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ABSTRACT

The obje: - ~f the present investigation was to study, by means of sensitivity analysis, the impact
on the so:uiions to flow calculations of some major fractures zones and the boundary conditions
applied in the previous numerical modelling of the groundwater flow conditions at the Finnsjoén
site. Sensitivity analysis is a useful complementary tool in groundwater flow modelling by
making it possible to analyze qualitative as well as quantitative effects of various flow modelling
concepts or model strategies on the flow solutions and to gain a general insight into the
geohydraulic behaviour of the flow system studied. The sensitivity of the piezometric head and
the sensitivity of the flux across an imaginary region of a hypothetical radioactive waste
repository due to perturbations of the permeability in two major fracture zones were analyzed.
The influence of uncertainties in the prescribed piezometric head boundary conditions, applied
in the previous groundwater flow modelling of the Finnsjon study site, was studied. The
uncertainties were due to a procedure used for transferring the boundary conditions from a
"regional model” to a "local model" area. The study was performed by means of sensitivity
analysis using an adjoint technique. The sensitivity of the piezometric head as well as the Darcy
flux, both point-wise and integrated over the imaginary repository region, was calculated.
Similarly, the sensitivity at a discharge area of interest was calculated. The groundwater flow
calculations are part of the SKB 91 performance assessment study of a generic high-level waste
repository at the Finnsjon site. Two different sensitivity methods, one called the direct method
and the other the variational or the adjoint sensitivity method were applied. The numerical
method for solving the flow equation or the so-called "primary problem" as well as the sensitivity
equation were based on the Galerkin finite element method.
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showing the distribution of the piezometric head sensitivity (normalized) to
perturbation of the top boundary on north-eastern corner including parts of the
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1 INTRODUCTION

Sensitivity analysis is a useful complementary tool in the modelling of a groundwater flow
problem by making it possible to check both the qualitative as well as the quantitative effects
of various flow modelling concepts. The possibility of studying the influence of various input
parameters, whose geometrical or physical properties are uncertain in some sense, on various
output parameters or certain user-defined performance measures according to the problem of
interest, allows the technique presented here, although it is purely deterministic in its current

form, to be regarded as a "tentative” uncertainty analysis.

In recent years the groundwater flow conditions at the Finnsj6n site have been extensively
modelled. However, some issues requiring further investigation, such as uncertainties con-
cerning the influence, the characteristics, or even the existence of some major fracture zones,
as well as uncertainties in the specification of the boundary conditions, have arisen in the
Lindbom study (Lindbom et al. [1991]). The present study is aimed at analyzing some of the
problems encountered in the previous flow modelling by means of sensitivity analysis tech-
niques. Subsequently, all physical properties as well as the element grids used in the present
study were those from the Lindbom study.

Essentially, the object of the present sensitivity analysis is to analyze, qualitatively as well as
quantitatively, the impact on the flow solutions due to perturbations, or say uncertainties, of (i)
the permeability of some major fracture zones of importance and (ii) the specification of the
boundary conditions at some critical regions of the conceptual flow model of the Finnsjon site.
The performance measures considered are the piezometric head and flux, both integrated and
point-wise.

In the Lindbom flow modelling, the regional topography defined the top boundary conditions
for the regional model. Accordingly, the local topography was applied on the top of the local
mesh at the local scale model. Representation of the topography in the semi-regional and local
scale are shown in Figures 1 and 2, respectively. It is apparent that the two contour maps differ
with respect to their representation of the topography, in particular along fracture zone 4 and at

the north-eastern comer.

The lateral boundary conditions for the local model were in the previous studies obtained from
the regional scale model. In certain cases, especially where vertical fracture zones are located
close to the boundary, such an approach may lead to inconsistencies between the upper and
lateral boundary conditions of the local model, thus creating artificial gradients between nodal
points on top and downwards along the lateral boundaries. Therefore, it is of interest to study
how the ambiguities, associated with the transition procedure used in the previous calculations
for setting the boundary conditions, will affect the flow solutions.
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Sensitivity analysis may be characterized as a mathematical means for determining the rela-
tionships between the input and output variables of a mathematical model. The sensitivity of
one variable to another in the mathematical model is described by the partial derivative of an
output variable of interest versus an input variable. The present work is based on a previously
developed computer model (Thunvik and Bao, [1989]) for determining the so-called state
sensitivity coefficients and for the determination of the sensitivity of a selected performance
measure to the permeability for a st ..ly state groundwater flow problem. The theoretical
foundation for the computer model used for the sensitivity analysis is thoroughly described by
Bao [1990] and therefore only briefly stated in the present study. Two different sensitivity
methods are considered in the present study, one which is called the direct method and the other

the variational method.

In the direct method the partial derivatives of the model output variables versus the model input
variables are obtained by direct differentiation of the algebraic equations resulting from the
finite element integration of the flow equations. The variational method is based on adjoint
sensitivity theory and is suitable for calculation of the sensitivity of various performance
functions, selected according to the phenomena of interest, such as a specified piezometric head
responses, point or integrated flux responses at regions of interest in the flow domain. As an
example of the latter performance function the total flux across an interior or exterior boundary
of the flow domain could be mentioned.



2 DESCRIPTION OF THE FLOW PROBLEM

According to the previous modelling of the groundwater flow conditions at the Finnsjon study
site (Lindbom et al. [1991]), the extent of the local model of the site is shown in Figure 3,
corresponding to an area of 6.6 km.
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i e

Figure 3. The extent of the local area (shaded) of the Finnsjon study site
(from Lindbom et al. [1991]).



In the previous modelling (Lindbom et al. [1991]), the local flow domain was modelled to a
depth of 1500 m assuming a no-flow bottom boundary. The fracture zones are comprised both
of major regional lineaments and smaller "local scale" zones. The fracture zones on the local
scale domain are illustrated in Figure 4. Fracture zones 3, 4, 12, 13 and 14 in the flow domain
were coinciding with lateral boundaries. Fracture zone 1 is sloping downwards from the top.

GENERALIZED FRACTURE ZONE MAP FINNSJON ROCK BLOCK

AN FRACTURE ZONES
L/ DIE 86 AND VERTICAL
o CORE BOREHOLE

PERCUSSION BORCHOLE

Figure 4. Areal coverage of the local area with the fracture zones indicated
(From Lindbom [1991]).



The sub-horizontal zone 2 starts below the surface and is intersected by fracture zones 1, 3, 4
and 12 (see Figure 5 for a vertical projection of fracture zone 2). Because of its high hydraulic
conductivity (2-10”° - 4-10”° m/s) and location in the flow domain, it is believed that fracture

zone 2 is of particular importance to the flow conditions in the flow domain.

It was stated in the previous study (Lindbom et al. 1991), that a large amount of groundwater
discharges through fracture zone 2 to the eastern boundary. This implies that the physical
properties, such as the permeability, of fracture zone 2 should have a significant influence over

the flow pattern in the flow domain.
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The local fracture zones 5, 6,7, 8,9, 10 and 11 (see Figure 4) were modelled implicitly according
to a method presented in the Lindbom study (1991). Apart from the boundary fracture zones,
only the sloping fracture zone 1, the sub-horizontal fracture zone 2 and the deep-horizontal
fracture zone H1 were explicitly modelled. Figure 6 shows a perspective view of zone 2 and

zone H1.

Top boundary =

P~

Bottom boundary

Figure 6. Perspective view of zone 2 and zone H1.



The input data in the present study were the same as in the Lindbom study (see Table 1).

Table 1: Input parameter values

Parameter Value Unit
Porosity 0.0001 -
Density of water 998 kgm™
Dynamic viscosity 1.15-10° Pas
Compressibility 0 Pa’
Acceleration of gravity 9.81 ms™

The hydraulic conductivity (K) was assumed to obey a power function of the form
K=a 2-1

where z is the z-coordinate, and a and b are two coefficients chosen according to the assumed
depth dependent variation of the hydraulic conductivity (see Lindbom et al. [1991], p.13).



3 MATHEMATICAL STATEMENT OF THE FLOW PROBLEM

3.1 Flow Model

The flow is assumed to be governed by Darcy’s law

k;
Qiz—i P8y 3-1)
Substitution of the above equation into the continuity equation yields the following flow equation

(Thunvik and Braester, 1988)

k;
¢P[[S(cf+c’)+S'JP,z—¢SP/I3T,{—[P/E(P,,~-PI3,~)} +0=0 (3-2)
The boundary and initial conditions are
p(xi’t)=ﬁ(xi’t) X; € Fl (3—30)
ki/' A
——‘I(p,j”pgj)nizq(xi:t) xel, (3-3b)
p(xi’0)=po(xi’0) X € Q (3“36)

where p is pressure, k;; is the permeability tensor, ¢’ is the compressibility of the fluid, ¢” is the
compressibility of the rock, p’ is density of water, ¢ is porosity, S is the saturation of the fluid,
S’ is dS/dp, P is the coefficient for the thermal volume expansion of the fluid, T is the fluid
temperature, W is the dynamic viscosity of the fluid, g is the acceleration of gravity, Q is a known
source-sink term, x (i= 1,2 or 3) are space variables, tis time, J is prescribed pressure on boundary
T, § is prescribed flux normal to boundary T, (as designated by the components of the unit
inward normal), »; is an inward normal vector, I' =T, +T, represents the external boundary of
the flow domain Q, and p, is the initial pressure over the flow domain Q.

