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ABSTRACT 

The aim of this work was to investigate the sorption of the 

lanthanide promethium on bacteria and the distribution ratio ,Kd, 

of the lanthanide between bacteria and water at different cell 

numbers, pH and lanthanide concentrations. There was a negative 

linear relationship between the number of cells and the amount of 

the Pm sorbed, and also between the number of cells and the Kd. 

The sorption decreased from a stable level at 90% as pH was raised 

above 7. There was a linear quantitative relation between the Pm 

concentration and the amount of Pm sorbed on the cells while the 

the relation to Kd was relatively constant. The results indicate the 

sorption of trivalent actinides and lanthanides on bacteria to be a 

reversible surface adsorption. 
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SUMMARY 

The disposal of high level radioactive waste in deep geologic 

formations has been proposed. The Swedish concept, presented in 

the KBS-3 study, is to isolate the waste in copper canisters 

embedded in bentonite in an excavated granitic rock repository at 

500 m depth. Dissolution and transport by the ground water is then 

the most important dispersion mechanism for the trace elements 

eventually released from the waste. 

The possibly enhanced transport of trace elements with bacteria 

would preferentially be with elements with a high sorption capacity 

eg. Cs, lanthanides and trivalent and tetravalent actinides. In this 

investigation we have used promethium, a trivalent lanthanide 

which has a chemistry very similar to the trivalent actinides, 

especially americium. The aim of this work was to investigate the 

sorption of the lanthanide promethium on bacteria and the 

distribution ratio ,Kd, of the lanthanide between bacteria and water 

at different cell numbers, pH and lanthanide concentrations. The 

influence of the cell number, the pH and the Pm concentration on 

the sorption of Pm to Shewanella put ref aciens isolated from ground 

water ( 463 m) was studied. 

Cell suspensions were portioned in l 0 ml aliquots in 14 ml 

polycarbonate centrifuge tubes with caps. Pm was added after any 

eventual pH adjustment. The tubes were left for 17 h at 15 °C. 

Aliquotes of l ml of the cell-Pm suspensions were mixed with 10 

ml scintillation cocktail and counted for l 0 min in a liquid 

scintillation counter. The cells were then centrifuged down at 9000 

g during 30 min and 1 ml aliquotes of the supernatant were 

measured according to above. Then the pH was measured in the 

tubes. The difference between the measured radioactivity in the 

water phase in the cell-Pm suspension and in the supernatant was 

assumed to show the amount of Pm sorbed on the cells. Control 

measurements for precipitation of the Pm, sorption to the tube wall, 

etc, were prepared in the same way as above but without cells. The 

distribution ratio, Kd (1 g- 1), is defined as the ratio between the 

amount of Pm sorbed per g cells and the amount Pm left non­

sorbed per l cell-Pm suspension. 



There was a negative linear relationship between the number of 

cells and the amount of Pm sorbed, and also between the number of 

cells and the Ka. This result demonstrate the importance of having 

a good control of the number of cells used in sorption experiments 

- else, unnecessary variance of the results will appear. The average 

sorption was 50 nmol Pm g- 1 when the pH was lower than 7. At 

higher pH there was a decrease in the sorption down to 20 nmol 

Pm g- 1 at pH 10.5 with a corresponding drop in Ka from 100 to 2 1 

g- 1. This may be explained by the increasing hydrolysis of Pm as 

the pH was raised, resulting in neutral Pm aggregates out of reach 

for the charged complexing or chelating groups on the cell surface. 

There was a linear quantitative relation between the Pm 

concentration and the amount of Pm sorbed on the cells while the 

relation to Ka was relatively constant. This can possibly be 

explained by a precipitation of the highly hydrolysed Pm onto the 

few particles available at low colloid or cell concentration, giving 

high sorption and Ka values. 

Although this work indicate the sorption of trivalent actinides and 

lanthanides on bacteria to be a reversible surface adsorption, one 

must consider that other processes beside surface adsorption could 

occur. These processes include cation transport systems into the cell, 

irreversible bounding to specific metabolic components of the cell 

and the production of complexing agents that can affect speciation 

and thus mobility of a trace element. 
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INTRODUCTION 

Background 

The disposal of high level radioactive waste in deep geologic 

formations has been proposed. The Swedish concept, presented in 

the KBS-3 study [ I J, is to isolate the waste in copper canisters 

embedded in bentonite in an excavated granitic rock repository at 

500 m depth. Dissolution and transport by the ground water is then 

the most important dispersion mechanism for the trace elements 

eventually released from the waste. 

