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Abstract 

The present report presents solutions to Hydrocoin Level 2: Case 1, 

dealing with thermal convection and conduction around a field heat 

transfer experiment. Hydrocoin is an international cooperation pro­

ject to compare different computer models used for describing 

groundwater flow in geolo~ical media. The purpose of the project is 

to improve the understanding of various strategies for modelling 

groundwater flow for the safety assessment of final radioactive 

waste repositories. 

The project is structured in three levels. The object of level 1 is 

to examine the numerical accuracy of the computer models compared. 

The object of level 2 is to study the capability of computer models 

to describe in-situ measurements. Level 3 is concerned with sensi­

tivity and uncertainty analysis of groundwater flow. 
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SUMMARY 

The present report presents solutions to Hydrocoin Level 2, Case 1: 

Thermal convection and conduction around a field heat transfer 

experiment. The calculations were carried out using the G~HRT-flow 

model for calculation of coupled flow of ~roundwater and heat in 

fractured rock. The model is used for the calculation oP 

groundwater flow at study sites included in the Swedish research 

program (Swedish Nuclear Fuel Co) for studying the final storage of 

radioactive waste in hard rock repositories. 

The GWHRT-model solves for one, two or three-dimensional saturated­

unsaturated flow of water and heat through a fractured rock mass, 

treated either as a single equivalent continuum or as two over­

lapping continua. Fluid density is assumed to be dependent of pres­

sure and temperature, while the dynamic viscosity of the fluid is 

assumed to be dependent of temperature only. 

Level 2, Case 1 

This case deals with transient thermal convection and conduction 

around a field heat transfer experiment, in which forced and free 

convection of water appear to perturb the temperature field due to 

thermal conduction through the rock. The object of the study is to 

simulate a heat transfer experiment that was performed in a disused 

granite quarry in Cornwall. An electrical heater was located in a 

cased borehole at a mean depth of 44.6 metres. The temperature was 

recorded at regular time intervals in sixteen boreholes at various 

distances around the borehole. The water table was generally 

located close to the surface. 

Three different levels were envisaged for the validation exercise: 

"Steady-state" and transient simulation of the experimental data 

and simulation with free interpretation of the data. The present 

study was limited to making some "trial and error" steady-state 

simulations to establish a set of base parameter values. A few pre­

liminary transient simulations including some variations with re­
gard to anisotropy of the permeability and the natural vertical 

gradient were also performed. 



- 3 -

The heater was represented by a series of point sources whose 

strengths were chosen such that a uniform heat source was applied 

to the left hand boundary. A set of preliminary calculations were 

carried out to establish a set of base parameters. Average para­

meter values were assumed for rock density and the specific heat of 

the rock. Permeability was taken to be the highest value and ther­

mal conductivity to be the lowest value of the ranges specified for 

these parameters. Variations from the base parameter values were 

checked with regard to anisotropy in the vertical direction and the 

natural pressure gradient. The agreement with the measured data was 

fairly good except for in the region close to the heater. 

The same parameter setting was also used for a tentative transient 

simulation. The number of power output intervals as given in the 

specification report was reduced to 23 non-equidistant intervals 

(instead of the about 110 intervals as prescribed in the specifica­

tion document) to make it possible to use larger time steps in the 

simulation than otherwise would be necessary. Visual inspection of 

the results showed that the time dependent temperature rises of the 

three thermometers in the observation boreholes could not be pro­

perly described using the parameter setting from the steady-state 

interpretation of the experimental data. 

It could also be noted that the temperature rise profile in the 

observation borehole was in less agreement with the measured data 

than for the steady-state simulation. This contradiction ~ay there­

fore question the definition of the equivalent "steady-state" con­

ditions based on the transient conditions and brings about the fact 

that the conditions at the quasi-steady state are due to a non­

linear process. 

No definite conclusions could be drawn from the present study as to 

whether additional physical phenomena should be included in the 

conceptual model such as changes in the stress field due to the 

high temperatures, about 300°c, at the heater. So far only a very 

small part of the parameter was checked with the present conceptual 

model. To investigate the problem in a more systematic manner 

requires that some automatic parameter identification technique be 

used. 
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The skewness of the measured temperature rise profiles around the 
observation borehole suggests that there may be some factor that 
influences the upward movement of the groundwater close to the 
borehole. Amon~ possible factors could he mentioned a local inhomo­
geneity, the natural pressure gradient or some stress effect as 
mentioned above that influences the upward movement of the ground­
water close to the borehole. 

