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ABSTRACT 

Sensitivity is usually defined as a derivative of a specific performance measure with respect to 

the system parameters. Sensitivity analysis is an effective tool for analysing the responses of 

some selected performance measure of a groundwater flow problem to perturbations of the 

parameters. It is used to study the behaviour of flow systems and to assess the importance of 

the various governing flow parameters. 

A sensitivity analysis of general linear and nonlinear simulation equation sets is developed in 

this study in order to facilitate the application of the sensitivity analysis to groundwater flow 

problems. Two methods are considered for the sensitivity calculation: the "direct method" and 

the "adjoint method". In the former method the sensitivity equations have been obtained by 

direct differentiation of the primary flow equation, and in the latter method variational theory 

is used to formulate an adjoint sensitivity equation. A comparison between the two methods 

from a computational point of view revealed that when the number of parameters exceeds the 

number of performance functions, the adjoint method is more efficient than the direct method, 

otherwise, the direct method is preferable. 

Sensitivity theory was used to establish a sensitivity analysis model for general three dimensional 

transient groundwater flow. The equations of sensitivity was derived in detail in the continuous 

equation form. Several performance functions, such as the local piezometric head, the Darcy 

velocity at certain points in the flow domain, the outflux through a boundary etc. have been 

derived. Three different methods for calculation of the sensitivity coefficient are presented. 

The sensitivity equations and the groundwater flow equations were numerically solved by the 

Galerkin finite element method in the model. A verification exercise of the model was performed 

for a two-dimensional non-steady state flow problem with an analytical solution found in the 

literature. Sensitivity coefficients were carried out both numerically with the developed direct 

method and with the known analytic solution. Very good agreement between the two solutions 

was obtained. 

The developed sensitivity model was applied to three dimensional (axi-symmetric) groundwater 

flow in a tunnel system, which was supposed to be located at a depth of 500 meters below the 

ground surface in a four-layered rock formation. In this case, the sensitivity distribution of the 

piezometric head was calculated with the direct method and the sensitivity of multiple 

performance functions to perturbations of the permeability were analyzed by using the ad joint 

method. 

The calculation results showed that the peaks of the sensitivity coefficients appear mostly in 

the area around the tunnel. The piezometric head at the studied points (nodes) was quite sensitive 

to perturbations of the permeability in the layer where the points were located, but practically 

insensitive to perturbations of the permeability in the bottom layer. The flux into the tunnel and 

the velocity performance were mostly sensitive to perturbation of the permeability in the layer 

next to the top layer, but practically insensitive to perturbation of the permeability in the bottom 

layer. 
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1 INTRODUCTION 

1.1 Literature Survey 

In general, sensitivity analysis implies a study of the sensitivity to disturbances. These 

disturbances may have a widely different character: they may be small or large; momentary or 

permanent; they may be related to initial conditions, boundary conditions or to system's 

parameters. The major objective of sensitivity analysis of simulation models is to determine the 

changes in the model output resulting from changes in the model input. 

The sensitivity theory has been used extensively in many engineering disciplines. It has been 

applied to the modelling of nuclear reactor design (Lewins, 1964; Oblow, 1978a, 1978b; 

Williams and Weisbin, 1977; Cacuci et al., 1983), in electrical power network design and 

optimization (Director and Rohrer, 1969), and atmospheric contaminate modelling (Marchuk, 

1986). Alsmiller et Al, (1984) applied adjoint sensitivity theory to investigate importance of 

various parameters of a liquid supply model. Chen et al.(1974) and Chavent et al. (1975) used 

an adjoint sensitivity equation of the linear oil flow equation to compute the gradients of a 

residual objective function in a history matching application. Lasdon et al. (1986) derived 

sensitivity equations of the nonlinear gas flow equation to determine the sensitivity of the 

maximum gas production objective function to changes in the pumping rate. Holmberg (1989) 

used sensitivity theory to the model of ion dynamics and acidification of soil to investigate the 

relation between the ion exchanges. 

Sensitivity theory has also been used in various models of groundwater flow for describing the 

variability of system solutions in response to changes in the input parameters such as hydraulic 

conductivity and storativity, initial and boundary conditions, sources or sinks and boundary flux 

etc. It makes it possible to investigate and analyse the behaviour and structure of a geohydrologic 

system and to assess the importance of various governing flow parameters to the behaviour of 

a specific flow problem. Tomavic (1962), Venuri et al. (1969), McCuen (1973) Yukler (1976) 

and Mc El wee ( 197 8) introduced sensitivity theory to groundwater flow. They derived the partial 

differential equations for the sensitivity coefficient by taking the partial derivative of the flow 

equation with respect to parameters such as transmissivity and storativity. They applied 

sensitivity analysis to calibrate models and to establish tolerances on transmissivity and 

storativity for a given tolerance of the error in the hydraulic head and to estimate the variance 

and confidence intervals for the hydraulic heads. 

Sensitivity analysis is one component of uncertainty analysis. The sensitivity of the performance 

measure to the parameters can be used to assess how the uncertainty of the performance measure 

is related to the uncertainty of the parameters. Douglas E. Metcalfe et al (1983) employed 

sensitivity analysis for performance assessment of prospective radioactive waste repositories. 

The adjoint sensitivity calibration of the regional conceptual groundwater flow model to the 

measured piezometric data and to the calculated pressures was used to define a local scale 
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boundary condition. Sykes et al.(1985) applied ad joint sensitivity theory a two-dimension model 

of steady state confined groundwater flow. The sensitivity of two performance measures, local 

heads and Darcy velocity, for the system parameters were evaluated by using the Galerkin finite 

element method. Ahlfeld et al. (1988) used sensitivity theory to derive a general relationship 

for computing the derivatives of an arbitrary function of the simulation outputs with respect to 

model inputs in designing contaminated groundwater remediation systems. 

Sensitivity analysis also is an important means for solving inverse problems or parameter 

identification and optimization problems. In solving these problems it is a tool for determining 

the derivatives of a function or sensitivity coefficients that relate the predicted and measured 

piezometric heads with respect to the hydraulic conductivity of the aquifer. Neuman (1980) and 

Townles and Wilson (1985) solved parameter estimation problems for transient confined 

groundwater flow models. They applied sensitivity methods to compute the gradients of the 

least squares objective functions with respect to the parameters of interest. Carrera and Neuman 

(1985) included as the parameters the hydraulic conductivities, specific storage, sources, sinks 

and boundary fluxes, boundary heads, and initial head conditions for the transient case. Sun and 

Yeh (1985) used the variational method to evaluate sensitivity coefficients for the identification 

of the parameter structure, using the sensitivity coefficients in the Gauss-Newton algorithm 

elements of the Jacobian matrix. 

The main approaches to sensitivity analysis are either based on perturbation theory or variational 

theory. These are referred to as "forward sensitivity formalism" and "adjoint sensitivity 

formalism", respectively by Cacuci (1981). In the former approach the performance measure 

sensitivity equation is derived by direct differentiating of the primary flow equations. The 

variational approach involves the evaluations of an arbitrary function (adjoint function) through 

an adjoint sensitivity equation, which has a form similar to the primary flow equation. 

The adjoint method of sensitivity analysis has been used widely in various fields such as 

petroleum reservoir history matching (Chavent et al, 1975), electrical engineering problem 

(Director and Rohrer, 1969) and nuclear reactor assessments (Oblow, 1978). In recent years it 

has been also used in the field of the groundwater flow simulation. The adjoint sensitivity 

equation can be derived from either the equations of the primary problem or from its numerical 

discretized equations as well as problems may be considered. Neuman (1980) used an adjoint 

methodology as part of an aquifer hydrology parameter estimation routine, thus avoiding the 

time consuming process of trial and error parameter sampling. Sykes (1985) developed the 

ad joint sensitivity theory for both the continuous and discrete forms of the dimensional steady 

state flow in a confined aquifer by using finite element method. Carrera and Neuman (1985) 

and Samper and Neuman (1986) derived both the continuous and discrete ad joint state equations 

for transient flow. 
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1.2 Objectives of the Present Study 

The objectives of this study are: 

To make a theoretical development of sensitivity analysis of a general physical problem, 

in order to establish an appropriate mathematical framework for sensitivity analysis of 

groundwater flow problems. 

To build a sensitivity analysis model for a three dimensional transient groundwater flow 

and to apply the model to study the behaviour and structure of geohydrologic systems and 

to assess the importance of various governing flow parameters to the behaviours of a 

specific flow problem. 

To establish a sensitivity analysis computer model based on a Galerkin finite element 

numeric scheme. 

To apply the developed model to study a three-dimensional (axi-symmetric) groundwater 

flow conditions around a tunnel system. 

The remaining part of the report is organized as follows. 

Section 2 presents the theory for analyzing the sensitivity of a general set of equations describing 

a physical problem in order to establish an appropriate mathematical framework. A general 

sensitivity formalism is derived for both the direct derivative method and the adjoint method. 

Several performance functions, such as local pressure, the Darcy velocity at selected points, 

outflux or influx through the boundary and the sum of the squares of the differences between 

predicted and measure values, are treated. Both the direct method and the adjoint sensitivity 

method for the simulation of transient groundwater flow is developed. The derivation of the 

primary equations of groundwater flow and the corresponding sensitivity equations are 

presented in detail. 

Section 3 presents the Galerkin finite element form of the flow equation, the ad joint sensitivity 

equation and the performance functions. 

Section 4 presents three different methods for calculation of the sensitivity coefficient, viz. the 

influence, the direct equation and the adjoint state method. 

Section 5 presents a demonstrative sensitivity analysis of the flow conditions around a tunnel 

system. The sensitivities of local pressures, the Darcy velocity in the vicinity of the tunnel system 

and the flux into the tunnel system to permeabilities are evaluated and presented in the form of 

figures and tables. 

Section 6 presents the summary and the conclusions from the present study. 

