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Sill~1ARY 

A solution of the two-dimensional differential equation of dispersion 

from a disk source, coupled with a differential equation of diffusion 

and sorption in particles, is developed. The solution is obtained by 

the successive use of the Laplace and the Hankel transforms and is 

given in the form of an infinite double-integral. If the lateral dis-

persion is negligible, the solution is shown to simplify to a solution 

presented earlier. Dimensionless quantities are introduced. A steady­

state condition is obtained after long times. This is investigated in 

some detail. An expression is derived for the highest concentration 

which may be expected at a point in space. An important relation is 

obtained when longitudinal dispersion is neglected. The solution for 

any value of the lateral dispersion coefficient and radial distance from 

the source is then obtained by simple multiplication of a solution for 

no lateral dispersion with the steady-state value. A method for inte~ 

grating the infinite double integral is given. Some typical examples 

are shown. 
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DIFFUSION AND SORPTION IN PARTICLES AND TWO-DIMENSIONAL DISPERSION 

IN A POROUS MEDIUM 

INTRODUCTION 

The problem of disposal of radioactive waste products, and the 

increased rate of pollution of groundwater by other chemical 

compounds, have increased the need for mathematical models of 

the groundwater pollution process. Because of the dangers of 

contaminants in the water supply, their fate and mode of travel 

downstream from their sources must be predicted. The fate of 

a contaminant depends on both the macroscopic and microscopic 

behavior of the fluid under existing flow conditions, and on 

physico chemical conditions within the environment of the granular 

material. The diffusion of the chemical species into the porous 

matrix and their sorption comprise the main retarding mechanism. 

The concentration of the chemical compound in the flowing water 

is thereby decreased and the migration velocity will be slower than 

the water velocity. The sorption process is generally considered 

to occur in three distinct stages: 

diffusion of the component from the flowing water to the external 

surfaces of particles (external or film diffusion) 

diffusion through the porous network of the particles (internal 

diffusion) 

the sorption process itself, when the component is bound to some 

sorption site on the walls of the internal pores. 
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Only a few analytical studies of the transverse dispersion process 

have been found in the literature. Because of mathematical diffi­

culties, initial studies of the transverse dispersion process were 

based on a model which assumed that dispersion parallel to the di­

rection of flow is negligible (e.g., Harleman and Rumer ( 1962) and 

Ogata (1961)). A treat~ent of two-dimensional dispersion from a 

surface source is available (Ogata, 1969; 1976). However, none of 

these models consider chemical interactions with the porous material. 

In a previous paper by Rasmuson and Neretnieks (1980), a solution of 

a model for diffusion and sorption in particles and longitudinal dis­

persion in packed beds was derived. This solution was subsequently used 

to describe the migration of radionuclides in fissured rock (Rasmuson 

and Neretnieks, 1981) . This is one example of a system where dif-

fusion into the matrix is considered to be very important (Neretnieks, 

1980). The assumptions behind the model have been extensively discussed 

in the chemical engineering literature by e.g. Babcock et al. (1966), 

Pellet (1966) and Rosen (1952). The main assumptions are: 

1 the particle diameter is small in comparison with the overall 

distance and the porous medium is macroscopically uniform; 

2 the sorption equilibrium relationship, describing the intra­

particle solute concentration as a function of the external solute 

concentration, is linear; 

3 the attainment of local sorption equilibrium is very rapid;. 



4 the movement of solute within the particles can be described 

mathematically by a Fick's law diffusion equation,where the 

effective intraparticle diffusion coefficient is constant and 

independent of concentration; 

4 

5 the particles may, for the description of internal diffusion, be 

regarded as spherical. 

In this paper the model is extended to include dispersion transverse 

to the flow direction. 

THEORY 

A schematic representation of the system is given in Figure 1. 

Basic equations and solution 

The process is described by the following set of equations: 

,?c 1 
I::, 

ac v~ D ll ( r l._g_) <h) (1) -+ - D - = 
at az L oz2 T r or ar m at 

aq. c2qi 2 3q~ (2) 1 = D --+---
at s or'2 r' or' 

The terms in the first equation stand for accumulation in the fluid 

phase, convective transport, transport by axial dispersion and by 

radial dispersion, and volume-averaged accumulation in the porous 

particles. In the second equation the terms give accumulation and 

radial diffusion in the spherical particles, 

It should be noted that the definition of qi as a local solute con­

centration includes solute both in the solid and in the intraparticle 
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pores. However, the same mathematical formulation is obtained if one 

assumes that solid diffusion effects are negligible and that the 

transport of solutes within the particl0s may be effectively des­

cribed by diffusion in the solution phase only. Thus,if it is assumed 

that the correct driving force for diffusion is the intrapore concen­

tration gradient, ac /ar', an alternate differential equation for 
p 

intraparticle diffusion can be written: 

ac 
+--8 a t 

ac ) a? ( 3) 

The two terms on the left hand side give the accumulation in the pore 

fluid phase and in the solid phase respectively. On the right hand 

side, the terms describe diffusion in the pore fluid phase. 