Hydrocoin is an international cooperation project to compare 
different computer models used for describing groundwater flow in 
geological media. The purpose of the project is to improve the 
understanding of various strategies for modelling groundwater flow 
for the safety assessment of final radioactive waste repositories. 
The project is structured in three levels. The object of level 1 is 
to examine the numerical accuracy of the computer models compared. 
The object of level 2 is to study the capability of computer models 
to describe in-situ measurements. Level 3 is concerned with sensi­
tivity and uncertainty analysis of groundwater flow. 
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Introduction 

This case deals with transient thermal convection and conduction 

around a field heat transfer experiment, in which forced and free 

convection of water appear to perturb the temperature field due to 

thermal conduction through the rock. The test problem is defined by 

Hodgkinsonand Herbert (1, 2). The numerical results worked out in 

the present study are displayed graphically together with some of 

the measured data. 

The object of the present study is to simulate a heat transfer ex­

periment that was performed in a disusedgranite quarry in Cornwall. 

An electrical heater was located in a cased borehole at a mean 

depth of 44.6 metres. The temperature was recorded at regular time 

intervals in sixteen boreholes at various distances around the 

borehole. The water table was generally located close to the 

surface. 

The energy output from the heater was about 3 kW for the first 273 

days, raised to about 9 kW for the next 100 days. The the power was 

raised to a maximum of 14 kW and progressively reduced and turned 

off after 2048 days. There were numerous breakdowns of the heater 

during the five and a half year of operation. 

Three different levels were envisaged for the validation exercise: 

"Steady-state" and transient simulation of the experimental data 

and simulation with free interpretation of the data. The present 

stucty was limited to making some "trial and error" steady-state 

simulations to establish a set of base parameter values. A few pre­

liminary transient simulations including some variations with 

regard to anisotropy and the natural vertical gradient were also 

performed. 
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Flow model 

The numerical model used in the calculations was developed by 

Thunvik and Braester (3). The following set of equations is used in 

the calculations 

f f er) cj,p f ST~ t 
f k 

(p -
f 

0 ( 1) cj,p ( C + p - - ( p -ij p gj) = ,t µ ,j 

* • f f ( pC) T,t - 0 T,j) ,j + PC qiT,i + Q = 0 (2) 

where p is porosity, f is fluid density, f compressibili-p c is fluid 

ty, f 
is rock compressibility, Sis coefficient of thermal volume C 

expansion, T is temperature, k .. is the permeability tensor, µ is 
.lJ 

dynamic viscosity, p is pressure, g is the acceleration of gravity 

and Q represents the heat source. 

* In the heat flow equation (pC) was defined as 

and 

* 
\ 

where f \ is the thermal conductivity. 

The flow equations are solved numerically using the Galerkin finite 

element method. The algebraic system of equations resulting from 

the Gauss integration over the elements is solved by Gauss elimina­

tion using the frontal method. 

Boundary and initial conditions 

For the fluid flow the boundaries are assumed to be no-flow bounda­

ry except on the top boundary, which is assumed to be at constant 

pressure. In cases where a vertical pressure gradient is applied 

contant pressure was applied to the bottom boundary according to 

the assumed gradient. 
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For the heat flow all boundaries are assumed to be no-flow bounda­

ries except at the boundary section where the heater is applied. 

Initially, the temperature is set equal to the ambient rock tempe­

rature all over the flow domain, i.e. 10.8°c. 

Input data 

The heater was represented by a series of point sources whose 

strengthswere chosen such that a uniform heat source was applied to 

the left hand boundary. Site parameter values as given in the spe­

cification of the present problem are presented in Table 1. A set 

of preliminary calculationswere carried out to establish, by simple 

trial and error, a set of base parameters (see Table 2). 

Average parameter values were assumed for rock density and the spe­

cific heat of the rock. Permeability was taken to be the highest 

value and thermal conductivity to be the lowest value of the ranges 

specified for these parameters. 

The base parameter values used in the calculations are presented in 

Table 2. Variations from the base parameter values were checked 

with regard to anisotropy in the vertical direction and the natural 

pressure gradient. 

The parameter values of the variations performed are summarized in 

Table 4, where SO and S1 represent solutions for a constant heat 

source and T1, T2, T3 and T4 represent transient solutions for a 

time dependent heat source. 

The solution was worked out using a mesh of 209 elements and 688 

nodes. The mesh used is shown in Figure 1. The radial extent of the 

flow domain considered was 50 metres and the distance from the 

ground surface to the bottom of the aquifer was 100 metres. The 

length of the heater was 4.6 metres and it was located at a mean 

depth of 44.6 metres. 



