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ABSTRACT

An assessment has been made of the impact of spatial variability on the perform-
ance of a KBS-3 type repository. The uncertainties in geohydrologically related
performance measures have been investigated using conductivity data from one
of the Swedish study sites. The analysis was carried out with the PROPER code
and the FSCF10 submodel.
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1 INTRODUCTION

1.1 Background

The purpose of the PROPER code package developed by the SKB is to provide
the safety analyst with a computerized methodology that enables him/her to study
the propagation of input data uncertainties in performance-assessment—related
model calculations.

The PROPER Monitor is used to interconnect the desired submodels, selected
from a library at runtime, and propagate the input parameter uncertainties to find
the associated uncertainties in the results using Monte Carlo techniques. The final
evaluation must be carried out using a PROPER post-processing code.

The Monte Carlo approach requires simple submodels and/or use of very fast nu-
merical algorithms.

The finite element geohydrology code FSCF10 (= Flow of Slightly Compressible
Fluids) has been specially designed by Carol Braester of the Technion University,
Haifa, and Roger Thunvik of the Royal Institute of Technology, Stockholm, as a
PROPER submodel. It is capable of treating 2-D and axi—symmetric 3-D ground-
water flow problems.

1.2 Purpose and Scope of Study

It is known that fractured rock displays great spatial heterogeneity and variability
as to its properties, such as hydraulic conductivity. Those properties are further-
more “known” only at a limited number of points in space.

The purpose and scope of this study are to try to find out whether the spatial vari-
ability and uncertainty are important from the safety point of view, or if they just
average out. For this end, the FSCF10 submodel has been supplemented with the
routines necessary to carry out a stochastic simulation. To assess the implication
as to the safety of a KBS-3 designrepository, a set of safety—related geohydrologi-
cal performance measures were formulated.

The course of the analysis was:

~ create statistical model for hydraulic conductivity based
on the stochastic process concept,

- estimate spatial trend and covariance,

- generate conductivity fields with the estimated trend and
covariance,

- collect statistics for performance measures.



2 THE GEOHYDROLOGICAL MODEL

The kind of block of undisturbed rock envisaged for the future repository for spent
fuel was used as a basis for the modelling and assessment. The block is assumed
to be surrounded by fracture zones possessing a high hydraulic conductivity, see
Figure 1. The factors producing the hydraulic gradients driving the groundwater
flow are associated with the topography.
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2.1 The Geometrical Model

The above situation is modelled with the 3—D axisymmetric finite element solver
FSCF10 developed especially as a PROPER submodel by Braester and Thunvik
which is used with the PROPER package. The geometry of the model is shown
in Figure 2. The KBS-3 repository is placed at a depth of 500 m in a cylindrical
rock block surrounded by fracture zones 100 m from the outermost part of the re-
pository. It is the hill (which is marked with an ”a” in the figure) that generates
the local gradients causing the groundwater flow in the model. The height of the
hill is adjusted to give reasonable values of the annual recharge (see Subsection
2.4.5). Besides the height of the hill the amount of waterflow through the model
depends on the conductivity field. Each ring element in the mesh (Figure 3 ) is as-
signed a conductivity value generated in the actual realization (see chapter 4).
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2.2 The Mathematical Model

FSCF10 uses the Representative Elementary Volume (REV) or continuous porous
medium formulation.

Heating effects due to the radioactive decay of the waste are not taken into account
in this model. Assuming stationary and incompressible flow the following model
is used:

V.u=0
u=-KVh

oY)

where K is the conductivity and # is the head (potential) for incompressible flow
defined as

P—DPo

h= - (z-2p) (2)
where p is the pressure, py is a reference pressure, @ is the water density, gisthe
acceleration of gravity, z is the depth coordinate (increasing downwards) and zg is
a reference level.



Figure 3, the mesh

2.3 Boundary Conditions
Referring to Figure 2 the following boundary conditions are applied
- Boundary 1. pis assigned a constant value pg .

- Boundary 2: p = po+p9gz , corresponds to the pressure
from a column of incompressible water.

- Boundary 3: Isolated, g—ﬁ =0, nis the surface normal

vector.

- Boundary 4: %ﬁ— = (. No sources along r =0

2.4 Geohydrological Performance Measures

2.4.1 Rationale

A number of problems are faced in trying to assess geohydrologically related
safety factors:



— the geohydrology as such is only of secondary interest;
the implications for the transport of radionuclides from
the repository to the biosphere is the primary issue,

- the REV formulation does not provide an ideal descrip-
tion for the radionuclide transport; the relationships are
unclear/unknown.

The problem is actually that of performing a safety assessment without radionu-
clide transport modelling, but based on REV geohydrological performance
measures only, i e:
~ asetof factors must be found having the greatest possible
influence on the radionuclide transport,

~ those factors must be general enough to permit compari-
son between different repository layouts.

The strategy adopted in the present study is as follows:

1. Assumption:
there are correlations between REV-geohydrological
parameters and radionuclide transport allowing for lay-
out comparisons based on generic sites,

2. performance measures which are associated with the
nearfield as well as the farfield are identified,

3. nearfield and farfield performance measures are separ-
ated as a first attempt,

4. if nearfield and farfield performance measures are spatial-
ly related, this must also be handled in a second attempt.

The following subsections suggest a solution.

2.4.2 Integrated Film Transfer Coefficient or Q.

The diffusion rate of a radionuclide per unit area from the repository at stationary
conditions can be formulated as:

N4y =K, (Co-0) 3)

where Cp - 0 is the difference between the concentration at the boundary of the
engineered diffusion barrier and the concentration a large distance away. The
mass transfer coefficient, K,, includes the transport resistance due to the near—
stagnancy of the slowly moving groundwater outside the barrier (Ref.1).

The mass transfer can be integrated over the entire repository surface area:
N= (fK»dA) “(Co—0)=Qeq-Co  (m? year) 4)

where Q.4 can be regarded as an equivalent groundwater flow rate (m?/ year)
(Ref.2 ). Previous analyses have shown the major importance of the film resis-
tance. Thus @, associated with the film resistance only can be taken as an appro-
priate nearfield performance measure.



From a hydrological point of view it is the time of contact between a fluid particle
and the repository/canister that determines the film resistance. In the model imple-
mentation it has been assumed that a fluid particle is in contact with one canister
only, as it travels to the fracture zone, i.e. the nuclide concentration in the water
already coming in contact with a canister is regarded as zero. The possibility that
the water already is contaminated when it arrives at the canister is neglected.

The dimension of a KBS=3 canister is small compared to the scale of the flow
field. This fact justifies the use of the very general formulation of penetration
theory to compute Q,, (Ref.3 ). The stationary transport is replaced with an
“equivalent Soxhlet test” where the time—dependent equation is solved using a
’period” determined by the undisturbed groundwater pore velocity.

D < A
Qeq=€‘/;°27-é——i 5)

Where:

€= porosity =104,
D = effective diffusion coefficient 6*10-2 m%/yr,
A; = total area of the canisters in element i,

©; = contact time for a fluid particle that travels along the surface
of a canister in element i.

The sum is taken over the elements where the canisters are located.

2.4.3 Mean Travel Distance Velocity or V,

A performance measure associated with the farfield is also needed. Time is what
allows the radionuclides to decay so groundwater travel times from the repository
to the biosphere should be important. A performance measure could have the di-
mensionless form:

% f e dA (6)

where 1, represents the groundwater travel time distributed over all the points on
the surface of the repository, and where T is some characteristic time associated
with processes involved solution etc. It would be difficult, however, to represent
all nuclides with one single 7.
Another possible performance measure would be the average travel time over the
repository:

1

thwdA (7)

but very large times would tend to dominate completely and swamp the fast paths.
A reasonable alternative seems to be:

1 {1
Vd:Xj; dA (1) year) (8)
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Vg is akind of "travel distance velocity” that expresses the number of path lengths
awater parcel travels per unit time averaged over the whole repository. In the com-
puter code V; is calculated as:

> Aiftui
Va= —'ET )]

i

ty; = fluid particle travel time from element i of the repository to the fracture zone.

2.4.4 Combined Nearfield/Farfield Performance Measure or NFFF.

The two previous performance measures are correlated spatially via the locations
of the different parts of the repository. A portion having a fast diffusion across the
film will probably also “’see” a short groundwater travel time. A performance
measure that takes this fact into account is:

Qeq
This is implemented as:
D Aiftw;
NFFF =€ [—
— E‘: o 1)

2.4.5 Annual Groundwater Recharge

The recharge is calculated via the the flow through the right boundary of the rock
block, that is the flow into the fracture zone, i.e.