Appendix A gives a description of the computer model used for the calculations in the present 

study. 
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Appendix B presents a verification study of the present sensitivity model for a two-dimensional 

transient flow problem with an analytical solution found in the literature. The sensitivity 

coefficients are calculated by the direct method and compared with the analytical solution. The 

comparisons of the results are shown in figures. 
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2 MATHEMATICAL STATEMENT OF THE PROBLEM 

In general sensitivity analysis is a study of the rate of change in model results (output) to the 

change in model parameters (input). Thus making it possible to quantify how sensitive the model 

results are to perturbations in the model parameters. In groundwater flow studies these parameters 

generally include hydraulic conductivity, permeability, specific storage, porosity, fluxes, 

boundary and initial conditions. In this section, firstly a general sensitivity theory is presented 

in order to establish the basic theoretical concepts. Secondly, various performance functions 

often used in modelling of groundwater flow are regarded. Finally, the sensitivity theory is 

applied to the modelling of groundwater flow. The continuous adjoint sensitivity equations for 

3-dimensional transient flow are derived. 

2.1 Definition of Sensitivity 

A schematic definition of sensitivity is presented in the following figure: 

Ingredients of Sensitivity Analysis 

permeability 

hydraulic conductivity 

storativity 

porosity 

flux boundary condition 

head boundary condition 

Model input parameters 

a 

General 
definition : 

Mathematical 
definition : 

aP 
aa 

hydraulic pressure 

water flux 

flow velocity 

Model results or 
performance measures 

p 

Proportion of the change of 
performance measure to the 
change of input parameters 

Derivative of a performance 
measure with respect to 
input parameters 
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2.2 General Sensitivity Theory 

The general sensitivity theory is applied to many research areas for describing the sensitivity of 

model outputs to model inputs. The sensitivity equations for the response of a set of general 

simulation equations, characterized from a physical problem in general, to parameter variation 

are derived in the sequel. 

Firstly, we consider a general system state equation relating the parameters to dependent state 

variables: 

V({p},{a})=O (2-1) 

where the general system state equation is symbolically represented by V in the previous equation 

including the appropriate differential equations together with initial and boundary conditions. 

where V 

{p} 

{a} 

vector (n x 1) of simulation functions (e.g., groundwater flow 

equation) 

vector (n x 1) of state variables (e.g., pressure) 

vector (m x 1) of all of the parameters in the system (e.g., 

permeability). 

m is the number of components of { a} and n is the number of components of {p}. All of the 

components in { a} for which sensitivity information is sought are independent. We will assume 

that, for a specific choice of {a}, a unique solution of equation (2-1) exits and is represented 

by {p}. Thus, {p} is a function of {a}, but its dimension is not related to the dimension of {a}. 

Secondly, a specified function of {p} and { a} is considered and is referred to as a performance 

function or performance measure by Sykes and Wilson (1985) and as a response function by 

Oblow (1978). It represents any result of the calculations that is of interest. 

P =P({p},{a}) (2-2) 

where {p} is a vector (n x 1) of state variables (e.g., pressure values) and { a} is a vector (m x 1) 

of system parameters (e.g., permeability, porosity). The performance measure Pisa scalar that 

may be calculated from equation (2-2) using the state variable {p} from equation (2-1) for a 

specified {a}. 

The total sensitivity of performance function with respect to every parameter can be derived 

using the definition of the total derivative: 

dP({p}, {a}) c)P({p}, {a}) c)P({p}, {a}) c){p} 
--"-----'~=--"----+----=---'----

d{a}T c){a}r c){p}r c){a}7 
(2-3) 

where the superscript T indicates transposition of a vector or a matrix, 
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dP({p}, {a}) 

d{p}T 

is a matrix of partial derivatives (a Jacobian matrix) 

with l x n dimension 

and 

d{p} 

d{a}r 

is a matrix of partial derivatives (a Jacobian matrix) 

with n x m dimension. 

The equation (2-3) is referred to as the performance function sensitivity equation, where 

dP Id { a} T represents a matrix of total derivatives. The second term on the right hand side of 

equation (2-3) is a matrix with / x m dimension. The row dimension of the matrix is equal to 

the dimension of vector P ( {p}, {a}) and the column dimension of the matrix is equal to the 

dimension of vector {a}. 

Similarly, the sensitivity of the performance function to a specific system parameter a1e is 

determined by differentiating equation (2-2) with respect to it: 

dP({p}, {a}) dP({p}, {a}) dP({p}, {a} )d{p} 
-----=-----+-----

dale aak d{p}T aak 
(2-4) 

For this case dP!da1e is a vector whose dimension is equal to that of vector P. 

Now our problem is how to solve equation (2-3). The gradients of P with respect to the state 

variables and parameters are readily calculated, since P is explicitly known. Therefore, we focus 

our attention on solving d{p} /d{ a} r which is referred to as the state sensitivity matrix, the 

sensitivity of the state of the system to the parameters. 

There are two methods for evaluating d{p} /d{ a} r_ One is to derive a state sensitivity equation 

in order to obtain directly the state sensitivity matrix d{p} /d{ a} r_ The other is to eliminate 

d{p }/d{ a}r from equation (2-3) by defining an adjoint sensitivity matrix [\j/J that is obtainable 

by solving the adjoint sensitivity equation, which will be derived later. 

In the first method the state sensitivity equation can be derived by differentiating the system 

state equation (2-1) with respect to the parameters and we obtain: 

dV({p}, {a})+ dV({p}, {a}) d{p} = O 

d{a}7 d{p}7 d{a}r 
(2-5) 

Rewriting the previous equation, we obtain: 

(2-6) 

Substituting equation (2-6) into equation (2-3), we obtain: 
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dP({p},{a}) 

d{aV 

= c)P({p}, {a})_ c)P({p}, {a} )[c)V({p}, {a} )]-i c)V({p}, {a}) 

d{a}r d{p}r d{p}r c){a}r 
(2-7) 

Thus equation (2-7) provides a direct computation of the matrix of total derivatives of 

performance function P with respect to parameter vector { a} . 

In the second method we multiply equation (2-5) by an arbitrarily defined matrix of function 

\j/, the adjoint state sensitivity matrix [\j/J as mentioned above, and add the result to equation 

(2-3) to obtain: 

dP ( {p}, {a}) c)p ( {p}, {a}) c)p ( {p}, {a}) c){p} 
----=----+----

d{a}r a{a}r c){pV a{a}r 

+ [ Jrc)V({p}, {a})+ [ JraV({p}, {a}) c){p} 
\jl c){a}r \j/ d{p}r c){a}r 

(2-8) 

Since \j/• is arbitrary, the terms containing d{p} /c){ a} r can be eliminated by letting 

aP ( {p}, {a}) d{p} + [ J r av ( {p}, {a}) c){p} = 0 
d{p}r d{a}r \j/ d{p}r c){a}r 

(2-9) 

Rearranging equation (2-9) we obtain the adjoint sensitivity equation as: 

[ dV({p}, {a} )]r [ J +[c)P({p}, {a} )]r = 0 
d{p} r \jl d{p} r 

(2-10) 

Equation (2-8) now can be reduced to: 

dP({p}, {a})= c)P({p}, {a})+ [ JrdV({p}, {a}) 

d{a}r d{a}r \j/ c){a}r 
(2-11) 

The sensitivity of performance function is found by substituting the solution of equation (2-10) 

to equation (2-11 ), we can obtain the solution of equation (2-11 ). 

The two methods may be summarized as follows: 

The first method, usually referred to as the direct method, uses equation (2-3) together with the 

state sensitivity equation (2-5): 

dP({p},{a}) = c)P({p},{a}) + c)P({p},{a} )[\j/] 

d{a}r d{a}r d{p}r 
(2-3) 

(2-5) 
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The second method, usually referred to as the adjoint method, uses equation (2-11) together 

with adjoint sensitivity equation (2-10): 

dP({p}, {a})= c)P({p}, {a})+ [ J rcW({p}, {a}) 
d{a}r a{a}r 'I' a{a}r 

(2-11) 

(2-10) 

The major computational work involved in computing the performance function sensitivity is 

in solving the set of linear equations defined by equation (2-5) and equation (2-10), respectively. 

For equation (2-5) we need to solve (n x m) systems of linear equations and for equation (2-10) 

we need to solve (n x /) systems of linear equations, where m is the number of parameters; n is 

the number of state variables and / is the number of performance functions. Thus, we may 

conclude that if the number of parameters exceeds the number of performance functions, then 

the second method is preferable to the first method. Conversely, if the number of performance 

functions exceeds the number of parameters then the first method is to be preferred. 

In practical uses of sensitivity analysis for groundwater flow, various approaches are chosen 

according to particular problems of interest in our studies. In the cases, for example, that the 

sensitivity of the performance measure only on one or a few specific points to multiparameter 

(i.e., permeability, boundary conditions and initial conditions) is considered and that in parameter 

identification where the number of parameters to be identified is greater then the number of 

observation wells, the second method would be advantageous. On the other hand, to avoid 

instability when data contain noise, the number of parameters to be identified is usually less 

than the number of observation wells, then the first method may be more efficient. In particular 

if our interest is directed towards the sensitivity of piezometric heads to a specific system 

parameter ak, i.e., in solving equation (2-4), the computational work in using the first method 

is significantly less than the second method. 

2.3 The Performance Function 

The performance function defined in equation (2-2) can be any general function of model outputs 

for which sensitivities are sought. A performance function for sensitivity analysis of groundwater 

flow may be generally written as: 

P = J J f({a},p,t)dQdt (2-12) 

T 0 
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where f( {a}, p, t) is some unspecified functions of the system state, p is the pressure and { a} 

represents parameters at a time interval. 

