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ABSTRACT 

This report was prepared as an account of work 
sponsored by the Swedish Nuclear Fuel and Waste 
Management Co. The objective of the project was 
mainly a literature study of available methods 
for the treatment of parameter uncertainty pro­
pagation and sensitivity aspects in complete 
models such as those concerning geologic disposal 
of radioactive waste. The study, which has run 
parallel with the development of a code package 
(PROPER) for computer assisted analysis of func­
tion, also aims at the choice of accurate, cost­
affective methods for uncertainty and sensitivity 
analysis. Such a choice depends on several factors 
like the number of input parameters, the capacity 
of the model and the computer resources required 
to use the model. 

Two basic approaches are addressed in the report. 
In one of these the model of interest is directly 
simulated by an efficient sampling technique to 
generate an output distribution. Applying the 
other basic method the model is replaced by an 
approximating analytical response surface, which 
is then used in the sampling phase or in moment 
matching to generate the output distribution. Both 
approaches are illustrated by simple examples in 
the report. 
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1 . INTRODUCTION 

In the context of this paper, the goal of uncer­
tainty analysis is to measure the uncertainty in 
the outcomes of the model of interest as a func­
tion of the the uncertainty in the input vari­
ables, while the goal of sensitivity analysis is 
to identify the major contributors to this uncer­
tainty. 

In this context the model of interest is con­
cerned with the geologic disposal of radioactive 
waste. Thus the outcomes of the model might be 
doses for various nuclides as functions of time, 
maximum dose, time to maximum dose and/or inte­
grated doses. There are many input parameters, 
the values of which are not exactly known. There­
fore, this uncertainty is expressed as proba­
bility distributions. The objective of this paper 
is to give some guidelines for the selection of 
good, cost-effective methods to be used in the 
study of how the input uncertainty is propagated 
through the model resulting in an uncertainty of 
specific output variables. Several methods are 
also closely related to the sensitivity aspects, 
i e how much each input variable contributes to 
the total variation of the model output. 

There is a multitude of methods for the investi­
gation of uncertainty propagation. The selection 
of efficient methods depends on several factors 
such as number of input variables, the complexity 
of the model (linear, non-linear, continuous, 
discontinuous) and the computer resources re­
quired to use the model. Some possible approaches 
are outlined in Figure 4.1. 



4 

Based on extensive studies of the literature in 

this area, the authors of this paper believe 

that some kind of Monte Carlo technique probably 

must be used for the uncertainty analysis. To 

enhance the efficiency of the simulation tech­

nique there are many variance reduction methods 

available. One of these could be Latin Hypercube 

Sampling (LHS). LHS is a type of stratified Monte 

Carlo sampling, which in many cases yields a con­

siderable variance reduction compared with simple 

random sampling. LHS is also relatively easy to 

implement and, thanks to its stochastic nature, 

it can be used for direct estimation of the cumu­

lative distribution function (cdf). If the LHS 

technique is combined with a regression analysis, 

the resulting regression function is useful from 

the sensitivity analysis point of view. 
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2. TWO BASIC APPROACHES 

A large system such as PROPER is too complex to 

permit a simple analysis of uncertainties and 

sensitivities associated with the model. Presum­

ably one must start with a stepwise analysis, 

where the impact of uncertainty on individual 

submodels in the system is determined. There are 

many different methods for uncertainty and sen­

sitivity analyses. After a comprehensive study 

of the appropriate literature we want in this 

report to focus the attention on two basicly 

different approaches, namely the use of response 

surface replacement (RS) and the non-use of re­

sponse surface replacement (NRS). 

For this purpose it is convenient to think of 

the model as a function Y = g(X1 .... ,Xk)' where 

the variables x1 , .... , Xk are used to represent 

a variety of phenomena in the model. Uncertainty 

about these phenomena is assumed to be expressed 

as probability distributions. The objective of 

the uncertainty analysis is then to determine the 

variation or probability distribution of Y that 

results from the collective variation of the 

model variables x1 , ... , Xk. Thus the uncertainty 

in Y may be displayed as the cumulative distri­

bution function (cdf) of Y as a measure of the 

variability range of Y. In addition to the cdf 

one may be interested in quantities like the mean 

or median of Y, the variance of Y, and the lower 

and upper 5 % quantiles of Y. 

Another natural question is which variable or 

variables contribute most to the uncertainty in 

Y? Sensitivity analysis is performed in order to 

identify the important contributors to uncer­

tainty in Y. 
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The PROPER system under development is expected 
to be characterized by 

many input variables 

correlations exist within couples or 
larger groups of input variables 

the model is time consuming to run on a 
computer 

model outputs are nonlinear and 
time-dependent functions of the input 
variables. 

This paper shortly describes two basic approaches 
to uncertainty and sensitivity analysis, and dis­
cusses their advantages and limitations: 

2.1 

The model Y = g(X) is replaced with an 
approximating response surface 

Direct estimate of the cdf for Y 
without response surface replacement 

Response surface replacement (RS) 

The variation of the computed model output as a 
function of the input perturbations is called 
the response surface. The equation representing 
this surface is called the response surface 
equation. In practice, this true response sur­
face Y = g(~) very often must be replaced with 
a simpler and approximating surface. In the 
following we use the term 11 response surface" to 
denote the approximating function while the 
original function is simply called the model. A 
common approach is a second-order polynomial 

~ y = b 
0 

k 
+ I b. Z. + 

i=l i i 

k k 
I Lb .. Z. Z. 

i=l j=l iJ 1 J 
(2. 1) 

where Y is the response surface estimate and Zi 
denotes the j_'th input variable x. or its dimen-

1 
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sionless value (X.-µ. )/a. or some other trans-
1 l l 

formation of x .. The coefficients b , b. and l O l 
b .. are estimated by least-squares fitting lJ 

k 
I 

i=l 
(Y. - Y. )2 = min 

l l 

or by generalized interpolation schemes. The 

normalization quantitiesµ. and a. denote the 
l l 

nominal (best-estimate) value and standard 

(2.2) 

deviation respectively of the i'th input vari­

able. 

The equation (2.1) is a multivariable Taylor 

series expansion of second order, which in 

principle allows a second-order error propaga­

tion analysis. For nonlinear models, this kind 

of analysis is required at the very least. 

