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SUMMARY 

Release and migration calculations for all important 

radionuclides which potentially could escape from a 

repository for spent nuclear fuel have been performed. The 

calculations have been done for a repository in fissured 

crystalline rock with models which account for the leaching 

of the nuclides from the fuel due to dissolution in the 

moving water and the further transport along the fissures of 

the rock. Radionuclide sorption retarding the nuclides is 

accounted for by the concept of matrix diffusion and 

sorption on the microfissure surfaces. Dispersion and 

channeling are modeled as Fickian dispersion. Chain decay 

is accounted for. Calculations have been performed for 

migration distances of 5, 50 and 100 m. Sorption data and 

solubility data for oxidizing as well as reducing conditions 

have been used. 

Transport by sorption on colloidal matter in the water is 

also treated. 

In the "central" case the leaching starts after 100.000 

years due to the long life time of the canister, but 

calculations have also been made for a case of some 

defective canisters where the leaching starts after 100 

years. The results are presented as release rates to the 

biosphere at the various times. 
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1. OBJECTIVES 

This study is a part of the Swedish KBS-3 project. 

The aim of the study is to assess the release to the 

geosphere and to the biosphere of radioactive material from 

a repository for spent unreprocessed nuclear fuel. 
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2 • CALCULATION PRINCIPLES 

2,1 General description 

The release to the biosphere from a repository for 
unreprocessed nuclear waste has been calculated for four 
scenarios with different water flow rates and migration 
lengths. 

The release calculations have been performed in two steps. 

i The release from the immediate neighbourhood (near 
field) of a canister, giving a source concentration for 
the geosphere migration model. 

ii The release after passage through a geological medium. 

The two transport mechanisms which have been modeled are 
with the radionuclides in dissolved form or adsorbed 
on colloidal particles. 

Parameter variations that have been performed for some or 
all of the different scenarios are: different transport 
mechanisms, time for start of the leach process, reducing­
or oxidizing migration conditions and different values of 
dispersion coefficients. 

2.2 Activity release to the geosphere. 

2.2.l General description 

At a certain time the copper-cladding of a canister is 
assumed to be penetrated as a result of corrosion. Water 
will then reach the fuel elements and the ionizing radiation 
will create an oxidizing environment. The oxidizing species 
(notably hydrogen peroxide and peroxide radicals) will then 
diffuse out of the canister, through the clay barrier and 
into the geologic medium together with dissolved fuel 
constituents in, when so possible, oxidized form. 
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The rock, at the sites proposed for final disposal of the 

nuclear waste, contains reducing substances, such as Fe2+ 

which will limit the spreading of the oxidizing zone and 

lower the oxidation state of some of the migrating species 

(Neretnieks I,Aslund B, 1983). 

As the fuel matrix dissolves its constituents will be 

released at a rate proportional to the dissolution rate of 

uranium in oxidized form (congruent dissolution). Eventu­

ally the amount of material set free from the matrix may 

exceed what can be completely dissolved either in oxidized 

or reduced form. 

The interaction between different solid phases affecting the 

release of a member of a decay chain is schematically 

depicted in figure 1. 

FIGURE 1 INTERACTION BETWEEN DIFFERENT SOLID PHASES IN THE 

LEACH PROCESS OF A FUEL ELEMENT IN CONTACT WITH WATER, 
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Further assumptions: 

i Homogenous distribution of the fuel constituents 
except for 10% of the cesium and the iodine which are 
assumed to be promptly dissolved with a subsequent 
spread in time of the release caused by a finite rate 
of replacement of the water in the clay buffer. See 
further Chapter 5. 

ii No coprecipitation. 

2.2.2 Release of dissolved material 

Release from the fuel matrix 

For homogenously distributed nuclides, the release from the 
fuel matrix can be written as: 

M. t 
i, ma • C 

MU t t t solub,U,ox•Qeq,ox , o , ma 

As Mu,tot,mat-::t.Mu238,mat and the halflife of U238 

(1) 

in comparison with all the important nuclides, is very long 
we could approximate Mi,MatlMu,tot,mat by: 

{ 2) 
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where the decay factor is the relative change in content of 

the nuclide i caused by its own decay and by decay of its 

parent nuclides. 

Release from the oxidizing zone 

The maximum release from the oxidizing zone of the substance 

j can be written as: 

Csolub,j,ox•Qeq,ox \ (grarns/year,canister) (3) 

The actual release from the oxidizing zone will be given by 

(3) provided that the substance exists as a separate solid phase 

in oxidized form or the rate of release from the fuel matrix 

plus formation rate of the substance by decay of parent 

nuclides co-present as separate oxidized phase is larger 

than the solubility limit given by (3) In that case the 

release of the isotope i of the substance j will be: 

M. 
1,ox •C •Q 

Z::M. solub,j,ox eq,ox 
. 1,ox 
J 

(grarns/year,canister) 

Otherwise it will be equal to the release from the fuel 

matrix plus the formation rate from decay of parent nuclides 

in the separate solid oxidized phase. 

Release from the redox front 

The maximum release from the redox front of the substance 

j can be written as: 

C •Q 
solub,j,red eq,red (grams/year,canister) 

( 4) 

( 5) 
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The actual release from the redox front can, in analogy 
with that from the oxidizing zone, be calculated as the 
minimum of: 

M. d i,re 
Z:M. d .i,re 

J 

•C •Q solub,j,red eq,red (grarns/year,canister) 

and the actual release rate from the oxidising zone plus the 
formation rate from decay of parent nuclides in the separate 
solid reduced phase. 

2.2.3 Release in colloidal form 

An estimate of the outflow of radionuclides, adsorbed on 
colloidal particles, suspended in the water flowing past a 
canister, has been based on the following premises. 

i The adsorption process is assumed to be irreversible. 

ii The amount of substance adsorbed is assumed to be given 
by: 

K •C •Q •C d coll eq i 
(grarns/year,canister) 

iii The actual release from the near field is given as the 
maximum of the hypothetical release from the oxidizing 
zone or from the redox front. 

( 6) 

( 7) 
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2.3 Activity release to the biosphere 

2.3.1 Migration in dissolved form. 

The geological medium in which the migration is thought to 

take place is modelled as cubical blocks of porous rock 

matrix into which constituents of the surrounding solution 

diffuses. The dimensions of these blocks are the same as the 

mean distance between fractures in the rock modelled. 

In the calculation of the diffusion into the rock matrix the 

cubical blocks are approximated with spheres with the same 

surface to volume ratio as the cubical blocks. 

The flowing water is thought to be confined to the 

interstices between the blocks as the permeability in the 

rock matrix is very low. 

The transport is modelled as one dimensional. The 

only transverse transport is into the rock matrix. 

The transport mechanisms in the fractures will be convective 

transport and hydrodynamic dispersion modelled as Fickian 

diffusion with a dispersion coefficient DL given by a 

Peclet number Pe: 

Pe = U.L ( 8) 
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The equation describing the transport of the i-th member in 
a radionuclide chain will be: 

( 9) 

aci 6 n iii i-1 i-1 i-1 - __ £ - KA c + K A c 
r clr p P ( 1 0) 

aci 
Ni D __2 

= psp clr r=interface ( 1 1 ) 

blocks of rock matrix with a radius= r 0 Spherical 

means: 

8 = 2 

( 1 2 ) 

( 1 3 ) 
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The inflow boundary condition is a concentration boundary 

with a concentration given by: 

c. . = Release. . • Q . 
i,in i,min eq,min (Bq/1) ( 1 4) 

Where min stands for the limiting part of the near field 

model (Dissolution rate of the fuel matrix, solubility in an 

oxidizing environment or solubility in a reducing 

environment). 