{ a} represents a column vector of the system parameters that may be permeability (k), porosity 

(<)>), compressibility (c), the recharge or discharge (Q), prescribed head boundary conditions (p), 

flux boundary conditions (q), and initial conditions (p0) for a transient problem: 

{a}T ={k,<j>,c,Q,p,q,pJ 

Examples of various forms off( {a}, p, t) are: 

f({ a} ,p, t) = g(xj, t)p(xj, t) 

m 

f({a},p,t) = I, q"g(xj,t) 
"= 1 

ff f({a},p,t)dQdt = J,it[p(xj,t)-p'(xj,t] 2 

T 0 

(2-13) 

(2-14a) 

(2-14b) 

(2-14c) 

(2-14d) 

Equation (2-14a) is used when the performance measure is the pressure at the certain points at 

a given time t, with g (xi, t) being an arbitrary weighting function specifying the region and the 

time of importance. For a particular value of the state variable at location x'i at time t' the 

weighting function may be written as below: 

(2-15) 

Where 8 is the Dirac function. For steady state case g (xJ = o(xi - x/) 

We may write the performance measure P in matrix form as P = {g} T {p}, where g denotes 

dimensionless weights assigned to the selected node points. Weight g (xi, t) = l at the node points 

x 'i at time t' and g (xi, t) = 0 at all other node points and all other time level. So for this performance 

measure the second term of the ad joint sensitivity equation (2-10) becomes: 

(2- 16) 

which is independent of the pressures {p}. The first term at the right side of equation (2-11) 

becomes: 
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t = t' (2-17) 

since ag;1aa1: = 0. In this case the direct sensitivity effect term, viz. the first term of performance 

function sensitivity equation (2-3) or equation (2-11) is zero. 

In some problems we may consider the magnitude of the Darcy velocity at a selected point as 

a performance function using equation (2-14b) as a function of the system state. P = ~ 

is the magnitude of the Darcy velocity at a pointx/ in the domain. For this case the performance 

measure P is a function of the hydraulic conductivity and the gradient of the state variables of 

pressure (Sykes et.al, 1985), since ql = K11ap1ax1, q2 = K22ap1ax2 and q3 = K33ap1ax3. 

In some studies we may be interested in the flow rate through a certain region or a specific 

boundary. Then equation (2-14c) may be considered. For this case the performance function P 

becomes the sum of the outflux or influx through a boundary, where x'i indicates the location 

of the nodes on the boundary and q,. is the normal flux through the boundary. 

Equation (2-14d) may be considered a general optimization function given as the sum of the 

squares of the differences between predicted and measured (p') pressure values over the time 

interval. Performance functions of the form of equation (2- l 4d) are commonly used in parameter 

estimation problems, for example when the minimum residual formulation and the 

Gauss-Newton algorithm are used (Neuman, et.al, 1980 and Yeh, W.W-G., 1986). 

The performance measure of interest in contaminate transport problems is often the mass 

discharge and P is a function of both the fluid flux and species concentration (David P. Ahlfeld 

et.al, 1988). The theory presented here can be used to derive performance measures of interest 

in thermal, mechanical, flow, or mass transport processes in which the sensitivity of a selected 

performance measure can be determined with respect to any system parameter of interest. 

2.4 Sensitivity Analysis of Groundwater Flow 

In section 2.1 the sensitivity equations for general simulation equation to parameter variation 

have been derived. This section deals with the development of both continuous ad joint sensitivity 

equations and direct sensitivity equations for a three-dimensional transient groundwater flow 

model (R. Thunvik and C. Braester, 1988). 

2.4.1 Groundwater flow equation (primary problem) 

We substitute Darcy's law as following form: 
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(2-18a) 

into the continuity equation. Then the governing equation for three dimensional transient flow 

is obtained as following: 

cJp a [ k-• (cJp ] <)>pc--- p~ --pg1 +Q =0 
dt dX· µ dX · I J 

i = l,2, 3 (2-18b) 

The initial and boundary conditions associated with equation (2-18) are: 

p(Q,0) = Po E Q,t =0 (2-19a) 

p(ri,t) = J5 E r 1 (2-19a) 

V A k(dp ) -µ dX; - pgi ni = q E r2 (2-19b) 

In case that the initial conditions are unknown, we assume that the system is initially at steady 

state. In case that the initial condition required by equation (2-18) are determined from the steady 

state flow equation as below: 

a [ k--(cJPo ]~ -- p~ --pgj +Q =0 
dX· µ dX· I J 

i = 1,2, 3 (2-20) 

with the boundary conditions: 

(2-21a) 

(2- 21b) 

where c is the total compressibility (c1 + c'), c1 is the compressibility of the fluid, c' is the 

compressibility of the rock, p denotes prescribed values of pressure on boundary r 1, (j denotes 

prescribed flux normal to boundary r2 (as designated by the components of the unit inward 

normal), ni is an inward normal vector, r = r1 + r2 represents the external boundary of the 

spatial domain Q governed by equation (2-18a), Po is the initial pressure over the domain n, 
p O and q O are prescribed values of the pressure and prescribed flux on the boundary at steady 

state, respectively. 

The pressures are obtained by solving equation (2-18a) with equations from (2-19) to (2-21). 

These equations describe the so-called primary problem. 
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2.4.2 Direct sensitivity analysis 

The sensitivity of the performance function P which was defined by equation (2-12) to the 

changes of any specific parameter <X1c is: 

(2-22) 

where 'If= 'iJp!'iJa" is the sensitivity of the pressure (p) to parameter CX1c and is referred to as the 

state sensitivity. Equation (2-22) is referred to as the performance measure marginal sensitivity 

(Sykes 1985). 

The state sensitivity can be calculated by solving the state sensitivity equation, which can be 

obtained by differentiating equation (2-18a) with respect to CX1c as follows below: 

(2-23) 

The boundary conditions associated with equation (2-23) are: 

(2-24a) 

(2-24b) 

In equation (2-23), the first and third terms of the left hand side and the first term in the right 

hand side are known through the solution of equation (2-18) and (2-19). The known terms are 

defined as: 

(2-25) 

Substitution of equation (2-25) into equation (2-23) yields: 

d'lf a [~ k- ·) d'lf] (<)>pc)--- p~ - +D =0 
dt dX· µ dX· I } 

(2-26) 

Equation (2-26) is referred to as the state sensitivity equation. Solution of Equation (2-26) with 

the boundary conditions (2-24) gives a direct measure of the state sensitivities. If the state 

sensitivity 'I' is desired for each point in the domain then equation (2-26) with boundary 

conditions (2-24) must be solved. 

For steady state flow conditions the state sensitivity equation becomes: 
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-~[( kiJJd\Vo]+D =0 ax. p µ ax. O 
I J 

(2-27) 

where D0 is: 

(2-28) 

and the boundary conditions are: 

(2-29a) 

(2-29b) 

The sensitivity of the performance function can be obtained from equation (2-22) together with 

the state sensitivity equation (2-26). This method of obtaining the state sensitivity is referred to 

as the direct sensitivity method. 

2.4.3 Adjoint sensitivity analysis 

Firstly the derivation of the ad joint equation is made. Multiplying equation (2-26) by an arbitrary 

differentiable function 'I'• and integrating over space Q and over time T, we obtain: 

(2-30) 

For steady state we obtain: 

(2-31) 

Applying Green's theorem to the second term of equation (2-30) and the first of the equation 

(2-31), respectively, we obtain: 

J J . a [( ki,J d\j/] 'JI - p- - dD.dt ax. µ ax. 
T O I J 

= J J'l'~[(p k,iJd\V*]dD.dt ax µ ax. 
T 0, J I 

(2-32) 

for transient flow and 
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= Jvo1-[(P k,;Jd\V~]dn 
OX· µ OX· (l J I 

(2-33) 

for steady state flow, respectively, where kiJ = k,;• 

Applying Green's theorem to the third term of equation (2-30) and the second term of equation 

(2-33), respectively, we obtain: 

for transient flow and 

for steady state flow, respectively, where 't is the final time on the time interval. 

The first term of equation (2-30) can be derived as below: 
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= f (<)>pc)['l/(t)\jf(t)-,i/(0)\jf(0)]dQ- ff (<)>pc)a:•\jfdndt (2-36) 
0 T 0 

Adding these expanded terms of equation (2-30) and equation (2-31) to the performance measure 

marginal sensitivity (2-22), it becomes: 

I I oft~ k;i"iJ\jf*J ff . ocJ - - p--- n-dr dt- 'I' -dr dt 
OU µ OX· J l dU 2 

rr 1e 1 rr 1e 
I 2 

(2-37) 

where 

H=Irto/({a},p)l{a} - j__[( k;;J"iJ\jf*]+(<I> c) "iJ\jf*]dndt on 'I' 'I' OX· p OX· p 'I' ot 
T O r 1 µ 1 

I o ~ k--"iJ\jf~y + -'l'o- p2- n 
OX· µ OX· Q J I 

-f [(<)>pc )\jf.(t)\jf(t)- (<)>pc )\jf*(0)\jf(0)] dQ (2- 38) 
0 

To eliminate the unknown state sensitivities 'I' and \j!Jn equation (2-37), we define 'I'* and \jf ~such 

that H=O. Letting the first integrand in equation (3-38) be equal to zero, we obtain: 
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(2-39) 

The second integrand which is integrated on the boundary may be rewritten by substitution of 

equation (2-19) and (2-24) and we obtain: 

(2-40) 

In order to eliminate equation (2-40) the boundary conditions may be defined for equation (2-39) 

as below: 

k-- ::h,: 
__!:__v'l'_n. = 0 
µ dX; J 

(2-4la) 

(2-41b) 

From the first term of the last integrand in equation (2-38) we may define the terminal condition 

of equation (2-39) as: 

E !J.,t =t (2-42) 

So far we have obtained the adjoint problem that is described by the adjoint state sensitivity 

equation: 

(2-39) 

(2-41a) 

(2-41b) 

E !J.,t = t (2-42) 

in which the arbitrary function 'I'• is chosen to satisfy the above equation and conditions. The 

arbitrary function 'I'• is called adjoint state. 

