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Abstract

This report contains research results concerning the use of advanced ultrasound for the
inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala
University in 2009 and 2010.

The first part of the report deals with ultrasonic imaging of damage in planar structures using
Lamb waves. We present results of the first successful attempt to apply an adaptive beamformer
for Lamb waves. Our algorithm is an extension of the adaptive beamformer based on minimum
variance distortionless response (MVDR) approach to dispersive, multimodal Lamb waves. We
present simulation and experimental results illustrating the performance of the MVDR applied
to imaging artificial damage in an aluminum plate..

In the second part of the report we present two extensions of the previously proposed 2D
phase shift migration algorithms for enhancing resolution in ultrasonic imaging of solid objects.
The first extension enables processing 3D data in order to fully utilize the resolution enhancement
potential of the technique. The second extension, consists in generalizing the technique to allow
for the processing of data acquired using an array instead of a previously concerned single
transducer. Robustness issue related to objects having front surfaces that are slightly tilted
relative to the scanning axis is also considered.
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In this report we are presenting our recent research results concerning ultrasonic inspection
of copper canisters for spent nuclear fuel.

Our research activity in this project in 2009/10 was split into two separate tasks that are
reported in the following chapters:

• Beamforming of Lamb waves using ultrasonic arrays, and

• Computationally efficient 3D image reconstruction using array data.

The first chapter deals with ultrasonic imaging of damage in planar structures using a special
type of guided waves, known as Lamb waves. Lamb waves are guided waves that propagate in
plate structures; in a plate the two free surfaces of the plate ’guide’ the waves within its bor-
ders. In general, when a Lamb wave is incident on a structural discontinuity (which has a size
comparable to its wavelength), it is scattered in all directions. When the scattered wave field is
sensed by a transducer the information about the damage can be extracted from various char-
acteristics of the received signal, such as delay in time of transit, amplitude, frequency content,
etc. Lamb waves are very useful for monitoring large areas from a fixed position due to their
ability to propagate over a long distance. Lamb waves, however, have disadvantages that stem
from their guided nature, they are dispersive and can propagate in the form of multiple modes
with different velocities. Those features seriously complicate interpretation of the backscattered
signals, which calls for using advanced beamforming techniques for damage detection and char-
acterization. An adaptive beamformer, base on the minimum variance distortionless response
(MVDR) approach, modified for the dispersive, multimodal waves is presented in this chapter.
We present experimental results of the first successful attempt to apply an adaptive beamformer
for Lamb waves. Part of the results from this chapter is included in two papers accepted for
publication in two journals: An International Journal of Structural Health Monitoring (Sage),
and IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (UFFC), 2010.

In the second chapter we present results of further investigation of phase shift migration
presented in our previous report TR-09-28. We implemented migration techniques that were
originally developed in seismic exploration for the examination of the Earth’s interior, to ul-
trasonic data. Migration is an advanced postprocessing technique which offers possibility of
improving spatial resolution when imaging multilayered media. We consider the immersion ul-
trasonic test setup for which time domain methods, such as SAFT, are cumbersome to use due
to the refraction at the layer interfaces. Previously, we considered phase shift migration for 2D
reconstructions using a single scanned transducer. Here, we extend our algorithm from 2D to
3D data in order to fully utilize the resolution enhancement potential of the technique. Part of
the results from this chapter is included in the paper that has been accepted for publication in
IEEE Transactions on UFFC, 2010
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2.1 Introduction

Guided waves in structures allow inspection of large areas from a fixed position. Areas which
are not accessible using traditional NDT methods, such as eddy current or bulk wave pulse-
echo ultrasound, can potentially be inspected or monitored using guided waves. Examples of
applications for guided waves are the inspection of piping [1] and plates [2].

Guided waves in plates, also known as Lamb waves, share fundamental properties with other
types of guided waves, such as, dispersion and the existence of multiple propagating modes.
Dispersion causes the signal to spread out which reduces the spatial and temporal resolution of
the received unprocessed data, a significant issue in applications where range is to be estimated.
Furthermore, Lamb modes differ in dispersion characteristics and propagate at different velocities
making interpretation of backscattered signals complicated in the presence of multiple modes.
Overlapping modes can make identification of small defects and time-of-flight estimation difficult.

