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SUMMARY 

A significant retardation of radionuclides transported by flowing 

water from an underground repository can be expected if the nuclides 

are able to diffuse into the water filled micropores in the rock. This 

diffusion into the pores will also increase the surface available to 

interactions between the nucl ides in the groundwater and the rock 

material, such as sorption. To calculate the retardation it is 

necessary to know the sorption properties and the diffusivities in the 

rock matrix for the radionuclides. 

Diffusion experiments with cesium and strontium in biotite gneiss 

samples have been performed. Both the transport of strontium and 

cesium through rock samples and the concentration profiles of cesium 

and strontium inside rock samples have been determined. The result 

shows that diffusion of cesium and strontium occurs in the rock 

material. 

A diffusion model has been used to evaluate the diffusivity. Both pore 

diffusion and surface diffusion had to be included in the model to 

give good agreement with the experimental data. If surface diffusion 

is not included in the model, the effective pore diffusivity that 

gives the best fit to the experimental data is found to be higher than 

expected from earlier measurements of iodide diffusion in the same 

type of rock material. This indicates that the diffusion of cesium ana 

strontium (sorbing components) in rock material is caused by both pore 

diffusion and surface diffusion acting in parallel. 

INTRODUCTION 

In Sweden and many other countries the most interesting alternative to 

dispose of the waste from nuclear power plants is to place the waste 

in deep underground repositories in crystalline rock. An eventual 

release of radionucl ides from the repository into the geosphere must 

then be considered. To decrease the risk of rapid release, a number of 

barriers will be introduced in the repository, e.g. a waste form of 
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low solubility, corrosion-resistant encapsulation material and back­

fill materials of low permeability and capable of radionuclide 

sorption. The major barrier would, however, be the host rock itself. 

If radionuclides are released from an underground repository they 

would be transported with the moving groundwater in fissures in the 

rock. Besides fissures the rock matrix contains micropores filled with 

stagnant groundwater. Diffusion of nuclides into the micropores can 

act as a retarding and diluting mechanism by removing the nuclides 

from the flowing groundwater in the fissures, Neretnieks [1980 ]. If 

the nuclides are also being sorbed on the rock material, the sorption 

may occur not only on the fissure surfaces but on the micropore 

surfaces in the rock body as well. 

The diffusivity of nonsorbing species in micropores in different rock 

materials has been studied by several investigators, Bradbury et al 

[1982], Wadden et al [1982], Melnyk [1983], Skagius et al [1985]. The 

effective diffusivity (pore diffusivity times porosity) was found to 

be of the order of 10- 14 m2/s to 10- 12 m2/s. 

The diffusivity of sorbing species in micropores in rock materials has 

also been studied previously. Skagius et al [1982a] studied the diffu­

sion of cesium and strontium in crushed granite. The effective 

diffusivity of both cesium and strontium was found to be on the order 

of 10- 12 to 10- 11 m2/s. Effective diffusivities of the same order of 

magnitude were found when studying the diffusion of cesium and 

strontium in granite plates, Skagius et al [1982b]. Bradbury et al 

[1985] studied the diffusion of cesium and strontium in sandstone and 

found the effective diffusivities to be of the order of l0- 11 m2/s to 

10-10 m2/s. 

In some of the above mentioned investigations, Skagius et al [1982b] 

and Bradbury et al [1985], the diffusivity of iodide, cesium and 

strontium has been determined in the same type of rock material. The 

bulk phase diffusivity of cesium and strontium in water is 

approximately the same as that of iodide. The measured effective 

diffusivity of strontium and cesium in the rock materials was, how-
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ever, tound to be about 10 times higher than the effective aiffusivity 

of iodide in the same type of rock materials. This could be due to a 

diffusional transport of the adsorbed component at thE: pore surfaces, 

surface diffusion, acting in parallel with the pore diffusion. 

This paper describes two types of diffusion experiments with cesium 

and strontium in a biotite gneiss. The results are compared with 

iodide diffusion data from experiments with the same type of biotite 

gneiss, Skagius et al [1985 ]. 

