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FOREWORD

This report was prepared as one of a series of technical reports
within a study of the groundwater movements around a repository
for radioactive waste in the precambrian bedrock of Sweden. It
was written in two parts, (I) conduction heat transfer and (II)
forced convection heat transfer. This is Part I. The contract for
this study was between KBS — Kidrnbridnslesikerhet (Project Fuel
Safety) and Hagconsult AB of Stockholm, Sweden. RE/SPEC Inc. of
Rapid City, SD/USA and Acres Consulting Services Ltd of Niagara

Falls, Ontario/Canada acted as subconsultants to Hagconsult AB.

The principal author of this report is Mr. Joe L. Ratigan of
RE/SPEC Inc. Review was provided by Dr. Ulf E. Lindblom of
Hagconsult AB and Dr. Paul F. Gnirk of RE/SPEC Inc.

The opinions and conclusions in this document are those of the
author and should not be interpreted as necessarily representing

the official policies or recommendations of KBS.

Stockholm August 1977

Ulf E. Lindblom
Study Director

Hagconsult AB
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THERMAL ANALYSIS OF RADIOACTIVE WASTE REPOSITORY-CONDUCTION
HEAT TRANSFER

1. INTRODUCTION

In order to properly assess the ground water flow around a repo-
sitory over an extended period of time, a variety of phenomeno-
logical occurences must be analyzed. One of the phenomena which

is intimately coupled to the groundwater flow is the heat transfer
in the rock mass and the associated transient temperature fields.
The temperature fields which arise around a repository will affect
the properties of the in situ groundwater, and the geometry and
perhaps the chemistry of the openings which are available for the
groundwater transport. The thermal perturbation of the groundwater
density and viscosity will possibly result in thermally induced
flow. Additionally, the temperatures will affect the rock mechanical
situation such that the joint openings will close to some degree in

certain locations and possibly open in others.

Unfortunately, the problem of groundwater flow is not merely coupled

to the temperature in one direction. The thermally induced ground-
water flow will subsequently perturb the temperature field;

similarly, changes in joint openings will alter the hydraulic and
thermal properties of the rock mass and therefore, will also influence
the flow and temperature fields. However, the effect of the joint width
changes on the rock mass thermal properties is expected to be small

and is not expressly being accounted for in this study, (l)x.

Since the analysis of the total coupled system around a repository
has yet to be analyzed and the magnitude of the thermally induced
flow and associated temperature field changes are not known a

priori, this study is being performed in a '"quasi-coupled" fashion.

x) Numbers in paranthesis refer to references at end of text.



Simply stated, the thermal analysis is divided into two distinct
phases; namely, heat transfer without fluid flow and heat transfer
with fluid flow. The latter will include not only heat transfer by
bulk fluid flow through the repository domain, but also heat trans-

fer from thermally induced flow.

This report is intended to present the results of the no-flow heat
transfer and to provide a qualitative assessment of the thermally
induced flow and the transfer associated with any groundwater flow.

In this regard, the quantitative heat transfer presented in this
report has been obtained under the assumption of only conductive

heat transfer in the rock mass. Further heat transfer analysis

within this study will therefore enable one to assess the quantitative
and qualitative importance and influence of convective heat transfer

and thermally induced flow within the rock mass.



2. INPUT PARAMETERS AND REPOSITORY MODELLING

2.1 Heat Generation and Repository Layout

The majority of the analysis presented in this report has been
obtained with the heat generating characteristics particular to

40 year old PWR reprocessed waste which was reprocessed ten years
after leaving the reactor. A description of various waste types,
including the aforementioned is presented in (2). The heat
generating characteristics of the waste are presented in Figure 1.
Also presented in the figure is the characteristic heat generation

for 10 year old PWR waste which was analyzed merely for comparative

purposes.

The repository is assumed to have a capacity for accomodating

9000 tons of reprocessed waste. The high level waste is assumed

to be contained in cylindrical containers as displayed in Figure 2.
The containers are placed in 1 m diameter by 3 m deep drillholes
excavated in the repository tunnel floors. The tunnel system is

composed of 3.5 m excavations which are nearly cylindrical (see

Figure 2).

The tunnels are excavated at 25 m on center and the waste packages
are spaced at 4 malongthe length of the tunnel. Allowing for 25 m
of "buffer" space at both ends of each tunnel, forty-one 1000 m
tunnels are required to allow emplacement of 9000 packages. This

repository layout is graphically displayed in Figure 3.