> vk

Oreh = f v-n ds/AL=L—AjL_ (12)

Boundary?

Vv 1k = recharge component perpendicular to Boundary 2 in Figure 2,
A; = area towards Boundary 2 within element i,
Ap = total planar top area of the model.

The sum is taken over all elements constituting Boundary 2.

The hill generates the local gradient that drives the flow, so it is the height of this
hill together with the realization of the conductivity field that determines the value
of the recharge. The height of the hill is calibrated through a few realizations. The
aim is that the recharge in the following simulations should vary between 50 and
500 mm per year. In the actual outcome of the simulations, some values are con-
siderably higher than 500 mm/year however, see Figure 22.

It is difficult to distinguish between infiltration and what must actually be re-
garded as runoff in the modelling situation at hand; a large portion of the flow to-
ward the fracture zone is rather superficial.

11



3 THE STATISTICAL CONDUCTIVITY MODEL

3.1 The Conductivity Data

The estimation procedures discussed below will be applied on conductivity data
from five boreholes at the Klipperds study site, available in SKB’s database GEO-
TAB (see Appendix 1 for details). In these holes the conductivity is measured in
20 meter packed off sections’. Use is made of this regularity as will be described.
Note that this regularity does not hold for the depth (i.e. the projection on the verti-
cal coordinate) because of different angles of inclination, bending of holes etc.

Figures 4-6 show the common logarithm of the conductivity versus the depth.
There is an overall decreasing trend for the conductivity with increasing depth,
but the variation around any trend is huge. Fitting one trend per borehole these
trends will be quite different. It also seems possible to discern subtrends within
some of the holes, see Figures 14-16.

lop K
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Figure 4, borehole 1 and 2

1. In one of the holes a 10 m section is followed by a 30 m section.
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Besides few measuring points, large variation, very different trends for the holes
and possible subtrends, there are two additional features that complicate the
analysis.
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1. Censoring. There is ameasurement limit (K=10"11m/s)?

2. Missing values. Our aim is to model good generic rock,
therefore points within major fracture zones have been re-
moved, thus destroying the desirable regularity. Those
zones which have been located by other means than con-
ductivity measurements are pointed out in Ref.4 .

3.2 Basic Model

Consider the spatial process
Y=1logk (13)

Assume that
X =Y -E[Y] (14)

is weakly stationary, isotropic and Gaussian. Besides simplifying the analysis, the
small amount of data force us to assume weak stationarity. Here E[-] denotes the

expectation value operator. The conductivity measurement was performed every
20 m along the boreholes so we assign every measuring point an integer j. That
integer may belong to any of three sets

1. j € O, the conductivity value is observed (K; > 10~ m/s),
2. j € C, the conductivity lies below the measurement limit,
3. j € M, the information is missing, K ; is removed because

the measurement section lies within a major fracture zone.

To simplify the notations below we define D=0 |J C.

The rock volume and thus the data set is further divided into N parts

Q), i=1...Neach containing m; data points where n; of them contain infor-
mation (i.e. € D )3. Approximate E[Y] locally with a trend that varies linearly

with the depth ie. e[¥] = B +Biz in Q. Now, regard
bl = U - B +Biz)) (15)
jEQ
as a sample of X . In what follows we denote stochastical variables and processes

with capital letters and observations of stochastical variables (i.e. numerical va-
lues) with lower case ditto.

2. Two points with values below this limit are detected (see Appendix 1).

3. This also results in the division of 0, C,Mand Das U 0 U ¢ U M and | D
respectively i i i i

14



The problem is now:
a) Estimate the trend parameters 8 and Bi foreach i,

b) Estimate the covariance for X .
Three cases are explored:
1. N =1, just one regression line is fitted to all data,
2. N =5, one regression line per borehole,
3. N =9, one regression line per subtrend.

To simplify the expressions the index i will be dropped if there is no risk of con-
fusion.

Note:

- The covariance between X; and Xj,; denoted r(X i Xjso)
is regarded as zero if Xjand X;, belong to different
holes. The distance d, ;. between the points are con-
sidered as infinite.

— The set M is defined to simplify the notation in what fol-
lows, so that the 20 m regularity for points that belong to
the same hole is preserved (e.g. so it is clear that the resid-
ual Xj,3 lies three 20m lags beyond X; if it exists and if

Xj.3 and X; belong to the same borehole). In the follow-

ing regression expression points corresponding to
J € M should be ignored. In the covariance estimation

residuals in these points are set to zero (i.e. xj=0if
JEM).

15



3.3 The Trend Estimation

Two methods for the regression analysis are used, iterative generalized least
square estimation (IGLSE) and maximum likelihood estimation (MLE).

3.3.1 lterative Generalized Least Square Estimation (IGLSE)

In the ordinary least square estimation (LSE) one is searching for the choice of
the parameters fp and §; that minimize the euclidian norm of the residuals, i.e.

the parameters are assigned values that satisfy

9, 1 o

—-—:O —'_=O i=1,,...,N
3B} ap

The equations are solved for each value of i ,which will be dropped henceforth in
this section.

Now write equation (15) in matrix form as
x=y-Zb amn

where
«=fy v=b) z-uz)  o-[f] a®

and the boldface letters represent column vectors and Z denotes a m; X 2 matrix.
Then, with these notation the solution to (16) is given by the solution of

ZT7zb = 7Ty (19)
This analysis assumes, from a stochastical point of view, that the components of

x are independent, and have equal variances. If the components do not satisfy this
the modified form:

ZTv-1zp = ZTy-ly (20

has to be used where V is the covariance matrix of X i.e. the component in row
k column [ of Vis

v = E[Xx Xj) = r(lk-1). 21
Due to the stationarity assumption the covariances are only dependent on the dif-
ference between the indices i.e. the lag. Here and in what follows r(lk — I sig-

nifies an estimate of the covariance E[X; X;]. This estimate is calculated using
(33) below.

The expression (20) is in fact the LSE of the transformed expression?
F = V-/2X . The neat calculation E[FFT] = V-12E[XXT)V-1/2 = [ shows that

the transformed vector F has independent coefficients with unit variance (I de-
notes the unit matrix). This method (20) is called weighted regression (see Ref.5 ).

16



Since we do no know the covariance matrix when the regression parameters are
computed, the following iterative method is used:

GrarD)

unweighted regression
according to (19) for
the initial estimate b

i=].N
| k=k+1 I

estimate V

weighted regression
toget by i=1...N

This method is referred to in the literature as Iterative Generalizes Least Square
Estimation (Ref.6 )

3.3.2 Maximum Likelihood Estimation (MLE)

This is a way to estimate both the trend(s) and the covariance in the same stroke.
The idea is to maximize the probability of the observation over some parameter
space. In our case the probability of the observation may be written

N eBi+Biz)
L=][311 f dt; ofo Oz e 0 (22)

i=1 |jec

-

The expression in braces is a multidimensional integral operator on components
corresponding to censored values, € is the lowest measurable value of logK,

fa(t) is the probability function for the stochastic residual vector [XL-E p of di-

mension n

N
n=y n (23)

4. Here X denotes the stochastical vector that is observed in (18).

17



Since X was assumed Gaussian

£ = 1 ox vl
" Tearda) T\ 2 24)

v ={EXeXi }isen

The parameters which we are to maximize over are the trend parameters
{ﬂf), B ‘l}ﬁl and also the parameters describing the covariance. For instance an ex-

ponential covariance model is parametrized by rgand dy as

r(z,-—zk>=roexp(—%) 25)

dj denotes the distance between two points in the borehole
(djx = 20 - |j — kl metres). We see that rg can be identified with the variance of the
process (c.f Subsection 3.4.1)

Due to the assumption that the residuals of different holes are uncorrelated V ob-
tains a the block diagonal structure and (22) may be rewritten as

N .
L=]]L",
i=1
) (26)

Li = gc f dt] fn‘-(t)’tj:xj‘]'eoi
j (

-0

where now

PR P SN Bl G
W ey det(vh 2

v={ExeXi |en

@7

In spite of the apparent simplicity this approach includes calculating N multidi-
mensional integrals as well as inverting N covariance matrices in each step of the
optimization. Since the dimension of these integrals equals the number of cen-
sored values for each trend, which is large at the Klipperds site, the straight for-
ward approach to try to maximize this function seems unfeasible.