EXPERHliENTAL 

The rock material used in the experiments was from Fjallveden, located 

in central Sweden. The samples were taken from part of a drillcore 

which was from 508-509 meters depth. The rock material was a biotite 

gneiss containing dark stripes of quartz and biotite and light stripes 

of quartz and feldspar. 

Two types of diffusion experiment were performed. In the first experi­

ment, further referred to as the "in-diffusion" experiment, a piece of 

the rock corE: (diameter = 42 mm, length = 32 mm) was placea in 0.44 l 

of a 100 mg/1 cesium solution. Another piece ot the core (diameter = 

42 mm, length = 40 mm) was placed in 0.56 l of a 100 mg/1 strontium 

solution. The core in the strontium· solution and the core in the 

cesium solution were removed after 385 and 470 days respectively. 

From the center of each core a smaller core was drilled out (Figure 

1). The diameter of the new core was 22 mm, and the length the same as 

the original core. The new core was divided into halves and ,... 0.2 mm 

thick sections of one half of the core was ground off, starting at the 

surface that had been in contact with the solution. The amount of 

cesium or strontium in the ground material from each section was 

determined by atomic absorption spectrometry on the dissolved 

material, Analytica [1985]. 
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Figure 1: A description of the 

procedure to determine 
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By drilling out the smaller core 

from the center of the original 

core, the contribution of cesium 

and strontium in the smaller 

core caused by diffusion through 

the cylindrical surface was 

reduced or even eliminated. 

The second experiment, further 

referred 
diffusion" 

performed 

to as the "through-

experiment, was 

in the same way as 

earlier diffusion experiments 

with iodide, Skagius et al 

[1985]. A hole with the same 

diameter as the rock core was 

made in a 10 mm thick PVC­

plate. The piece of rock (i ~ 10 

mm) was fixed in the hole with 

silicon glue. The plate with the 

rock sample was then placed above a pan of distilled water in a vacuum 

chamber. A pressure close to the boiling point of water at ambient 

temperature (" 25 rrm Hg) was maintained for several hours, and then 

the PVC-plate with the rock sample was dropped into the water. After a 

week the PVC-plate with the rock sample was removea from the water. 

The micropores of the rock sample were now tilled with water. Two 

chambers made of transparent PVC were fastened on the PVC-plate, one 

on each side. One of the chambers was filled with distilled water and 

the other was filled with a solution containing cesium (0.1 mol/l = 

13.29 g/1) or stontium (O.l mol/l = 8.76 g/1). 

The concentration increase of cesium or strontium in the chamber that 

at the outset was free from the diffusing component was determined by 

atomic absorption spectrometry on small samples (1 ml). Each time a 

sample had been taken out, the same amount of distilled water was 

added to the chamber to keep the volume in the chamber constant. 
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After 315 days for cesium, and after 412 days for strontium, the 
diffusion experiments were stopped. The rock samples were removed from 

the PVC-plates. Small sections, - 0.2 mm thick, was then ground off, 
starting at the surface that had been in contact with the high 

concentrated solution. The concentration of cesium and strontium in 
the ground off materi a 1 was determined by atomic absorption 

spectrometry, Analytica [1985]. to give the concentration profile in 
the samples. Both the cesium and strontium concentrations were 

measured in all ground samples. This was to get values of the 
background content of cesium and strontium in the rock material. 

RESULTS 

The result from the in-diffusion experiments are presented in Figures 
2 and 3 as the solid phase concentration versus distance from the end 

surface that had been in contact with the solution. 
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The background content of cesium was about lb mg/kg, deternined in the 

ground samples trom the strontium diffusion experiments. From the 

measurement of strontium, in the ground samples from the cesium 

diffusion experiments, the background content of strontium in the rock 

material was found to be about 180 mg/kg. Since the concentration of 

cesium and strontium, some rrrn away from the surface, is equal to the 

background contents, the concentration profile caused by the 

in-diffusion through the outer cylindrical surface of the original 

core had not reached the outer cylindrical surface of the smaller core 

when it was drilled out. The concentration profiles showed in Figures 

2 and 3 can then be looked upon as the result of one dimensional 

diffusion in the axial direction ot the core. 