When the coefficients of Eq (2.1), which are 

proportional to the partial derivatives of a 

Taylor series expansion about the nominal values, 

have been evaluated, one has an approximating 

response surface equation, which can be used to 

produce a cdf for Y and various central charac­

teristics of that distribution. The coefficients 

themselves can be used for ranking of the input 

variables. Thus if we succeed to find a satisfac­

tory response surface, most of the information 

about the original model is concentrated into 

that surface. All subsequent uncertainty and sen­

sitivity analysis is therefore based on the re­

sponse surface. For instance, mean, variance and 

even higher moments for Y are easy to derive from 

the polynomial form (2.1), based on the corre­

sponding moments of the input variables. A prac­

tical way to compute the entire distribution of 

Y is described below. The most difficult step in 
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the response surface generation is to select 

values of the input variables in such a way that 

the necessary information is obtained with as few 

computer runs as is practical. Different statis­

tical designs of experiments are available: com­

posite design with sequential implementation, 

Resolution IV fractional factorial designs supp­

lemented with star points (those obtained when a 

single parameter is perturbed while the remainder 

are fixed at their nominal values). References to 

these designs are given by Cox (1977), who also de­

scribes an application of the Resolution IV design 

to the determination of peak cladding temperature 

with 7 input variables and 57 computed responses. 

Resulting responses were fed into a linear step­

wise regression analysis subroutine resulting in 

a satisfactory response surface equation with an 

R-square statistic of 0.89. The subsequent deter­

mination of the cdf was performed either by a 

crude Monte Carlo Sampling from the response sur­

face equation or by a moment matching technique. 

In case of the latter, the moments of the distri­

bution of Y were computed by the use of the SOERP 

code (Cox & Miller 1975) and matched to those of 

a specific Pearson distribution family. 

Another, basicly different experimental design 

is the knot-point selection scheme by Vaurio & 

Mueller (1977) and Vaurio (1981). Starting from 

a second-degree response surface of the type 

(2.1), the unknown coefficients are determined 

by a multivariate generalization of the Lagrange 

interpolation scheme. This means that a set of 

1+2k+k{k-l)/2 knot-points are selected at which 

the approximation Y is made equal to the actual 
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values of Y. The set of knot-points consists of 

a central reference point, two extreme points 

for each input variable and k(k-1)/2 interjacent 

points for the description of the interaction 

effects. There are different variants of the 

knot-point selection schemes. A single-quadrant 

response surface (SQ) is a single polynomial 

covering the entire parameter space. A multi­

quadrant surface (MQ) is obtained when region­

wise (one per quadrant) surfaces are combined. 

This approach leads to a better approximation.at 

the price of a nearly fourfold number of knot­

points. Even random selection of the knot-points 

with least-squares fitting is possible in the 

PROSA-code developed by Vaurio (1981). This fea­

ture allows both second-degree response surfaces 

(RF2) and third-degree response surfaces (RF3) 

to be fitted to the data. Maximum positive and 

negative errors as well as the mean-square error 

of the fitted response surfaces can be calculated 

in the knot-points. 

In Vaurio (1981) it is stated that the simplest 

response surfaces, SQ and RF2, are normally used 

when k is large, while the more refined surfaces, 

MQ and RF3 are used with small k, possibly after 

the less important variables have been eliminat­

ed. Concerning the accuracy, one can expect (and 

has been verified) RF2 to be more accurate in the 

central part of the distribution while SQ may 

be more accurate in the tail area, as a conse­

quence of the knot-point selection schemes. MQ 

and RF3 should be superior to the others, since 

they are more flexible in predicting the true 

functionality of the model. 
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The Latin Hypercube Sampling (LHS) technique, 

which is described in the next section, can also 

be used as a method to select the values of input 

variables for the determination of the response 

surface. One advantageous feature of LHS with re­

spect to the response surface approach is the 

forced spread of sampled values inherent in the 

method. However, as Iman & Helton (1985) assert, 

there is little incentive to fit a response sur­

face based on the LHS-technique because this 

sampling method is efficient enough to directly 

obtain the desired estimates. 

In general, the accuracy of the response surface 

can be improved by making functional transforma­

tions of the consequence and/or input variables. 

Thereby one is able to use a simple polynomial 

form for the response surface rather than a more 

complicated function in the original variables. 

However, the search for suitable and efficient 

transformation is by no means any simple task. 

It requires a relatively good knowledge of the 

dependency between the model output and at least 

the most important input variables. It is quite 

clear that such a knowledge must be achieved in 

an iterative way, a procedure that scarcely can 

be automated. 

As a summary of the above, the following advan­

tages and limitations with the response surface 

methodology may be mentioned: 

Advantages: 

The response surface itself is very useful in 

the sensitivity analysis involving determination 

of the response Y to changes in the input vari-
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ables ~. There are several ways to measure this 
influcence of individual variables, as e.g. stan­
dardized regression coefficients, partial corre­
lation coefficients, normalized partial deriva­
tives, and contribution to variance. A discussion 
and comparison of these measures can be found in 
Iman & Helton (1985). The purpose of these dif­
ferent measures is to facilitate a ranking by 
importance of the input variables. 

Limitations: 

The necessary number of points in the input 
parameter space is growing fast with increasing 
dimensionality k. 

It is difficult to choose, from a set of many 
different experimental designs, one input value 
selection scheme which best suits the features 
of the appropriate model. 

It is also a difficult step to look for effici­
ent functional transformations, which very often 
will be necessary for the approximation of com­
plex models with simple polynomial forms. 

The uncertainty distribution of Y cannot be 
estimated directly from the responses derived 
from the input values in cases where these are 
selected systematically. 

2.2 No response surface replacement (NRS) 

Trying to estimate the distribution of Y without 
using a response surface the aim is to describe 
the variability in Y with as few computations of 
Y as possible. As in generating a response sur­
face the problem is to select values for the in-
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put parameters. In 2.1 deterministic models to 

select input values were described and some ran­

dom sampling models were mentioned. Here a method 

called Latin Hypercube Sampling (LHS) will be ex­

plained. This method can be used both with and 

without the generation of a response surface but 

here we will only examine the method of point 

selection. 

Given a function Y =g(~) and a known distribu­

tion for each one of the input variables 

Xi (i = 1, ... ,k) we want to assign values to 

each Xi, N number of times, to be able to make N 

calculations of Y. In LHS the range of each x. 
l 

is then divided into N equal probability inter-

vals, where the range is determined according to 

the distribution of each Xi. The following 

example will illustrate the LHS method. 

Suppose k = 3 so Y = g(X1 , x2 , x3 ) and N = 4, 

the number of intervals 

Figure 2.2.1 

The range for the three input variables. Each 
range is divided into four intervals with equal 
probability. 