During the last decade the use of active Lamb wave arrays for imaging of larger plate areas has
been proposed by several authors [3–8]. One or more elements in the array generate a pulse that
propagates along the plate. The backscattered signals from defects and other discontinuities
are received by the array and post-processed to form an image of the reflectors in the plate.
As for other guided wave applications, reduction of interference from other modes is of major
importance. Proper design of transducers used for excitation and detection in combination with
careful frequency selection can significantly reduce the influence from interfering modes. Omni-
directionality is essential for most array applications and requires special consideration in the
array element design. Some examples presented in the field include the use of electro-mechanical
acoustic transducers (EMAT) [5, 9], and piezoelectric transducers [6, 10]. The drawback of these
approaches is that they require limited bandwidth input signals to work efficiently. Limited
bandwidth leads to reduced range resolution since the length of the signal increases.

The effect of dispersion can be reduced by selecting a frequency region with relatively low
dispersion or using dispersion compensation scheme. Wilcox showed that by using theoretically
calculated dispersion curves, time domain data can be transformed into dispersion compensated
spatial domain data over a wider frequency range for a single mode [5, 11].

The above cited works, in common with most other work presented in the literature con-
cerning array processing of Lamb waves, have been focused on the standard beamformer (SBF).
The standard beamformer is robust, easy to implement, and computationally simple. However,
compared to more advanced array processing methods it suffers from poor resolution and high
sidelobes. In [5] a deconvolution approach based on the simulated point-spread function was
used to reduce the sidelobe level. A more general approach to beamformer design was proposed
by Velichko and Wilcox in [12]. However, neither of these methods are data dependent and will
therefore assume the worst case scenario: signals are assumed to impinging from all directions.
This will lead to a suboptimal use of the available degrees of freedom in the weight vector. If
knowledge of the actual interferers was available, an optimal weight vector could be derived to
much more efficiently cancel interferers. Such methods are known as adaptive beamformers, and
have not been used in Lamb wave applications.

Adaptive beamformers have been successfully utilized in, for example, radar, sonar, and
medical ultrasound applications, resulting in improved resolution and interference suppression
compared to the SBF. Contrary to the SBF, an adaptive beamformer is optimized based on some
data criterion, such as minimizing the influence of interfering signals in the received data. One of
the most commonly used adaptive beamformers is based on the minimum variance distortionless
response (MVDR) approach. Previous work on the MVDR approach in the medical ultrasound
field include Wang [13] et al., Sasso and Cohen-Bacrie [14], and Synnev̊ag et al. [15]. Another,
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but not entirely related, approach using the MVDR method for Lamb wave processing was
proposed by Michaels et al. [16] for processing change based data from a distributed array in a
tomographic setup.

In [17–19], the MVDR approach was compared by the authors to a SBF for passive direction-
of-arrival (DOA) estimation of Lamb waves, which showed that the MVDR approach performs
much better in terms of resolution and sidelobe level. The work was extended to a complete
active imaging procedure [20], where a single transmitter and a fixed array of receivers was
used to inspect a plate. The MVDR beamformer (MVBF) showed much better resolution and
suppression of the interfering Lamb modes compared to the SBF. The improved suppression
of interfering Lamb modes, may relax requirements on array element design and bandwidth
of the input signals. However, the most significant drawback of the MVDR approach is its
inability to handle correlated sources. This is especially true for active imaging setups, where
the backscattered signals are likely to be highly correlated. This in turn puts some constraints
on the geometry of the array and limited the effective aperture size.

In this chapter a MVDR approach for Lamb wave imaging is introduced capable of working in
the highly correlated environment of an active setup. The basic steps of the method follows the
approach used in medical ultrasound by Sasso and Cohen-Bacrie [14], Synnev̊ag et al. [15], and
others. Here, the technique is extended to handle dispersion and two-dimensional arrays. The
motivation for using this approach is its high resolution and its ability to adaptively suppress
interfering signals from other defects and from other propagating Lamb modes. Efficient sup-
pression of interfering modes may relax the requirements on transducer design and limitations
in signal bandwidth. Setups with single transmitter and multiple transmitters array are consid-
ered separately. The approach employing a single transmitter, requires certain preprocessing to
achieve the desired result. The use of multiple transmitters avoids the need for preprocessing,
which enables more flexibility in array design, and can lead to improved performance compared
to single transmitter setups.