Pedersen [2] investigated the distribution of bacteria in ground 

water from 16 different levels in 5 boreholes in granite bed-rock 

down to 860 m. There was between 6.8·107 to l.7·109 1- 1 bacteria. 

The chemical environment in the ground water was reducing with a 

pH around 8, an Eh between -112 to -383 mV, a conductivity 

range between 232 and 3532 mS m- 1 and a temperature range of 

l 0.2 to 20.5 °C, depending on the depth. Plate counts showed that 

there were facultative anaerobic, gram-negative, non-fermenting 

heterotrophs in the ground water. Enrichment cultures indicated the 

presence of anaerobic bacteria capable of growth on organic one 

carbon compounds and hydrogen, presumably methanogenic 

bacteria. Most probable number assays with sulphate and lactate 

revealed up to 5.6·107 1- 1 viable sulphate reducing bacteria. Biofilm 

development experiments have indicated active attached microbial 

populations of up to 2.2 · 1011 m-2 bacteria on surfaces exposed to 

flowing ground water (0.2 mm s- 1) during 8 weeks. 

Purpose and scope of the investigation 

The presence of microorganisms can influence the transport of trace 

elements from a repository in different ways. Three principal 

mechanisms can be identified. 

1. The microorganism constitutes a mobile suspended particle which 

may have a trace element sorbing capacity. The trace element is 

sorbed on the outside of the cell or accumulated inside the cell. [3, 

4). 

2. The trace element is sorbed in a microbial biofilm on the rock 
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surface [5]. 

3. The microorganism may produce complexing agents that can 

affect speciation and thus mobility of trace elements [6, 7]. 

The possibly enhanced transport of trace elements with bacteria 

would preferentially be with elements with a high sorption capacity 

eg. Cs, lanthanides and trivalent and tetravalent actinides. In this 

investigation we have used promethium, a trivalent lanthanide 

which has a chemistry very similar to the trivalent actinides, 

especially americium. 

The aim of this work was to investigate the sorption of the 

lanthanide promethium on bacteria and the distribution ratio ,Kd, 

of the lanthanide between bacteria and water at different cell 

numbers, pH and lanthanide concentrations. The influence of the 

cell number, the pH and the Pm concentration on the sorption of 

Pm to Shewanella put ref aciens isolated from ground water (463 m) 

was studied. 
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EXPERIMENT AL PROCEDURES 

Preparation of cell suspensions 

The bacterium Shewanella put ref aciens (CCUG-22948, Culture 

Collections University of Goteborg) isolated from 463 m deep 

ground water [8] was used for the experiments. It is a facultative 

anaerobic, gram-negative, non-fermenting, rod-shaped heterotroph. 

The cells were grown over night in Nutrient Broth (Difeo) to 

approximately 1013 1-1 cells. They were washed by centrifugation at 

2500 g during 10 min and resuspended in O.l M NaCl twice. The 

cells were subsequently diluted to the appropriate cell number for 

each experiment in 0.1 M NaCl and left for 72 h at 5 °C in dark. 

The number of cells was counted again after this period. The 

material and medium used for cultivation of the cells was sterilized 

in an autoclave at 121 °C and 1.1 atmosphere overpressure. All 

solutions used were first centrifuged at 16000 g during 15 min to 

remove any solids or colloids that else might have interfered with 

the measurements. 

Determination of the total number of cells 

Acridine orange stained direct count (AODC) [9] was used to 

determine the total number of cells. Nuclepore filters (0.2 µm pore 

size, 13-mm diameter) were pre-stained with a Sudan-black 

solution which was prepared by dissolving 25 mg Sudan-black in 75 

ml 99% ethanol and then diluted with 75 ml de-ionized water. The 

filters were thoroughly rinsed with de-ionized water before use. An 

acridine orange (AO) solution was prepared by dissolving I O mg 

AO in 1 I of 6.6 mM sodium potassium phosphate buffer, pH 6.7. 

The phosphate buff er was a mixture of 2.45 mM KH2PO4 and 4.15 

mM Na2HPO4 in de-ionized water. The AO solution was stored as 

10 ml aliquots. All solutions and the water were autoclaved and 

filter sterilized (0.2 µm). A portion of the sample was filtered onto 

a pre-stained nuclepore filter at 20 KPa underpressure and stained 

for 7 minutes with AO. The number of cells was counted using 

blue light (390-490 nm) in a epi-fluorescence microscope (Olympus 

BH-2) at 1250 enlargement. Between 500 and 600 cells or a 

minimum of fifteen microscopic fields (1 field = 80 x 80 µm = 
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0.0064 mm2), were counted on each filter. 