As can be seen from Figure 2.2.1 the intervals 

can have different lengths depending on the 

distribution of each Xi. The size of the inter­

vals are selected to give the same probability 

to each one of them. For example a uniform dis­

tribution will have equally long intervals and 
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a normal distribution will have shorter intervals 

in the middle of the range. Now the LHS method 

selects one interval randomly for each variable 

and then the actual value is randomly selected 

within each interval. In the next step the inter­

vals already chosen can not be selected so this 

is a random sampling without replacement. In 

this way the method assures a selection also of 

extreme input values even for small samples. The 

method is illustrated in Figure 2.2.2 . The 

method is described in detail by Mc Kay, Conover 

and Beckman (1979). 

Xl: ~ 
I 

+ 
I 

0 0 

X2: + 0 * □ 

X3: 0 ,o ~ + 
I 

0 = sample element 1 
* = II - 2 
+ = II - 3 
C = 11 _ 4 

Figure 2.2.2 

One possible outcome of a LHS for three variables 
and four intervals. 

Since our aim is to estimate the distribution of 

Y = g(~) we do need a sample size which gives a 

desired confidence in the estimated distribution 

parameters. In practice, the choice of the sample 

size is dependent on both the number of variables 

k and how complicated the function g(~) is. In 

chapter 5, the precision of the estimates for 

the 5 % upper and lower percentiles for a speci­

fied function g(~) is examined when using LHS 

with 20 intervals. Also a comparison between the 

precision in the LHS and a crude random sampling 

is being done. 
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The LHS method has been used in several analysis 

and is reputed to be a very good and useful tool 

as a sampling technique. In McKay, Conover, 

Beckman (1979) there is a comparison of three 

sampling methods. 

1 

2 

3 

Crude random sampling 

Stratified sampling 

Latin hypercube sampling 

Some conclusions in that report are 

LHS gives an unbiased estimator of the 
mean and the cumulative distribution 
function (cdf) of Y 

the estimates based on LHS appear to be 
more precise in general than the other 
two types of estimates. 

Also Iman & Helton (1985) prefer the LHS because 

it is more efficient than simple random 
sampling (the degree of superiority 
varies from case to case) 

having a probabilistic basis, it can 
provide direct estimates for the mean, 
variance and cdf 

it allows the input of correlated input 
variables to the model. 



3. 

15 

SOME GENERAL CONCEPTS RELATED TO MONTE 

CARLO TECHNIQUES 

In principle a Monte Carlo procedure can be in­

terpreted as a method for evaluating an integral. 

An intuitive justification for this interpret­

ation can be given by the way in which the Monte 

Carlo method works. The simulation is exercised 

numerous times and conclusions about the process 

are drawn by averaging the individual outcomes. 

But averaging is a means for estimating particu­

lar types of integrals known as expectations, 

McGrath & Irving (1975). 

Let us denote the model by 

y = g(~), (3.1) 

where the vector~ represents the k input para­

meters, the uncertainty of which affects the out­

come Y. If f(X) denotes the probability density 

function (pdf) of~ then the objective of the 

Monte Carlo simulation may be to estimate the 

integral 

I= E[g(~)] = I g(~)f(~)~ (3.2) 

A crude Monte Carlo method means that a random 

sample ~ 1 , ... , ~ is selected from f(~) and I is 
estimated by the sample mean 

1 N 
I = l g(X. ) 

N i=l -1 
( 3. 3) 

AccordingAto the law of large numbers, the 

estimate I conv~rges to I in most cases. It is 

also true that I is a random variable and that 

the expected value satisfies 
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E [I] = I, ( 3. 4) 

i.e. I is an unbiased estimator of I. 

The population variance 

a 2 = E [g(~)- I] 2 (3.5) 

is commonly estimated by the sample variance 

1 N 
52 = N-1 l 

i=l 

" 
[g (X.) - I] 2 

-1. 

A basic measure for the effectiveness of the 

estimator is 

(3.6) 

a~= E [I - !] 2 

I 
( 3. 7) 

For stochastically independent histories it is 

easy to see that 

a~= 
I 

a2 

N 

and since a 2 is estimated by 8 2 , an unbiased 

estimate of the efficiency measure is obtained 

by 

s2 = 52 
N 

= (3.9) 

The question of efficiency can also be con­

sidered in terms of uncertainty intervals. From 

basic statistics it is known that the estimate 

I with high probability will fall between 

I - za/✓N and I+ za/✓N, where z is some con­

stant. Thus for fixed z, the precision of the 

estimate is related to the number of histories 

N, and the variance of g(Y' 
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The disadvantage of increasing the accuracy of 

the estimator by increasing the number of histor­

ies is quite obvious. The other possibility is 

to reduce the variance (a) associated with each 

observation. 

Let us assume there are two simulation methods 

for estimating the same parameter I. Let the 

variances per history be ai and a; respectively 

and the computing time per history t 1 and t 2 . 

Then the relative efficiency of the two simu­

lation methods is given by the ratio of the com­

puting times required to achieve the same pre­

cision: 

(3.10) 

Because in most applications a variance reduction 

method is being compared to crude sampling, t 1 
and a 1 2 would be the quantities obtained when 

crude Monte Carlo is used. Further, because 

ai and a; are rarely known, the relative ef­

ficiency must be estimated by 

(3.11) 

In case of random sampling it is well known that 

the estimators (3.6 and 3.9) are unbiased esti­

mators of the variance of g(~) and I respect­

ively. However, the use of many variance re­

duction techniques, such as LHS and other strati­

fied sampling methods, Russian Roulette and 

splitting, correlated sampling or antithetic 

variates, will not produce histories that are 

stochastically independent. Then in many cases 
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it is possible to group the histories into 

batches such that the batches are independent 

and equivalent, while the samples within a batch 

may be correlated with each other. If the samples 

g(~1 ), .... g(~.) are contained in batch i, then 
l 

the average in that batch is 

I, = 
l 

N. 
1 l 

l g(X.) 
Ni j=l -J 

A final estimate of I is 

1 I = 

(3.12) 

(3.13) 

where NB is .the number of batches. An estimate 

of the corresponding a 2 can now be obtained from 

the "batch sample" variance 

52 = (3.14) 



1. Monte 
Carlo Simu­
lation 

TRUE 
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4. A COMPARISON BETWEEN RS AND NRS APPLIED 

TO SIMPLE EXAMPLES 

The problem to estimate the distribution of a 

complex function Y = g(X), with known distribu­

tions of the independent parameters~, is going 

to be further discussed in this chapter. The two 

basic approaches to the problem, Response Sur­

face Replacement (RS) and No Response Surface Re­

placement (NRS) are described in chapter 2. To 

further highlight the differences between methods 

we will apply them to four simple models. 

