:

Bwo = 0.7-1072 kg/ms (3.49)
The water density p,, varies with the temperature T and the concentration ¢. The

derivatives give the thermal expansivity ar (1/K) and a corresponding coefficient a,
(1/(kgs/kgw)) for the relative density increase with ¢. We have from (2.30):

1 (0py 1 (0py
ar = vy (8T>c a, = » ( Ep )T (3.50)
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The thermal expansivity ar depends strongly on the temperature. From CRC Hand-
book (1971) we have for ordinary water:

T(°C)|4 10 15 20 25 30 40 50 60 70 80 90 100

10°ay (1/°C) |0 88 151 207 257 303 385 458 523 584 641 696 750

For T = 20°C we have as a reference value:
ar=2-10"* 1/K (3.51)

The variation of density with ¢ is given in CRC Handbook (1971) for many salts. For
a sodium-chloride solution we have:

c(kg,/kg,)| 0 001 003 005 01 015  0.20
p.(€)/p,(0)| 1 1.0071 1.0214 1.0358 1.0726 1.1105 1.1498
a. (1/(kg,/kg,)) | 071 0.71 072 0.3 0.5 0.77 081

As a reference value we choose:
a.=0.72  1/(kgs/kgw) (3.52)

For granite rock we use the following thermal data:

A

A=35W/mK C=216-10°J/m®K a= G =162 107 m?/s (3.53)

The salt gradient ¢ = —dc/dz is an important parameter. As reference case we take
an increase of 2% for 1000 m:
0.02
=_—=2-10"° k 3.54

% = 1000 10 g,/kg,m (3.54)
As a reference case we have the following data:

Puwo = 1000 kg/m3 Pwo = 0.7-1072 kg/ms

oar=2-107*1/K @, = 0.72 1/(kg,/kg.)

A=35W/mK C=216-10°J/m®K a=1.62-10"% m?/s (3.55)

¢ =2-10"° kg,/kg,m



3.6 Characteristic time-scale ¢,

The characteristic time-scale t., (2.41), is a quantity of major importance. Let d be
the characteristic fracture width. Then we have from (3.7), (3.4) and (2.41):

12400
g, = T .
T (3.56)

With the data (3.55) of the reference case we get for fracture width d = 0.1 and 1 mm:

12-0.7-1073
o (0.001)2-9.81-1000 - 0.72 - 2 - 10-5 5 hours (3.57)

d= 0.1 mm: t.=1650h =69 days (3.58)

It is interesting to compare this with the characteristic time-scale t7 of the variations
of the temperature fields. Consider for example the continuous point source of Section
4.1.2. There is a heat release at (0,y,,0) from ¢ = 0. The temperature of the fracture
plane y = 0 is given by (4.10). The time dependence at a distance r = /22 + 2% is of the

type:
T° « erfc(y/tr/t) (3.59)

Here, erfc( ) is the complementary error function. We get from (4.10) the characteristic
time-scale:

2 2 2 2 2
Tty T At (3.60)

t —
T 4a 4a

Here, a (m?/s) is the thermal diffusivity.
Numerically we have for example:

Vri+y2=100m a=162-10"°m?/s = tr=49 years (3.61)

So at distances not too close to the canisters we have that the characteristic salt-flow time
t. is much smaller than the time-scale t7 of temperature variations:

t. << tp (3.62)

This means that the temperature field is quasi-stationary compared to the flow induced
by salt variations.
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Chapter 4

Temperature fields

The temperature T'(z,y, z,t) satisfies the heat conduction equation (2.4):

%a—T =V2T+~’3 (4.1)

Here h denotes the prescribed heat sources. We are interested in the temperature 7° in
the fracture plane y = 0:

T%(z,2,t) = T(z,0,2,t) — To(2) (4.2)

The undisturbed, initial temperature 7,(z) is subtracted. We will also be interested in
the total weight of the warm region, i.e. the integral T, of T° over the plane:

T, (1) = /o:o dzx /_o; dz - T%(z, z,1t) (4.3)

4.1 Point source solutions

The heat sources are essentially, on the length scale of interest here, point sources at
the canisters.

4.1.1 Instantaneous point source

A basic case is the instantaneous release of heat at a point. The heat E, (J) is released
at the point (0,y,,0) at t = 0. The well-known solution (for zero initial temperature) is,
Carslaw (1959):

Eo —iz? —yo)2422 o
T(z,y,2,t) = WC [22+(y=y0)2+22]/(4at) (4.4)
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Here C = A\/a (J/m3K) is the volumetric heat capacity.
The temperature in the flow plane y = 0 becomes:

C EO 2 a —r? a
T (:L‘,Z,t) = mey"/(4 9. € /(4at) 1‘2 = $2 + 22 (45)

The integration in r and z is straightforward. We use the well-known integral:

! / T (4.6)

Virat

Then we get directly:

E
TC ($) = — 2 —v5/(4at) 4.7
mt( ) Cme ( )

4.1.2 Continuous point source

Our next case concerns the continuous release of heat @, (W) at the point (0, y,,0)
from t = 0. The temperature is, by superposition, obtained from an integral of (4.4) for
0 < ¢ < t. The heat E, is replaced by Q.dt', and the solution (4.4) is for this contribution
taken at the time ¢t — t':

T(z,y,z,t) = /t Qo o5 e—[:c’+(y—yo)2+22]/[4a(t-f')] dt’ (4.8)
o Cldra(t —t')]

This gives with a suitable change of integration variable the well-known solution, Carslaw

(1959):

T(z,y,2,t) =

@ 1 erfe (Vw2 ) (4.9)
4w X \/x2 + (y — 4o)? + 22 a

Here, erfc denotes the complementary error function.
The temperature in the flow plane becomes:

Q.

]_ r2+ 2
T(z,2,t) = 2% g) 2_ 2 2 .
(z,2,t) Y merfc( — rf=zt4z2 (4.10)
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4.1.3 Exponentially decaying point source

The heat release from the nuclear reactions in the canisters decays exponentially with
a time constant t;. We have the following heat source:

Q. et (W) at (0,¥,,0) from ¢t = 0 (4.11)

We get an integral of the type (4.8) where Q,d¢’ is replaced by Q,e~*/t4d¢":

t —t'ftq ~ ,
T(z,y,2,t) =/ Qo e~ /Malt=t)] gy (4.12)
o Cl4ra(t — t1)]¥?

= 2% 4 (y —yo)? + 22
With the substitution u = 7/y/4a(t — ') we get:

@l 2 [
T ) = —— /td—-/
(x, y, % ) 47"/\ Fe \/';r- F/\/‘m

g™+ (ata?) gy (4.13)
The temperature in the fracture plane becomes:

Tc( , ,t) _ QO 1 e—t/td 2 *° e—-u2+(r2+yg)/(4atdu2) du (414)

BTN VT i

For t4 = oo we regain (4.10).

4.1.4 Superposition

With the above solutions we can obtain the temperature field from any distribution
of point sources. We can also add components with different decay times t,.

4.2 Flow field for a point source

We are in particular interested in the groundwater flow field 77 induced by the tem-
perature field. The general solution for a radially symmetric density p = p(r) is given
in section 3.2.2. The formulas may be applied directly for the temperature fields in the
previous section.

We will here consider the simplest case with an instantaneous point source. The
temperature in the fracture zone is from (4.5):

E,

e e 1 1 (2) (415)
T

T(r,t) =
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Here, we have added the undisturbed temperature T,(z). From T° = Ty - T" + To(2),
(2.46), we get the dimensionless excess temperature 7":

7o Eo ety | ()2 L2 (1a) 4.16
T,C(4rat)ol?

We do not specify T} or L;. The corresponding dimensionless density p’ = —T" is of the
type (3.34) with p; and r? given by:

E 2
_ o ~12/(4at) 4.1
P T,C(4rnat)3/? ¢ (4.17)
4at

The flow field #% is now given by the expressions (3.36).

