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Executive summary

This report summarizes the work completed over the period from March 2016 to June 2019, for 
the development of a methodology to derive rock mass effective elastic properties from a Discrete 
Fracture Network modelling approach. The objective is to significantly reduce the rock mass 
mechanical modelling uncertainties, which are above all related to the geometrical and mechanical 
properties of the fracture network, especially relative to scaling and anisotropy issues. It is also to 
better address, in the numerical models, the issues raised by the complex nature of the rock fractured 
system (e.g. discrete/continuous representation). The guideline for the project is to understand the 
physical role played by the fractures on the rock mass mechanical response and use of it to develop 
the modelling methodology. The rock mass is viewed as an assembly of discrete fractures embedded 
in a rock matrix with uniform elastic properties.

The first phase of the development is the determination of equivalent effective elastic properties 
(simply Young’s modulus and Poisson’s ratio or compliance tensor in the general case) of any rock 
mass specimen, at a Discrete Fracture Network (DFN) scale. The theoretical developments made were 
published in the Journal of Geophysical Research (Davy et al. 2018) during the project. They rely on 
the accumulation, at the rock mass scale, of the shear and normal displacements of each individual 
fracture of the DFN population.

At a single fracture scale, relations are first established between the remote loading conditions, the 
fracture displacement and the resulting deformation at the rock mass scale. The fracture mechanical 
model is based on the Coulomb slip constitutive model, where the fracture normal displacement is 
proportional to the normal stiffness kn, and the fracture shear displacement is proportional to the shear 
stiffness ks, below a critical shear stress and in a slipping state when the threshold is reached. Both the 
normal and shear stiffnesses may be dependent on the fracture size or orientation, or on the stress state.

The first key point is relative to the stress partitioning between the resistances of a fracture plane and 
of the rock matrix around the fracture. The relative contribution of both depends on the combination 
between the fracture size, the surrounding rock modulus and the shear stiffness of the fracture ks. A key 
length scale is defined, called the stiffness size ls, from the ratio of the intact rock modulus Em to the 
fracture shear stiffness ks. It is demonstrated that fractures which are much larger than ls are dominated 
by a fracture shear stiffness regime, while fractures smaller than ls are dominated by a “matrix stiffness” 
(noted km) regime, where km is proportional to Em / l and where l is the fracture size.

A relation is established to sum the contributions of each individual fracture to the rock mass scale 
deformation. An effective theory is applied to account for the interactions between fractures when the 
DFN densities are significant. All the theoretical developments are checked with numerical simulations 
performed with the 3DEC software. At the end of this development phase, the defined relations allow 
deriving the effective elastic properties for any rock mass containing any DFN network. The methodol-
ogy is applied to several cases, to emphasize the capacity of the approach to predict and to relate the 
scaling and anisotropy of the rock mass properties to the scaling and anisotropy of the DFN models.

In addition to the rock mass scale study and determination of effective elastic properties, the spatial 
distribution of stresses – the stress fluctuations below the rock mass scale at which effective properties 
are evaluated – relative to the spatial distribution of the fractures in the rock mass, is analysed. Several 
tensorial and scalar indicators are used and compared. These analyses are part of a preliminary meth-
odology development phase and will be further continued towards predicting the intensity of stress 
fluctuations and the strength of the rock mass and optimizing the representation of the rock mass, as 
a combination between effective properties and discrete fractures.
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Sammanfattning

Denna rapport summerar det arbete som utförts under perioden mars 2016 till juni 2019, för utveck-
ling av metodiken att beräkna bergmassans effektiva elastiska egenskaper med ett angreppssätt som 
bygger på diskreta spricknätverk (DFN). Målet är att signifikant reducera osäkerheten i bergmekanisk 
modellering, vilka framförallt är relaterade till de geometriska och mekaniska egenskaperna hos 
spricknätverket, speciell vad gäller frågor om uppskalning och anisotropi. Syftet är även att adressera, 
genom numerisk modellering, de frågor som är resultat av den komplexa naturen hos spricksystem 
i berg (t ex frågan om kontinuum eller diskontinuum representation). Riktlinje för projektet har varit 
att förstå vilken fysisk roll som sprickorna spelar för bergmassans mekaniska respons och använda 
det för att utveckla modelleringsmetodiken. Bergmassan ses som bestående av en uppsättning diskreta 
sprickor inbäddade i en bergmatris med uniforma elastiska egenskaper.

Den första fasen i utvecklingen är bestämning av ekvivalenta effektiva elastiska egenskaper (dvs 
Youngs elasticitetsmodul och Poissons tal eller deformationstensorn i det generella fallet) för ett 
”bergmasse-prov” i DFN-skala. De teoretiska delarna av utvecklingsarbetet publicerades i Journal of 
Geophysical Research (Davy et al. 2018) under projektet. De bygger på en ackumulering, i bergmasse
skala, av skjuv- och normalrörelserna från varje enskild spricka i DFN-populationen.

I skalan för enskilda sprickor etableras först förhållandet mellan belastningen på ränderna, sprickornas 
rörelser och den resulterande deformationen i bergmasseskalan. Sprickornas materialmodell baseras 
på Coulombs konstitutiva modell för skjuvbrott, i vilken normalrörelsen är proportionell mot normal
styvheten kn, och sprickans skjuvrörelse är proportionell mot skjuvstyvheten ks, upp till en kritisk 
skjuvspänning och glider efter att detta tröskelvärde har uppnåtts. Både normal- och skjuvstyvhet kan 
vara beroende av sprickans storlek eller orientering, eller på spänningsförhållandet.

Den första viktiga frågan gäller hur stor andel av motståndet som ska utgöras av sprickplanen respek-
tive av omgivande bergets matrix. Det relativa bidraget från dessa två delar beror på en kombination 
av sprickans storlek, omgivande bergets deformationsmodul och sprickans skjuvstyvhet ks. En specifik 
längdskala definieras, benämnd ”styvhetslängd” ls, från kvoten mellan det intakta bergets deformations-
modul Em och sprickans skjuvstyvhet ks. Det visas att sprickor som är mycket större än styvhetslängden 
ligger i en regim dominerad av sprickstyvheten, medan sprickor som är mindre än styvhetslängden 
ligger i en regim dominerad av ”matrisstyvheten” (benämnd km), där km är proportionell mot Em / l och l 
är sprickstorleken.

Ett samband etableras för att summera bidragen från varje enskild spricka till deformationen i 
bergmasseskala. En effektiv teori tillämpas för att ta hänsyn till interaktionen mellan sprickor när 
sprickintensiteten i spricknätverket är högt. Alla teoretiska samband som utvecklats har kontrollerats 
med numeriska simuleringar gjorda med programmet 3DEC. I slutet av utvecklingsfasen, kan dessa 
definierade samband användas till att beräkna de elastiska effektiva egenskaperna hos varje bergmassa 
med vilket spricknätverk som helst. Metodiken är tillämpad på flera fall, för att visa på dess kapacitet 
att prediktera och att relatera uppskalning och anisotropi hos bergmassans egenskaper till skala och 
anisotropin hos DFN-modellerna.

Förutom studien avseende bergmassans skala och effektiva elastiska egenskaper så analyseras 
spänningsvariationen – spänningarna fluktuation på en skala som är mindre än den skala som de 
effektiva egenskaperna beräknas för – i förhållande till den spatiala fördelningen av sprickorna i 
bergmassan. Ett flertal tensorer och skalärer används som indikatorer och jämförs. Dessa analyser är 
del av en preliminär metodologiutvecklingsfas och kommer att fortsätta mot att prediktera intensiteten 
i spänningsvariationen, bergmassans hållfasthet och mot att optimera representationen av bergmassan, 
som en kombination av effektiva egenskaper och diskreta sprickor.
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1	 Introduction

This report summarizes the work performed over the period March 2016 to June 2019 relative to the 
development of a methodology to derive rock mass effective elastic properties from a Discrete Fracture 
Network modelling approach.

For the Forsmark future deep disposal, getting such properties at appropriate scales is required at 
several stages of the design and safety assessment program of the future repository (Andersson et al. 
2002, Staub et al. 2002, Hakami et al. 2021). This, for example, includes modelling of in situ stresses 
with their spatial and scaling organization, estimating locally the rock quality for constructability and 
integrating local stress distributions with the flow and transport modelling (primarily through the 
relationship between fracture loading stress and fracture transmissivity).

The derivation of rock mass effective mechanical properties raises issues related to the weakening role 
of fractures. Estimating the impact of fractures is particularly critical in the context of nuclear waste 
disposal but common to many other geotechnical applications. The fractures are the rock heterogenei-
ties whose impact on rock strength and deformability is dominant (Davy et al. 2018). One of the main 
difficulties for rock masses like those at the Forsmark site, is that the distribution of the fractures is very 
complex, with a wide range of spatial scales involved and a density which is highly variable in space; 
therefore, making the fracture pattern modelling very challenging. In these systems, the fracture size 
distribution typically spreads orders of magnitude over which the relative number of smaller structures 
is much larger than the number of the larger structures, but the impact of individual fractures is strongly 
correlated with their sizes, such that the large structures may dominate the rock mass properties at 
large scales. Another major issue is that it is not possible to perform any direct and in situ evaluation 
of the mechanical properties at dimensions consistent with all the modelling needs. Laboratory tests 
are limited to typical core or slightly larger dimensions, or to samples containing single fractures (e.g., 
direct shear tests). Larger dimensions, from several meters to hundreds of meters, where the rock 
mass contains a large population of discrete fractures, cannot be directly evaluated, hence, assessment 
of their properties relies mostly on theoretical, analytical, and numerical modelling.

The common practice for standard geotechnical work is to characterize the rock mass based on 
empirical classifications charts (Rock Mass Classification – RMC), whose potential advantage is 
the simplicity of application but whose strong disadvantage is the oversimplification of the fracture 
pattern description, so that their application range is limited. The pro arguments for using RMC are 
that they are derived from practical observations and simple experience-based rules. Also, they are 
flexible and effective for construction and support design and for scoping calculations at early stages 
of projects when there is poor knowledge of the system. The cons are that they are not well-suited 
for safety analysis for nuclear waste disposal where long-term behaviour, coupled processes, aniso
tropy and scale dependency can play a major role.

The level of accuracy and understanding required for the long-term nuclear waste storage has 
motivated the development of the present methodology, based on a detailed description of the rock 
mass as a rock with discrete and widely distributed fractures. The method development relies both 
on analytical development and numerical modelling of synthetic rock specimens defined by discrete 
fractures embedded in a rock matrix.

The objectives of current study are to: i) improve the understanding of the role played by the fractures 
on the mechanical behaviour of the rock mass, ii) evaluate the macroscopic effective properties and the 
local stress fluctuations, iii) derive guidelines adapted to conditions similar to those at the Forsmark site 
and emphasize the critical aspects and iv) derive the workflow for applying the methodology to a full or 
partial part of the DFN, with a particular attention to the scale and anisotropy issues.

The report is organized as follows. The assumptions relative to the elementary description of the rock 
mass as an intact rock into which a discrete fracture population (the DFN) is embedded are recalled 
in Section 2. The numerical setup common to most of the numerical simulations is introduced in 
Section 3. Section 4 deals with the mechanical behaviour and response in terms of displacement 
(normal and shear) of a single fracture. The derivation of the effective elastic properties at the DFN 
scale is developed in Section 5. The two previous sections include the main elements of the article 
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published in the Journal of Geophysical Research (Davy et al. 2018). The stress fluctuations within 
a fractured rock mass are analysed in Section 6. Section 7 describes the application of the methodology 
to multiscale DFN. It includes a short description of the workflow for deriving the effective properties, 
an analysis of stress fluctuations variations as a function of the transition scale between effective and 
explicit representation of the fractures and a test case (FFM01 unit in Forsmark). This section also 
highlights the scale effects and anisotropy of effective elastic properties. These sections are followed 
by a summary and discussion, and a conclusions and perspectives section.
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2	 Rock mass and DFN description

In this study, the rock mass is defined as an isotropic homogenous rock matrix into which discrete frac-
tures are embedded. The fractures are disc-shaped and therefore, each fracture is defined by a diameter 
(named fracture size in this report), an orientation and a position. In the following we successively 
numerically build and test several rock masses based on different DFN models (Table 2‑1).