- 7 -

Table 1. Site parameters 

Symbol Parameter Value Unit 

Ar thermal conductivity 3.3 =. 0.3 -1 -1 Wm K 
r rock density 2630 .:!:. 25 -3 p kgm 

er rock specific heat 820 + 100 Jkg-1K-1 
- -14 2 k permeability 3.5-40x10 m 

Table 2. Base parameters values used in the calculations 

Symbol Parameter Value 

Rock parameters 

k 

porosity 

rock compressibility 

thermal conductivity 

rock density 

specific heat capacity 

permeability 

0.0001 

o.o 

3.0 

2.630 

820 

4.0x1o-13 

Fluid parameters 

* (pc) 

fluid compressibility 10-10 

thermal conductivity 0.6 

expansion coefficient 3.85*10-4 

fluid density (see function) 

fluid viscosity (see function) 

specific heat capacity 4180 

average value of thermal 

thermal conductivity 

average value of density 

times specific heat 

Unit 

-1 Pa 
- 1 -1 Wm K 
-3 kgm 

Jkg-1K-1 
2 

m 

-1 Pa 
-1 -1 

Wm K 

K-1 

kg-3 
-1 -1 kgm s 

Jkg-1K-1 

-1 -1 Wm K 
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The following function for density was used in the calculations (2) 

where 

y 
p 

= (T /(T + T + 273.2) -1) 113 
p 0 

and the following function for viscosity was used (2) 

µ(T) = µRexp (b 1y11 + y~(b2 + y~(b3 + b4y11 
where 

y = (T /(T + T + 273.2) -1) 113 
µ µ 0 

The various constants appearing in these expressions (a, b, pR' .n n 
µR' T, T) are given in Table 3. p µ 

Table 3. Parameters appearing in the expressions for the temperature 
dependence of the density and viscosity of water 

Parameter Value 

PR 315.5 

a1 2.0233201 

a2 -0.49864401 

a3 -1 .0282498 

84 0.9465529 

a5 -0.30178144 
T 647.30 p 

39.06•10-6 JJR 

b1 1.5537 

b2 -0.20276 

b3 1.9107 

b4 -0.63486 

b5 0.0050468 
T 647.27 

µ 
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Table 4. Parameter settings 
1) 

Settin~ 

so 1 • 0 

S1 1. 0 

T1 1. 0 

T2 1. 0 

T3 1 .o 

T4 1. 0 

1)k =k *k 
X 11 ' 

1. 0 

1. 0 

1 .o 

1 .o 

5.0 

5.0 

Natural pressure 

gradient 

0.000 

0.025 

0.025 

0.000 

0.000 

0.025 
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Results 

The best steady-state solution was obtained for isotropic flow con­

ditions and a natural vertical pressure gradient of 0.025. This 

judgment was simply based upon visual inspection of the graphical 

display of the temperature rise profile along the obervation bore­

hole located at r:2.83 metres (see Figure 4). The agreement with 

the measured data is fairly good except for in the region close to 

the heater. 

The same parameter setting was also used for a tentative transient 

simulation. The number of power output intervals as given in the 

specification report was reduced into 23 non-equidistant intervals 

to make it possible to use larger time steps in the simulation than 

otherwise would be necessary (see Figure 6). Visual inspection of 

the results shows that the time dependent temperature rises of the 

three thermometers in the observation boreholes could not be pro­

perly described using the parameter setting from the steady-state 

interpretation of the experimental data. 

It could also be noted that the temperature rise profile in the 

observation borehole was in less agreement with the measured data 

than for the steady-state simulation (Figure 4). This contradiction 

may therefore question the definition of the equivalent "steady­

state" conditions based on the transient conditions and brings 

about the fact that the conditions at the quasi-steady state are 

due to a non-linear process. 
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The results for isotropic permeability and zero natural vertical 

gradient showed less agreement between the numerical and the re­

corded data in comparison with the results for a natural gradient 

of 0.025. The calculated temperature rise is too high for the 

middle thermometer and slightly too low for the top thermometer 

(see Figure 12). The temperature rise profile at quasi-steady state 

is shifted downwards in comparison with the measured data (see 

Figure 13). 

The results for vertical anisotropy and zero natural vertical gra­

dient showed better agreement at quasi-steady state than for iso­

tropic permeability and a gradient of 0.025 (Figure 18). The cal­

culated time dependent temperature rise of the top thermometer is 

in rather poor agreement with the measured data and the behaviour 

is characterized by exaggerated temperature responses to the 

changes of the power output (see Figure 17). Moreover, the curves 

for the middle and top thermometers are crossing one another after 

about 1500 days. The results for both vertical anisotropy and an 

imposed vertical gradient were even worse than for the previous 

case. 