The adjoint state value 'I'~ in steady state can be evaluated by following equations which are 

obtained by using the similar treatment as the transient case: 
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(2-43) 

(2-44a) 

(2-44b) 

The ad joint state variable at t=O, '+,* (0) is considered a component in the source term to determine 

the steady state adjoint state value 'If~-

Comparing the equation (2-18a) for the primary problem and the adjoint sensitivity equation 

the only difference between them is that there are different values in their third terms. This 

implies that only a small modification in the computer code for the primary problem is needed 

in order to solve the adjoint problem. It is notable that the adjoint problem is reversed in time 

as compared to the primary problem. 

Since the ad joint state equation has been defined to setH=O, the equation (2-37) can be simplified 

to: 

J J oft~ kji°"'.J J J . oq - - p-- n.df' dt- 'If -df' dt oa µ ox· J l aa 2 
Tr le 1 Tf le 

1 2 

(2-45) 

in which all terms are known. The pressure values pare obtained from the solution of the primary 

equation, and the adjoint states 'lf0 and its initial values are obtained from the solutions of the 

adjoint state equations. 

The first term in equation (2-45) represents the direct sensitivity effect of ak on the performance 

function. The remaining five terms represent the transient contributions to the marginal 

sensitivity associated with porosity, compressibility and density, recharge or discharge, 

permeability, prescribed pressure and prescribed boundary fluxes, respectively. The last four 

terms represent the contributions from the initial conditions. 
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3 METHOD OF SOLUTION 

Practical application of sensitivity theory is general limited to simulation models defined by 

systems of algebraic equations. So it is necessary and useful for practical modelling that the 

sensitivity equation is derived to the algebraic simulation equations of the original differential 

equations by numerical discretization. In this chapter, we derive the sensitivity equations in a 

discretized form using the Galerkin finite element method. 

3.1 Numerical Solution of the Flow Equation 

The primary flow problem defined by equation (2-18) to (2-21) is generally solved with discrete 

numerical techniques. For a discretization system of n nodes, in which / nodes are prescribed, 

this would results a linear matrix equation of the form: 

[A(<j>,p,c)]{!}-(B(p,k,µ)] {p} ={Rp({a))} (3-1) 

where {a) T = {Q,p,q,p 0,qJ, [A] and [B] are the coefficient matrices with (n-/) rows, {p} 

represents the vector of (n-l) unknown nodal pressure, and {RP} is the source term including 

the effects of recharge-discharge Q and boundary conditions. 

Variables p in the flow problem are approximated in terms of the pressure by 

(3-2) 

where {N} is a vector of trial functions. The individual terms of the coefficient matrices [A], 

[B] and the source term vector {RP} are: 

all= J (q>pc)N1N1dQ 
0 

at initial time equation (3-5) becomes: 
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(3-4) 

(3-5) 

(3-6) 



in which I, J are matrix row and column indices and i, j are spatial coordinate indices. Qa is the 

regional source and QP is the point source assigned to individual node points xP of the discretized 

domain. The source term of equation (3-1) represents the contributions from boundary flux, 

sources and prescribed pressure boundary, respectively. 

3.2 Numerical Solution of the Sensitivity Equations 

The performance measure for a spatial discrete system is defined as: 

P = J F({cx},{p} )dt 
T 

(3-7) 

where { a} is a vector of numerical model parameters which may include element permeabilities 

and storativities, nodal point fluxes, and prescribed pressure nodes and {p} is the vector of 

pressure in the spatial discrete system and it is a function of time. 

3.2.1 Direct sensitivity equations 

Differentiation of the performance function (3-7) and equation (3-1) with respect to a parameter 

cx1 yields: 

(3-8) 

where { \j/1} = d{p} /dcx1 and 

(3-9) 

The above equation can be shortened to 

(3-10) 

where 

(3-11) 

{\j/1} is the state sensitivity vector which expresses the sensitivity of {p} to the kth parameter 

and is obtained by solving equation (3-10). The sensitivity of performance measure can be 
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obtained by solving equation (3-8) with the result from equation (3-10). Equation (3-10) is the 

sensitivity state equation in discrete form. We use backward finite difference approximation for 

the time derivatives of equation (3-10) to obtain: 

(3-12) 

Equation (3-12) is a set of linear algebraic equations. It may be expressed in a matrix form as 

follows: 

[n'1] 0 0 0 0 { 'If k} '1 {RJ '1 -[c'1] {'lfk} o 

[c'2] [n'2] 0 0 0 {\V,1} '2 {RJ '2 
0 [c'3] [n'3] 0 0 { 'If k} '3 = {RJ '3 (3-13) 

0 0 0 [c'~ [n'• {'lfk} t, {R,1,}'• 

where [D 1
'] represents [Al~t -B] 1j and [C 1

'] represents [-Al&]'j at corresponding time level. The 

superscript ti indicate the different time level. For convenience equation (3-13) is simplified in 

the below form: 

(3- 14) 

[Ji) represent the global coefficient matrix in equation (3-13 ). 

(3- l5a) 

(3-15b) 

where {'l'k} 0 is the state sensitivity vector at time= 0. 

3.2.2 Adjoint sensitivity equations 

Multiplying equation (3-14) by the arbitrary constant vector {\f'J- and adding the result to 

equation (3-8) gives the marginal performance sensitivity: 

+ J{-{'n T [Ji) {'I\}+ {'I') T {~}}dt (3-16) 

T 
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Since the vector{'¥) is arbitrary, then the terms containing {':I'1J in the above equation can be 

eliminated by letting 

(3 -17) 

After eliminate on of {'I't}, equation (3-17) may be written in matrix form as: 

[D'f [c'f 0 0 0 {'!') 0 aF1a{p} to 

0 [D1iy [c'f 0 0 {'1')'1 aF!d{p} 11 

0 0 [D 13Y [c'J 0 {'!') '2 = aF !d{p} 12 (3-18) 

0 0 0 0 [D'f {'!'*} IH aF !cJ{p} ',- l 

The above matrix equation may be written as: 

[ ,y ) 'H [ •r ) ,, { OF } D' {'l' + C' {'l' = cJ{p}'i-1 i = I, 2, ... , 't (3 -19) 

Substituting the definition of [D] and [C] into equation (3-19), we obtain the algebraic form of 

the adjoint equation: 

(3-20) 

with the condition {'!'1 ', = 0 at terminal time, where [Af and [Bf are the transposed [A] and 

[B] which the individual terms are given by equation (3-3) and (3-4), respectively. {'!'1 is the 

nodal values of the adjoint state. The term on the right hand side may be written as 

(3-21) 

Letting us review equation (3-18), we can clearly see that the expanded matrix equation (3-18) 

is resulted from using backward finite difference approximation reversely for the time derivative 

in the adjoint equation (3-20). 

The marginal performance sensitivity can be simplified to 

where the terms on the right hand side are defined as following. 

The individual terms of {Rlfl} are given by: 
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and the first term on right hand side of equation (3-22) is given by: 

aF({a},{p}) =_l_JJ({a},p)d.Q= JaJ({a},p) d.Q 
aak aak aak 

n n 

(3-23) 

(3-24) 

Equation (3-24) represents the direct sensitivity effect which is the first term of right hand side 

in the marginal sensitivity equation (3-22). 

The fist term in equation (3-23) represents the marginal sensitivity of the performance measure 

to the regional flux Qa, and other terms represent the marginal sensitivity to the prescribed 

boundary flux, point flux, prescribed pressure boundaries, hydraulic conductivity and 

compressibility or porosity respectively. 

All terms of equations (3-23) and (3-24) are readily obtainable. It may be pointed out that 

equation (3-18) is solved backwards in time. The time increments are those specified in the 

formulation of [D 1'] and [ C1
'] in the coefficient matrices of equation (3-18). The primary problem 

equation (3-1) and the adjoint state equation (3-10) differ in the source term only. Solution 

procedures should be efficient to take this advantage, since the element,by-element calculation 

of the derivatives of equation (3-10) can have a procedure similar to that used in the element 

coefficient matrices of the primary problem. Thus the editing of computer codes can be very 

efficient for considering this fact. 
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3.3 Calculation of the Sensitivity Coefficient 

This chapter summarizes various methods for calculation of the sensitivity coefficients. The 

sensitivity coefficient is the partial derivative of state variable, e.g. pressure and piezometric 

head, with respect to any of the model parameters, e.g. the permeability and it may be expressed 

as a matrix form as below: 

dP1 dP1 dp1 
- - -
dk1 dk2 dkN 

dP2 dp2 dp2 
- -

[J]LxN = dk1 dk2 dkN (4-1) 

dpl dPL dPL 
- - -
dk1 dk2 dkN 

where p is pressure or piezomatric head, k represents parameters such as permeability, L 

represents the total number of performance measures or observations and N represents the total 

number of parameters. The sensitivity coefficient matrix plays an important role in solving 

inverse problems (parameter identification) and optimization problems in which the gradients 

of objective function in the least square approach and Jacobian matrix in the Gauss-Newton 

algorithm are represented by sensitivity coefficient matrix. 

Methodologies and techniques for calculating sensitivity coefficients have been investigated in 

the past by several authors. Becker and Yeh (1972) introduced the so-called coefficient method 

by using the concept of parameter perturbation. Yeh and Yoon (1976, 1981) developed an 

algorithm for the sensitivity equation method based on the Crank-Nicolson scheme. Jacquard 

and Jain (1964) developed a method using variational theory to evaluate sensitivity coefficients 

for parameter identification. Chavent.et al. (1975) extended the method to transient flow, which 

was referred to as the gradient functional approach in their paper, through solving an adjoint 

equation. A discussion of the computational aspects of various methods could be found in Dogru 

and Seinfeld (1981) and Carter (1982). Sun and Yeh (1985) applied the adjoint state method 

by the finite element scheme. Li. et al (1987) made a comparative study in the computational 

accuracy of the various methods. 

Since the general forms of the sensitivity state equation and the adjoint state equation have been 

derived in chapter 2, we now specify the parameters to permeabilities. 

