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ABSTRACT 

A study of gas migration from low level radioactive repositories in 

which the fractured rock mass was conceptualized as a continuum, 

was carried out by the aid of a computer program based on a finite 

difference numerical method of solution to the equations of flow. 

The displacement is considered to be governed by the equations of 

simultaneous two-phase flow, gas and water. Without having the 

possibility of practical determination of the parameters of the 

continuum equivalent such as capillary pressure and relative 

permeabilities bf the fractured rock, these functions were assumed. 

The calculations are intended to correspond to the prevailing in 

the Forsmark low level repository area where radioactive waste 

repository caverns are planned to be located at a depth of about 50 

metres below the sea level. Chemical reactions in the stored waste 

will result in gas (hydrogen) production in a saturated water 

environment. Under such conditions the gas will displace the water 

from the rock and migrate towards the surface and finally be 

released through the sea bottom. Calculations were worked out for 

a constant gas flow rate equivalent to a gas production of 20000 

normal cubic metres per year. The investigated flow domain was a 

vertical cross-section passing through the repository. The results 

show that in the empty cavern the gas formed in the cavern moves 

almost instantaneously upward and accumulates below the roof of the 

cavern. The gas penetrates the rock and displaces the water after 

a gas cushion of 0.4 m, corresponding to the assumed entry 

capillary pressure value, is formed below the roof of the cavern, 

In the cavern, the gas-water interface is horizontal. The gas 

advance is faster in the centre of the repository than at the 

edges. The displacement is limited to the near region to the 

repository. The breakthrough time at the sea bottom is about 0.6 

days. The results are different from those obtained in the 

previous studies in which the rock was conceptualized as a discrete 

system of fractures in which the flow process is dominated by the 

largest fractures and as a consequence the breakthrough time is 

smaller. 
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1. INTRODUCTION 

In the previous studies on gas migration from low level radioactive 

repositories (SKBF-KBS: 83-21, SFR-Progress Report 86-04), the 

rock mass was conceptualized as a discontinuous system of fracture 

planes intersecting the rock cavern. The discrete approach was 

considered to represent better the actual flow phenomena associated 

with gas~water displacement in a fractured rock mass than the 

continuum approach. However parallel studies using the continuum 

approach were carried out by Intera (1986). 

The result presented. by Intera exhibited some unexpected flow 

phenomena requiring further investigation before being accepted. 

This implies in particular the unrealistic results obtained for the 

saturation distribution (Intera 1986, Fig. 4.6) which showed a 

faster displacement of the gas at the edges of the repository than 

in the centre. It is obvious that with an unrealistic saturation 

distributions all the other results e.g., the breakthrough time of 

the gas at the sea bottom are unreliable. 

It was therefore decided to perform a comparative study using same 

data as those used by Intera in order to study.if the flow 

phenomena reported could have any physical foundation or must have 

been the result of conceptual mistakes in the modelling. The 

present study demonstrates that the flow phenomena stated by Intera 

have no foundation whatsoever. Moreover, it was possible to 

reconstruct the mistake made in the modelling which caused the 

spurious results presented. 

The study was carried by using Nolen's two-phase V.I.P. 

Vectorized Implicit Program. The results of the present 

calculations are in total agreement with the actual physical 

behaviour of the flow process but not in agreement with the results 

obtained by Intera. 

The gas (hydrogen) generated in the cavern is due to chemical 

reactions in the stored waste. The gas will be produced in a 

saturated water environment and due to the difference in density 

with respect to the water, the gas will migrate upward and finally 

escape through the sea bottom. The calculations presented here are 

intended to correspond to the prevailing in the Forsmark area. 
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In the discrete approach with a fracture width distribution the 

flow is dominated by the fractures of high permeability. In the 

present study with the continuum approach the rock is considered 

homogeneous so that under similar conditions the displacement is 

identical in any cross-section through an ideal cavern of infinite 

extent. The cavern is considered to have a horizontal roof and is 

treated as an empty cavity. 

Being theoretically of infinite permeability, the gas formed in 

some part of the cavern will spread almost instantaneously along 

the cavern. The length of the cavern is more than 10 times larger 

than its height and its width, so.that practically, with except to 

the ends of the cavern, the rest of it will behave like one of an 

infin}te extent. For these reason the flow pattern through a 

two-dimensional vertical cross section passing the repository may 

be considered to be representative for the flow pattern. 

Gas-water displacement is a non-wetting wetting fluid 

displacement, so that a pressure entry value or a threshold 

pressure should be reached to initiate the displacement. Such an 

overpressure in the gas phase is equivalent to the formation of a 

gas cushion of a certain thickness in the cavern. This threshold 

pressure is dictated by the capillary pressure, a function of fluid 

saturation and of the formation under the consideration, 

conceptualized as as a continuum. 

The continuum approach also requires that relative permeabilities 

for gas and water functions of saturation be supplied. Since it is 

impossible to determine a capillary pressure curve or relative 

permeability curves for a fractured rock these functions have to be 

assumed. 