Since the waste packages or canisters are spaced on a grid system,
4 m by 25 m, each canister has 100 square meters of area in which
to conduct heat to the overlying and underlying rock mass. There-
fore, the thermal flux density or gross thermal leading (GTL) can
be easily calculated by dividing the canister power at emplacement
by 100. For the case of 40 year old PWR reprocessed waste, the GTL
is 5.25 W/m2 or 21.25 kW/acre. It should be noted that this is a

conservative GTL in comparison to those being analyzed in North

America (3 and 4).



2.2 Rock Mass Properties

The rock mass thermal properties from the literature are presented
in (5). However, the properties specifically utilized in this study
are presented in Table 1. The thermal properties of the materials

in the analysis other than the granite are also presented in

Table 1. These values are nominal from the literature. Perturbations
in these non-rock thermal properties have a very small influence on

the subsequent rock mass temperature.

The value of the granite thermal conductivity selected for use in
the analysis (2.05 W/m OC) is somewhat lower than the mean value
from the literature. However, this value was selected in order to
provide some degree of conservatism to the thermal analysis and to
account for the generally lower conductivity of masses of rock as
compared to rock samples, referred to in the literature (6). A
higher value of conductivity results in lower rock mass temperatures
and slightly earlier temperature peaks. Some results are presented

for comparison, for an assumed granite conductivity of 3.35 W/m? °C.

2.3 Repository Modeling

For the purpose of assessing the groundwater flow around a reposi-
tory, the mathematical modeling has been divided into two distinct
regions, i.e., near field or local modeling and far field on global

modeling.

The local model utilized in this study is presented in Figure 4.
Several locations in the local model are labeled which will be

used later in the presentation of results. The local model has been
constructed by assuming symmetry at the pillar centerline and the
room centerline. Obviously, this type of model assumes that the
repository has an infinite number of rooms. This, of course, is not
the case; however, the number of rooms is large and as will be shown,

the assumption of an infinite number of rooms is a reasonable approxi-

mation due to the low horizontal temperature gradient exhibited in

the global models. At the tunnel periphery two types of boundary conditions



can be reasonably employed, viz., insulated or convective. In the
case of an insulated periphery, no heat is allowed to be transferred
through the room. In a room with stagnate air this is not the case,
since the air temperature will rapidly rise to a fairly uniform level
and heat will subsequently be transferred through the air. There-
fore, the "insulated" boundary is a conservative assumption, since

the cross sectional area available for vertical heat transfer is

reduced.

In the case of a convective boundary, a film coefficient must be
selected. Whereas this film coefficient is, in fact, a function

of the temperature drop across the film, a low constant value can

be employed in a more expedient manner to provide a reasonable
simulation of the heat loss to the repository ventilation system.

The boundary condition at the room periphery is examined in this study
since the potential exists for different thermomechanical stress
states. Subsequently, different permeabilities and flow fields may
arise from the choice of the boundary condition. The film coefficient

chosen for this study was 2.5 w/m? ©°cC.

Three far field or global models have been utilized in this portion
of the study. These models are graphically illustrated in Figure 5.
Models A and B represent repositories at 500 m and 1000 m depth,
respectively. Both of these models are constructed assuming symmetry
at the repository vertical centerline for both the axisymmetric and
plane analysis. These models are, of course, only accurate if the
repository can be assumed to be instantaneously loaded (i.e., all
waste emplaced at the same time); or if the emplacement can be
assumed to occur from the middle outwards in both directions simul-
taneously; or alternatively, if the emplacement can be assumed to
begin at the outer tunnels of the repository and to proceed to the
center from both ends at the same rate. For the purpose of this study,

the repository models A and B are assumed to be instarraneously loaded.

Model B has been analyzed in an effort to assess the effect of
repository depth on induced temperature fields. These results will

be discussed in later sections of this report.



Since the repository will not, in fact, be instantaneously loaded,
Model C has been constructed to analyze the simulated 30 year waste
emplacement period. The emplacement in each room is not modeled;
rather two rooms are emplaced with waste every 1 1/2 years, until

a total of 40 rooms contain 40 year old radiocactive waste.

In each global model, the boundaries other than the earth's surface
have been chosen at such a distance as is required to provide in-—
significant influence on the repository temperatures. These distances
are verified in the analysis by noting that the temperatures do not

rise at these boundaries.

In both the local and global models, a geothermal gradient of 20"C/Kn

has been utilized and the air temperature at the earth's surface is

assumed to be 5°C.

Further sections of this report will discuss the specific results

of the local and global repository models. In instances where induced
groundwater flow can be quantitatively or qualitatively assessed, such
an assessment is made. Analytical verification of the finite element

program is also provided as an Appendix to this report.