However, if our primary interest is to evaluate the trends and we are willing to ne-
glect the influence on these from the covariances (it seems to be small (see Section
5.2)), the set of parameters are reduced, but more important the integrals split. In
fact when assuming independent equally distributed components X the cova-

riance matrix becomes ro/ and thus (22) becomes

18



g ine) =TT T ¢(yf b ﬂlzf)ncp( - ﬂ) o

i=1je0 o jec
The expression splits into products. ¢(-) is the one~dimensional standardized dis-

1 . .
tribution function ¢(¢) = E—e“z/ 2 and & its cumulative counterpart,

D0) = J ¢(u) du.

Taking the logarithm of the likelihood function L in (28) and setting the partial
derivatives with respect to Bo, 81 and o to zero, we get the following set of non-

linear equations to solve for the parameters
dlogL 1 P o
3B =? EZO‘(}’j-ﬂb -Biz) -
Z Pl(e /30 lzj)/U] .
i=1,....N
0 e Pl ~Bo-Biz)/o]

dlogL 1 L
=== Y 50i-Bh-Biz)-
B, Uzj;‘ O j

¢l - .30 ZJ)/U] .
-—— =1,...,N
,ezc. T ol —pr-Biz)lol

(29)

1 [(5 ~Bh-Biz)/o]- ¢[(e -Bh~ ﬂlzj)/a]
0 iajec [(8 ~Bo- 5121)/0]

where n is the total number of observed points. If we for example want to estimate
five trends we get a set of eleven equations to solve ( five for 8, five for g and
one for g ). We solve the equations using an iterative method suggested by Samp-
ford and Taylor described in Ref.7

If there are no censored values the equations (29) become linear and identical to
the LSE equations (17)

3.3.3 Properties of the Regression Methods

One major problem with the IGLSE as here described compared with the MLE
is the correct handling of the censored values. Simple substitution of the measure-
ment limit leads to biased estimates (Ref.8 —10 discuss this problem and present
some ideas on how to deal with them). On the other hand it is practicable to take
the correlation between the values into consideration in the IGLSE.

19



In the MLE it is important that the assumed distribution function does not deviate
too much from the real underlying one and that the ratio n;/o is big (not necessar-
ily the case for our data), otherwise a large bias is likely to appear in the regression
analysis (Ref.8 ).

Both of the methods discussed in this section have been applied to our data (see
chapter 5).

3.4 Estimation of the Covariance Function

In the literature covariance estimation is discussed when values are missing or
censored, however we do not know any text suggesting estimators for samples
when both of these features are present.

3.4.1 Fitting a Function

Two methods for pointwise estimation of the covariances for lags that are mul-
tiples of 20 m are presented below. A continuous function is then fitted for use in
a generator that supplies the FSCF10 model with a stochastic conductivity field
(see chapter 4 ). It can easily be shown that only positive definite functions is
qualified for this purpose. We use the truncated exponentially decreasing function

- { rOexp(-d/do),  d < dea 0
0, d > dey

where d is the distance between the points under consideration. Thus the correla-
tion between the K—values in the model are assumed to be isotropic. The cutoff
parameter d,, is used speed up the generator that will be discussed below. The
variance r(0) is taken from the regression analysis, the constant d is fitted by eye
to expression (30) for the discrete values of r(7);7=0,1,2,3, i.e. for the lags
0,20,40,60 m. Only these smallest lags were used, because the covariance estima-
tors get less reliable for greater lags due to smaller amount of data participating
in the estimation (c.f the results in chapter 5). The value of dy was also estimated
by the MLE on the logarithm of (30). This logarithmic transformation gives a
curve that fits well for low values of rat the expense of a poor fit for greater r which
is not desirable. There are certainly methods for the optimal fitting of the function
(30) based on some condition (e.g. minimum euclidian norm of the residual) but
for our present purpose and with respect to the uncertainties in the pointwise cova-
riance estimation (see chapter 5) the simple fitting by eye will do.

3.4.2 The Classical Estimator

Parzen (Ref.11 ) views a series with missing values x (from a covariance estima-
tion point of view) as the result of amplitude modulating an imagined series w
(with no missing values) with an indicator series a i.e.

20



Xj = awj, aj={ (1) j:z{ (31)
where M denotes the set of missing values and D denotes the complement of the
former (Section 3.2 ). Assume, for the moment, that the series wis available. Then
the classical covariance estimator
1 Nomer . . .
rx) = ;Z D W< W S)Why—< W >) (32)
i=1 j=1

» ml. .
can be used. Here < w’ > denotes the mean value Z(wj‘-) /m; for trend i which
j=1
in the case of LSE equals zero, m; denotes the number of points corresponding
N N
to trend i. The use of m = z m; instead of Z m; —7 (the total number of partici-
i=1 i=1
pating pairs with the lag 7 ) in the denominator gives the estimator a slight bias,
on the other hand the mean square error in synthetic testing becomes lower
(Ref.12) and it guarantees a positive definite covariance matrix.

When, as in our case, only the amplitude modulated sequence x is detectable (e.g.
the series contains missing values) Dunsmuir (Ref.13 ) suggests
| Yo ‘
re) =~ > > @< x> <X >)aajg (33)
i=1 j=1

N
(n= z n; ) which is based on Parzen’s ideas. As one can see it is very similar to
i=1
the classical estimator (32). Here we substitute the censored values by the
measurement limit, which gives a biased estimator.

3.4.3 The Robinson Estimator

Robinson (Ref.14 ) proposes an alternative estimator when some of the data are
censored. Define the stochastic variable

W, = % (34)

Now let d7° be the moment:

85 =

ne fi(t1, 1) dndr (35)

Ot 8

where fi(t1,17) is the bivariate distribution function:

1 T
exp{_ (11,82) V7 (11, 12) } (36)

finn) =

2idetV 2
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1 rw(
V= [ ] (37)
rw(t) 1

Here r and s are positive integers, and rw is the covariance for W. This is consist-
ent with the assumption that X is Gaussian.

The parameter ¢ in (34) is not known. The MLE as well as the IGLSE provides

an estimate ¢ of the standard deviation. Robinson proposes (no trend is present
in his case) the estimator

zsz I(x; > 0)
2_J
7 TSI > 0) G
j

where I(-) is an indicator function which is equal to one if the condition in the
argument is fulfilled. As an estimator of (35) in the discrete case with T points
Robinson suggests

, 1 T
o7 =T__-¢-Zluisz+r I(w; 2 0,wjsr 2 0) (39)
=

In our case with missing values we use

N m—t
IS = Zg 2(‘4;;)'(»‘»;”)‘ Iw, 2 0,w, 20, j, j+T ED) (40)
i=1 =

where [; is the total number of existing pairs with the lag 7.

Now, there are formulas that relate ry(t) to 67 for different values of r and s
given the assumption of normality. In our case we use r = s = I, ry(7) is then
given by the implicit equation

o1l = '2'1::— [rw(‘r)(% +arcsin rp(®) +y 1 - rw(r)z} “41)

Other value on r and s may also be used giving other relations between ry(r) and
07 . We have tested a few of them but the former seems to perform best.

Two ways to obtain the covariances are then possible, either the straightforward

r(@) =6 - rw(v) (42)
or one inspired by the discussion in previous subsection
[
T = .,.l!. -0 - rw(t) 43)
i
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4 SIMULATING THE CONDUCTIVITY FIELD

When the parameters of the regression model and the covariance function is deter-
mined, the next step is to use this information to simulate the conductivity field
for the FSCF10 model.

4.1 Generating the Conductivity Field from Statistical
Data

In Ref.15 the following multivariate normal generator is proposed. Suppose we
have m points in the FSCF10 model where we desire to generate a value for the
conductivity. Since we have assumed X to be Gaussian the vector
X = (X1,X>,...,X,n) becomes multivariate normally distributed with a cova-
riance matrix the components of which depend on the distance between the points
according to (30)

'f(({u) e . o r(d.lm)-

r(di_1i-1) r(d;-li) r(di—.li+l)

V=l b r(d; i) 1) 1y ) (44)
: r(di-tli—l) r (d{+1i) r(di+'1i+l) :

) .. e Pl

As afirst step, we compute a lower triangular matrix L by Cholesky factorization,
thatis V =LLT . Then

1. A vector Z with m independent standard normal compo-
nents (i.e. E(Z;)) =0and v(Z) = 1) are generated using
the PROPER random number generator.

2. The dependent vector is computed as X =LZ.

3. The desired conductivity is now calculated from (15)
given any desired trend parameters for the site studied c.f
Section 5.4.