In the continuum approach the rock properties values represent 

average values of an elementary rock volume. The present study is 

carried out using a finite difference method of solution which 

requires a discretization of the flow domain in a number of grid 

blocks. The discretization mesh considered by Intera, and also in 

this study, includes small sizes of the blocks, down to 0.1 by 0.1 

m. 
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Such a discretization, including small sizes of the blocks in some 

regions, is necessary to obtain accurate numerical solutions. As 

the representative size of an elementary block of a fractured rock 

formation is at least of order of magnitude of meters and it should 

be obvious that transient solution results for blocks less than the 

representative size are not significant. 

2. GOVERNING EQUATIONS OF FLOW 

Simultaneous gas-water flow is governed by momentum (Darcy's law) 

and mass balance equations. These equations, being formulated for 

each phase separately, are coupled through the relationship between 

phases saturation and through the capillary pressure. To these 

equations one should add the equations of state, relating the 

density and the viscosity to pressure and temperature. 

(i) Gas flow equations 

Darcy's law is 

u . 
gJ 

k k (S ) = ____ rg __ w 

µg 

the mass conservation equation is 

( q, p ) t + ( p u . ) i + Qg = 0 
g' g g1 ' 

( 1 ) 

(2) 

where u is specific flux, k is absolute permeability, k is relative 
r 

permeability function of fluid saturation, µ is dynamic viscosity, c/J 

is porosity p is pressure, g is the acceleration of gravity and Q 

is the mass rate of gas production. Subscript g denotes the gas 

phase. 

Expanding the time derivative, one obtains 

+ p 
g c/J,t ( 3) 
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The density of the gas is related to pressure through the equation 

of state. 

( 4) 

where Mis the molecular weight to the gas, R is the universal gas 

constant, T is temperature and Z is the deviation factor of a real 

gas from the ideal gas behaviour and is a function of pressure and 

temperature. 

The compressibility of the rock matrix is defined as 

C r = 

Substituting the relationships (4) and {5) into (3), we obtain 

$M 

( ~pg),t = ZRT (i + pgcr) Pg,t 

(5) 

(6) 

Substitution of equation (6) together with Darcy's law into equa­

tion (2), yields 

( 7) 

{ii) Water flow equations 

Darcy's law is 

k k (S ) 
rw w 

= - --------
(8) 

Jlw 

and the equation for the conservation of mass is 

( cp P ) t + (p u i) i + Qw = O 
w ' w w ' 

( 9) 

where subscript w denotes the water phase. 
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Expanding the time derivative in equation (9), one obtains 

( </JP ) = </J P C D + P ,1., C p = op ,1., p 
•ww,t ww-w,t w'+' rw,t w'+' w,t (10) 

where c = c + c is the total (water and rock) compressibility 
w r 

Substitution of equation (10) and Darcy's law into equation (9) 

yields 

k k rw 
<P P w0 P, t - ( ----- P w ( P · - P g · ) ) · = O 

1.1,_., w,1 w 1 ,1 

(iii) Phase saturations relationship 

( 11 ) 

As follows from the definition of saturation, for the two phases 

gas and water, filling the entire pore space 

s + s = g w 
(12) 

(iv) The capillary pressure 

The pressure in the gas and in the water phase are related through 

the capillary pressure (p) 
C 

p (S ) = 
C W 

(13) 
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3. METHOD OF SOLUTION 

The V.I.P. computer program is based on a finite difference method 

of solution to the equations of flow presented in the previous 

paragraph. 

4. INPUT PARAMETERS 

4.1 The geometry of the flow domain 

The repository is assumed to have a width of 12 metres, a height of 

15 metres and a length of 160 metres. It is located at a 

depth of 50 metres below the sea bottom. The sea water level is 6 

metres above the rock formation (Fig. 1). 

The flow domain considered is a vertical cross-section passing 

through the repository. For reasons of symmetry it is enough to 

investigate only half flow domain with the axis of symmetry passing 

the centre of the repository. The considered half flow domain has 

an extent of 328 m in the horizontal direction and of 345 m in the 

vertical direction. 

The flow domain was discretized into a quadrilateral grid of 18 

blocks in the horizontal direction and 23 blocks in the vertical 

direction resulting in a total number of 414 grid blocks. The grid 

increments in the horizontal and in the vertical directions are 

presented in Table 1 and 2, respectively. 