3.3.1 Influence coefficient method 

This method is based on the concept of plain parameter perturbation. A backward finite difference 

scheme is used here: 
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(4-2) 

where p (xi, t, k) is the solutions of equation (2-18a) with the imposed initial and boundary 

conditions and Af.1 is the perturbation vector. 

Af.1 should be large enough to cause a change in the significant figures of p , but small enough 

to reduce the truncation error due to the inexact nature of the equation ( 4-2). If there are L 

parameters to be identified, the primary equation has to be solved (N+J) times. 

3.3.2 Direct equation method 

The equation that governs the sensitivity coefficients can be obtained by directly differentiating 

the flow equation (2-18a) with respect to k1• Then the state sensitivity equation for calculating 

the sensitivity coefficient is obtained as below. 

d'!' a [( k--Jd'!'] ((j>pc)--- p~ - +D =O ar ax. µ ax-, J 

where 'I'= op/i)k1 and 

The initial conditions and boundary conditions associated with equation (4-3) are: 

\j/(Q,0) = Po E Q,t =0 

(4-3) 

(4-4) 

(4-5a) 

(4-5b) 

(4-5c) 

where p is the solution of the primary equation (2- l 8a). Comparing the primary equation (2-18a) 

and equation (4-3) one can see that the difference between them is only in the source term. So 

one only requires a modification of the code for the source term of primary equation. The solution 

of the sensitivity coefficient requires that the primary equation be solved once and the state 

sensitivity equation be solved N times. So the number of the linear algebraic equation be solved 

is (N+ l) which is the same as that of the influence coefficient method. 
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3.3.3 Adjoint method 

In the adjoint state equation method, if the performance function is considered as below: 

P = J J p(xi,t)g(xi,t)dQdt 
r o 

(4-6) 

where g(xi,t) was defined in equation (2-15). According to equation (2-45) in this case the 

sensitivity coefficient can be calculated by the equation as below: 

(4-7) 

where .Qi is the subdomain around the selected nodes. Pressure values p can be obtained from 

the solution of the primary problem, and the adjoint states '\j/• can be obtained from the solution 

of the adjoint state equation: 

(<j>pc) d'\j/• - 1-[(p k,i) d'\j/*] + g (xj, t) = 0 
ot ox- µ ox-1 I 

k .. ;},,,* 
_!:__v't'_n. = 0 
µ OXj J 

E .Q,t ='t 

(4-8) 

(4-9a) 

(4-9b) 

(4-9c) 

The adjoint state equation has the same form as the primary equation. Hence the same numerical 

scheme can be used to solve p and '\j/•. In this case we need solve the primary equation once and 

the adjoint state equation l times to generate the sensitivity coefficients. So the number of the 

linear algebraic equation be solved is (L+ 1). 

A comparison between the mentioned above three methods for calculation on of the sensitivity 

coefficients shows that the adjoint state method would be advantageous if N>L, i.e. the case 

where the number of perturbed parameters exceeds the number of performance measures. 

Conversely, if L>N, the influence or the direct equation method are preferred. 

26 



4 DEMONSTRATIVE SENSITIVITY ANALYSIS OF THE FLOW 

CONDITIONS AROUND A TUNNEL SYSTEM 

In this section, the flow conditions around a tunnel system is investigated by the sensitivity 

theory. A numerical model developed for sensitivity analysis, in which the theory and 

methodology of the numerical methods have been developed for solving the primary flow 

equation, state sensitivity equation, adjoint state equation and sensitivity of performance 

functions by the Galerkin finite element method, is used to this study. The sensitivity of 

piezometric head distribution and the sensitivity of the fluxes around the tunnel system due to 

perturbations of the permeability in various layers are analyzed. The direct and adjoint method 

both are applied for solving various problems. Various performance measures are considered 

such as the piezometric heads located in the vicinity of the tunnel system, the Darcy velocity in 

the vicinity of the tunnel and the total outflux into the tunnel system. The distribution of 

piezometric heads in the flow domain are also calculated and the mass transport balance in the 

system is checked. 

4.1 The Flow Problem 

The flow domain is considered an axi-symmetric vertical cross-section with a lateral of 2 km 

and depth 1 km. The tunnel is located at depth of about 500 meters below the ground surface. 

The lateral extent of the tunnel is 600 meters. The bottom and the vertical boundaries are assumed 

to be a no-flow boundaries (impermeable). On top of the island, the part above the sea level is 

assumed a prescribed influx boundary which has an average precipitation of 2*10-9 m/s (63 

mm/year). The remaining part below the sea level is considered a hydrostatic pressure boundary. 

The boundary along the repository tunnel is assumed to be prescribed a pressure boundary which 

is at atmospheric pressure. 

The parameter values used in the calculations are presented in Table 1 below. 

Table 1: Parameter values used in the calculations 

Symbol Parameter Value Unit 

p Fluid density 998 kg/m3 

µ Dynamic viscosity 0.001 Pas 

CJ Fluid compressibility 4.10-10 1/Pa 

er Rock compressibility 0.0 1/Pa 

q, Porosity of the rock 0.001 -

g Gravity 9.81 m/s2 
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The considered flow domain is schematically illustrated in vertical cross section in Figure 1. 

and in three-demensional cross view on Figure 2 below: 

Island 

Sea level 

Tunnel system 

Axisymmetric axis 

No-flow boundary 

Sea level 

No-flow 
boundary 

Figure 1: Schematic illustration of the flow domain 

Axisymmetric axis 

z 

X 

Figure 2: Three dimensional view of the flow domain 

Table 2: Distribution of permeabilities in the system 

The depth of the layers (m) The permeabilities (m2) 

0- 120 2xl0-15 

120- 500 5xl0-16 

500- 750 2xl0-16 

750- 1000 2x10-11 
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The permeability is decreasing with the depth. The flow domain is divided into four layers with 

different permeability (See Table 2) 

The flow domain is discretized in to 120 8-noded quadrilateral elements. The element mesh 

type is displayed in Figure 3. 
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Figure 3: The element mesh of the flow domain 

4.1.1 Flow model 

X 
-

The flow considered here is in a three-dimensional inhomogeneous, isotropic, and unconfined 

aquifer. The governing equation is: 

The boundary and initial conditions are: 

p (xi, t) = p (xi, t) 

k .. 
- ; CP.1- pg)ni = <j(xi, t) 

p (xi, 0) = p0(xi, 0) Xi E Q,att = 0 

(5-1) 

(5-2a) 

(5-2b) 

(5-2c) 

where c is the total compressibility (c1 + er), c1 is the compressibility of the fluid, c' is the 

compressibility of the rock, p is prescribed values of pressure on boundary r1, q is prescribed 

flux normal to boundary r2 (as designated by the components of the unit inward normal), ni is 

inward normal vector, r = r 1 + r 2 represents the external boundary of the flow domain n and 

p0 is the initial head over the flow domain n. The numerical solutions are worked out using the 

Galerkin finite element scheme. 
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4.1.2 Solutions of the flow equation 

For convenience to show the flow situation, the solutions are illustrated by the distribution of 

piezometric head on Figures 4,5. The piezometric head is defined ash = plpg + z. The contour 

lines of piezometric head clearly show that the groundwater flow from the top to the tunnel. 
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Figure 4: Contour map of the piezometric heads 
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Figure 5: Perspective plot of the piezometric heads 
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4.1.3 Mass balance calculation 

Conservation principle implies that the total influx should equal to the total outflux of the flow 

domain. Under present case the total flux through the top boundary equal to the outflux into the 

tunnel. According to Darcy's law: 

(5-3) 

the total influx is obtained by integrating equation (5-3) on the top boundary: 

f k••(ap J Q = _ _y_ --pg. n-df' 
µ ax. J I 

r J 

(5-4) 

In the present case the flow system is assumed to be axi-symmetric. Equation (5-4) can be 

modified in cylindrical coordinates as below: 

f k••(ap } Q =21t _ _y_ --pg. n-dr 
µ ax. J I 

r J 

(5-5) 

The total outflux is obtained by integrating of equation (5-3) along the boundary of the tunnel. 

Equation (5-5) can also be used to calculate the flux into the tunnel since the tunnel system is 

also axi-symmetric. The results are showed in Table 3. 

Table 3: The result of mass balance calculation 

Total influx (m3/s) Total outflux (m3/s) 

0.5177xl0-2 0.5371xl0-2 

4.2 Sensitivity Analysis of the Problem 

4.2.1 Calculation of the state sensitivities 

Error(%) 

2.63 % 

The sensitivities of the piezometric head to permeability, the state sensitivities or sensitivity 

coefficients are solved by the direct equation method. Since now our problem is the sensitivity 

of piezometric head on the all nodes in discrete flow domain, so direct equation method is more 

efficient then the others as mentioned in the former section. 

[( J 
7 

d\j/ a k-- d\jl 
(<!>pc)--- p_y_ -j +D = 0 at ax- µ ax. 

I J 

(5-6) 
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The initial conditions and boundary conditions associated with equation (5-6) are: 

'\j/(Q,O) = Po E Q,t =0 

(5-7) 

(5-8a) 

(5-8b) 

(5-8c) 

Solution of equation (5-6) gives a direct measure of state sensitivities for each point in the 

domain. 

The distributions of the state sensitivity to permeabilities in four different layers are illustrated 

in Figures 6-13. As can be observed in the figures the peaks of the state sensitivity are situated 

mostly in the area around the tunnel in the flow domain. 
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ah Q - a(a,,.,x, ~) 
aT (x,y, 00)= T2 L . h( ){cosh[a,,.(a-lTt-yl] 

a "'= 1 a,,. sm a,,.a 

+ cosh[a,,.(a -Tt + y)]} (A -16) 

Results 

The solutions of piezometric heads and sensitivity coefficients from the present model show 

very good agreement with analytical solutions. The comparison of the solutions is shown in 

Figures A.7 and A.8. 
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4.2.2 Sensitivity of the piezometric head performance function 

Here the piezometric heads on the 4 nodes of an element (see Figure 3) located in the vicinity 

of the tunnel system was considered a performance measure. The sensitivity analysis of this 

performance measure may give us a measure of the influence of the hydrologic properties on 

the local piezometric head in the area of interest. The following performance function is 

considered: 

P = L g(x;)p(x;)dQ (5-9) 

Equation (5-10) is used when the performance measure is the pressure, with g (x;) being an 

arbitrary weighting function identifying the region of importance. 