3. RESULTS OF REPOSITORY LOCAL MODELS

Five specific local repository simulations were performed. These

are summarized in Table 2. As can be seen in the table, the local model
was analyzed in both axisymmetrical and plane geometry. Since the repo-
sitory configuration is obviously most accurately modeled with a
three—dimensional model, the two geometries are utilized to provide

a reasonable approximation to the three-dimensional situation. In

this regard, the axisymmetric model (wherein the canister is

actually a cylinder) results in the more accurate very near field
temperatures, particularly in the canister itself. The plane model

provides a more realistic approximation to the pillar temperature.

Figure 6 displays the temperatures as a function of time at various
locations for the local repository model in plane geometry with no
ventilation and a waste age of 40 years. Several features displayed

in the figure warrant discussion.

In this model, the temperature at the drillhole periphery (which is
actually a trench in the plane model) peaks at 56°C after 23 years.
The pillar centerline temperature rises to 43°C at 55 years. The
horizontal thermal gradient is the significant variable in assessing
local thermally induced flow, since the in situ groundwater will
have a density variation from the drillhole periphery to the pillar
centerline. Additionally, from a rock mechanics viewpoint, the
permeability at each of these locations can be expected to be
different. The maximum temperature difference (MID) between the
drillhole and the pillar centerline occurs at approximately 4 years

after waste emplacement.

Therefore, assuming that thermally induced flow is merely a function
of temperature changes, the flow can be expected to be greatest at
this time. Further analysis during this study will provide more in-—
sight as to the correlation of MID time with the time of maximum

thermally induced flow.



It is interesting to note that even after 1000 years, the
temperatures in the near field have not returned to the pre-
emplacement value. However, the horizontal gradients have diminished
to a negligible value and all heat conduction at this time is es-

sentially vertical.

Figure 7 presents the near field transient history for the same
situation as previéusly discussed with the exception that

a 30-year ventilation period has been assumed. Perhaps the most
interesting aspect of this figure is the illustration that with the
addition of repository ventilation, each location in the near field
of the canister experiences two thermal cycles. In other words, 30
years of ventilation is sufficient to remove the quantity of heat
necessary to allow a heating and cooling period for both the waste
canister and the rock mass. After the ventilation is terminated, the
canister and the rock mass experience another heating and cooling
period. However, this second cycle is of a much longer duration and
as such should not be as detrimental to the rock mass as the first
cycle may have been. The duration of the two thermal cycles are
compared in Figure 8. In this figure, each cycle is illustrated

from a common starting point in time. Perhaps, the most disadvantageous
aspect of the ventilation shut down is the fact that the horizontal
gradients are again increasing, thus possibly producing thermally
induced flow at a much later time than was the case with the situa-

tion of no ventilation at any time (see Figure 6).

The magnitude and time of occurence of the second heating cycle
peak will be shown later to be a function of the waste age and

also the assumed thermal properties of the site rock mass.

The transient temperature results for the axisymmetric analysis

(see Table 2) are displayed in Figure 9. In general, the temperatures
in the very near vicinity of the waste package are higher than was
the case with the plane models. Also, the temperatures farther

away from the canister are lower with the axisymmetric analysis.

The analysis presented in Figure 9 was performed to assess the
temperatures in the near vicinity of the waste package. The

temperatures from this model cannot be utilized without some
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judicious care. In particular, the canister is realistically modeled
as a cylinder with a heat generation of 525 watts upon emplacement
although 525 W is a conservative assumption in itself (2).

However, due to the modeling (insulated boundary at a

radius of 12.5 m) the resulting canister spacing is approximately

25 meters in each direction. Therefore the 4 m by 25 m canister

grid system is not well represented by this model. However, the
temperature results can be superposed to result in a very good
approximation to the actual near field temperatures. For example,

to simulate the effect of the canister 4 m from the modeled canister,
the temperatures at 4 m from the modeled canister can be superposed
on the temperatures resulting in the modeled canister. This process
can be repeated to simulate the canisters at the 8 m and 12 m
distances from the modeled canister. This process can be utilized

to provide a good approximation to the temperatures since the mate-
rial properties are not assumed to be temperature dependent and the
boundary conditions are all homogeneous. Using this procedure the
canister periphery and drillhole periphery maximum temperatures

can be approximated as 77°C and 620C, respectively, occuring at

12 years and 20 years, respectively.

