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Spent fuel from Swedish LWRs is planned to be en-
closed in canisters of copper and be buried in the
final repository. The radiation levels during handling
of canisters and the radiation energy absorbed in
water (causing radiolysis) have previously been re-
ported in KBS TR-106. However, there exists a desire
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canisters with thinner walls. New radiation source
term calculations have been made available and a new
concept for making canisters has also been discussed.
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Spent fuel from Swedish LWRs is planned to be en-
closed in canisters of copper and to be buried in
the final repository. Two types of canister have
been discussed:

- Rods from spent BWR or PWR fuel are placed in a
cylindrical canister of copper. Fuel corresponding
to about 1.4 (BWR)}, or 1.1 (PWR) tonnes of uranium
are assumed to fit in one canister. The rest of the
space in the canister is filled with lead before
sealing.

- Seven BWR or two PWR fuel assemblies are placed in
a cylindrical canister of copper. With the help of
hot isostatic pressure (HIP) the rest of the space
is filled with copper and the canister is sealed.

The above two types of canister are in the following
description designated as KBS-2 and KBS-3, respec-
tively.

The radiation levels during handling of canisters and
the radiation energy absorbed in water (causing
radiolysis) have previcusly been reported (reference
1) . A KBS-2 canister with wall thickness 20 cm,
average fuel burnup of 30 Mwd/kg U (BWR fuel) and

a cooling time of 40 years before putting into ca-
nisters were assumed.

There exists a desire to enclose both BWR and PWR fuel
with higher burnup and use canisters with thinner
walls. New radiation source term calculations have
also been made available (reference 2}, giving rise

to a need for new radiation calculations. Together
with KBS it has been decided to perform calculations
for the following set of parameters:

Type of canister KBS-2 KBS-3

Type of fuel BWR BWR BWR PWR PWR PWR |BWR PWR
Burnup (Mwd/kgU) 33 33 33 33 38 45 33 38
Wall thickness (cm) 1 10 20 10 10 10 6 6

The fuel is assumed to be put into canisters after a
cooling period of 40 years but the influence of a
shorter period (30 years) has also been examined. The
calculatiion of radiation energy absorbed in water
outside the canister is performed for the period 40 to
106 years after discharge of the fuel from the reactor.
Absorbed dose in the event of any water inside the ca-
nisters (in direct contact with the uranium) has also
been estimated. This is done assuming a decay period
of 40 or 10° years.
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Radiation source terms

The formation of fission products and actinides in

LWR fuel during operation and the resulting gamma

and neutron source terms have been calculated with

the ORIGEN-2 computer code. These calculations are
described in reference 2. The photon spectra have been
divided into 10 energy groups with fixed mean ener-
gies. The neutrons originate from heavy isotopes

with relatively short spontaneous fission half-lives

or (&, h) reactions in 0-18 and 0-17 present in UO,-
fuel. These two types of neutrons emitted are trea%ed
separately because of different Spectra.

The upper part of a fuel rod contains springs of stain-
less steel.An assembly also contains a top tie plate
of the same material. These components are neutron
irradiated during reactor operation causing induced
activity. After some years of operation the dominant
gamma emitter is Co-60. This gamma source is small
compared with the fuel itself but is important for
the radiation levels in the upward axial direction

of the canisters and has therefore been calculated
using the computer code AKTGAMMA (reference 3).

The cobalt content in the stainless steel is assumed
to be 0.05 or 0.2 % for BWR or PWR fuel, respectively
(In ASEA-ATOM fuel the cobalt content is restricted

to 0.05 %.)

When some of the neutrons emitted from the fuel are
captured in the different materials around the fuel,
hard energy photons will be emitted. The capture
rate in the different materials has been calculated
together with the neutron transport calculations.
These capture rates have been combined with gamma
spectra from references 4 and 5 to give gamma source
terms.
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3
Gamma and neutron transport calculations

The gamma transport calculations have been carried
out with the point kernel codes CYLGAM and CYLGAX
(reference 6). The one-dimensional S_ code ANISN
(reference 7) has been used for the neutron transport
calculations. Conversion factors from reference 8
have been used to obtain dose rates (mSv/h) from
neutron fluxes (n/cm2, s). The deposition of energy
to water outside the canister due to elastic scat-
tering of neutrons was calculated from the neutron
fluxes. It was found that more than 90 % of that
energy was due to collisions with hydrogen. Together
with the neutron fluxes, neutron capture rates in
different materials were calculated with ANISN (giving
the gamma source terms from neutron capture, see
section 2).

The canisters and the source regions have been homo-
genized, assuming cylindrical geometry. Transport
calculations have been carried out both in the mid
radial and the upward axial directions. The treated
geometries and the homogenized regions are described
in table 1 and 2.