It follows from the definition of qi that: 

q = s C + C 
i p p s 

(4) 

If it is assumed that local equilibrium always exists in the pores, 

it follows from the linear adsorption equilibrium that: 

q = KC 
i p 

From equations (4) and (5) we obtain for C : 
s 

C = (K - s) C 
s p p 

(6) 

The minimum value of the equilibrium constant K, defined in this way, 

is obviously s • 
p 



ac 
s 

Differentiating (6) to obtain ·a't and substituting into equation 

(3) we get: 

ac 
___E 
a t 

s D 
_p___J2_ 

K 
ac) ___£ 
ar' 

6 

(7) 

It can be seen that when qi/K is substituted for Cp, equation (7) be­

comes identical with equation (2) if D = s D /K. D may, in this 
s p p s 

case, be regarded as an apparent diffusivity. 

The following boundary conditions are used: 

{C(r,O,t) = C r < a 
0 

( 8) 
C(r,O,t) = 0 r > a 

C(r, 00 ,t) = 0 (9) 

C(O,z,t) 'f 00 (10) 

C(00 ,z,t) = 0 (11) 

C(r,z,O) = 0 (12) 

q.(0,r,z,t) 'f 00 (13) 
l 

~ 3kf 
q . (b , r , z , t) q (r,z,t) 

qs 
(14) = given by at = - (C -) 

l s b K 

q. (r' ,r,z,O) = 0 
l 

(15) 

The boundary condition (8) is that of a disk surface source O < r < a 

located at z = 0 and maintained at a constant concentration C . The 
0 

boundary condition (14) is the link between the equations (1) and (2). 

It states mathematically that the mass entering or leaving the particles 

must equal the flow of mass transported across a stagnant fluid film 

at the external surface. 
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The solution of the equations (1) and (2) subject to the boundary con­

ditions (8)-(15) is obtained by the successive use of the Laplace and 

the Hankel transforms (Appendix). Use is made of an earlier solution 

for the one-dimensional case (Rasmuson and Neretnieks, 1980). The 

solution is: 

u(r,z,t) = C(r,z,t) = C 
0 

00 

(-z ~~) 1 (Vz) f ~DT Jc.£ s) J 1co ds 2 exp exp --
2DL 2 o a 

L DLa 0 
00 

(Vz) 2 + exp 'TT 
2DL J Jo(~O Jl(s) 

z ~~~ + y~(A/ + x'~;) 
- z ) ~A] d( 

with: 

(] 7) 

(18) 

H1 and H2 are complicated functions of A: 

8n + \!(~ + ~ ) 
1 1 2 

(19) 

(20) 

+ 
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~ and RD are defined as: 
1 2 

RD (A) 
A ( sinh2A + sin2A) - 1 

cosh2;\ cos2;\ 
1 

(21) 

RD ( ;\) ;\ ( sinh2A - sin2A) 
== 

2 
cosh2A cos2;\ 

(22) 

The equations are reduced to a dimensionless form using seven di­

mensionless quantities: 

c5 = ~ mV 

R = 
K 
m 

PeL 
zV = 
DL 

PeT 
a 2V 

= 
zDT 

y 0t 

r s = -a 

\! 

bed length parameter 

distribution ratio 

longitudinal Peclet number 

transverse Peclet number 

contact time parameter 

dimensionless radial distance 

external diffusion resistance/ internal dif­

fusion resistance 
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Equation (16) now becomes: 

1 1 f exp (- ~eL 
1 +-1- i'h') u=- exp (2 PeL) (- Pe 2 4 L PeT 

0 

JO (1;;0 J 1 (0 d~ + 

co 

+ 1 2 f Jo(1;;~) exp (- Pe ) - Jl (0 2 L TI 

0 

( 2 ') 2 z y ' 
2 

(23) 

with: 

2 
PeL(¼ PeL + 1 ~2) z x' = oH1 + p (24}, eT 

2 2 >.. 2 
z y' = oPeL <3 R + H2) (25) 