A detailed description of the DFN modelling framework adapted for the present work can be found 
in Selroos et al. (2021). We briefly introduce here the fracture density distribution model, n3D, the 
DFN total fracture surface per unit volume P32 and the DFN percolation parameter p.

The fracture density distribution, n3D (P), is the basis of the fracture system description. It defines 
a quantitative measure of the fracture population, basically how many fractures per unit volume V, 
according to a set of parameters P:

lim
∑ ; ,  	 (2‑1)

The sum is over the fractures f whose parameters p׳ are in the range [P, P + dP]. Each fracture f 
contributes as πf(V), the probability of the fracture to belong to the 3D sampling system of volume V. 
It is very often convenient to calculate the density parameters for only a subset of parameters, indepen-
dently from the others. This comes to integrate n3D (P) over the parameters that are not considered.

The DFN total fracture surface per unit volume P32 for fractures over a fracture size range [llo; lup] is: 

, 	 (2‑2)

Where here n3D (l) is the fracture size density distribution integrated over all parameters except the 
size and lmin and lmax the integration boundaries.

A very important metric of the DFN density distribution, the percolation parameter p, is proportional 
to the third order moment of the fracture size density distribution:

, 	 (2‑3)

When applied to the DFN models defined by a wide range of fracture sizes (e.g., the power-law 
models with exponent in the range −3 to −4), the dependency of P32 and p on the boundaries of the 
fracture size density distribution are key components of the DFN scale properties. For instance, p, this 
dimensionless moment of the distribution, is a cornerstone of the percolation theory and thus called 
the percolation parameter (Bour and Davy 1998, de Dreuzy et al. 2000, Barker 2018). It is primary 
a statistical indicator of the degree of connectivity within a DFN and, therefore, an essential indicator 
for all flow applications.

The rock mass and DFN models used in the following are listed in Table 2‑1. The first type of fracture 
network and rock mass specimen is the “isolated fracture” case. The second set encompass several 
DFN models all with constant sizes, the n01 to n12 test cases. The different combinations of sizes and 
densities P32 define percolation parameter values from 0.7 to 15. The last set refers to DFN models 
with a power law size density distribution n3D (l) = α3D · l−a3D, with a3D = 4 and α3D = 2.26 . For the 
simulations, the low boundary of the size distribution (lmin) is set to 0.2 or 0.4 meters.
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Table 2‑1. Summary of the DFN models and parameters.

Name type Size l

(m)

P32

(m2/m3)

p

(-)

isolated Single fracture 1

n01 Constant sizes 0.5 1 0.785
n02 Constant sizes 1 1 1.571
n03 Constant sizes 0.5 2 1.571
n04 Constant sizes 0.5 3 2.356
n05 Constant sizes 1 2 3.142
n06 Constant sizes 2 1 3.142
n08 Constant sizes 1 3 4.712
n09 Constant sizes 2 2 6.283
n10 Constant sizes 1 5 7.854
n11 Constant sizes 2 3 9.425
n12 Constant sizes 2 5 15.708

pl Power-law 0.4 ≤ l ≤ 4
n3d (l) = α3d · l−a3d

a3d = 4, α3d = 2.26

4

pl
lmin = 0.2

Power-law 0.2 ≤ l ≤ 4
n3d (l) = α3d · l−a3d

a3d = 4, α3d = 2.26

8.44

The fracture mechanical model is the Coulomb slip law (Equation (4‑2) and (4‑3). A variant of the 
model is introduced by coupling the fracture normal and shear stiffnesses to the normal stress on the 
fracture (Table 2‑2).

Table 2‑2. Summary of fracture mechanical properties.

Model name Reference kn = (GPa/m) ks = (GPa/m)

Coulomb slip (Davy et al. 2018) kn = 12 600 0, 12 or 72

Modified Coulomb slip (Mas Ivars et al. 2015, 
Darcel et al. 2018)

kn (σn) = 2.28 σn
0.822 × 106 ks (σn) = 46.55 σn

0.4039 × 106

Finally, the isotropic and homogenous intact rock around the fractures is simply defined by a Young’s 
modulus Em and Poisson’s ratio vm, with typical values in the table below.

Table 2‑3. Intact rock mechanical properties.

Reference Em (GPa) vm (-)

(Darcel et al. 2018) 76 0.25
(Davy et al. 2018) 53 0.25
Section 7 76.9 0.23
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3	 Numerical setup

The reference Synthetic Rock Mass (SRM) specimen is parallelepipedal, of a height of 8 m and side 
4 by 4 m for the n01 to n12 DFN cases. For the pl DFN cases the SRM specimen are cubic of edge 
lengths of 6 m.

The numerical simulations are performed with 3DEC© version 5.2 (Itasca 2016). 3DEC is a three-
dimensional numerical software based on the distinct element method (DEM) for discontinuum 
modelling. It is based on a Lagrangian calculation scheme. Following the mesh generation process 
within 3DEC, the initial specimen is first defined as one single block, which is progressively cut 
into smaller and smaller blocks when fractures are added to the sample. The block assembly is then 
meshed block by block with a target zone size (Figure 3‑1), which is 0.2 m for most of the simulations 
presented in this report.

Elastic mechanical properties are assigned in the zones. The elastic properties of the fractures are 
assigned to the area fraction corresponding to the fractures at the interfaces between the blocks.

Figure 3‑1. From left to right, steps of the SRM specimen construction with a) DFN, b) specimen dimensions, 
c) blocks and d) zones.

a) b) c) d)
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SRM specimen are loaded such that the maximum principal stress σ1 (with a convention of positive 
compressive stress) is vertical (z direction) and the confinement is isotropic in the lateral directions, 
with σ2 = σ3 = σc (x and y directions). The loading and resulting stress state are controlled by a servo-
control process which imposes the strain rate components in the directions perpendicular to the faces: 
the top and bottom faces have fixed velocities in the z direction, the left and right faces (normal x→) have 
fixed x-component velocity and the front and back faces have a fixed y-component of the velocity. For 
the SRM generic tests, the stresses are σ1 = 3.0 × 10−2 MPa and σc = 1.0 × 10−2 MPa.

The loading path is done in two steps. First the loading stress (through the servo control over the strain 
rates) is increased up to σc the confinement stress on all sides of the SRM specimen. Second, the lateral 
confinement is kept constant while the vertical stress is increased up to the target value σ1. The simula-
tions are performed in quasi-static conditions and small deformation mode.

Figure 3‑2. SRM specimen. Sketch for boundary conditions with fixed velocities in the directions 
perpendicular to the faces.
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4	 Isolated fracture

4.1	 Constitutive frictionless and Coulomb slip models
We describe first the behaviour of an isolated fracture embedded in an intact and isotropic elastic 
material as sketched in Figure 4‑1.

The first fracture constitutive model is the frictionless or free-slipping model, where the fracture shear 
displacement is only limited by the rock matrix around the fracture and where the in-plane fracture 
resistance is null (Sneddon and Lowengrub 1969, Kachanov and Sevostianov 2013). In this case the 
shear displacement profile has a parabolic shape and its average value t⁻ is:

̅ 	 (4‑1)

where τR is the shear stress on the fracture plane deduced from the remote stress conditions.

Figure 4‑1. Sketch of an isolated fracture with in-plane shear displacement and vertical displacement of the 
surrounding matrix for a fracture loaded vertically.
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The second fracture rheological model (Figure 4‑2), the Coulomb slip model, has an elastic resistance 
in the fracture plane (Equation (4‑2)) controlled by a shear stiffness parameter ks, and a maximum shear 
stress threshold τc above which the fracture reaches a free-slipping state:

τf = ks · t if τf < τc	 (4‑2)

τf = τc otherwise

with τf the shear stress in the fracture plane and t the shear displacement.

The maximum shear stress threshold τc is defined by a classical Coulomb like criterion 
(Equation (4‑3)):

τc = σn · tan(ϕ) + C	 (4‑3)

where ϕ is the friction angle, C is the cohesion and σn is the fracture normal stress.

The normal displacement (un) on the fracture plane is elastic and controlled by the fracture normal 
stiffness kn and normal stress σn:

σn = kn · un	 (4‑4)

Figure 4‑2. Fracture Coulomb slip model with τc = σn · tg (ϕ) + C.
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For critically stressed fractures (i.e., if τf = τc) one can consider an additional normal displacement due 
to the dilation term, un,dil, as defined in Figure 4‑3.

The shear stress τf and the normal stress σn applied on a fracture of normal n are defined by:

	 (4‑5)

with

/

1
	 (4‑6)

and

	 (4‑7)

where σ= is the stress tensor and s is the unit vector of the shear direction.

The frictionless regime can be seen as an end-member of the Coulomb slip model, when τf = τc = 0, 
so keeping τf equal to zero or having ks = 0 in Equation (4‑2).

Figure 4‑3. un,dil dilational component of normal displacement, with two parameters, the dilation angle ψ 
and the critical displacement ucs.
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4.2	 Stress-displacement relation for a general case
An isolated frictionless disk-shaped fracture under loading conditions displays a parabolic shear 
displacement profile t(r) (Kachanov and Sevostianov 2013) which forms a maximum displacement 
at the fracture center to a null displacement at the fracture tip, defined by Equation (4-8):

/ 1 	 (4‑8)

where vm and Em are the Poisson’s ratio and Young’s modulus of the intact rock (matrix), respectively, 
τm is the shear stress around the fracture and lf the size of the fracture. The average shear displacement 
t, as defined in Equation (4‑9), is two thirds of the displacement at the fracture center t(r = 0):

	 (4‑9)

and

⋅ / ⋅ 	 (4‑10)

Following Davy et al. (2018), km is called the matrix-fracture stiffness. Davy et al. (2018) demonstrate 
how the former expression can be generalized to the “fracture with friction” case (i.e., ks > 0 and τp > 0. 
It is shown that for these conditions:

∗      if      

∗         if      

∗

	 (4‑11)

where τp is the fracture friction threshold.

The relationship between fracture shear displacement t, fracture shear stress τf and remote stress τ is 
plotted in Figure 4‑4. It emphasizes the remote stress partitioning between the elastic resistance of the 
fracture surface (with ks) and the elastic resistances of the matrix around the fracture (with km). The 
plots in Figure 4‑4 emphasize the potential shift between the fracture and the remote shear stresses. τ*

p 
is the shear threshold of the remote stress necessary to reach the fracture shear threshold for slipping. 
The discrepancy between τ and τf reflects the intensity of the matrix-stiffness component with regards 
to the fracture stiffness itself. If km ≫ ks the remote stress necessary to reach the slipping regime is 
much larger than the fracture friction (τc). On the contrary, if km is negligible compared to ks, the critical 
remote shear stress converges to the predefined fracture friction threshold (τp).

Figure 4‑4. The relationship between shear displacement t and remote stress τ (black curve) is defined by 
Equation (4‑11) and between t and the fracture shear stress (τf ) by Equation (4‑2). Note: figure modified 
from Davy et al. (2018).
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The role played by the matrix and fracture-matrix stiffness in the prediction of the slipping potential 
of a fracture is further illustrated in Figure 4‑5.