Trace element 

The almost pure (3 emitter 147Pm (t1;2=2.6 y, Ef3=0.2 MeV) was used 

in this investigation. The carrierfree 147Pm was obtained from 

Amersham, England. To make up the different Pm concentrations, 

inactive neodyn was used as a carrier. 

Measurement of sorption 

The cell suspensions were portioned in 10 ml aliquots in 14 ml 

polycarbonate centrifuge tubes with caps. Pm was added after any 

eventual pH adjustment. The tubes were left for 17 h at 15 °C. 

Aliquotes of 1 ml of the cell-Pm suspensions were mixed with 10 

ml scintillation cocktail (Emulsifier safe, Packard, USA) and 

counted for 10 min in a liquid scintillation counter (Intertechnique, 

SL30, France). The cells were then centrifuged down at 9000 g 

during 30 min and I ml aliquotes of the supernatant were measured 

according to above. Then the pH was measured in the tubes. The 

difference between the measured radioactivity in the water phase in 

the cell- Pm suspension and in the supernatant was assumed to show 

the amount of Pm sorbed on the cells. Control measurements for 

precipitation of the Pm, sorption to the tube wall, etc, were 

prepared in the same way as above but without cells. The 

distribution ratio, Ka (1 g- 1), is defined as the ratio between the 

amount of Pm sorbed per g cells and the amount Pm left non­

sorbed per I cell-Pm suspension. 

Determination of the dry weight per cell 

A total of 1013 cells were centrifuged down at 2500 g to a pellet, 

which was dried in an exicator with dehydrated copper sulphate 

under vaccum for 96 h and subsequently weighed (A&D company, 

Japan d=0.000 I g). The dry weight of the cell after 72 h in 0.1 M 

NaCl was determined to be 4· I 0- 13 g. All sorption and Ka data 

presented here are based on this dry weight. 

Determination of the relation between the number of cells and 

sorption 

Three dilution series of 7.6·108, 7.4·109, 8.1·1010 and 5.6·1011 1-1 
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cells were prepared and supplemented with Pm to a concentration 

of 0.14 nM. The pH was adjusted to 6.5 with NaOH. 

The effect from pH 

The pH was adjusted with HCI or NaOH to between 4 and 10.5 in 

suspensions with 5· 1011 1·· 1 cells and supplemented with Pm to a 

concentration of 11 nM. Two separate experimental runs were 

made. 

The effect from the Pm concentration 

The sorption was studied at different concentrations of Pm in 4 

separate experimental runs in n parallels at the following Pm 

concentrations and cell numbers: 0.14 nM, 5.8·1011 1- 1 cells, n=3; 1.2 

nM, 2.2·1011 1- 1 cells, n=l4; 1.7 nM, 1·1011 1- 1 cells, n=6; 2.8 nM, 

l ·1011 1- 1 cells, n=5; 10 nM, l ·1011 1- 1 cells, n=6; 11 nM, 4.9·1011 1- 1 

cells, n=55; 100 nM, 1·1011 1- 1 cells, n=3. The pH was adjusted to 

between 4 and 7. 

Measurement of desorption 

Cell suspensions of 2. l · 1010 and 2.3 · 1012 1- 1 cells were portioned in 

I O ml aliquots in I 4 ml polycarbonate centrifuge tubes with caps. 

Pm was added to a concentration of 0.6 nM. The pH was 

approximately 5.5. The tubes were left for 17 h at 15 °C whereafter 

the radioactivity in the water phase before and after centrifugation 

at 9000 g for 30 min was measured. The supernatant was decanted 

and the cell pellet resuspended in 9 ml 0.1 M NaCl and left for 17 

h at 15 °C, whereafter the activity in the water phase before and 

after centrifugation was measured again. Pm present in the 

supernatant after the second centrifugation was assumed to have 

been desorbed from the cells. 



3. 

3.1 

3.2 

3.3 

6 

RESULTS 

Adjusting the pH to desired values turned out to be difficult. The 

cells had a tendency to buffer the pH of the cell-Pm suspension to 

around 6, indicating functional groups with pKa values around this 

value. 

