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ABSTRACT 

The behaviour of technetium in granite-groundwater systems 

under reducing conditions was investigated. The anion Tc04-

was reduced to Tc(IV) and simultaneously precipitated as 

Tc02·nH20 on the granite surfaces. The electron sources are 

assumed to be iron oxides and/or iron containing minerals in 

the granite. 

The technetium concentration in ground water under 

repository conditions may be predicted assuming Tc02·nH 2o as 

the solid phase and TcO(OH) 2° and Tco 4- as the predominant 

aqueous complexes using a formation constant for TcO(OH) 2° of 

log K = -8.16 and a standard reduction potential E0 for the 

reaction Tc04- + 3e- + 4H+ = Tc0 2 ·nH 2o of 0.738 V. 

The surface related distribution ratio Ka for TcO(OH) 2° 

between Stripa granite and ground water is approximately 1 cm 

based on geometrical surface area. 
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1 INTRODUCTION 

The long-lived fission product 99 Tc (t 1; 2 =2.13·10 5 y) is 

present in large quantities in nuclear wastes and hence its 

chemical behaviour in the geosphere is of considerable 

interest. 

When radioactive waste in an underground repository is Exposed 

to groundwater radionuclides it can be leached out and become 

dispersed by diffusion in the backfill material and the 

connected microstructure of the host rock. The radionuclides 

may also be transported through the fracture network of the 

host rock by advective flow. It is imperative that under no 

circumstances hazardous quantities of radionuclides reach the 

biosphere. The radionuclide concentration at the source will 

be determined by the solubility and the migration retarded if 

the radionuclide is strongly sorbed on the rock. 

The solubility and sorption of multivalent redox sensitive 

radionuclides, like 99 Tc, depend on the redox properties of 

the groundwater and the surrounding rock, pH and concentration 

of complexing agents in the ground water. 

We have in earlier works studied the migration of Tc in 

granitic drill cores containing natural fissures under oxic 

and reducing (+260 to -280 mV) conditions (Eriksen 1985, 

1988). Based on the retardation of Tc under reducing 

conditions and the geometric surface area of the fissure 

walls the surface related distribution coefficient Ra, defined 

as the ratio between the concentration of sorbed Tc (mol·crn- 2 ) 

and the concentration of Tc in ground water (mol·cm- 3 ), was 

found to be approximately 1 cm. 
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An important factor in the assessment of of the migration of a 

radionuclide is the maximum attainable concentration under the 

given conditions of water chemistry. Under oxic conditions 

technetium exists as the anionic species Tco4 - whereas under 

reducing conditions, expected to exist in a deep bedrock 

repository for used fuel, it is generally predicted that 

technetium will be present as the sparingly soluble 

Tc(IV)Oz·2H20. 

Meyer et al (1986, 1987, 1988,1989) have carried out extensive 

studies on the solubility of precipitated and electrodeposited 

Tc(IV) oxides in aqueous solution at pH< 9.7 and the 

dependence of the solubility of Tco2 ·nH2o in aqueous solution 

on pH and pco2 has recently been studied by Eriksen et al 

(1991). From the experimental results it is concluded that the 

solubility in granitic ground water (2·10- 3 mol·dm- 3 HC03-, 

pH= 8.2) is 6.8·10-9 mol·dm- 3 with TcO(OH) 2° as the 

predominant aqueous complex. 

The purpose of this work is to study the behaviour of the 

Tco4-;Tco2 ·nH2O redox couple in granite-water systems. The 

study encopasses two laboratory experiments. 

In the first experiment we followed the reduction of Tco4 - in 

reducing ground water circulating through a column of coarsly 

crushed granite. 

In the second experiment we studied migration of Tc from 

Tco2 ·nH2o, electrodeposited on a platinum mesh electrode, to 

crushed granite in moderately reducing water (Eh approx - 90 

mV). 

2 





2 EXPERIMENTAL 

2.1 Materials 

All reagents, of analytical grade, were used without further 

purification. 

The radionuclides used were 99Tc, delivered in 0.1 mol·dm- 3 

NH40H aqueous solution from Amersham, and 99mTc recovered as 

Tco4- in 0.4 mol·dm- 3 aqueous KCl solution from a 99Mo 

generator (Kjeller). 

Radionuclide solutions were prepared by diluting aliquots of 

the stock solutions with ground water. 

Reducing groundwater was prepared by contacting argon purged 

(AGA 5.7-quality) triple distilled water with granitic rock in 

a quartz reservoir as described by Wikberg (1987) and Eriksen 

(1988). The rock used is granitic rock from the Stripa mine 

taken at a depth of 360m below ground level. 