3.2 Sensitivity Analysis Methods

3.2.1 Direct method of sensitivity analysis
Sensitivity analysis of the piezometric heads

The sensitivities of pressure to specified parameter changes, the so-called state sensitivities, are

solved by the following equation (Bao [1990])

¢pf(cf+c')\y,,—[pf%\y,j} ‘+D =0 (3-4)
where
p-92_ o) Lotop'(el+ch} (3-4a)
00, W(P,,*“Pfg,-) i oo, D



The initial and boundary conditions associated with equation (3-4) are:

w(Q,0) = p, € Q,t=0 (3-5a)
() =0 eT, (3-5b)
2 ' s
'—_}i"‘ - Jn. — —lj . :—q _
aak (p,] pjgj)n; (H}V,J’lx aak € I‘2 (3 SC)

where = dp/dq, is the sensitivity of the pressure (p) to the parameter 0. In the present study

o, represents permeabilities (k) or prescribed pressure values (p) at various regions of signifi-
cance. Solution of equation (3-4 gives a direct measure of the "state sensitivities" for each point

in the domain.

Sensitivity analysis of the Darcy flux across a surface

The total normal flux across the surface (I'), which may be an exterior or an interior boundary
depending upon the problem of interest, is obtained by integrating the scalar product of Darcy’s
law and the outward normal vector to the boundary along the boundary and we obtain the

following relationship:
f 2(p /g ndl (3-6)
For axisymmetric flow the previous expression may be written as follows
= 2nf ~(p,—pg)rndr (3-7)

The sensitivity of the integrated flux O may be obtained by the following relationship (in a

Cartesian system)

o0r 1 0k;

= r -

o= (uaak(” )+ ty Jnd G-8)
and similarly for an axisymmetric flow domain, we obtain

BQF 1 ok; k;

3, = 2" ﬂﬁ 50 i~ pg)+ e rndr (3-8)

where p is pressure and Vs is the "state sensitivity" obtained from equation (3-4).

10



3.2.2 Adjoint method

General performance function
In the adjoint sensitivity analysis we consider a performance function of the following general
form as (See Bao, [1990])

P= [ fad,p)ar (3-10)
R

where f({o}, p) is a function of the system state selected in order to define the parameters and

region of interest in the sensitivity analysis.

Adjoint equation

The "adjoint state sensitivity” W is obtained by solving the following equation:

¢p’(cf+c°)w,'l~[[p’ %)w} _+M=0 3-11)

dp
v(Q,1)=0 e Q=1 (3-12a)
Y (T,1)=0 eT, (3-12b)
byt =0 T, (3-12c)

Sensitivity of the pressure performance function
The "system state function" f({a}, p) for the pressure performance function may be written as

follows
flo},p)=wx)px) (3-13)

and the pressure performance function becomes

p:jw@m@mk (3-14)
R

The state function above is used typically when the piezometric head is used to define the
performance measure with w(x;) being an arbitrary weighting function used to identify the region

of importance.

Alternatively, if for example, the pressure is sought at only some selected nodal points / in the
domain, one may choose to define the "system state function” as follows

11



fda},p)=2{p (c)8(x, —x))} (3-15)

where x; is a location vector x; = (x;,X,,X3). In this case the performance measure P becomes

P ={w} {p}, where w = 8(x; —x/) are dimensionless weights designated to the nodal points,
implying that w; = 1 at the nodal points 1 and w; = 0 at all other nodal points.

The marginal sensitivities of the previous performance measures are calculated by the following

equation:
k..
P i
a_a‘f‘f (aaf)(”:f"”gf)‘”* (3-16)
R

Sensitivity of the flux performance function

In defining the flux performance function the following “system state function” was chosen
3 ) .
f({a}ap)z ME_:IQmS(xi—xi) (3—17)

which defines the magnitude of the Darcy velocity at a point x; corresponding to the centroid
of the selected element for which the sensitivity is sought.

The flux performance function then becomes

3
p= f \/ 5, 4280, ~x)dR (3-18)
y m=

The marginal sensitivity of this performance function is obtained by the following relationship:

k..
Loy ey
Qﬂ: - 3 xa_Jp,j_‘If,i ) (P,x_pgj) dR Vx,:xf (3-19)
aak 2 ak ak ¢
R| M m{ll Gm
where '’ is called the adjoint state sensitivity obtained from equation (3-13). The first term of

equation (3-19) is non-zero only when , represents the value of k; within the selected element

3
e. Since f= S g2 -8(x;—x{)for this performance function the third term of the adjoint
m=1

equation (3-11) can be calculated by the following equation:

Ak,p
aa; = 1 . *;p.,) Y e on the element (3-20)

* dp.

3
0 ;lqi
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of
op.

=0 Y e not on the element (3-21)

where pressure p is obtained from equation (3-2).

3.3 Sensitivity Analysis of Perturbations of Permeability in Major Fracture Zones

3.3.1 Sensitivity of pressure to perturbation of permeability

The sensitivities of the pressure to permeability changes, the state sensitivity, is solved by fol-

lowing equations.

ky
op'(c’ +cw, - [( LL]}W”']+D=O (3-22)

where \y = dp/ok, and k, is the permeability of the perturbed fracture zone and

k;
D= {B(g;?) ®,- pg,-)} (3-22a)
( R

The initial and the boundary conditions associated with Eq (3.22) are:

y(€2,0)=p, e Qt=0 (3-23a)
y(IT)=0 eT, (3-23b)
ky
L6 )(p —pgn—| S by =0 erl (3-23¢)
ak, J m J 2

Solution to equation (3-22) gives a direct measure of state sensitivities for each point in the

domain.

3.3.2 Sensitivity of the total Darcy flux across a specified surface to perturbation in per-
meability

Sensitivity of the total flux across a specified surface to perturbation of permeability is calculated

by following equations:
o0r f 1 ak

where k, is the permeability of the perturbed fracture zone.
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3.4 Sensitivity Analysis of Perturbations of the Prescribed Pressure Boundary

3.4.1 Sensitivity of pressure to perturbations of the prescribed pressure boundary

The sensitivities of pressure with respect to prescribed pressure values () on I', are solved by

the following equation

k;

opc’ + ey, —{pj(w,,«)] +D=0 (3-25)

where
p-2_| oY R IGRTN 6-250)

B | " ap v,—0'8)| op *
and the initial and boundary conditions are:

y(2,0)=0 € Q=0 (3—-26a)
yI)=1 el (3-26b)

ky
v =0 e, (3-26¢)

and = dp/dp is the sensitivity of the pressure (p) with respect to f, which are the prescribed

pressure values on boundaries. Solution to equation (3-25) under the boundary conditions given
in (3-26) yields a direct measure of the state sensitivity for each point in the domain.

3.4.2 Sensitivity of the Darcy flux to perturbation of the prescribed pressure boundary

The formulation of sensitivity of flux with respect to prescribed pressure in the flow domain
can be obtained by differentiating Darcy’s law :

g (%)

op op

k;
(p,j—pfgj)'—iw,j (3-27)

where, as defined previously, ¥ =09p/dp which is obtained from equation (3-25) and (p) is
pressure obtained from the primary equation (3-2). Solution to equation (3-27) gives a dis-
tribution of the sensitivity of flux for each point in the flow domain.

3.4.3 Sensitivity of the total Darcy flux across a surface to perturbation of the pre-

scribed pressure boundary

The total flux across the surface (I'), which may be an exterior or an interior boundary depending
upon the problem of interest, is obtained by integrating the scalar product of Darcy’s law and
the outward normal vector to the boundary along the boundary:
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k;
0= L‘II »,-p'g)ndl (3-28)

The sensitivity of the integrated flux (Qr) can be obtained by the following relationship.

K
aa_%zf.[—%%—)w,j—p’gj)—%w,,}"idf (3-29)

where p is pressure and s is the " state sensitivity" obtained from equation (3-25).