Simulations are performed to validate Equation (4‑11), for different shearing and slipping conditions. 
The results are plotted in Figure 4‑6. The numerical experiment consists of a single fracture embedded 
in a rock matrix and loaded with a maximum principal stress in the vertical direction. The angle θ (the 
horizontal axis in the plot) is the angle between the fracture plane and the maximum principal stress 
direction (so here θ = 0 refers to a vertical fracture and θ = 90º to a horizontal fracture). For conditions 
similar to the frictionless case (≡ ks = 0) the displacement is fully defined by Equation (4‑9), there 
is no threshold effect between slipping and elastic shearing. For conditions where the fracture shear 
stiffness is increasing, the difference between the remote and fracture shear stress gradually decreases 
until the latter becomes dominant (blue curve in the figure).

Depending on the combination between fracture and rock mechanical parameters and the shear stress 
applied on a fracture (itself dependent on the respective fracture and stress field orientation), two main 
regimes arise at the fracture scale, one dominated by the shear (and ks) and one dominated by the slip-
ping (and km). Depending on the size of a fracture, one or the other can be dominant. Thus, we define 
a typical fracture size scale, the “stiffness length scale” ls as the fracture size for which km = ks:

⋅ / ⋅ 	 (4‑12)

Fractures much larger than ls show a shear (and ks) regime while fractures much smaller than ls show 
a slipping (km) regime.

Figure 4‑5. Slip conditions in a Mohr-Coulomb stress diagram (shear versus normal stress). The black 
half-circle reflects the shear and normal stress components of the remote stress tensor relative to the fracture 
orientation (as classically expressed in a Mohr-Coulomb diagram). The grey straight line is the friction (or 
slip threshold) envelop. The blue half-ellipsoid shows the stress conditions, in a fracture plane resulting from 
the remote stress and fracture-matrix stiffness. The dashed blue line indicates the range of fracture angles for 
which slipping regime will be reached. Note: figure from Figure 8 in Davy et al. (2018).
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Figure 4‑6. Plot of the shear displacement t – at the fracture center position – versus the fracture orienta-
tion θ (figure modified from Figure 8 in Davy et al. (2018)). The different colors (symbols and curves) 
correspond to different ratio of ks/km as defined in the legend, constant friction angle is equal to ϕ = 30° 
and the null cohesion. The dots are calculated from numerical simulations with 3DEC and the dashed lines 
from Equation (4‑11). The break in the curves marks the angle limit between non-slipping and slipping 
conditions; the larger the ks is, the smaller the angle limit is.
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5	 Effective elastic properties

This chapter is the core of the DFN based approach to assessing the effective mechanical properties. 
The objective is to define, over a given rock mass scale, analytical relationships between a DFN, or 
the statistical parameters of a DFN, and the effective rock mass mechanical properties. The main 
results of the approach have been published in Davy et al. (2018). Here we resume the main steps and 
outstanding results.

5.1	 Results from simulations
Several SRM specimens, based on the realizations of the DFN models n01 to n12 (Table 2‑1), are 
subjected to loading tests such that the apparent Young’s modulus and Poisson’s ratio can be assessed. 
The estimated properties are Ezz (the Young’s modulus measured from a change of stress in the vertical 
direction while keeping lateral confinement constant) and the Poisson’s ratio (vxy = vyx). Since the tested 
DFN models are statistically isotropic (no preferential orientation for the fractures), no anisotropy 
is expected in the SRM scale apparent elastic properties, consequently, E = Ezz and v = vxy. With this 
set of numerical tests, the combined effect of fracture sizes, density and mechanical properties is hence 
first treated for isotropic conditions. However, the effects of anisotropy due to the DFN geometry or to 
the mechanical properties is treated in the generalization of the approach (Section 5.3.2).

The evolution of the apparent Modulus is plotted as function of the two geometrical indicators of the 
DFN, the DFN percolation parameter p (Equation (2‑3)) in Figure 5‑1a and the DFN density P32 
(Equation (2‑2)) in Figure 5‑1b.

Figure 5‑1 emphasizes a general decrease of E as a result of an increase of the amount of fractures in 
the SRM specimen (at a given size, more fractures in a unit volume leads directly to increase of both 
P32 and p) which is an observation consistent with empirical knowledge (see Appendix). The largest 
variations in E is observed for ks = 0 (53 GPa for the intact matrix down to almost 10 GPa) whereas 
it is much more limited for ks = 72 GPa/m (down to 40 GPa for the rock mass). If the fracture stiffness 
is high, the resulting displacement is limited and; therefore, it will limit the impact of the DFN on the 
apparent properties.

For the case of ks = 0, the decrease of E with p follows a single trend for all models combined 
(Figure 5‑1a, black symbols) whereas the dispersion increases when ks increases (especially for 
ks = 72 GPa/m). However, the variation of E with P32 is less dispersed when ks is at the highest.

Figure 5‑1. Estimation of the Young’s Modulus at the SRM specimen scale deduced from numerical simulations 
performed for the n01 to n12 DFN models (Table 2‑1), plotted as function of a) the DFN model percolation 
parameter and b) the DFN model P32 density. For both plots, ks = 0 (black symbols), ks = 12 GPa/m (red 
symbols) and ks = 72 GPa/m (green symbols).
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Note that all the results shown in this section have been obtained with a value of kn 175–1 000 times 
larger than ks, precluding any significant contribution of the normal displacement compared to shear 
displacement.

In the next sections, we propose an analytical development to explain the abovementioned observations 
and to quantitatively define the relationship between DFN geometrical and mechanical properties with 
the effective elastic properties, by accounting for the contribution of each fracture explicitly.

5.2	 Fracture displacement to specimen volume
The contribution of the fracture displacement to the specimen scale deformation is explained by 
Davy et al. (2018). This section and Sections 5.3.1 to 5.3.3 are adapted from Davy et al. (2018). 
Let’s consider a fracture of normal vector n, surface Sf, displacement t (with a shear displacement ts 
and a normal displacement un) (Figure 5‑2).

We first derive the expression considering only the fracture shear displacement t. The contribution of 
the fracture to the displacement of a specific boundary X (tX) is obtained by projecting and integrating 
the displacement field on X (see for instance Kachanov (1993) and Kachanov and Sevostianov 
(2013)) as:

∬
	 (5‑1)

where SX and nx are the surface area and the normal vector to X and S is the plane that includes the 
fracture. The expression is used to calculate the deformation of a sample, for which X is a boundary, 
and whose volume V is V = SX · lX with lX being the dimension perpendicular to X (i.e., in the direction 
nx). The contribution of the fracture to the deformation component ϵxy, where x refers to the surface X 
and y to a direction vector ny, is:

∬
	 (5‑2)

The expression is generally expressed with the average displacement (t⁻f) in the fracture disk:

̅ 	 (5‑3)

Figure 5‑2. Illustration of the relation between the fracture displacement and the projection at the specimen 
volume scale. The X surface is highlighted as a blue striped area over the total surface SX.
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5.3	 From one fracture to a population of fractures
5.3.1	 Framework
The DFN scale derivation of effective elastic properties (Young’s modulus E and Poisson’s ratio v 
for an isotropic medium or full compliance tensor C⁼ in a general case) is based on the summation 
of the contribution of each individual fracture to the rock mass specimen scale boundaries. This is 
comparable to effective theories, that are generally written by incrementally adding elements to an 
effective medium whose properties are potentially iterated too during the incremental process. At 
each step i of the incremental process, the total deformation is the sum of two terms:

–	 the deformation of the damaged matrix, (ϵ)i − 1, due to the remote stress tensor σ⁼ applied on the 
equivalent medium constituted of (i − 1) fractures with equivalent elastic properties (E)i − 1 and (v)i − 1,

–	 the deformation induced by the displacement on the additional ith fracture.

Following Equation (5‑3), the strain state at step i is defined by:

̅ 	 (5‑4)

where Si is the surface of the fracture i, ni is its normal, and t⁻i is its displacement.

In the present context, the main assumptions of any effective theory aim at statistically evaluating the 
average displacement t⁻i, which depends on both the stress applied to the fracture, and the properties 
of the matrix. The former (stress) is controlled by the remote stress tensor σ⁼, and to some extent by the 
fluctuations of stresses induced by the (i − 1) fractures. To our knowledge, the role of stress fluctuations 
is not usually considered in effective theories; it will not be either directly here, but stress fluctuations 
are explored in Section 6. The latter (medium behaviour) is controlled by the matrix properties Em and 
vm, which may be altered by the previous (i − 1) fractures to some extent.

The shear component of t⁻i (t in Equation (4‑11)) depends on 3 terms: the shear stress τi (Equation (4‑5)) 
with si the direction of shear (Equation (4‑6)); the fracture shear stiffness ksi, which may depend on 
each fracture, and the local matrix-fracture stiffness km i, which is a function of the elastic properties of 
the medium surrounding the ith fracture. With these assumptions, evaluating t⁻i comes to assessing this 
latter term.

The normal component un of t⁻i is simply equal to σn/kn (Equation (4‑4)).

For non-critically stressed fractures (i.e., τ ≤ τ*, see Equation (4‑11), we write, as an example, the 
eventual deformation term (ϵxy) obtained by summing the contribution of all fractures:

∑
 

	 (5‑5)

With Equation (5‑5), all the components of the strain tensor ϵ⁼ can be computed and combined with 
any stress boundary conditions to derive the effective elastic properties (components of the compliance 
tensor and/or Young’s modulus and Poisson’s ratio for specific isotropic conditions).

If the effective medium has isotropic properties, the apparent Young’s modulus and Poisson’s ratio 
are derived from the general equation:

	 (5‑6)

where i, j, k denote any x, y and z directions.

For an unconfined uniaxial compression σ along the x axis, the Young’s modulus and Poisson’s 
ratio are:

	 (5‑7)
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In any case, the total deformation is increased by the contribution of the fracture displacements, so 
that the effective Young’s modulus is smaller than Em, and the Poisson’s ratio is larger than vm.

In the following, we consider several assumptions relative to property evolution (mainly the matrix-
fracture stiffness term km i) during the incremental process of Equation (5‑5) and compare the predic-
tions with direct numerical simulations from the series of models n01 to n12 (Table 2‑1 and Section 3).

The general expression is:

̿ 	 (5‑8)

where C⁼ is the compliance tensor.

5.3.2	 Interactions and effective theory
The simplest model is to consider that the medium is not damaged in the vicinity of the fracture, so 
that the elastic properties are those of the intact matrix Em and vm (no-interaction model). This gives 
an expression of km i similar to Equation (4‑10):

	 (5‑9)

where li is the length of the ith fracture. The no-interaction model is a good description of systems with 
a low density of fractures, where fractures are, on average, far apart from each other, so that any new 
fracture is only surrounded by the intact elastic matrix and the contribution of each fracture to (ϵxy)i is 
independent of the others.

The effective medium theories (see the reviews in Kachanov (1987), Jaeger et al. (2007) and 
Guéguen and Kachanov (2012)) for the case of ks = 0 approximate the interaction between fractures 
with different schemes, the most popular being the self-consistent theory (O’Connell and Budiansky 
1974), and the differential scheme (Hashin 1988). Here we develop the differential scheme, which 
avoids some inconsistencies of the self-consistent theory at high crack densities (Bruner 1976). It 
basically considers that the ith fracture is surrounded by a damaged medium. Effective properties 
are those of the medium constituted by the (i − 1) fractures embedded in the initial intact rock. For 
isotropic conditions this writes:

	 (5‑10)

The effective medium theory predicts a final Young’s modulus smaller than that of the no-interaction 
model. Indeed, fractures are then embedded in a softer matrix, thus entailing a larger displacement in 
the fractures.