All cases except one are assumed to give a radiation
field with rotational symmetry. The exception is a
KBS-3 canister with 2 PWR assemblies, having higher
radiation levels in two directions. The calculated
values correspond to these maximum directions and
are estimated to be about a factor of two higher
than the average value in the radial direction.
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4
Radiation levels during handling of canisters

With the source terms described in section 2 and the
calculation methods described in section 3 the radi-
ation levels outside the canisters have been calcu-

lated both in the mid radial and upward axial direc-
tions. Dose rates at 3 different distances from the

canisters (at contact, 1 m from and 2,5 m from) are

presented in table 3, 4 and 5.

The handling of canigters is assumed to take place
after a decay period of 40 years. A decay period

of only 30 years was found to increase the gamma

and the neutron dose rates in the radial direction
by 42 % and 56 %, respectively. From the results
could also be seen, that both a thicker copper shield
and a higher burnup level increase the relative impor-
tance of the neutrons. No big difference is seen
between canisters containing BWR or PWR fuel. Neutron
induced activity (i.e. Co-60) in stainless steel was
found to give the major contribution to the gamma
dose rates in the upward direction.

The axial distribution of the gamma source in the
fuel is closely related to the burnup profile. This
is considered by using typical burnup profiles for
BWR and PWR fuel. Cm-244 is the dominant neutron
emitter at a decay time of 40 years. The relation
between burnup and Cm~-244 concentration is shown in
reference 1, which has been used to estimate the
axial neutron source profile.
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5.
Radiation energy absorbed in water outside the canisters

The canisters are assumed to be surrended by a layer
of clay mineral called Bentonite in the final reposi-
tory. This mineral is assumed to have a dry density of
1,75 g/cm3 with a typical chemical analysis shown in
table 6 (from reference 9). The amount of mechanically
held water is assumed to be 20 % or 0.35 g/cm3. The
radiation that penetrates the surface of the copper
canisters causes radiolysis of the water. In order to
permit quantitative evaluations of whether the radio-
lysis products can destroy the integrity of the ca-
nisters, a calculation has been made of the radiation
energy absorbed (absorbed dose) in the water. This is
done for the period 40 to 106 years after discharge of
the fuel from the reactor. The absorbed dose is ex-
pressed in the SI unlf gray z) (1 Gy = 100 rad =

=1 Ws/kg = 6.24 - ev/g)

Dose rates (mGy/h) as a function of time after discharge
are presented in figures 1-8. This is done both for
positions on the surface and 10 cm from the surface of
the canisters and the contributions from gamma and
neutrons are shown individually. The 1n§rease of

gamma dose rates between 10% and 2 - yvears is due

to the buildup of Ra-226 in the fuel.

The calculated dose rates have been numerically inte-
grated, giving accumulated doses (Gy) to water outside
the canisters. These are presented as a function of
time in figures 9-16 and as a function of distance
from the surface of the canisters in figures 17-24.

It is obvious from the figures that the buildup of
Ra—-226 causes a 51gn1f1cant increase of accumulated
dose between 3 * 10% and 106 years. The dose due to
neutrons decreases somewhat faster with the distance
from the surface than the gamma dose.

The total energy depositions (MWs) to water outside the
canisters have been obtained by integrating the accu-
mulated doses over the amount of water outside the
canisters. The results are presented as a function of
time in figures 25-32 and as a function of distance
from the surface of the canisters in figures 33-40.
45-75 % of the gamma and 80-85 % of the neutron energy
deposition to water take place in the first 10 cm of
the Bentonite layer outside the canisters.
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6
Radiation energy absorbed in water inside the canisters

A rough estimate of the radiation energy deposition
to water in the event of direct contact with the UO2
fuel has been made. The basis for calculations has
been a KBS-2 canister loaded with BWR (33 MwWd/kgU)
or PWR (38 and 45 MWd/kg U) fuel and decay periods
of 40 or 10° years.

The results are divided into contribution from & -,

- and -radiation (the contribution from neutrons
can be neglected) and are presented in table 7. The
figures are valid for the case of water in a narrow
crack in the UO,-pellet. The crack width should not
exceed the rYangés of the & - and -particles in
water, which for the energies considered are:

K -particles: 0.02 - 0.075 mm
lb-particles: 1 - 20 mm

If, instead, the water is in a thin layer on the
outer surface of a pellet, the contribution from
and will be halved while the contribution from
is unaffected. Water outside the cladding of a fue
rod will be affected mainly by the x’-radiation.



ASEA-ATOM

7
Discussion

PM KPC 82-47 9

The calculation results in this report have been com-
pared with the results in the previous report (refe-
rence l). This comparison is summarized in table 8.