Determination of the effect from the number of cells on sorption 

Fig. I shows a negative linear relationship between the number of 

cells and the amount of Pm sorbed. There was 220-fold decrease 

from 110 to 0.5 nmol Pm g-1, as the number of cells were increased 

760 fold, from 7.6·108 to 5.8·1011 1-1. The percentage sorption of 

Pm in the samples was: 7.6·108 1- 1 cells, 24%; 7.4·109 1- 1 cells, 40%; 

8.1·10 10 1- 1 cells, 62%; 5.6·1011 1- 1 cells, 83%. The corresponding Ka 

decreased 50-fold from 1000 to 20 I g- 1. The standard deviation 

(SD) for the means in Fig. I ranged between 50% for the lowest 

and 1.6 % for the highest cell number. The background in tubes 

without cells was 20 % (n=4, SD=6.8%) in this experiment. 

The effect from pH on the sorption 

The sorption was approximately 53 nmol Pm g- 1 when the pH was 

lower than 7 (Fig 3). This corresponds to a 90% sorption of Pm to 

the cells. At higher pH there was a decrease in the sorption down 

to approximately 20 nmol Pm g-1 (30% sorbed) at pH 10.5. There 

was a drop in the corresponding Ka from 100 to 3 I g -1 as the pH 

was increased from 4 to 10.5 (Fig.3). The number of samples was 

87. The background in tubes without cells was 5.5%, (n= 10, 

SD=9.9%). 

The effect from the Pm concentration 

The sorption of Pm at different concentrations in the pH interval 

between 4.0 and 7 is shown in Fig. 4. There was a linear 

quantitative relation between the Pm concentration and the amount 

of Pm sorbed on the cells. The variation of the means around the 
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regression line was due to the variation in the cell numbers used. 

There was not any major change in the Kd as the concentration of 

Pm was varied. Fig. 5 shows that the Kd ranged between 20 and 90 

I g- 1 as the Pm concentration was varied between 0.14 and 100 nM. 

The background in tubes without cells was 23.0% (n=23, SD=18.1%). 

Measurement of desorption 

Table l shows that Pm was sorbed reversibly to the cells. Pm was 

desorbed with a new Kd 1.5 to 2-fold higher than the first one 

after resuspension of the cells in 0.1 M NaCl. The background in 

tubes without cells was 0.8% (n=6, SD=l.2%). 

Table l The sorption after a first centrifugation and the desorption after resuspension 

in Pm free 0.1 M NaCl and a second centrifugation of the cells. 

Number of 

cells 

2.110 10 1- 1 

2.3 10 12 1- 1 

Sorption 

% 

64.5 

81.8 

nmol Pm Kd 
g-1 I g-1 

71 

0.57 

206 

4.8 

Desorption 

% 

26.8 

11.2 

mol Pm 
g-1 

19 

0.06 

311 

8.4 
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Figure 1. The sorption of Pm on Shewanella put ref aciens ( • ), and 

the distribution ratio, Ka, for Pm between Shewanella putref aciens 

and the water phase( ■), at a Pm concentration of 0.14 nM in 

suspensions with different cell numbers and a pH of 6.5. 
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Figure 2. The sorption of Pm on Shewanella put ref aciens at 

different pH. The concentration of Pm was 11 nM and the cell 

number was 5·1011 1-1. 
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DISCUSSION 

The cell surface 

The envelope that bounds a gram-negative cell is composed of an 

inner membrane, a peptidoglucan layer and an outer membrane. 

The outer membrane is built up as the unit cell membrane, but 

many of the phospholipids are replaced by a lipopolysaccharide 

(LPS) unique to the outer membrane. The lipid moiety of the LPS 

forms the hydrophobic portion of the leaflet. The core 

polysaccharide with it's attached side chains projects outwards and 

the fatty acid residue projects towards the center of the cell. The 

outer membrane also contains a number of different transport 

proteins in contact with the medium surrounding the cell. They 

make the membrane to act as a molecular sieve with control of not 

all but many of the molecules that must pass in and out of the cell. 

It is the outer membrane of the cell that first comes in contact with 

eventual trace elements. 

Organic molecules can form complex with metal ions. The bounding 

of the metal ion can be specific and irreversible on fixed sites, eg. 

the chelating of some metal ions in nitrogen or sulphur containing 

prosthetic groups of enzymes. The bounding can also be nonspecific 

and reversible to charged ion exchange sites as the carboxylic acids 

and the amino acids of the outer membrane LPS and transport 

proteins. Adjacent complexing groups may form metal chelate 

complexes if their distance suit the size of the metal ion. 