Results predicted by the no-interaction (Equation (5‑9)) and by the effective theory (Equation (5‑10)) 
are compared with the results of the numerical simulations of the models presented in Figure 5‑1, 
Figure 5‑3 and Figure 5‑4. For relatively high values of the normalized Young’s modulus (normalized 
by Em, Young’s modulus of the intact rock), the difference between the no-interaction and effective 
case is minimal and the effective modulus predicted by both models closely match with the simula-
tions. When the effective moduli decrease (by increasing the amount of fractures in the DFN, so the 
density), the discrepancy with the no-interaction model increases (Figure 5‑3a) while the adequacy 
with the effective theory model remains good, although the latter slightly underestimates the result 
(Figure 5‑4a). The comparison between simulations and analytical models is also performed for the 
Poisson’s ratio, in Figure 5‑3b and Figure 5‑4b. Increasing the DFN density tends to increase the 
Poisson’s ratio. The prediction based on the effective theory avoids the discrepancies observed with 
the no-interaction model for the highest values of effective Poisson’s ratio and overall, the prediction 
tends to slightly overestimate the effective Poisson’s ratio value.
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The effective theory model (Equation (5‑10) and (5‑5)) satisfactorily predicts the evolution of the 
effective Young’s modulus and Poisson’s ratio. It is further used as a basis to analyse which compo-
nents of the DFN geometrical and mechanical properties, together with the mechanical properties 
of the intact rock (or matrix), are dominant for specific configurations.

When applying the calculation in the general case (Section 7), the resulting effective elastic properties 
may have tensorial expression if the anisotropy is significant. In this case, the Young’s modulus in 
Equation (5‑10) and Equation (5‑5) is taken as the harmonic average of the directional moduli (Exx, Eyy 
and Ezz).

Figure 5‑3. Young’s modulus (left) and Poisson’s ratio (right) calculated with 3DEC for all the cases shown 
in Table 2-1, as a function of the no-interaction model estimate. The dashed line shows the prediction by the 
no-interaction model (Davy et al. 2018).

Figure 5‑4. Young’s modulus (left) and Poisson’s ratio (right) calculated with 3DEC for all the cases shown 
in Table 2-1, as a function of the effective theory estimate. The dashed line shows the prediction y = x. The 
dotted line in the Poisson’s ratio graph is y = x − 0.15. Modified from Davy et al. (2018).
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5.3.3	 Simplified solutions
The effective theory, as defined in the general Equations (5‑10) and (5‑5), is the basis of the effective 
elastic property derivation from a DFN approach. We review here several cases where simplifications 
can be done. The proposed formulations are expressed considering that fracture sizes and orientations 
are not correlated. The expressions are also valid if the shear and normal stiffnesses ks and kn are 
dependent on fracture size or normal stress.

Case km (l) ≫ ks or frictionless case
For the frictionless case, we can demonstrate that the effective theory based effective Modulus Ee f f is:

exp 	 (5‑11)

	 (5‑12)

where Fθ is a term that takes into account orientation components (fracture orientation and stress 
loading direction) and p is the percolation parameter from Equation (2‑3). For uniaxial compression 
conditions and uniformly distributed fracture pole orientation, Fθ is equal to 2/15.

For the no-interaction case, still in frictionless conditions, the expression becomes:

	 (5‑13)

Both expressions are compared to the results from Figure 5‑1 for the frictionless case and are shown 
in Figure 5‑5.

Figure 5‑5. Evolution of the rock mass Modulus with increasing percolation parameter p. Comparison 
between the 3DEC numerical simulations (empty squares), the effective model from Equation (5‑11) and the 
no-interaction model from Equation (5‑13).
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Case km (l) ≪ ks

In this case we can demonstrate that the effective modulus can be written as:

/ 	 (5‑14)

with P32 defined in Equation (2‑2).

The expression is valid for both the no-interaction model and the effective theory.

General case
In the general case, the Young’s modulus results from the contribution of small fractures, whose 
deformation is dominated by the deformation of the surrounding matrix, and large fractures, 
whose deformation is due to the stiffness and the friction on the fracture walls. The limit between 
both groups is the stiffness length . If ks depends on fracture size or normal stress, ls varies 
accordingly.

For the no-interaction model, an approximate solution is:

1 1
2

	 (5‑15)

where p (l < ls) is the percolation parameter for fractures smaller than ls; P32 (l > ls) is the fracture density 
for fractures larger than ls.

More elaborate expressions are derived for the effective theory in Davy et al. (2018) but the results are 
qualitatively similar to the Equation (5‑15). In most of the cases, the predictions yield a good match 
with the numerical solution.

Consequence for a multi-scale DFN
Geological fractures are complex, ubiquitous, and observable at all scales (Tchalenko 1970), which 
poses the issue of the scales that control the fracture network properties. As a geologically relevant 
case, we develop the expressions for power-law fracture size distributions. In addition to being geologi-
cally relevant, power laws are the only functions that have no characteristic scale, except their lower 
and upper bounds lmin and lmax, respectively.

According to Equation (5‑15), calculating the effective modulus amounts to evaluating both the density 
parameter P32 (l > ls) and the oriented percolation parameter p (l < ls). In the case of a power-law size 
distribution, both expressions result from the integral of power-law functions with bounds [ls, lmax] for 
P32, and [lmin, ls] for p. The integrals are dominated by one of their bounds, and the critical parameter to 
determine which bound dominates is the exponent of the power-law functions. Since P32 is the second 
moment of the size distribution (i.e., the surface), and p the third moment (i.e., the volume surrounding 
the fractures), both expressions have different behaviours according to the size exponent a3d:

•	 If a3d < 3, both P32 and p are dominated by the upper bound, i.e., lmax and ls, respectively. In the 
general case where lmax ≫ ls, P32 is the dominant term and the Young’s modulus is dominated by 
the largest “frictional” fractures.

•	 If a3d > 4, both P32 and p are dominated by the lower bound, i.e., ls and lmin, respectively. In the 
general case where lmin ≪ ls, p is the dominant term and the Young’s modulus is dominated by the 
smallest “frictionless” fractures.

•	 If 3 < a3d < 4 P32 is dominated by its lower bound ls, and p by its upper bound ls. The Young’s 
modulus is controlled by the fractures whose size is around ls.

Because the exponents measured from field mapping are generally between 3 and 4, the hypothesis that 
the fractures of size ls – i.e., in the range of 1–50 m for hard rock geology – are the most important for 
elasticity appears very likely.

We refer to Section 7.4 for an application to the Forsmark case.



26	 SKB R-20-05

Contributions from fracture normal and shear displacement
The contributions of fracture normal and shear displacements to the rock mass elastic parameters, 
as defined in Equation (4‑4) and Equation (4‑11), are varying with the normal and shear stiffnesses 
kn and ks, respectively. To estimate their relative contributions, we calculate the Young’s modulus 
and Poisson’s ratio in both ways, firstly by taking both normal and shear components (E (ks, kn) 
and v (ks, kn)) and secondly by taking only shear (E (ks) and v (ks)). The contribution of the normal 
displacement is then calculated as the difference between both expressions normalized by one of them: 
Cn (E) = (E (ks) − E (ks, kn)) / E (ks) and Cn (v) = (v (ks) − v (ks, kn)) / v (ks), for the Young’s modulus and 
Poisson’s ratio, respectively.

Figure 5‑6 shows Cn (E) and Cn (v) calculated by using the effective-medium approximation as a func-
tion of the ratio x = kn / (ks + km) for different fracture densities and ks values. Both Cn (E) and Cn (v) vary 
inversely with x which can be represented by Cn (E) = 1/3 x and Cn (v) = 1/2 x, respectively.

A ratio of 100 between kn and ks gives a contribution of normal displacements of 0.3–0.5 % for the 
largest fractures (for which ks ≫ km) and even less for the smaller ones. This justifies neglecting normal 
displacements in the deformation for most of the cases reported in the literature.

Figure 5‑6. Figure from Davy et al. (2018). Contributions of the normal displacements to a) Young’s modulus 
and b) Poisson’s ratio as a function of the ratio kn / (ks + km). ks and E0 units are in (Pa) in the figure caption. 
In both plots the y axis represents a normalized value of the Young’s Modulus and Poisson’s ratio sensitivity 
to the ratio kn / (ks + km), expressed as the variation between estimates derived from conditions where only the 
shear displacements are accounted for (noted Ez (ks) and v (ks)) and conditions where both normal and shear 
displacements are accounted for (noted Ez (ks + kn) and v (ks + kn)), normalized by the “shear displacement 
only” condition (i.e. Ez (ks) and v (ks)).
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5.3.4	 Comparison with other approaches – empirical methods for rock 
mass classification

Let’s recall the context presented in Selroos et al. (2021):”The way the fractures of the rock are 
considered to derive the rock mass properties has indeed evolved significantly since the first rock 
mass quality index, the Rock Mass Quality Designation (RQD) introduced by Deere (1963) which 
preceded the Q system (Barton et al. 1974), the RMR (Bieniawski 1973) and the GSI with the associ-
ated Hoek-Brown constitutive model for rock mass strength envelope (Hoek and Brown 1997, 2019, 
Hoek et al. 2013). These empirical methods (see Appendix) were developed for use in civil and mining 
engineering in response to the need for ways to ‘‘rank’’ a specific rock mass, based on large part upon 
the fractures and their weakening and softening effects on the rock (Mas Ivars et al. 2011), before the 
rise of the Distinct Element Method (DEM) numerical modelling and of conceptualization of multi-
scale natural fracture systems. These indicators are defined by a combination of simplified fracture 
system geometry (e.g. fracture frequency) and fracture surface “conditions” (e.g., roughness, quality 
from fresh to weathered, altered). The fracture system is seen as an assembly of blocks rather than as 
a network of discrete fractures. In addition, RMC systems are based on empirical relations which relate 
directly available observations – from core log or on outcrop cell mapping data – to indicative rock 
mass modulus and strength envelope. Hence the true nature of the fracture system is reduced to local 
and available observations, assuming that an indicative apparent fracture frequency and number of 
fracture sets (main orientations) are sufficient to constrain the impact of the fractures on the rock mass 
modulus and strength.

Even though RMC systems and relations are in widespread use in engineering design, where they 
appear as fast and well suited for standard construction and design purposes (Staub et al. 2002), 
their scope of use is becoming narrower (Hoek et al. 2013). Their limited accuracy is increasingly 
questioned (Pells et al. 2017) and their inability to consider strength anisotropy (resulting from a 
preferred fracture orientation), scale effect (resulting mainly from the combined effect of fracture 
intensity and fracture size), and strain softening/weakening is a strong drawback (Mas Ivars et al. 
2011). This is even more so for the fracturing conditions prevailing in the Fracture Domains at 
Forsmark, where the fracture system is rather sparse as compared to the standard conditions for 
which the GSI systems were originally developed (Hoek et al. 2013).

5.3.5	 Comparison with other approaches – DFN approach
The work by Oda (Oda 1988; Oda et al. 1993) differs from the present approach by several 
assumptions.

Oda (1988) neglected the surrounding deformation of the elastic matrix (km term in Equation (4‑10)). 
Davy et al. (2018) have shown that this assumption is only valid for fractures whose size is larger 
than the ratio E̲

ks
, which has been estimated to be a few meters.

Oda (1988) assumed that both the normal and shear stiffnesses decrease inversely proportional to the 
fracture size, i.e. kn, ks ~ l−1. This leads to two remarks:

•	 For this special case where the ratio E̲
ks

 is proportional to the fracture size, the contribution of the 
fractures to deformation is the same as for frictionless fractures (Davy et al. 2018). The ratio 
between both resistances described in the step-1 section (τf and τm) is independent of the fracture 
size l. For any other relationship between kn, ks and l, τf /τm varies with l.