No definite conclusions could be drawn from the present study as to 

whether additional physical phenomena should be included in the con­

ceptual model such as changes in the stress field due to the high 
0 temperatures, about 300 C, at the heater. So far only a very small 

part of the parameter space has been checked for the present 

conceptual model. 

To investigate the problem in a more systematic manner requires 

that some objective criteria be established. Furthermore, in order 

to study the effects of several parameters simultaneously, it be­

comes necessary to apply some automatic technique for the parameter 

search so that the simultaneous interaction of several parameters 

could be studied in an objective way. 

The skewness of the measured temperature rise profiles around the 

observation borehole suggests that there may be some factor that 

influences the upward movement of the groundwater close to the 

borehole. Among possible factors could be mentioned a local 

inhomogeneity, the natural pressure gradient or some stress effect 

as mentioned above that influences the upward movement of the 

groundwater close to the borehole. 
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Figures 

Figure 1. Schematic illustration of the flow problem. 

Figure 2. Element grid used in the calculations. 

---------- Case S1 ------------------------------------------------

Figure 3. Power output from the heater. Permeability is isotropic 

and the natural vertical pressure gradient is 0.025. 

Figure 4. Time dependent temperature rises of the top (z=9.4 m), 

middle (z:1.0 m) and bottom (z=-7.4 m) resistance ther­

mometers in the observation borehole (r=2.83m). Permea­

bility is isotropic and the natural vertical pressure 

gradient is 0.025. 

Figure 5. Temperature rise profile at the observation borehole 

(r:2.83 m). Solid line denotes simulated value and aste­

risks denote measured values. Permeability is isotropic 

and the natural vertical pressure gradient is 0.025. 

Figure 6. Temperature contour plot of the area around the heater 

for steady-state solution. Permeability is isotropic and 

the natural vertical pressure gradient is 0.025. 

Figure 7. Flow velocity plot for transient solution after 1475 days. 

Permeability is isotropic and the natural vertical 

pressure gradient is 0.025. 
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---------- Case T1 ------------------------------------------------

Figure 8. Time dependent power output from the heater. Permeabili­

ty is isotropic and the natural vertical pressure gra­

dient is 0.025. 

Figure 9. Time dependent temperature rises of the top (z=9.4 m), 

middle (z:1.0 m) and bottom (z=-7.4 m) resistance ther­

mometers in the observation borehole (r=2.83 m). Permea­

bility is isotropic and the natural vertical pressure 

gradient is 0.025. 

Figure 10. Temperature rise profile at the observation borehole 

(r:2.83 m). Solid line denotes simulated value and aste­

risks denote measured values. Permeability is isotropic 

and the natural vertical pressure gradient is 0.025. 

Figure 11. Temperature contour plot of the area around the heater 

for transient solution. Permeability is isotropic and 

the natural vertical pressure gradient is 0.025. 

Figure 12. Flow velocity plot for transient solution after 1475 days. 

Permeability is isotropic and the natural vertical 

pressure gradient is 0.025. 
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---------- Case T2 ------------------------------------------------

Figure 13. Time dependent power output from the heater. Permeabili­

ty is isotropic and the natural vertical pressure gra­

dient is 0.000. 

Figure 14. Time dependent temperature rises of the top (z=9.4 m), 

middle (z:1.0 m) and bottom (z=-7.4 m) resistance ther­

mometers in the observation borehole (r=2.83 m). Permea­

bility is isotropic and the natural vertical pressure 

gradient is 0.000. 

Figure 15. Temperature rise profile at the observation borehole 

(r=2.83 m). Solid line denotes simulated value and aste­

risks denote measured values. Permeability is isotropic 

and the natural vertical pressure gradient is 0.000. 

Figure 16. Temperature contour plot of the area around the heater 

for transient solution. Permeability is isotropic and 

the natural vertical pressure gradient is 0.000. 

Figure 17. Flow velocity plot for transient solution after 1475 days. 

Permeability is isotropic and the natural vertical 

pressure gradient is 0.000. 
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---------- Case T3 ------------------------------------------------

Figure 18. Time dependent power output from the heater. Permeabili­

ty is vertically anisotropic and the natural vertical 

pressure gradient is 0.000. 