3.5 Normalized Sensitivity

Since the units and numerical scale of the output and input parameters ar~ -‘ten different, it is
useful to normalize the sensitivity coefficients by dividing the differentiais > and d o by their
nominal values so that the sensitivity values will be on a more comparable basis. The (dimen-

sionless) normalized sensitivity is here defined as:

dFP o
S“*dakP (3-30)
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4 NUMERICAL SOLUTIONS

4.1 General Description

Two of the cases that were analysed in the Lindbom study [1991], viz. the cases 3DSLR and
3DSLB, were analysed here using the sensitivity method developed previously (Bao [1990]).
Case 3DSLR is referred to as a reference case and 3DSLB as a base case in the Lindbom study.
The main characteristics of the two cases are summarized in Table 2.

Table 2: Main characteristics of the two cases studied

Case | Major fracture | Local fracture | Lateral boundaries Top boundaries
zones zones
3DLSR Included Non-Included Transferred Regional topography
3DLSB Included Included Transferred Regional topography

As can be seen in Table 2 the difference between the two cases is that in case 3DSLR only the
major fracture zones were included, while in case 3DSLB also minor fracture zones were
implicitly modelled by using a special averaging technique (See Appendix D in the Lindbom
study [1991]). Therefore it was considered to be of interest to check whether a sensitivity analysis
could indicate any difference in the behaviour of the two model approaches.

All input data in the present study were the same as in the Lindbom study. Subsequently the
element grid used was also the same as that used for the local study areas at Finnsjon described
in the Lindbom study. The flow domain was discretized into 24 layers and the resulting element
grid consisted of 39000 nodes and about 35000 eight noded brick-elements. The RAK-coordinate
system with offset in y = 1600000 m and x = 6600000 m was used. The horizontal discretization

of the flow domain is illustrated in Figure 7.
The results are for convenience presented in piezometric head instead of pressure. The piezo-

metric head (h) is defined as

b

b=+, —x}7 4-1
Y (3 —x57) (4-1)

where p is pressure, p is the fluid density, g is the acceleration of gravity, x; is the elevation and

x}is the reference datum.
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Figure 7. The discretization of the flow domain for the local model

(from Lindbom et al. [1991]).
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The flow domain is a three-dimensional one and the results are presented in the form of contour
plots at various relevant vertical and horizontal sections through the flow domain. The selected

sections are schematically depicted in Figure 8. The following sections were considered:

(a) Vertical profiles at selected points in the horizontal plane. (The profiles were
defined as: P, x=15682 m, y=96362m, -1500 <z<0mand P, x=15500 m, y=95725,
-1500 £ z £0 m in Figure 8a).

(b) A horizontal section at z=-500 (corresponding to a typical repository level, marked
by G-H-I-J in Figure 8b).

(c) A vertical section through the centre of the imaginary repository (marked by the
line L1 (x = 15203, y =95429) - L2 (x = 16125, y = 96893) in Figure &c).

(d) A vertical section crossing the fracture zones 2, 4 and 1 at the north-eastern corner

(marked by the line L3 (x = 15600, y =95704)- L4 (x = 15800, y = 97400) in Figure
8d), through the three-dimensional flow domain.

The motivation for choosing the last-mentioned vertical section was that the natural groundwater
discharge was estimated through part of this particular area of zone 2 in previous studies
(Andersson et al. [1989]). Although the section does not coincide exactly with that of the previous

studies it remains useful for comparative analysis.
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Figure 8: Schematic view of the flow domain showing the sections selected for the
sensitivity analysis: (a) vertical profiles for the point P, and P, (b) horizontal
sectionat z=-500m (c) vertical section through the imaginary repository (shaded
area) and (d) vertical section through discharge region.
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4.2 Primary Solutions

The numerical solutions were achieved using the Galerkin finite element method. The piezo-
metric head in both the 3DLSR and 3DLSB cases is depicted in vertical sections through the
flow domain in Appendix Figures A1 and A2, also in horizontal sections through the flow domain
in Figures A3 (z=-500 m), A4 (z=-200m), A5 (z=-500m) and A6 (z= -200 m), and vertical
north-eastern sections through the flow domain in Figures A7 and A8, respectively.

The solutions for the piezometric head in the two cases are rather alike, qualitatively as well as
quantitatively. It may be pointed out that the solutions presented here agree with the solutions
presented in the Lindbom [1991] study.

The Darcy flux distributions in both the 3DLSR and 3DLSB cases are depicted in Figures A7,
A8 and A9 for the same three sections mentioned above. The contour lines at the vertical sections

show that high flux values are distributed around fracture zone 2.

Contour lines of the Darcy flux values are shown at vertical cross-section for the case 3DLSR
(Figure A12). As one can see in Figure A12, the high flux contour lines are located in fracture
zone 2 as well as along fracture zone 4 (the northern inclined lateral boundary). A comparison
between the contour lines of Figure A9 and Figure A12 show the effect of the local fracture

zones on the flow conditions.

4.3 Sensitivity to Perturbation of Permeability (k)

In this section, the sensitivity to permeability changes in either of two major fracture zones in
the flow domain was calculated. The perturbed fracture zones were the sub-horizontal fracture
zone 2 and the deep horizontal fracture zone H1 (see Figure 6).

As mentioned in the introduction the sensitivity of one variable to another is described by the
partial derivatives of an output variable of interest versus the input variable of which the
sensitivity (S) is sought. A positive value of S implies that the value of the output variable
increases as the input variable increases. Conversely, a negative value of S implies that the value

of the output variable decreases as the value of the input variable increases.

4.3.1 Sensitivity of the piezometric head to perturbation of permeability

Piezometric head sensitivity to perturbation of permeability of fracture zone H1

In case 3DLSR, sensitivity of the piezometric head to perturbation of the hydraulic conductivity
in zone H1 is depicted in a vertical section through the flow domain in Figure B1, for vertical
profiles in Figure B2 (defined as: X = 15862 m, Y = 96362 m, -1500 <Z <0 mand X = 15500
m, Y = 95725 m, -1500 £ Z < 0 m, respectively), and in horizontal sections, at Z = -500 m and
Z = -200 m, through the flow domain in Figures B3 and B4, respectively.
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In case 3DLSB, sensitivity of the piezometric head to perturbation of the hydraulic conductivity
in zone H1 is depicted for a vertical section through the flow domain in Figure B3, for vertical
profiles in Figure B6. (defined as: X = 15682 m, Y = 96362 m, -1500 <Z <0 m and X = 15500
m, Y = 95725 m, -1500 < Z < 0 m, respectively), and in horizontal sections, at Z = -500 m and
Z = -200 m, through the flow domain in Figures B7 and B8, respectively.

The contour lines showing the distribution of the sensitivity of the piezometric head versus the
hydraulic conductivity in the horizontal fracture zone H1 differ significantly from each other in
the two cases (Figures B1 and B5). As one may see in case 3DLSR (Figure B1) the sensitivity
coefficients are drastically changing from positive values below the fracture zone to negative

values above the zone.

Case 3DLSB (Figure B7) exhibits a much more complex pattern of sensitivity coefficients than
that of case 3DSLR, reflecting the differences in the fracture modelling concepts of the rock
mass in the two cases. As can be observed in case 3DLSB (Figure B7), the sensitivity coefficients
vary in a cyclic-like manner in the direction along the horizontal fracture zone (H1), while in
case 3DLSR the sensitivity contour lines are oriented horizontally along the fracture zone.

Both solutions to the piezometric head sensitivity indicate that the region located between the
upper boundary of the flow domain down to a depth of about 400 m is practically unaffected
by changes of the hydraulic conductivity of zone H1. This fact is also confirmed by the vertical
sensitivity profiles shown in Figures B2 and B6. It should be pointed out, however, that the
vanishing sensitivities on top and bottom boundaries are due to the fact that the piezometric
head values are prescribed along these boundaries.

The piezometric head contour lines for a horizontal section at z = -500 m show that the piezo-
metric head values in case 3DLSR (Figure B3) are slightly higher than that in case 3DSLB
(Figure B7). However, the large scale flow patterns are rather similar to each other in the two

Cases.

The corresponding graphical representations of the piezometric head sensitivity values show
that the two different model approaches will lead to significantly different flow behaviour
predictions. In case 3DLSB the high sensitivity values are limited to a certain region around the
lower left corner, while in case 3DLSR the sensitivity values are distributed practically all over
the depicted flow domain. Moreover, the sensitivity values in case 3DLSR are considerably
higher (about 10 times).

The piezometric head values at the horizontal sections at z = -200 m are largely the same for
case 3DLSR (Figure B4) and 3DLSB (Figure B8). The piezometric head sensitivity to changes
of the hydraulic conductivity of the horizontal fracture zone are also rather similar. As can be
observed in Figures B4 and B8, the sensitivity contour lines are limited to about a quarter

(South-West region) of the depicted part of the flow domain.
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Piezometric head sensitivity to perturbation of permeability of fracture zone 2

The contour line patterns, showing the distribution of the sensitivity of the piezometric head to
perturbation of the hydraulic conductivity in sub-horizontal zone 2, for a vertical cross section
through the hypothetical repository, appear to be rather alike in the two cases (Figures B9 and
B10). The highest sensitivity value is on the western edge of fracture zone 2.