The performance measure P becomes P = {g} r {p} where g are dimensionless weights assigned 

to the selected node points. Weight g (x;) = 1 at the selected node points and g (x;) = 0 at all other 

node points. Since in this case the perturbing parameter was specified as permeability in a certain 

area the marginal sensitivity equation (2-45) can be simplified to the following relationship: 

(5-11) 

where Qi denotes the subdomain around the selected nodes and \j/ is the solution of the adjoint 

equation which is defined as below: 

k-. ;)..,• 
..J.:.._v'l'_n. = 0 
µ dXj J 

E 0.,t =t 

(5-12) 

(5- 13a) 

(5-13b) 

(5-13c) 

The third term of the adjoint equation becomes one on the nodes for which sensitivities are 

sought and becomes zero on all other nodes and the first term becomes zero for the steady state 

case. Then equation (5-12) becomes: 

(5 -14) 
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(5-17) 

where the pressure p and the state sensitivity 'I' are obtained from equations (5-1) and (5-6), 

respectively. 

A dimensionless normalized sensitivity of the flux is defined as: 

(5 - 18) 

S 1: describes the ratio of the relative change of the outflux Q to the relative change of permeability 

k. The solutions are given in Table 5: 

Table 5: The solutions of sensitivities of outflux 

Perturbation region (depth Sensitivities of outflux Normalized outflux 

m) dQO,jdk(Lr 1) sensitivities S,:(%) 

0- 120 8950 3.3 % 

120- 500 563844 52.5 % 

500- 750 487688 18.2 % 

750- 1000 115841 0.4 % 

The results show that the outflux is most sensitive to perturbation of the permeability in the 

second layer but practically insensitive to perturbations of the permeability in the bottom 

layer. 

4.2.4 Sensitivity of the flux performance function to permeability 

The average flux through an element (see Figure 3) located adjacent to the tunnel system was 

considered a performance measure. The sensitivity analysis of such a performance measure may 

give us some information about the influence of perturbations of the permeability on the flow 

velocity in the area near the tunnel. The flux performance function may be defined as below: 

P = lt({a},p)dQ (5 - 19) 

where 

f({a},p)=~•g(x;) (5-20) 
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4.3 Summary of the Calculation Procedure in the Problem Study 

The purpose of the present investigation was to analyze the sensitivity of the piezometric head 

and the sensitivity of the flux for a tunnel system due to perturbations of the permeability. Two 

different approaches, one which is referred to as the direct method and the other the adjoint 

sensitivity method, were used. The former method was used to calculate the distribution of the 

state sensitivities and the flux through the boundary and the latter method was used to calculate 

various performance functions such as the piezometric head at some specified area, the Darcy 

velocity. 

The numerical method for solving the primary flow equation and the adjoint state equation is 

based on the Galerkin finite element method. Mass balance calculations were worked out to 

check the accuracy of the solutions. 

The procedure of this study is summarized as follows: 

The piezometric head is obtained by solving the primary flow equation (5-1) together with 

the initial and boundary conditions (5-2). The mass balance in the system is checked by 

integrating the flux on the top boundary and along the tunnel boundary. 

The state sensitivities to permeabilities in four different layers are calculated by solving 

the state sensitivity equations (5-6) to (5-8). 

The sensitivity of the total flux into the tunnel to permeabilities in four different layers is 

obtained by solving equation (5-17). 

Two performance measures are selected. One is the specified pressure performance 

function (5-10) and the other is the Darcy velocity performance function (5-20) defined 

at a selected point in the flow domain. 

The marginal sensitivity of the performance function is calculated by solving equations 

(5-11) and (5-21). The normalized sensitivity is evaluated by using equations (5-16) and 

(5-18). 
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If we consider the piezometric head to be the performance measure instead of the pressure 

according to the relationship of h = p lpg + z then we can obtain the sensitivity of the piezometric 

head performance function by dividing the results from equation (5-11) by pg according to the 

relationship: 

(5 -15) 

As already mentioned above we selected the piezometric head at 4 nodes in the vicinity of the 

tunnel (see Figure 3) as a performance measure. 

For convenience a dimensionless normalized sensitivity is defined as: 

(5 -16) 

S1r. describes the ratio of the relative change of performance measure P to the relative change of 

permeability k. The solutions of the sensitivity of this performance function are presented in 

Table 4. 

The solutions of the piezometric head performance sensitivity show that the piezometric head 

is quite sensitive to perturbations of permeability in the area where the selected node is located 

but practically insensitive to perturbations of the permeability in the bottom area. 

Table 4: The solutions of head performance function 

Perturbation region Sensitivities of head Normalized sensitivity of head 

(depth m) performance function performance function S/%) 

dP /dk(ML-3f 2) 

0- 120 -0.752xl09 0.374 % 

120- 500 0.371xl010 0.492 % 

500- 750 0.453xl010 0.241 % 

750- 1000 -0.127xl09 0.0006 % 

4.2.3 Sensitivity of the flux into the tunnel system 

By direct differentiating equation (5-5) with respect to k1 the equation for calculating the 

sensitivity of the flux into the tunnel is obtained as below: 
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methods for calculation of the sensitivity coefficient have been applied: The influence method, 

the direct equation and the adjoint state method. The sensitivity coefficients considered in the 

present study were the derivatives of the piezometric head with respect to permeability. 

The sensitivity equations and the groundwater flow equations were solved by using the Galerkin 

finite element method. The primary flow equation was solved by fully implicit backward finite 

difference approximation of the time derivative. The adjoint state equation was solved by 

backward finite difference approximation from the final time to the initial time. The primary 

flow equation, the adjoint state equation and the sensitivity state equation differ only in their 

source terms implying that only a single decomposition of the matrix system is needed for solving 

both equations. 

A verification exercise of the sens1t1v1ty model developed here was performed for a 

two-dimensional non-steady state flow problem with an analytical solution found in the 

literature. The sensitivity coefficients for a well test problem were calculated by means of the 

direct method and compared with the analytical results. Very good agreement between the two 

solutions was obtained. 

The sensitivity model was applied to a three dimensional (axi-symmetric) groundwater flow 

problem, in which the sensitivity of the piezometric head and the sensitivity of the flux into a 

tunnel system to perturbations of the permeability was analyzed. In the flow domain the tunnel 

was represented by a disc located at a depth of 500 m below the ground surf ace. The radius of 

the disc was 300 m and the thickness 10 m. From the ground surf ace down to a depth of 1000 

meters, the rock was divided into four layers, each with a different value of the permeability. 

The tunnel system was located between the two middle layers with the axis of the tunnel disc 

aligned with the vertical direction. 

In the analysis both the direct method and the ad joint method were used. The direct method was 

used for calculating the sensitivity of the piezometric head distribution. The ad joint method was 

employed in order to analyze various performance functions such as specified piezometric head 

responses and flux responses at certain regions of interest. The following performance functions 

were considered: the total flux into the tunnel, the piezometric head in the vicinity of the tunnel 

system and the Darcy velocity in the vicinity of the tunnel system. 

The results of the calculations for the distribution of the state sensitivity to perturbations of the 

permeabilities in the four different layers of the rock showed that the peaks of the sensitivity 

coefficients appear mostly in the area around the tunnel. The solutions of the piezometric head 

performance sensitivity showed that the piezometric head at the selected nodal point was as 

expected quite sensitive to perturbations of the permeability in the layer where the point was 

located, but practically insensitive to perturbations of the permeability in the bottom layer. 
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which is the magnitude of the Darcy velocity at a selected point which is at the centre of the 

selected element (see Figure 3). 

The marginal sensitivity of this performance function is obtained by the following relationship: 

'vx. =x.' 
I I 

(5 -21) 

where 'V• is called the adjoint state sensitivity obtained from equation (5-12). The first term of 

equation (5-21) is non-zero only when k, represents the value of kiJ within the element e. For 

this performance function the third term of the adjoint equation (5-12) can be calculated by the 

following equation: 

"ii e on the element (5-22) 

"ii e not on the element (5-23) 

where the pressure p and state sensitivity 'V are obtained from equations (5-1) and (5-6), 

respectively. 

The solutions of this performance measure are given in Table 6. 

Table 6: The solutions of velocity performance function 

Perturbation region Sensitivities of velocity Normalized sensitivities of 

(depth m) performance measure velocity performance measure 

dP/dk(Lf1) S,1,(%) 

0- 120 -18.14 4.9% 

120- 500 -1377.4 93.7 % 

500- 750 100.2 0.54% 

750- 1000 -2.77 0.008 % 

The results show that the sensitivity of the velocity performance measure at a selected point 

(see Figure 3) is most sensitive to perturbations in the area where the point is located and 

almost insensitive for the perturbing permeability in the bottom layer. 
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6 NOMENCLATURE 

[A], [B] 

c1 

f ( { a} , {p} , t) 

F 

g 

g(x;,t) 

g(x;) 

h 

k.. 
IJ 

k, 
[J] 

n 

N 

p 

Po 
p 
p 

q 

q 
Q(x;,t) 

Qa 

Qp 

Qout•Q;,. 