-:-~rr:e C:::ys 

Figure 4: Concentrations of 

cesium, strontium and 

iodide on the low 

concentration side 

of the rock samples 

in through-diffusion 

experiments, versus 

time 

The 

cesium 

concentration increase 

and strontium in 

of 

the 

chambers that at the outset were 

free from diffusing component in 

the through diffusion experiments 

is shown in Figure 4. As a 

comparison results trom an iodide 

diffusion experiment performed in 

the same way, Skagius et al [1~85 ], 

is presented. The iodide ditfusion 

was measured in a rock piece of 

equal dimension and of the same 

type of rock material as the 

strontium and cesium diffusion. The 

concentration of iodide in the 

concentrated solution was the same 

as the concentration of ces i um and 

strontium, 0.1 mol/1. Because 

strontium and ces i um sorb on the 

rock material the breakthrough time 

for these components is longer than 

for iodide. 
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The concentration profiles of cesium and strontium in the samples, 
when the through-diffusion experiments were stopped, are given in 
Figures 5 and 6. The distance in the Figures is the distance from the 
surface that was in contact with the concentrated solution. The dashed 
line is the background level. Some parts of the sample in the through 
diffusion experiment with cesium, seems to have a higher sorption 
capacity than the rest of the sample (Figure 5). This could be due to 
local differences in the mineral content of the sample. Vandergraaf et 
al [1982], have shown that there is an enhanced sorption on mafic 
minerals, such as biotite, hornblende and the pyroxenes. 
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DETERMINATION OF DIFFUSIVITY 

The diffusion equations 

The adsorption and diffusion of a component in the rock material can 

be described by a two step process, transport through the 11 filrn" to 

the outer surface of the rock sample and diffusion into the pores in 

the rock sample. The latter transport may be diffusion in the pore 

liquid, pore diffusion, or diffusion in the aasorbea phase, surface 

ditfusion, or a combination of the two. The equation that describes 

this transport is 

oc 
e: _P + oq 
p at P ~ 

( 1) 

where 

C (x, t) p 

p 

e: 

and 

D 

D 

p 

p 

s 

= density of the rock material 

= porosity of the rock sample 

q(x,t) = concentrations in the pore fluid and in the solid 
phase, respectively 

= pore diffusivity 

= surface diffusivity 

x = length coordinate in the diffusion direction 

Local chemical equilibrium is assumed at every point inside the 

sample, and the connection between the concentrations Cp and q is 

given by an equilibrium relation. Two simple and well-known equations 

are the Freundlich equation and the Langmuir equation. 

q = kc~ 
f p Freundlich isotherm ( 2) 

k1c 
q = 

p 
l +k 2c 

p 
Langmuir isotherm ( 3) 



The initial and boundary conditions in the in-diffusion experiments 

are 

q(x,o) = qb' 

c(O) = c 
0 

C (±J../2,t) = C 
p 

oc 
oxp(O,t) = ~;(O,t) = U, 

- yj 2 ..; X ,.; + J../ 2 ( 4) 

- J../2 '- X ,.; + J../2 (5) 

( 6) 

t > 0 ( 7) 

t > 0 ( 8) 

J.. is the axial length of the sample, c is the bulk solution concentra­

tion and Qb is the background concentration in the sample. Cp at 

t = 0 is either a function of the background concentration or equal to 

zero depending on whether the background concentration participates in 

the equilibrium or not. 

In the in-diffusion experiments, the components have been diffusing 

from a limited solution volume V to a rock sample with a length of J... 

The area of the rock sample normal to the diffusing direction is A. 

Because of symmetri in x = O the mass balance for the component could 

be written 

oc 
V ~ = -2 A(D e: _p + D p .QSl ) 

dt pp ox lx=+J.. s oxlx=+J.. 
( 9) 

In the through-ditfusion experiments the initial conditions insioe the 

sample are the same as in the in-diffusion experiments, eq. 4 ana 5. 