In order to assess the effect of waste age on the thermal and sub-
sequent groundwater situations, the plane model with 30 year ven-
tilation was analyzed with 10 year old waste. The 10 year old waste
is not presently an alternative; rather the waste age was chosen to
accentuate the effect of varying the age of the emplaced waste. The
results of this analysis are presented in Figure 10. Since the heat
generation of a 10 year old waste canister is approximately twice
that of 40 year old waste, the repository temperatures are consider-—
ably greater than those with the 40 year old waste. The maximum
temperature rises at the drillhole periphery and pillar centerline
are approximately 22°C and 4°C greater, respectively, and occur

at 3 years and 10 years, respectively. These times of occurence are
roughly 50 7 earlier than the equivalent peak times associated with
the 40 year old waste. As can be seen by comparing Figures 8 and 10,
the second thermal cycle for 10 year old waste results in higher
temperatures than that for 40 year old waste. It should be emphasized

that the temperatures displayedin Figure 10 were obtained with the
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plane model and that axisymmetric modeling would result in still

higher near field temperatures.

To assess the sensitivity of the induced temperature fields to

a change in thermal rock properties, the plane model with 30 years
of ventilation was analyzed with the rock properties given in (7).
These results are illustrated in Figure 11. The thermal conductivity
assumed in this simulation (3.35 W/m — °C) is approximately 1.6
times greater. The temperatures for these assumed properties

of granite are lower (although, not linearly) than those previously

presented.
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4. RESULTS OF REPOSITORY GLOBAL MODELS

Five specific global repository simulations were performed. These
simulations are presented in Table 3. The instantaneous .emplacement
models have been examined more than the linear emplacement sequence
model for economical reasons. The linear emplacement model requires
approximately twice the number of degrees of freedom and the solu-
tion procedure is more lengthy due to the continual loading changes

for the first 30 years of simulation.

The temperature distribution along the centerline of the repository
at 500 m depth is illustrated in Figure 12 for 10,00 and 1000 years
after emplacement. Even after 1000 years, a large rock mass is above
the initial geothermal temperature. For this present study, the rate
of rock mass temperature increase is important since this will in-
fluence the groundwater pathway (joints) width change and subsequent
permeability. Therefore, it can be stated that the 40 year old waste
is more advantageous than a younger waste since the rate of rock

mass temperature rise is slower than that with the younger waste.

Figure 13 has been constructed to display the variation of the
temperature along the repository plane at various values of time
after emplacement. Early in time, there is a dramatic horizontal
temperature gradient providing for the potential for thermally
induced flow. Later in time the horizontal gradient is much less.
Whether the early horizontal gradients are sufficient to produce
any flow will be one of the subjects of further analysis within

this study.

As can be seen in Figurel3, the boundaries of the global models
appear to be adequately removed so that they experience no tempe-

rature rise.

Since the finite element method can merely provide approximations
to the near field or far field temperatures around a repository,
the input to the models which may be questionable must be examined
for the resulting temperature sensitivity. In this regard, the

boundary condition at the earth's surface has been examined. The
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physical boundary condition at the earth's surface is a convective
one. However, the choice of a convective boundary condition requires
the selection of a convective film coefficient, which is an addition-
al parameter subject to constructive criticism. To analyze the effect
of the choice of boundary conditions the 500 m repository model was
analyzed with both a 5°C constant temperature condition and a con-—
vective condition (h = 2.5 W/m2 OC) with atmospheric air equal to

5°C. The results of this analysis indicate the choice of the bound-

ary condition provides for negligible change in the rock mass

temperatures. In fact, the maximum difference occurs at about 700
years when the repository midplane is approximately 0.2% greater
with the convective condition. For higher GIL's or other rock mass
properties, the influence of the boundary could be expected to be

greater.

In addition to the analysis of the boundary condition at the earth's
surface, the global repository model was also analyzed for geometric
sensitivity. Specifically, since the plane model ing indicates that
the repository extent normal to the finite element model is infinite,
an axisymmetric simulation was performed wherein the repository

has a finite extent. The GIL for the axisymmetric analysis was equal
to that for the plane analysis. The temperatures through the repo-
sitory centerline at various times are displayed in Figure l4. The
temperatures are very similar to those obtained with the plane
modeling with the axisymmetric temperatures only slightly higher

for earlytimes and slightly lower for later times.

The plane modeling was extended for analysis of a repository at
1000 m for comparison. The temperature rises at 1000 m can be
expected to be equal to those at 500 m provided that the boundary
condition at the earth's surface (or equivalently, the depth of

the repository) has no noticable influence on the temperature rise.
(Based on these results, the above is, in fact, the case.) The
temperature rises at 1000 m are very near those at 500 m (maximum
difference of 1OC). The results for the 1000 m repository are

briefly presented in Figurel5.
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As would be expected, the transient behavior of the global reposi=-
tory models are similar to that exhibited in the local analysis
previously presented. However, the transient behavior of the re-
pository global models should be observed with some scrutiny in
regions very near the repository. Specifically, since the model
distributes the heat generation over the entire plane of the reposi-
tory (waste, pillars and rooms), the transient behavior in the plane
of the repository is the integral mean of the transient behavior

of every point within the plane. This can further be explained by
observing Figure 16. In this figure the temperature curve identified
as the repository centerline peaks at about 50 years. This, in fact,
is the peak time for only a finite region of the actual repository.
Some locations (near the waste packages) will peak much earlier,

and some locations will peak later (pillar center, for example).

