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ABSTRACT 

Distribution ratios (Kd) were determined for 85sr, 134cs and 

152Eu on crushed granite and fissure coating/filling material 

from Stripa mines. Measurements were also carried out on intact 

fissure surfaces. The experimental data for 85sr and 134cs on 

crushed material can be accomodated by a sorption model based 

on the assumption that the crushed material consists of porous 

spheres with outer and inner surfaces available for sorption. 

In the case of 152Eu only sorption on the outer surfaces of the 

crushed material was observed.The absence of sorption on inner 

surfaces is most probably due to high depletion of the more 

strongly sorbed 152Eu in the water phase and very low 

diffusivity of 152Eu in the sorbed state. 
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INTRODUCTION 

Transport of radionuclides through granitic drill cores 

containing natural fissures has been subjected to several 

studies in our laboratories /1-5/ 

The models used to interpret the experimental data encompass 

hydrodynamic dispersion,channeling,diffusion into the rock 

matrix and sorption on the fissure sufaces and surfaces within 

the rock matrix. 

Whereas the diffusion into the rock matrix in the long time 

perspective may create a high capacity sink for sorbed 

radionuclides sorption on the walls of the water carrying 

fissure most probably will be dominating in laboratory 

experiments with contact times in the time range minutes­

hours.Understanding of the dynamics of the sorption processes 

is therefore of great importance in modelling the radionuclide 

transport in labotatory and field experiments. 

Most of the sorption work on granitic rock has been carried out 

on crushed material and reported as Freundlich isotherms or 

distribution ratios Rd. 

The latter is defined as 

amount of radionuclide sorbed/g dry material 

amount of radionuclide/cm3 solution 

To translate mass based Rd values into surface related Ra 

values assumptions about particle shape and size distribution 

of the size separated fractions of the crushed and sieved 
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material must be made. A fundamental question is whether 

crushing, leading to the creation of fresh fracture surfaces, 

modifies the sorption properties or not. 

The aim of the present study is to compare sorption data from 

experiments with crushed and intact granitic drill core 

material respectively. 

EXPERIMENTAL 

The rock samples used in this study are granitic drill cores 

from the Stripa mine, taken at a depth of 360 m below the 

ground level.Granite and coating/filling material from natural 

fissures in the drill cores was crushed using a Agat mortar and 

pestle and size sorted by wet sieving into the size ranges 

given below. 

The radionuclide solutions were prepared by dilution of acid 

stock solutions of 22Na, 85sr, 134cs and 152Eu (Amersham) with 

artificial groundwater synthesized to represent the natural 

water in contact with granitic rock (Table 1). 

The cation exchange capacity (CEC) was measured by isotope 

dilution /6/ using 22Na as tracer. 100 mg crushed rock was 

equilibrated for 48 hours with 3cm3 0.5 mol.dm- 3 NaCl solution 

spiked with 22Na.The solution was thereafter vacuurnfiltrated 

through a 0.5um polypropylene filter (Gelman) and the activity 

of the solid phase and the filtered solution measured with a 

(2-x 2 in)well type NaI detector connected to a 256 channel 

analyzer. 
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Distribution ratios {Rd): Samples containing 100 mg crushed and 

sieved material and 3 cm3 groundwater were equilibrated in 

polypropylene tubes which were gently agitated. Tracers were 

added and the activity of the solid phase and solution 

monitored at regular time intervals by filtration and counting 

as described above.The radionuclide concentrations used were 

85sr 2.5·10-11 , 134cs 1.1·10-9 and 152Eu 5·10-8 mol·dm- 3 . 

Sorption on intact rock: 1.2 cm2 areas of fissure surfaces 

consisting of granite and alteration products were sealed off 

and contacted with radionuclide solutions (Fig 1).After 48h the 

activity on each surface was measured with a planar {2 x 2in) 

NaI detector connected to a 256 channel analyzer. 

SORPTION MODEL FOR CRUSHED MATERIAL 

It is assumed that the crushed material consists of porous 

spherical particles /7/ with both outer and inner surfaces 

accessible for sorption. It is further assumed that the inner 

surface area is proportional to the particle volume. 

The surface area/volume of a spherical particle with diameter 

dp is given by the relationship 

( 1 ) 

and the distribution ratio can thus be written 
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where Ry denotes sorption on the inner surfaces per unit mass 

(cm3 ·g-1 ) Ra denotes sorption on the outer surface (cm3 ·cm- 2 ) 

and_p is the rock density (2.61 g· cm- 3 ). 

EXPERIMENTAL RESULTS 

The surfaces of the water carrying fissures display a variation 

in light and darker coloured areas. Samples of the host rock 

and fissure filling material were studied by X-ray diffraction 

(XRD), sweeping electron microscopy (SEM) and differential 

thermal analysis ( DTA/DTG). 