•	 In principle, the expressions of Oda (1988) can be extended to any kind of stiffness-size relation-
ship, but this requires an in-depth rewriting of the expressions to correctly average the parameters 
of the different fractures (see the discussion in the next paragraph, Equation (5‑16) and (5‑17)). 
The expressions derived by Davy et al. (2018) are valid for any value of kn, ks.

Equation (5‑5) is the general expression to average the fracture properties and to evaluate the contribu-
tion of the fracture network to the total deformation. The final expression leads to a tensorial expression 
of the compliance tensor (Equation (5‑6)). To emphasize the differences between Oda (1988) and Davy 
et al. (2018), we simplify Equation (5‑5) and (5‑6) to make it a simple algebraic relationship, i.e. not in 
its tensorial form. For Davy et al. (2018), the expression is written as:

∑
/

  	 (5‑16)
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For Oda (1988), it is written as:
∑ .

∑
	 (5‑17)

Both expressions are clearly different even for a set of fractures with constant size and large ks (i.e., 
if ks ≫ E / l). In this case, the correct expression (Equation (5‑16)) leads to the harmonic sum of the 
fracture stiffnesses while Oda (1988) writes the fracture compliance as the inverse of the arithmetic 
sum of ks. The problem is even more important if the fractures have a broad distribution of sizes and 
orientations. On the other hand, the tensorial aspect of the compliance matrix is consistent for both 
approaches apart from the averaging issue.

At last, Davy et al. (2018) developed the expression of the effective elastic properties by considering 
the interactions between fractures. The result is a significant softening of the effective elastic modulus, 
especially when the shear stiffnesses ks are small. This is not considered in Oda (1988).
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6	 Stress fluctuations

6.1	 Origin of stress fluctuations
We define stress fluctuations as any local change in the stress tensor relative to the remote reference 
value. These variations are induced by the presence of heterogeneities (the fractures in our case) with 
mechanical properties different from the surrounding rock. The normal and shear displacements on 
each fracture cause a stress disorder with a stress concentration at the tips and a stress shield above 
and below the central part (Jaeger et al. 2007). The extent of the perturbations depends on the fracture 
geometrical and mechanical properties. At a DFN scale, a fracture perturbation potentially affects the 
stress loading conditions of the surrounding fractures and makes spatial distribution of the stress field 
even more complex. The fluctuations, in Figure 6‑1, show both variations of orientation and magnitude 
of the principal stresses. Qualitatively, we see that the correlation length of the fluctuations is likely 
shorter for the case DFN n03 and the induced disruption is more intense for DFN n08.

Figure 6‑1. Representation of 2D vertical cut views (plane y = 0) from 3D SRM specimen of dimensions 4 
by 4 by 8 meters. The fractures intersected by the visualization plane are represented in grey. Local stresses 
are represented with lines colored, oriented and scaled according to the principal stresses. The color scale 
refers to the maximum principal stress, expressed in the 3DEC convention of negative compressive stress 
in the figure caption (negative values of the “Minimum Prin.” stress refer to the maximum principal stress 
in absolute value). In the example ks ≡ 0 and the DFN models (Table 2‑1) are a) n03 b) n05, c) n06 and 
d) n08. The SRM specimens are loaded by a vertical maximum principal stress σ1 = 3 × 10−2 MPa.

a) n03   b) n05 c) n06  d) n08 

l = 0.5, P32 = 2   l = 1, P32 = 2   l = 2, P32 = 1   l = 1, P32 = 3   
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6.2	 Stress fluctuation indicators
6.2.1	 Scale
Stresses can be computed at different scales (Figure 6‑2) and locations in the SRM specimen. The 
finest resolution scale is that of zones (volumetric meshes) in the model since stress is defined from 
the zones in the numerical model. The coarsest resolution scale is the specimen model itself, onto 
which boundary conditions are applied. In between, stresses are evaluated over intermediate length 
scales – by varying the diameter of sampling stress measurement spheres. The measurement spheres 
can be uniformly distributed through the SRM sample (Figure 6‑3) or centered around the fractures 
(Figure 6‑4). The stress for each measurement sphere is computed as the mean of stresses measured 
in the zones located at the sphere surface.

Figure 6‑2. Illustration of the typical length scales. The SRM sample dimensions (red line), one fracture 
(grey) and one zone are outlined (dark red).

Figure 6‑3. 2D schematic view of measurement spheres in a SRM specimen. From left to right the measure-
ment scale is increased (all measurements are done in 3D, i.e., on spheres). Stress tensors are computed over 
spheres (outlined as blue dashed circles) evenly distributed all over the SRM samples (not centered around 
fractures). The sampling process is repeated for various scales (increasing measurement sphere diameter, 
from left to right).
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6.2.2	 Scalar indicators
A first possibility to indirectly highlight stress fluctuations in a rock mass specimen is to compute 
fracture average displacements and to compare them with the predictions based on remote stresses 
(Equation (4‑11)). More generally, from any set of stress tensor values, we consider several indicators:

•	 Around a fracture, the ratio between remote and local stress, expressed as a full tensor or as the 
shear stress component for an orientation equal to the fracture orientation.

•	 The components of the average stress tensor 〈σij〉, with N the number of stress tensor values:

〈 〉 ∑ , 	 (6‑1)

•	 The probability density function (distribution) of scalar elements of the stress tensor, either a 
specific component (e.g., a directional component like σzz or the principal stress like σ1) or a scalar 
invariant of the tensor (e.g., the Von Mises stress, Equation (6‑2)).

The Von Mises stress, σe, emphasizes stress concentration and yielding potential of the rock mass. It 
can be expressed as a function of principal stresses (σ1, σ2, σ3) or general stresses (σ11, σ22, σ33 , σ12, σ23, 
σ31) as given below:

3 	 (6‑2)

Where σ11, σ22 and σ33 are the diagonal components of the stress tensor and σ12, σ23 and σ31 are the 
shear stress components.

•	 A tensorial description (see next section) of the stress variability from Gao and Harrison (2016a, 
2018a, b), followed by a scalar evaluation with the effective variance or dispersion term.

When applied to the SRM specimen, these indicators are adapted to account for the volumetric 
variations of the elementary zones into which stress tensors are evaluated. These variations result from 
meshing constraints associated with the presence of DFN. The contribution of each element is thus 
weighted by its volume in the computation of means and variability terms:

∙ ∑ , 	 (6‑3)

where i and j the stress tensor component indexes, n the index of the N zones of the sample, vn the 
volume of zone n, si j the stress tensor components and V the volume of the given sample.

Figure 6‑4. Definition of the spherical volume around a fracture onto which the stress field is averaged. 
a) sketch of the measurement sphere and b) selection of the group of zones defined by the measurement sphere.

a) b)
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6.2.3	 Tensorial indicators
Fully tensorial approaches for mathematically characterizing the variations of stresses have been 
recently evaluated by Gao and Harrison (2016a, b, 2017, 2018b). Following their work, we recall 
below several tensor-based indicators which will be next used to characterize the stress fluctuations 
in the SRM specimen. As already used above in Equation (6‑3), the tensorial approach for deriving an 
average stress tensor from a set of local values – the Euclidian mean stress tensor S̄E – is defined as:

∑ 	 (6‑4)

where Si is the stress tensor of the ith zone, vi is the volume of this zone, n is the number of zones 
and V is the volume of the sample.

The Euclidian dispersion DE of the stress tensors Si is:

∑ || ||

with
|| || 	 (6‑5)

For more clarity we define Ti = Si − S̄E and develop the previous expression as:

| | | |

For the calculation of generalized variance and effective variance, we define the vector sdi using 
a half-vectorization function of the tensor Si by stacking together only the upper triangle columns 
of the tensor into a column vector containing the distinct components. In the same way, the half 
vectorization of the mean tensor S̄E is defined.

	 (6‑6)

The covariance matrix is calculated as

∑ . 	 (6‑7)

Based on the covariance matrix, the generalized variance and effective variance are respectively 
given by:

| |Ω|

| |Ω|
	 (6‑8)

where |.| denotes the matrix determinant and p is the dimension of the stress tensor (p = 2,3).

The transformational invariance of the Euclidian dispersion, generalized variance and effective vari-
ance associated to the distinct tensor components was demonstrated in Gao and Harrison (2018b), i.e., 
their values are independent of the coordinate system. The Euclidian dispersion (DE) and square root 
of the effective variance √Ve|d

—
 , both having “stress” unit, will be used as stress fluctuation indicators.
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6.3	 Results
6.3.1	 Exploratory study – isolated fracture
At the coarsest resolution scale (SRM specimen dimensions), there is only one stress state directly 
deduced from the imposed boundary conditions. For simplicity, this limit is called remote stress. This 
is defined such that the maximum principal stress σ1 is vertical and the intermediate and maximum 
principal stresses, σ2 and σ3 are horizontal and equal to σc. If no fracture is embedded in the SRM 
specimen, with a uniform and isotropic intact rock, the stress state is constant all over the sample.

When a fracture is added to the specimen, the displacement of the fracture plane induces stress fluctua-
tions. This is illustrated in Figure 6‑5. The Von Mises (VM) stress measured far from the fracture is 
(σ1 − σc), the value for a homogenous rock submitted to the abovementioned stress conditions (the initial 
stress condition is represented by the green color in the figure). The VM stress increases around the 
fracture tip and decreases above and below the central part of the fracture (known as shielding effect). 
For isolated fractures with no friction in an isotropic matrix, analytical solutions exist (Fabrikant 1999). 
The VM stress probability density function (pdf) resulting from the isolated fracture configuration is 
plotted in and b) . The distribution is dominated by the central part around the remote stress (hatched 
zone) value which reflects the limited volume of influence around the fractures. The values to the left 
of the central part reflect the shielding effect around the fracture while those to the right reflect the 
stress increase at the fracture tips.

Figure 6‑5. Stress distribution in a SRM specimen containing one isolated fracture. a) 2D vertical cut 
view of a SRM with only one fracture (fracture trace in black), loaded vertically by σ1 = 3 × 10−2 MPa and 
laterally by σ2 = σ3 = 1 × 10−2 MPa, resulting in a Von Mises Stress σe = 2 × 10−2 MPa far from the volume 
of influence of the fracture and b) Pdf of the normalized Von Mises stress n (σ*

e).

a) b)

0 1 2 3 4
10−4

10−3

10−2

10−1

10⁰

10¹

102

σe
*

n 
(σ

* e)



34	 SKB R-20-05

6.3.2	 Exploratory study – DFN scale
At DFN scale, we study the global distribution of local stress variations due to an assembly of fractures. 
The analysis is based on the n01 to n12 DFN models with 10 realizations by model. The stress spatial 
distribution (vertical stress component σzz) resulting from the loading with σ1 in the vertical direction, 
are illustrated in Figure 6‑6 for two of the DFN models. In the case of low fracture density and short 
fractures (model n01), most of the zones in the model are only slightly disturbed by the presence of 
fractures (σzz remains close to σ1 which is vertical), while in the case of a higher density and especially 
larger fractures (Figure 6‑6b), the vertical stress component is significantly disturbed with almost no 
zones having the same values as the remote stress σ1.

The density distributions of the normalized Von Mises stress component (σe
* = σe / (σ1 − σc)), are plotted 

in Figure 6‑7. The peak value at σe
* = 1 reflects the non-disturbed stress state when the DFN density 

is low. When the amount of fractures increases, the dispersion around the peak significantly increases 
and tends to become asymmetric, with an increase of the distribution tailing towards large values. The 
distribution n (σe ) results from the superposition of stresses at locations not affected by the DFN and 
at locations affected by the fractures. So, when the amount of fractures in the specimen increases, the 
proportion of disturbed zones increases, and the tails of the distributions become broader. The semi-log 
plot in Figure 6‑7b emphasizes an exponential decay towards large σe

* values.