Table 1: Grid increments in the horizontal direction 

2 3 

3.0 1.5 0.8 

Block number 

4 5 6 7 

Increment (m) 

0.4 0.2 0.1 0.1 

8 9 

0.2 0.4 

*) 
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Table 1 (continued) 

Block number 

10 11 12 13 14 15 16 17 18 

Increment (m) 

0.8 1.5 6.0 10.0 20.0 40.0 80.0 160.0 

*) 

Table 2: Grid increments in the vertical direction 

Block number 

2 3 4 5 6 7 8 9 10 11 12 

10 10 9 9 6 

Increment Cm) 

3 1 .5 .8 .4 .2 • 1 • 1 

Table 2 (continued) 

Block number 

13 14 15 16 17 18 19 20 21 22 23 

Increment (m) 

• 2 .4 • 8 1. 5 2.5 4.0 5.5 5.5 10. 22. 40 • 

*) In the horizontal directions the grid blocks are 

numbered from the left to the right; in the verti­

cal direction the grid blocks are numbered down­

wards 
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~.2 Rock and fluids parameter values 

Rock and fluid parameters values are indicated in Table 3. 

Reference values are adjusted to the prevailing pressure and 

temperature conditions by the V.I.P. program. 

Table 3: Parameter values 

Parameter Symbol Value Units 

rock permeability k 5.28*10-lS 2 
m 

porosity ,o-4 

capillary pressure Pc Fig. 3 Pa 

relative permeabilities k Fig. 4 
r 

compressibility of water C 4.57*10-6 kPa- 1 
w 

(reference value) 

-6 -1 
rock compressibility er 6.10*10 kPa 

density of water 1000. kgm- 3 

(reference value) 
p 

w 

dynamic viscosity of water \.l 1.0*10-3 Pas 
w 

p M 
kgm- 3 density of the gas p p = 

g 
g g ZRT 

dynamic viscosity of the gas \.l 8.5*10-6 Pas g 
(reference value) 

molecular weight of hydrogen M 2.016 kg mole -1 

universal gas constant R 8.3143 J mol- 1K- 1 

temperature T 28 3. 16 K 

deviation factor for real gases z z = Z(p,T,M,R) 
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5. BOUNDARY AND INITIAL CONDITIONS 

The upper boundary, corresponding to the sea bottom is a constant 

pressure boundary. A pressure of 160.125 kPa, corresponding to a 

water column of 6 metres, was imposed on this boundary. The other 

boundaries (Fig. 2) are considered no flow (impervious) 

boundaries. The reason for this is that the left hand side 

boundary passing through the repository is a streamline, while the 

other boundaries are considered to be located far enough from the 

repository, so that the conditions imposed on these boundaries are 

not affected by the local flow phenomena in the region of the 

repository. 

Such conditions correspond to an isolated cavern or to a system of 

parallel cavern located far enough from each other so that flow 

phenomena not interfere. The boundaries of the cavern are assumed 

pervious and not affected by the operations during the excavation. 

The rate of production of gas resulting from corrosion is estimated 

to be 20000 normal cubic metres per year. This rate of flow 

distributed over the length of the cavern of 160 m, results in a 

rate of 0.34 normal cubic metres per day and metre. In the model 

this rate of flow was generated by distributed sources in the 

two-dimensional cross section of the cavern. 

After filling the cavern the initial conditions of the flow through 

the aquifer will be reestablished. Neglecting the natural flow 

through the aquifer, these conditions correspond to a hydrostatic 

pressure distribution. This water pressure distribution and fully 

water saturated medium (S) were considered to be the prevailing 
w 

initial conditions (Fig. 8). 
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6. RESULTS 

The results of the calculations, the saturation distribution at 

different times of displacement and the pressure distribution at 

breakthrough, are presented in Figs. 5 to 8. 

In the empty cavern the gas formed in the cavern moves almost 

instantaneously upward and accumulates below the roof of the 

cavern. The gas penetrates the rock and displace water after a gas 

cushion of 0.4 m, corresponding to the assumed entry capillary 

pressure value, is formed below the roof of the cavern, 

In the cavern, during the all stages of displacement, the gas-water 

interface is absolutely horizontal and differs from Intera results 

with a slope of the interface increasing from the centre of the 

repository outward. 

The saturation distribution and the gas-water front (S = 1) at the w 
different stages of displacement, up to the breakthrough time 

equals to 0.6 days, is presented in Figs. 5 to 7. The gas 

advance, faster in the centre of the repository and slower at the 

edges, this way consistent to the expected physical behaviour. It 

differs from the results obtained by Intera with a faster advance 

at the edges of the repository and almost stagnant in the centre. 

The breakthrough time at the sea bottom is 0.6 days in comparison 

to 11 days obtained by Intera. 

Because of the large difference in the gas-water densities the 

displacement is limited to the near region to the repository. This 

means that the obtained results are relevant for a single cavern 

with lateral boundaries far for the repository, as well as for a 

system of parallel caverns located at a distance say two times the 

width of the cavern, 
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Pressure increases gradually in the cavern and reaches its highest 

value just before the breakthrough of the gas at the sea bottom. 

The present study indicates a maximum pressure increase in the 

cavern of 28.2 kPa. Intera reports an increase in the pressure in 

the cavern of 62 kPa after 2 days. That is to say considerably 

before the stated breakthrough time when the pressure is likely to 

have been much higher than after only 2 days. 
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