The host material was found to have a normal granitic 

composition i.e. containing the minerals mica, feldspar, 

chlorite/biotite, quartz and traces of calcite.The light 

coloured fissure filling material was found to have a 

corresponding composition, probably with somewhat reduced 

quartz content.The dark (greenish) coloured fissure filling 

material was found to have lower quartz and higher chlorite 

content than the host rock. 

The content of K,Mg and Fe was higher than in the host rock. 

The cation exchange capacity of crushed material is, in 

accordance with the model described above (eqn 2),plotted 

versus 1/d where d for each particle size fraction is taken to 

be the arithmetic mean of the apertures of the sieves 

bracketing the various size fractions /8/.The size fractions 

and d values are tabulated in Table 2. 
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With the notable exception of the smallest size fraction 

( 63-125 pm) the experimental data display the expected linear 

1/d dependence. 

Typical Rd versus contact time plots for 85sr and 134cs 

sorption on crushed granite are shown in Fig 3. As can be 

gleaned from the plots the prompt sorption is followed by 

further sorption and the calculated Rd reach plateau values 

twice the prompt values within 72 hours. 

The Rd values measured 1 minute and 48 hours respectively 

after addition of 85sr are plotted versus 1/d in Fig 4. 

Corresponding plots for 48 hours sorption of 134cs on granite 

and fissure filling material are shown i Figs 5-7. 

It should be noted that all the experimental data plotted in ~ 

Figs 2-7 indicate that the assumtion of porous particles is 

reasonable. 

Corresponding plots ,in Figs 8-10, for the 152Eu sorption 

also give a linear dependence of Rd on 1/d but in this case 

the fitted straight lines pass through or very close to origo 

indicating a very slight if any volume effect. 

DISCUSSION 

The cationic exchange capacities and distribution ratios 

calculated using eqn 2 are summarized in Tables 3 and 4 

respectively. 
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If it is assumed that sorption on the crushed material is 

governed only by the availability of internal and external 

surfaces i.e. with no differences in sorption properties the 

CECa /CECv and Ra/Rd ratios,for each material (host rock or 

fissure filling), should be the same for the radionuclides 

studied. For granite this ratio is found to be 0.013,0.007 

and 0.0082 for 22Na, 85sr and 134cs respectively. The variation 

is within the experimental errors. It should be noted that the 

CECa values obtained from experiments with intact surfaces 

{12 hours contact time) are in fair agreement with the 

corresponding value calculated from the plot in Fig 2. The Ra 

value measured after 48 hours sorption of 134cs on intact 

fissure surfaces is however at least one order of magnitude 

higher than the corresponding values obtained from Figs 5-7. 

As mentioned above, for 152 Eu the Rd versus 1/d plots for 48 

hours contact time give no evidence for sorption on surfaces 

within the particles.Furthermore the Ra value obtained in 

experiments with intact fissure surfaces is in good agreement 

with the results from experiments with crushed material. 

The experimental results for the radionuclides used in this 

investigation can be fairly well accomodated by the simple 

porous sphere model. The moderately sorbed strontium and more 

strongly sorbed cesium ions have been shown to display high 

diffusivities in compacted bentonite / 9/ ,granitic rock /10/ 

and sandstone /11/ and, according to the experimental data in 

this investigation, sorption equilibria are reached on all 

surfaces within 72 hours for 63-1200 pm particles. The high Ra 
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value obtained for for 134cs sorption on intact fissure 

surfaces is probably due to diffusion into the rock matrix. 

152Eu ,the most strongly sorbed radionuclide, is most probably 

like cobalt and americium /12/ highly immobilized upon 

sorption. Moreover,due to the strong sorption the radionuclide 

concentration in the water phase is very low and the migration 

of 152Eu into the porous particles and rock matrix might be 

expected to be very slow.This is also evidenced by the good 

agreement between the Ra values obtained in experiments with 

crushed material and intact fissure surfaces. The time required 

to reach sorption equilibrium on inner as well as outer 

particle surfaces will therefore be very long and the 

experimentally determined Rd values are only a measure of the 

sorption on the outer surfaces and not of the sorption 

capacities of the crushed material. 
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CONCLUSIONS 

1. Equilibria for sorption of the cations sr2+ and cs+ on 

crushed granite and fissure filling material are reached within 
3-4 days for particles with 63-2000 pm diameter. 

The experimental data indicate that the crushed material can be 

treated as consisting of porous spheres with inner and outer 

surfaces accessible for sorption. 

2.No volume effect is observed for the strongly sorbed 152Eu 

which is highly immobilized in its sorbed state. Moreover the 

radionuclide concentration in the water phase is very low due 

to the strong sorption.To obtain redistribution of the promptly 

sorbed 152Eu on the outer surfaces,which is required to obtain 

a measure of the sorption capacity of the crushed material,will 

therefore require long term experiments. 
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Table 1. 