The use of an instantaneous point source is not valid during a first period, when the
exponential decay of heat release is significant. But the temperature field has a certain
finite range during this period. A suitable measure of this range is, in accordance with
(3.60), v/4at,. For simplicity, we will assume that the distance y, from the flow plane to
the canister region exceeds this initial range:

Yo > Vhaty (4.19)

This means that we can use the solution (4.15) at all times at the flow plane y = 0.
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Chapter 5

Numerical model

We use the dimensionless formulation of Section 3.4. All indices are omitted. The total
dimensionless concentration &(z, z, t) satisfies the equations (3.47):

o9& L
5§+V E(Fr+3]=0 (5.1)

é’t:o =—-z (5‘2)

The temperature-induced velocity field o7 is given by analytical expressions. The salt-
induced velocity field v, is determined by the excess concentration c. We have from (3.44),

(3.9) and (3.13):

() —z,2' - 2) Jc(z’,2',t)

Uz, 2,t) = —¢( :tztz——/ d:z/ dz @ —2) +(z—z)2. 577

c=c¢c+z (53)

5.1 Moving salt particles

The é-curves are at the beginning ¢t = 0 just straight horizontal lines in the (z, z)-
plane: &(z,z,0) = —z. Curves for constant & at a later time is shown in figure 5.1 for a
typical case with heating in the center region. The flow is here directed upwards, while it
becomes directed downwards further out on both sides.

The field ¢(z,z,t) will be represented numerically by a number of moving particles,
which follow the total flow o7 + ¥,. Particle ¢, 7 has the coordinates

(i (), 2i;(2)) (5.4)

At t = 0, the particles lie in a rectangular mesh with the coordinates (z;,2;) (z; < 2o <
21 < 29 < L)

zi;(0) =z z;(0) =z (5.5)
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The particles i, j preserve according to Eq. (3.47) their initial total concentrations:
&;(t) = &;(0) = —2;(0) + ¢i;(0) (5.6)
or

&;i(t) = —z; _ (5.7)

Figure 5.1. Typical total concentration field é(z, z,1)

The particles are displaced with the flow field v7 + 0.. We have:

d - -
g7 (z:5(1), 2 (1)) = 01 (745, i, t) + Ue (245, 205, 1) (5.8)

With a discrete time step At we have numerically:
zi;(t + At) > z5(t) + At - [orz(zi;(8), 25(2), ) + veoli;(2), 2:5(2), )] (5.9)
zi;(t + At) 2 z;(8) + At - [ora(zi5(8), zi(t), £) + vea(2i(8), zi5(8),8)] (5.10)

The discrete representation of ¢ is illustrated in figure 5.2. The remaining problem is
to evaluate numerically the velocity field ., Eq. (5.3), from this discrete representation.



{Xi,j*l ’ zl',j*l)

ity Zior /)

Figure 5.2. Discrete representation of ¢.

5.2 Evaluation of the concentration-flow integral

The analytical expression for ¥, is given by the double integral (5.3). There are a
number of difficulties to overcome in order to evaluate it numerically at a particular time
t, knowing the particle positions (z;;,z;), i.e. the approximate curves for constant é&.
Ounly a brief description of the rather intricate numerical technique is given here.

The region of integration is the whole (z’,2')-plane. But ¢ and d¢/dz' will be very
small for large r. We choose a large region z_ < 2’ < z, 2_ < 2’ < z; as the area of
integration, neglecting the outside contribution.

It turns out to be better to use ¢ = —z + ¢ instead of ¢ in the integral (5.3). Then we

have:

{;c = —-l— /x+ dxl /z+ dzl (l‘l - x’ zl - Z) . aé(xla Z’) t)_.

27 Jx e (2 —z)2 4 (2 — 2)? 0z
1L oo+ o+, (29 —z2,2' = 2) .
—5- /— dr /z_ dz (@ =27+ (7 = 2 1 —¢(z,2,t)2 (5.11)

We have for any z and z (and t) integrals of the following type:

Ip = / ! / " d P z')% (5.12)

The integration in 2z’ may be changed to an integration in &

=, ’ /_Q_&__ ézé(zrszl) _ & ot
/z_ dZF(x’z)Bz’—{déza%E;dz' —/E deF(z',2) (5.13)

The variable 2’ in F(z’,2’) is linked to the integration variable ¢ by the relation & =
é(z’,2"). The integral Ir is now

Ir = / i”' dz' /_" dF(,?) (é=¢,) (5.14)
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Figure © } shows the particles (¢,7) in the (z',2')-plane, where &; = —z;, and in the
(z',&)-plane. All particles with the same j-value lie along the straight line ¢ = —z;. The
distance 74, ; — z;; between particles on the same line varies freely with ¢ and j. The
particles at the four outer borders are virtually not displaced from their initial positions.

oooooooooooooooooooooooooooo

..............

----------------------------

Figure 5.3. Moving particles in the (z’,2’)-plane and in the (2',¢)-
plane.

The double integral Ir, Eq. (5.14), is evaluated numerically in the (z’, ¢)-plane using

simple Riemann sums:
Ir =} 3 Az AG;F (a3, 25 (5.15)
i

As increments in z we take:

(5.16)

Azij = Tiy1j = Tij

The function F(2', z') is to be evaluated in the region between (z;j, zi;) and (Ziy15, Zi41,5)-
We use the midpoint value:

1
zij = 3 (zi5 + Tis1,5) (5.17)
, 1
zi; = 5 (2 + zi1g) (5.18)

For the increment Aé;; we use (except for the upper and lower boundary) an average from

above and bhelow:

Cip1 — C; C; — Ci_ Cip1 — Ci_ —2z; Zi
AG; = ( j+1 C]);—(CJ ¢j-1) _ Ci+1 2 Cj-1 — J+19+ j=1 (5.19)

This gives the following Riemann sum for the double integral:
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Cy —Cj- Ty T i Ziq 2z 1
Ip Xj:-—————’“ = -Z‘_:(:f:;m — zij) -F( ! +2 L 2 +2 “”) (5.20)

The second double integral of (5.11) may be evaluated analytically. But we have found
that it is better to evaluate it numerically. It is independent of time ¢, and we evaluate it
for the original positions according to Eq.(5.5). Then we subtract two numerical Riemann
sums, which are identical at ¢t = 0. The numerical errors in the discrete formulation
become significantly smaller.

We now have the following formula for o,

- 1 —2zjp1 + 251 Tiy15 — Tij
U, IL‘,Z,t = ———— 2 2 . J L x'..—;z;’z{.—-z
( ) 27 R 2 Z (27:] - 3)2 + (23,] - 2)2 ( i Y )
1 Zj41 = Zj-1 Tip1 — T / /
—_ ) ——— Ti—z,2, -2
Lysucsn g maon (.
—c(z,z,t)z (5.21)

The intermediate points (mfj, zfj) are given by (5.17-18). In the second double sum, the
original positions are used, and the intermediate points become:

= -”%gf-ﬂ 2=z (5.22)

5.3 Iterative solution

The positions (z;j, z;;) are calculated for time-step after time-step, ¢ = n - At. The
proper choice of time-step At is discussed in Section 6.3.3. At the start n = 0, the
positions are given by (5.5).

The displacement of the point 7, to the next time-step is given by Eqs. (5.9-10).
The velocity or at the point (z;;,2;) is given by an analytical expression. The salt-
concentration velocity ¥, is determined by formula (5.21) with z = z;;(t) and z = z;(t).
In order to get the velocity we add contributions from all points. At each time-step we
have to evaluate the double sum for each point 1, ;.

The second double sum in (5.21) is independent of time, but the positions (z, z) change.
We have evaluated the velocities for the initial positions at ¢t = 0. These velocities are
stored, and the velocity at any other position is obtained by linear interpolation using the
four surrounding stored values. :
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Chapter 6

Point-source temperature field

We have seen in Section 3.6 that the characteristic time-scale f. for salt-induced flow is
much smaller than the time-scale ¢ for the significant changes of the temperature field.
It is therefore reasonable to consider fixed or ‘frozen’ temperature fields. The temperature
T(z,0,z,t,) at any fixed time ¢, is used.

The instantaneous point source with a release of the heat E, (J) at t = 0 at the point
(0,y,,0) is a basic case, since any other temperature field may be obtained from this one
by superposition. We will in this first study only use the temperature solution for the
instantaneous point source. The distance y, must exceed the limit (4.19): y, > /4at,.