The other initial and boundary conditions are 

(lU) 
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(11) 

( 12) 

(13) 

c1 is the concentration in the concentrated solution and c 2 is the 

concentration in the solution on the other side of the rock sample. 

In the through-diffusion experiments the mass balance between the 
concentrated solution and the rock sample is 

dc 1 oc 
V1 -:n:- = A(D c: _P + o p oq ) 

ut p p ox !x=-J./2 s oxlx=-J./2 
(14) 

and between the rock sample and the solution on the other side of the 

sample 

oc 
A (D E _e_ + D p _Qg ) 

P P ox ! x=+ J./2 s ox Ix=+ J./2 
( 15) 

V1 and V2 are the bulk solution volumes. Th€ film resistance has been 

assumed to be negligible. 

The equilibrium relation 

In these experiments no separate determination of the equilibrium 

relation has been made. The in-diffusion and through-diffusion experi­

ments give, however, two values on the isotherm from the corresponding 

bulk solution concentrations and the surface solid concentrations of 

the samples. In Figures 7 and 8 the experimental points of the 

isotherms have been plotted. In the case with strontium diffusion two 

points from the in-diffusion experiment and two points from the 

through-diffusion experiment are given (Figure 8). One point is 

without the background concentration and the other is with the back-
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ground concentration included. To get some more inforrr,ation about the 

isotherms, experimental data obtained by L. Moreno [1985] on gneiss­

granite slabs and by Skagius et al [1982b] on granite slabs, have been 

used. Also results obtained on crushed granite particles, Skagius et 

al [1982a] have been considered. There it was found that the isotherm 

for strontium was linear for concentrations below 10 mg/1 and that the 

Freundlich exponent~ in the isotherm for cesium was about 0.5 for 

concentrations below l!) mg/1. Based on the above mentioned experi­

mental data one Langmuir isotherm and one Freundlich isotherm were 

chosen for the determination of the diffusivity of cesium. In the 

Freundlich isotherm the exponent~ was changed from 0.5 at concentra­

tions below 15 mg/1 to 0.27 at concentrations above 15 mg/1. In the 

strontium case one Langmuir and two Freundlich isotherms were chosen. 

One Freundlich isotherm was assumed to be linear up to the experi­

mental point from the in-diffusion experiment (c = 60 mg/1) with a 

constant sorption capacity at higher concentrations. The other 

Freundlich isotherm chosen was assumed to be linear at concentrations 

below lU mg/1 and with an exponent ~ = u.21 at concentrations above 10 

mg/1. 
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Figure 8: Experimental equilibrium results and isotherm fits for 

strontium 

RESULTS AND DISCUSSION 

The diffusion equation (eq 1) has been solved numerically by the 

implicit Crank-Nicolsson method, with Newton-Raphson iterations at 

each time step. Since the derivatives at c = 0 becomes infinite for 

the case using the Freundlich isotherm, a second degree equation was 

used at concentrations below 0.001 mg/1. (The solution is very 

insensitive to the choice of the concentration where the Freundlich 

isotherm is not used.) 

Based on values of the formation factor for the biotite gneiss, 

determined from iodide diffusion experiments, Skagius et al [1%5 ], 

the effective diffusivity De = DpEp of cesium and strontium can 

be calculated by the equation 

De £ 60 
= _p_ = formation factor 

D '"2 
V 

( 16) 
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Dv is the bulk solution diffusivity of cesium or strontium, Ep the 

porosity of the rock material, 60 the constrictivity and i; the 

tortuosity of the pores. 

The bulk solution diffusivity of cesium and strontium was estimated by 

an equation from Sherwood et al [1975]. 

(i7) 

Here R is the gas constant, F the Faraday's constant, T the absolute 

temperature, A~ and Ao the cationic and the anionic conauctances at 

infinite dilution, n+ and n_ the valence of cation and anion 

respectively. The anion was chloride. The bulk solution diffusivity of 

cesium was determined to be 2•10- 9 m2/s and of strontium 1.3•10- 9 

m2/s. 