For negligible lateral dispersion (PeT -+ 00) the solution in 

Rasmuson and Neretnieks ( 1980) . is obtained for O ~ Z: < 1 . This 

follows from (Abramowitz and Stegun, 1972; p. 487) : 

0 ~ z:; < 1 
00 

/ J (z:;~)J1(()d~ = ½ 
0 0 

(26) 

0 



The simplified solution is: 

00 

u = 1 2 
2 + n 1 { exp ( 2 Pe1 -

/! 2 2 2 2\ 2 \ (zx') +(zy') +zx') 
2 

A , 2 2 2 2' 2 /c z X I) + ( z y I) - z X I ) dA 
2 ,\ 

with: 

2 _ 2 :>c 2 
z y I - oPel (- - + H ) 

' 3 R 2 

10 

(27) 

If in addition the longitudinal dispersion is negligible (Pe1 + 00 ) , 

equation (27) becomes: 

00 

u = 
2 2 d.\ + - J exp (-oH ) sin (a8,\ - oH 2) "°"'I 

2 TT o 1 A 
(28) 

where 

This solution has previously been given by Rosen (1952). 

Steady-state solution 

Ast+ 00 a steady-state condition is obtained. With a source maintained 

at constant concentration, this solution also gives the maximum con-

centration for specific values of PeT and Pe1 along c:; = constant . 
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The equation for the steady-state is found from the Laplace transform 

of u as: 

lim u(r,z,t) = lim s ~(r,z,s) 
s➔ O 

We get: 

u = lim u 
00 

0 

( 2 9) 

It is noted that u00 depends on three dimensionless parameters only: 

The steady-state solution, although simpler, cannot be integrated 

and must in general be evaluated numerically, However, in some special 

cases the integral can be expressed in terms of elementary functions. 

In the case of no longitudinal dispersion (PeL ➔ 00 ) equation (29) 

simplifies to: 

00 

J exp 

0 

This integral could be analytically solved along the lines s = 0 and 

s = 1. 

s = 0: u 
00 

(Abramowitz and Stegun, 1972; p.486) 

( 3 0) 

( 31 ) 



[_; = 1: u 
00 

1 
- 2 

(Ogata, 1961; p. B4) 

12 

1 0 (-!-) Pe ] 
(32) 

u00 along I:;= 0 and I:_;= 1 is plotted in Figures 2-3 as function of PeT, 

for different Pe1 . 

The limit of equation (29) for constant 1;; and Pe1 , and for small 

values of PeT , may be obtained by noting that the integral rapidly 

converges and: 

} as ; ➔ 0 

Equation (29) then reduces to: 

00 

u00 - ~ exp <½ PeL) J exp( - ~~L(¼ PeL + p!T- 1;2)) I; di; 

0 

This integral is easily solved by making the substitution 

y 2 = Pe1 (±.4 Pe1 + - 1- ; 2) and we obtain: 
PeT 

PeT small (33) 

This is a straight line for Pe1 = constant. 

u00 for I:; = 2, 3 and 10 is given 1.n Figures 4 - 6 as a function of 

PeT and for different values of Pe1 . As s > 1 , the function 

u00 (PeT) for constant Pe1 and c; has a maximum value. This is evident, 

since for s > 1 : 

lim u = lim u O 
00 00 
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These limits follow from equation (29), but can also be deduced by 

physical reasoning. As PeT ➔ m no transport of chemicals occur 

to the region outside s = 1 • In the case of PeT ➔ O , the radius 

of the source may be regarded as infinitesimally small, and the input 

of mass to the system vanishes. 

The maximum value of u00 , when the longitudinal dispersion is neglected,· 

is of great importance. It gives the highest concentration which 

can be expected at a point in space. This criterion could be very 

useful in predicting the upper limit of the concentration of 

a contaminant, without making use of the sometimes unreliable values 

of the dispersion coefficients. The maximum value can be explicitly 

derived for small values of PeT • 

tion (30) simplifies to: 

u 
00 

0 

For sufficiently small PeT , equa-

2 s PeT 
exp (- 4 ) (34) 

(Abramowitz and Stegun, 1972; p.486) 

The maximum value is obtained by differentiating (34) with respect to 

PeT and setting the resulting expression equal to zero. 

We get: 

and (35) 
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For s = 10 , equation (35) predicts (u) = 3.7 • 10-3 for 
00 max 

The calculated values using equation (30) (Figure 6) 

are (u) 
co max 

-3 
·v3.6•10 and 

-2 
PeT 'u 3. 7 • 10 . 