In the horizontal cross-section the distributions of sensitivity values differ significantly from
each other in the two cases (Figures B11 (z = -500m 3DLSR) and B12 (z = -500m 3DLSB) ).
In case 3DLSR, the contour lines correspond to the pattern of topography and in case 3DLSB
the contour lines coincide with the strike of local fracture zones 5, 6, 7, 8, and 10. It may be
observed that the sensitivity values in case 3DLSB are higher than that in case 3DLSR. This is
due to the fact that the local fracture zones interact with zone 2. It may be noticed that there was
a contrary result in the case with perturbation of the deep horizontal fracture zone H1.

4.3.2 Darcy flux sensitivity to perturbation of permeability

Darcy flux sensitivity to perturbation of permeability of fracture zone H1

The sensitivity of the total normal flux across an imaginary repository plane with an area of
1.5085 - 10°m?® was analyzed for the two cases.

Table 3: Sensitivity of the total flux across the hypothetical repository region located at a

depth of 500 m
Case Total flux Sensitivity Sensitivity
(normalized)
3DLSR -3.813-10* 6.28 - 10 0.128%
3DL.SB -3.939 . 10* 1.54 - 10 0.031%

A horizontal view of the repository region chosen for the calculation is presented in Figure 3.
As can be observed in Table 3 the results show that the sensitivity value of the integrated normal
flux across the repository region in case 3DLSR is about four times higher than that of case

3DLSB.

Darcv flux sensitivity to perturbation of permeability of fracture zone 2

The results of the Darcy flux sensitivity are presented in Table 4.
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Table 4: Sensitivity of the total flux across the hypothetical repository region located at a
depth of 500 m to perturbing fracture zone 2

Case Total flux Sensitivity Sensitivity
(normalized)
3DLSR -3.813 - 10* 2.167 - 10 1.71%
3DLSB -3.939 . 10* 2.366 - 10™ 1.80%

The results in Table 4 show that the sensitivity values of the integrated normal flux across the
repository region to perturbations of fracture zone 2 are significantly higher than that of
perturbations of fracture zone H1. The order of magnitude of the sensitivity values connected
to perturbation of fracture zone 2 is about the same in the two cases 3DLSR and case 3DLSB.
This means that the local fracture zones have little influence on the total flux sensitivity to
perturbations of fracture zone 2.

Conversely, the local fracture zones have acertain influence on the flux sensitivity to perturbation
of the deep horizontal fracture zone H1. However, the sensitivity to perturbation of zone H1
withregard to the presence of local fracture zones is negligible in comparison with the sensitivity
to perturbation of zone 2 (the latter irrespective of the presence of local fracture zones). For
example the difference between the cases 3DLSR and 3DLSB when perturbing zone 2 is about
0.09 per cent, a value which appears also in table 3, but is overwhelmed in comparison by the
normalized sensitivity in Table 4.

Sensitivities of the Darcy flux distributions to perturbation of fracture zone 2 are depicted on
the vertical cross-section for the cases 3DLSR (Figure B13) and 3DLSB (Figure Al4),
respectively. The contour pattern of the flux sensitivity is similar to that of the flux contour
pattern. This implies that the high sensitivity values of the flux are located in regions with high

flux.

4.4 Sensitivity to Perturbation of the Prescribed Pressure () Boundary

The sensitivity of (i) the piezometric head, (ii) the flux at selected points, and (iii) the Darcy
flux across specified surfaces were calculated with respect to perturbations of the prescribed
pressure at specified parts of the exterior boundary. The areas subject to perturbation were: (i)
Fracture zone 4, (ii) The top boundary at the north-eastern corner (perturbation area = 1.209-10°
m?), and (iii) The top boundary at the north-eastern corner including parts of the vertical
boundaries (perturbation area = 1.991-10° m®). The perturbation regions considered are sche-

matically illustrated in the form of perspective plots in Figure 9.
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The selection of the perturbation areas were based on the following considerations: (i) in the
Lindbom study the prescribed pressure boundary conditions set to fracture zone 4 proved to
have a significant effect on the flow patterns and especially on the water balance, (ii) on the top
area at the north-eastern corner, as already mentioned above, a rather large deviation exists
between the regional topography map and local scale topography map, and (iii) fracture zones
1, 3 and 4 intersect each other at the north-eastern area.

Moreover, zone 2 is located only about 10 metres below this intersection. Therefore the per-
turbation area is extended from the top downwards to a depth of 300 metres along the vertical
boundaries to account for effects of the artificial gradients associated with the transferred vertical
boundary conditions. In addition, this point was the major discharge area in the domain and
considering the intersection between the water bearing structures mentioned in (iii) this area

could be a source for numerical difficulties.

The results are graphically displayed in the form of contour lines showing the distribution of
the parameters of interest over the flow domain. The results of the following parameters are
presented: (i) the piezometric head and its sensitivity to the perturbations considered (ii) the
point flux and its sensitivity to the perturbations considered, and (iii) the integrated flux and its

sensitivity to the perturbations considered.
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Figure 9:

(a) Fracture zone 4

(b) The top boundary at the

\ north-eastern corner

(c) The top boundary at the
\ north-eastern corner includ-
ing parts of the vertical (lat-

eral) boundaries

Perspective plots showing the perturbation areas under consideration (shaded):
(a) Fracture zone 4, (b) The top boundary at the north-eastern corner and (c)
The top boundary at the north-eastern corner including parts of the vertical

(lateral) boundaries.
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4.4.1 Sensitivity of the piezometric head

Vertical section

The vertical section showing the distributions of the piezometric head sensitivity to perturbation
of fracture zone 4, the north-eastern top area, and the north-eastern top with connected vertical
parts are depicted in Figures C1, C2 and C3, respectively, for case 3DLSB and in Figures C4,
C5 and C6, respectively, for case 3DLSR.

The sensitivity of the piezometric head to perturbation of fracture zone 4 is illustrated in Figure
C1. The results show that the normalized piezometric head sensitivity approaches 1 towards the
perturbed boundary fracture zone 4 and decreases gradually to 0 from the perturbed boundary
to the (prescribed head) top and bottom boundaries.

The results of sensitivity to perturbation of the north-eastern top area and to perturbation of the
top with parts of the vertical boundary included show quite similar patterns. The sensitivity
value towards the perturbed boundaries approaches 1 and vanishes at the bottom and at the
unperturbed part of the top boundary. But it should be noticed that the values of the sensitivity
to perturbation of the top with the vertical parts are about 2.5 times higher than that of perturbing
the top boundary only. As one may see from the figures the values of the piezometric head
sensitivity in case 3DLSR are slightly higher than that of case 3DLSB, which is due to an
interaction with the local fracture zones in the latter case. However, the overall patterns are

rather similar to each other in the two cases.

Horizontal cross-section (z = -500 m)

Theresults of the piezometric head sensitivity to perturbation of fracture zone 4, the north-eastern
top area and the north-eastern top with connected vertical parts are presented for a horizontal
cross-section in Figures C7, C8 and C9, respectively, for case 3DLSB, and in Figures C10, C11
and C12, respectively, for case 3DLSR.

The contour lines of the piezometric head sensitivity to perturbation of fracture zone 4 are
oriented parallel to the perturbed boundary (Figure C10). The value of the normalized sensitivity
decreases from 1 to O from north-east to south-west. The contour lines of the piezometric head
sensitivity to perturbation of the north-eastern top area show that the values of the sensitivity

are relatively higher in the south-eastern region.

Along the north-east as well as the south-west boundaries the normalized sensitivity value
approaches 0 (Figure C8). The results of the piezometric head sensitivity to perturbation of the
north-eastern top area with the connected vertical parts has a pattern similar to that of perturbing
the top area, but the values are about 2 times higher (Figure C9).
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North-eastern vertical section

The north-eastern vertical section, showing the distribution of the piezometric head sensitivity
to perturbation of fracture zone 4, the north-eastern top area and the north-eastern top with
connected vertical parts, are depicted in Figures C13, C14 and C15, respectively, for case 3DLSB
and in Figures C16, C17 and C18, respectively, for case 3DLSR. The results of the piezometric
head sensitivity to perturbation of fracture zone 4 show that the value of the sensitivity is about
1 along the perturbed fracture zone 4, and nearly 0 along the top boundary (Figure C16).