Composition of artificial groundwater.a) 

Species Concentration 

mg•ctm- 3 

HCO -3 

so 2 -
4 

123 

9.6 

70 

12 

Species 

ca2+ 

a) pH 8-8.2, Eh 260mV (aerated) 

Concentration 

18 

4.3 

3.9 

65 
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Table 2. 

Size fractions of crushed material used, 

Size fraction 

pm 

63-125 

125-250 

250-500 

250-750 

500-750 

750-1000 

1000 -2000 

1/d 

cm- 1 

106.4 

53.3 

26.7 

20.0 

16.0 

11.4 

6.7 
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Table 3. 

Cationic exchange capacities. 

Material 

crushed granite 

granite surface a) 

light coloured a) 

17± 3.2 

CECa 

pequiv•cm- 2 

0.22 ± 0.1 

0.24 ± 0.2 

fissure filling 0.45 ± 0.2 

dark coloured a) 

fissure filling 0.77 ± 0.25 

a) contact time approx 12 hours 
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Table 4. 

Distribution ratios calculated from Figs 4-11 

using the equation Rd= Rv +(6/p·d)Ra 

Material Nuclide 

granite 

light coloured 134cs 

fissure filling 152Eu 

dark coloured 

fissure filling 

intact fissure 134cs 

surface 152Eu 

5.1 ± 0.3 

33 ±5 

52 ± 3 

31 ± 2.3 

0.032 ± 0.005 

0.27 ±0.04 

4.6 ± 0.1 

0.87 ± 0.07 

3.5 ± 0.23 

0.98 ± 0.02 

3.95 ± 0.13 

6.4 ± o. 
4.5 ± 0.5 
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FIGURE LEGENDS 

Fig 1. 

Fig 2. 

Fig 3. 

Fig 4. 

Fig 5. 

Fig 6. 

Fig 7. 

Fig 8. 

Fig 9. 

Fig 10. 

Experimental arrangement for measuring radionuclide 
sorption on intact fissure surfaces. 

Cationic exch~nge capacity (CEC) of crushed granite 
p.J_otted vs 1/d. 
(dis the mean diameter of the particle size 
fraction). 

Rd f~r sorption of 85sr and 134cs on crushed 
granite plotted vs time of contact. 

O 85sr 125-250 µm, left hand scale 
d 85 V 134sr 1000-2000 pm, left hand scale 

Cs 63-125 pm, right hand scale 

Rd for sorption of 85sr on crushed granite 
plotted vs 1/d.(d is mean diameter of particle size 
fraction 
V 1-2 min contact time 
0 48 h contact time 

Rd for sorptign of 134 Cs on crushed granite 
plotted vs 1/d.(a is mean diameter of particle size 
fraction) 48 h contact time. 

Rd for sorption of 134cs on £ru~hed light coloured 
fissure filling plotted vs 1/d.(d is mean diameter 
of particle size fraction). 48 h contact time. 

Rd for sorption of 134cs on £rushed dark coloured 
fissure filling plotted vs 1/d. (dis mean diameter 
of particle size fraction). 48 h contact time. 

Rd fo~ 15:Eu sorption on crushed granite plotted 
vs 1/d. (dis mean diameter of particle size 
fraction). 48 h contact time. 

Rd for 152Eu sorption on crushed light coloured 
fissure filling plotted vs 1/d. (O is mean diameter 
of particle size fraction). 48 h contact time. 

Rd for 152Eu sorption on crus,h_ed dark coloured 
fissure filling plotted vs 1/d. (a is mean 
diameter of particle size fraction). 48 h contact 
time. 
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16 

glas-tube 

silicon rubber seal 

Experimental arrangement for measuring radionuclide sorption on intact fissure surfaces. 
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Fig 2. Cationic exch~nge capacity (CEC) of crushed granite 
pJ.otted vs 1/d. 
(dis the mean diameter of the particle size 
fraction). 
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Fig 6. Rd for sorption of 134cs on £ru~hed light coloured fissure filling plotted vs 1/d.(d is mean diameter of particle size fraction). 48 h contact time. 
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Fig 7. Rd for sorption of 134cs on srusued dark coloured fissure filling plotted vs 1/d. (dis mean diameter of particle size fraction). 48 h contact time. 
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Fig 8. Rd foI 15:Eu sorption on crushed granite plotted 
vs 1/d. (dis mean diameter of particle size 
fraction). 48 h contact time. 
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Rd for 152Eu sorption on crushed light coloured 
fissure filling plotted vs 1/d. (o is mean diameter 
of particle size fraction). 48 h contact time. 
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Fig 10. Rd for 152Eu sorption on crushed dark coloured fissure filling plotted vs 1/d. (a is mean diameter of particle size fraction). 48 h contact time. 
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