6.1 Temperature field

The chosen, now time-independent, temperature field in the plane y = 0, T(z, z), is
given by the point-source solution at a time t,. We have from Eq. (4.15):

E,

Clirayne ) R L L) (6.1)
wat,

T(z,z) =T(r) =

Here, r = v/z% + 2% is the radial distance in the flow plane y = 0.
The corresponding dimensionless excess temperature 7" is in accordance with (2.8):

T T —TTo(z) = A, - e~("VL}/(4ato) (6.2)
1

As scale length we choose:

L, = Vdat, (6.3)

The dimensionless excess temperature 7" is then
T'(r') = A,e ") (6.4)

The dimensionless temperature amplitude A, is from (6.1-2), inserting (2.43) for 7}:

31



aTEo 1 - a
A= r/ra,c2C  (4at )26 vo/ (tate) (9o > V4ata) (6.5)

The use of the instantaneous point source requires that the restriction (4.19) is fulfilled.

6.2 Numerical model

The numerical model described in Chapter 5 is used with the particular temperature
field T from the point source at a time t,. Let us summarize the complete set of equations

used.
The problem is solved in the dimensionless formulation. The temperature field and the

ensuing dimensionless velocity component ¥ are from (3.37) and (3.34-36) with p = -1,
ppr=A,and r; = 1:

T = A, e (6.6)
A, 22’2
2 (@ + )
Ao (Zl)2 - (l'l)z 2\ —(r)2 Y
L= 1— (14 (r)?)e ') 6.8
= {((x'>2+(z')2)2[ (4] e (69)

The dimensionless amplitude factor A, is given by (6.5), and the scale length L, by (6.3).
The dimensionless velocity component ¥, from the salt-induced flow is according to

Section 3.3 determined by the equations:

7 L= (1+ ())e 7] (6.7)

U =

d
V2P, + —g; =0 U, =-V'P. -2 (6.9)
This leads to the integral (5.3), which is used in the numerical model to determine ..
Finally, the total dimensionless salt concentration ¢ = —z’ + ¢’ is displaced by the
velocity v + v as described mathematically by the salt balance equation (5.1):
0¢é P orsgm -
—a—t—,—{-V [E(Wr+7.)]=0 (6.10)

It is noteworthy that the above dimensionless problem contains only one parameter,
namely the dimensionless temperature amplitude A,.

6.3 Numerical results

The coupled process has been calculated with the numerical model for values on A,
from 0.3 to 100. In the case A, = 3, we have made more detailed studies of mesh choice.



6.3.1 Temperature flow component vy

The dimensionless flow has the two components vy and ¥,. There is an option in the
computer model for which the latter flow v, is suppressed. We get the flow of the salt
particles due to the temperature flow ¥y only. This is not our physical situation, but it
provides an insight into the complexity of our problem.

The result for A, = 3 is shown in Figures 6.1A-E on page 37. The figures show the
curves of constant dimensionless total concentration éfor t' = 1, 2,4, 8 and 10, respectively.
The é-curves at the beginning ¢ = 0 are horizontal, straight lines. The water moves
upwards in the central warm region. Further out it follows the dipole field shown in
Figure 3.1.

There are stagnation points for or at (£1.12,0). There is a vortex motion around the
two stagnation points, which complicates the behaviour around them. The é-curves are
dragged into the vortex, and they spiral between each other.

The salt-flow component ¥, will moderate the flow process. We will see below how the
upward flow in the warm region is counteracted and eventually balanced by the weight of
heavier water coming from below.

6.3.2 The case A, =3

As the first case we take A, = 3, which represents a moderate heating and flow process.
A coarse, an intermediate and a fine initial mesh are compared. About the same number
of points are used in the three cases. The mesh gives the starting positions (z;, z;) of the
particles. The intermediate mesh consists of 33 - 21 points. It is shown in Figure 6.2A on
page 38. The figure shows a central, rectangular region —4 < z’ < 4,-2 < 2/ < 5. The
vertical and horizontal spacing is here 0.5. The two thicker circles show here and in the
following figures the center position (0,0) and the point (0,1). The computational points
cover the larger rectangle —8 < 2/ < 8,—4 < 2’ < 6.

Figures 6.2B-J show the é-curves for t' = 1,2,...9. We see that the model represents
the spiral motion around the vortex quite well. At t' = 6, there is a very sharp point in
the vortex for the curve ¢ = 0.5. At ¢’ = 7.5, there is an error as the curve crosses itself
near the sharp point. This error continues and increases somewhat at ¢’ = 8 and t' = 9.
But the method is quite stable, and the error in the complicated vortex motion does not
significantly disturb the solution outside the vortex.

The result for the coarse initial mesh is given in Figure 6.3A-D on pages 39-40. The
initial spacing vertically and horizontally is 1. The number of points are 31 - 20, so the
computational region is now much larger: —15 < 2’ < 15,—-10 < 2’ < 10. The figures
show here as in all other cases a smaller central region. The result is pretty much the same
as for the intermediate mesh except for the central vortex part, where the finer details are
lost. We can conclude from this comparison of the coarse and intermediate meshes that
it is sufficient to use the smaller computational area of the intermediate mesh.

The central part of the fine initial mesh is shown in Figure 6.4A on page 40. The
fine spacing is only 0.2 units in the horizontal and vertical directions. The computational
region is limited to the rectangle —4 < z’ < 4, -2 < 2’ < 4, since we here focus on the
vortex behaviour. The calculations are less stable, since the particles are so close to each
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other. At t' = 3, there is some rippling for the curve ¢ = —0.6. This is increased at ¢’ = 4.
The calculations with finer mesh are less stable. '

From these comparisons we conclude that the best result is obtained with the inter-
mediate mesh.

6.3.3 Numerical problems and remedies

We have had a number of problems with the numerical model and its application in
particular for large A,.

One problem has been that the particles may accumulate in a small area. This can be
seen in Figure 6.1C-D that shows the vr-field only. The particles from below move towards
the z’-axis and accumulate near the axis. They move upwards very close to the z/-axis.
This leads to numerical problems, since we divide by the distance from a particle to the
midpoint between consecutive particles in Eq.(5.21). A particle is therefore removed, when
the distance between any two particles on the same é-curve fall below a value As,,;,. This
value is an input to the program. In the calculation we normally take Asp;, = Az,in /5.

Another problem is that the particles separate from each other so that certain areas
become virtually empty. This may also be seen in Figure 6.1C-D. Above the center
(0,0) near the z’-axis the particles move away from the axis. New particles are therefore
inserted, when the distance between two particles on the same é-curve exceeds a value
ASmaz. This value is an input to the model. We do this in the central region, where the
initial horizontal distance is Az. A normal choice has been As,,; = 1.5 Az.

A third problem is that two é-curves may come very close to each other. The problem
occurs when a particle lie very close to a midpoint of an adjacent é-curve. The particle is
removed if the distance falls below an input value As! ;.. This limit must be quite small,
since the é-curves lie very close above the warm region. We choose As’ ;. = Azpnin/50.

Particles are flowing upwards into the warm region. The particles at the lower parts
of the vertical boundary will eventually be moved inwards. This occurs for calculations
during a long time, i.e. for large . A new particle is inserted at the boundary on the
initial level if the distance from the boundary particle to the initial boundary position
exceeds Az.

This removal and insertion of particles require a renumbering in the program so that
the particles (z;;, z;;) on a é-curve lie in the right order. We shall move along the é&-curve
from the left boundary to the right one, when : is increased step by step.

The ¢-curves are indicated in Figure 5.3, left. To the right we have a representation
in the (z’,)-plane. A particular complication in this representation is the case, when the
¢-curves become strongly curved as in Figures 6.2E-J. For given values of é and 2/, we
may have three points at different z’-values. This will mean that the points along a é&-line
in Figure 5.3, right, moves up to a certain z’-value, then there are consecutive points with
decreasing z'-values, and after that the points lie again in a row with increasing z’-values
for increasing 7. The model works quite well also in this case. Then some of the increments
Az;; in (5.15) are negative, and their contribution to the Riemann sum changes sign. This
is consistent with the fact that the derivative 8¢/9z' in (5.12) is positive in these points,
while it normally is negative, since ¢ increases downwards.

The technique described in Section 5.2, where the calculations are performed in the
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(z', é)-plane, is a very particular one. I think that a main advantage compared to con-
ventional numerical techniques is that it can cope so easily with these complicated, inter-
twined vortex curves.