Six different methods will be tried to assess 

the distribution of Y, see Figure 4.1. 

/Y = g (~) I 
I - - - -· - ---~-- ------· 
I I 

3. Knot-Point 5. Latin 
selection and Hypercube 
Monte Carlo Sampl. and 

KP+MC 
Monte Carlo 

LHS+MC 

2. Latin 
Hypercube 
Sampling 

4. K 
sele 
Meth 

not-Poin 
ction an 
od of 
nts 

t 6 • Latin 
d Hypercube 

Sampl. and 

LHS 
Mome Method of 

KP+ MM 
Moments 

LHS+MM 
I I ! 

!Estimated distribution of Y 

Figure 4.1 

Six different ways to assess the distribution 
of Y. 
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Below the different methods are described in de­
tail. 

1) 

2) 

3) 

4) 

5) 

6) 

TRUE or MC, which is a Crude Monte Carlo 
simulation on the original expression 
Y = g(X). This means that random sam­
pling has been made for each parameter 
x. according to its distribution and 
cbrresponding values of Y have been cal­
culated. For TRUE this is done 20 000 
times to get the "true" distribution of 
Y and for MC 2 000 samples are used. 

LHS, Latin Hypercube Sampling where the 
variation of each input-parameter is 
split into 50 intervals. This means that 
there are 50 calculations of Y to esti­
mate its distribution characteristics. 

KP + MC, Knot-Point selection and Monte 
Carlo simulation on the response sur­
face Y = k(X). Here 28 points (knot­
points) are-used in the interpolation 
scheme to calculate the coefficients in 
the response surface. Then 20 000 Monte 
Carlo simulations are made on the 
response surface. 

KP + MM, Knot-Point selection and inter­
Eolation to get the response surface 
Y = k(X), which is the same surface as 
for the KP + MC method. With the "Method 
of Moments" the four first moments of Y 
are determined. In this case we have not 
calculated the distribution of Y, but 
using the calculated moments we could 
have adjusted a distribution of the 
Pearson family to Y. 
LHS + MC, Latin Hypercube Sampling and 
Monte Carlo simulation on the response 
surface Y = h(X). In this case 28 "LHS­
points11 are used in a least square fit­
ting to estimate the coefficients in the 
response surface h(X). The Monte Carlo 
simulation has been-made 20 000 times ~ on Y. 

LHS + MM, the response surface Y = h(X) 
is assessed with Latin Hypercube Sam-­
pling and least square fitting. By the 
"Method of Moments" the four first mo­
ments of Y are calculated and in the 
same way as for method 4, one can also 
adjust a Pearso:1 family distribution to 
these moments. 
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Methods 3 - 6 are included to illustrate that 

one must be cautious when using a response sur­

face to estimate the distribution of Y. The use­

fulness of response surfaces in general is 

treated in chapter 2. 

In the Response Surface Replacement methods 3 

and 5 a Monte Carlo (MC) simulation is made with 

Y to estimate the distribution of Y. An interest­

ing alternative to the MC-simulation is to use 

the Method of Moments, as in methods 4 and 6. In 

case of a second-order error propagation approach 

this method requires that 

1. 

2. 

Y is a function of at most second order 
with known coefficents and 

The first 8 moments shall be given for 
the independent variables. 

With these two requirements fulfilled the first 

four moments of Y can be calculated. There is a 

code SOERP to make these calculations, see COX 

(1977). With the four first moments given for Y 
one can find a distribution within the Pearson­

family having the same moments. This adjustment 

from moments to coefficients of a Pearson-type 

distribution is described by Cox and Miller 

(1976). 

The four examples mentioned earlier will now be 

penetrated and in chapter 6 some conclusions 

will be given. 

For each example the results are shown in a 

table where the following sample characteristics 

for Y will be examined: 
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Method 

Sample size 

Mean 

Std dev 

5 % perc 

95 % perc 

Skewness 

Kurtosis 

CPU-time 

Six different methods 

Sample size where 1 000 = 1' 

Estimated mean value 

Estimated standard deviation 

Estimated 5 % percentile 

Estimated 95 % percentile 

The ratio of the squares of the 
third and the second central 
moments, µ~/µ~. (For the normal 
distribution ~kewness = 0.) 

The ratio of the fourth and the 
squared second central moments, 
µ 4 /µ;. (For the normal distri­
bution kurtosis= 3.0.) 

Computer execution time. It is 
to be noted that the execution 
times are not directly compar­
able because different codes 
with varying preprocessing have 
been used. 

In some of the examples not all of these charac­

terictics are calculated. 

4.1 Example 1 

In this example Y has the form 

where all Xi are normally distributed with mean 

0 and variance 1. 

The functional form of Y has no physical meaning. 

Instead it is selected in order to have an exact 

distribution, namely chi-square with 3 degrees 

of freedom. Then we know that 
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E(Y) = 3 mean 

D(Y) = 2.45 standard deviation 

y = 0.35 5 % percentile .05 
y = 7.81 95 % percentile 

.95 
Skewness = 2.67 

Kurtosis = 7.0 

In Table 4.1 the corresponding values are calcu­

lated according to the six different methods 

described earlier. 

In Figure 4.2 the cumulative distribution func-

tion is plotted for four of the methods. 

Table 4.1 

Distribution characteristics for the six methods 
in example 1. 

Method Sample Mean Std 5% 95% Skew- Kurto- CPU 
size dev perc perc ness sis time 

(S) 

TRUE 20' 3.0 2.5 .35 7.8 3.1 8.4 21. 

MC 2' 3.0 2.4 .37 7 .6 3.2 8.9 2.4 

LHS so 3.1 2.5 .22 7.2 7.1 

KP+MC 28+20' 3.0 2.4 .SS 7.9 2.7 6.8 24. 

KP+MM 28 2.8 2.4 2.7 7.0 2.3 

LHS+MC 28+20' 3.0 2.5 .22 7.9 2.9 8. 1 30. 