The outflow boundary condition used is 

c ➔ 0 for z ➔ 00 ( 1 5) 

The flux at the end of the migration distance is calculated 

as 

[ 
- DL• Ef. 3Cil ] 

IP. t = Q C. i,ou eq i,out u0 3x out ( 1 6) 

The calculations for single nuclides with a decaying band 

release as source term have in most of the cases been made 

with the analytical code NUCDIF {Rasmuson A,neretnieks I, 

1982) 

All the other calculations have been made with the TRUCHN 

code (Rasmuson et. al., 1982) • As this code in its 

present form is limited to maximum three nuclides of a decay 

chain and the source term description has to be either 

constant concentration for one nuclide or decaying band 

release for up to three members of a nuclide chain an 

approximation of the more detailed source term model 

outlined in 2.2.2 has to be utilized. 

It can for instance be shown that the release to the bios­

phere of shortlived daughter nuclides with reasonably high 

retention will solely consist of the material formed during 

the migration of its parent nuclide and the primary release 

of the daughter nuclide will be insignificant for the 

migration calculation. One further approximation that has to 
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be used is for the case with vastly differing decay con­

stants for the different members of a decay chain. This in 
many cases forces the TRUCHN model to utilize so short 

timesteps that the calculation for the whole decay chain can 
not be followed all the way to the maximum release without 

an excessive cost in terms of computer resources. The 

results from the test calculations that have been made 

usually show that for the case with successively shorter 

halflives when descending the decay chain means that release 

of a daughter nuclide assymptotically approaches the value 

predicted by the reconcentration concept (Rasmuson et.al., 

1982). This means that the ratio of activity release of a 

nuclide to that of its parent nuclide is inversely 

proportional to the ratio of their Ka-values provided that 
the migration distance in terms of halflives for the 

daughter nuclide is sufficiently long for the "equilibrium" 
to be established and that the halflife of the daughter 
nuclide is much shorter than the halflife of its parent 
nuclide. 

Also when the release of a daughter nuclide, in grams per 

year, grossly exceeds the release of the parent nuclide the 

calculation has been divided in two steps. 

i - the migration of the parent nuclide 

ii - the migration of the daughter, nuclide and the rest of 

the decay chain originating from that nuclide. 

To assess the relative importance of the primary release of 

radioactive material from a leaching canister for the 

release to the biosphere, a calculation has been made for 

all the nuclides as a constant concentration source term. 
See appendix c. 
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The result of this calculation is that for the parameter 

combinations used the primary source terms for 231Pa, 226Ra, 

230Th, 229Th have small or no effect on the release to the 

biosphere. The release to the biosphere for these nuclides 

has been calculated according to the reconcentration 

concept. 

2.3.2 Migration in colloidal form 

The migration is modelled as pure transport with the 

velocity of the water. 

The colloidal particles are assumed to be transported to the 

biosphere with the velocity of the flowing water. The 

release to the biosphere is assumed to be the same as the 

release to the geosphere. 
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3 • INPUT PARAMETERS 

3,1 Common parameters~ 

The choice of parameter values is discussed in the KBS-3 
report. 

- The canisters are assumed to be penetrated at 10 5 years 
after the closure of the repository. (102 years for the 
cases with initially defective canister). 

- The respective inventories at 10 2- and 10 5 years are shown 
in tables 1 and 2. 

- The solubilities in different media are shown in table 3. 

- The Ka-values used are shown in table 4. 

- The characteristic data for the rock are shown in table 5. 

- The water flowrates and their corresponding equivalent 
flowrates are shown in table 6. 
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TABLE 1. Inventory at t=l0 5 years. 

Nuclide t1;2 (years) Bq/canister g/canister 

Zr93 l.53E6 9.84El0 1. 06E3 

Tc99 2.14E5 5.70Ell 9.12E2 

1129 l. 57E7 1. 86E9 2.85E2 

Snl26 1.00ES 2.38El0 2.27El 

Csl35 2. 95E6 l.97El0 5.92E2 

Ra226 l.60E3 6.22El0 l.70E0 

Th229 7.34E3 2.54El0 3.12 

Th230 8.00E4 6.22El0 8.64El 

Th232 l.41El0 9. 32E4 2.30El 

Pa231 3.28E4 9.84E8 5.63E-l 

0233 1. 59E5 2.80El0 7 .55El 

U234 2.45E5 9.84El0 4.26E2 

U235 7.04E8 1. 24E9 l.55E4 

0236 2.34E7 l.92El0 7.71E3 

U238 4. 47E9 l.66El0 l.33E6 

Np237 2.14E6 7.77El0 2.98E3 

Pu239 2.41E4 8.81Ell 3. 83E2 

Pu242 3.76E5 l.24Ell 8.55E2 
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TABLE 2. Inventory at t=l0 2 years. 

Nuclide t1;2 (years) Bq/canister g/canister 

--~-•-••-• - -•- ____ __,_A __ 

H3 1.23+1 1.19+11 3.33-4 
Cl4 5.73+3 2.86+10 1.73-1 
Co60 5.27 5.18+8 1.24-5 
Ni59 7.50+4 2.03+11 6.79+1 
Ni63 1.00+2 1.59+13 7.57 

Sr90 2.88+1 3.78+14 7.40+1 
Zr93 1.53+6 1.13+11 1.21+3 
Nb94 2.03+4 1.72+10 2.48 
Tc99 2.14+5 7.77+11 1.24+3 
Il29 1.57+7 1.86+9 2.85+2 
Cs135 2.95+6 2.02+10 6.08+2 

Csl37 3.02+1 6.22+14 1.94+2 
Snl26 1.00+5 4.71+10 4.48+1 
Srnl51 8.70+1 9.32+12 9.25 
Eu154 8.5 2.23+11 2.21-2 
Hol66rn 1.20+3 2.02+8 3.04-3 

Ra226 1.60+3 1.40+6 3. 82-5 
Th230 8.00+4 6.73+7 9.35-2 
Th229 7.34+3 6.22+4 7.63-6 
Th232 1.41+10 6.73+1 1.66-2 
Pa231 3.28+4 2. 54+6 1.45-3 
U233 1.59+5 1.04+7 2.91-2 

U234 2.45+5 9.32+10 4.04+2 
U235 7.04+8 7.25+8 9.06+3 
U236 2.34+7 1.40+10 5.84+3 
0238 4.47+9 1.66+10 1.33+6 
Np237 2.14+6 2.64+10 1.01+3 

Pu238 8.77+1 8.81+13 1.39+2 
Pu239 2.41+4 1.50+13 6.53+3 
Pu240 6.57+3 1.97+13 2.35+3 
Pu242 3.76+5 1.50+11 1.03+3 
Arn241 4.32 2.64+14 2.08+3 

Arn242rn 1.52+2 3.94+11 1.09 
Arn243 7.37+3 1.71+12 2.31+2 
Crn245 8.5+3 1.81+10 2. 85 
Crn246 4.70+3 4.56+9 3.98-1 
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TABLE 3. Solubility data 

Substance Solubility lg/1} 

Oxidizing environment 

u 
Pu 

Np 

Th 

Am 

Tc 

0.36(0.95)* 

8•10-6 

0.63 

4•10-7 

6·10-3 

High 

Reducing environment 

10-5 (10-3 )*8•10-2** 

3•10-3 

8•10-6 

4•10-7 

6•10-3 

2•10-7 

* Values used for the cases with the water flowrate= 1.0 

l/m2 , year and 0.3 l/m2 , year. 

** Value used for some calculations on the 1.0 l/m2 ,year 

case. 