We next compare the relative variations of the low and high tails of the distributions when the amount 
of fracture increases. If interactions between fractures can be neglected, the differences between the 
distributions should be explained by a change of the affected volume only. To do this, we define a new 
normalized distribution [n(σe

*)]* as:

∑

∗ ∗ ∗ ∙ 	 (6‑9)

The normalization volume of [n (τe)]* is thus proportional to the volume occupied by the DFN (defined 
as the sum, over all fractures of size l, of the volume l3). The results are plotted in Figure 6‑8. When 
comparing Figure 6‑8 to Figure 6‑7b, we observe that with the second normalization, the shielding-
type part of the distributions (values below 1) held each other on a single trend, whereas the stress 
amplification-type part still differs from one DFN model to the other. For σe

* > 2, all the distributions 
tend to display an exponential decay (dashed lines in Figure 6‑8), whose rate parameter k (defined in 
Equation (6‑10)) is constant for all the models but n12, for which the decay is less sharp.

∗∗ ~exp ∗  for σ >2 	 (6‑10)

Figure 6‑6. 2D vertical cut view of the stress vertical component σzz for a) n01 and b) n12 models. The 
DFN traces are plotted in black. Note that the legend is written with the 3DEC convention of negative 
compressive stresses.

a) b)



SKB R-20-05	 35

6.3.3	 Exploratory study – fracture vicinity
We also study how the environment of a fracture in a DFN affects the local stress field and the actual 
displacement around each fracture. Thus, for each fracture of each DFN we compute the average shear 
displacement (t) and the average shear stress (τ) applied at the fracture plane. The latter is calculated by 
projecting, on the fracture plane, the stress state inferred in a sphere centered at the fracture center and 
of radius equal to 1.5 times the fracture radius. Each average t and τ values are then normalized by the 
theoretical values corresponding to isolated fractures (i.e., same SRM specimen dimensions and remote 
stress condition). The normalization factor for τ is simply the shear component, in the orientation of the 
fracture plane, of the remote stress (noted τR). The normalization factor for the displacement (noted tth) 
is given by Equation (4‑11).

For fractures in a DFN, the surrounding fractures of any fracture in the network, whether or not they 
intersect, induce stress perturbations which will, in turn, change the local stresses around the fractures. 
The local consequences on the shear displacements in the fracture plane are illustrated in Figure 6‑9.

Figure 6‑7. Probability density function n (σe ) of the n01 to n12 models. a) Linear plot and b) semi-log plot. 
The grey hatched zone reflects Von Mises values equivalent to the remote stress conditions, by analogy with 
Figure 6‑5.

Figure 6‑8. Probability density functions [n(σe
*)]* of the n01 to n12 models.
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Normalized average shear stresses and displacements are computed over all the fractures and DFN 
of the SRM specimen numerical loading experiments of the preceding sections, i.e., 10 realizations 
of the DFN models n01 to n12, with 3 different values of fracture shear stiffness ks (0, 12 and 
72 GPa/m). The results are presented in the Figure 6‑10 and Figure 6‑11.

The evolution of < τ / τR > with the DFN percolation parameter p is plotted in Figure 6‑10a. If there is no 
significant perturbation in the stress field, then we expect < τ / τR > = 1, so that each fracture of the DFN 
behaves as one isolated fracture directly loaded by the remote stress conditions. If the stress field per-
turbation is more significant, we expect a variation between the measured and the remote value, so that 
< τ / τR > would no longer be equal to 1. We observe that, if ks is sufficiently large (case ks = 72 GPa/m) 
the normalized stress ratio is indeed equal to 1. For lower values of ks, we observe a tendency for the 
ratio to decrease when the DFN percolation parameter increases. The maximum variation of the ratio, 
observed over the range of the tested cases, is a 10 % decrease between the theoretical unperturbed case 
and the measurement. We interpret the downward trend as a prevalence of the fracture stress shielding 
effect with respect to the fracture tips stress concentration effects. The evolution with p of the shear 
displacement ratio t / tth (Figure 6‑10b), shows a clear increase with pespecially for the frictionless case 
where it reaches a jump of 50 % for the largest values of p.

Figure 6‑9. View of local shear displacement on a fracture. a) Isolated fracture and b) fracture surrounded 
by other fractures (intersection traces in black).

a) b)

Figure 6‑10. Evolution with the DFN percolation parameter p of a) τ / τR and b) t / tth.
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Finally, the fracture shear stress and displacement measurements are used to back-calculate the 
matrix stiffness km which represent the effect of the surrounding fractures and therefore define a local 
effective matrix stiffness. In practice, for each fracture, a local matrix stiffness is calculated based on 
Equation (4‑11) and expressed as follows:

, , 	 (6‑11)

where the subscript f refers to the fracture f.

For each DFN, the average local matrix stiffness < km > is computed by averaging over all the local 
values km, f of the fractures of each DFN. We finally consider the evolution, with the DFN percolation 
parameter, of the ratio < km > / km, 0 (with km, 0 the equivalent matrix stiffness for an isolated fracture, 
(Equation (4‑10)). Its evolution is compared to the effective matrix stiffnesses estimated directly from 
the specimen scale measurements (results in Figure 5‑1) and normalized by km, 0. The results are plotted 
in Figure 6‑11. The reference value < km > / km, 0 = 1 simply denotes conditions for which the effect 
of the fractures on the effective matrix stiffness is negligible. The downward trend of < km > / km, 0 when 
increasing p denotes the softer and softer nature of the effective rock matrix.

We note that the evolution of the fracture scale estimates is similar to the evolution of the rock mass 
scale estimates, but with a clear shift towards larger percolations. For the low values of the percolation 
parameter (roughly below p = 2.5), where the fractures are locally surrounded by the intact rock the 
effect of surrounding fracture can be neglected, while globally at the rock mass scale the effective 
matrix stiffness is already affected to this presence or relatively isolated fractures. It is only for higher 
values of the percolation that each fracture locally behaves as in the effective rock matrix rather than 
as in the intact rock matrix. The gap between the local and the rock mass matrix stiffnesses is also 
related to the mechanical properties of the rock and the fractures (comparing Figure 6‑11a and b).

This last observation has important implications when applying the DFN methodology for cases where 
part of a DFN is replaced by effective properties while the other part is kept discrete (i.e., explicit) in 
the numerical modelling, because of the abovementioned shift.

Figure 6‑11. Evolution, with the DFN percolation parameter p, of the ratio < km > / km, 0 for the local matrix 
stiffness (filled symbols) and effective matrix stiffness (open symbols), for the case of a) frictionless fractures 
(equivalent to ks = 0) and b) ks = 72 GPa/m.
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7	 Applying the methodology to multiscale DFN

7.1	 Discrete and effective representation for a DFN
When applying the methodology, one can decide to replace all the rock mass by a homogeneous effec-
tive matrix stiffness or to keep part of the discrete fractures explicitly in a model and to replace only 
partially the DFN by effective properties (all illustrated in Figure 7‑1). In this section, we show how 
to use the methodology in practice to evaluate the effective properties from a general case (multiscale 
DFN) and what are the consequences, in term of scale effect and stress fluctuations, of replacing fully 
or partially a DFN by these effective properties.

Figure 7‑1. Schematic view of standard approaches for DFN models.
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7.2	 From DFN discrete to effective representation
7.2.1	 Description of required input
The contribution of a population of fractures to the effective elastic properties at the boundaries of 
a rock specimen is computed with Equations (5‑4), (5‑5) and (5‑10). The necessary input to infer the 
effective properties are:

–	 for each fracture, its size, surface, orientation and mechanical properties (mechanical model 
with normal and shear stiffnesses for elastic conditions and friction for critically stressed 
fractures (Equation (4‑4) and (4‑11)),

–	 the elastic properties of the rock into which the fractures are embedded,
–	 the volume of the fractured rock specimen, and
–	 the stress conditions applying at the boundaries of the rock specimen.

The proposed approach applies for conditions where the importance of the location of the fractures 
within the rock specimen is negligible when compared to the cumulated “population effect” of the 
DFN. Consequently, intersections between fractures also are neglected in the approach. The fractures 
are initially disc-shaped and are potentially cut by the rock specimen limits.

7.2.2	 Description of the output
Equation (5‑5) defines the components of the deformation tensor resulting from a stress state. It is used 
to compute all the components of the general compliance tensor, by successively applying small stress 
increments on the elements (σi j) of the stress field initially given by the remote stress field. Depending 
on the conditions, the resulting effective properties may be isotropic or orthotropic and the compliance 
tensor is accordingly simplified.

7.2.3	 Sensitivity to order
When using Equation (5‑5) to cumulate, at the specimen scale, the deformations relative to all the 
individual fractures, the role of the order of insertion of the fractures may have some impact if 
interactions are considered (and the effective theory summarized in Equation (5‑10) is applied). If 
the fractures that induce the most deformation are first added, then the iterative variation of effective 
modulus is significant from the outset, so that fractures added afterwards “see” a weaker effective 
medium, whereas, on the opposite “minor” fractures are first added, so that the significant one “see” 
a quasi-intact medium. This could occur when the fracture population is such that the distribution of 
fracture-deformation is wide, due to the nature of the fracture size distribution (e.g., the power-law 
model) or to the orientations.

The sensitivity to order of insertion is illustrated in Figure 7‑2. A power-law DFN is defined (model 
from Section 7.4.1). We observe that the order of insertion has only a marginal effect of the final 
estimate of the elastic property.

Figure 7‑2. Test order sensitivity. Insertion order from the smallest to the largest fracture (black curve) and 
from the largest to the smallest (red curve).
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7.3	 Application to DFN with a power-law size distribution
7.3.1	 DFN model and setup
We study the impact of changing the limit between explicit and effective fractures with the DFN model 
pl, whose parameters are provided in Table 2‑1. The same density distribution model n3D (l) is used to 
define DFN realizations with fractures sizes distributed over the range [0.4;4] and [0.2;4]. The density 
P32 of the first set is 4 m−1 and for the second set is 8.44 m−1. The orientation distribution of the model 
is isotropic. One realization of each model is represented in Figure 7‑3 and the corresponding density 
distributions of fracture sizes are given in Figure 7‑4.

Two realizations of the model with lmin = 0.4 are generated (named seed 1000 and seed 3000) and 
one realization of the model with lmin = 0.2 is generated (named seed 1000). The fracture mechanical 
parameters correspond to frictionless fractures and quasi-infinite normal stiffness. In these conditions 
the shear displacement over the fractures is maximized.

Figure 7‑3. View of the DFN model with lmin = 0.4 m (left) and lmin = 0.2 m (right).

Figure 7‑4. Density distribution of fracture sizes, n3d (l).
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Some adaptations from the previously described numerical setup (Section 3) are done to deal with the 
specificity of the pl DFN models and the study of the effective/explicit representation:

•	 The specimen dimensions are changed from parallelepipedic to cubic with an edge length equal 
to 5 meters.

•	 A pre-processing is performed over each DFN realization to remove potential biases due to fractures 
intersecting the borders. The fractures intersecting the boundaries of the model (truncated disks) are 
replaced with equivalent disk fractures shifted inside of the sample until there are no intersection 
with boundaries.

•	 Filtering functions are written to divide each basic DFN in two parts, according a varying size 
limit (noted Lc), below which the contribution of the fractures to the effective elastic properties 
is determined, so that in further modelling, the intact rock is combined to this part of the DFN 
to define an effective rock matrix, and above which fractures are explicitly kept discrete in the 
numerical simulations.

•	 The effective compliance matrix of the sub-DFN below Lc is computed according to the relation-
ship defined in Section 5 and following the workflow defined in Section 7.2.