The contour lines of the piezometric head sensitivity to perturbation of the top area show that
the normalized sensitivity decreases from 1 to O from the top downward to fracture zone 4 and
the bottom boundary (Figure C17). Perturbing the top area, with part of the vertical boundary
included, shows a sensitivity pattern similar to that of perturbing the top area only. But the
sensitive region extends closer to the bottom (Figure C18).

4.4.2 Sensitivity of the Darcy flux across specified horizontal surfaces

The sensitivity of the total normal flux across an imaginary repository plane (shown by the
shaded area in Figure 3) with an area of 1.5085 - 10°m® was analyzed. The results are displayed
in Table 5. As can be observed in Table 5 the results show that the sensitivity value of the
integrated normal flux across the repository region to perturbation of the north-eastern top area
with connected vertical parts is about two and half times higher than that of perturbing the
north-eastern top area only. The sensitivity value to perturbation of fracture zone 4 is between

the values of the two above mentioned cases.

Table 5: Sensitivity of the total flux across the hypothetical repository region to three differ-
ent perturbations in case 3DLSB.

Perturbation Area Total Flux Sensitivity Sensitivity (normal-
ized)
Perturbation of frac- 3.94.10* 9.658-10°° 2.45%

ture zone 4
Perturbation of the 3.94.10" 6.790-10° 1.72%
north-eastern top
area

Perturbation of the 3.94-10" 1.689-10° 4.29%

north-eastern

top area with con-

nected vertical parts
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As already mentioned, the natural groundwater discharge through a vertical section in the
north-eastern part of the flow domain was estimated and used for calibration purposes in previous
studies. Thus it was considered to be of interest to analyze the sensitivity of the total normal
flux across this vertical section with an area of 1.457-10°m”. The results are displayed in Table
6.

The results of the calculations show that the integrated normal flux in the north-eastern vertical
section is highly sensitive to perturbation of the lateral boundary fracture zone 4, but less sensitive
(about half as much) to the two other perturbations, viz. the perturbation of the north-eastern
top area and likewise with adjoining vertical parts.

From the above results the following conclusions may be drawn: (i) the normal total flux through
the imaginary repository plane at 500 m depth is less sensitive to the perturbations of those
selected boundary regions, and (ii) the total normal flux across the north-eastern vertical section
is highly sensitive to perturbations of the selected boundary regions, especially to perturbation
of the lateral boundary of fracture zone 4.

Table 6: Sensitivity of the total flux across the north-eastern vertical section with respect to

the specified perturbation areas in case 3DLSB.

Perturbation Area Total Flux Sensitivity Sensitivity (normal-
ized)
Perturbation of frac- 3.628-10° 3.232:107 89.08%
ture zone 4
Perturbation of the 3.628:107 1.572:10° 43.33%
north-eastern top
area
Perturbation of the 3.628-107 1.452.10° 40.02%

north-eastern
top and connected
vertical parts
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4.4.3 Sensitivity of the Darcy flux distribution

Sensitivities of flux distributions to the three selected perturbation areas are depicted in the
vertical cross-section in case 3DLSB in Figures C18, C20 and C21. As can be observed in the
graphical displays, the contour lines of the flux sensitivity exhibit rather similar patterns in the
three different perturbation cases. The high sensitivity values are concentrated to the region
where sub-horizontal fracture zone 2 is located. However, in a horizontal cross-section the large
scale of the flux sensitivity distribution is rather similar for the three selected perturbation cases
(Figures C22, C23 and C24). The sensitivity values are mainly distributed in the regions where
the fracture zones are located.

29



5 SUMMARY AND CONCLUSIONS

The object of the present study was to perform a sensitivity analysis of the previous groundwater
flow modelling at the Finnsjon site. Sensitivity analysis may be characterized as a mathematical
means for determining the relationships between the input and output variables of a mathematical
model. The sensitivity of one variable to another in the mathematical model is described by the
partial derivative of the output variable (or performance function) of interest versus the input
variables. The performance functions considered in the study were: the piezometric head and
the flux, both integrated and point-wise, at the region of an imaginary radioactive waste
repository located at a depth of 500 metres below the ground surface.

Two different sensitivity methods were considered in the present study, one of which is called
the direct method and the other the variational method. The direct sensitivity method was used
to evaluate the sensitivity of the piezometric head at nodal points versus the hydraulic con-
ductivity of a major fracture zone. The variational method was used to evaluate the sensitivity
of the integrated Darcy flux across an imaginary repository region versus the hydraulic
conductivity of a selected fracture zone. The numerical method for solving the primary flow
equation and adjoint state equation are based on the Galerkin finite element method.

The study was divided into two main parts with regard to the types of perturbations, or say
uncertainties, of the considered input. One type in which the uncertainty was associated with
the permeability of some major fracture zones and the other type in which the uncertainty was
associated with the specification of the prescribed pressure boundary conditions.

Sensitivity to permeability of major fracture zones

Two major fracture zones were analyzed viz. zone H1 and zone 2 at the Finnsjon site. Zone H1
is a horizontal fracture zone located at a depth of about 1100 m. Zone 2 is a sub-horizontal zone
that was analyzed because of its high hydraulic conductivity (2 - 10°-4.10° m/s) and location
in the flow domain, implying that it should be of particular importance to the flow conditions.

Zone H1 was included in the sensitivity study since the geometrical and physical properties of
this zone are currently uncertain. Fracture zone H1 was unintentionally accounted for in the
previous groundwater flow calculations at the Finnsjon study site. Therefore, it was found to be
of interest to analyze the impact of this zone on the flow solutions.

The sensitivity of the selected performance functions selected was analyzed for different
modelling concepts of the flow domain. The motivation for this part of the study was that in the
previous groundwater flow calculations at the Finnsjon study site conducted by Kemakta
(Lindbom et al. [1991]) a specific technique for averaging the hydraulic conductivities over
large blocks was applied. It was considered relevant to perform a comparative sensitivity analysis
between a flow domain conceptualized in a conventional manner and a flow domain described

using the above mentioned technique.
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Although the solutions to the primary problem (ie. preo«sure or piezometric head values) were
rather alike, the present study shows that the two alternative flow domain conceptualization of
the Finnsjon study site lead to significantly different flow systems with regard to perturbations
of the permeability of the fracture zone considered.

Sensitivity to boundary conditions

The objective of this part of the study was to analyze the sensitivity of the piezometric head and
flux to perturbations of the boundary conditions assumed in the previous modelling of the
groundwater flow conditions at the Finnsjon study site. The motivation for this part of the
sensitivity study was that ambiguities, or say uncertainties, in the boundary conditions were
introduced by the procedure used to specify the boundary conditions for the local model based
on results from calculations performed at a regional scale. As a consequence, contradictions
between the upper boundary conditions dictated by the topography and the interpolated lateral
boundary conditions created artificial gradients.

The present sensitivity analysis was directed towards the following parts of the flow domain:
(i) a horizontal region located at a depth of 500 m, considered representative for the location a
hypothetical repository, (ii) a vertical cross-section through the centre of the imaginary repository
and (iii) a vertical section through a natural discharge region for the groundwater flow in the
flow domain. The last-mentioned case (iii) was chosen since the flow across this section was
studied previously and was used for calibration purposes in these studies.

The sensitivity of the piezometric head and the sensitivity of the flux to three different per-
turbation areas were investigated in the present study. The areas subject to perturbation were:
(i) fracture zone 4, (ii) the top boundary at the north-eastern corner (perturbation area = 1.209
- 10°m), and (iii) the top boundary at the north-eastern corner including parts of the vertical
boundaries (perturbation area = 1.991 - 10° m).

In summary, the main conclusions from the analysis of the boundary conditions are that

(1) the piezometric head at the repository region proved to be highly sensitive to the boundary
condition perturbations considered. The distribution of the sensitivity values showed that the
piezometric head was most sensitive to perturbation of the north-eastern top area with the
connected vertical parts, but less sensitive to perturbation only of the north-eastern top boundary.
The magnitude of the sensitivity to perturbation of fracture zone 4 (i.e. the north-eastern vertical
boundary) is between that of the two afore-mentioned perturbations. This implies that the
hydraulic conductivity of zone 4 is of major importance and should be further investigated.

(2) the sensitivity of the total normal flux through the horizontal imaginary repository plane (z
= -500) to perturbation of the boundary conditions was less than that across the north-eastern
vertical section. The results show that the sensitivity of the normal flux through the vertical
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section to perturbing the lateral boundary fracture zone 4 was about twice as high compared to
perturbing the north-eastern top area and to the north-eastern area with parts of the vertical
boundary included. The horizontal cross-section at 500 m depth shows that the sensitivity of
the normal flux has the highest value to perturbation of the north-eastern top with connected
vertical parts. The sensitivity to perturbing the north-eastern top boundary is only half as large
compared to that of perturbing the north-eastern top with parts of the vertical boundary included.
The sensitivity value of the total normal flux to perturbation of fracture zone 4 lies between that

of the two afore-mentioned cases.