Longitudinal dispersion negligible 

Refer to equation (23) and let PeL + 00 • We find that 

CX) 2 

u/Pe = [!exp (- P~ )J0 (s0 J 1(E:)dE:] 
L-+co o T 

co 

[ _
2
1 2 ) 2 dJ\ , 

+ -- f exp ( - oH sin (00;\ - oH2) 1 J 
'TT O 1 /\ 

(36) 

The first factor in this expression is exactly equation (30), that is~ the 

steady-state solution for the case in which there is no longitudinal dis­

persion. The second factor has been given previously in equation (28), 

which yields the breakthrough curve for negligible longitudinal and lateral 

dispersion (s< 1). We can therefore write equation (36) in brief notation 

(37) 

Thus, in the case of negligible longitudinal dispersion, the solution 

for any PeT and s 1s simply obtained by multiplying equation (28) with 

the steady-state value u Ip = u (PeT' s) . 
CX) e ➔ co co 

L 
Rosen (1954) evaluated 

equation (28) for many values of the dimensionless parameters 

cS, 08 and \J The evaluation of the steady-state solution for neg-

ligible longitudinal dispersion was described in the preceding section. 
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The importance of this result is that the total solution is 

reduced to a product of two single integrals,and an evaluation of 

the double-integral becomes unnecessary. Furthermore, from equations 

(31) and (32) we get the special cases: 

PeT 

ulp = (1 - e --4-) u s = 0 (38) 
eL ➔ oo Pe ➔ 00 

L 
Pe ➔ CX) 

T 

1 
[ 1 -

PeT Pe ] ul - e 2 I (_!) u l'e ➔ oo ;I;: = 1 (39) 
Pe ➔ 00 

'l 0 2 "--
L - L 

Pe ➔ 00 

T 

Numerical integration 

In the general case the integrals in the expression for u, equation (23), 

must be numerically evaluated. The first integral is easily calculated 

using standard numerical quadratures. The upper limit of the infinite 

integral is obtained from the argument of the exponential function. 

The double-integral is more difficult to handle. A method is used in whicr 

numerical integration is performed in one direction at a time. We start 

by integrating with respect tot. For each t-value in the grid we have 

to evaluate: 

2 [exp ( ½ PeL -
V Jcz2x')2 + ( 2 I) 2 + z2x•;) z Y. 

1T 2 

. ( '2 V}c z z x, l z + 2,) ( 2 I) 2 dA z Y. - z x' 
sin y -

2 T 
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2 2 
where z x' and z y' are given by equations (24) and (25). The integrand 

in this expression is the product of an exponential decaying function 

and a periodic sine function. The total function is thus a decaying 

sine wave in which both the period of oscillation and the degree of 

decay are functions of the system parameters. A method for integrating 

this sometimes highly oscillatory function (without the term~ ~2 in 
eT 

z 2x') is described in Rasmuson and Neretnieks (1981). In this 

method the integration is performed over each half-period of the sine­

wave respectively. The convergence of the alternating series obtained 

is then accelerated by repeated averaging of the partial sums (Dahl­

quist and Bjorck, 1974; p. 72). 

Typical examples are given in Figures 7-8 for s = O. It may be seen that, 

as PeL < 00 , u/u00 1 ies above the curve produced when the lateral dispers i, 

is neglected (PeT + 00 ) • The relative difference is larger at early 

times. As follows from equation (37), all the curves coincide as 

Pe ➔ 00 This curve is also given in Figures 7-8 , for comparison. 
L 
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CONCLUDING REMARKS 

A mathematical solution of the two-dimensional differential equation 

of dispersion from a disk source, coupled with a differential equation 

of diffusion and sorption in particles, has been derived. Important 

limiting cases have been obtained. An expression giving the highest 

possible concentration at a point is developed. It predicts the 

upper limit of the concentration of a contaminant. For negligible 

longitudinal dispersion, the solution for any value of the trans­

verse Peclet number and dimensionless radial distance is obtained 

by multiplication of the solution for no lateral dispersion and 

t < 1 with the steady-state value. A method for integrating the 

general solution is briefly described. 