LHS+MM 28 3.0 2.5 2.5 6.9 8.3 

A comparison of the mean and standard deviation 

shows there is no difference between the methods 

nor to the exact chi-square distribution. Coming 

further out in the tails of the distribution the 

agreement between the methods is not so good for 

the 5% percentile but nevertheless they seem to 

concentrate around the chi-square value. The 95 % 
percentile is better concerning both comparisons 

except for the LBS-method. 
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Skewness and kurtosis seem to indicate that for 

the surface methods the distribution is less skew 

and not so peaked as the distribution obtained by 

direct Monte Carlo simulation. On the other hand, 

in the former case those is a better agreement 

with the exact values. In particular, the agree­

ment is complete for the knot-point method com­

bined with moment matching, which is quite natural 

when the resulting response surface is considered. 

At this stage it is interesting to investigate 

the response surfaces estimated by the KP 

(interpolation) and LHS (regression) methods 

respectively. Notice that in both cases there 

are 28 points behind the estimation of Y and 

that Y is a function of at most second order. 

KP: y = k(~) x2 + 1 (X2+X2) + ! (X2+X2+X2) = 1 2 2 3 3 4 5 6 

- X X3 + 2 
(X4X5 + x4x6 + X5X6) 2 3 

LHS: y = h(~) = -0.02 0.13 x4 - 0.02 x6 + 

+ 0.98 x2 
1 + 0.58 x2 

2 + 0.53 x2 
3 + 0.39 x2 + 

4 

+ 0.51 x2 - 1.12 x 2x 3 + 0.42 x4x5 + 6 

+ o.50 x 4x 6 + 0.80 x 5 x6 

From the equations we see that the Knot-Point 

method gives back the original expression for Y 

which it should do. The LBS-method shows a dif­

ference to the original Y, specially the x5 
squared term is missing. This is due to the cut 

off value, selected in the regression process, 

to stop the inclusion of further variables. In 

this case the x5 squared term did not contribute 
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enough to the explanation of the variation of Y. 
still the coefficients are of the right magni­
tude and of the right sign and the Monte Carlo 
simulation on h(~) gives a very good correspon­
dence to the TRUE-distribution. 

Of course, in this case with such a simple form 
of Y, there is no need for a response surface 
but it is illustrative to see the results of the 
methods. 

From Figure 4.2 we can make the same conclusions 
as from table 4.1 that there are small differen­
ces between the methods. In the figure two "un­
certainty"-intervals are drawn, one for each of 
the 5% and 95% percentile. The 5% value has a 
narrow interval even though the relative devia­
tion is greater than for the 95% percentile. The 
95% percentile has a wider interval due to the 
low "LHS-value". One explanation to this, of 
course, is that behind the LHS-curve are only 
50 points which makes the curve more uncertain 
than the others with 20 000 points. By mere 
chance the curve of LHS + MM seems to agree 
better although it is based on only 28 obser­
vations. 

Remembering the separate expressions for g(~) 
and its response h(~) they are still just about 
the same in Figure 4.2 

4.2 Example 2 

The function Y has the form 

Y = x 1 + 2x2 + x 2 + 2x2 + x 3 + x4 
3 4 5 6 

where all Xi are uniformly distributed over the 
interval (0,2). 
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Here the form of Y has been chosen of order 4 to 

see how well a response surface of second order 

without variable transformation can "replace" it. 

The exact distribution of Y is not known so the 

Crude Monte Carlo simulation 20 000 times will be 

the best knowledge we have, the TRUE method in 

Table 4.2. 

As for example 1 a Table 4.2 and a Figure 4.3 

show the characteristics and the cumulative 

distribution respectively for the methods. 

Table 4.2 

Distribution characteristics for four of the 
methods in example 2. 

Method Sample Mean Std 5% 95% Skew- Kurto-
size dev perc perc ness sis 

TRUE 20' 12.2 5.6 4.5 22.9 .5 3.3 

MC 2' 12.2 5.6 4.5 22.9 .s 3.1 

LHS so 12.2 5.9 4.3 23.4 

KP+MC 28+20' 12.3 6.3 3.5 24.1 .3 2.9 

LHS+MC 20+20' 11. 4 4.4 5.2 19.6 .3 2.9 

CPU 
time 
(s) 

8.6 

1. 1 

5.9 

8.7 

15. 

In this example there is a good resemblance 

between the methods. The difference in Y_ 95 
between TRUE and LHS is 0.5 which is about 1/4 

of the statistical uncertainty in the estimation 

of Y_ 95 itself (see chapter 5). This means that 

the uncertainty due to method is smaller than 

the uncertainty due to sampling in this case. Of 

course the sample size in the LHS method, here 

50, could be increased to achieve a better pre­

cision. 
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The KP + MC method is practically identical with 

TRUE which is explained below when investigating 

the response surfaces Y. 

Here the least good agreement with TRUE is the 

LHS + MC method. As can be seen from the 5% and 

95% percentile values the LHS+MC distribution is 

more narrow and the mean is lower than for TRUE, 

see further in figure 4.3 

Some of the similarities and disagreements with 

TRUE just mentioned can be explained by looking 

at the response surfaces Y. 

KP: y k(~) 1.X1 2.X2 2.X5 6.X6 
2 = = + - - + 1.X3 

2 2 2 
+ 2.X + 3.X + 7.X 

4 5 6 

LHS: y = h(~) = 4.0 + 3.4 XSX6 + 1.2 x2 X4 + 

+ 1.9 xlx6 + 1.8 x2 - 1.4 x1x4 4 

For the KP method the generalized interpolation 

scheme yields an exact resemblance between the 

original Y and Yin the 28 knot-points. Notice 

that Y is of order four but in these 28 points 

it can for a certain set of coefficients, deter­

mined by the interpolation scheme, be exchanged 

by a function Y of order two. Then the overall 

resemblance is dependent on the behaviour in the 

area between the knot-points. In this example 

with well restricted variable ranges the resem­

blance seems to be good enough, at least regard­

ing the lower order moments. 

+ 
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The determination of a response surface with 

regression in the LHS + MC method was not so 

successful. Obviously, the sample size of 20 

points used in the LHS was not enough to ad­

equately describe the variation in Y. The degree 

of explanation in the regression was only 93 % 
(R2 ) compared to 99 % in example 1. 

In Figure 4.3 there are three things to point 

out. 

1. 

2. 

3. 

The distribution plot of LHS is not as 
smooth as the others, which depends on 
both the small number of calculations 
of Y and that all the necessary data are 
not available in the computer printout. 

The earlier mentioned systematic dis­
agreement for the LHS + MC method is 
illustrated very well. 

Also in this example the greatest error 
in Y due to method, is about 20 % . 