(3) it was found that the high flux sensitivity values were always situated around fracture zone
2, which is a major sub-horizontal zone of relatively high hydraulic conductivity. The contour
lines of the horizontal cross-section (z = -500) below zone 2, show that the flux in the regions
where the fracture zones are located is more sensitive to perturbations than that of the rock mass.

General conclusions
Among the general conclusions that may be drawn from the results of this study is that the flow

conditions are more sensitive to uncertainties associated with the procedure of specifying the
boundary conditions for the local model (on basis of results from a regional model) than to
uncertainties due to inadequacies in the description of the topography. This means that it is
unsuitable to let the lateral boundaries coincide with vertical fracture zones as was the case in
the previous studies. In conclusion, this suggests that the model area should be extended beyond

the fracture zones in the future groundwater flow modelling.
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APPENDIX A Graphical display of the primary solutions
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APPENDIX B Graphical display of sensitivity to permeability perturbations



00LEs6

699¢6

8CZve

L0386

9L866

S¥656

¥i596

£80¢L6

59,6

12286

——mm_NVNN_thw—nO—O_hnmm—wmmw—oové—
T T T T T T T T I T T T T 00466

699¢6

CiyAd3

L08v6

9L€G6

SY656

R S A N R A D A (N A A A A A B S

¥1696

£80L6

5946

S T S RS N W S TN T U T TN N U TN SN T N U T T O O N OO |

12286

LI S A TR e S |

S W S S O O T WO O S B O B O B B
LEBLL TYTLL v2991 SOLTE LESG1 896V 1 OOvh L

00SL—

00¥L~-

00¢L—

00cL-

00LL-

0001~

006—

008-

00L~-

009-

005

00vy-—

00¢~

00¢~-

00L~-

00LZL 0091 00St 00vL 00gLL OCZL O0LL 000L 006 008 O/

009 008 0QO¥Y 00¢ 0CZ 00l 0

I I ]

I

1 I |

] ! I I I T i

T 1 i i T T

'\\"{}‘\/)[}//

| | | I ! 1o

L00+3g- —
/<\\

£00+3z - — T

000Gt~

- 00%1-

00¢ L~

001~

= 001~

SEEI=EET 0001 -

AQO+@W /Itlll\\\\\\\\\\\\\\

l | | | | |

001 0091 00GL 00vi Q0L OCZ1 Q0L 000t 006 008 00/

| H

INOZ—cf S0 AVIH-NI9

009 005 00r 00¢ 0CC 0O 0

1O MBIIA TIVOLLA A

006-

008~

007~

009~

00—

00¢ -

00¢~

00t -

Contour lines in a vertical section through the flow domain in case 3DLSR,
showing distribution of the piezometric head sensitivity to perturbation of the

hydraulic conductivity in zone HI1.

Figure B1.



00tes

699¢6

8CLre

£08v6

9.£66

S¥656

Y1596

£8046

¢59L6

12286

LLBL1 2¥241 ¥£991 G019 LEGSL BIGHL OOVY L

TTTTTTT T T T T T T

T T Ty T rrrrrirryrrrrr T 71710 1777

S W 0 W S S O O T I G S |

PN S U RS S N SN U IS0 N TS S VU S VO 0 S T T U VO O S N Y

00LL6

699¢6

8Cive

L08Y6

9.£66

Sy656

¥i596

£80L6

259.6

12486

PLBLE CYCLL vL991 GOLIL LEGS 1 BIGPL OO DL

800+3¢

SAVIH 40 ALAILISNIS

800+9¢ 800+3( 000+30 800+3tL - 800+97~ 800+9¢~
s | i 1

4STAE ALIAILISNIS 40 M3IA TvOILY3A

0061~

- 001 —

- 00€4~

F 00t~

ro0iiL-

+ 0001 -

- 006~

r 008~

-00L-

008~

~ 006~

r 00y -

-00¢ -

F00Z-

0oL

—¢

(¥313NW) Hig3a

BR
E5
QD N
L
e
mm
=3
2w
2

96362 m,-1500<Z<0mand X

m, -1500 < Z < 0 m, respectively).

Vertical profiles of the piezometric head sensitivity to perturbation of the

hydraulic conductivity in zone H1 in the case 3DLSR. (The

as: X =15682m,Y

Figure B2.



£g am3ng

-SSOIO [BIUOZLIOY B UI S3UI] JNOIUC))

"TH Qu0z ul AJITANONPUOD JI[NEIPAY 9y Jo uoneqrniad
0za1d ay3 Jo uonnqLASIP 2yl SUIMOYS “YSTCIE 258D UL

[72
3
£,
5}
3
~
]
]
3
g
s E
o'q%
3=
B o
28
[72]
33
@, =
o
<&
2
g5

SEESHIVITY OF HEAD T HT 0 3DLSKR AT —500m
L1a77 1A082 151972 15302 15411 15521 15631 15741 15851 15961 16070 15180 1629C 16400
R A = B | T [ I I | IS N 7 T I T T T T [

Q6Ga8 - - 96948
96839 |- | < - 96839
L & Crog _

5
96731 |- - 96731
~1 B
- 25*007
96622 - \ - 96622
™ /
= o~ 6 —{
] 5 E4005
96514 1 -1 96514
96405 v /‘ -1 96405
2 5 -
~ o + O
96297 g & _ -1 96297
~3 o~
96188 |- ‘ ) J - 96188
+ (@}
B p 9 ]
Eﬂ +
96080 |- S -1 96080
B N |
Q
95971 |- ¥ Aﬁ-\_‘\/ - 95971
(L\L; o)
- o 2 -2.8E+007 .
(@) LU(\ . .
95863 ' TNS 5 -1 95863
“ w! F h 3
A O W _
Tl g ~
95754 |- ) %,
- o
: N
95646 |- S S «
+ APRARS)
- 5 5§
] 'éy
95537 N /
95429 Ll Lol 1 95429
14972 15082 15192 15302 15411 15521 15631 15741 15851 15961 16070 35180 16290 16400

14400 14968 15537 16105 16674 17242 17811
LI NN N N O I B B

98221

97652

97083

96514

95945

95376

94807

54238

93669

93100

T I 1T T r17 1111 rvrrrr@ryrrrrrryrrrTrT

Ce
—

[rp]
o

Y N0 O S U T N TON C O  T Y O OY

N NN SO N NG S NS S N N (S NN NS NN SN NN NS SN NN S SN NG WU GO S U B

98221

97652

97083

96514

95945

95376

94807

94238

93669

93100
14400 14968 15537 16105 16674 17242 17811



g 23]

-$SOI) [BIUOZLIOY ¥ UL SIUT] JNOJUOD)

Jateaiy

“1H 9U0Z Ur AJIATONPUOD JI[NeIpAY 2yl Jo uoneqanirad

01 ANIADISU?S peay ornowozard oy} JO uonnqgLusIp 2yl SUIMoys “YST(IE 580 ur

P M0[J oY1 YSnoxyl (W (OZ- = Z) Uo

uretwto

14400 14968 15537 16105 16674 17242 17811

SENSEN ST OF HEAD TO M1 K 3DESKR AT —200m LT T T T T
) 7 . 98221 - 98221
T TR0 12 Gl 15302 15411 15521 15631 15741 15851 15961 16070 15180 16290 16400 L N
T | A 7 7 f 1 I ] 1 SN A S B T T f T [ [ I 1 I~ 1
~ - 97652 - 97652
96948 |- o -1 96948 L 2
\\\\\ B SR I -
~ 97083 | -{ 97083
- N -
96839 - - 96839 - ]
N ] 96514 |- - 96514
731 -1 96731 - -
9675 95945 |- - 95948
96622 — ~ 96622 95376 | G H -1 95376
L . L !
6514 I 1 96514 94807 |- - 94807
- 7 94238 }~ - 94238
96405 - -1 96405 - 5
L ] 93669 |- -1 93669
L - .
96297 96297 93100 ’—l | VO TN O O O VY A O S B P I O A | 93100
L. — 14400 14968 15537 16105 16674 17242 17811
96188 | T4E40p - 96188
96080 96080
95971 |-

95971

95863 95863

£ -

440

AN
7.SE+OO
\25+005

08
* )
o
o
X d
N

95754 95754

N O
L & 3 o)
& S
95646 |- ® L 3 95646
o~ +
L
- , ¥
95537 |- " 95537
L ! /
95429 AN ANET RANANTA ! / I

95429
14972 15082 15192 15302 15411 15521 15631 15741 15851 15961 16070 6180 16290 16400