The problem to represent the vortex curves increases with time. This is illustrated
in Figures 6.2F-J and 6.9C-F (page 45). We need more and more particles to represent
the intertwined curves. But, physically, these curves neutralize each other at a certain
distance away. In order to obtain the best result for the vertical displacement above the
warm region, one shall represent the vortex on an intermediate level.

The time-step At is chosen, so that the largest displacement (= (A,/2) - At) at the
start is given. This displacement is an input in the model. Normally we choose this length
to Azmin / 5.

The velocity v7 and our problem is symmetrical relative to the z’-axis. The velocity
integral (5.21) giving ¥, need only to be calculated for particles lying in z’ > 0, but the
sum over ¢ and j must of course be performed for all particles.

6.3.4 Results for different A,

Figures 6.5-9 on pages 41-45 show the result for A, = 0.3,1,10,30 and 100. About
30 - 20 = 600 initial particles are used in all cases. The process is quite different for small
and large A,, since the thermal velocity o1 is directly proportional to A,. The choice
of mesh must be adapted accordingly. With a judicious choice we feel that is has been
sufficient to start with the 600 particles. The computer time on an IBM-486 personal
computer became 10 to 30 minutes, with the longer time for higher A,.

The result for A, = 0.3, shown in Figure 6.5A-D, is not dramatic. The same behaviour,
shown in Figure 6.6A-H, is obtained for A, = 1. The vortex motion is suppressed by the
salt density term —c’2. The vortex occurs for A, = 3 and becomes increasingly stronger
for increased A,. It is easier to extend the calculations to larger times ¢’ for small A,,
for which the process is less dramatic. We have for A, = 1, Figure 6.6, continued the
calculations to t' = 18. The curves for ¢/ = 10, 15 and 18 are almost identical. There is a
small residual horizontal movement upwards and outwards around the level z’ = 0.8 and
an inward movement around the level 2/ = —0.5.

The results for A, = 3 was shown in Figure 6.2. The case A, = 10 is shown in Figure
6.7A-F. The vortex motion is quite strong, and after ¢ = 2 we have trouble to represent
it properly. The spiral curves begin cross each other at ¢/ = 2.5. We have continued the
calculations until ¢ = 6.5. The curves in the vortex become more and more entangled.
The model can, perhaps somewhat suprisingly, still produce stable results outside the
vortex region.

The results for A, = 30 and 100 are shown in Figure 6.8A-C and 6.9A-F, respectively.
The process is now much more intense. Water is rapidly moved upwards to a quasi
steady-state position. The case A, = 100 is shown for several times to illustrate the
complicated vortex motion. The spirals start to cross each other at ¢’ = 0.5, Figure 6.9C.
The complications increase for t' = 1,2 and 6 according to the following figures 6.6D-F.
The different intertwined é-curves neutralize each other. The salt will be mixed in the
vortex region, and the precise positions do not really matter. Therefore, we feel that the
result outside the vortex is still valid with an acceptable accuracy.



6.3.5 Largest upward displacement

A main goal in this study is to estimate the upward motion in order to assess the effect
of the salt barrier. We are in particular interested in the particles that start in the warm
region, where the potentially leaking canisters lie. We have seen in the above results that
the largest upward motion from the warm central region occurs along the symmetry line
z’ =0, i.e. the 2’-axis.

Consider a particle that starts at (0,2,) at ¢ = 0. It will move upwards along the
z'-axis. The position at ¢’ is denoted z, (¢, z,):

(zP’ z}’) = (07 zm(tl7 ZO)) zm(07 Zo) =2 (611)
We use a special notation for the largest value for large t':
Zmaz(%0) = 2m (00, 2,) (6.12)

We are in particular interested in the particle that starts from the center z, = 0 closest
to the canister s, i.e. in z,(¢,0) and 2/, ,.(0).

Figure 6.10 on page 46 shows z,(#,0) from the calculations for A, = 3 for the three
meshes: intermediate (Figure 6.2), coarse (Figure 6.3) and fine (Figure 6.4). The difference
between the curves is an indication of the numerical uncertainty. We believe that the
intermediate mesh, i.e. the middle curve, gives the best result. The largest value z’ ,_(0)
is around 1.2. Figure 6.11 shows z,, (¢, z,) for z, from -2.5 to +2 for the intermediate mesh.
The points above 2z, = 1.5 and below z, = —2 attain a reasonably constant value after
t' ~ 1.5, while there is a longer time-scale in the central region. The particle that starts
at z, = —1.5 has the longest time-scale. There is a separation point between z, = —2 and
z, = —1.5. The particles below this point attain an equilibrium below the warm region,
while particles above it are sucked into the warm region with its high velocities vr,, and
they end above 2/ = 0.

The maximal upward displacements z,, (¥, z,) are shown for 4, = 0.3,1,10, 30 and 100
in Figures 6.12-16 on pages 46-48. The case A, = 10 is shown in greater detail in Figure
6.14. We see that 2;,,.(0) is around 1.9. The point of separation lies between z, = —3
and -1.5. The point of separation moves downwards with increasing A,. It lies between
2, = —4.5 and -3 for A, = 30, and between z, = —8 and -6 for A, = 100.

The maximal displacement for z, = 0,1 and -1 according to the above results is given
in Table 6.1. This table is a main result of the study.

A, ] 03 1 3 10 30 100
2he(0) 1024 0.7 1.2 19 2.7 4.1
Zha(1) ] 1.1 1.3 16 21 3.0 44

Zn.:(—1) [ -09 -03 09 1.6 24 4.0
Table 6.1. Maximal displacement z/,,.(2,) from (0, z,) for
different A, according to numerical calculations.
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Figure 6.3. Curves of constant ¢ for A, = 3 with
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Figure 6.4. Curves of constant ¢ for A, = 3 with
the fine initial mesh.
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Figure 6.5. Curves of constant ¢ for A, = 0.3.
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Figure 6.6. Curves of constant ¢ for A, = 1.

At =0 B:it' =1

,/\\ -1.5

Cit'=1.5 D' =2
—
T
15 * 1.5

i -
Figure 6.7. Curves of constant ¢ for A, = 10.
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Figure 6.11. Displacement z,,(/, z,) along the z’-axis for A, = 3 for different z,.
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Figure 6.12. Displacement z,(t',z,) for A, = 0.3.
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6.4 Upward flow along the z'-axis

The largest upward displacement, which occurs along the z’-axis above the warm
region, may be obtained analytically, if the contribution from the salt concentration field
P, is neglected. We use the approximation:

vr+ 0. =0r—-V'P.-di~tr—-2 (6.13)
In this approximation, the equations for a salt particle (z,(t'), z,(t')) become:

dz

T = Ts(@nr %) (6.14)

dz, ,

= = V(% 2) = (5(t) — 2(0)) (6.15)

The temperature flow field o is given by (6.7-8).

6.4.1 Equation for z,(t, z,)

On the z'-axis, we have z,(t') = 0 and vr; = 0. For 2,(t') = z(t', 2,) we have:

dz,
dt’
Eq.(6.8) with 2/ = 0 and 2/ = z,, gives:
dz A, 1—em
This is a nonlinear, ordinary differential equation for z,(t/, z,) for any fixed z,. The initial
position z, may assume any value: —oo0 < z, < co. The temperature amplitude A, is
positive. For A, = 0 we have the trivial solution z,(t') = z,.
The solution is rather straightforward. We have from (6.17):

dz,
A (1 — e ) [(222) — z,n + 2o
We integrate from 0 to . On the right-hand side we get an integral from 2, to z,,. With
s as integration variable we have:

/z,,, ds
o Ao(l—e**)/(25%) — 5+ 2,

This is an explicit integral that gives ¢ as a function of z,, for any given z, and
A,. It is easily calculated numerically. Figure 6.17 on pages 49-50 shows the result for
A, = 1,3,10,30 and 100. These curves are to be compared with the previous ones that
included the effect of P; Fig.6.13 for A, = 1, Fig.6.11 for A, = 3, Fig.6.14, upper right,
for A, = 10, Fig.6.15 for A, = 30 and Fig.6.16 for A, = 100. The character of the
curves are remarkably similar. The differences are not too big. We can actually use this
approximate, analytical solution in assessments of the maximal upward displacement.