• Ci ' 

The uncertainty in estimating Y is not only 
• Ci 

due to the method but also to sampling technique 

i.e how to select values for the input parameters 

to get the best possible knowledge of the 

variation of Y. The precision of Y , due to 
• Ci 

sampling will be further discussed in the next 

chapter. 

4.3 Example 3 

The function Y has the form 

y = 
+ x3 

3 

where all Xi have a normal distribution with mean 

0 and variance 1. 
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In this example the aim is to make Y more complex 

by introducing a ratio, but still keep the re­

sponse surface Y of at most second order. The re­

sults are shown in Table 4.3. 

Table 4.3 

Distribution characteristics for the six methods 
in Example 3. 

Method Sample Mean 
size 

Std 5% 95% Skew- Kurto- CPU 

TRUE 

MC 

LHS 

KP+MC 

KP+MM 

LHS+MC 

LHS+MM 

20' 

2' 

20 

.04 

.04 

. 04 

28+20' . 04 

28 .04 

28+20' . 04 

28 .04 

dev perc perc 

.07 

.07 

. 05 

.07 

.07 

.05 

.05 

-.06 .15 

- . 06 . 15 

-.08 .12 

-.07 .16 

-0.4 .12 

ness sis 

.02 

.64 

.10 

.14 

.07 

.12 

49. 

12 . 

3.8 

3.9 

5.1 

5.3 

time 
(s) 

22. 

2.5 

7 . 

24. 

2.3 

28. 

7.3 

In Table 4.3 it is interesting to notice how well 

the LHS method estimates the characteristics with 

only 20 samples, despite the relatively complex 

expression for Y. The kurtosis is much greater 

for TRUE than the other methods, which indicates 

that information is lost in the tails of the 

distribution of Y. 

In this case the response surfaces are more in­

teresting to investigate since Y is a ratio and 

Y is only a polynominal of second order. 

KP: ~ -3 Y = k(~) = 10 [13. + 38.X1 + 48.X3 - l.X4 
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LHS: Y = h(~) = 10-3 [16. + 27.X1 + 22.X3 + 

For KP only terms with coefficients greater than 
or equal to 0.001 are shown in Y = k(~). In the 
LHS case only the terms shown in h(~) were se­
lected by stepwise regression rules for includ­
ing variables in the response surface. The degree 
of explanation is 96 % so the resemblance should 
be quite good. Nevertheless there is a consider­
able disagreement with respect to higher moments, 
which is shown, e.g. by the decrease in kurtosis. 

Doing a comparison of the response surfaces for 
KP and LHS it is noticeable that the constant 
term is about the same and that the three great­
est coefficients belong to the same variables. 

4.4 Example 4 

This is practically the same model as in example 3 

except that the distribution for the input vari­
ables is different. The Y model has the form 

where 

y = 

X ~ 1 
X ~ 2 
X ~ 3 
X ~ 4 
X ~ 5 
X ~ 6 

+ x3 
3 

log N (-.69,1) log normal 

U (2,10) 

N (0,1) 

U (50,100) 

N (5,3) 

N (0,1) 

uniform 

normal 

One reason for applying these three distributions 
was to test this facility in the codes. The three 
distributions normal, lognormal and uniform are 
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the only distributions that are available in all 

of the four codes used. The results for this y 

model are shown in Table 4.4. 

Table 4.4 

Distribution characteristics for the six methods 
in Example 4. 

Method Sample Mean Std 5% 95% Skew- Kurto- CPU 
size dev perc perc ness sis time 

(s) 

TRUE 20' .13 .10 .02 . 32 1.4 4.4 20 . 

MC 2' .12 .09 .02 .30 1.1 4.0 2.4 

LHS 20 .12 .08 .02 .27 8.3 

KP+MC 28+20' .13 .09 .03 .33 1.4 4.2 20 . 

KP+MM 28 .12 .08 . 6 2.9 2.3 

LHS+MC 28+20' . 11 .11 -.02 .32 .8 3.2 28 . 

LHS+MM 28 .00 .08 . 1 2.0 8.6 

Once again it is shown how well the different 

methods acts in the middle of the distribution 

and in this case they are fairly well even in the 

tails. The skewness and kurtosis indicate that 

the distributions get less skewed and flatter 

for the response surface methods. 

In this case with different distributions for the 

input parameters it is more difficult to interpret 

the coefficients of each term. To make the inter­

pretation easier each variable x. has been re-
1 

placed by zi = (Xi-µi) where µi = E(Xi). 

KP: Y = -3 k(~) = 10 [100.+4.z1 + 31.Z2 + 5.Z3 -

LHS: Y = h(~) -3 = 10 [101. + 31.Z2 - 2.z4 -
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As in example 3 only terms with coefficients 

greater than or equal to 0.001 are shown in the 
KP case. Both methods seem to agree that x2 has 
a great influence in the variability of Y. 

In the LHS case the stepwise regression stops 
after including 4 of the 27 possible terms of up 
to 2'nd order (X1 , ... ,x6 , xf, ... ,xi,x1x2 , ... ,x5x6 }. 
It is interesting to notice that neither x1 , x3 
nor x6 has any significant contribution to the 
variation in Y, and that the explanation value 

for this expression is 98 %. 
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5 MORE ABOUT PRECISION 

In the previous chapter methods were examined 

trying to find a method that estimates a distri­

bution as close to the "true" distribution as 

possible at a low cost (small computer time). 

Figures 4.2 and 4.3 show the uncertainty in the 

cumulative distribution function, due to the 

different methods. Even given a method, there is 

another uncertainty in this estimation due to the 

randomness in the sampling technique. This prob­

lem will be discussed under the following two 

points. 

1 

2 

Estimate the precision of the 5 % and 
95 % percentile values of Y for a given 
method and 

Compare the precision of Latin Hypercube 
Sampling (LHS) and simple random sam­
pling as is used in Crude Monte Carlo 
methods (MC) 

To investigate point 1 the same system as in 

example 2 will be used 

2 2 3 4 
Y = xl + 2X2 + X3 + 2X4 + X5 + x6 

where all x. are uniformly distributed over the 
1 

interval (0,2). 

In the case of a crude MC method the precision 

of the percentile values can be estimated, see 

Leverenz (1981). For the LHS method this seems 

to be more difficult to do. There is one simple 

but time consuming way, which have been tried in 

the following. 
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The LHS method have been repeated 25 times with 

20 intervals (calculations of Y) and different 

seed (random selection seed) each time. In this 

way 25 estimates of Y. 05 and Y. 95 have been made 
which enables the calculation of the mean and 
standard deviation for the percentiles. 