The redox potentials were monitored with a Metrohm Pt 

electrode and a Yokogawa SR 20/AR 24 (Ag/AgCl) reference 

electrode connected to a Metrohm 632 pH meter. The electrodes 

were standarized using saturated quinhydrone buffers at pH 4 

and 7. The pH measurements were performed with a Radiometer 

pHM84 pH meter and a GK 2321c combined glass/reference 

electrode. 

Both experiments were carried out in a controlled atmosphere 

box flushed with AGA 5.7-quality Ar containing< 0.5 ppm o2 . 
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2.2 Column experiment 

The experimental set up is depicted in Figure 1. The column 

was filled with 82 cm3 granitic coupons with approximate 

dimensions lxlxl cm and the entire flow system (total volume 

201 cm3 ) flushed with Ar. 

Reducing groundwater from the reservoir was thereafter 

circulated through the column for several days to equilibrate 

the granite surfaces. The Tc-experiment was initiated by 

injecting 15 µl Tco4- solution ,initially containing 0.335 

mol·dm- 3 99 Tc and approximately 10-11 mol·dm- 3 99mTc, into 

the circulating water. The water flow was 0.18 cm3 •min-1 and 

the measured potential varied between -440 and -460 mV during 

the experiment. 

The Tc transport through the column was initially followed by 

monitoring the activity of the shortlived 99mTc (t112 = 6h) 

with a NaI scintillation detector fitted with a 20x4 mm lead 

collimator. 

The water circulation was stopped after 4 days and samples 

were drawn from the water phase and analyzed for Tco4 - and 

Tc{IV). The water samples were added to equivalent volumes of 

chloroform containing 0.1 mol·dm- 3 tetraphenylarsonium 

chloride. The organic phase removes Tco4- quite efficiently 

leaving the Tc(IV)-species in the aqueous phase. Testing the 

extraction procedure we found that two consecutive extractions 

were sufficient to ensure complete removal of Tco4-. Following 

each extraction, samples from the organic and aqueous phase 

respectively were mixed with Ready Safe Liquid scintillation 

coctail (Beckman). The samples were analyzed for the pure P-

4 





emitter 99Tc (E = 0.293 MeV) in a Beckman model 5801 Liquid 

scintillation system, calibrated with standard solutions 

containing appropriate and known 99 Tc concentrations. 

The water was thereafter removed from the column and the 

granite coupons divided into eight fractions according to 

height above the Tco4- injection point. Each fraction was 

subdivided into two parts containing approximately 10 g 

granite and desorption of 99Tc was carried out following two 

different procedures. 

each sample was quickly rinsed in Ar-purged distilled 

water before being transferred to 20 cm3 flasks 

containing 10 cm3 aerated water 

- the samples were directly transferred to 20 cm3 

flasks containing 10 cm3 aerated water. 

The desorption was carried out for 104 days. The flasks were 

at appropriate intervals, following additions of H2o2 and 

HN03 , placed in an ultrasonic bath for 30-40 minutes. The Tc 

concentration in the aqueous phase was determined by liquid 

scintillation counting of 99 Tc. 

2.3 Tc02 (s) experiment 

The experimental arrangement is depicted in Figure 2. Small 

glass vials with porous walls were filled with crushed and 

size fractionated granite and placed a large vessel 

(approximately 2 dm3 ) together with 130 g small granitic drill 

cores (2-4 cm diameter). The vessel was sealed and freed from 
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oxygen by Ar purging for two days and thereafter filled with 

1.8 dm3 water, which had been preequilibrated with granitic 

rock for eight days in the "ground water generator" (Wikberg, 

1987; Eriksen, 1988). Tco2 ·nH2o, electrodeposited on a 

platinum net, was immersed into the water and water samples 

were drawn at intervals and analyzed for Tc(IV) and Tco4 - as 

described above. 

At the end of the experiment the different size fractions of 

crushed granite were quickly rinsed with reducing water from 

the ground water generator and transferred into small flasks 

containing 19.2 cm3 Ar purged water from the generator. After 

two days in the controlled atmosphere box the flasks were 

taken out of the box ,opened and aerated. At intervals, 

following additions of H2o 2 and/or HN03 , the flasks were 

placed in an ultrasonic bath for 30-40 minutes. The total Tc 

concentration in the aqueous phase was determined by liquid 

scintillation counting of 99 Tc. 

3. EXPERIMENTAL RESULTS 

3.1 Column experiment 

The dispersion of Tc in the granite column, monitored by 

measurement of the 99mTc activity, following the injection of 

Tco4- to the circulating reducing water is shown in Figure 3 

and the break through of Tc into the water phase, measured 2 

mm above the granite column, is shown in Figure 4. The Tc(IV) 

and Tc(VII) concentrations in the circulating water 3 and 4 

days after the Tco4- addition respectively are given in 

Table 1. 
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Table 1. 