The easy calculation
V=EXXT] = E[LZ)LZ = E[LZZTLT) = LE[ZZT)LT = LIT  (45)

shows that the generator works.

4.2 Problems Faced in the FSCF10 Modelling

There are two major problems that have to be solved before the rock can be simu-
lated in the FSCF10 program on the basis of the statistical information extracted
from the covariance and trend estimators.
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1. 3D-2D: A 2-d model is used for a true 3—d phenom-
enon.

2. scale: The spatial scale of the FSCF10 finite elements
does not correspond to the length of the sections of
measurement for the conductivity data.

4.2.1 3D-2D

The numerical model used in this study is three-dimensional axisymmetric,
which is adequate in homogeneous formations. However when aiming towards
simulating the response of real heterogeneous systems this restriction is disturb-
ing. The only way to give some justification to the use of this model is to work
with ¢ —averages i.e. all our state variables are considered as being averages over

the angular coordinate in a cylindrical coordinate system. For example denoting
the real three—dimensional head A3 our notation 4 in two dimensions is defined

by

2
h(r,z) = -2—'1“—[ hs(r,p,2) dp (46)
0

It is rather easy to show that the ordinary (two dimensional) continuity equation
holds for the ¢ —averaged Darcy velocity i.e.

. V(raSO’Z) - 47
v I——_Zn dp =0 @7)

but when turning to Darcy’s law in particular and conductivity in general the situ-
ation becomes more cumbersome. If we start by accepting the three dimensional
form of Darcy’s law i.e.

uz3 =-K3Vhs (48)

where the subscript 3" is used temporarily to distinguish two— and three-dimen-
sional fields it is a natural question to ask whether one can average such a relation
and obtain as an approximation

<U3>p=-<K3>,-V<hy>, (49)

This is what one obtains if one performs a standard perturbation analysis of (48)
invoking the assumption

I < (K3—<K3>p) V(h3—< b3 >p) >p | <<1<K3>, V<h3>, | (50)

Now two objections can be raised against this approach, one theoretical and one
practical. The theoretical one is easy enough to explain since it is merely that (50)
does not seem to hold in view of the fact that the variance of log K is about two.

The practical one is that if we accept (50) and want to utilize our statistical infor-
mation of K3 we need to infer the stochastical quantities of < X3 >, from those

of K3 . This is straightforward for the stochastic moments but not at all easy for
the distribution of < K3 >, .
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Having pointed out these difficulties with a formal approach we now shift our
point of view. The basis of the analysis is the measurements of the conductivity.
These are based on assumptions of homogeneity and isotropy and an approxima-
tive solution to the resulting hydrology equation. The result of this approximative
analysis is known as Moyes formula. The calculated conductivity values are inter-
preted as point values or effective values for some support (surrounding volume).
Now since one prior to the analysis has assumed homogeneity and isotropy the
problem opens for an approach using cylindrical coordinates. Then the difference
between 2D and 3D conductivity is academic. Hence, any value of X resulting
from such an analysis could equally be interpreted as a two dimensional ("ring”)
conductivity. To connect to Moyes formula we refer to the findings of Braester and
Thunvik (Ref.16 ) who showed that the difference between Moyes formula and
a correct numerical cylindrical analysis is small. Thus we may interpret the results
from Moyes formula as an effective ring conductivity for some ring centred at the
measurement section.

Implicitly the above discussion assumes that effective ring conductivities exist1i.e.
that a ¢ —averaged form of Darcys law holds

<Vv>,==KV<h>, (51
However, this assumption, even for large rings is a compelled one to study the
present problem with a 2-D axisymmetric solver.
Finally, in order to wrap things up, we must include two more assumptions:

a) The distribution of ring conductivity is independent of the
diameter of the ring.

b) The covariance of the ring conductivities is isotropic.

The assumption a) is contained in the statement that if the rings are identified by
cylindrical coordinates (r, z) , the process K(r, z) is stationary. The assumption
b) is written as

E[(Ko(ry, 21) - E[Kx(r1, 21)]) - (Ka(r2, 22) — E[K2(r2, 22)])] =
= C([(r1 - )+ (21— 224'/?

The assumption b) gives us the possibility to estimate the covariance from our drill
hole measurements. An assumption of this kind is difficult to avoid if one wants
to estimate the covariance structure directly from measurements in boreholes with
a uniform angle of inclination. The assumption a) is difficult to validate. One
could view it as an assumption of self similarity i.e. that the rock responds in the
same way in different scales.

(52)

4.2.2 Scale

Since the numerical method used is finite elements, the conductivity values to be
simulated is thought of as the constant conductivity of the element. Hence even
if these simulated values were independent an element size dependent covariance
would result. For example, if the elements have a characteristic length a the in-
duced covariance becomes something like
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la —dl
Cald) = V( 2 )‘““ (53)

0 dza

where V is the variance of the random conductivity. In particular this implies the
impossibility to study “white noise conductivity” with Monte Carlo methods.

Now if we want to simulate a random field with a given covariance it is crucial
to select the mesh size so that the effect of the given covariance is studied and is
not drowned in the mesh—induced covariance. One way of studying this is to use
spectral analysis. Let us assume that we want to simulate a random field with a
exponential covariance i.e.

ldl
C(d) =Vexp| —— (54)
Letting @ denote the wave vector the corresponding spectral density is
3
LA (55)

O s dar?

Now if again the characteristic mesh size is g, for instance a could be the side in
a square mesh, the Nyquist angular frequency is 2mr/a . The Nyquist frequency
is the highest frequency that gives an unique trace on the mesh i.e. for any fre-
quency higher than this there is also a lower one taking the same value over the
mesh. This last effect is known as aliasing. So ideally we would like the spectral
density to be zero above the Nyquist frequency but clearly this is to much to ask.
We have to content ourselves with taking the mesh so small that the spectral den-
sity is small above the Nyquist value or that the “energy” of the field above the
Nyquist frequency is small. For example, in our case a typical value of dy is 26
m and the maximum mesh length in the radial direction is 75 m then

Sow) 1

SO drdgpr 0 0
[ Sw) dw
o= 1—;2t-(arctaando—1—f%%5) = (.363 57
S(w) dw N*0
i

This seems reasonably small. However the influence on the calculated flow of the
inability to resolve higher frequencies in the conductivity is a separate problem
in its own right which we have not addressed so far.

When the extent of an element approximately corresponds to the scale of measure-
ment, its conductivity is calculated based on the depth of its centre. As can be seen
from Figure 3 and the size of the model given in chapter 2 some of the elements
in the FSCF10 mesh have a side which length is considerably greater than 20 m
e.g. the height of the elements deep down in the model. This is because the spatial
variation of the solution there is expected to be small.
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A solution for high elements deep down in the model is to subdivide them into a
number of 20 m high elements (Figure 7) and simulate a conductivity for each of
these subelements. An effective conductivity for the high elements is then calcu-
lated as the mean conductivity of the subelement. The validity of this method may
be inferred as follows.

H )

«f|

dar

Figure 7

Suppose we have a high element that is divided into n subelements. Denote by
v; the Darcy velocity for element i, then the flow through the element is

q;i = dZV,' = —-dZK,'(hé— ‘i)/dr (58)

according to (1). The total flow for all the subelements is g;o; = Z vidz . The aver-
i

age velocity over this large element is now

> dzKi(h, - ) /dr

Vior = ot _ i
? Z dz Z dz
i dz i

Zdz

i

(59)

= (< hy > —< hy >)/dr) - Y Ki=((<h >—<hy>)/dr) <K >

n n
where < hy> = > K/n, k=1,2 and <K >= > K;i/n. Note that this deriva-
i=1 i=1
tion assumes the gradient to be parallel with the radial coordinate. Hence the
gradient in the r-direction must be the dominant in order to use this averaging.
which is the case in our FSCF10 model.
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5 RESULTS

This chapter presents the results for different estimators which are grouped into
two categories. In the first, IGLSE—-regression is carried out to get the trend para-
meters. In this procedure one has to estimate the covariance matrix. When the iter-
ations have converged, a covariance function is provided in the same stroke. In
this method, referred to as IGLSE/classical in what follows, no special attention
is paid to the censored values which are substituted with the measurement limit.

In the second category explored, we use MLE to estimate the trend parameters and
the Robinson method to estimate the covariance. In both these methods the cen-
soring is handled in a more adequate way. In the regression adopted here the cova-
riance influence is ignored. This second category is called MLLE/Robinson estima-
tion in what follows.

1000 realizations were used in each of the final simulations made to obtain the un-
certainties in the performance measures.