The same analogy exists for the magnitude of the temperature peak.

The regions which are not very near the repository (say, more than
25 m away) are more accurate in the global model due to the symmetry
assumed in the local modeling. Two characteristics displayed in

Figure 16 merit discussion.

First, locations less than about 100 m from the repository have
experienced the temperature peak of the thermal cycle prior to

1000 years. At 75 m below the repository centerline, the temperature
peak occurs at about 700 years, whereas at 200 m below the reposi-
tory centerline, the peak will not be reached until possibly 5000
years. The temperatures at locations far removed from the reposi-
tory midplane (for example, at 200 m) have not yet reached their
maximum values at 1000 years. However, the eventual temperatures
rise at these locations can notbe greater than the temperature rise
at the repository midplane. Therefore, the eventual temperature
rise at the 200 m location can never be greater than 18°¢C (tempera-
ture rise at repository plane at 1000 years) which would result in

a temperature of about 36°C (18°C + pre—emplacement temperature).

The second feature displayed in Figure 16 which should be discussed
is the MID transient across the repository. The MID is greatest at

15°C at 4 years. However, the MTD is maintained at about 10°C for
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an extended period of time. At 1000 years, the MID is still at
about 9°C. As mentioned previously, this horizontal gradient may
result in thermally induced flow. This analysis will again be the

subject of further efforts within this study.

Figure 17 displays the transient behavior of the repository tempe-
ratures for the axisymmetric simulation. The fact that the repo-
sitory temperatures peak higher and somewhat earlier in the axi-

symmetric model than in the plane model is apparent in the figure.

All of the previously discussed global models assumed instantaneous
emplacement of the waste. This assumption has been previously uti-
lized in almost every investigation performed by others. In an
effort to observe the temperature field perturbation caused by the
sequential emplacement of the waste, Model C (see Figure 5) was
analyzed. In this repository model, 40 year old waste is emplaced
in a region equivalent to 2 rooms (50 m x 3.5 m) every 1.5 years
until the final repository region (1 km) has received waste. In
order to accentuate the effects of emplacement, no repository

ventilation was modeled.

The temperature distribution along the repository plane and 25 km
above the repository plane at various times are displayed in

Figure 18 and 19, respectively. As can be observed in the figures,
the effect of the sequential emplacement is rather pronounced (this
effect would diminish with the addition of ventilation). In

this instance, a rock mass with a higher thermal diffusivity would
exhibit a significantly lower emplacement effect. The horizontal
temperature gradients in the repository domain are much greater in
the linear emplacement than in the instantaneous emplacement simula-
tion. Also the MID values are much higher earlier in time. Subsequent
studies of thermally induced flow should provide a better understand-
ing of the groundwater flow induced by this situation. It is of
interest to note that the horizontal temperature gradient reverses

direction at about 70 years.,
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The transient behavior of several locations in the repository model
is presented in Figure 20. After about 70 years the temperatures
are nearly equal to those in the linear emplacement model (see
Figure 15). However, as stated previously, the MID is much greater

during early times.
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5. SUMMARY AND CONCLUSION

Conduction "baseline'" thermal calculations have been completed for
local near-field and global far-field temperature distributions.

The effects of waste age, rock mass thermal conductivity, repository
depth, repository ventilation, emplacement sequence and modeling
geometry have been analyzed. These baseline results will be used

in further phases of this study to analyze the effects on the rock
mechanical situation and subsequent flow permeability perturbations.
Additionally, the temperature fields will be utilized to assess
thermally induced flow and to quantify the importance of free and
forced convective heat transfer and their subsequent effects on the

groundwater regime.

The temperature rises that have been observed are low in comparison
to those arising in the analysis of repositories in other nations.
This is mainly due to the waste age and the low GTL being investi-
gated in Sweden. In a qualitative sense, the potential for thermally
induced flow appears apparent. However, further study should quantify

the magnitude of this flow.
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TABLE 1

THERMAL PROPERTIES FOR MODELED MATERIALS

Material K r c

W/m - °C (Kg/m3) (J/kg - °C)
Granite 2.05 2800 735
Vitrified
Waste 0.5 2500 735
Backfill 1.0 2800 735
Lead 28.0 12000 130




TABLE 2

SUMMARY OF LOCAL REPOSITORY STMULATIONS

Number | Geometry Ventilation Waste Age | Conductivity
(yrs) (W/m - °C)