TABLE 4. Adsorption data 

Substance Mass absorption koefficient Kd(m3/kg) 

Co,Ni 0.2 

Sr 0.04 

Zr,Nb 4 

Tc(ox/red) 0.0002/0.05 

I 0 

Cs 0.05 

Ce,Nd,Eu,Ho,Sm 5 

Ra 0.1 

Th,Pa 5 

U,Np{ox/red) 0.01/5 

Pu 5 {0.5 if complex bound) 

Am 5 II II II II 
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TABLE 5. Characteristic data for the geologic medium 

Distance between fractures = 2b = 5 m 

- Water flow porosity sf = 10-4 

- Porosity of the rock matrix ~ = 0.002 
Effective diffusivity in the rock matrix DP £p = 
= 5•10-14 m2/s 

- Peclet number U·l/D 1 = Pe = 2 and 50 
- Concentration of colloidal particles Cc O11=5·lo- 4 

kg/m3 

- Density of the rock matrix Pp=2700 kg/m3 

TABLE 6. Water flowrates and corresponding equivalent 
flowrates 

UO l/m2 , year Oeq,ox 

(1/canister,year) 

Oeq,red 

(1/canister,year) 

0.03 0.32 4.5 
0.1 0.57(0.79)* 15 
0.3 0.88 45 
1.0 1.57(2.7)* 150 

* The figures in parenthesis stands for the elevated flow 
around an initially defective canister which begins to 
leach at 100 years after the fuel has been taken out from 
the reactor. The temperature in the immediate vicinity of 
the canister is assumed to be 50 degrees centigrade above 
the ambient temperature. 
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3.2 Description of the different scenarios 

The four main scenarios can be summarized as in table 7. 

TABLE 7. Migration scenarios used 

Water flow rate 

u0 (1/m2 ,year) 

0.1 

1 

0.03 

0.3 

Migration distance (m) 

100 

50 

5 

100 
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4. RESULTS 

4.1 summary of the calculations performed 

The parameters describing an individual set of calculations 
are: 

The Peclet number 
Pe = 2 

Pe = 50 

The solubility of 
10-5 g/1 
10-3 g/1 
a·10- 2 g/1 

The solYbility of 
0.36 g/1 
0.95 g/1 

u.i;:aniym 

1.a:anium 

Migration conditions 
reducing conditions 
oxidizing conditions 

in the redycing zone 

in the oiidizing zone 

oxidizing conditions for uranium, reducing for the other 
nuclides 

Caniste.i;: life time 
1·105 years 
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TABLE 8 Calculations performed 

1 l/m2 ,year L=50 m 
Release of dissolved material to the geosphere 
Release of dissolved material to the biosphere 
Release of colloidally bound material 
Release of dissolved material to the biosphere -
comparison between Pe=2 and Pe=50 

1 l/m2 ,year L=l00 m initially defective canister 
Release of dissolved material to the geosphere 
Release of dissolved material to the biosphere 
Release of colloidally bound material 

0.3 l/m2 ,year L=l00 m 
Release of dissolved material to the geosphere 
Release of dissolved material to the biosphere 
Release of colloidally bound material 

0.1 l/m2 ,year L=l00 m 
Release of dissolved material to the geosphere 
Release of dissolved material to the biosphere 
Release of colloidally bound material 

0.1 l/m2 ,year L=l00 m initially defective canister 
Release of dissolved material to the geosphere 
Release of dissolved material to the biosphere 
Release of colloidally bound material 

0.03 l/m2 ,year L=5 m 
Release of dissolved material to the geosphere 
Release of dissolved material to the biosphere 
Release of colloidally bound material 

Page 
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61 
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85 
89 
93 
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Activity release to the geosphere and to the 
biosphere 

On the following pages the release of activity to the 
geosphere and to the biosphere is shown. 

The curves for release to the biosphere are drawn only for 
the time span for which the calculations were made. 

For instance calculations aborted because running out of 
CPU-time have been included where they clearly approach a 
limiting maximum value. 
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Release of dissolved material to the geosphere. 

U0 =1 l/m2 ,year Csolub,U,ox= 0.95 g/1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

The fission products except 99Tc 

The natural decay chains and 99 Tc 

in oxidized form 

The natural decay chains and 99Tc 

csolub,U'red=SE-2 g/1 

The natural decay chains and 99Tc 

csolub,U,red=lE-3 g/1 

in reduced form. 

in reduced form. 

TABLE 9. Existence of solid phase (years after start of 

leaching) 

Substance Oxidized Reduced(8E-2g/l,U) Reduced(1E-3g/l,U) 

Tc 0-1E6 0-1E6 

Th 0-2E8 5E4-1E7 

Np 0-2E6 0-2E6 

u 0-9E5 0-8E6 

Pu 0-3E6 
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Figure 2 
Release to the geosphere of dissolved material 
The fission products except 99Tc 
u0 =1.o l/m2, year. Csolub, U, ox=0.95 g/1 
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Figure 3 
Release to the geosphere of dissolved material from the oxidizing zone 

The natural decay chains and 99Tc 

u0 =1.0 l/m2, year. Csolub, U, ox=0.95 g/1 
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Figure 4 
Release to the geosphere of dissolved material from the redox front 
The natural decay chains and 99Tc 
Uo=1.0 l/m2, year. Csolub, U, ox=0.95 g/1. Csolub, U, red=8.0 E-2 g/1 
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Figure 5 
Release to the geosphere of dissolved material from the redox front 

The natural decay chains and 99Tc 

Uo=1.0 l/m2, year. Csolub, U, ox=o.95 g/1. Csolub, U, red= 1-0 E-3 911 
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Release of dissolved material to the biosphere. 

Uo=l l/m2 ,year Csolub,U,ox= 0.95 g/1 
Migration distance= 50 m. 

Figure 6 The fission product 

Figure 7 The natural decay chains. Oxidizing migration 
conditions 

Figure 8 The natural decay chains. Reducing migration 

conditions. csolub,U,red=8E-2 g/1 
Figure 9 The natural decay chains. Reducing migration 

conditions. csolub,U,red=lE-3 g/1 
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Release of colloidally bound material 

u0= 1 l/m2 ,year Csolub,U,ox= 0.95 g/1 

Figure 10 The fission products except 99Tc 

Figure 11 The natural decay chains and 99Tc 

form 

Figure 12 The natural decay chains and 99Tc 

form. Csolub,U,red = BE-2 g/1 

Figure 13 The natural decay chains and 99Tc 

form. Csolub,U,red= lE-3 g/1 

in oxidized 

in reduced 

in reduced 
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Figure 10 
Release of colloidally bound material 
The fission products except 99Tc 
u0 =1.0 l/m2, year. Csolub, u, ox=0.95 g/1 
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Figure 11 
Release of colloidally bound material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 =1.0 l/m2, year. Csolub, u, ox=0.95 g/1 
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Figure 12 
Release of colloidally bound material from the redox front 
The natural decay chains and 99Tc 
Lio= 1.0 I1m2, year. Csolub, U, ox= 0.95 g/1. Csolub, U, red= 8.0 E-2 g/1 

242Pu 
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Figure13 
Release of colloidally bound material from the redox front 
The natural decay chains and 99Tc 
Uo =1.0 l/m2, year. Csolub, U, ox= 0.95 g/1. Csolub, U, red =1.0 E-3 g/1 
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Comparison between Pe=2 and Pe=SO. 
Release of dissolved material to the biosphere. 

U0 =1 l/m2 ,year Csolub,U,ox=0.95 g/1. Reducing migration 
conditions 

Figure 14 Release of 93Zr, 99Tc and 135Cs. 

Comments 

The larger the retention in the geologic medium the larger 
the effect of a lowered dispersivity. 
The comparison between 99Tc and 135Cs, which have the same 
retention, shows that the effect of an early arrival becomes 
increasingly important for nuclides with shorter halflife. 
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38 
Release of dissolved material to the geosphere. 
U0 =1 l/m2 ,year Csolub,U,ox=0.95 g/1. 
Initially defective canister 

Figure 15 The fission products except 99Tc 
Figure 16 The natural decay chains and 99Tc in oxidized 

form 

Figure 17 The natural decay chains and 99Tc in reduced 
form. Csolub,U,red=l·lo-3 g/1. 