{R} 

t' 

X· I 

x'. 
I 

coefficient matrixes in algebraic equations 

individual terms of the coefficient matrix in algebraic equations 

total compressibility 

compressibility of the fluid 

compressibility of the rock 

performance function 

performance function in discrete form 

acceleration of gravity 

weighting function 

weighting function for steady state 

piezometric head 

permeability 

perturbed permeability 

Jacobian matrix 

normal inward vector 

basis function 

pressure 

pressure at initial state 

prescribed pressure 

performance function in integration form 

Darcy flux 

prescribed Darcy flux 

source-sink term 

regional source 

point source 

total outflux or influx 

vector of source term in algebraic equation 

individual terms of the source vector 

normalized sensitivity 

time interval 

time 

specified time 

time step i = 1,2, ...... t 

final time of a time interval 

space variables 

specified space variables 
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5 SUMMARY AND DISCUSSION 

Sensitivity analysis is an effective tool for analysing responses of some selected performance 

measures of a groundwater flow problem to perturbations of various parameters associated with 

the problem. Performance measures of interest are the piezometric head distribution, piezometric 

heads in a certain region, flow velocities at certain points, total flux through a certain region or 

through a boundary. The parameters include prescribed boundary heads or fluxes, permeability 

or other physical parameters. Sensitivity is usually defined as the derivatives of a specific 

performance measure with respect to the parameters. 

In the present study, a sensitivity analysis of a general set of simulation equations, usually defined 

by the matrix equation associated with the considered physical problem, is presented in order 

to facilitate the understanding and application of sensitivity analysis to groundwater flow 

problems. 

Two methods are considered for calculating sensitivities, one is the "direct method" and the 

other is the "adjoint method". In the direct method the sensitivity equations are obtained by 

direct differentiation of the primary flow equations, and in the ad joint method variational theory 

is used to formulate an adjoint sensitivity equation. 

The solution of the flow equation, the so-called primary problem, and the ad joint state from the 

adjoint sensitivity equation then makes it possible to determine all the required derivatives and 

their related sensitivities. 

From the computational point of view, a comparison between the two methods shows that when 

the number of parameters exceeds the number of performance functions, then the ad joint method 

is more efficient than the direct method. Conversely, if the number of performance functions 

exceeds the number of parameters, then the direct method is preferable. 

In this study the sensitivity theory was used to establish a specific sensitivity model for 

three-dimensional transient groundwater flow. The following equations and formulations for 

the sensitivity model were derived in detail in the continuous form: primary flow equations for 

evaluating piezometric heads, state sensitivity equation for calculating sensitivity coefficients 

(i.e. the sensitivity of the piezometric head distribution), adjoint sensitivity equation for solving 

ad joint function (ad joint sensitivity states), and marginal sensitivity integration for measurement 

of sensitivity of performance function. 

Various performance functions, such as the local piezometric head, the Darcy velocity at certain 

points in the flow domain, the outflux through a boundary and the sum of the squares of the 

differences between predicted and measured values, have been developed. The last mentioned 

performance function is of interest in inverse groundwater flow problems. Three different 
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The flux into the tunnel was most sensitive to perturbations of the permeability in the layer next 

to the top layer, but practically insensitive to perturbations of the permeability in the bottom 

layer. The sensitivity of the velocity performance at a selected point in the layer next to the top 

layer was most sensitive to perturbations of the permeability in the layer where the specified 

point was located and almost insensitive to perturbations of the permeability in the bottom layer. 

The application of the sensitivity analysis developed in the present study may be considered a 

simple uncertainty analysis of a groundwater flow system. The study showed that by selecting 

performance measures of interest we could obtain useful information about the sensitivities of 

the performance measures of significance for assessing and appreciating measurements of input 

system parameters and for investigating the behaviour and structure of a geohydrologic system. 

Future research on the subject of sensitivity analysis of groundwater flow should examine the 

more complex non-linear problems associated with adjoint sensitivity analysis of groundwater 

flow coupled with mass and heat transport. And further research work is needed to enable the 

treatment of more complex performance functions than those treated in the present study. For 

instance, the particle travel time from a prospective radioactive waste repository to the biosphere 

is a performance measure of interest in the safety of assessment of repository site. And the 

heads at node points in a regional model, which could be used to describe the boundary of the 

local model, is another useful performance measure in the study of assessing the importance of 

regional model parameters. Furthermore, the methods of the estimating system state and the 

performance measure uncertainty, including quantifying parameters as an input to those methods 

should be considered. 
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p 
µ 

<!> 

n 
n. 

I 

• 
'l'o 

Subscripts 

i,j 

I,J 

vector of parameters 

specified space variables with point source located 

perturbation parameter 

Kroneker delta 

Dirac function 

density of water 

dynamic viscosity 

porosity 

flow region 

specified subdomain 

boundary of flow domain 

state sensitivity 

state sensitivity at initial state 

adjoint state sensitivity 

adjoint state sensitivity at initial state 

indices used for Cartesian tensor notation, repeated indices indicate 

summation over these indices (ij = 1,2,3) 

node indices, repeated indices indicate summation over these indices (I,J = 
1,2, ... L, where Lis the number of nodal points) 
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Figure A.1: Program structure chart of GWHRT-S 
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--13--The inhomogeneous region IV 
XMXPE XMIPE YMXPE YMIPE ZMXPE ZMIPE 
1000. 0.0 1000. 880. 0.0 0.0 

--14--Water density and viscosity 
DENS VISCS 
1. 1. 

--15--Storativity 
STORG 
0.0 

--16--Initial condition 
PINI 
0. 

--17--Perturbation control parameter & perturbation rate 
IHOCPERT PERFAC 
1 35 

--18--The region to be perturbed (Region I) 
NPERTRE XMXPE XMIPE YMXPE YMIPE ZMXPE ZMIPE 
1 1000. 0.0 250. 0. 0.0 0.0 

--19--The nodes to be perturbed 
IELPB JOBTAB(l,l) JOBTAB(2,l) JOBTAB(3,l) JOBTAB(4,l) 

0 0 0 0 0 

--20--The nodes number of point weights 
CHEKN JNTAB(l,l) JNTAB(2,l) JNTAB(3,1) JNTAB(4,l) 

4 51 53 89 91 

--21--The values of point weights 
POWET(J) POWET(2) POWET(3) POWET(4) 

1 1 1 1 

--22--Control options --- ICP2(20) --- (2013) ----
-Option numbers ---------------------------------------
1 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 

-1 1 2 -2 2 -2 -2 2 -2 -2 -2 2 2 2 2 2 2 3 4 5 

--23--The parameter of coordinates system IAXSYM = 1 for axi-symmetric 
IAXSYM 

1 

--24--The parameters for controlling performance function 
IPERFOR = 1 for head or= 2 for velocity performance function 
IPERFOR 

1 

--25--The element number of velocity performance function 
NUVEP 

19 

--26--The element numbers of the tunnel 
NUMTENUMIT(J,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) 

8 5 6 17 18 29 30 41 42 
NUMIT(2,l) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) 

1 1111122 
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APPENDIX A 

Computational Procedure 

A brief description of a computer model GWHR T-S (Thunvik, Rand Bao, Y-B 1989) developed 

for sensitivity analysis of groundwater flow is presented here. Both the direct and the adjoint 

sensitivity equations may be solved by the model. The numerical techniques of the model are 

based on the finite element Galerkin method for the spatial discretization and the finite difference 

method for the time discretization. 

The main computational procedures are presented in the following (see Figure A.1): 

Input control variables for selecting the various input parameters, such as boundary 

conditions, material property parameters, mass sources, perturbation parameters, type of 

performance functions, location of performance measures, according to the considered 

problem. 

Generation of element mesh according to particular flow domain of problems to be solved. 

Input of initial conditions. 

Entry time loop. Solution of the flow equation. 

Solution of the sensitivity state equation and adjoint state equation. 

Calculation of the marginal sensitivity. Output final solutions. 
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Element Types 

In the program, 8-nodes and 9-nodes quadrilateral element and 8-nodes and 20-nodes hexahedral 

element are employed for two dimensional and three dimensional cases respectively. The 

element types are illustrated in Figure 18. 

7. 6 

8 

1 2 
2-D 8-nodes parabolic 

quadrilateral element 

8 

5 6 

4 

1 2 

3-D 8-nodes isoparametric 

hexahedral element 

4 

3 

7 

7. ____ ~6 __ ~,.., 

8 e9 
4 

1 2 3 

2-D 9-nodes 

quadrilateral element 

19 

17 

3 3 

1 9 2 
3-0 20-nodes curvilinear 

isoparametric hexahedral element 

Figure A.2: Element types 
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Sample of Input Data File 

A sample of input data file used in the study of the hypothetical radioactive repository is 

represented here: 

****************************************************************** 

LA DAT 1 .DAT 1989-03-17 
Heading text---------------------------

--0 I --Time step control parameter 
MXSTEP DT 
1 10.£28 

--02--Parameter to indicate isotropy or anisotropy permeability 
ISOAN /DEPEND 
0 0 

--03--Parameter to indicate relations of components of permeability 
TIMRF(l) TIMRF(2) TIMRF(3) 
1 1 0 

--04--Parameter to select perturbation component 
/SOPER 
0 

--05--The number of inhomogeneous regions 
NUMR 
4 

--06--Hydraulic permeability (Layer I -bottom) 
HCEX(l) HCEY(l) HCEZ(l) 
2.E-10 2.E-10 0. 

--07--Hydraulic permeability 
HCEX(2) HCEY(2) HCEZ(2) 
2.E-9 2.E-9 0. 

--08--Hydraulic permeability 
HCEX(3) HCEY(3) HCEZ(3) 
5.E-9 5.E-9 0. 

--09--Hydraulic permeability (Layer IV -top) 
HCEX(4) HCEY(4) HCEZ(4) 
2.E-8 2.E-8 0. 