•	 A numerical SRM specimen is built in 3DEC, based on the remaining discrete fractures and with 
effective elastic properties assigned in the zones.

•	 For each defined DFN realization, the limit Lc is increased from 0.8 m, 1.6 m and to 2 m. Each 
time the effective properties below Lc are computed and the 3DEC specimen accordingly built 
and tested.

•	 In the 3DEC numerical models, specific large fractures are identified, and their local displacement 
are systematically computed (when Lc varies), in addition to the SRM specimen scale macroscopic 
measures.

•	 Additional post-treatment functions are implemented to compute the stress fluctuations indicators 
listed in Section 6.2.

•	 The initial intact rock properties are Em = 76.9 GPa and vm = 0.23. The fracture mechanical proper-
ties are such that shear displacements are maximized (i.e., frictionless fractures) and the normal 
displacements are negligible (i.e., quasi-infinite normal stiffness kn).

With this updated numerical setup, we systematically analyse the consequences of changing the size 
limit Lc. In Figure 7‑5, we show the explicit part of the DFN for different values of Lc.
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7.3.2	 Effective properties below Lc

The effective moduli, for the DFN made of fractures smaller than Lc, are given in Table 7‑1 (for case 
lmin = 0.4 m) and Table 7‑2 (for case lmin = 0.2 m).

Table 7‑1. Effective properties for several values of Lc, case lmin = 0.4 m.

Lc 
(m)

Eef f (l < Lc) 
(GPa)

vef f (l < Lc) 
(-)

p (l < Lc) 
(-)

lmin = 0.4 (intact rock) 76.9 0.23 0
0.8 65.1 0.27 2.0
1.6 56.5 0.30 3.85
2 53.9 0.30 4.43

Table 7‑2. Effective Properties for several values of Lc, case lmin = 0.2 m.

Lc 
(m)

Eef f (l < Lc) 
(GPa)

vef f (l < Lc) 
(-)

p (l < Lc) 
(-)

lmin = 0.2 (intact rock) 76.9 0.23 0
0.8 56.4 0.3 3.88
1.6 49 0.32 5.68
2 46.7 0.33 6.26

We check in Figure 7‑6 that each particular DFN realization has an effective modulus which closely 
matches the expected average evolution with the percolation parameter (Equation (5‑11) and (5‑12)). 

Figure 7‑5. One DFN realization with several values of Lc.

Lc = 0.4 m
Initial model

Lc = 0.8 m

Lc = 1.6 m Lc = 2 m
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7.3.3	 Rock mass macroscopic elastic properties
3DEC mechanical simulations are performed to compute the effective elastic properties of the SRM 
specimens defined with the different combinations of Lc coupled to the corresponding effective matrix 
properties (these models are called “global” models below, as a combination between effective matrix 
to account for the implicit fractures and explicit fractures). The results are plotted in Figure 7‑7 and 
Figure 7‑8. We see that regardless of the value of Lc, the final effective modulus and Poisson’s ratio 
are almost constant, thus confirming the capacity of the effective theory to define effective properties 
over a certain size range, even in the case of a power-law DFN. Nevertheless, we note some variations 
over the Poisson ratio estimates (15 %).

Figure 7‑7. Evolution with Lc of the effective Young’s modulus and Poisson’s ratio, for the global models 
(effective matrix and explicit fractures) and the effective matrix (including implicit fractures, for two DFN 
realizations (blue and orange). Case lmin = 0.4 m.

Percolation parameter, p

Figure 7‑6. Evolution of the ratio Eef f (l < Lc)/Em , between effective modulus of hidden fractures and modulus 
of intact rock with the DFN percolation parameter p (l < Lc). The dots are computed from the particular DFN 
realizations and the curve is the analytical solution from Equation (5‑11) and (5‑12).
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7.3.4	 Stress fluctuations
The results in this section are preliminary. We evaluate the sensitivity, in term of stress fluctuations in 
the SRM specimens, when the limit Lc is varied. The analyses are based on the same set of numerical 
simulations as in the previous section. We compute the evolution of the following indicators with Lc:

•	 Probability density function of the normalized Von Mises stresses in the zones n(σe
*).

•	 Standard deviation of n(σe
*), sdev(σe

*).
•	 Stress Dispersion DE (Equation (6‑5)) and Square Root Effective Variance √Ve|d

—
 (Equation (6‑8)).

We first qualitatively visualize (Figure 7‑9) the in situ stress tensors variations when Lc increases, on 
a vertical plane passing through the center of the model. We observe a first order spatial organization 
controlled by the largest fractures (case Lc = 2), which is still visible down to Lc = 0.4, although 
significantly altered by the explicit presence of more and more small fractures.

Figure 7‑8. Values of effective Young’s modulus and Poisson’s ratio, for the global model and the effective 
matrix (including implicit fractures), for various values of Lc. Case lmin = 0.2 m.

Figure 7‑9. Stress tensor colored by maximum compressive stress, on a vertical cut plane (realization 
s = 1 000) and oriented according to the principal stresses. Note that the legend is written with the 3DEC 
convention of negative compressive stresses.

Lc = 0.8 mLc = 0.4 m

Lc = 1.6 m Lc = 2 m
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Figure 7‑10 and Figure 7‑11 show a decrease of sdev(σe
*) with increasing Lc, for the different cases 

studied. This trend is much the same for both realizations of the model with lmin = 0.4 and qualita-
tively similar to the results in Figure 6‑7: increasing the percolation parameter of the explicit DFN 
tend to broaden the normalized Von Mises distribution. Thus, increasing Lc here tends to decrease the 
percolation level of the DFN part that remain explicit and to lower the spatial stress fluctuations. The 
same trend is observed for the case lmin = 0.2 with even more fluctuations when Lc is equal to 0.2 m 
(the explicit part of the DFN being the highest in this case).

Figure 7‑10. n(σe
*) for the two DFN realizations with lmin = 0.4 m, linear scale (left) and log-lin scale (right).

Figure 7‑11. Probability density function of the normalized Von Mises stress, case lmin = 0.2 m, normal scale 
(left) and logscale (right).

S = 1 000 S = 1 000

S = 3 000 S = 3 000
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Figure 7‑12. Evolution of the stress variability indicators with Lc, for two DFN realizations with lmin = 0.4 m 
(solid lines and symbols for one, dotted lines and empty symbols for the other). (left) sdev(σe

*) (in red), De 
(in black) and √Ve|d

—
 (in blue). (right) Same convention and values normalized by the values at Lc = 0.4 m.

Figure 7‑13. Evolution of the stress variability indicators with Lc, for one DFN realization and lmin = 0.2 m. 
(left) sdev(σe

*) (in red), De (in black) and √Ve|d
—

 (in blue). (right) Same convention and values normalized by 
the values at Lc = 0.2 m.

The evolution, with Lc, of the stress variability indicators, the standard deviation sdev(σe
*), the dis-

persion DE and the square root of effective variance Ve|d are plotted in Figure 7‑12 and Figure 7‑13.
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7.3.5	 Focus on large fractures
The analyses relative to Lc are pursued to evaluate the change of average shear displacement for the 
few largest and explicit fractures in the tested DFN specimen.

Figure 7‑14 qualitatively shows the distribution of displacements (arrows on the fracture plane) on 
one of the selected large fractures. The shear displacement orientation and maximum displacement 
amplitude is quite similar in both cases. The maximum magnitude is though higher for the model 
with more fractures (7.4 × 10−4 mm versus 6.4 × 10−4 mm).

Figure 7‑15 and Figure 7‑16 represent the evolution of shear displacement with Lc over the few selected 
largest fractures (the ones with a diameter > 2 m), for two DFN realizations. Displacements are normal-
ized by the value at the initial tested Lc, on the right-side figures.

Figure 7‑14. Shear displacement versus Lc on the largest fracture plane of a DFN realization, with 
a) Lc = 0.4 m and b) Lc = 2 m. The apparent increased concentration of displacement vectors observed in 
a) relatively to b) is simply due to finer mesh in this region because of intersections with other fractures.

Figure 7‑15. Evolution with Lc of the shear displacement on the largest fractures (7 selected fractures whose 
size and diameter are recalled in the legend) of the model (a) and shear displacements normalized by the 
initial value at Lc = 0.4 (b). Case lmin = 0.4 and seed s = 1 000.

a) b) 

a) b)
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We observe a general tendency for the shear displacement of large fractures to increase when fewer 
fractures remain in the model (i.e., with increasing Lc). This is consistent with the previous observation 
(in Section 6.3.3) that the global effective stiffness is lower than the real effective stiffness measured 
locally around an explicit fracture. When replacing the surrounding of the fracture by an effective 
continuum medium with lower stiffness than the initial local stiffness, the consequence is an increase 
of the fracture displacement.

However, this observation is not true for all fractures. For the first DFN realization (Figure 7‑14), 
some of the fractures have a lower shear displacement with increasing Lc. This could be explained by 
the position of these fractures relative to other fractures initially in the model (at low values of Lc). 
Consider, for instance, the case of a large fracture that crosses the stress concentration area located 
around the tip of a neighbor fracture. When the neighbor fracture is removed (with increasing Lc), the 
large fracture will be subject to lower stresses. If this effect is dominant by comparison to the decrease 
of the local surrounding rock stiffness, the fracture will witness a decrease of its shear displacement. 
In addition, the orientation of the fractures may be of importance too, acknowledging the shear poten-
tial on a fracture is not only relative to the fracture size but is just as much sensitive to the orientation 
of the fracture (and relatively to the stress field).

In total, the variation of shear displacement, between the model with all fractures (Lc = lmin) and the 
model with few fractures (Lc = 2 m), is less than 30 %.

7.3.6	 Summary and recommendation
The analyses of stress fluctuations due to a change of Lc presented here are preliminary and will be 
further developed in the future. It is planned to i) systematically evaluate the stress variations scale 
dependency in the SRM specimen (i.e., not only at the zone size scale; ii) to pursue the identification 
of the fractures which are (due to their size, orientation and mechanical parameters) the most likely 
critical for given stress conditions, as a further step to optimize the limit between effective and explicit 
representation for mechanical simulations; and iii) to develop analytical relations between stress 
fluctuations and initial parameters of the SRM specimen (DFN and rock properties) and to predict the 
proportion of critical zones and their locations, as an introductory step toward strength modelling.

Figure 7‑16. Evolution with Lc of the shear displacement on the largest fractures of the model (a) and shear 
displacement normalized by the initial value at Lc = 0.4 (b). Case lmin = 0.4 and seed s = 3 000.

a) b)
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7.4	 Test cases application
The approach has been applied recently to the FFM01 unit (Darcel et al. 2018) and to the Singö fault 
(Åkerlind 2019 ). The application to the FFM01 unit is summarized below. In this application, the 
purpose is to replace all the rock mass model (discrete fractures plus intact rock) by one effective 
medium (i.e. no discrete/explicit fracture is kept in the final model). For doing this, it is important to 
first evaluate the potential anisotropy and scale dependency of the effective elastic coefficients.

7.4.1	 FFM01 Fracture Domain at Forsmark
In the following we summarize the parameters and results formerly presented by Darcel et al. (2018) 
for the rock mass in the FFM01 fracture domain at the Forsmark site. The data collected in the unit, 
located at a depth from 200 to 400 m, have led to definition of a DFN model (Glamheden et al. 2007; 
Follin 2008; SKB 2010) with 5 orientation sets (Figure 7‑17a), 4 vertical and 1 sub-horizontal. The ani-
sotropy resulting from these orientation sets is directly expressed in the stereonet plot in Figure 7‑17b.