In Appendix 2 sample characteristics for the 25 

samples are shown. 

Y. 05 = 4.9 

s. 05 = o.8 
Y. 95 = 23.6 

s .95 = 1.8 

mean 

standard 
deviation 

One way to illustrate Y and it's precision is 
• CJ. - + by Y - S 

• CJ. • CJ. 
. These intervals are illustrated in 

Figure 5.1. 

Comparing Figure 4.3 and 5.1 we see that the un­
certainty due to modelling is of the same size 

as the uncertainty due to sampling. 

Under point 2 we want to compare the precision 
of the percentile estimators obtained above by 
repeated LHS to the corresponding precision 

measure for simple random sampling. In order to 
ease the comparison, let us consider 

and 

the 'true' percentile values (taken from 

the "TRUE" of example 2) Y.OS = 4.51 and 

Y. 95 = 22.91. 

the probability estimators pa= ua/N, 
where u observations in each sample of a 
size N are less than or equal to Y. 

CJ. 

From the 25 replicated LHS samples we obtain the 
following mean values and standard deviations 
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CJ 

5 % 
95 % 

E(!\) 

0.038 

0.942 

D ( ~ ) Pa 

0.039 

0.028 

In the MC case the variable u is binomially 
CJ 

( 5 . 1 ) 

~ B(N,a). Thus the corresponding distributed u 
CJ 

mean values and standard deviations can be writ-

ten 

CJ 

5 % 

95 % 

0.005 

0.95 

.J 0.05(1-0.05) 
NMC 

.J 0.95(1-0.95) 

NMC 
( 5. 2) 

By comparing the standard deviations in (5.1) 

and (5.2) as precision measures we can calculate 

the sample size NMC required to yield the same 

precision as the LHS method with sample size 

N = 20. The result of such a calculation is 

NMC = 31 for a= 5 % and NMC = 62 for a= 95 %. 

This result confirms what can be derived analyti­

cally, namely that LHS based estimators of a 

simple type, such as estimators for the mean and 

the cdf, have a smaller variance than correspond­

ing simple random sampling estimators. The degree 

of variance reduction varies from case to case. 

In the example above we notice a difference of 

factor 3 in sample size for the estimation of 

the 95 % percentile. 
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6. SUMMARY AND CONCLUSIONS 

The scope of this report is to investigate 

methods to be able to have control over the 

uncertainties in a complex function, Y = g(~). 

The work has been done through literature 

studies, examples etc described in the previous 

chapters. Here a summary is made over the most 

important results and questions, which we want 

to pay attention to. 

The objective of the uncertainty analysis for a 

model Y = g(~) is to determine the cumulative 

distribution function (cdf) of Yon the basis of 

the distribution functions for the input vari­

ables~- The purpose of the sensitivity analysis 

is to mutually rank the variables~ according to 

their contributions to the spread in the distri­

bution of Y. 

For economical reasons and from the sensitivity 

analysis point of view it may be useful to de­

termine an approximating response surface (RS) Y 
for the model g(~), Y ~ g(~). The calculation of 

a response surface can be done either with ran­

domly selected points (simple random sampling, 

Latin Hypercube Sampling LHS) and stepwise re­

gression or systematically selected knot-points 

(KP) and interpolation/least squares fitting. 

The cdf of Y can be determined either directly 

through randomly selected values of the input 

variables or by utilizing the simpler model Y. 

In this report, the different approaches men­

tioned above have been applied to four simple 

examples. Calculation of a RS seems to be more 

efficient with the KP-method than by the LHS-
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4) 

5) 

method in the very simple examples 1 and 2. In 

the ratio models, examples 3 and 4, it is more 

difficult to rank the methods from an efficiency 

point of view. Because of the simple nature of 

the examples, the experiences gained are far 

from being generally valid. However, the KP­

method could be applicable even for more complex 

models since there are possibilities to trans­

form both the input variables~ and the response 

Y. The same transformation technique can be used 

for the LHS method too. Then the strength of the 

stepwise regression procedure can be enhanced 

considerably. If the cdf is determined directly 

by LHS, the regression curve is used for ranking 

purposes only. In that case the requirements on 

an accurate RS are less severe. 

The estimation of the cdf of Y via a response 

surface Y must be done with great care. If Y 
does not reflect the variability of Y well 

enough, systematic disagreements in the distri­

bution functions will occur (see 4.2, Figure 4.3). 

The determination of the response surface can 

probably not be automated. 

Estimators of the form If(Y.) are unbiased when 
l 

Yi are selected both by simple random sampling 

and LHS. This type of estimator is used for the 

mean response E(Y) and the cdf of Y. If 

Y = g(X1 , ... ,Xk) is monotonic in each of its 

arguments, and f(Y) is a monotonic function of Y, 

the LHS-based estimator has a smaller variance 

than corresponding estimator based on simple 

random sampling. 

Estimators for the variance V(Y) and the percen­

tiles Y are not of this simple form. However, .a 
simulation studies (Mccay, Conover, Beckman, 
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1979) have shown that the bias of the variance 

estimator (3.6) is small and that this estimator 

for the LHS method has a better precision com­

pared to simple random sampling. Analogous re­

sults have been obtained in this report 

(Chapter 5) with regard to LHS-based estimators 

of the percentiles Y_ 05 and Y_ 95 . Thus there are 

certain evidences indicating that the LHS-method 

is an efficient variance reduction method. 

A comparison of methods should not only include 

the measured precision in some sample character­

istics but also the computer time to make the 

appropriate calculations. A measure of ef­

ficiency£ is suggested, 

£ = 

where t. = computer time by method i 
l 

a. = standard deviation by method i 
l 

(see Chapter 3, page 17). 

Until a better procedure is established, batch­

wise repetition of the sampling can be used to 

obtain estimates of the sampling precision (see 

Chapter 3 (3.14) in cases where variance re­

duction methods are used. 

The "contribution to variance" concept, being 

used in the stepwise regression analysis, is use­

ful for ranking purposes. In fact, it is equiv­

alent to standardized regression coefficients. 

In a pathway model analysis by Iman & Helton 

(1985) (which is much more realistic than the 

simple examples reported here) one draws similar 

conclusions. They state for instance, that a re-
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sponse surface based on a fractional factorial 

design (FFD) selection of points is good in some 

cases and poor in others.* The direct LHS 

method N = 50 and random sampling (N = 500) are 

in good agreement. 