Mass transfer due to sorption plays an important role in mass trans-

port within natural flow systems. In general, the outcome of any con­

taminant introduced into the groundwater system is largely dependent 

on the capacity of the solid matrix material to sorb the dissolved sub-

stance. The model takes into account diffusion to the external surfaces, 

internal diffusion and linear sorption. Furthermore, a solution has 

been derived which considers the (linear) kinetics of the sorption 

to the intrapore walls (Rasmuson, 1980). The model and analy-

tical solution presented above can be extended to include radio-

active decay (Rasmuson and Neretnieks, 1981). The same general expres-

sions and limiting cases apply, with slight modifications, for 

these extensions. 
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The analytical expressions developed herein should prove helpful in 

making quantitative predictions of the contamination of groundwater 

supplies from groundwater movement through buried wastes. 
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NOTATION 

a 

b 

C 

C 
p 

C 
s 

C 
0 

D 
s 

D 
T 

Hl 

H2 

HD 
1 

HD 
2 

radius of disk surface source 

particle radius 

concentration in fluid 

concentration in fluid in intrapores 

concentration in solid material 

inlet concentration in fluid 

longitudinal dispersion coefficient 

diffusivity in fluid in intrapores 

diffusivity in solid phase 

transverse dispersion coefficient 

see equation (19) 

see equation (20) 

see equation (21) 

see equation (22) 

I modified Bessel function of the first kind of order zero 
0 

20 

L 

L 

M/L3 

M/L3 

M/L3 

M/L3 

L2/T 

L2/T 

L2/T 

L2/T 

J 0 ,J1 Bessel function of the first kind of order zero and one, respectivel: 

K 

m 

p 

volume equilibrium constant 

mass transfer coefficient 

zV = D' longitudinal Peclet number 
L 

a2v = ~• transverse Peclet number 
T 

Hankel transform variable 

L3/L3 

L/T 



/',, 
q volume averaged concentration in particles 

internal concentration in particles 

= q. (b, r, z, t) 
l 

R K d" "b • . = -, 1str1 ution ratio 
m 

b = Tu' film resistance 
f 

r radial distance 

r' radial distance from center of spherical particle 

s Laplace transform variable 

t time 

u = C/C, dimensionless concentration in fluid 
0 

u /Pe ➔ co 
L 

U Pe ➔ co 
- L 

Pe + co 
T 

dimensionless concentration in fluid when the longi­
tudinal dispersion is negligible 

dimensionless concentration in fluid when the longi­
tudinal and lateral dispersion are negligible 
( c:; < 1) 

uco steady-state value of u 

V 

x' 

steady-state value of u for negligible longitudinal 
dispersion 

average linear pore velocity 

see equation (t7) 

y = at, contact time parameter 

y' see equation (18) 

z distance in flow direction 

21 

T 

L 

L 

T 

L/T 

-2 L 

-2 
L 

L 



Greek letters 

cS 

E 

E 
p 

e 

3D K 
s =--

b2 

Yz 
=~mv' bed length parameter 

void fraction of bed 

void fraction of particle 

t - z 
V 

r 
a 

dimensionless radial distance 

.\ variable of integration 

~ variable of integration 

2D 
s 

0 =7 

22 

-1 
T 

L 3 /L 3 

L3/L3 

T 

-1 
T 
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APPENDIX 

Differential equations: 

_clC + V 1g_ ,/c D 1 cl clC 1 
6 

DL-2 - T ; a°r (r clr) = (~) 
clt dZ 

cl z 
m clt 

(1) 

clq. 
2 

clq. cl q. 2 l (--l 
l 

= D + ;, dr I ) clt s clr' 2 
(2) 

Boundary conditions: 

{C(r,O,t) = C r < a 
0 (3) 

C(r,O,t) = 0 r > a 

C (r ,co, t) = 0 (4) 

C(O,z,t) 'f co (5) 

C(co,z,t) = 0 (6) 

C(r,z,O) = 0 (7) 

qi(O,r,z,t) 'f co (8) 

cll::i 3kf qs 
qi(b,r,z,t) = qs(r,z,t) given by~ =-(C - -) (9) 

clt b K 

q.(r',r,z,O) = 0 (10) 
l 

The boundary condition (9) is the linking equation between equations 

(1) and (2). 