1 Plane None 40 2.05

2 Plane to 30 yrs 40 2.05

3 Axisymmetric| None 40 2.05

4 Plane to 30 yrs 10 2.05

5 Plane to 30 yrs 40 3.35




TABLE 3

SUMMARY OF GLOBAL REPOSITORY SIMULATIONS

Number Geometry Depth Emplacement Boundary
(m) Condition
1 Plane 500 instantx ConstantXX
2 Axisymmetric| 500 instant Convective "\
3 Plane 500 instant Convective
4 Plane 1000 instant Convective
5 Plane 500 linear Convective
X

instant implies instantaneous emplacement

XX . . '
constant implies constant temperature at the earth's surface

XXX . . . . ..
Convective implies a convective boundary conditlon at the

earth's surface.
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APPENDTIX

COMPARISON OF FINITE ELEMENT AND
ANALYTICAL TEMPERATURE CALCULATIONS

When a numerical method is utilized for prediction of rock mass
response to thermal loading, the numerical procedure should be
validated for a problem with a known solution or an analytical
approximation to the specific problem being addressed should be
constructed. One or both of these methods should be employed to
validate the numerical method since the results of any numerical

method are subject to human error both in formulation and usage.

For the purposes of this study the later validation method has

been utilized. In particular, the analytical solution for a plate
in an infimte medium generating heat at an exponentially decaying
rate has been utilized for comparison with the global model results
previously discussed in this report. The derivation of the solution
will not be repeated in this report; however, the salient features

of the solution will be briefly described.

The temperature in an infinite medium with a plate at the origin

generating heat at a time-dependent rate is given in (8) as

t 2
‘ -x 4o (t-1
Toxye) = —9 g M De (4
1/2 1
2pe(ra )2 D (e-nt?
where Q = initial heat generation per unit area
p = density

¢ = specific heat capacity
o = thermal diffusivity
x = distance from plane heat source

- At . . .
= e for exponentially decaying heat generation

<

~
+

~
i

g

rt

e
i

= 0 (midplane of repository)



-t .
T(£) = — 4 g e V-2 ar
chma)l/z o

Applying an appropriate solution procedure such as La Place trans-

forms results in the solution

T(t) = — \/f; D(Y0)
K

where D(x)

K

Dawson's integral of x (9)

H

thermal conductivity

This solution has been previously reported in (10). In order to
represent the heat generation of 40 year old high level waste,
the waste characteristics given in this report were fit to the
interploating function

- )\1(2

Q(t)/Q(O) = ae + a2e_/\2t

By selecting A; and A, such that they represent 30 year and 500 year
half-lives, a; and a» can be found to be 0.882 and

0.118, respectively (see Figure A.1). Therefore the solution for

a plane source in an infinite medium generating heat representative

of 40 vear old high level waste is

T(t) = __Q._._. 9 _a_L D(.V>\lt) +f_12__7 D(\/)Zt)]

™ Y VA,
The results obtained through the utilization of this method are
displayed in Figure A.2. Also shown in the figure are the results
for the repository centerline of the finite element model A (see

section 2.1).



i |
T
— = ,L:;?!,*: ! b e g
tl ol L
— e - + 4‘» + —_— ——y
M ‘w T } D SR
STy |

. i‘hm? +Wi . [B—
SoelT

B Au : o .
<C .u; ! m

— ey

et

PR

ST SN
} 3 e e e S
!

” —r — :
s . 0 s By
—s 4 — 1\«.,\1’»%" —_—t e + U - q — - I e
o — 1 rT T T
- S — I R i o S t
R C e —
| | |
L N » 4 +
T T " f
fl o | | |
m ! ] i ,., i
B B R T [ ]
! ;
| _
_ i
! :
Bl =
(@) ..lu las)
- () -
Lo | (@]

(INIWFOVIdWE) B/ (L)

1000

- 100

TIME AFTER EMPLACEMENT (YRS)

10
COMPARISON OF 40 YEAR OLD HIGH LEVEL WASTE CHARACTERISTICS WITH

INTERPOLATION FUNCTION

Ill

A

FIGURE A



9 S S
.3 antd T
® — B A e v
—
3
4 b ——— e e -
) I S -
, S
Bp— - - —— -
| : —
!
[} - ' t
5} “ A )
t -
4p— - | t
] .
| — —

1
|

|
!

OSSN S
P
)

|
ANALYTICAL

l

|
L

|

L]

l

1

|

ANALYTICAL TRANSIl ETT TEMPERATURES

I
ri\lD
L

L

T A
||

|

R e o

l

|

|

l

it OF FINITE ELEME

« = 2,05 wh O
p = 2800 ka/M
c =735 J/ke -OC

40 vEARS.