= v1,(0, 2m) — 2 + 2, (6.16)

dt’ (6.18)

t =

(6.19)
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6.4.2 Analysis of the integral for z,(#, z,)

Eq.(6.16) or (6.17) gives the velocity dz,,/dt' as a difference between the temperature
component vr,(0, z,,) and the counteracting weight z,, — z,:

= (2m—2,) (6.20)

The situation is illustrated in Figure 6.18. The four full curves show the temperature
component vr,(0, zm) for A, = 3, 10, 20 and 30. Its maximum at z,, = 0 is vy, = A, /2.
The dashed sloping lines show z,, — z, for different start values z,.
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Figure 6.18. Figure to illustrate Eq.(6.20).

Consider as an example the case z, = ~1 and A, = 30. The velocity of the particle is
the difference between the curve vr, for A, =30 and z,, — 2, = 2z, + 1. At z,, = 2, = —1
we get from the figure the velocity 9.5 — 0. The velocity difference increases to 15 — 1
at z, = 0. Then the difference decreases, until it becomes zero at z,, ~ 2.14. The
denominator of (6.19) is then zero, and the point corresponds to ' = co.

For positive z,, we have only one point where the two curves intersect and give the
upper limit 2,,(00) = 2;,,,. But for negative z, we may have three zeros, for example for
zo = —4 and A, = 10. This situation occurs for certain negative z,, if the derivative of
vr, with respect to z, exceeds +1 at its inflexion point, which lies at z,, = —0.8983. The
derivative at this point is:

: d o
= —08983 =~ (or.(0,2,) = %- 0.53445 (6.21)

Zm

We have the limit:

A, = 3.742 (6.22)
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Above this limit t*sre are three solutions for a certain interval of negative z,-values. The
lowest one is the one to use for z/,,,. For z, = —4 and A, = 10, we get from the figure
2.: 2 —3.6. When z, is increased we reach a point, here z, >~ —3.2 for A, = 10, where
the first two solutions coalesce, and z,, — z, becomes a tangent to vr,. The end value
2, Makes a jump to the third solution for a positive value of z,. This is the point of
separation for the curves z,(t', z,). In Figure 6.14 for A, = 10, we see that this occurs for
z, between -3 and -1.5. From Figure 6.18 this occurs around z, = —3.3. For 4, = 3.0, we
get the separation for z, between -4.5 and -3, while it occurs at z, ~ —4.7 in Figure 6.18.
We see that the analytical results have a clear error here, but the character of process and
the order of magnitude are certainly retained. The separation should not occur below the
limit (6.22). This is consistent with our numerical results for A, = 3 and smaller.

6.4.3 Final value z],,(2,)

The final point z, (00, 2,) = 2,,,,(2,) is of particular interest. It is given by the points
of intersection in Figure 6.18, where the two velocities in (6.20) balance each other. This
equation may also be written in the form:

2 — e -
— (zm—2) = S Zm = Zpaz(Z0) (6.23)

2
Zm

The situation is illustrated in Figure 6.19. The right-hand side, given by the upper

full curve, intersects the straight line with the slope 2/4, at z,, = 2/ ,.. We see again the

possibility of three solutions, in which case the lowest value is valid here.
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Figure 6.19. Figure to illustrate Eq.(6.23) to deter-

oo, .
mine z, .. for given z, and A,.
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The values of z/,,.(2,) from Eq.(6.23) have been calculated for a number of A,. The
result is given in Table 6.2,

A, =01 0.3 1 3 10 30 100 300
2,=-2.0| -1.99 -1.96 -1.86 -1.22 1.04 193 3.12 4.72
-1.5) -148 -1.44 -125 0 119 2.04 3.25 4.86
-1.0f -097 -0.90 -0.57 0.39 1.34 2.17 3.38 5.00
-05]| -046 -036 O 0.69 1.50 2.31 3.53 5.15

0 0.05 0.15 045 097 1.68 246 3.68 5.31

0.5 0.54 063 086 1.26 1.88 264 3.86 5.49

1.0 1.03 1.09 125 1.56 2.11 2.85 4.05 5.67

1.5 1.52 1.56 1.67 1.90 238 3.08 4.26 5.86

2.0 2.01 204 211 229 269 334 4.49 6.07

Table 6.2. Analytical, approximate values of z/,,_(z,) for different A,.

It is convenient to have explicit expressions for 2/ ,_(2,). Formulas for z, > 0, which
are sufficiently accurate for our purposes, may be derived in the following way. Equation
(6.23) is to be solved. The problem is the right-hand member, for which we introduce the
following approximations:

] — e 1 0<2,<03
—— =~ L15~2,/2 03<z,<L5 (6.24)
Zm . 1/2;'; Zm 2 1.3

From this we get, when the solution of (6.23) falls in the first interval 0 < z,, < 0.3:

2} 0n(Z0) = 2o + %’- 0< A, £2(0.3~2,) (6.25)

For the second interval 0.3 < z,, < 1.5 we get:

23A, + 4z,

3-2)< A, <5(1.5- .
T 2003 —2,) < A, < 5(1.5 - 2,) (6.26)

2r00(20) =
In the third interval z,, > 1.5, we get a cubic equation:
22 (2 = 2,) = %‘i (6.27)
The solution for z, = 0 is

2 (0) > JA,J)2 A, >6.75 (6.28)

There is a complicated but well-known solution to cubic equations. We get for z, > 0:

2";")] A >5(15—2) (6.29)

z, 2z,

1
2z 0e(20) 3TT3 cosh {—arccosh (1 +

3 4z
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The formulas for z, = 0 are of particular interest. We have from the above expressions:

A,J2 0< A, <0.6
2 (0)~{ 234,/(A,+4) 06<A4,<7 (6.30)

VAo/2 A1

The expression for A, > 7 lies above the other two approximations in the interval 0 <
A, < 7. It may therefore be used as an upper limit for all A,:

ha(O) S JASE 420 (631)
For z, > 0, we have from Eqgs.(6.25), (6.26) and (6.29):

z,+ Aof2 0< A, <2(0.3-2,)
4 (o)l 234t 42,)/(A, + 4) 2(0.3 = 2,) < A, <515 - 2) (6 40,
maz\%e) =Y, /3 + (22,/3) - cosh(p/3) A, > 5(1.5 - z,) '

p = arccosh[l + (274,)/(423)]

The different results for 2/ __(z,) are compared in Table 6.3 for z, = 0,1, —1 for differ-
ent A,. The values obtained with the numerical model, row I, are given in Table 6.1. The
values from the solution of (6.23), row II, are given in Table 6.2. Finally, row III shows
the values from the above approximations for z, = 0 (Eq.(6.30)) and z, = 1 (Eq.(6.32)).

A=03 1 3 10 30 100
I 024 07 12 19 2.7 41
2.0 I | 015 045 097 1.7 2.5 3.7
M| 015 046 099 1.7 25 3.7
I 1.1 13 16 21 30 44
2 (1) I 1.1 13 16 21 28 41
M| 11 13 16 21 29 41
I 09 03 09 16 24 4.0
Z.(=1) I | -09 -06 04 13 22 34

Table 6.3. Comparison of the largest upward displacement 2/ ,.(z,).
I: Numerical calculations (Table 6.1),
II: Solution of Eq.(6.23) (Table 6.2),
III: Formulas (6.30) and (6.32).

We see that the approximate formulas (row III) are good approximations to the solu-
tion of Eq.(6.23) (row II). There are some difference between the numerical results with
the model and the analytical expressions, but we can certainly use the latter ones for
assessments of the largest upward displacement.
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6.5 Formulas to assess upward displacement

A main endeavour in this study is to obtain formulas to assess the largest upward
displacement of the groundwater, in particular for the water that starts at the center
(0,0). We have seen that the largest displacements occur along the 2'-axis.

The calculations above in this chapter are made in dimensionless form. Let Zmaz(2,)
(m) denote the real maximum upward motion for a particle that starts at (0,2,) at ¢ = 0.
Then we have from (6.3):

Zmaz(2,) = Vdat, - 2! ,_(z,) (6.33)
The dimensionless values 2/,,,(2,), calculated with the numerical model, are obtained

from Figures 6.11-16 for A, = 3,0.3,...,100, respectively. The values for 2} .o(20) for
2z, = 0,1, -1 are also given in Table 6.1 for different A,. Approximate analytical expression
are given by Table 6.2, and Eqs.(6.30) and (6.32).