With the value of the formation factor= 4.6•10- 5 and the estimated 
bulk solution diffusivities of cesium and strontium, the effective 

diffusivity of cesium is about l•lu- 13 m2/s and of strontium 6.10- 14 

m2/s (from eq. 16). 

Figure 9 shows results from the in-diffusion experiment with cesium 

for the case with no surface diffusion and the Freundlich isotherm. 

The effective diffusivity calculated from the formation factor of the 

rock material gives a penetration depth of about 2 rrrn while the 

experimental penetration depth is about 10 mm. The etfective 

diffusivity has to be about 100 times higher to fit the experimental 

data. This suggests that the pore diffusion is not the only 

transporting mechanism. Another fact that confirms the existence of an 

adoitional transport mechanism is that an effective diffusivity of 

1-10-11 rn2/s and a porosity of the material of 0.2 %, Skagius et al 

[1Y85], would give a pore diffusivity lJp equal to 5•10- 9 m2/s which 

is higher than the bulk solution diffusivity of cesium. 
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in the rock sample from 

the in-diffusion experi­
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sion model. Only pore 

diffusion 

Results from the through-diffusion experiment with cesium also show 

that the effective diffusivity determined from the formation factor of 

the rock material is too low if no surface diffusion occurs (Figure 

10). A higher value of the effective diffusivity, for the case of no 

surface diffusion, still does not give a good fit to the experimental 

data (Figure 11). A further increase of the effective diffusivity 

values presented in Figure 11 will make the breakthrough time of the 

curves shorter, but will also increase the slope of the curves. A 

decrease of the effective diffusivity values will decrease the slope 

of the curves but wi 11 al so lead to an increase in the breakthrough 

time. 
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For the case with both pore diffusion (effective diffusivity from the 

formation factor of the rock material) and surface diffusion, the fit 

to the experimental data from both the in-diffusion and the through 

diffusion experiment with cesium is rather good (Figures 12-14). In 

the in-diffusion experiment, however, the theoretical curves gives 

higher concentrations than measured in the solid material at larger 

penetration depths (Figure 12). The surface diffusivity is, in all 

probability, concentration dependent. The theoretical curve, where a 

constant surface diffusivity has been used, that fits the higher 

concentrations wi 11 then overestimate the concentrations in the low 
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concentration range. Comparing the in-diffusion experiment with the 

through-diffusion experiment a somewhat higher surface diffusivity has 

to be used in the through diffusion experiment to fit the experimental 

data. Since the concentration range in the through-diffusion 

experiment was higher than in the in-diffusion experiment the 

difference in surface diffusivity could be the result of concentration 

dependence. The model gives a better fit to the experimental data 

when using the Freundlich isotherm. 

When solving the diffusion equation for the experiments with cesium 

the assumption that the background concentration (15 mg/kg) in the 

rock material does not participate in the equilibrium has been made. 
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Figure 15 shows the result from the in-diffusion experiment with 
strontium for the case with no surface diffusion. As in the 

in-diffusion experiment with cesium an effective diffusivity based on 

the formation factor of the material (De = 6•10- 14 m2/s) is too low 

to be in accordance with the experimental data. The Freundlich 

isotherm No. 1 has been used since it is the only isotherm of the 

three that includes the experimental point from the in-diffusion 

experiment. 
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The through-diffusion experiment gives similar results (Figure 16). 

The effective diffusivity, from the formation factor of the rock 

material, is too low. Here the Freundlich isotherm No. 2 has been 

used. Using the Freundlich isotherm No. 1 or the Langmuir isotherm 

will increase the breakthrough time still more. Increasing the 

effective diffusivity, using the Freundlich isotherm No. 2, still does 

not give a good fit to the experimental data. 

In Figure 17 the theoretical curves using an effective diffusivity 

equal to 6•lo-1 4 m2/s, from the formation factor of the material, and 

a surface diffusivity equal to 8•10- 14 m2/s are shown. The Langmuir 

isotherm gives too low solid concentrations near the surface of the 

sample. 
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Figure 17: The best fit ot the 

diffusion model to the 

experimental concentra­

tion profile ot stron­

tium in the rock sample 

from the in-diffusion 

experiment. 