Concentration of Tc(IV) and Tco4- in the circulating water. 

Time after Tco4-

injection (days) 

0 

3 

4 

Tc(IV) 

mol·dm- 3 

1.12·10-8 

1,17·10-8 

4.22·10- 5 

3.89·10-5 

3.90·10-5 

* assuming complete mixing (15 µl 0.335 mol·dm- 3 Tco4-

added to 119 cm3 circulating water). 

As seen, whereas the Tco4- concentration in the circulating 

water decreased by 0.32·10-5 mol·dm- 3 only l.17·10- 8 

mol·dm- 3 was retrieved as Tc(IV) in solution. The Tc(IV) 

concentration is but slightly higher than the solubility of 

Tco2 ·nH2o as determined by Eriksen et al (1991). 

The granite coupons used for desorption/leaching of Tc were 

sampled at appropriate positions in the granite column (see 

Figure 5). The release of Tc from rinsed and unrinsed coupons 

are plotted in Figures 6-8 and 9-10 respectively. In both 

cases there is a marked increase in the amount of released 

99 Tc, given as activity (cprn) per gram granite, with 

increasing height in the upper part of the granite column. 

Based on the desorption profile in the column and the total 

weight of the granite we estimate the total amount of Tc 

retrieved from the granite samples to be (2.7+/-0.5)·10- 7 
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moles, corresponding to a (2.3 +/-0.5)·10- 6 mol·dm- 3 decrease 

in the Tco4 - concentration of the circulating water. 

3.2 Tc02 (s) experiment 

The redox potential was monitored continuously throughout the 

various experimental phases. As can be gleaned from section A 

of Figure 11 constant Eh was obtained in the groundwater 

generator after approximately one week. Groundwater was 

thereafter pumped into the vessel containing the crushed 

granite (section B). The platinum mesh electrode with 

electrodeposited Tco2 ·nH2o was lowered into the water at B/C 

and water samples drawn for Tc(IV)/Tco4- analysis after 43, 

46, 50 and 51 days respectively. The concentrations and redox 

potentials on the normal hydrogen electrode scale are given in 

Table 2. 

Applying Nernst equation 

E = E0 + 2.3(RT/nF)·log(Pi ox ni;pj red nj) 

to the reaction 

Tco4 - + 3e- + 4H+ = Tco2 ·nH2o 

we can, using E0 = 0.738 V ( Meyer et al 1989) calculate the 

expected equilibrium concentration of Tco4 - at the 

experimental pH and redox conditions. As can be seen from 

Table 2 ,the measured Tco4- concentrations are 2-3 times 

higher than the calculated ones. It should, however, be 

pointed out that the uncertainty in the measured redox 

potential is 15-20 mV which may account for the discrepancies 

between calculated and measured concentrations. 
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Table 2. 

Redox potential, pH, Tc(IV) and Tco4- concentrations for 

samples of the water phase. 

Time 

days 

pH E ( 1} 
h 

mv 

Tc( IV)· 10 9 

mol·ctm- 3 

Tco4-•105 

mol·dm- 3 

measured calc* 

43 

46 

50 

51 

9.18 

9.18 

9.18 

9.18 

-90 

-92 

-85 

-83 

4.8+/-1.7 

4.2+/-1.5 

5.6+/-0.1 

4.7+/-0.2 

2.1 

2.24 

2.40 

2.51 

(1) rel normal hydrogen electrode, (ref electrode +226 mV) 

* calculated using the equation: 

E = 0.738 + 0.0197 log [Tco4-J - 0.0788°pH 

The Tc concentrations in reducing water due to release of 

0.49 

0.39 

0.88 

1.10 

Tc from the crushed granite are plotted versus the size 

fractions in Figure 12. As can be seen the measured Tc 

concentrations correspond to the solubility of Tco2 ·nH2o 

(Eriksen et al 1991). The slight increase in the Tc 

concentrations with time is probably caused by slow intrusion 

of oxygen into the flasks. 

The effect of aerating the bottles on the release of Tc from 

the crushed granite is very small (Figure 13), indicating a 

slow reaction with oxygen, whereas addition of H2o2 results in 

a marked increase in the Tc release. 
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Assuming that the Tc, released from the crushed granite, was 

sorbed as Tc(IV) we have, based on the concentration of 

Tc(IV) species in the vessel, calculated a formal distribution 

ratio (Ra) for each size fraction. The distribution ratios are 

plotted versus the size fractions in Figure 14. 