5.1 A Simple Estimator Test

In order to see how the estimator chain MLE/Robinson performs we have gener-
ated a number of synthetic data sets each consisting of three series of values for

log K , using PROPER’s random number generator. Every set has an unique col-

lection of properties (such as number of points, covariance structure in the parent
distribution etc.) but they are based on the same random seed.

When generating these synthetic data sets we assume the regression parameters
Bo and B; to be equal to zero. The number of values is set to either 35 or 100.

They appear regularly on data points every 20m with the first point at the depth
100 m . log X is assumed to be normally distributed with unit variance and an ex-

ponential covariance function according to (30). Three different values for the co-
variance of the firstlag are used 0,0.2 and 0.5. Note that the regression parameters
and covariances are used as input for the the data generation process (which is
based on the ideas presented in Section 4.1) and should not be confused with the
actual outcome of the estimation discussed below. The censoring level is set to
—0.43 which causes about 1/3 of the population generated to be censored. Estima-
tion with missing values have been tested. We have also tested Robinson estima-
tion with other values than one on the integers » and s in (40).

The next step is to estimate the regression parameters and the covariance from
these three series (here the series are treated as three different processes i.e. the
covariance is calculated for each series separately). The results of this simple test
is not encouraging for the MLE/Robinson—estimator. When the population of 100
points is used the maximum absolute error for the estimator for the first 4 lags is
about 0.25 units i.e. 25% of the variance. The estimation gets even worse when
no MLE-regression is performed i.e. the trend with the parameter values
Bo =1 =0 is used when computing the residuals. This indicates that the great

deviation is not due to a bias in the MLE-regression. Appendix 2 contains tables
for the complete test.
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For comparison purposes we tested the IGLSE/classical estimator on one of the
sets. Here,the three series contains 100 points. In this comparison test the parent
distribution has the unit variance and no correlation are assigned among the points
(i.e. the covariance is zero). The use of this estimator gives an maximal error in
the covariance estimation of about 7% for the first lags as can be seen in Table 1
below, which shows the result of the comparison for this set of series. On the other
hand the variance (7(z = 0) c.fthe notation in Subsection 3.4.1) is severely under-

estir}lated.

series] series2 series3 parent
IGLSE/~ MLE/- IGLSE/~ MLE/- IGLSE/~ MLE/-
classical Robinson classical Robinson classical Robinson
Bo 0.3583 0.2165 0.2699 0.0358 0.1548 -0.0249 0
B: | -1.451*10~%-1.868*104]|-3.607%10-5-7.123*10-1-4.877*10-5-1.247*10%4| 0
rz=0) 0.515 0.900 0.583 1.184 0.375 0.851 1
r@e=1) 0.008 0.014 0.003 0.076 0.023 0.123 0
r(t=2) -0.020 -0.145 0.049 0.233 —0.031 -0.087 0
rirt=3) 0.002 -0.121 -0.070 -0.119 -0.069 -0.163 0
rr =4) 0.054 0.024 0.009 0.072 0.051 —0.101 0
Table 1

A more comprehensive statistical analysis of the estimators ought to be done how-
ever in order to draw general conclusions.

5.2 Results of the Conductivity Covariance Estimation

Figure 8 and 9 show the result of the covariance estimation when just one re-
gression line (trend) is fitted to all the data (i.e. N=1 in (15)) for the classical
and the Robinson method respectively. Figure 8 contains two almost coinciding
plots. In one, the regression parameters are determined by unweighted least square
estimation (MLE) according to (19), in the other the weighted regression (20) is
used where the covariance matrix V is estimated by iteration. Obviously, the dif-
ferences are very small for the covariance estimation which also holds for the re-
gression parameters themselves. Figure 9 shows different results of the Robinson
method due to the two ways of estimating ¢ discussed in Subsection 3.4.3.The
cross marks represent the covariances when (38) is used, and the boxes when the

0 estimate is supplied from the MLE. The latter seems to perform best and is used
henceforth.
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Figure 9 , MLE/Robinson, N=1

In Figure 10 and 11 the results of the classical and Robinson estimator are shown

respectively when one trend is used per borehole (i.e. N =5 ). Figure 10 looks
very similar to Figure 8 except for the translation in the negative r—direction. The
boxes in Figure 11 represent the result obtained if (by contrast to the former Ro-
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binson plots) the variance is multiplied by /;/n; according to (43). This version is
used in the simulation which will be described in the next section. The covariance
here, when a separate trend is used for each borehole, is lower than the one in Fig-
ure 9 as expected. The covariance function parameters r(0), dop and d,,; are pres-
ented in Table 2 Section 5.3, the covariance radius is approximately 200 m.
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Figure 10, IGLSE/Classical N=5
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Figure 11, MLE/Robinson N=5
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Figure 12 and 13 show the classical and the Robinson estimator with 9 trends re-
spectively. Regarding the borehole plots in Section 3.1 one may assign borehole
1 and 5 two subtrends and borehole 3 three subtrends, as shown in Figure 14-16.
(the trends illustrated in these figures are fitted by eye so they may not coincide
with the actual outcome of the regression calculations). Here the variance has de-
creased further, as expected.
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Figure 12, IGLSE/Classical N=9
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Figure 13, MLE/Robinson N=9
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Figure 15, Borehole3 three trends fitted.
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Most of the estimators have a "dip” for lags around 200m indicating an illusory
negative correlation. This is probably due the error in modelling the trend of log K
as a linear function of z. In a test including the term B% - (z')%in the regression
expression for i =1 the use of the MLE/Robinson estimator (Figure 17) gives
no “dip”. The term B5 becomes positive and when extrapolated to the depth of
530m logK starts to increase with increasing depth which is not reasonable. This

example highlights a problem. In the FSCF10 model we are modelling arock mass
that extends 3000m below the ground surface based on conductivity data down
to about 650m. The lack of information forces us to extrapolations which may be
a poor model of the nature of the phenomenon.
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5.3 Drilling in the Model

In this section we present some sample boreholes “drilled” in the FSCF10~model.
The conductivity fields are generated according to the procedure described above
using the results of the two estimator concepts. A single realization is used. The
size of the FSCF10 model is smaller than the average distance between the bore-
holes at the Klipperds study site (Ref.4 ) where the data were collected. What we
are modelling (in generic terms) is therefore an area corresponding to one hole
rather than a region containing all the holes. Hence, we use the estimators based
onone trend per borehole (Figure 10 and 11 above). The parameter dj is then esti-
mated using (30). The same vector of independent normal variates was used to
generate the conductivity field in both cases. Table 2 shows the parameters used
in either case. To get typical values of 8y and B; , we use the estimates from the

two regression techniques MLE and IGLSE assuming one common trend only.

IGLSE/- MLE/-
classical Robinson
Bo| —6.568 -6.470
B | 5.018%10°3 | 5.925%10°3
r0f 2.010 2.504
dy 76.88 69.85
Qe 900 900
Table 2
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Figure 18 and 19 show the resulting values of log K for the two element columns

far to the left in the model based on both the IGLSE/Classical and MLE/Robinson
estimators. What we see is the conductivity calculated in the centre of the of the
mesh element (or subelements for large elements c.f Subsection 4.2.2.) Figure 20
and 21 similarly show the values for column 3 and 6 (from the left of the model).
Comparing with the source data (Figures 4-6) these simulations look quite alike.
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Figure 19, col. 1 & 2, MLE/Robinson
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5.4 The Performance Measures

Figure 22-25 show the distributions of the performance measure discussed in Sec-
tion 2.4 given the uncertainty induced by the spatial variability of the hydraulic
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conductivity. The dotted and plain lines represent results obtained using the MLE/
Robinson and the IGLSE/Classical estimator respectively. The simulation based
on the MLE/Robinson estimation shows a greater variability which also is ex-
pected due the greater value on the estimated variance (c.f Figure 10 and 9). The
variability in the performance measures associated with the farfield is large (Fig-
ure 24 and 25) compared with the ditto obtained in a preliminary study where the
conductivity field was modelled by logK = AFX + BCF log z and values of the

parameters AFX and BCF were generated in each realization and used through-
out the model which gives the field an uniform behaviour. In this present model
there is no such overall structure in the field. Besides the short ranged covariance
coupling the conductivities are generated individually in each FSCF10 element.