In the through-diffusion experiment with strontium, using an effective 

diffusivity based on the formation factor of the material, the two 

Freundlich isotherms give the best fit to the experimental data 

(Figure 18). A much higher value ot the surface diffusivity has to be 

used compared to the in-diffusion experiment. The concentration 

profile in the sample from the through-diffusion experiment shows that 

it is only the Freundlich isotherm No. 2 that gives results that 

fairly agree with the experimental data (Figure 19). 

In all the curves presented, describing the strontium diffusion, the 

assumption that the background concentration (180 mg/kg) does not 

participate in the equilibrium has been made. Since the background 

concentration of strontium in the rock material is rather high, the 

model was tested on the through-diffusion experiment with the assump­

tions that 10 % and 50 % of the background concentration participates 

in the equilibrium. The test was made for the cases with only pore 

diffusion (Figure 20) and with both pore and surface diffusion (Figure 

21). The results indicate that the background concentration does not 

take part in the equilibrium. 
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In the diffusion model used here the film resistance has been neglect­

ed, which ITf:ans that the dominating resistance to diftusion lies in 

the rock material. The resistance to diffusion in the bulk phase near 

the rock surt ace, 
in the rock sample 

in parallel with 

resistance in 

the film, is L1/Dv, The corresponding resistance 
consists ot the resistance to pore diffusion acting 

the resistance to surface diffusion. The total 

the rock sample could then be written 

L2•K/(K•De+Ds), L1 and L2 are characteristic length and K is the 

equilibrium constant. Assuming that L1 = L2 = .R., the length of the 
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rock sample, and that the equilibrium constant K is equal to the 

experimental value from the through-diffusion experiment, the 

resistance to diffusion in the film is 5•10 8 •1 and in the rock sample 

in the through-diffusion experiment about 3.10 11 -1 and in the 

in-diffusion experiment about 4•10 11 •1. This is for the cesium case. 

For the strontium case the resistance to diffusion in the film is 

8•10 8 •1 and in the rock sample in the through-diffusion experiment 

about 2.10 11 .1 and in the in-diffusion experiment about 1.10 12 -1. 

These values show that the film resistance is at least two orders of 

magnitude lesser than the resistance to diffusion in the rock 

material, and could therefore be neglected. 

CONCLUSIONS 

Both the in-diffusion experiments and the through-diffusion experi­

ments show that cesium and strontium are transported in the rock 

material by diffusion. In the cesium case it is rather obvious that 

the transport cannot be due to only pore diffusion. Adding a surf ace 

diffusion mechanism greatly improves the fit to the experimental 

data. In the strontium case the existence of surface diffusion is not 

as obvious as in the cesium case. The through-diffusion experiment, 

however, indicates that surface diffusion is active even for 

strontium. 

One big uncertainty is the equilibrium relations. Too little 

experimental data was available to get a good description of the 

isotherms. The diffusivities given in the Figures must then be looked 

upon as approximative but probably of the right order of magnitude. 

The problem with the isotherms concerns in the first place the 

strontium equilibrium. Different isotherms had to be used in the 

evaluation of the through-diffusion experiment and the in-diffusion 

experiment to get agreement with the experimental data. 
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crossectional area of rock sample 

initial bulk solution concentration 

bulk solution concentrations 
pore solution concentration 

effective diffusivity 

pore diffusivity 

surface diffusivity 

bulk solution diffusivity 

Faraday·s constant = 9.6487•10 4 

constant in Freundlich isotherm 

constants in Langmuir isotherm 

equilibrium constant 

length or thickness of rock sample 

characteristic lengths 
valence of cation and anion 

solid concentration 

background concentration in the solid 
material 

gas constant= 8.3143 

time 

temperature 

bulk solution volumes 
length coordinate 

~ exponent in Freundlich isotherm 
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Ep porosity of the rock material 
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