DEPTH = 500 M

- WASTE_AGE =

AR

LI

i
I

A2, comp

|
|

FIGURE

TEMP{°C)

35

1000 10000
TIMF (YRS)

100

10



APPENDTIZXK

FINITE ELEMENT MODELS
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FOREWORD

This report was prepared as one of a series of Technical reports
within a study of the groundwater movements around a repository

for radiocactive waste in the precambrian bedrock of Sweden. It
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THERMAL ANALYSIS OF RADIOACTIVE WASTE REPOSITORY - ADVECTIVE
HEAT TRANSFER

1. Introduction

Previous results within this study (1)X have been presented for the
thermal analysis of a radioactive waste repository (2). This afore-
mentioned analysis was performed under the assumption that the only
heat transfer mode within the rock mass was that of pure conduction

represented by the Fourier-Biot constitutive relation.

In water-bearing rock masses with persistant regional groundwater
potential gradients, heat transfer by forced convection (an often
utilized term for this is advection) will occur upon the emplacement
of a radiogenic heat source. The magnitude of the heat transfer by
this mode depends upon the velocity of the regional groundwater, the
thermal properties of the groundwater, and the spatial and transient
variation of the temperature field. The quantitative determination
of the heat transfer resulting from the forced convection due to the
regional groundwater flow is the single objective of this report.
This objective is important in assessing whether temperature fields
arising from assuming only conduction heat transfer are sufficient for

temperature predictions.

It is important to determine the magnitude of the forced convective
heat transfer for a variety of reasons. Specifically, the temperature
fields arising in a rock mass containing heat generating radioactive
waste will affect the groundwater flow by perturbing the regional flow
due to; (a) the addition of flow which is thermally - induced,and; (b)
the thermomechanical perturbation of the groundwater flow pathways
(joints). This perturbation of the groundwater flow will subsequently
alter the temperature fields which will alter the flow field and so on.
This "coupling' phenomena should be accounted for if (a) the heat
transfer due to forced convection is significant and/or (b) the thermo-
mechanical perturbation of the flow pathways is significant, or (c) the

heat transfer due to thermally - induced flow 1is of concern.

X . .
Numbers 1in parenthesis refer to references at end of text.



In this study, the first two coupling effects are analyzed separately
in order to quantify their respective importance as related to the

rational prediction of groundwater movement around a repository.

The convection heat transfer can be further divided into heat transfer
due to regional groundwater flow or other external mechanisms and heat
transfer by natural convection due to thermally induced flow. As
mentioned previously, this report is concerned with the heat transfer
due to regional groundwater flow. The heat transfer and flow per-
turbations provided by the thermally induced flow are discussed in (3).
Validation of the finite element program is provided as an appendix to

this report.



2. REPOSITORY MODELING

The repository model utilized in the analysis of the convective heat
transfer is displayed in Figure 1. As previously discussed in (2), the
model simulates the emplacement of waste over a repository area of 1 km2
at 500 m depth during a period of 30 years. Forty year old high level
waste (4) is emplaced in a region encompassing two storage tunnels

(3.5 m x 50 m) every 1.5 years, resulting in a gross thermal loading of

5.25 w/m>.

This particular model was employed since both the repository emplacement
and the regional groundwater flow do not allow for the assumption of
temperature symmetry about a vertical line through the repository center—
line. Even if the waste emplacement were instantaneous (symmetric), the
regional groundwater flow would dictate the utilization of a model
encompassing the total repository. For a more detailed discussion of

the global repository model utilized in this study, the reader is re-

fered to (2).

The thermal properties of the repository site rock and the groundwater
are presented in Table 1. The additional parameter required for the
analysis of the convective heat transfer, namely the regional ground-
water flux, has been taken from (5). This regional flux (porosity x
pore velocity),Z.(lO_ll) m/sec, results from an assumption of a regional

horizontal groundwater flow with a permeability of 1078 m/sec and a

3). The assumptions utilized in the

regional potential gradient of 2.(10
determination of this flux are perhaps conservative, as stated in

(5). In order to more accurately quantify the convective heat transfer,
the global repository previously discussed was also analyzed with regional
groundwater fluxes of 2.(10_10) m/sec and 2.(10_9) m/sec. The finite
element program utilized in this study employs a variable iteration, pre-

dictor and corrector initial flux vector method as discussed in (6) to

account for the convective heat transfer term.



3. RESULTS OF GLOBAL SIMULATIONS

As mentioned previously, the objective of this report is to evaluate

the significance of the convective heat transfer provided by the regional

groundwater flow.

For the purposes of this study, the convective and conductive heat
transfer has been assumed to be represented as the solution of the

following differential equation with appropriate boundary conditions.