The effect from the number of cells on sorption 

There was a negative linear relationship between the number of 

cells and the amount of Pm sorbed, and also between the number of 

cells and the Ka (Fig. 1 ). This result demonstrate the importance of 

having a good control of the number of cells used in sorption 

experiments - else, unnecessary variance of the results will appear. 

The AODC method for the total number of cells was appropriate 

for this purpose. We have used a number of cells at or higher than 

I· I 011 1-1 cells, thereby assuring sorption data corresponding to 70-

80% sorption of Pm at a concentration as low as 0.14 nM and with 



4.3 

4.4 

4.5 

14 

a low variance. 

The effect from pH on sorption 

The average sorption was 53 nmol Pm g- 1 when the pH was lower 

than 7 (Fig 3 ). At higher pH there was a decrease in the sorption 

down to 20 nmol Pm g- 1 at pH 10.5 with a corresponding drop in 

Ka from 100 to 2 1 g- 1. This may be explained by the increasing 

hydrolysis of Pm as the pH was raised, resulting in neutral Pm 

aggregates out of reach for the charged complexing or chelating 

groups on the cell surface. 

The effect from the concentration of Pm on sorption 

There was a linear quantitative relation between the Pm 

concentration and the amount of Pm sorbed on the cells (Fig 5) 

while the relation to Ka was relatively constant (Fig. 5). 

MacCordick et. al. [ I 0] achieved similar results with I to 500 µM 

concentrations of Europium, but observed a sorption limit at the 

highest concentrations. 

Sorption mechanism 

The sorption and the Ka values were very dependent on the 

number of cells (Fig. 1 ). This phenomenon has been found more or 

less in exactly the same manner for Pm when using silica colloids 

(diameter around 200 nm) as sorbent [11]. It can possibly be 

explained by a precipitation of the highly hydrolysed Pm onto the 

few particles available at low colloid or cell concentration, giving 

high sorption and Ka values. At higher number of cells, more 

surface was available for sorption and less or no precipitation 

should then be observed. In the case of Cs, which is uncomplexed 

in water, the concentration of colloides had no effect on the 

sorption [ 11 ]. 

The phenomenon of precipitation of the metal ions on bacteria has 

been visualized by transmission electron microscopy (TEM) as 

needlelike (La) or clumped (Ag) deposits on the outside of 

Pseudomonas aerunginosa and Bacillus subtilis respectively [12]. 

They used metal ion concentrations in the 1 to 100000 µM region 

and the number of cells was 1013 to 1014 1- 1. The sorption measured 

was 1-1000 µmol La or Ag g- 1 cells-1. MacCordick et. al. [10] used 

1 to 500 µM E u, I 0 13 to I 0 14 1- 1 cells and measured a sorption 
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between 0.1 to 16 µmol Eu g- 1. This can be compared to our 

measurements with a Pm concentration in the 0.1 to 100 nM region 

with sorption of 0.5 to 2000 nmol Pm g- 1. It seems likely that the 

presumed precipitation effect ranges from at least nM to mM 

concentrations of metal ions. 

Irreversible contrary reversible sorption 

A crucial issue is if the trace elements attach themselves 

irreversibly or reversibly on bacteria. For most irreversible cases it 

can be assumed that the whole rock is short circuited as the 

retardation of the trace elements due to matrix diffusion in the 

rock [l] will be arrested. All the trace elements released from the 

near field and irreversible attached on bacteria will follow the 

ground water. For the reversible case there will be an influence 

from bacteria on the trace element migration if the product of the 

distribution ratio, Kd (I g- 1), and the mass of cells present, (g 1- 1), 

is larger then 1 (Note by Ivars Neretnieks). The data presented 

here, indicate the sorption of Pm to Shewanella put ref aciens to be 

reversible (Table 1) and the product (Kd)*(mass of cells) to be 

smaller than I. 

Although this work indicate the sorption of trivalent actinides and 

lanthanides on bacteria to be a reversible surface adsorption, one 

must consider that other processes beside surface adsorption could 

occur. These processes include cation transport systems into the cell, 

irreversible bounding to specific metabolic components of the cell 

and the production of complexing agents that can affect speciation 

and thus mobility of a trace element. 
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