A further conclusion in the analysis mentioned 

above is that direct variance estimates of type 

(3.6) tend to produce a more reliable measure of 

spread than do variance estimates based on res­

ponse surfaces. 

10) Response surface replacement based on systematic 

selection of knot-points is difficult to use in 

case of dependent input variables. For multi­

variate input structures LHS can be used to pro­

duce required rank correlations, according to 

Iman & Conover (1982). 

* The model contains 20 input variables, 
behaving independently and producing 
nonlinear output which is a monotonic 
function of each of the input variables. 
A FFD with N = 128 points was used. The 
generalized inter~olation sch~me for a 
second-degree response surface would 
have required N ·~ 231 pojnts. 
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APPENDIX 1.1 

COMPUTER CODES USED IN THE ANALYSIS 

In this report most of the calculations are done 

with special computer codes for the different 

methods. A brief discussion is presented in 

Appendix 1 on ea.eh one of the following codes 

Code 

PRISM 

SPASM 

PROSA-2 

SOERP 

Method 

LHS 

Crude Monte Carlo 

Knot Point 

Method of Moments 

Ref 

1 

2 

3 

4 

Within this project these four codes have been 

implemented at the Studsvik computer, where the 

calculations for the examples have been made. Both 

the PROSA-2 and the SOERP codes are also available 

at the NEA data bank. 

PRISM 

This code is developed to be a systematic method 

for determining the effect of parameter uncer­

tainties on model predictions. The code is a 

system of programs which is composed of three 

steps. 

In PRISM 1, the means, variances and covariances, 

type of distribution, and upper and lower limits 

of each parameter are given as input to define 

their probability density functions. With a known 

distribution for each parameter the Latin Hyper­

cube Sampling method is used to generate sets 

of random parameter values which are output to a 

file. 

PRISM 2 reads each set of parameter values, 

evaluates the model Y = g(~), and outputs the 

model predictions. 
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PRISM 3 statistically evaluates and summarizes 

the joint set of model parameters and predic­

tions. Also a stepwise regression analysis is 

performed to calculate a best response surface 

y = h(~). 

SPASM 

Originally the code was prepared along with the 

development of the WAM-series of codes, which is 

a Gode package for dealing with fault tree 

analysis. In our application SPASM has been 

given the function Y = g(~) and the distribution 

f.(X.) for each parameter x. as input. Then with l l l 
a crude Monte Carlo technique a sample of size N 

has been performed. The crude Monte Carlo tech­

nique means 

1 

2 

3 

Generate a random value R_; from a 
uniform distribution over (O, 1) 

z. 
Set R_; = Fi (Zi) = 00 lfi (X.) dX, 

l l 

where f.(X.) is the given probability 
densitylfot the parameter Xi 

Solve expression above for Zi, which is 
one sample value for x .. 

l 

From the N evaluations of Y the distribution is 

estimated. As output the code gives the cumulat­

ive distribution at specified levels. 

PROSA-2 

This code was originally developed because the 

use of so called response surfaces leads to con­

siderable savings in computer time in comparison 

to direct simulation with long running accident 

analysis codes within the nuclear reactor field. 
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The code contains a vast number of possibilities 

for different types of uncertainty and sensi­

tivity analysis. For the purposes of this report 

the following facilities of the code have been 

used. PROSA-2 uses a response surface technique 

for obtaining a probability distribution for a 

response Y = g(X). In this technique probability 

distributions are assigned to the parameters Xi. 

A limited number of parameter values (called 

knot points) are selected and input to Y = g(~). 

The results of the deterministic analysis are 

used to generate an analytical function 

Y = h(~), called response surface, which ap­

proximates the original function Y = g(~). The 

analytical function Y is then used in a Monte 

Carlo Type simulation to estimate the distri­

bution of Y. 

The response surface methodology of the code 

includes both systematical and random knot point 

selection schemes, second- and third-degree 

response surfaces, functional transformations of 

both input parameters and consequence variables, 

smooth synthesis of regionwise response surfaces 

and the treatment of random conditions for 

conditional distributions. 

SOERP 

The SOERP code is developed for determining the 

error propagation of uncertainties in the input 

parameters. The input for running the code is 

1 

2 

A function of at most second order, in 
our case the response surface Y is this 
function. 

The parameters of Y are independent and 
for each one of them the first eight 
moments shall be given. 



APPENDIX 1.4 

The output is the first four moments of the re­

sulting distribution. 
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25 REPETITIONS OF LHS 

To analyse the precision in the estimation of 

the a% percentile value, Y , using the LHS 
.a 

method, 25 repetitions of the LHS method with 20 

intervals were made. The system used is the same 

as in example 2 and the only difference between 

the repetitions is a new random seed value. In 

each repetition some of the distribution charac­

teristics of Y were estimated and are listed in 

Table 1. 

In Table 1 also the number of observations less 

than a given Z -value is noticed. This is done 
.a 

to estimate the precision of the probability of 

finding Y -values less than a given Z -value . 
. a .a 
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Table 1 

25 repetitions of the LHS method with 20 inter-
vals. The same system y = g(~) is used as in 
example 2. 

Repetition 5% 95% Nr of Nr of 
obs< obs < 

number Mean perc perc *)Z.05 **)Z .95 

1 12.3 5.74 23.07 0 19 
2 12.2 5.82 22.74 0 19 
3 12.1 3.60 23.44 1 18 
4 12.2 6.02 26.53 0 18 
5 12.2 4.86 22.93 0 19 

6 12.1 4.60 21.32 1 19 
7 12.2 4.44 21.17 1 19 
8 12.2 5.19 22.67 1 19 
9 12.2 6.77 25.98 0 19 
10 12.3 4.42 23.13 1 19 

11 12.0 3.97 22.03 3 19 
12 12.2 4.15 22.47 1 20 
13 12.3 5.70 22.99 0 19 
14 12.2 4.94 27.21 1 18 
15 12.2 5.15 24.89 0 19 

16 11. 9 3.98 22.16 2 19 
17 12.3 5.89 22.89 0 19 
18 12.2 3.99 22.26 2 19 
19 12.1 5.64 26.25 0 19 
20 12.3 5.66 22.16 0 19 

21 12.1 4.44 26.27 1 18 
22 12.2 4.94 25.64 1 19 
23 12.1 4.42 23.69 1 19 
24 12.3 4.54 21. 82 1 20 
25 12.2 4.26 25.50 1 18 

*) 
2 .o5 = 4.51 taken from TRUE, example 2. 

**) Z.95 = 22.91 II -
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