TABLE 10. Existence times for solid phase (years after 
start of leaching). 

Substance The oxidizing zone The redox front 
Tc 0-2E6 
Th 0-6E7 2E4-2E7 
Np 0-2E6 
u 0-6E5 0-1E7 
Pu 0-2E6 
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Figure15 
Release to the geosphere of dissolved material 
The fission products except 99Tc 
u0 =1.0 l/m2, year. Initially defective canister. Csolub, U, ox= 0.95 g/1 
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Figure 16 
Release to the geosphere of dissolved material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 = 1.0 l/m2, year. Initially defective canister. Csolub, U, ox= 0.95 g/1 

242Pu 
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Figure 17 

Release to the geosphere of dissolved material from the redox front 

The natural decay chains and 99Tc 

u0 = 1.0 l/m2, year. Initially defective canister. C8 1 b U = 0.95 g/1 
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42 
Release of dissolved material to the biosphere. 

U0 =1 l/m2 ,year Csolub,U,ox=0.95 g/1. 
Initially defective canister, migration distance=SO m. 

Figure 18 The fission products 

Figure 19 The natural decay chains. Reducing migration 

conditions. 

Comments: 

Figure 18 The curves for 14C and 126 Sn are the same as in 
figure 15 - release to the geosphere. 



--c­
co 
(D 
>,. 

........ 
C" 
en -
~ 
(I) 
.c 
a. 
en 
0 
.0 
(D 
.c ..... 
0 ..... 
(D 

~ 
(D 
en co 
(D 

(D 
a: 

c.o 
0 
,--

LO 

0 ,--

-q· 

0 ,--

C') 

0 ,--

N 
0 ,--

.-
0 ,--

0 
0 ,--

.-
I 

0 ,--

N 
I 

0 

ase to the biosphere of dissolved material. 
The fission products. Initially defective canister 
Uo = 1 l/m2, year. Csolub, u, ox= 0.95 g/1. DISTANCE= 50 M, 

,--102 103 104 105 106 107 108 

Time after start of release (years) 

Figure 18 

109 1010 

,._ _.._ 
\J,J 



-I,,_ 

(\1 
(l) 
~ ......... 
er co -(l) 
I,,_ 

(l) 
.c a. en 
0 
..a 
(l) 
.c 
+-' 

0 
+-' 
(l) 

ea 
I,,_ 

(l) 
en 
(\1 
(l) 
(l) 
a: 

<O 
0 ,--

LC) 

0 ,--

"-1" 
0 ,--

C'? 
0 ,--

C\I 
0 ,--

..-
0 ,--

0 
0 ,--

..-
1 

0 ,--

C\I 
I 

0 

I 

Release to the biosphere of dissolved material. 
The natural decay chains. Reducing migration conditions. Initially defective canister. 
Uo=1 l/m2,year.Csolub,U,ox=0.95g/1. MIGRATION DISTANCE= 50 M, 

I I I Y /238~Pu \~IQ~ 

,--102 103 t04 105 106 107 

Time after start of release (years) 

Figure 19 

I I I -..r::-

108 109 1010 



45 
Release of colloidally bound material. 

U0 =1 1/m2 ,year Csolub,U,ox=0.95 g/1. 
Initially defective canister. 

Figure 20 The fission products except 99Tc 

Figure 21 The natural decay chains and 99Tc from the 

oxidizing zone 

Figure 22 The natural decay chains and 99Tc from the redox 

front 
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Figure 20 
Release of colloidally bound material 
The fission products except 99Tc 
u0 = 1.0 l/m2, year. Initially defective canister. Csolub, u, ox= 0.95 g/1 
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Figure 21 
Release of colloidally bound material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 =1.0 l/m2, year. Initially defective canister. Csolub, u, ox =0.95 g/1 

242Pu 
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Figure LL 
Release of colloidally bound material from the redox front 
The natural decay chains and 99Tc 
u0 =1.0 l/m2, year. Initially defective canister. Csolub, U, ox=0.95 g/1 
Csolub, U, red-1.0 E-3 911 
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Release of dissolved material to the geosphere. 

Uo= 0.3 l/m2 ,year C b - 0 95 g/1 solu ,u,ox- • · 

Figure 23 

Figure 24 
The fission products except 99Tc 

The natural decay chains and 99Tc from the 

oxidizing zone 

Figure 25 The natural decay chains and 99Tc from the 

reducing zone, csolub,u,red=B·lo-2 g/1 

TABLE 11. Existence of solid phase (years after start of 

leaching) 

Substance 

Tc 

Th 

Np 

u 
Pu 

The oxidizing zone 

0-6E8 

0-2E6 

0-3E6 

The redox front 

0-2E6 

0-5E6 
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Figure 23 
Release to the geosphere of dissolved material 
The fission products except 99Tc 
u0 = 0.3 l/m2, year. Csolub, u, ox= 0.95 g/1 

~(J 
' 93Zr 

"T"""" :j-----------0-
CD 
'---"' 
m•o 
~ T"""" 

0 
'i.,_ 

Q) 
(/)C) 
0 T"""" 

Q) 

Q) 

n::b 
T"""" 

N 
I 

126 Sn 
135Cs 

S2 ·-+-----r--or-.-............---.--..--r-r ............ ~...,.....,,., ........... ,.._____,---...-,.~....----'~,,.,........-~~~--.--~....-nr--,.-f ~, ......... ,....,II I ..... ITJ 

1d 1d 1d 1d 1d 1d 1d 1d 1d0 

Time after start of release (Years) 



N 
I 

51 

Figure 24 
Release to the geosphere of dissolved material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 = 0.3 l/m2, year. Csolub, u, ox= 0.95 g/1 
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Figure 25 
Release to the geosphere of dissolved material from the redox front 
The natural decay chains and 99Tc 
Uo = 0.3 I1m2, year. Csolub, U, ox= 0.95 g/1. csolub, U, red= 8.0 E-2 g/I 

226Ra 
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Release of dissolved material to the biosphere. 

U0 =0.3 l/m2 ,year Csolub,U,ox=0.95 g/1 migration 

length= 100 m. 

Figure 26 

Figure 27 

Figure 28 

Comment: 

The fission products 

The natural decay chains. Reducing migration 

conditions. Csolub,U,red=8·10-2 g/1 

Oxidizing migration conditions for uranium. 

Reducing for the other nuclides. 

Figure 52 The curve for 233U is the sum of the curves from 

primary release of 233U and 233U originating 

from migrating 237Np. 
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Release to the biosphere of dissolved material. Figure 28 The natural decay chains. Reducing migration conditions. 
Uo=0.3 l/m2, year. Csolub, u, ox=0.95 g/1. Csolub, U, red=8E-2 g/1 MIGRATION DISTANCE = 100 M 
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Release of colloidally bound material. 

U0 =0.3 l/m2 ,year Csolub,U,ox=0.95 g/1 

Figure 29 The fission products except 99Tc 

Figure 30 The natural decay chains and 99 Tc from the 

oxidizing zone 

Figure 31 The natural decay chains and 99Tc from the 

reducing zone. 
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Figure 29 
Release of colloidally bound material 
The fission products except 99Tc 
u0 = 0.3 l/m2, year. Csolub u ox= 0.95 g/1 
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Figure 30 
Release of colloidally bound material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 = 0.3 l/m2, year. csolub, u, ox= 0.95 g/1 
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Figure 31 
Release of colloidally bound material from the redox front 
The natural decay chains and 99Tc 
Uo=0.3 l/m2, year. Csolub, U, ox=0.95 g/1. Csolub, U, red=8.0 E-2 g/1 
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Release of dissolved material to the geosphere. 

U0 = 0.1 l/m2 ,year Csolub,U,ox=0.36 g/1. 