If we use formula (6.31) we have the estimate:

Zmaz(0) > Vdat, - JA,[2

or, inserting (6.5) for A,,

1 ar E, y 2
mas(0) = f e . 2T Ko, ~ /() 6.34
2maz(0) \/27:'\/7? a.c2C y, +/4at, ¢ (6.34)

The time t,, at which we take the point-source temperature field, may be chosen at will.
There is a maximum for 2,,,.(0) for a certain ¢,. This maximum is determined by the
last factor of (6.34), i.e. by the function:

1 -1/ r= 4ato

a(r) = Jro Y2

(6.35)

A few values of g, are:

710 01 025 0.5 1 1.5 2 2.5 3 d
g1(r) |0 0.0001 0.04 0.19 0.37 0.42 0.43 042 0.41 0.37
Y91 |0 005 033 058 072 0.75 0.75 0.75 0.75 0.72

7| 10 25 100 800 10000
g1(r) 1029 0.19 0.10 0.04 0.01
Vg1 | 0.66 0.58 0.46 0.33 0.22

The quantity /g gives the variation of z,,-(0) with ¢,. We see from the table that the
maximum is very flat. The values lie between 0.33 and 0.75 for 0.25 < 7 < 100. The
maximum of ¢; is:

dgl _ —I/T 1 l _ _
= Ry~ + T = 0 for 7=2 (6.36)
1
maz = §1(2) = —=¢7%% = 0.43 6.37
a1, 9:1(2) \/56 ( )
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This gives the largest z,,,.(0) for variable #,:

1 aT Eo
maz(0 o~ Y -— o > V4at 6.38
& ( )lma.:c to %\/2—’” QCCgC Yo (y > a d) ( )

This formula is a major result. The distance y, must exceed the limit (4.19). The maxi-
mum occurs for ¢, = y?/(2a). The numerical factor is given by:

1
\6/527r

The sensitivity of zpm4,(0), Eq.(6.38), for variations of the parameters is of great inter-
est. The cubic root will diminish the sensitivity, since we have

V2~126 ¥/10=22 /100=4.6. (6.40)

So, if ar or ¢ is changed by a factor 2, then 2,,,,(0) changes by the factor 1.26 only. If E,
or y, are changed by a factor 10, then zm,,(0) changes by the factor 2.2 only. A change
of E, or y, by a factor 100, will change 2,,,:(0) by a factor 4.6. Formula (6.38) gives the
maximum with respect to t,. The expression (6.34), valid for any ¢,, declines as 1/¥/%,.
This means that z,,,,(0) is extremely insensitive to changes of ¢, after the initial period
0<7<20r0<t,<y?/(2q).

The above maximum concerns 2,,,-(0). The character of the flow field is determined
by the value of A,. Let us therefore also calculate the maximum of A, for variable ¢,.
Expression (6.5) for A, is written in the following way:

o~ 0.34 (6.39)

C!TEO
A, = T8
/T .coCyt 92(7)
g2(7) = e T= (6.41)

The function go(7) gives the dependance on t,. The maximum is:

dg2 . =1)T ("'2 1 1) _ _
I =€ . 7_3+T2-T2 =0 for 7=0.5 (6.42)

G2,maz = 92(0.5) = 4e7? = 0.54 (6.43)

A few values of g,(7) are:

710 01 025 05 075 1 2.5 3 10 25 100
g2(7) | 0 0.005 029 0.54 047 037 0.11 0.03 0.01 0.002 0.0001
Y9, 10 017 066 0.81 0.78 0.72 048 0.32 021 0.12 0.05

We see again that the variation with ¢, has a very flat maximum. The factor 3/g; lies
between 0.21 and 0.81 for 0.11 < 7 < 10. The largest value of the temperature amplitude
A, for variable ¢, (y,, E, constant) is now:

A;nar _ 4 aT Eo

y
= . c— t, = =% 6.44
m/re? a.coC oyl or o (6.44)
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The corresponding 2y,.-(0) becomes from (6.28) and (6.33), inserting 4at, = y2/2:

zma:c(o) = %2 : \3/ Apres (645)

or

1 aT Eo
mas (0 = Vol 7 e
z ( )Imax Ao \/27!‘\/7_!"62 \/acc‘z’C Yo ( )

Here, the numerical factor is given by:

L ~oo93 (6.47)

27\ /me?

6.6 Results for SKB repository

At long last, we are now able to assess the largest upward groundwater movement
for a nuclear repository deep down in rock. The SKB system is described in Juhlin and
Sandstedt (1989).

The heat release from a canister has the initial value Qo,can (W), and it decays with
two exponential components with decay times t; and t4:

Qean(t) = Qucan [are™ + (1 — ay)e~/a] (6.48)
The heat release up to a time ¢ becomes:
Een(t) = /0 t Qean(t’)dt! (6.49)
E 0n(00) = Qocanfants + (1 — ay)t41] (6.50)
The total heat release from N.,, canisters is then:
Eo; = Nean * Ecan(00) (6.51)
We use the following data:
Qocan =533 W tqy = 46 years tq1 = 780 years
ap = 0.75 Neon = 300 (6.52)
The total released heat is then:
E, =300-533-(0.75- 46 + 0.25 - 780) - 3600 - 24 - 365 = 1.16 - 10'®* J=0.32 TWh (6.53)
We use the data of reference case (3.55). We have:
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ar 2.10¢

= =6.43-10"° m*/J 6.54
a.ceC  0.72-2-10-°-2.16 - 10° m’/ (6.54)

The distance y, from the canisters to the flow plane is an important parameter. We take
a value close to the lower limit (4.19):

Yo=100m  (V4aty =97 m) (6.55)

Then we have according to (6.38):

s 1.16 - 1015
Zmaz(0)] s ¢, ~=0.34- \/6.43 -10-6. EETTEE =143 ~ 150 m (6.56)
The maximum occurs for the time:
2 1 2
t, = Yo _ _ 1008 = 3.09 - 10° s= 98 years (6.57)

2 2-1.62-10-6

The Swedish nuclear program to year 2010 will require the storage of some 10 000
canisters. All these canisters cannot be placed in a small region, but let us hypothetically
apply the main formula (6.38) for the heat release of all canisters. The heat E, is increased
by the factor 10 000/300, and we get: zmq,.(0) = v/33 - 150 = 480 m.

We assumed in the derivation of our formulas that all heat is released at a single point
at the distance y, from the flow plane. The case with canisters placed in a certain region
should be investigated further. The distance y, is then to be interpreted as some average
distance to the flow plane. An extreme value of y, (which does not satisfy (4.19) ) is:

Yo=10m (6.58)
Then we get:
Zmaz(0)maz ¢, = 150 - V10 = 320 m (6.59)

An example of a large y, is:
Yo=500m =  Zmaz(0)| e, =150/V5=90m (6.60)

The upward flow z,,,.(0) is given by (6.34) for any ¢,. The maximum z,,,,(0) = 150
m is obtained for ¢, ~ 100 years, which corresponds to 7 = 2. The value of z,,,.(0) for
other times ¢, is given by the function g,(7), (6.35), and the table below the formula. We
have for example:

5
= : = o m— i v =
t, =5 years : =2 750 0.1 g, =0.05
0.05
mazx 0) =150 =10 6.61
2maz(0) 0.75 o (6.61)
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We have in this way for a few ¢,:

t, (years) | 5 25 100 500 5000
Zmaz(0) (m) [ 10 120 150 130 90

We see that the sensitivity to the choice of ¢, is quite small, except for the first period
t, < 25 years.

We have in the formulas and all considerations used the total released heat E,. We
may instead use the amount of heat released from t = 0 to t = t,. Then we have in
accordance with Eq.(6.49):

E, — B, (1 - e*/%) (6.62)

We get an extra factor for z},,.(0) in (6.46). A few values are:

t/t] 01 05 1 2 5
V1—eto/ta [0.46 0.73 0.80 0.95 0.998

We see that this effect is rather small for ¢, > 4, and negligible for ¢, > 5¢,

The above analysis is restricted to the case when the heat release from the canisters
can be treated as an instantaneous point source. The distance y, must exceed the limit
(4.19). For smaller y,, the temperature field must be represented in greater detail. This
analysis is deferred to a coming study.