Another, at a first glance, surprising result is that no significant correlation is de-
tected between the annual recharge and any of the performance measures, when
a sensitivity analysis is performed in the PROPER postprocessor POSTREG (c.f.
also the POSTMON/GPLOT scatterplots in Figure 26). In the preliminary study
astrong dependency was found. The lack of uniform behaviour in this model com-
bined with the exponential nature by which K isrelated to z (see (15) and Section
4.1) give anegligible contribution to the recharge from elements deep down where
the repository is located. Thus, the flow velocity deep down in the model does not
have to be strongly related to the recharge.

Lo
4 — IGLSE/Classical
— — MLE/Robinson
L 1 1 ¥ l_}—_IE- 1 = T b
Lop¢Ra)

m/years

Figure 22, The common logarithm of the recharge.
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6 CONCLUSIONS AND CAVEATS

The present study certainly has its shortcomings, such as not dealing strictly with
the 3-D problem, restrictions to continuous media etc. but it could never the less
be concluded that spatial variability in the hydraulic conductivity is an important

source of uncertainty in repository performance predictions.

The validity of this conclusion has to do with the fact that the scale of the variabil-
ity is comparable to the distance between the outermost part of the repository and
”the accessible environment”, the latter represented by vertical fracture zones, as-
suming the delay in a zone is short. This is reflected in the large uncertainties in
the performance measures involving the farfield. The actual extent of the reposi-
tory as such is sufficient to make the variabilities average out, reflected in total

Qeq, were it not for the proximity of the vertical zones.

Some additional conclusions can be drawn from the study:

hydrologic stochastic simulation is compatible with the
PSAC approach to uncertainty analysis,

it would be desirable to go to strict three—dimensionality
since the variability is 3-D in nature,

refinement and statistical analysis of the estimation pro-
cedures are desirable if the approach of the study is to be
pursued,

the influence of covariances between the residuals seem
to have a small effect on the trend estimation.
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APPENDIX 1
Extracting conductivity data from geotab

The Hydrogeological Database GEOTAB

SKB and SGAB have over the years collected huge amounts of data from different
study sites all over Sweden. These data has been stored in SKB’s database GEO-
TAB (Ref.17 ). GEOTAB is arelational database and it is based on a program from
Mimer Information System. Among the data in GEOTAB it is the conductivities
we are interested in.

Using Tables in GEOTAB

Data on the conductivity in the bedrock are found in the table SHTINJCD. In this
study data from the Klipperds study site have been used. Conductivity measures
are available for the following boreholes: KKL0O1, KKI1.02, KKL06, KKL(9,
KKL12, KKIL13 and KKI1.14, but data from the two first in this list do not partici-
pate in our calculations. In KK1.01 the conductivity is measured in sections of 25
m while a section length of 20 m is used for the others, so the use of KKL.01 would
disrupt the 20 m regularity that is utilized in the covariance estimations. KK1.02
data are excluded because this hole has an angle of inclination that deviates much
from those of the others. Furthermore most of the conductivity values in this hole
are found to lie below the measurement limit (indicated as K = — 99 m/s) making
the estimates less reliable. Information on this limit is stored in the table
SHTINJF2. The remaining five boreholes KKLLO6—KK1.14 are referred to as bore-
hole 1-5 in this report.

In the study we model rock mass, hence data corresponding to major fracture
zones are removed and are looked upon as missing values (c.f Chapter 3). Those
zones are located by other means that conductivity measurements (e.g. surface
geophysical measurements see Ref.4 ).

The depth corresponding to some conductivity value is obtained by interpolation
between the tables SHTINJCD and BHCOORD where the conductivity and
coordinates respectively are stored as a functions of length along the hole. Finally
the depth coordinate is interpolated to the section centres. In GEOTAB the coordi-
nates are given for the upper end of the sections, but here it was assumed that the
measured conductivity values correspond to the centres of the sections.






APPENDIX 2

The estimator test

In order to see how the estimator chain MLE/Robinson performs we have gener-
ated a number of synthetic data sets each consisting of three series of values for
log K, using PROPER’s random number generator given the distribution func-
ton. Every set has a unique collection of properties (such as number of points,
covariance structure in the parent distribution etc.) but they are based on the same
random seed.

When generating these synthetic data sets we assume the regression parameters
Bo and B; to be equal to zero. The number of values is set to either 35 or 100.

They appear regularly on data points every 20m with the first point at the depth
100m . logK is assumed to be normally distributed with unit variance and an ex-

ponential covariance function according to (30). Three different values for the co-
variance of the firstlag are used 0, 0.2 and 0.5. Note that the regression parameters
and covariances are used as input for the the data generation process (which is
based on the ideas presented in Section 4.1) and should not be confused with the
actual outcome of the estimation tabled. The censoring level is set to —0.43 which
causes about 1/3 of the population generated to be censored. Estimation with mis-
sing values have been tested. We have also tested Robinson estimators with other
values than one on the integers r and s in (40), "de1tal0” means the estimator
with r=1 and s=0.

The Robinson covariance 1is estimated both separately based on
(Bo=pB1=0,0 =1) and after that the trend obtained from a MLE-regression is
removed. In the list that follows the label "ZROBINSON VARIANCE:” refers to
the result obtained from the variance estimator (38). The value of the variance

used in the covariance estimation is that supplied by the MLE which corresponds
to "COVARIANCE” for "DISTANCE” = 0 metres.
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Regression parameter 1 {B(0)}:

0

Regression parameter 2 {B(l)}:

0

Number of boreholes

3

Number of desired points/borehole

100

The variance

1

The covariance for the first lag (as a fraction of the variance):
0

The censoring level (in log(conductivity))
-.43

** without regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 30

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.025

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.1536191000000E-02

40 -0.2265261000000

60 -0.1987131000000

80 -0.8012343000000E~02

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 36

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.178

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.1084825000000

40 0.26%1611000000

60 -0.5474831000000E-01

80 0.9913125000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 40

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.6589

DISTANCE {m) COVARIANCE
0 1.000000000000

20 -0.2156211000000

40 -0.4241783000000

60 -0.4750810000000

80 -0.4326651000000

** with regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.2165 -0.1868E-03
NUMBER OF CENSORED: 30

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.035

DISTANCE (m) COVARIANCE
0 0.8994565000000

20 0.1386692000000E-01

40 -0.1452411000000

60 -0.1211467000000

80 0.2482342000000E-01



BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.3580E-01 -0.7123E-04
NUMBER OF CENSORED: 36

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.254

DISTANCE (m} COVARIANCE
0 1.183830000000

20 0.7598563000000E-01

40 0.2329044000000

60 -0.1194265000000

80 0.7209144000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: -0.2468E-01 -0.1247E-03
NUMBER OF CENSORED: 40

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.7913

DISTANCE (m) COVARIANCE
0 0.8510776000000

20 0.1225850000000

40 -0.8780709000000E-01

60 -0.1627259000000

80 -0.1012216000000

KA Ak A KA A A A AR A A A A RN KRR AR AR A KRR AR ARk Ak kk kK Kk ok *

Regression parameter 1 {B(0)}:
0

Regression parameter 2 {B(l)}:

0

Number of boreholes

3

Number of desired points/borehole

100

The variance

1

The covariance for the first lag (as a fraction of the variance):
.2

The censoring level (in log(conductivity)) ;
-.43

** without regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 29

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.9374

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.2153775000000

40 -0.9652350000000E-01

60 -0.1135945000000

80 0.2437166000000E-01

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 35

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.184

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.2504759000000

40 0.2133265000000

60 -0.6936812000000E-01

80 0.3522971000000E-01

BOREHOLE = 3



REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 38

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.7345

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.1077582000000

40 ~-0.4480524000000

60 ~0.5696497000000

80 -0.4583662000000

** with regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.3437 -0.2868E-03
NUMBER OF CENSORED: 29

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.9588

DISTANCE (m) COVARIANCE
0 0.8503355000000

20 0.2044345000000

40 -0.1205027000000E-01

60 -0.1710557000000E-01

80 0.6451820000000E~-01

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.8443E-01 -0.1141E-03
NUMBER OF CENSORED: 35

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.207

DISTANCE (m) COVARIANCE
0 1.162153000000

20 0.2569603000000

40 0.1845136000000

60 -0.1215457000000

80 0.1403328000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.9048E-02 -0.1437E-03
NUMBER OF CENSORED: 38

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.7982

DISTANCE (m) COVARIANCE
0 0.7993429000000

20 0.2344402000000

40 -0.1160718000000

60 -0.2328710000000

80 -0.1256772000000

Kokk kA KAk A kA ko kk kK k A KKk kk ok Kk kok kK k ok ok ok ok

Regression parameter 1 {B(0)}:

0

Regression parameter 2 {B(1l)}:

0

Number of boreholes

3

Number of desired points/borehole
100

The variance

1

The covariance for the first lag (as a fraction of the variance):
.5

The censoring level (in log(conductivity))
-.43

** without regression *x*



BOREHOLE = 1

REGRESSIONS PARAMETERS:

NUMBER OF CENSORED:

NUMBER OF POINTS: 100
ROBINSON VARIANCE:
DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.6263550000000

40 0.2810170000000

60 0.1699154000000

80 0.1767798000000
BOREHOLE = 2

REGRESSIONS PARAMETERS:

NUMBER OF CENSORED:

NUMBER OF POINTS:

ROBINSON VARIANCE:

DISTANCE (m)

0
20
40

60 -0.6146874000000E-01
80 ~0.6718557000000E-01

1.000000000000
0.3855616000000
0.1495973000000

BOREHOLE = 3

REGRESSIONS PARAMETERS:

NUMBER OF CENSORED:

NUMBER OF POINTS:

ROBINSON VARIANCE:

DISTANCE (m)

0

20 -0.