Figure 32 The fission products except 99Tc 

Figure 33 The natural decay chains and 99Tc in oxidized 

form 

Figure 34 The natural decay chains and 99Tc in reduced form 

csolub,U,red=l·lo-S g/l 

Comments: 

Pu and Th will initially be left behind when the fuel matrix 

dissolves. u, Np and Tc will precipitate at the redox front 

and the production of Th from solid material at the redox 

front will soon exceed the solubility limit so a solid 

Th-phase will evolve there too. 

TABLE 12. Existence of solid phase (years after start of 

release) 

Substance In oxidized form At the redox front 

Tc 0-2E6 

Th 0-3E9 3E4-1E9 

Np 0-8E6 

u 0-8E6 0-6E9 

Pu 0-3E6 
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Figure 32 
Release to the geosphere of dissolved material 
The fission products except 99Tc 
u0 =0.1 l/m2, year. Csolub, u, ox=0.36 g/I 
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Figure 33 
Release to the geosphere of dissolved material from the oxidizing zone 

The natural decay chains and 99Tc 
u0 = 0.1 l/m2, year. csolub, u, ox= 0.36 g/1 

,...--

"b 

N 
I 

226Ra 

S2 -·-+----~~- - T-..TTIT1rr--.--rrrn-nr----r-rT'T-rrnr--.-rT''hffl't--,---rnnm---.--,rn,mn---r-,-,-,rrnn 

1d 1d 1~ 1d 1d 1d 1d 1~ 1d0 

Time after start of release (Years) 



-~ 
0 

~"b 
"'-.­
a­

m ...._.., 

Figure 34 
Release to the geosphere of dissolved material from the redox front 
The natural decay chains plus 99Tc 
Lio= 0.1 11m2, year. Csol b U ox= 0.36 g/1. Csolub U red =1.0 E-5 g/1 
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Release of dissolved material to the biosphere. 

U0 =0.l l/m2 ,year Csolub,U,ox=0.36 g/1 migration 

distance =100 m 

Figure 35 The fission products 

Figure 36 The natural decay chains. Oxidizing migration 

conditions 

Figure 37 The natural decay chains. Reducing migration 

conditions. Csolub,U,rea=l·lo-5 g/1 
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Release of colloidally bound material. 

U0 =0.l l/m2 ,year Csolub,U,ox=0.36 g/1 

Csolub,U,red=I•Io-S g/l. 

Figure 38 The fission products except 99Tc 

Figure 39 The natural decay chains and 99Tc 

form 

Figure 40 The natural decay chains and 99Tc 

form. 

in oxidized 

in reduced 
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Figure 38 
Release of colloidally bound material 
The fission products except 99Tc 
u0 = 0.1 l/m 2, year. Csolub, u, ox= 0 .. 36 g/1 
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Figure 39 
Release of colloidally bound material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 =0.1 l/m2, year. Csolub, U, ox=0.36 g/1 
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Figure 40 
Release of colloidally bound material from the redox front 
The natural decay chains plus 99Tc 
Uo=0.1 l/m2, year. Csolub, U, ox=0.36 g/1. Csolub, U, red=1.0 E-5 g/1 
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Release of dissolved material to the geosphere. 

U0 = 0.1 l/m2 ,year Csolub,U,ox=0.36 g/1 initially 

defective canister. 

Figure 41 The fission products except 99Tc 

Figure 42 The natural decay chains and 99Tc from the 

oxidizing zone 

Figure 43 The natural decay chains and 99Tc from the redox 

front. csolub,U,red=l·lo-5 g/1 

TABLE 13. Existence of solid phase (years after start of 

leaching) 

Substance 

Tc 

Th 

Np 

u 
Pu 

The oxidizing zone 

0-2E9 

0-5E6 

0-3E6 

The redox front 

0-2E6 

2E4-2E9 

0-8E6 

0-6E9 
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Figure 41 
Release to the geosphere of dissolved material 
The fission products except 99Tc 
u0 = 0.1 l/m2, year. Initially defective canister. Csolub, u, ox= 0.36 g/1 
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Figure 42 
Release to the geosphere of dissolved material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 = 0.1 l/m2, year. Initially defective canister. Csolub, u, ox= 0.36 g/1 
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Figure 43 
Release to the geosphere of dissolved material from the redox front 
The natural decay chains and 99Tc 
u0 = 0.1 l/m2, year. Initially defective canister. Csolub, u, ox= 0.36 g/I 
Csolub, U, red- 1·0 E-5 911 
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Release of dissolved material to the biosphere. 

U0 =0.l l/m2 ,year Csolub,U,ox=0.36 g/1 

Initially defective canister, migration distance=l00 m. 

Figure 44 The fission products 

Figure 45 The natural decay chains. Oxidizing migration 

conditions 

Figure 46 The natural decay chains, Reducing migration 

conditions. Csolub,U,red=1·10-S g/1 
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Release of colloidally bound material. 

U0 =0.l l/m2 ,year Csolub,U,ox= 0.36 g/1 

Initially defective canister. 

Figure 47 The fission products except 99Tc 

Figure 48 The natural decay chains and 99Tc from the 

oxidizing zone 

Figure 49 The natural decay chains and 99Tc from the redox 

front 
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Figure 47 
Release of colloidally bound material 
The fission products except 99Tc 
u0 = 0.1 l/m 2, year. Initially defective canister. Csolub, U, ox= 0.36 g/1 
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Figure 48 
Release of colloidally bound material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 = 0.1 l/m2, year. Initially defective canister. Csolub, U, ox= 0.36 g/1 
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Figure 49 
Release of colloidally bound material from the redox front 
The natural decay chains and 99 Tc 
u0 = 0.1 l/m2, year. Initially defective canister. Csolub, u, ox= 0.36 g/1 
Csolub U red- 1·0 E-5 911 
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Release of dissolved material to the geosphere. 

U0 =0.03 l/m2 ,year Csolub,U,ox= 0.36 g/1 

Figure 50 The fission products except 99Tc 

Figure 51 The natural decay chains and 99Tc from the 

oxidizing zone 

Figure 52 The natural decay chains and 99Tc from the redox 

front, Csolub,U,red=l·lo-5 g/1. 

TABLE 14. Existence of solid phase (years after start of 

leaching) 

Substance 

Tc 

Th 

Np 

u 
Pu 

The oxidizing zone 

0-8E9 

0-1E7 

0-3E6 

The redox front 

0-2E6 

1E4-1El0 

0-1E7 

0-lEl0 
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Figure 51 
Release to the geosphere of dissolved material from the oxidizing zone 
The natural decay chains and 99Tc 
u0 = 0.03 l/m2, year. csolub, u, ox= 0.36 g/1 
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Figure 52 
Release to the geosphere of dissolved material from the redox front 
The natural decay chains and 99Tc 
Uo = 0.03 11m2, year. Csolub, U, ox= 0.36 g/1. Csolub, U, red =1.0 E-5 g/1 
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Release of dissolved material to the biosphere. 

U0 =0.03 l/m2 ,year Csolub,U,ox=0.36 g/1 migration 

distance= 5 m. 

Figure 53 The fission products 

Figure 54 The natural decay chains. Oxidizing migration 

conditions 

Figure 55 The natural decay chains. Reducing migration 

conditions. Csolub,U,rea=l·10-5 g/1. 
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Release to the biosphere of dissolved material. Figure 55 
The natural decay chains. Reducing migration conditions. 
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Release of colloidally bound material. 

U0 =0.03 l/m2 ,year Csolub,u,ox =0.36 g/1. 