A very good agreement is obtained for the neutron
radiation levels outside a 20 cm KBS-2 canister loaded
with BWR fuel, especially if a correction is made for
the difference in burnup. The difference in gamma
radiation level is due to different gamma source term
representations in the computer codes used (ORIGEN-2
in this report and BEGAFIP in reference I).At a decay
time of 40 years Cs-137 is the dominant gamma emitter.
The fixed mean group energy used in ORIGEN-2 (0.575
MeV instead of the true 0.662 for Cs-137) explains
the difference and the gamma radiation levels given
in reference 1 are therefore probably more accurate.
The difference will be less in the case of a thinner
copper shield.

Reasonably good agreement is reached for calculated
energy depositions to water outside a 20 cm KBS-2
canister loaded with BWR fuel apart from the contri-
bution from neutrons during the time period 104 - 10
years. The very complete neutron source term library
in ORIGEN - 2 was not available at the time for the
previous calculations. Therefore the results presented
in this report should be regarded as more accurate.

The above compariscon indicates an uncertainty in pre-
sented values of the order of a factor of two.
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Calculation models for KBS-2 canisters

Radial direction

R (cm) Composition (g/cm3)

0 - 2.8 Pb 11.34

2.8 - 3.3 Cu 8.93

3.3 - 18.5 BWR: Pb 4.70 PWR: Pb 6.23
uo, 4.19 Uo2 3.28
Zr 0.90 Zr 0.69
Cu 0.20 Cu 0.20

18.5 - x Cu 8.93

Upward_axial direction

s 3

Z (cm) Composition (g/cm™)

0-365 BWR: Pb 4.70 PWR: Pb 6.23
UO2 4.19 UO2 3.28
Zr” 0.90 Zr~ 0.69
Cu 0.20 Cu 0.20

365-390 BWR: Pb 4.70 PWR: Pb 6.23
Zr 0.90 Zr 0.69
SS 0.61 SS 0.46
Cu 0.20 Cu 0.20

390-394 Pb 11.34

394-x Cu 8.93

11
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Calculation models for KBS-3 canisters

Composition (g/cm3)

R (cm)

0-24.5 Cu 6.47
UO2 2.05
zr~- 0.46

24.5-30.5 Cu 8.93

12
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R (cm) Composition
0 - 13.6 Cu 6.05
U0, 2.47
Zr~ 0.49
13.6 - 19.6 |Cu 8.93
Upward_axial direction__ (7 _BWR_assemblies)

Z (cm) Composition
0 - 365 Cu 6.47

UO2 2.05

Zr” 0.46
365 - 390 Cu 6.47

Zr 0.46

Ss 0.30
390 - 409 Cu 8.19

Ss 0.31
409 - 415 Cu 8.93

(cont.)
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(TABLE 2 cont.)

PM KPC 82-47

Upward_axial direction_ _ (2 PWR_assemblies)
- 3
Zz (cm) Composition (g/cm™)
0 - 365 Cu 6.05
UO2 2.47
zr~ 0.49
365 - 385 Cu 6.05
7Zr 2.47
SS 0.55
385 - 405 Cu 7.62
SS 0.88
405 - 411 Cu 8.93

13



B! 1803 8201 50000 % UG

Fuel type BWR BWR BWR BWR PWR PWR PWR
Burnup (MWd/kgU) 33 33 33 33 33 38 45
Decay period (years) 40 40 40 30 40 40 40
Copper wall (cm) 20 10 1 10 10 10 10
EJ
At contact gamma O.ll 38 2.0E 54 29 34 40
neutrons 0-93 4.3 8.]. 6.7 2.4 4.5 10
total 1.0 42 2.0E4 6l 31 39 50
1 m from gamma 0.029 8.1 2500 12 6.2 7.2 8.6
surface
neutrons 0.26 0.92 1.0 1.4 0.51 0.96 2.1
total 0.29 9.0 2500 13 6.7 8.2 11
2.5 m from gamma 0.014 3.5 810 4.9 2.7 3.1 3.7
surface
neutrons 0.12 0.40 0.33 0.62 0.22 0.41 0.92
total 0.13 3.9 810 5.5 2.9 3.5 4.6
1) 2.0 E4 stands for 2.0 - 10%
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Fuel type

BWR BWR BWR BWR PWR PWR PWR
Decay period (years) 40 40 40 30 40 40 40
Copper wall (cm) 16 10 2 16 16 16 16
At contact  gamma 0.010 0.14 5.1 0.034 0.013 0.015 0.019
neutrons 0.039 0.082 0.19 0.060 0.029 0.054 0.12
total 0.049 0.22 5.3 0.094 0.042 0.069 0.14
1 m from gamma 0.0012 0.016 0.44 0.0044} 0.0017| 0.0019 0.0023
surface
neutrons 0.0072 0.014 0.026 0.011 | 0.0055| 0.010 0.023
total 0.0084 0.030 0.47 0.015 |1 0.0072| 0.012 0.025
2.5 m from gamma 0.00026 0.0032 0.081 [0.00094| 0.00035 0.00041} 0.00059
surface
neutrons 0.0019 0.0034] 0.0062; 0.0030/0.0014) 0.0027 0.0059
total 0.0022 0.0066] 0.087 0.0039|/ 0.0018( 0.0031 0.0065
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Mid radial