--10--The inhomogeneous region I 
XMXPE XMIPE YMXPE YMIPE ZMXPE ZMIPE 
1000. 0.0 250. 0. 0.0 0.0 

--11--The inhomogeneous region II 
XMXPE XMIPE YMXPE YMIPE ZMXPE ZMIPE 
1000. 0.0 500. 250. 0.0 0.0 

--12--The inhomogeneous region III 
XMXPE XMIPE YMXPE YMIPE ZMXPE ZMIPE 
1000. 0.0 880. 500. 0.0 0.0 
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Perturbation Region or Nodes 

For analyzing uncertainty of permeability in inhomogeneous flow domain the program can both 

specify perturbation region or perturbation nodes according to requirement of particular 

problems. For giving a coordinates of perturbation region, program can search automatically 

the nodes which are inside the perturbed region. A sample is illustrated in Figure A.5. 

y 

X 

Figure A.5: Sample of specifying perturbed region (20 nodes inside the region) 
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--27--The element numbers of the top prescribed boundary 
NUMBE NUMBB( 1) (2) (3) (4) (5) (6) (7)(8) (9) (JO) 
10 12 24 36 48 60 72 84 96 108 120 

--28--The element numbers of the top prescribed flux boundary 
NUIELSUQ 
5 2e-9 

--29--MESHSP 11 00 Control data/or generation of element mesh 

--30--Input the size of domain and the numbers of element 
TOTLX TOTLY TOTI2 /EX IEY JEZ 
1000. 1000 0. 10 12 0. 

*-31--The coordinate of layers in X- direction 
Xl.AY(I) XLAY(2) XLAY(3) Xl.AY(4) XLAY(5)XLAY(6) Xl.AY(7)Xl.AY(8) XLAY(9) 
0. 100.200.300.400.500.600. 700.800.900.1000. 

--32--The coordinate of layers in Y- direction 
YLAY(l) YLAY(2) YLAY(3) YLAY(4) YLAY(5) YLAY(6) YLAY(7) YLAY(8) YLAY(9) 
0.100.250.400.450.500.525.550.600. 725.880.975.1000. 

--33--The coordinate of layers in Z- direction 
ZLAY(l) ZLAY(2) ZLAY(3) ZLAY(4) ZLAY(5) ZLAY(6) ZLAY(7) ZLAY(8) ZLAY(9) 
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. 

**-31--Parameters to control the mesh type 
FACX FACY FACZ 
1. 1. 0 

--34-- Parameter to control the spatial number and element type 
NDIM NNODE 
2 8 

--35--BODCON 11 00 Control data to set boundary conditions 

--36--Boundary condition 
PHil PH/2 
1000. 500. 

--37--The number of point sources 
NUSOCE 
1 

--38--The source strength & coordinates of point sources 
SOURCEQ XSOCE YSOCE ZSOCE 
0333£-7 0.0 1000. 0.0 

****************************************************************** 
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I 
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1------
1 

IEND 

VARISEN--1-DTIPHQ 

1-CALMTR 
1-VELOS 
1-DPDPAD 
1-DPDKMS 
1-GFMAUY 
1-SENNEW 
I-FREDU2 

PRINDA(to printout final solutions) 

Thunvik, R., and Bao, Yung-Bing 1989, 

GWHRT-S Documentation of computer program for sensitivity analysis of groundwater flow, 

Swedish Nuclear Fuel and Waste Management company, SKB-ATR:88-55. 
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Element Mesh 

For generation of the element mesh, either read in the mesh data from developed mesh data file 

for irregular boundary or element shapes cases or mesh generation subroutine will generate 

equal or unequal element mesh structure by specified boundary sizes for regular boundary 

domain. Samples of element mesh are shown in Figure A.3 and Figure A.4. 

y 

Figure A.3: Sample of 2-D unequal element mesh 
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Figure A.4: Sample of 3-D unequal element mesh 
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The numerical method of solution 

The region is divided into 186 quadrilateral 9-noded elements. A pumping well with a pumping 

rate of 10,000 m3/d is located at the centre of the aquifer. The governing flow equations are 

presented as below: 

(A -1) 

The boundary and initial conditions are: 

p(X;,t) = JJ(x;,t) (A -2a) 

(A -2b) 

X-E Q 
I 

(A -2c) 

where c is the total compressibility (c1 + c'), c1 is the compressibility of the fluid, c' is the 

compressibility of the rock, p is prescribed values of pressure on boundary ri, q is prescribed 

flux normal to boundary r2 (as designated by the components of the unit inward normal), n; is 

inward normal vector, r = r 1 + r 2 represents the external boundary of the flow domain n and 

Po is the initial head over the flow domain n. 

By using the Galerkin finite element method the algebraic form of equation (A-1) is presented 

as below: 

[A] { dr }-[B] {p} =-{F} (A -3) 

Using backward finite difference approximation for the time derivative, one obtains: 

(A -4) 

Where 

(A-5) 

[Au]= J J f <t>p(c1 +c')N1N1dQ (A-6) 

0 

(A-7) 

61 



Program Organization 

Main 

SENMASS 

I 
I 
I 
I 
I 
I 
I 
1------
1 
1------
1 

1------
1 
1------
1 

I 

------

------

------

------

------

------

Subroutines 

PARAMTA (Read parameters from data files) 

CTROMSH-1--- HFNDIN 

HFIELN 

GAUSSP 

TABCHC 

1--- HFELIN 
1--- MSH2D9 
1--- IELN2D9 
1--- MSH2D9S 
1--- MSH2D8 
1--- IELN2D8 
j--- MSH2D8S 
j--- MSH3D8 
1--- IELN3D8 
j--- MSH3D8S 
1--- MSH3D20 
1--- IELN3D20 
1--- MSH3D20S 
1--- BODCON 
1--- BODCON2 

INHOMG ----!-- NODERB 
j-- TABOBP 
1-- IEPERB 

NOPERB 

TABOBP 

IEPERB 

CHKFRX 

INSUFE 

TMLOP -j-----1-SETCOD 
I-PREINT--I-HFRNF2 

I-INTTUX--1-DFLUXF 
j-INTTUY--j-DFLUXE 
j-INTTUXQ-1-DFLUXQ 
j-INTTUYQ-j-DFLUXQ 
I-HFB2D2 
j-JACOB2 
I-QUADR9 
I-QUADR9A 
j-HFB3Dl 
I-JACOB3 
j-HEXA21 
1-INTEG 
1-DRIVT 
j-INTBON 
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20 - exp(-Ta;.t!S) 
h (x' y' t) = 100 - s (x' y' 00) + U7' L 2 cr( a,,,' X' s) 

Q 1 m=l ~ 

The steady state solution s (x, y, 00) is given by 

Q - cr(a,,.,x,s) 
s(x,y, 00) =-T L . h( ) {cosh[a,,.(a - I 11-yl] 

a ,.. = 1 a,.. sm a,..a 

+ cosh[ a,,,(a -11 + y )]} 

where 

s= 

S= 
T= 

Q= 
t= 

x,y,= 

a= 

m,n = 
a = m 

r,,,,,.= 
cr(a,,.,x' s) = 

C(P,.,Y,11)= 

drawdown 

storage coefficient 

transmissivity 

rate of pumping well 

time 

Cartesian coordinates 

coordinates of the pumping well 

dimension of the aquifer 

integers 

mrc/a 

nrcla 

a2 +A2 
m p,. 

sin ( a,,.x) sin ( a,,, s) 
cos(P,.Y) cos(P,.11) 

(A -13) 

(A -14) 

By taking the derivatives with respect to Tin equation (A-13) and equation (A-14), we obtain 

the analytical expression for sensitivity coefficients as follow: 

ah as 
ar (x' y' t) = - ar (x' y' 00) 

20 - {( 1 2 )[exp(-Ta~t/S) .ll 
+ a2Tm;l -T-a,,.t!S a~ cr(a,,.,x,s)JJ 

40 - -{( 1 2 )[exp(-Tr;,,,.t!S) ] 
+ UT' L L -T-r,,.,,.t/S 2 cr(a,,.,x,s)C(P,.,Y,11) 

Ul m=l,i=l r 
"'·" 

(A -15) 

For the steady state flow we have 
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APPENDIX B 

A verification exercise of the sensitivity model developed here was performed for a 

two-dimensional non-steady state flow problem with an analytical solution found in the literature 

(Chan et al., 1976 and Li et al., 1985). The sensitivity coefficients for a well test problem were 

calculated by means of the direct method and compared with the analytical results. 

The description of the study case 

A square, homogeneous, isotropic, and confined aquifer is studied. The flow domain is 

schematically illustrated in Figure A.6. The dimension of the aquifer is 1,400 m by 1,400 m, 

and it is surrounded by impervious boundaries AB and CD and constant head boundaries AC 

and BD, where the piezometric head= 100 m along AC and BD. The transmissivity and storage 

coefficient of the aquifer are 100 m2/d and 0.001, respectively. The aquifer is initially in a steady 

state condition with piezometric head equal to 100 m throughout For this symmetrical problem 

a quarter of the region is considered. 

y 
'" 

C 

/ 
D 

impervious boundary 

0 
).., - X 
~ -
pumping well 

~ a>nstam head bounda~ / 
impervious boundary 

/ 
A B 

Figure A.6: Aquifer configuration and finite element discretization. 
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Figure A. 7: Comparison of solutions of piezometric heads at transient state 
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(A -8) 

and n time step level, and N basis function, Af time step and Q is point sources which is the 

well in this study. 

The equation that governs the sensitivity coefficients can be obtained by directly differentiating 

equation (A-3) with respect to permeability k. Then one obtains: 

(A -9) 

According to the definitions of equations (A-6) and (A-8), [A] and {F} are not functions of k. 

Then one can obtain the following equation: 

(A -10) 

where 'iJp/iJk = 'JI. 

Using backward finite difference approximation for the time derivative, one obtains: 

with the boundary and initial conditions: 

X-E !l 
I 

(A -11) 

(A-12a) 

(A - I2b) 

(A -12c) 

Where p is the solution of equation (A-4 ). The units of the prescribed values and the variables 

are transformed to the proper input units according to the present model. 

The analytic expression 

The analytical expression for the piewmetric heads for the case is presented as follow: 
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