Figure 56 The fission products except 99Tc 

Figure 57 The natural decay chains and 99Tc from the 

oxidizing zone 

Figure 58 The natural decay chains and 99Tc from the redox 

front. Csolub,U,red=l·lo-5 g/1. 
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Figure 56 
Release of colloidally bound material 
The fission products except 99Tc 
u0 = 0.03 l/m2, year. Csolub, u, ox= 0.36 g/1 
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Figure 57 
Release of colloidally bound material from the oxidizing zone 

- The natural decay chains and 99Tc 
u0 = 0.03 l/m2, year. csolub, U, ox= 0.36 g/1 
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Figure 58 
Release of colloidally bound material from the redox front 
The natural decay chains and 99Tc 
Uo=0.03 l/m2, year. Csolub U ox=0.36 g/1. Csol b U red=1.0 E-5 g/1 
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5. THE EFFECT OF 10% OF THE IODINE AND CESIUM 

AVAILABLE IN PROMPTLY LEACHABLE FORM 

Background 

Iodine and cesium have been shown to migrate to the grain 

boundaries in the fuel during the burnup period. 

This means that these substances to some extent are more 

readily leachable. 

In the calculations below it is assumed that 10 % of the 

total content of iodine and cesium promptly dissolves the 

moment water reaches the fuel. 

The mechanism thought to spread out the release of the 

dissolved material in time is a finite rate of displacement 

of the water volume which initially contains the dissolved 

material. This volume is taken to be the 1.7 m3 of pore 

water residing in the clay buffer around a canister. 

The primary release rate of promptly leachable material is 

shown in table 15. 

TABLE 15 Primary Release rate of promptly leachable material 

(Bq/canister, year) 

{In parenthesis the duration of the release in years) 

Nuclide u0 (1/m2 ,year) at t=l0 2 years at t=10 5 years 

1291 0.03 3.5E4{5300) 
0.1 8.6E4(2100} 6.2E4(3000) 
1.0 3 .0ES (630) 1.7E5(1100) 

135Cs 0.03 3. 7E5 (5300) 
0.1 9.4E5(2100) 6.6E5(3000) 
1.0 3. 2 E6 ( 63 0) 1.8E6(1100) 

137Cs 0.03 
0.1 3.0E10(2100) 
1.0 9 .9El0 (630) 
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5.2 Release from a whole repository 

5.2.1 General 

The collective effect of the release calculated above for a whole 
repository has been calculated on the following assumptions. 

4400 canisters with one initially defective canister and an 
evenly distributed time for start of the leaching process 
for the rest of the canisters in the interval 105 to 10 6 
years. This means that about 205 years will pass between 
each leach start. 

For 0.03, 0.1 and 1.0 l/m2 , year groundwater flow rate this 
means that 26, 15 and 6 canisters will be leaching at the 
same time with the high rate calculated above. 

5.2.2 Release to the geosphere of dissolved material 

The release to the geosphere from the whole repository is 
shown in Table 16 below. 

TABLE 16 Release to the geosphere of promptly leachable material 
(10%) from a repository consisting of 4400 canisters. 
(In parenthesis the maximum release from the other 90% 
residing in the fuel matrix calculated on the assumptions 
given elsewhere in this report)*. 

Nuclide u0 

( l/m2 , year) 

129I 0.03 
0.1 
1.0 

135Cs 0.03 

137Cs 

0.1 
1.0 

0.03 
0.1 
1.0 

Release 
The initially 
defect. canister 
(Bq/year,canister) 

8.6E4(3.9E2) 
3.0E5(3.5E3) 

9.4E5(4.3E3) 
3.2E6(3.9E4) 

3. 0 El O ( 1. 3 E8) 
9 .9El0 (l .2E9) 

The other 
canisters 
(Bq/year,4400 can.) 

9.1E5(7.0E5) 
9 • 3 ES ( 1 • 2 E6 ) 
l.OE6(9.1E6) 

9 • 6 E6 ( 6 • 6 E6 ) 
9.9E6(1.2E7) 
l.1E7{9.1E7) 
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Note: The different u0 values also correspond to cases 

with different solubilities of uranium. The release 

rates shown above are not strictly additive. The effect 

on the maximum release rate to the biosphere will be very 

much dependent on the spread in time during the migration 

in the geosphere. 
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5.2.3 Release to the biosphere of dissolved material 

For 129I the retention in the geological medium is very 
small and the figures given in table 16 are representative 
for the release to the biosphere. 

For 135Cs the retention in the geological medium is suffici­
ently large to spread out the release from the promptly 
leachable material to such an extent as to make it in­
distinguishable from the release originating from the 
dissolution of the fuel matrix. 

5.2.4 Release to the biosphere of colloidally bound material 

The fraction of the release to the geosphere that will 
be transported to the biosphere by a colloidal mechanism 
will be: 

2.5•10-5 for Cs and O for I. 

5.3 summary 

The effect of more readily leachable material on the release 
rate to the biosphere will be none for Cs and a maximum 
twofold increase in the maximum release rate to the 
biosphere of I. 

The increase in release rate for I can be expected to be 
further diminished by the more probable successive 
degradation of the copper canisters. 
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6 • DISCUSSION 

The leach rate of the spent fuel is determined by the 

equivalent flow rate of water dissolving and transporting 

the main matrix constituent uo2 • All other nuclides are 

released as the matrix dissolves away. The solubility of 

uranium in the water adjacent to the fuel is thus of prime 

importance. Due to the possible effects of alfa-radiolysis 

the water is assumed to be oxidizing and then uranium has a 

much higher solubility than in the naturally reducing waters 

in ferrous iron containing crystalline rock. 

Some nuclides e.g. Pu and Th which have very low solubility 

will precipitate as the uranium dissolves away. Others e.g. 

Tc and Np which have very low solubility in reducing waters 

will precipitate at the redox front. For such nuclides the 

maximum concentration will be limited by their solubilities. 

All dissolved nuclides will penetrate into the porous rock 

matrix by diffusion from the flowing water in the fissures. 

Most of the nuclides (except I and Sn) will sorb onto the 

inner surfaces of the pores or microfissures. This is by 

far the most important mechanism for retarding the nuclides 

in the present model. Compared to this sorption on the 

surfaces of the fissures with flowing water can be 

neglected. 

Dispersion has been modelled as Fickian dispersion and high 

dispersivities have been used to ensure that early arrival 

of a portion of the nuclides is accounted for. (Sample 

calculations with small dispersion have shown to give 

smaller releases). 

The treatment of colloidal transport by assuming that the 

nuclides are sorbed irreversibly on natural colloidal matter 

in the water is very conservative. If there were 

irreversible sorption mechanisms these would be active in 

the matrix also, effectively stopping a fraction of what now 

is modelled as reversibly sorbing nuclides. 
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In the present model calculations no account is taken of the 
retardation in the backfill. This is of little or no 
importance for the long lived canisters but would 
considerably retard some of the shorter lived nuclides 
released from a canister which fails initially. 

Decrease of retardation by complex formation with fulvic and 
humic acids has been studied. 242 Pu was used as model 
nuclide. The release of this nuclide was increased but 
still did not become dominant. Other trivalent nuclides 
would be less important. 
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SYMBOLS USED 

Half the fracture aperture 

Concentration 

Diffusivity in the pore water 

(m) 

{ g / 1) 
2 (m /year) 

Dispersion coefficient in the flowing 
2 

water (m /year) 

Volume equilibrium constant =Kdpp (m3 /m3 ) 

Mass sorption coeffifient (m3 /kg) 

Migration length 

Amount of a nuclide or substance 

Molar flux at the fracture/solid 

interface 

Peclet number= u•L/DL 

Equivalent water flow rate 

Spacing between fractures 

Time 

Linear velocity 

Water flux in the undisturbed rock 

Coordinate in the direction of 

the water flow 

Porosity of the rock matrix 

Flow porosity 

(m) 

(kg) 

2 (mol/m ,year) 

(1/canister,year) 

(m) 

(years) 

(m/year) 
2 (1/m ,year) 

Density 

Mass flux 

Decay constant 

(kg /m3 ) 

(g/canister,year) 

(year -l) 