1.000000000000

40 -0.4429040000000
60 ~-0.6207560000000
80 -0.5190855000000

** with regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS:

NUMBER OF CENSORED:

NUMBER OF POINTS:

ROBINSON VARIANCE:

DISTANCE (m)

0 0.8423051000000
20 0.5503365000000
40 0.3225950000000
60 0.2517350000000
80 0.1990486000000

BOREHOLE = 2

REGRESSIONS PARAMETERS:

NUMBER OF CENSORED:

NUMBER OF POINTS:

ROBINSON VARIANCE:

DISTANCE (m) COVARIANCE

0 1.211107000000
20 0.4831440000000
40 0.1757441000000
60 -0.5289333000000E-01
80 -0.3623273000000E-01
BOREHOLE = 3

REGRESSIONS PARAMETERS:

NUMBER OF CENSORED:

NUMBER OF POINTS:

100

COVARIANCE

100

COVARIANCE

2854870000000E-01

100

COVARIANCE

100

100

0.0000

0.0000

0.0000

-0.4592E~03

-0.1905E-03

-0.8835eE-01 -0.1001E-03

&



ROBINSON VARIANCE: 0.8333

DISTANCE (m) COVARIANCE
0 0.7705071000000

20 0.3722377000000

40 -0.3640557000000E-01
60 -0.21835939000000

80 -0.9604086000000E-01

AhkAhkhkk Ak kA ARk Ak AAhkR kAR x kA hhkkhkkkkxk

Regression parameter 1 {B(0)}:

0Regression parameter 2 {B(1l)}:

0Number of boreholes

3Number of desired points/borehole

3ghe variance

1The covariance for the first lag (as a fraction of the variance):
0T2§ censoring level (in log{(conductivity)) ;

** without regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 10

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.067

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.2226459000000

40 -0.4959803000000

60 -0.4126567000000

80 ~0.19875986000000

BOREROLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 10

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.426

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.2848449000000

40 0.1913951000000

60 0.2424496000000

80 0.5459847000000

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 13

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 0.3910

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.8487454000000

40 -0.6058108000000

60 -0.7112620000000

80 -0.6069178000000

** with regression **
BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.4340 -0.8059E-03
NUMBER OF CENSORED: 10



NUMBER OF POINTS: 35
ROBINSON VARIANCE: 0.9932

DISTANCE (m) COVARIANCE
0 0.9501093000000

20 0.5851704000000E-01

40 -0.5431473000000

60 ~0.4130934000000

80 -0.3504275000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: -0.4588 0.1328E-02
NUMBER OF CENSORED: 10

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.082

DISTANCE (m) COVARIANCE
0 1.048457000000

20 -0.2473393000000

40 -0.2741064000000

60 -0.2988296000000

80 0.5762685000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.3679E-01 ~-0.6349E~03
NUMBER OF CENSORED: 11

NUMBER OF POINTS: 32

ROBINSON VARIANCE: 0.6089

DISTANCE (m) COVARIANCE
0 0.4557592000000

20 -0.9161615000000E-01

40 0.8431831000000E-01

60 0.7608604000000E~01

80 0.4701186000000E-01

FhAA KKK AKA AKX A KA AR Ak AR AAXRAKRKA A KKk k Xk

Regression parameter 1 {B{(0)}:
ORegression parameter 2 {B(1l)}:
oNumber of boreholes
3Number of desired points/borehole
3;he variance
1The covariance for the first lag (as a fraction of the variance):
'523 censoring level (in log(conductivity)) ;

** without regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 9

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.073

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.4234822000000

40 -0.3344702000000

60 -0.4199496000000

80 ~0.1662586000000

BOREHOLE = 2
REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 8



NUMBER OF POINTS: 35
ROBINSON VARIANCE: 1.252

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.6215946000000

40 0.4725727000000

60 0.4965321000000

80 0.6808305000000

BOREHOLE = 3

REGRESSIONS PARBRMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 16

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 0.1895

DISTANCE {(m) COVARIANCE
0 1.000000000000

20 -0.8023465000000

40 -0.7407620000000

60 ~0.8122340000000

80 -0.7866788000000

x* with regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.5837 -0.1032E-02
NUMBER OF CENSORED: 9

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.032

DISTANCE (m) COVARIANCE
0 0.9084604000000

20 0.1657536000000

40 -0.4637544000000

60 -0.4630260000000

80 -0.4001214000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: -0.4264 0.1502E-02
NUMBER OF CENSORED: 8

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.007

DISTANCE (m) COVARIANCE
0 0.8655828000000

20 -0.2603658000000E~01

40 -0.2901833000000

60 -0.2378764000000

80 0.6795360000000E-02

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.5223E-03 -0.8616E-03
NUMBER OF CENSORED: 9

NUMBER OF POINTS: 23

ROBINSON VARIANCE: 0.3003

DISTANCE (m) COVARIANCE
0 0.4163807000000

20 -0.1559293000000

40 -0.2168923000000

60 -0.4967748000000E-01

80 -0.2598356000000

***************************

Regression parameter 1 {B{0)}:



0Regression parameter 2 (B(1l)}:

ONumber of boreholes

3Number of desired points/borehole

3ghe variance

1The covariance for the first lag (as a fraction of the variance):
.322 censoring level (in log(conductivity))

** without regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 7

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.029

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.6724530000000

40 -0.6316369000000E-01
60 -0.2812286000000

80 -0.4679500000000E-01

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 9

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 1.460

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.9979726000000

40 0.9979726000000

60 0.9978726000000

80 0.9486658000000

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 17

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 0.1767

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.7761088000000

40 -0.8620119000000

60 -0.8920774000000

80 -0.9020616000000

** with regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.8458 -0.1341E-02
NUMBER OF CENSORED: 7

NUMBER OF POINTS: 35

ROBINSON VARIANCE: 0.9622

DISTANCE (m) COVARIANCE
0 0.7108958000000

20 0.2988527000000

40 -0.2599414000000

60 -0.4296202000000



80 -0.4086976000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: -0.7471 0.2352E-02
NUMBER OF CENSORED: 8

NUMBER OF POINTS: 33

ROBINSON VARIANCE: 0.7844

DISTANCE (m) COVARIANCE
0 0.8708097000000

20 0.3489486000000

40 -0.5149958000000E-01

60 ~0.1154720000000

80 -0.7892586000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.1170 ~0.1146E-02
NUMBER OF CENSORED: 8

NUMBER OF POINTS: 19

ROBINSON VARIANCE: 0.1309

DISTANCE (m) COVARIANCE
0 0.2467309000000

20 -0.2285989000000E-01

40 -0.9868227000000E-01

60 ~0.1078231000000

80 -0.1199522000000

HAKKAKRKRKKRA A A KA Ak kA kXA kA k kK Kk k%

** 300-400m & 600-720m skipped **

Regression parameter 1 {B(0)}:

ORegression parameter 2 {B(1l)}:

0Number of boreholes

3Number of desired points/borehole

5’(I)‘he variance

lThe covariance for the first lag (as a fraction of the variance):
Ong censoring level (in log(conductivity))

** without regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 10

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.251

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.2193590000000

40 -0.2366432000000

60 -0.5337340000000

80 -0.2244877000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 13

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 0.4790



DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.6382105000000

40 -0.4022835000000

60 -0.4895308000000

80 -0.4426647000000

BOREHOLE = 3
REGRESSIONS PARAMETERS:
NUMBER OF CENSORED: 13
NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.7381663000000E-01

40 0.6776657000000

60 0.1662018000000

80 0.9507925000000E~01

** with regression **

BOREHOLE = 1
REGRESSIONS PARAMETERS:
NUMBER OF CENSORED: 10
NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.