The solution of the equations (1) and (2) subject to the boundary con­

ditions (3)-(10) is obtained by the successive use of the Laplace and 



the Hankel transforms. The Laplace transform of equation (1) with 

DT = 0 is given in Rasmuson and Neretnieks ( 1980) as: 

where: 

Y0 (s) 
=. YT(s) 

¾,\Cs) + 1 

Y0 (s) = 2y 

y 

0 
n 

3D K 
s 

=--
b2 

= nTT /b 

00 

l. 
n=I s + 

s 

D 02 
s n 

For DT > 0 the transformed equation becomes: 

with the boundary conditions: 

C 

{~(r,O,s) 
0 =- r < a 

s 

C(r,O,s) = 0 r > a 

C(r,oo,s) = 0 

~ 
C(O,z,s) -:f 00 

C(oo,z,s) = 0 

2 

(11) 

(12) 

(13) 

(14) 

(15) 
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The solution of this partial differential equation in r and z is obtained 

by applying the Hankel transform of order zero with respect tor: 

(16) 

Equation (16) may be treated as an ordinary second-order, linear dif­

ferential equation in z whose solution after applying the boundary con-

dition for z ➔ oo is: 

A 

[ (2~1 2 YT(s) DT 2 - _v_ + ~ + C = A exp + -r 
4D 2 DL mDL DL 

L 

The inversion formula for the Hankel transform 

p 

A(p) 

0 

J (r p) 
0 

dp 

) zl 

gives: 

where we have written A= A(p) to indicate that it depends on p. 

(17) 

(18) 

A(p) is determined from the "dual" integral equations obtained by in­

serting (18) in the boundary condition (12). These are: 

00 

J 
0 

00 

J 
0 

A(p) p J 
0 

A(p) p J 
0 

( rp) dp 
C 

0 

s 

(rp) dp = 0 

r < a 

(19) 

r > a 
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The solution of this problem is given in e.g. Sneddon (1951, p. 528) as: 

A(p) 
C 

0 =-
s 

~ J (ap) 
p 1 

(20) 

Inserting in (18) and making the substitution~ = ap gives the required 

solution of (11) as: 

u(r,z,s) C 1 
=- =-

C s 
0 

J (..!'. ~) Jl(~) d~ 
o a 

(21) 

The desired result u(r,z,t) is given by the contour integral represent­

ing the inverse Laplace transform of u(r,z,s): 

a+i00 

( ) _ C(r,z,t) 
u r,z,t - C = 

0 

- 1- J l exp (st) 
2rTi s 

) J (.!:. 0 
o a 

{changing the order of integration} = 

00 

exp ( Vz) 
2DL 

f J (!. i;) o a Jl (0 

0 

[2;i a+ioo ( v2 s YT(s) DT 
s2}s] f. ; exp st d~ - z --+-+ +--

4D2 DL m DL 2 
DL a 

a-100 L 

I 

( 
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The integral I when DT = 0 has been evaluated in Rasmuson and Neretniek1 

. v2 v2 DT 2 
( 1980) • Putting - 2- = - 2- + --2 ~ (==constant for constant ~) 

4DL 4DL DLa 

everywhere in that solution we obtain I for DT > 0 as: 

with: 

I - ½ exp (- z 

x' (A,~) 

y' (A) 

Vx• (A,i;) 2 + ~•(A/+ x' (A,i;)) 

0'(,\,~)2 + y'(A)2' - x'(A,~))dA 
2 A 

v2 DT 2 
= -- + _l_ H1 (A) +--~ 

4D2 mDL 2 
L DL a 

cr:>t 2 + _'J'_ H2 0J =--
DL mDL 

H1 and H2 are complicated functions of A: 

(23) 

(24) 

(25) 

(26) 

(27) 



¾l and RD are defined as: 
2 

¾ C\) :\ ( sinh2A + sin2A) _ 1 = cosh2;\ 
1 

cosn 

RD (A) = :\ ( sinh2;\ - sin2A) 

2 
cosh2;\ cosn 

From equations (22) and (23) we finally obtain u(r,z,t) as: 

+ 

00 ( 1 Vz 
u(r,z,t) - 2 exp( 2D1 )I exp -z 

J (..!:. E_,) J 1 (E,) dE_, + 
o a 

Vz 2 
exp (2D) TI 

L 
0 

V2 DT 2) -+-E_, 
2 2 

4DL DLa 

V ✓x'(A,0 2 + y~(J./ + x'~~) 

i/ Jx• (J.,0 2 + r u/ -x'f\iS~) ;i. l a, 

6 

(28) 

(29) 

(30) 



FIGURE CAPTIONS 

Figure 1 Definition sketch of the modeled system 

Figures 2-6 Steady-state value of u, uco, as a function of PeT for 

s = 0, 1, 2, 3, 10. PeL = 0"l, 1.0, co 

Figures 7-8 Dimensionless breakthrough curves divided by the steady­

state values. 
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