Colloidal particles 

The fissure, the flowing water 

Nuclide, isotope 

Substance 

The oxidizing zone 

The rock matrix 

The reducing zone 

Solubility 

(Even used as a superscript) 
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APPENDIX A 

The Bateman eguations 

The amounts Ni of the respective nuclides in an isolated 

decay chain 1 2 3 can be written as: 

Nl= NOl*exp(-Ll*T) ( 1) 

N2= NOl*Ll/(L2-Ll)*(exp(-Ll*T)-exp(-L2*T))+N02*exp(-L2*T) (2) 

N3= NOl*Ll*L2*(exp(-Ll*T)/(L2-Ll)/(L3-Ll)+ 

+exp(-L2*T)/(L1-L2 )/(L3-L2)+ 

+exp(-L3*T)/(L1 -L3 )/(L2-L3)+ 

+N02*L2/(L3-L2)*(expL-L2*T)-exp(-L3*T))+ 

+N03*exp(-L3*T) 

Ni= amount of nuclide i (grams) 

NOi= initial amount of nuclide i (grams) 

T = time (years) 

Li= decay factor for nuclide i (years-1 ) 

(3) 



APPENDIX B 

Conversion of computer program TRUCHN from concentration to 

activity units 

As TRUCHN works with absolute accuracy, one should strive to 

get the different peaks in a radionuclide chain at about the 

same heights. For certain chains with long-lived parent 

nuclides, like U-238 (U-234) Th-230 Ra-226, it is then 

advantageous to work in activity units instead of the 

original formulation in concentration units in TRUCHN. The 

conversion is done in the following way. 

The migration of the i th member of a radionuclide chain is, 

in concentration units, given by (Rasmuson and Neretnieks, 

19 82) • 

dCi 
Ni= D s _______e 

pp ar r=interface 

Spherical blocks of rock matrix with a radius= r 
0 

means: 

a = 

B = 2 

(1) 

( 2) 

(3) 

( 4) 

( 5) 



To obtain the analogue formulation in activity units we use: 

(6) 

Substituting into equations (1)-(3) we obtain: 

= D s [a2a2~ + B aa~l-
P p or r or (7) 

rJi = - D s [~] 
PP or r=interface (8) 

(9) 

Equations (7)-(9) are the equivalents of (1)-(3) in activity 
units. The only difference is in the last terms of 
equations ( 7) and ( 8) (build-up due to the decay of 
nuclide). They include the factor i instead of 

a parent 
i-1 

The boundary conditions also have to be modified using 
equation (4). This is straight forward. 

In the numerical code TRUCHN the modification (equations 
(7)-(9)) is done at the end of the main program HEART. The 
boundary conditions are appropriately modified in 
SUBROUTINE SURE. 



APPENDIX C 

Maximum release for an infinite source 

Introduction: 

To assess the importance of the primary source term to the 

geosphere migration calculation for a nuclide calculations 

have been performed on the stationary case with an infinite 

source i.e. a constant input concentration. The radioactive 

decay will establish a stationary concentration profile 

along the migration distance after a number of halflives for 

the nuclide studied. 

An analytical expression has been derived for C/C 0 as a 

function of the migration parameters and the halflife of the 

nuclide (Neretnieks et.al. 1983). The mathematical expres­

sion can be written in the following way: 

Where: A= the decay constant (years-l) 

D = the effective 
e 

rock matrix= 

rd = the retention 

diffusivity in the 
2 

DPEP (m /year) 

factor= Kd rock 

2b = fracture aperture (m) 

Pe = the Peclet number= uf L/DL 

DL = the dispersion coefficient in the flow 
d . t' 2 irec ion (m /year) 

L = The migration length (m) 

s = fracture spacing (m) 

Ef = flow porosity (m2;m2 ) 

( 1) 

( 2) 



The case is derived for an infinite distance between frac­

tures or in practical terms the fractures are so widely 
spaced that the concentration profiles from two fractures 
do not affect one another. 

The penetration depths in the cases calculated for the KBS3 

study ranges from millimeters to some centimeters for the 

nuclides notably affected by decay during the passage 
through the geologic medium. As this is a mere fraction of 
the 2.5 meters from the midline out to a fracture the 

diffusion process for the case with cubical blocks of rock 
matrix can effectively be modeled as diffusion into 
plane-parallell slabs. 

To be able to compare with the solution of the numerical 

calculations, performed on qubical blocks of rock matrix 

with an edge length=Scube and a fracture 
aperture=2b, the 

parameters band DL in (1) and(2) have to be modified. 

For a medium with parallell fractures with a spacing=S and 

an aperture=2b, Snow (1968) has derived the expressions: 

and 

3 
b ex Is 

First the parameter 'I' which is common to all the cases 

studied, is listed in table 1. 

( 3) 

( 4) 



TABLE 1. 

Nuclide 

H3 
Cl4 
Co60 
Ni59 
Ni63 

Sr90 
z r93 
Nh94 
Tc99 
1129 

Csl35 
Csl37 
Snl26 

Srnl51 
Eul54 
Hol66m 

Ra226 

Th229 
Th230 
Th232 

Pa231 

U233 
U234 
U235 
U236 
U238 

Case independent characteristics 

t(l/2) (years) 

1.23+1 
5.73+3 
5.27 
7.50+4 
1.00+2 

2.88+1 
1.53+6 
2.03+4 
2.14+5 
1.57+7 

2.95+6 
3.02+1 
1.00+5 

8.70+1 
8.5 
1.2+3 

1.6+3 

7.34+3 
8.00+4 
1.41+10 

3.28+4 

1.59+5 
2.45+5 
7.04+8 
2.34+7 
4.47+9 

2.14+6 Np237 

Pu238 
Pu239 
Pu240 
Pu242 

red/ox(complex) 8.77+1 
II 2.41+4 
II 6.57+3 
II 3.76+5 

Am241 (complex) 
Am242m " 

4.32+2 
1.52+2 
7.37+3 l\m2 43 " 

Cm245 
Cm246 

8.5+3 
4.7+3 

5.64-2 
1.21-4 
6.15+1 
5.14-1 
1.41+1 

1.18+1 
5.09-1 
4.42 
9.63-3/1.52-1 
4.41-8 

4.10-2 
1.28+1 
5.93-6 

7.55+1 
2.42+2 
6.65 

2.49 

8.22 
2.49 
5.93-3 

3.89 

7.90-2/1.77 
6.36-2/1.42 
1.19-3/2.65-2 
6.51-3/1.46-1 
4.71-4/1.05-2 

4.81-1 

5.83+1/7.52+1(2.38+1) 
3.51/4.54(1.43) 
5 • 7 3/ 8. 6 9 ( 2. 7 5) 
8.85-1/1.14(3.61-1) 

3.39+1(1.07+1) 
5.71+1(1.81+1) 
8.20(2.59) 

7.64 
1.03+1 

Common characteristics for the geologic medium: 

D - 5•10-14 m2/s e-
bcube /2= 2.5·10- 4 m 
8 cube== 5 rn 



The parameters special to each of the cases are shown in 
table 2. The c;c0-values are shown in tables 3, 4 and 5. 

To get the same volume to surface ratio as for the case with 
cubical blocks we will have to use 

With a fixed Peclet number this means that 
b=0.69·bcube 

( 5) 

( 6) 

(7} 

TABLE 2. Parameters characteristic to each of the cases 

Case: Uo=l 1/rn, Uo=0.3 l/rn2 , Uo=0.1 l/rn2 , Uo=0.03 
year Z=50m year Z=l00 m year Z=l00 m year Z=5 

Pe 2 50 2 2 2 

Pe/2L(m-1 ) 2·10-2 5•10-l 1·10-2 1·10-2 2•10-l 

DL(m2/year) 1. 2E2 4.81 7. 26 El 2.40El 3.61E-l 
L (m) 50 50 100 100 5 

l/rn2 , 
m 



TABLE 3. 