There is clearly no consistent correlation between the 

distribution ratio and the particle size, the increase in Rd 

with decreasing particle size in the size range 250-2000 µm is 

followed by a sudden decrease in Rd for particels smaller than 

250 µm. 

4 DISCUSSION 

From the column experiment it may be concluded that the 

oxidation of Tco4- in reducing groundwater is very slow. Most, 

if not all, of the Tco4- dissappearing from the circulating 

water is sorbed or precipitated on the granite. The 

concentration of Tc{IV) species in the circulating water 

corresponds to the solubility of Tco2 ·nH2o clearly indicating 

surface deposition of the oxide. 

In the TcO2 (s) experiment the Tco4- concentration in the 

aqueous phase is, within the experimental uncertainty, in 

agreement with the concentration calculated for the 

Tco2 ·nH2O/Tco4- redox couple using the Nernst equation. 

In an earlier study of sorption on crushed granite (Eriksen 

and Locklund 1989) we measured the N2-BET surface area of 

crushed and intact granites. The experimental results were 

accommodated by a model of porous particles with accessible 

outer and inner surfaces. On linear regression analysis of the 
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Rd/surface area data for 99 Tc in the size range 250-2000 µm we 

obtain an intercept with the surface area axis at 0.24 m2 ·g-1 · 

Corresponding plots of our earlier data on sorption of 85sr, 

134cs and 152Eu and cationic exchange capacity of crushed 

granites are shown in Figures 16-21. With the notable 

exception of 152Eu sorption the regression lines pass close to 

or through origo. An intercept with the surface area axis at 

0.24·m2 g-1 for Stripa granite indicates that only outer 

surfaces have participated in the process. In the case of 

152Eu this was explained as being due to strong sorption 

resulting in depletion of 152Eu in the aqueous phase and 

thereby slow diffusion and redistribution on the inner 

surfaces. 

We have in an earlier report discussed the migration of Tc in 

natural granitic fissures under reducing conditions (Eriksen 

et al 1985, 1988). Based on the retardation of Tc relative to 

water we estimated the geometric surface based distribution 

ratio Ra for Tc(IV) between granite and ground water to be 

1 cm. 

Assuming the crushed granite to consist of spherical particles 

with diameters equal to the arithmetic means of the sieves 

bracketing the various size fractions we estimate Ra to be 

approximately 60 cm in the TcO2 (s) experiment, i.e nearly two 

orders of magnitude higher than the Rd obtained in the 

migration experiments. 

We have hitherto used the term sorption to describe the loss 

of a radionuclide from an aqueous solution phase to a 

contiguous solid phase. Sorption may occur by several 
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mechanisms eg precipitation, (formation of a solid phase) and 

adsorption (Sposito 1986). 

The migration experiments were carried out with total Tc 

concentration at or lower than the solubility limit of 

Tc02·nH20 whereas a solid Tco2 ·nH2o phase as well as Tc(IV) 

and Tc04- in solution were present in the Tc02(s) experiment. 

It is evident that the chemical system in the latter 

experiment is more complicated and several sorption processes 

may be involved. 

A plausible explanation to the apparent disagreement between 

the Ra values obtained in the two experiments would be that 

the distribution ratio measured in the migration experiment 

characterises adsorption of the aqueous Tc(IV) species 

TcO(OH) 2° on the granite whereas both reduction/precipitation 

of Tc04- and sorption of TcO(OH)2° occured in the Tc02(s) 

experiment, thereby yielding a higher Ra value. 

The transfer of Tc from the Tc02·nH 2o electrode to the crushed 

granite can be accommodated by a process involving dissolution 

of Tc(IV) from the electrode, oxidation of aqueous Tc(IV) to 

Tc04- and surface mediated reduction/precipitation of Tc04-

as Tc02·nH 2o on the granite surface. 

Data from sorption studies of iron containing minerals 

(Vandergraaf 1984), iron oxyhydoxides {Walton 1986) and a 

Fourier transform infrared study of technetium-iron oxide 

reactions (Haines 1987) clearly demonstrate that Tco 4- is 

reduced to Tc02·nH 2o and precipitated on the mineral surfaces. 
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Thus the reduction of Tco4- and precipitation of Tco2 ·nH2o on 

the granite surfaces is most probably caused by small amounts 

of iron containing minerals or oxides in the granite. A 

possible cause of the sudden drop in Tco2 ·nH20 precipitation 

for particles <250 µm is Fe-depletion in the smaller size 

fractions during the crushing and size fractionation process. 
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Figure 14. 
Distribution ratio R plotted vs particle fraction. 
Calculation based don amount of 99-yc released from 
crushed granite and Tc(IV) solubility (6.a-10-9 
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