60



Chapter 7

Survey of results

There are two objectives for this study. The first one is to gain an understanding and
insight into the coupled processes for heat, salt and groundwater. The second aim is to
provide formulas and other tools of analysis to assess the largest upward motion from the
heated region, in particular from the center (0,0), where the canisters may lie. This is
a first study. Many questions, ideas and possibilities for further analyses remain to be
explored.

A background to the problem is presented in Chapter 1. The general governing equa-
tions for water, salt and heat are discussed in Chapter 2. The convective heat flow can
be neglected in the present application with very small groundwater flows. The thermal
process is then governed by pure heat conduction and by the prescribed heat sources
from the canisters. This leads to the important simplification that the thermal process is
independent of the groundwater and salt process.

A major assumption is the use of Boussinesq’s approximation with constant water
viscosity p,, and constant water density p,, except in the buoyancy term, for which
the density p,(T,c) in linearized using a constant thermal expansion coefficient a7 and
a corresponding coefficient a, for the variation with salt concentration. Salt dispersion
and diffusion are neglected. The third major assumption concerns the porous ground. In
Chapter 2, the ground is treated as a homogeneous porous medium. In Chapter 3, and
in the rest of the study, the water flow is assumed to be two-dimensional in a fracture
plane y = 0, —00 < z < 00, —00 < z < 00. The process takes place far below the ground
surface so that the upper boundary can be placed at infinity. The hydraulic conductivity
of the plane is assumed to be constant. This is of course a drastic simplification of the
real fracture system, but the behaviour for a single flow plane is judged to be the essential
problem from which further analyses should be continued.

The undisturbed salt concentration ¢,(z) and water density increase downwards. A
constant salt gradient ¢2 (kg;/kg,m) is used. There is an undisturbed situation with
a temperature T,(z) and a pressure P,(z). The deviations from equilibrium, or excess
variables, for temperature, salt concentration and pressure are denoted T”, ¢” and P”,
respectively. The equations are given in a dimensionless form in Section 2.6 using scale
factors Ly, t; = t., T1, ¢; and P,. The scale factor for the filtration velocity is denoted
v;1. The governing equations for the dimensionless excess variables become, (2.46-51):

oc 0T
N2 p/ bt —
(V)P + 0z 02

(7.1)
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oc

a7 T V(=2 + )T =0 (7.2)
F = —V'P' — 3+ T's (7.3)
¢|,.o0 =0 T’ given independently (7.4)

The first equation (7.1) determines the pressure P’ due to the dimensionless excess
density distribution p' = ¢ — T”. The third equation gives, according to Darcy’s law, the
filtration velocity with which the salt is moved convectively in accordance with equation
(7.2). The dimensionless salt concentration, é = —2’ + ¢/, contains an undisturbed part
—2’, with unit gradient in the dimensionless formulation, and an excess part ¢’. The value
of ¢ is constant for a salt-groundwater ‘particle’ when it moves around with the velocity
field ¥;. An important result, which is a consequence of the previous assumptions, is that
the dimensionless equations (7.1-4) do not contain any intrinsic parameters. The only
parameters to occur in our total process come from the scale factors and the parame-
ters of the dimensionless temperature 7'. Another important result of the dimensionless
formulation is the scale factor for the time ¢, (' = t/t.):

t = _Votwo (7.5)
kgpuoccs

In the two-dimensional case, k/V, is replaced by k°/ Vs, Eq.(3.4). This time gives a
characteristic time-scale for flow induced by salt variations. It is noteworthy that .
depends on salt parameters (a.,c?) and intrinsic permeability &, but it is independent of
the thermal properties. The scale factor for length L; (2’ = =/L,,..) is:

_ aTT1
L= (7.6)

z

This means that the length L is chosen so that the water density change for the temper-
ature change T (= arT}) equals the density change over the height L; (= L; - a.c?) with
a salt gradient ¢]. The dimensionless excess density p’ becomes with this choice equal to
¢ — T, which expression occurs in (7.1) and (7.3).

In Chapter 3, the water flow is restricted to the plane y = 0. The thermal process is
of course still three-dimensional, but only the temperatures in the plane y = 0 are used
in our analysis. With our assumptions, we obtain explicit, analytical integrals for the
pressure, Eq.(3.12), and flow field ¢}, Eq.(3.13), for any density distribution.

The water flow is driven by the density p’' = ¢’ — T". We get, as described in Section
3.3, two components v, and v for the water flow field.

The temperature field 7’ from a point heat source is rotationally symmetric in the
flow plane y = 0. The contribution to the density, —T", is a function of r = V/z2% 4 2°
only, for any given time. In Section 3.2.2, explicit formulas for the pressure and flow for
any density p = p(r) are derived. This means that the temperature component o7 of
the water flow field is obtained by analytical formulas. Only the salt component 7, is
determined numerically.

The temperature fields from the heat sources at the canisters are discussed in Chapter
4. The solution for a point source, where the heat E, (J) is released at (0,y,,0) at
t' = 0 is given. From this solution, the solution for a continuous heat source, (Q, W)

62



and an exponentially decaying point source (Q, - e~/*¢ W) are derived by superposition.
From these basic solutions, the temperature field for any distribution of canisters may be
obtained by superposition.

The basic temperature field is actually the instantaneous point source, from which all
other solutions are obtained by superposition. This initial study is confined to an analysis
for this basic temperature field, which is reasonably accurate at the flow planey = 0, if y,
exceeds the value \/4at;, Eq.(4.19). The case of smaller y, is deferred to a coming study.
The dimensionless temperature T' can then, at any particular time ¢,, be written in the
following way:

T =A, e (7.7)

The flow component U7 due to this temperature distribution is given by the explicit
formulas (3.36). The dimensionless temperature amplitude A,, Eq.(6.5), is proportional
to FE,, and it depends on the chosen time t,.

The characteristic time-scale t. is estimated in Section 3.6. For our reference case
(3.55) we get for a typical fracture width of 1 mm #. = 16.5 hours, and for a width of
0.1 mm t. = 69 days. The time-scale for the thermal process is from (3.61) of the order
tr ~ 50 years. This means that we can consider the temperature field as virtually time-
constant in the calculation of the salt flow process. We have to consider the salt flow
process for the temperature field taken at any particular time ¢,.

The flow process for the temperature field (7.7) has been determined by the numer-
ical model for different values of A,. The problem formulated in this way contains one
dimensionless parameter only.

The numerical model is described in Chapter 5. This far, it has only been developed
for the temperature flow o7 from a single, instantaneous point source. The numerical
problem is solved for time-step after time-step. Consider an iteration step when the salt
concentration ¢ is known. The ensuing flow component ¥, is determined by a numerical
evaluation of the explicit double integral (5.3). A particle-tracking technique is used. The
particle (7,7) with a constant salt concentration &; = —z; + ¢}; is displaced during the
time-step in accordance with the total velocity o1 + v,. We obtain the salt concentration
at the next time-step.

The main problem in the model is to evaluate the double integral for ¥, when ¢ is
known numerically for the moving particles (z;;(t), z;;(t)). The integral is transformed
from the (', z')-plane to the (z’,¢)-plane. This very particular method facilitates the
calculations considerably. The double-sum is approximated by a Riemann sum based on
the positions and salt concentrations of the particles.

Problems for the modelling technique are discussed in Section 6.3.3. The particles
accumulate in certain areas and separate in others. This problem is solved by insertion
and removal of particles. The é-curves may lie very close to each other in certain areas.
A particle may then be removed, if two curves come too close to each other at a point.
-A particular problem is the spiraling of ¢-curves around the vortex points. See Figures
6.1-9. The particular numerical technique works quite well even for strongly spiraling,
intertwined ¢é-curves.

In Chapter 6, the results from calculations for A, = 0.3,1,...100 are presented. There
is a very clear barrier effect due to the salt gradient. The largest upward motion occurs
on the 2’-axis. Let 2 ,.(z,) denote the largest dimensionless upward displacement for the
particle that starts at (z’,2') = (0,2,) at ¢’ = 0. We have according to Table 6.1 the
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following results for different A,:

A, |03 1 3 10 30 100
7.2(0) [ 024 0.7 1.2 1.9 27 41
Zhee(1) | 11 1.3 1.6 2.1 3.0 44
Zhae(=1) [ -09 -03 09 1.6 24 4.0

In Section 6.4, the upward motion is analysed under the assumption that the effect of
the pressure P. from the salt concentration can be neglected (U = =V'P,— 2 ~ —¢'3).
It is then possible to obtain an explicit integral, (6.19), for the motion along the z'-axis.
Comparisons with the numerical results from the model (Figures 6.10-16 versus Figure
6.17) show that we obtain fairly good results even with this approximation. There are
clear differences, but the analytical formulas can be used for assessments of the upward
flow.