Nuclide 

3H 
14C 
60Co 
59Ni 
63Ni 

90Sr 
93Zr 
94Nb 
99Tc red/ox 
1291 

135Cs 
137Cs 
126Sn 

151Sm 
154Eu 
166mHo 

226Ra 

2 2 9'I'h 
230Th 
232Th 

231Pa 

233U 
234U 
235U 
236U 
238U 

red/ox 
II 

II 

II 

II 

237Np " 

238Pu " 
239Pu " 
240Pu " 
242Pu " 

241PJTl 
242mAm 
243Am 

245Cm 
246Cm 

C/C 0 for an infinite source. Valu3s given for Pu 
and Am in parenthesis for Ka=0.5 m /kg 

U0 =1 l/m2 ,year 

Z=50 m 

Pe=2 

6.2E-l 
1.0 
7.6E-16 
8.9E-2 
9. 5 E-8 

4 .1 E-7 
9.0E-2 
l.8E-4 
9.lE-1/3.SE-l 
1.0 

7.0E-1 
2. l E-7 
1.0 

l.6E-l 7 
3.9E-31 
2. 0 E-5 

1. 9E-3 

5.4E-6 
l.9E-3 
9.4E-l 

3.2E-4 

5.3E-l/5.8E-3 
5.9E-l/l.1E-2 
9.9E-l/7.8E-l 
9.4E-l/3.6E-l 
1. 0 /9. 7E-l 

9.8E-2 

Pe=SO 

5. 6 E-1 
1.0 
2.9E-68 
7. 7 E-3 
3.SE-96 

l.4E-25 
8.0E-3 
2.4E-13 
9.0E-l/2.2E-l 
1.0 

6. 6 E-1 
6.4E-27 
1.0 

1.4E-76 
0 
l.3E-17 

6.8E-9 

2.9E-20 
6.8E-9 
9.4E-l 

3.3E-12 

4.SE-1/6.lE-7 
5.2E-l/6.7E-6 
9. 9 E-1/7. 6 E-1 
9.3E-l/2.3E-l 
1. 0 /9. 6 E-1 

l.OE-2 

2 • 0 E-15/ l • 7 E-1 7 ( 5 • 7 E-10 ) 3 • 0 E-6 6 / 2 • 1E-76 ( 2 • 2 E- 3 9 ) 
5.0E-4/1.SE-4(1.lE-2) 2.3E-ll/l.4E-13(6.2E-6) 
4.7E-5/3.8E-6(1.3E-3) 6.1E-16/5.2E-21(1.5E-9) 
3.3E-2/l.9E-2(1.5E-l) 3.6E-4/5.1E-5(3.0E-2) 

7 • 7 E-12 ( 8 • 6 E- 7 ) 
2.8E-15(9.8E-9) 
5.5E-6(1.6E-3) 

8. 7 E-6 
1.1 E-6 

l.6E-48(5.0E-24) 
l.8E-65(2.3E-33) 
3.1E-20(3.8E-9) 

2.6E-19 
1. 9 E-23 



TABLE 4. 

Nuclide 

3H 
14C 
60Co 
59Ni 
63Ni 

90Sr 
93Zr 
94Nb 

C/C 0 for an infinite source. Value~ given for Pu 
and Am in parenthesis for Kd=0.5 rn /kg 

U0 =0.3 l/m2 , year 

Z=l00 m 

Pe=2 

l.4E-l 
9.9E-l 
2 .9E-40 
5. 7 E-4 
2.0E-19 

8. 3 E-18 
5.9E-4 

99Tc red/ox 
1291 

5 .1 E-11 
5.9E-l/2.5E-2 
1.0 

135Cs 
137Cs 
126Sn 

151Sm 
154Eu 
166mHo 

226Ra 

229Tb 
230Th 
232Tb 

231Pa 

233U red/ox 
234U II 

235U II 

236U II 

238U II 

237Np II 

238Pu II 

239Pu " 
240Pu " 
242Pu " 
241Am 
242mArn 
243Am 

245Cm 
246Cm 

2.lE-1 
1. 6 E-18 
1.0 

1. 4E-44 
l.4E-79 
l.9E-13 

2. 4E-8 

6.SE-15 
2.4E-8 
7 .1 E-1 

2.4E-10 

8. 7E-2/4.4E-7 
l.2E-l/2.2E-6 
9.2E-l/3.1E-l 
6.9E-l/2.7E-2 
9. 7 E-1/2. 7 E-1 

7.SE-4 

3.3E-39/l.7E-44(3.7E-25) 
7.5E-10/3.7E-ll(2.1E-6) 
l.7E-12/2.5-15(9.3E-9) 
4.2E-5/9.4E-6(2.2E-3) 

5.7E-30(5.7E-17) 
8. 3 E-3 9 ( 5 • 6 E-2 2) 
6 • 8 E-15 ( l • 7 E- 8) 

2.2E-14 
l.2E-16 



TABLE 5. 

Nuclide 

3H 

14C 
60Co 
59Ni 
63Ni 

90Sr 
93Zr 
94Nb 
99Tc 
1291 

135Cs 
137Cs 
126Sn 

151Sm 
154Eu 
166mHo 

226Ra 

229Th 
230Th 
232Th 

231Pa 

233U 
234U 
235U 
236U 
238U 

237Np 

238Pu 
239Pu 
240Pu 
242Pu 

2 41Arn 
242rnArn 
2 43Arn 

245Cm 
2 46Cm 

C/C 0 for an infinite source. Values given in 

parenthesis for Pu and Arn are for Ka==0.5 m3/kg 

U0 =0.1 l/rn2 ,year 

Z=lOO m 

Pe == 2 

l.9E-2 

9.8E-l 
8.2E-70 
l.2E-6 
l.4E-33 

9.SE-31 
l.2E-6 
6.2E-19 
2.9E-l/8.9E-4 
1.0 

3.9E-2 
5.2E-32 
1.0 

2.SE-77 
0 
3. 7 E-23 

2.7E-14 

l.OE-25 
2. 7 E-14 
4.2E-l 

8.BE-18 

8.0E-3/4.3E-12 
l.4E-2/7.3E-ll 
8. 0 E-1/ 8. 5 E- 2 
4.0E-1/1.0E-3 
9 .1 E-1/2. 7 E-1 

4.9E-6 

5.6E-68/3.6E-77(1.5E-43) 
6.6E-17/3.5E-19(6.7E-11) 
l.6E-2/2.0E-26(5.3E-15) 
l.2E-8/9.1E-10(1.2E-5) 

6.6E-52(2.7E-29) 
2.8E-67(5.2E-38) 
1. 1E-25 ( 1 • 4 E-14 ) 

8.SE-25 
9.SE-29 

U0 =0.03 l/rn2 ,year 

Z=S rn 

Pe=2 

3.0E-1 

1.0 
l.2E-28 
6.4E-3 
7.2E-14 

l.OE-12 
6. 6 E-3 
6. 7 E-8 
7.SE-1/9.lE-2 
1.0 

3.8E-l 
3.lE-13 
1.0 

l.lE-31 
0 
l.3E-9 

5.2E-6 

l.2E-10 
5.2E-6 
8. 3 E-1 

2.0E-7 

2.lE-1/4.0E-5 
2.7E-l/l.3E-4 
9. 6 E-1/ 5 • 0 E-1 
8.2E-l/9.7E-2 
9.8E-l/7.3E-l 

7.8E-3 

6.8E-28/l.2E-31(6.3E-18) 
4.5E-7/5.3E-8(1.2E-4) 
5.9E-9/5.9E-11(2.7E-6) 
l.OE-3/3.6E-4(1.7E-2) 

2.4E-21(4.0E-12) 
l.3E-27(1.1E-15) 
l.2E-10(4.0E-6) 

2.7E-10 
6.7E-12 
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