Upward axial

1)

Fuel type BWR PWR BWR PWR
Burnup (Mwd/kgU) 33 38 33 36
Decay period (years) 40 40 40 40
Copper wall (cm) 6 6 6 6
At contact gamma 410 510 3.0 9.0
neutrons 2.1 2.3 0.0030 0.0043
total 410 510 3.0 9.0
1l m from gamma 91 80 0.25 0.42
surface
neutrons 0.47 0.36 0.00077 0.0013
total 91 80 0.25 0.42
2.5 m from gamma 37 31 0.051 0.076
surface
neutrons 0.13 0.14 0.00022 0.00031
total 37 31 0.051 0.076

1) Not a radiation field with rotational symmetry. The radiation levels
in the two maximum directions are given.
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Typical chemical analysis of clay mineral Bentonite,

moisture free basis (from reference 9)

Silica (Si02)
Alumina (A1203)
Ferric Oxide (Fe203)
Magnesia (MgO)

Lime (CaO)

Soda (NaZO)
Potash(KzO)

Ferrous Oxide (FeO)

Titanium Oxide(TiOz)

Other minor consti-
tuents

Chemically-held water
(H,0)

Percent by Wt.

58.0

18.0

64.0

21.0

(Varies between)
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TABLE 7 Absorbed dose rate (Gy/h) in water in a narrow

crack in an UO,-pellet

Canister KBS-2 KBS-2 KBS-2
Type of fuel BWR PWR PWR
Burnup (MWd/kgU)| 33 38 45
Decay period & 2000 2300 3300
40 years

P 700 800 900

¥ 63 55 65
Decay period 5.4 6.2 7.5
103 years

P 1.0 1.0 1.2

Y 11-107°3 9.6-1073| 12-1073

A\

£

B 1RO B (0 €
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TABLE 8

Comparison between calculation results in this report
and the previous evaluation (reference 1)

This report Reference 1

Fuel type BWR BWR
Burnup (Mwd/kgU) 33 34/30%)
Decay period (years) 40 40
Copper wall (cm) 20 20
At contact gamma 0.11 0.17
neutrons 0.93 0.40-0.95
total 1.0 0.57-1.1
1l m from gamma 0.029 0.046
surface
neutrons 0.26 0.11-0.26
total 0.29 0.16-0.31

Fuel type BWR BWR
Burnup (MWd/kgU) 33 347307
Copper wall (cm) 20 20

40 - 104 years

gamma 0.073 0.13
neutrons 0.032 0.055
total 0.11 0.18
40-106 years gamma 4.2 4.6
neutrons 1.5 u 0.12
total 5.7 4.7

1) 34 MWd/kgU for the gamma and 30 MWd/kgU for the
neutron calculations.
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Fig 11 Accumulated dose to water outside o capsule
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Fig 12

Accumulated dose to water outside a capsule
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Accumulaoted dose to water outside a capsule
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Accumulated dose to water outside a capsule
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Fig 15 Accumulated dose to water outside a capsule
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Fig 18

KBS-2 (t{Cud=18 em>, BWR 33 MWd/kgU
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Fig 2. Accumulated dose to water outside a capsule

KBS-2 C(t(Cud=18 cmd>, PWR 33 MWd/kgU
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Fig 2] Accumulated dose to water outside a capsule

KBS-2 (t{Cud>=18 cmd>, PWR 38 MWd/kgU
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Fig 22

KBS-2 (t(Cud=18 cmd, PWR 45 MWd/kgU
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Fig 23 Accumulated dose to water outside a capsule
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Fig 24

KBS-3 (tCCud>=6 cmd>, PWR 38 MWd/kgU
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Fig 26
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Fig 27

Energy deposition to water outside o capsule
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Fig 23

Energy deposition to water outside a capsule
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'Figlﬁ) Energy deposition to water outside a capsule
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Fig 30 Energy deposition to water outside a capsule
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Fig 31 Energy deposition to water outside a capsule
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Fig 32 Energy deposition to water outside a capsule
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Fig 34

Energy deposition to water outside a capsule
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Fig 35 Energy deposition to water outside a capsule
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Fig 3¢ Energy deposition to water outside a capsule
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Fig 37 Energy deposition to water outside « capsule
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Fig 38 Energy deposition to water outside o capsule
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Energy deposition to water outside a capsule
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Fig 40 Energy deposition to water outside o capsule
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