Figure 19. Time dependent temperature rises of the top (z=9.4 m), 

middle (z=1.0 rn) and bottom (z=-7.4 m) resistance ther­

mometers in the observation borehole (r=2.83 m). Permea­

bility is vertically anisotropic and the natural verti­

cal pressure gradient is 0.000. 

Figure 20. Temperature rise profile at the observation borehole 

(r=2.83 m). Solid line denotes simulated value and aste­

risks denote measured values. Permeability is vertically 

anisotropic and the natural vertical pressure gradient 

is 0.000. 

Figure 21. Temperature contour plot of the area around the heater 

for transient solution. Permeability is vertically an­

isotropic and the natural vertical pressure gradient is 

0.000. 

Figure 22. Flow velocity plot for transient solution after 1475 days. 

Permeability is vertically anisotropic and the natural 

vertical pressure gradient is 0.000. 
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---------- Case T4 ------------------------------------------------

Figure 23. Time dependent power output from the heater. 

Permeability is vertically anisotropic and the natural 

vertical pressure gradient is 0.025. 

Figure 24. Time dependent temperature rises of the top (z=9.4 m), 

middle (z:1.0 m) and bottom (z=-7.4 m) resistance ther­

mometers in the observation borehole (r=2.83 m). Permea­

bility is vertically anisotropic and the natural verti­

cal pressure ~radient is 0.025. 

Figure 25. Temperature rise profile at the observation borehole 

(r=2.83 m). Solid line denotes simulated value and aste­

risks denote measured values. Permeability is vertically 

anisotropic and the natural vertical pressure gradient 

is 0.025. 

Figure 26. Temperature contour plot of the area around the heater 

for transient solution. Permeability is vertically an­

isotropic and the natural vertical pressure ~radient is 

0.025. 

Figure 27. Flow velocity plot for transient solution after 1475 days. 

Permeability is vertically anisotropic and the natural 

vertical pressure gradient is 0.025. 
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18G1-YXPRTGPL 8?8212 9.31 Graph 1 
(GUHOT1J - Flow vector plot Time ~tep 3 Graph l/le1 YXPRTBLD.GUT1B3 
Simulation time (year5) 4.838 Step no 39 
GUHDT1 - Heater te5t - RxJ-5ymmetrlc saturated llou - Kx•f, Kz•1 
1838-YXPRTGTf Execution Date: 8?8212 Time: 9.19.8~ 
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GMHDT2 - Heater test - Rxi-symmetrlc flow - Kx•1, Kz•1 - Zero gradi nt -
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432-YXPRTGPL 8?8213 18.12 Graph 1 
(GUHDT2J - Flaw vector plot Time ~tep 3 Graph file: YXPRTBLD.GUT2D3 
Simulation tlma (yaara) 4.838 Stop no 39 
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1G24-YXPRTGT2 Execution Date: 8?8212 Time: 28.1G.4? 
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G~HDT3 - Heater test - ~xl-symmelric saturated flow - Kx•1, Kz•~ 
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686-YXPRTHT3 878213 12.83 Graph 1 Graph file: YXPRTBLD.G~T3B1,2 

GUHDT3 - Heater lest - AxJ-5ymmetric saturated flaw - Kx=1, Kz•5 
16e5-YXPRTGT3 Execution Date: 878212 Time: 28.83.B3 
Slmulatian time 1475.8 (days) - Time 5tep: 39 
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86-YXPRTHT3 878e13 12.83 Graph 1 Graph flle: YXPRTBLD.GMT3B1~ei 

MHDT3 - Heater test - AxJ-symmetrlc saturated flow - Kx:1~ Kz•S 
1625-YXPRTGT3 Execution Date: 8?8e1e Time: eB.83.83 
Simulation tlme 1475.8 (days) - Tlme step: 39 
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GUHDR3R1 - Heater test - Rxl-symmetrlc saturated flow - Kx 0 1, Kz•S 
133?-YXPRTGD3 Execution Date: 878289 Time: 13.23.52 
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G~HDR3R1 - Heater test - Axl-symmetrlc saturated flow - Kx•1, Kz•5 
133?-YXPRTGD3 Execution Date: 8?8289 Time: 13.23.52 
Simulation time t•?5.B (days) - Time step: 39 
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64-YXPRTGPL 8?8211 13.29 Graph 1 

(GUHDT4J - Flow vector plot Time step 3 Graph file: YXPRTBLD.GUT4B3 
Simulation time (yoars) 4.838 Step no 39 
GUHDRJR1 - Heater test - Rxl-symmetrJc saturated Ila~ - Kx•1, Kz•S 
133?-YXPRTGDJ Execution Date: 8?8289 Time: 13.23.~2 
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