DISTANCE (m) COVARIANCE
0 0.9657983000000

20 0.3222058000000E-01

40 -0.3235887000000

60 -0.699105%000000

80 -0.4445513000000

BOREHOLE = 2
REGRESSIONS PARAMETERS:
NUMBER OF CENSORED: 13
NUMBER OF POINTS: 37

0.0000

665

0.2849

154

-0.6404E-01

ROBINSON VARIANCE: 0.5852

DISTANCE (m) COVARIANCE
0 0.5792913000000

20 -0.1439270000000

40 0.6012533000000E-01
60 0.3970416000000E-01

80 0.2738474000000E-01

BOREHOLE = 3
REGRESSIONS PARAMETERS:
NUMBER OF CENSORED: 13
NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.

DISTANCE (m) COVARIANCE
0 1.381483000000

20 -0.2253912000000

40 0.6259455000000

60 0.4913032000000E-01

80 -0.5695138000000E-01

KKK AKKAAKAKR AR KA KRR Ak kkhkk

-0.5130E-01

693

** 300-400m & 600-720m skipped **

Regression parameter 1 {B(0)}:

0

0.0000

-0.3086E-03

-0.1147E~03

-0.1765E-04



Regression parameter 2 {B(l)}:

ONumber of boreholes

3Number of desired points/borehole

Sghe variance

lThe covariance for the first lag (as a fraction of the variance):
'522 censoring level (in log(conductivity)) ;

** without regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 8

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.080

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.4237328000000

40 -0.1152675000000

60 -0.4346467000000

80 -0.1482476000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 14

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 0.3594

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.5751540000000

40 -0.521553%000000

60 -0.5829236000000

80 -0.6624223000000

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 13

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.485

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.3160341000000E-01

40 0.5887223000000

60 0.1213113000000

80 0.1457948%000000E-01

** with regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.3975 -0.3626E-03
NUMBER OF CENSORED: 8

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.090

DISTANCE (m) COVARIANCE
0 0.83705959000000

20 0.1628277000000

40 -0.2505899000000

60 -0.5982199000000

80 -0.4027219000000



BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.5731E-01 -0.3613E-03
NUMBER OF CENSORED: 14

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 0.464¢6

DISTANCE (m) COVARIANCE
0 0.5064536000000

20 -0.1083253000000E-01

40 0.5456385000000E-01
60 0.4296564000000E-01

80 -0.3699069000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: ~0.2362E-01 =-0.1029E-03
NUMBER OF CENSORED: 13

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.492

DISTANCE (m) COVARIANCE
0 1.413765000000

20 -0.5564978000000E-01

40 0.5677003000000

60 0.6475119000000E-01

80 -0.1115966000000
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** 300-400m & 600-720m skipped **

Regression parameter 1 {B(0)}:
0
Regression parameter 2 {B(1l)}:

Number of boreholes

3Number of desired points/borehole

5ghe variance

1‘I‘he covariance for the first lag (as a fraction of the variance) :
.323 censoring level (in log(conductivity))

** without regression *x

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 9

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 0.9911

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.7504585000000

40 0.1493966000000

60 -0.1728832000000

80 0.1605256000000E-01

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 15

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 0.4527

DISTANCE (m) COVARIANCE
0 1.000000000000



20 -0.2647521000000
40 -0.4662836000000
60 -0.726235%1000000
80 -0.7672804000000

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 12

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 1.095

DISTANCE (m) COVARIANCE
0 1.000000000000

20 0.3056069000000

40 0.5536355000000

60 0.3575814000000

80 0.4371487000000E-01

** with regression **

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.6211 -0.6718E-03
NUMBER OF CENSORED: 9

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 0.8582

DISTANCE (m) COVARIANCE
0 0.7%06615000000

20 0.4298934000000

40 -0.1416041000000E~01

60 -0.3769861000000

80 -0.3860365000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.2470 -0.7918E-03
NUMBER OF CENSORED: 9

NUMBER OF POINTS: 25

ROBINSON VARIANCE: 0.6193

DISTANCE (m) COVARIANCE
0 0.5156896000000

20 0.3189856000000

40 0.1133570000000

60 -0.9053656000000E-01

80 -0.3994449000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: ~0.4458E-01 0.1742E-03
NUMBER QF CENSORED: 12

NUMBER OF POINTS: 37

ROBINSON VARIANCE: 0.9746

DISTANCE (m) COVARIANCE
0 1.075045000000

20 0.7936543000000E-01

40 0.3788300000000

€0 0.1147357000000

80 -0.1449667000000
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The estimator deltalZl:

Regression parameter 1 {B(0)}:
0
Regression parameter 2 {B(l)}:
0



Number of boreholes :
3

Number of desired points/borehole
100

The variance

1

The covariance for the first lag (as a fraction of the variance):
0

The censoring level (in log(conductivity)) ;
-.43

** without regression *x*

BOREHOLE = 1

"REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 30

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.025

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.1056786000000

40 -0.2688800000000

60 -0.2485747000000

80 -0.1130831000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 36

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.178

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.3120687000000E-01

40 0.7%03141000000E-01

60 -0.1453283000000

80 -0.3768471000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 40

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.6589

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.2608031000000

40 -0.4176118000000

60 -0.4574852000000

80 -0.4242072000000

** with regression *x*

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.2165 -0.1868E-03
NUMBER OF CENSQRED: 30

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.035

DISTANCE (m) COVARIANCE
0 0.8994565000000

20 -0.1075637000000

40 -0.2176110000000

60 -0.2007178000000

80 -0.1001014000000

BOREHOLE = 2



REGRESSIONS PARAMETERS: 0.3580E-01 ~0.7123E-04
NUMBER OF CENSORED: 36

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.254

DISTANCE (m) COVARIANCE
0 1.183830000000

20 -0.2546172000000E-01

40 0.8748903000000E-01

60 -0.1689185000000

80 -0.2828683000000E~01

BOREHOLE = 3

REGRESSIONS PARAMETERS: -0.2468E-01 -0.1247E-03
NUMBER OF CENSORED: 40

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.7913

DISTANCE (m) COVARIANCE
0 0.8510776000000

20 -0.3908275000000E~01

40 -0.1805547000000

60 -0.2323587000000

80 -0.1897641000000
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The estimator deltalo:

Regression parameter 1 {B(0)}:

oRegression parameter 2 {B(1l)}:

ONumber of boreholes

3Number of desired points/borehole

1g£e variance

1The covariance for the first lag (as a fraction of the variance) :
ngg censoring level (in log(conductivity)) ;

** without regression *x

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 30

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.025

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.2001892000000

40 -0.4654635000000

60 -0.4353600000000

80 -0.2133784000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 36

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.178

DISTANCE (m) COVARIANCE
0 1.0000600000000

20 -0.6143987000000E-01

40 0.1643088000000



60 -0.2695362000000
80 -0.7394928000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: 0.0000 0.0000
NUMBER OF CENSORED: 490

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.6589

DISTANCE (m) COVARIANCE
0 1.000000000000

20 -0.4537357000000

40 -0.6608240000000

60 -0.7056777000000

80 -0.6684626000000

** with regression *x

BOREHOLE = 1

REGRESSIONS PARAMETERS: 0.2165 -0.1868E~03
NUMBER OF CENSORED: 30

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.035

DISTANCE (m) COVARIANCE
0 0.8994565000000

20 -0.2022641000000

40 -0.3825740000000

60 -0.3566445000000

80 -0.1890624000000

BOREHOLE = 2

REGRESSIONS PARAMETERS: 0.3580E-01 -0.7123E-04
NUMBER OF CENSORED: 36

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 1.254

DISTANCE (m) COVARIANCE
0 1.183830000000

20 -0.5037581000000E-01

40 0.1814438000000

60 -0.3137344000000

80 -0.5589769000000E-01

BOREHOLE = 3

REGRESSIONS PARAMETERS: -0.2468E-01 -0.1247E-03
NUMBER OF CENSORED: 40

NUMBER OF POINTS: 100

ROBINSON VARIANCE: 0.7913

DISTANCE (m) COVARIANCE
0 0.8510776000000

20 -0.7637076000000E-01

40 -0.3228051000000

60 -0.4012794000000

80 -0.3372166000000
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