0041 0091 Q0SL 00¥L 00¢L OCZL OOLL 000L 006 008 00/ 009 00S 00v 00¢ 00Z 00t 0

00GL— T _ _ T i I T _ ~ _ T _ _ I _ 00G1 -~
00vL— 00vl—
00¢L~— 00¢ L -~
00CL— 00Zt—
Q0L L~ 00l L~
0001~ 0001~
LIBLL TYZLL $L991 GOLT1 LEGGL BI6Y L OOVY L
oopnm___:__._._______-135m 008— 00g—
699¢6 H 699¢C6
- - 00/~ 00—
8eIve -~ 8C7Zv6
- . 009- 009~
L08¥%6 - ~{ LOBY6
i B ] 005- 006 -
9L€G6 - -1 94€66
- . 0P~ - -1 00V~
Sv6S6 - -1 S¥656
y1596 - - risgs 00t~ = -} 008
£80.6 N NJ M £80L6 00Z—- -1 00Z-
25906 |- 1 zeass 00L— - oot-
12286 ~ 1ZZ86 0 S ! | | : | x\lwg | | 1 i | Lo ] 0
ENENEE R NeE 1 001 0091 00GI 00¥L 00g4 00ZiL 00+1 0001 006 008 004 009 00 00v O0F 00 QO 0

VIBLV ZTYTL w2991 SOLIL LEGSI BI6Y L O0¥H L

LH AINOZ—d dS10% QVIH-NIS 40 MIUA v DILA

-section through the flow domain in case 3DLSB,
y to perturbation of the

piezometric head sensitivit

Contour lines in a vertical cross
showing distribution of the
hydraulic conductivity in zone H1.

Figure BS.



Av3aH 40 ALIAILISNIS

800+3¢ 800+9¢ 800+31L 000+30 800+8(— 800+9Z~ 800+e¢ -
1 i K2 L . i I Oom — \
FO0vIL-
F00¢ L~
- Q0Z1—
- 00l -
- 0001t~
Vi8L1 TY2LL v£991 SOLIL LEGS 1 BA6Y L O0FYL
oo_mml___:_:__._._____ico—nm - 006—
699¢6 H H 699¢6 L 00—
8c2v6 |- ] 8C2¥6 F 00/ -
£08v6 r m LOBY6 - 009 —
9.€66 m m 9££66 L 0og—
SY656 - . 5656 L 0op -
v1596 5 ] #1696 L 500~
£8046 - 1 £80L6 F 002~
75946 - . 26946 oo -
12286 i N 12286 5
L. _ x e .
B B e S 8S70¢ ALIANILISN3S 40 MIA WOILMIA

LLBLL ZPZLL 92991 GOLOL LGS BI6%E OOy

95725

15500 m, Y

(The profiles were defined

H1d30
,-1500<Z<0mand X

3
/

N

?i'?

piezometric head sensitivity to perturbation of the

tyin zone H1 in the case 3DLSB.

5

{
L

96362 m
, respectively).

15682 m,Y

Vertical profiles of the

hydraulic conductivi

as: X
m,-1500<Z <0m

Figure B6.



IpAY 9y3 Jo uoneqnirad
Lg 231y

1 Jo uonnqusip ayy S

wmoys ‘gS (g 250 Jo

-$SO10 [EUOZLIOY © UT SOUl] INOIU0))

"TH 3u0z u1 A31AnONpuoD o1yne,

UTBWIOP MO[J Y3 y3nouys (w (6- = Z) uonoas

01 Aansuss peay ormowozard o

SENSITIVITY O IEAD TO HI1 —K SDLSB AT 500 m 14400 14968 15537 16105 16674 17242 1781
} e i Ao SR A A
P72 1E082 T8IG0 100D 15411 15521 15631 15741 15851 15961 1R07C 16180 16290 16400 08221 1 og201
L R Bl el e YT Y ""’1’“'1""'1""7"7 L ‘
) - _ = 4
96948 | 96948 07652 L 7 9765
r P ) -y I ]
96839 -1 96839 97083 + -1 97083
96514 |- N
96731 - 96731 N 796514
- 95945 [ ] 95945
96622 96622 X ]
95376 |- G H - 95376
1 14 - / -
96514 965 94807 |- 7 o4s07
96405 96405 94238 |- J 94238
93669 |- ]
96297 96297 3669 N . 93669
93100 C T | | S 1] 93100
96188 96188 !440014968!553716105166741724217811
96080 96080
95971 95971
95863 95863
95754 95754
95646 95646
95537 95537
95429 Lt 1 /T~ NI LT ST7 ) VAT 1 0 4 g

- 95429
14972 5082 15192 15302 15411 15521 15631 15741 15851 15961 16070 145180 16290 16400



8¢ 231

"TH 2u0z Ut A11ABONpuod JNeIpAY 3y} jJo uoneqinixad

01 A1TADISUQS peoy ommawozard oyl Jo uonngisip 2yl SUIMoys ‘gS s 2582 JO
Urewiop Mo[j 241 ygnoIyl (W (Qz- = Z) U0N3S-SSOID [BIUOZLIOY € UL SIUL[ INOIU0D)

o

L
1
1
[SIFIERI Bt

96859

96731 -

96622

96514 -

96405 -

96297

96188

96080

95971

95863

95754

95646

95537

-

St

as]
I

T

I

95429

14972 15082 15192 15302 15411 15521 15631

NSITIVITY  OF

HLAD TO

HT K 3DLSB AT

—200m

15087 15192 15502 154110 155621 15651 15741 15851 15961 16070 145180 16290 16400

A R R B A

T T

GO0+3S'¢

hl

CTTTTTTTT

L0772 AN A R R B B S

[ N e R
96948

-1 96839

- 96731

-1 96622

-1 96514

-1 96405

~1 96297

-{ 96188

— 96080

95971

95863

95754

95646

95537

I

|

95429

15741 15851 15961 16070 12180 16290 16400

14400 14968 15537 16105 16674 17242 17811

98221

97652

97083

96514

95945

95376

94807

94238

93669

93100

T T T I T T T T T T T

{

rrr17r1ryrr7rrrr7rrrrr1rirryrTrT o

§ S IS Ty U O (N A S TS T N O S S A O B N

Lol Lt L b8 bk byt iy

93
14400 14968 15537 16105 16674 17242 17811

98221

97652

7083

96514

95945

95376

94807

94238

93669

100



o0LEe

639¢6

8Cev6

L08Y6

9LE56

Sv656

¥1G96

$80L6

15946

12286

T T T T T T T I T T I T T I T T T T T T T T T T T 71

LIBLL ZYZLI #4991 GOL91 LEGGE BI6¥ L O0FY L
T T TTT T T T T T T T T T 006

6996

8C7r6

L08¥6

9L£6G6

S¥656

r1596

€80L6

15946

12286

500 T S OO A W N N N T A A S T T T U (U N T 2 0 O

NS W O S W A O T U S S U W W |
LLIBLL ZvZLL ¥L991 SOLSL LEGS1 896¥% 1L OOv v i

00ZL 0091 0051 OOFYL O0EL OCZL QOLL OOOL 006 008 00/ 009 00§ O0F 00§ 00Z 00! 0]
0061= _ _ _ _ _ _ ~ I _ _ T I I T _ 00SL—
00vL— |- \\\\)\/ - 00vL-
00¢t - 00¢L—
0021— 00cCtL—
00LL- 0oL L—
000L— 0001 —

006~ 006—
008- 008
00£~- 00/ -
009- 009~
00s- 005~
00y — 0101 2
00¢- 006 -
00z~ 007
00t - 001 -
b1 ! ! I B 1.

00/1 G091 Q0OSL 00Vl 00CL Q0Zt O0LL Q00L 006 008 00/

CANOZ=d &4S10¢ AVIH=NIS 40 MIIA VDI AA

009 00S 00F 00 00¢ 00.

Contour lines in a vertical cross
showing distribution of the
hydraulic conductivity in zo

Figure B9.

-section through the flow domain in case 3DLSR

’
€

ad sensitivity to perturbation of th

piezometric he.

ne 2.