Kr{azf +823 }— lech'—a—T— +Q(x,y,t)=OrCr8—T
0% dy ox ot
where
T(x, y, t) = temperature
Kr = thermal conductivity of the rock
o, = gpecific density of the rock
Cr = gpecific heat of the rock
g = density of the groundwater
¢y = gpecific heat of the groundwater
q = regional groundwater flux
Q(x, y, t) = radiogenic heat function
t = time
b4 = horizontal coordinate

This equation is identical to that used in (2) with the exception of

the convective term involving the regional groundwater flux.

The transient temperature arising without the convective heat transfer
term at several locations in the global repository model are presented
in Figure 2. These results have been previously presented in (2) for
times up to 1000 years. In the development of this figure, the heat
generation function utilized for analytical comparison in (2) was

utilized to represent the heat generation after 1000 years.

As can be seen in Figure 2, most locations in the repository domain

return to the pre-repository temperatures within about 40,000 years.



—11) m/sec

When employing the regional groundwater flux of q = 2(10
and the convective heat transfer term, the resulting temperatures are

within the computational accuracy of those arising in Figure 2.

In an effort to quantify the '"threshold" regional groundwater flux
required to produce a significant perturbation in the rock mass
temperatures, simulations with 10 q and 100 q were performed. These
results are presented in Figures 3 and 4, respectively. The respective
times required for the repository domain to return to the virgin geo—
thermal temperatures is approximately 30,000 years and 20,000 years.
Several locations displayed in the figures are noted to experience
thermal cycles of shorter duration and decreased magnitude with in-

creasing groundwater flux (for example, 200 m below the repository (centerline).

Since the transient temperatures arising with coupled convective and
conductive heat transfer are very nearly identical, Figures 5 and 6 are
presented to quantify the difference in a more explicit fashion. In these
figures the difference between the conduction temperatures and the coupled
convection and conduction temperatures are displayed as a function of

time for 10 q and 100 q. The temperature differences above the repository

are similar to those below the repository.



4, SUMMARY AND CONCLUSIONS

The heat transfer due to forced convection resulting from a regional
groundwater flow has been analyzed for the maximum expected flux,

q of 2.(10_11) m/s and also, 10 q and 100 q. The temperature difference
between assuming pure conductive heat transfer and coupled conductive and
convective heat transfer was found to be negligible for a groundwater
velocity of q. Analysis of groundwater flux 10 q and 100 q results in
temperatures nearly identical to those predicted by conductive heat
transfer for the first 100 years. The major effect provided by the con-
vective heat transfer with groundwater flow of 10 q and 100 g was to re-
duce the time required for the repository domain to return to the natural
geothermal gradient. The influence of the convective heat transfer could
be expected to be greater for larger values of thermal flux density or

for rock masses with lower thermal conductivity than that assumed in

this study.
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TABLE 1

Thermal Properties of Repository Site Rock and Groundwater

Material k o) 3 c o
(W/m=-°C) | (Kg/m™) (J/Kg=-"C)

Granite 2.05 2800 735

Groundwater X 1000 4200

X . . . .
Due to the low porosity of the site rock, the difference in the
conductivities of the rock and the groundwater was not taken

into account.
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APPENDIX A

Comparison of Finite Element and Analytical temperature calculations

When a numerical method is utilized for prediction of rock mass response
to thermal loading, the numerical procedure should be validated for a
problem with a known solution,or an analytical approximation to the
specific problem being addressed should be constructed. One or both of
these methods should be employed to validate the numerical method since
the results of any numerical method are subject to human error both in

formulation and usage.

For the purposes of this report the former validation method has been
utilized. In particular, a classical one-dimensional convective diffusion
problem is analyzed (7). The differential equation, boundary and initial

conditions for this problem are

3C  u dC _ ? 3¢
3t Bx O {(D’a‘?)]
C(0, t) = CO

C(w, t) = C(x,0) =0

where
C(x, t) = concentration of the species
= constant velocity
D = diffusion coefficient

Taking the diffusion coefficient and boundary condition at x = 0 to be
unity, the solution can be expressed as

x—ut X+ut

C = %— erfc (—§VT—J + exp (x) erfc (§7€~—)1.

J

where

erfc(x) = complimentary error function of x

X
e

Il

exp (x)



The analytical solution and finite element results for c(x,t) are
presented in Figure A.l as a function of distance from the constant
concentration boundary for u = 0, 1 and 10. The finite element mesh

employed in this validation is also presented in this fieure.

It should be noted that whereas this validation is performed for a
convective diffusion concentration example, the governing differential
equation is identical to the differential equation governing coupled

convective and conductive heat transfer.
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