The fracture size density distribution model is based on the typical double power-law size distribution 
of the UFM approach (Davy et al. 2010). The transition scale lc, between the two power-law regimes 
(the “growth” regime below lc – subscript g, and the “ufm” regime above lc – subscript u) is equal to 
3.3 m. The fracture size density distribution model, n(l), which defines the number of fractures by unit 
of volume, whose size is in the range (l; l + dl) is equal to:

	 (7‑1)

	  (7‑2)

With αg and αu the density terms – and αg and αu the scaling exponents- of the growth and ufm regimes, 
respectively. For the DFN model calibrated to the FFM01 unit, it comes that αg = 1.23 and αu= 4.0 the 
density terms – and αg = 3.0 and αu= 4.0. The FFM01 fracture size density distribution model is plotted 
in a log-log diagram in Figure 7‑18.

Figure 7‑17. a) List of the orientation sets for the FFM01 unit, estimated from core log data. P32 is the 
fracture density estimated from core log data. Each orientation set is defined by a Fisher distribution model, 
with a mean orientation (trend and plunge) and dispersion κ. b) Stereonet of a DFN realization defined from 
the 5 orientation sets.

a) b)
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The mechanical properties of the intact rock and of the fractures are the following. The intact rock is 
elastic and isotropic with a Young’s modulus Em = 76 GPa and Poisson’s ratio vm = 0.25. The fracture 
mechanical model is adapted from the Coulomb slip model with a constant cohesion equal to 1 GPa 
and friction angle ϕ = 37º, and a dependence of the fracture normal and shear stiffnesses, kn (σn) and 
ks (σn), on the normal stress acting on each fracture:

46.55 . 10 	 (7‑3)

2.28 . 10 	 (7‑4)

Finally, the stress state applied at the FFM01 unit presents a minor principal stress that is vertical and 
a major horizontal principal stress with a trend equal to 145º (see values in Table 7‑3).

Table 7‑3. Remote stress field at 200 m depth.

σH
 (MPa) σH

 trend (º) σh (MPa) σv
 (MPa)

23.9 145 13.6 5.3

The workflow to make the prediction of the effective elastic properties is:
–	 generate several realizations of the DFN model, over given volume dimensions,
–	 for each fracture – assuming that the normal and shear stresses acting on the fractures are 

on average equal to the projection of the remote stress field (Table 7‑3) – compute the stress 
related normal and shear stiffnesses, displacement and consecutive strain to the limit of the 
rock mass volume,

–	 derive the total strain from the sum of the contribution of each individual fracture, and
–	 derive the compliance tensor components.

The workflow is applied for the DFN model defined from a minimum fracture size of 0.1 m and for 
rock mass volumes of edge length L from 0.5 to 20 m. For each value of L, the fracture size distribu-
tion is truncated to L, so that no fracture larger than the evaluated domain is considered.

The resulting compliance tensor displays orthotropic properties (Darcel et al. 2018). The evolutions 
of the effective elastic components Exx, Eyy, Ezz, Gxy, Gyz and Gzx with L are plotted in Figure 7‑19.

Due to the nature of the DFN model fracture size density distribution, we note a scale effect with 
the decrease of the Ei i and Gi j components with increasing scale L. The extent of this effect results 
from the combination of the DFN geometrical properties (sizes), the fracture stiffnesses (ks, kn) and 
mechanical length lm = Em / ks. The respective impact of the displacements due to the normal and shear 
stiffness components (Darcel et al. 2018) is such that, in the present conditions, the alteration of effec-
tive properties is mostly due to the shear displacement component. At the extreme, if ks is negligible 

Figure 7‑18. Fracture size density distribution model for the FFM01 unit.
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(frictionless fractures, see Section 4.1), one would expect an endless scale effect (dashed lines in the 
figure). With the more realistic value of ks, the scale effect vanishes roughly above 10 meters both 
for the Young’s Ei i and shear Gi j components. At that scale, the anisotropy is such that the vertical 
modulus is decreased by about 12 % when compared to the intact rock, whereas is decreased by about 
25 % for the horizontal modulus.

This test case shows that both scale and anisotropy effects are fully evaluated with the method. 
Moreover, testing a wider range of hypotheses, i.e. doing more sensitivity studies (over the parameters 
themselves and over more realizations), allows a quantitative assessment of the uncertainties over the 
parameters and of the variability due to the stochastic nature of the DFN modelling.

Figure 7‑19. Evolution, with domain scale size, of the apparent effective elastic components Exx, Eyy, Ezz, 
Gxy, Gyz and Gzx for realistic values of ks (curves with filled symbols) and for frictionless fractures (ks ≡ 0, 
dashed line).
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8	 Conclusions

The objective of this project was to develop a quantitative and sound methodology to assess effective 
elastic properties of fractured rock mass based on a Discrete Fracture Network (DFN) modelling 
approach for characterizing the rock mass (Selroos et al. 2021). The presented work covers all the 
developments carried out as part of the project, some of which are published in Darcel et al. (2018) 
and Davy et al. (2018).

The first step is the derivation of the relationships between the rock mass deformability (effective 
elastic properties with compliance tensor C⁼ ) and the geometrical properties of fracture networks, 
associated with their local fracture scale mechanical properties. The development is an extension 
of the well-known elastic solutions for free-slipping and disc-shaped cracks, with the addition of a 
frictional term (in-plane fracture resistance and shear stiffness property ks which defines the shear 
displacement below the frictional limit with a Coulomb law and free-slipping above this limit) and 
where both shear (ks and friction envelop) and normal (normal stiffness kn) displacements in the 
fracture plane are defined. We show that the fracture shear displacement is controlled by a combina-
tion of the fracture in-plane resistance and by the rock matrix resistance around the fracture, which is 
itself inversely proportional to the fracture size. We accordingly define a characteristic fracture size 
ls (the stiffness length), below which deformation is dominated by the rock matrix resistance around 
the fractures and above which it is controlled by the resistance on the fracture plane. We emphasize 
that remote stress conditions necessary to trigger a slipping regime at a fracture embedded in the 
rock matrix must account for the stress partitioning at the fracture scale, between resistances of 
fracture in-plane and rock matrix at the fracture tips. Therefore, the remote stress value necessary 
to trigger the slipping regime in a fracture is larger than the fracture local Coulomb limit by a factor 

, where km is the matrix-fracture stiffness (Equation (4‑10)).

With the relationship established between a single fracture, the rock mass deformability and remote 
stress conditions, the next step is to sum up the contribution of all the individual fractures of a DFN to 
the rock mass deformation and to deduce the effective elastic components. Effective theory arguments 
are applied to account for fracture interactions when density of fractures in the DFN is large. All the 
derived relationships are confirmed by numerical simulations.

Next, these relationships are used to identify which of the DFN parameters (density, size distribution, 
etc) or mechanical parameters (elastic properties of the matrix, normal and shear stiffnesses of 
fractures) controls the effective elastic properties of the rock mass.

For some reference cases, simplified relationships have been established that link the DFN model 
properties (DFN P32, percolation parameter p, fracture size range) and the effective elastic properties. 
If the fractures of a DFN are such that ks ≫ km, the effective elastic modulus is controlled by the DFN 
volumetric total surface of fracture (dependency proportional to the sum of fracture surfaces, in l2). 
However, if fractures are such that ks ≪ km then the effective elastic modulus is controlled by the DFN 
percolation parameter (dependency proportional to the sum of fracture “volumes”, in l3). The latter 
occurs when fracture sizes are sufficiently smaller than ls (the characteristic stiffness size). This causes 
a scale effect for the effective elastic properties.

The established relationships can be applied to derive the effective compliance tensor resulting from 
any DFN realization. This is exemplified with an application to one Fracture Domain (FFM01) of the 
Forsmark site. In this example, the rock mass model consists of an isotropic intact rock, a DFN model 
based on 5 fracture sets with a double power-law size distribution (UFM model) and normal and shear 
stiffnesses constitutive models based on a power-law relationship with the fracture normal stress.

In complement, several analyses are performed to evaluate the local stress fluctuations around the 
fractures within the rock mass specimen. They are all based on numerical simulations. The imple-
mented stress fluctuation indicators aim at characterizing the variations around the mean stresses, 
without neglecting the tensorial aspect of stresses, and at potentially identifying scale effects. A first 
set of analyses is used as a support to the effective theory applied to account for the stress fluctua-
tions that arise from the fracture interactions.
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Finally, an exploratory study aims to analyse the consequences of gradually replacing part of the DFN 
with effective properties. Even if the average rock mass properties are well preserved by this method-
ology, this entails a reduction of the stress fluctuations. This is quantified over a few simulations. This 
study is ongoing, with the purpose to establish the relationship between the rock mass (and DFN) and 
stress conditions and the resulting distribution of stress fluctuations.

To conclude, the developed method shows for now its capacity to assess rock mass effective elastic 
properties, including a versatile description of the initial rock mass conditions and its capacity to 
characterize scale and anisotropic scale effects.

Additional exploratory studies show how it can be further developed to:
–	 assess the extent of stress fluctuations (in addition to effective average values),
–	 optimize the effective/discrete representation of the DFN for modelling application,
–	 develop the relationship between DFN and rock mass strength,
–	 prediction of critically stressed fractures and consequences on strength prediction,
–	 complete the method to account for refined fracture mechanical model (e.g. dilation term for 

critically stressed fractures) and to define the fracture mechanical opening, as a prerequisite 
to introduce the hydro-mechanical coupling between mechanical and hydraulic aperture at the 
fracture scale.
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Appendix

Rock mass classification systems
The way the fractures of the rock are considered to derive the rock mass properties has evolved signifi-
cantly since the first rock mass quality index, the Rock Mass Quality Designation (RQD) introduced by 
Deere (1963), which preceded the Q system (Barton et al. 1974), the RMR (Bieniawski 1973) and the 
GSI with the associated Hoek-Brown constitutive model for rock mass strength envelope (Hoek and 
Brown 1997, 2019, Hoek et al. 2013). Their definitions are recalled below.

The Rock Quality Designation (RQD) was introduced in the mid-1960s (Deere 1968). It is a direct and 
empirical estimate of the rock quality, directly deduced from borehole core sections, as the percentage 
of core pieces whose length is larger than 10 cm:

∗ 100 % 	 (A‑1)

The classification ranks the rock quality from very poor (0 to 25 %) to excellent (90 to 100 %). The 
use of RQD to characterize the rock mass is now seriously criticized (Pells et al. 2017). Its extreme 
simplicity makes it very easy to use but it also severely limits the possibility to use it as an input for 
defining the rock mass elastic and strength properties. Estimating the RQD does not require a DFN 
model nor DFN assumptions. But it can be univocally related to the core fracture frequency P10 
(which is a property broadly used in DFN models to quantify the density of fractures).

The Tunneling Quality Index, Q system, introduced by Barton et al. (1974), is based on several 
elements, amongst which the RQD:

∙ ∙ 	 (A‑2)

in addition to the number of joint sets (Jn), the roughness of the most unfavorable joint or discontinuity 
(Jr), the degree of alteration or filling along the weakest joint (Ja), the water inflow (Jw), the stress 
condition given as the stress reduction factor (SRF).

The RQD also is a component of the Rock Mass Rating (RMR) System developed by Bieniawski 
(1973). The RMR gives a qualitative index of rock quality, from very poor to very good and index 
between 0 and 100. It is based on criteria similar to the Q system. The following six parameters are 
used to classify a rock mass using the RMR system: Uniaxial compressive strength of rock material, 
Rock Quality Designation (RQD), spacing of discontinuities, condition of discontinuities, groundwater 
conditions and orientation of discontinuities.

The GSI, introduced by Hoek in 1995, is a dimensionless number (between 5 and 85) which results 
from a qualitative assessment of the rock level of blockiness and the fracture surface conditions 
(Figure A‑1).
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Figure A‑1. GSI chart from Hoek and Brown (2019).
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