0041 0091 006l 00vlL 00¢tL OCZI 0O0LL 000L 006 008 0O0L 009 005 00y 00¢ 00Z 00! 0

OO@—I 1 I T T 1 T OOmﬁI
[0103°2 Rl = 00¥ i -
00¢L— |- 00% 1 ~
OON_‘l - OONﬁ!
OO_. r‘ OO— |~
0001 — 0001t -
006— 006~
LLBLL Z¥ZLL 2991 GOLOL LESGL 896¥ L OOFF L t. 3
QOLE6 T T T T T T T T T T T TTTT7T) 006 008 008
53956 |- 1 s99c6 00L— 00/ -
8CLYs -~ B8C2¥6 009~ 009~
£09¥6 |- ] Logvé 006 006 -
L _._ n
9LEG6 |- - 9.£66
. 1 00t — 00t —
GY6G6 - - S¥656
I ] 00e~— 00§ -
y1G96 | —~ ¥iG96
- ] 00Z- 002 -
£80L6 - N._ - €806
I~ 1 00L— 001 -
269.6 | -1 25946 !
12236 |- 1 1ezas 0 ‘ . N -0
L A 00Z1 0091 00GL 00¥L 00LL OCZL 00t 0001 006 008 00/ 009 00§ 00¥y 00T 007 05 0
Ll bl bttty
LLGLL 2rZLy #2991 SO1L91 LEG5Gt 896¢1 O0vht A\\M__,LON|Q mmfwgm./ Q<Mw_.l*fﬁ/_4mz‘ Lﬁu >>u~> J<Q_EW¢Q\/

: -scctioq through the flow domain in case 3DLSB,
piezometric head sensitivity to perturbation of the

ne 2.

Contour lines in a vertical cross

showing distribution of the
hydraulic conductivity in zo

Figure B10.



11g am31g

Z) UOND9S-SSOIO [BIUOZLIOY B UI SOUT] JNOJUC))

id oy Jo uonnqLOSIp 2y SUIMOYS “YST(IE 58D JO

"7 U0z Ul AJIATIONPUOD OINEBIPAY 9yl Jo uoneqanizad
UTewop Mo[J a1 ySnoay (W os-

01 AJIADISUSS PBIY OLOOWOZIT

HORLTONIAL VIEW OF

FA972 15080 15150 15302 15411 15521 15631 15741

SEN—HEAD

SDLSKR P—-ZONEZ

o '\?' '!\ TRV ! T T [ I
96948 |- \ \

96839

96731

96622

\
5]
m
X
Q
o

96514

96405

S —
N 76400

‘)\

7

5/

96297

(
\~SE+OO

96188

Q

96080

95971

95863

95754

95646

95537

1T 1t 11 I 12

!

. —

N

L

I

[N

95429 L Ll
14972 15082 15192 15302 15411 15521 15631 15741

15851 15961 16070 16180 16290 16400

96948

96839

96731

96622

96514

96405

96297

96188

96080

95971

95863

95754

95646

95537

95429

15851 15961 16070 1€180 16290 16400

i

14400 14868 15537 16105 16674 17242 -
LEBLINRL AL AL B R A A

[

ll11L1LJLI11111Jll|lllllllll71<

982214

97652

97083

96514

95945

95376

94807

/

94238

93669

TT 7T T 1T rrrrf1r1rrfr111 7171717177 71Tt

100 N TS S TN O T T O O S O IO S
14400 14968 15537 16105 16674 17242 * 7811

8221

87652

97083

96514

95945

95376

34807

24238

93669

93100



719 2m31y

1onpuod JINEIPAY ay3 jo uoneqinirad
-SSOIO [BIUOZLIOY © UI SAUI] JNOIUO))

U JO UOnNQLUSIP 3} SUIMOYS ‘gSIE 250 JO

"7 Quoz ul A31A
=Z) UO1Ias

ozaid 9

UTewop MO[J 341 ySnory: (w gos-

01 AJIADISUSS PeOY JLZowW

HORIZONTAS

14972 15081
e

96948 \\\_
-

96839
96731

96622
96514
96405
96297
96188
96080
95971

95863
95754
95646

95537

95429 L1l I |

VIEW OF SEN-HEAD 3DLSB P- ZONE2

o
L

NS B748 SO B S | 10 TR AN | ] | b1

14972 15081 15191

15300 15409 15519 15628 15738 15847 15956 16066 15175 16284

96948

96839

96731

96622

96514

96405

96297

96188

96080

95971

95863

95754

95646

95537

95429

14400 14968 15537 16105 16674 17242 17811
LR L A R A e B O A B )

98221

97652

97083

96514

95945

95376

94807

94238

93669

T 7T T T 7T T 7T T 7T 7T 7T T T 1T 1T T 71T T T TTT
R 1 U S S S 0 N G N U WS NN VA SN V% % OO U AN S N S WO A

gsioolllllllllllllllll!

9
14400 14968 15537 1610516674 17242 17811

98221

97652

947083

96514

95945

95376

94807

94238

93669

3100



€19 2m3ig

~ASTAE 2SBO UL UIRWOP MO[J Y1 YSNOIY} UOIIOIS-SSOID [BOLLISA

© SSOIO® XN[j Aore(] 2y} JO AJIADISUSS JO UONNGLOSIP 9y} SUIMOYS SaUr] JNOIU0))

=100

~200

-300

-400

-500

-600

—700

~800

=300

-1000

-1100

—1200

-1300

- 1400

~=1500

VERTICAL VIEW OF SEN—-FLUX 3DLSR P—-/Z0ONEZ

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
i f 1 | I l T T I I T T i I | T

—004 w,ool\
1650004 e

go0—31

|

| I { | I 1 1 1 | 1 I 1 | L | |

0

100 200 300 400 500 600 700 800 900 1000 1100 1220 1300 1400 1300 1600 1700

—-100

—~200

-300

~400

—-500

~600

~700

-800

~900

-1000

-1100

-1200

—1300

-1400

~1500

14400 14968 15537 16105 16674 17242 17811
rTT T T T T T T T T T T T rrTTy

98221

97652

97083

96514

95945

95376

94807

94238

93669

Tt rrrJ1rriyt+rrrqrq7rr1r171717rrrrvrr1rrrT
SN O U NN U A WS NN NS W S N N PO N G N T A N R

| S N O T O O

100 93
14400 14968 15537 16105 16674 17242 17811

398221

97652

97083

96514

95945

95376

94807

94238

93669

100



$1g 2m31

"€gSTAE 258D UL UTBWOP MO[J 9y} YSNOIY) UONIS-SSOIO [BOTLISA

© $S0J0® Xn[J Aore( 9yl Jo ANANISUSS JO UONNGLOSIP Y3 SUIMOYS SIUI] INOIU0))

~200

-300

-400

-600

-700

-800

-900

- 1000

-1100

-1200

-1300

- 1400

- 1500

VERTICAL VIEW OF SEN-FLUX 3DLSB P—ZONE?2

0 100 200 300 400 500 500 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
E 1V I T I I i I f I | 1 {
©
L Q
7
.
h
o
- (=]
(=]
Y
®
- }53
&
I | ] ! | 1 I
0 100 200 300 400 500 600 700 800 900 1000 1100 1220 1300 1400 1500 1600 1700

0

—100

~200

~300

-400

~500

-600

-700

-800

-900

-1000

-1100

—1200

~1300

—1400

-1500

14400 14968 15537 16105 16674 17242 17811

98221

97652

97083

96514

95945

95376

94807

94238

93669

93100 93100
14400 14968 15537 16105 16674 17242 17811

Trrir1r1rryryiy+irryrryrrierryrrrrrrror

T 7T T T T T T T TT Yy rTTri1 7T

8 U O OO S T N N T O O O O Y |

N N TS OO Y S N s T A S S T T T S

98221

97652

97083

96514

95945

95376

94807

94238

93669



APPENDIX C Graphical display of sensitivity to perturbations in the prescribed pres-
sure boundary
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showing the distribution of the piezometric head sensitivity (normalized) to

perturbation of the north lateral boundary (zone 4).

Figure C1.
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Contour lines in a vertical section through the flow domain in case 3DLSB,

showing the distribution of the piezometric head sensitivit
perturbation of the top boundary at the north-eastern corner.

Figure C2.
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Contour lines in a vertical section through the flow domain in case 3DLSB,

showing the distribution of the piezometric head sensitivi
perturbation of the top boundary on north-eastern corner in

lateral boundaries.

Figure C3.
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gh the north-eastern corner of flow

showing the distribution of the piezometric head

sensitivity (normalized) to perturbation of the north lateral boundary (zone 4).

Contour lines in a vertical section throu

domain in case 3DLSB,

Figure C13.
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Contour lines in a vertical section through the north-eastern corner of flow
domain in case 3DLSB, showing the distribution of the piezometric head

Figure C14.
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Contour lines in a vertical section through the north-eastern corner of flow
domain in case 3DLSB, showing the distribution of the piezometric head

sensitivity (normalized) to perturbation of the top boundary at the north-eastern

corner including parts of the lateral boundaries.

Figure C15.
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Contour lines in a vertical section throu

domain in case 3DLSR

Figure C16.

piezometric head

boundary (zone 4).
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Contour lines in a vertical section through the flow domain in case 3DLSB,
showing the distribution of the flux sensitivity (1/s) to perturbation of the top
boundary at the north-eastern corner including parts of the lateral boundaries.

Figure C21.
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