From the approximate analytical formulas, we derive in Section 6.4.3 explicit formulas
for zp,,,(2,) for z, = 0 (Eq.6.30) and z, > 0 (Eq.6.32). The comparison in Table 6.3
shows that these formulas can be used with sufficient accuracy for assessments of the
largest upward flow 2;,,.(2,). We are in particular interested in 2/ ,_(0), i.e. the maximal

m

upward displacement from (0,0). We have from (6.30) and (6.31):

Zmaz(0) S /Ao /2 (7.8)

In Section 6.5, final formulas to assess the upward displacement are given. The largest
upward displacement for a particle that starts from (0,z, - L;) (in real coordinates) is
according to (6.3):

Zmaz(%o) = Ly - 2] ,.(2,) L, =+/4at, (7.9)

The dimensionless displacement z/,,.(2,) is given by the above Table 6.1 for different A,
and z,.
For the most important case z, = 0, we have from (7.8-9) the assessment, Eq.(6.34):

1 aT
zma:x:(o) >~ 4dto . \3/ Ao/ = dQﬂ.ﬁ . ac—coa . Z;— . —\/Z__C-lz . e"yg/(‘*“tO) (710)

The time ¢, is the time at which we take the temperature field from the point source. We
can from (7.10) determine the largest Zmaz(0) for different #,. The maximum occurs for
4at, = y?/2.

This maximum gives the following final formula, Eq.(6.38), to assess the upward mo-

tion:
1 ar E,
mar O = -8 M et 0 4 t 711
mes(0) = e 0 2 (> VA (7.11)
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This is the largest upward displacement from (0,0) for an instantaneous point source at
any time. The numerical factor before the cubic root is equal to 0.34, Eq.(6.39).

Only the following six quantities occur in (7.11): The thermal expansion coefficient
for water oz, the corresponding coefficient for salt o, (Eq.(2.30)), the salt concentration
gradient c2, the volumetric heat capacity of rock C, the total amount of released heat E,,
and the distance from the heat source to the flow plane y,.

The intrinsic permeability k¢ of the flow plane, or rather the flow resistance factor
k°/Vy in Darcy’s equation (3.3), which is perhaps the most uncertain quantity of all,
does not occur in formula (7.11). It occurs in t. and influences the time-scale of the whole
process. This gratifying independence is due to the fact that z,,4, is the result of a balance
between upward thermal buoyancy and counteracting excess salt density.

The sensitivity of zpna:(0) for variations of the parameters is of great interest. The
cubic root diminishes the sensitivity strongly, since we have: /2 ~ 1.26 and /10 ~ 2.2.
So, if ar (which we assumed constant) or ¢2 (which is somewhat uncertain) is changed
by a factor 2, then z,,.(0) changes by the factor 1.26 only. The distance y, from the
flow plane is of course quite uncertain, but a change of y, by a factor 10 will only change
Zmaz(0) by the factor 2.2. The other three quantities E,, C and e, are better known and
less variable.

The formulas for z,,, are based on the use of the temperature field from the heat
release at any particular time ¢,. It is shown in Section 6.5 that 2., is very insensitive
to the choice of £,, except for an initial, less critical period.

This study considers the largest upward flow starting with an undisturbed, perfectly
stratified salt concentration c,(z). Any leakage would normally occur after quite a long
time, at which time there is a quasi steady-state situation outside the local convection
region. (The salt concentration distribution is strongly disturbed locally within the con-
vection region.) But then the groundwater flow outside the convection region is smaller,
and the upward displacement of contaminated groundwater from the canisters is expected
to be no greater than the values obtained here.

Formula 7.11 is applied for the SKB repository concept in Section 6.6. Three hundred
canisters, which corresponds to 1/33 of the storage requirements of the whole Swedish
nuclear program to 2010, are considered. They release totally the heat E, = 0.32 TWh.
The data (3.55) and a distance y, = 100 m give z;e-(0) ~ 150 m.

This study deals only with the temperature field from an instantaneous point source.
The distance y, should not be too small. A further study will remove this restriction and
also deal with the case, when the canisters are distributed in a certain region, for example
placed above each other in boreholes. The y,-value used here is then to be interpreted
as some average distance from the canisters to the flow plane. It seems reasonable that
the distribution of canisters in the directions parallel to the flow plane will diminish the
upward flow. The use of as much as 300 canisters in our example may then overestimate

Zmaz(0).
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Nomenclature
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T

thermal diffusivity of the ground
dimensionless temperature amplitude,
Eq. (6.5)

width of fracture zone

salt concentration

dimensionless excess salt concentration
excess salt concentration

dimensionless total salt concentration
undisturbed salt concentration

salt concentration gradient

scale factor for salt concentration
volumetric heat capacity of the ground
fracture width

total heat release from a canister

total heat release from the point source
radial density function, Eq. (3.25)
standard gravity

heat source

intrinsic permeability

intrinsic permeability of fracture zone
scale factor for length coordinates
groundwater pressure

dimensionless excess pressure

excess pressure

scale factor for pressure

dimensionless salt and temperature
components of the pressure

volumetric groundwater flow
volumetric groundwater flow in fracture plane
or fracture zone

rate of heat release

initial rate of heat release from a canister
radial distance in flow plane
dimensionless radial distance

radial length

time

dimensionless time

time at which the temperature field is taken,
see Section 6.1

characteristic time-scale, scale factor for time

decay time for heat source, Eq.(4.11)
characteristic time-scale for temperature
field, Eq. (3.60)

temperature in the ground

66

(m?/s)

()

(m)
(ke,/kgw)
)
(kgs/kgw)
)
(kgs/kgw)
(kg./kg,m)
(kg./kgw)
(J/m®K)
(m)

(J)

(J)

)

N’

SENE

FTUN TN SN T
[42] ! w
N

w2

N TN AN
w



T dimensionless excess temperature (-)
T excess temperature (°C)
T, undisturbed ground temperature (°C)
T scale factor for temperature (°C)
T° temperature in fracture plane (°C)
TS, integral of the temperature over the fracture

plane, Eq. (4.3) (m?*C)
U solution to Eq. (3.14) )
of" filtration velocity (m/s)
U} dimensionless filtration velocity )
V51 scale factor for filtration velocity (m/s)
Ve, UT dimensionless salt and temperature components

of filtration velocity )
V, pore volume (m3 /m?)
Vi pore volume of fracture zone (m3 /m?)
z,y horizontal coordinates (m)
'y dimensionless horizontal coordinates )
Yo distance from heat source to flow plane (m)
z vertical coordinate (m)
z vertical unit vector pointing upwards (-
2! dimensionless vertical coordinate (-)
2m (Y, 25) particle motion along the z’-axis -)
LA - maximal dimensionless upward displacement )
Zmaz(2o) maximal upward displacement (m)
2, dimensionless starting point on the z'-axis (-
o, relative density increase with salt concentration,

Eq. (2.30) (1/(kgs/kgw))
ar thermal expansion coefficient, Eq.(2.30) (1/°C)
A thermal conductivity of the ground (W/mK)
How dynamic viscosity of water (kg/ms)
Pw density of water (kg/m?)
p=dc =T dimensionless excess density (-)
p" excess water density, Eq. (2.26) (kg/m?)
o angle between the z-axis and fracture plane (rad)
V= (5@;, 53;, 5‘3;) gradient operator (m™1)
V' = (5%, 53—,, g‘z—,) dimensionless gradient operator )

Here, m, denotes cubic meter of water, kg, kilogram of dissolved salt and kg, kilogram
of water including the dissolved salt. The prime’, which denotes dimensionless excess
variables, is sometimes suppressed for convenience. In particular, it should be noted that
the following variables are dimensionless:

EPC PT Ve

T % Zm(tlazo)
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