The chapter is organized as follows: the problem is formulated in Sec. 2.2, where a short
overview of the relevant properties of Lamb waves along with an introduction to the MVDR
approach is also presented. Details concerning the MVDR algorithms are given in Sec. 2.4.
The performance of the proposed method compared to the SBF is evaluated in Sec. 2.5. Two
scenarios are considered: first, simulation results of the mode suppression capabilities of three
different array configurations are presented, followed by the simulation and experimental results
of a plate inspection scenario. Finally, conclusions are formulated in Sec. 2.6.

2.2 Problem formulation

This work considers the monitoring of thin plates through pulse-echo ultrasonic imaging using
guided Lamb waves. The imaging covers 360◦, in both near-field and far-field using a rectangular
array. Two cases illustrated in Fig. 2.1 are considered:

• A single transmitter located at zt = [xt, yt]
T , that may be an array element or a separate

transducer, insonifies the plate using a short pulse or a time-windowed sinusoid. The
resulting waves are reflected back from boundaries and defects and the backscattered field
is acquired by all array elements.

• Elements of a 2D array capable of generation and reception of Lamb waves are used
sequentially to insonifiy the plate using a short pulse or a time-windowed sinusoid. Data
are acquired from the successive excitations of the transmitting elements in the array and
the reception is performed using all the receiving array elements.
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but not entirely related, approach using the MVDR method for Lamb wave processing was
proposed by Michaels et al. [16] for processing change based data from a distributed array in a
tomographic setup.
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suppression of the interfering Lamb modes compared to the SBF. The improved suppression
of interfering Lamb modes, may relax requirements on array element design and bandwidth
of the input signals. However, the most significant drawback of the MVDR approach is its
inability to handle correlated sources. This is especially true for active imaging setups, where
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ered separately. The approach employing a single transmitter, requires certain preprocessing to
achieve the desired result. The use of multiple transmitters avoids the need for preprocessing,
which enables more flexibility in array design, and can lead to improved performance compared
to single transmitter setups.

The chapter is organized as follows: the problem is formulated in Sec. 2.2, where a short
overview of the relevant properties of Lamb waves along with an introduction to the MVDR
approach is also presented. Details concerning the MVDR algorithms are given in Sec. 2.4.
The performance of the proposed method compared to the SBF is evaluated in Sec. 2.5. Two
scenarios are considered: first, simulation results of the mode suppression capabilities of three
different array configurations are presented, followed by the simulation and experimental results
of a plate inspection scenario. Finally, conclusions are formulated in Sec. 2.6.

2.2 Problem formulation

This work considers the monitoring of thin plates through pulse-echo ultrasonic imaging using
guided Lamb waves. The imaging covers 360◦, in both near-field and far-field using a rectangular
array. Two cases illustrated in Fig. 2.1 are considered:

• A single transmitter located at zt = [xt, yt]
T , that may be an array element or a separate

transducer, insonifies the plate using a short pulse or a time-windowed sinusoid. The
resulting waves are reflected back from boundaries and defects and the backscattered field
is acquired by all array elements.

• Elements of a 2D array capable of generation and reception of Lamb waves are used
sequentially to insonifiy the plate using a short pulse or a time-windowed sinusoid. Data
are acquired from the successive excitations of the transmitting elements in the array and
the reception is performed using all the receiving array elements.
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Figure 2.1: Overview of the imaging problem. Single transmitter and 4x4 rectangular matrix of receivers
(left) and 4x4 rectangular active array with current transmitter zp and receiver zm (right). A scatterer
is located at zr.

The objective in both cases is to detect and estimate the size of defects in a plate structure.
The acquired data allows an estimation of the reflected power in each point z = [x, y]T in the
region of interest (ROI) located in the vicinity of the array.

Let gp,m(t) denote the received signal for the p:th transmitter and m:th receiver (for the
first case p is equal to 1). Each of the P transmitting elements is excited separately, but
the backscattered signals are received by all M receiving elements either simultaneously or
multiplexed through repeated transmitter excitation. The approach is general in the sense that
either an active array (pulse-echo mode), or a combination of transmitting and receiving arrays
(pitch-catch), can be considered. It is assumed that gp,m(t) is an analytic (complex) signal,
hence, all negative frequency components are zero.

The dispersive and multi-modal properties of the propagating Lamb waves need to be ad-
dressed to achieve adequate results. Omni-directional coverage in both near- and far-field of the
array is desirable to fully utilize the array. The results presented below have been acquired using
uniform rectangular arrays (URAs). However, the method is not restricted to any particular
array configuration.

2.3 Theoretical background

2.3.1 Lamb waves

To perform imaging using Lamb waves over a wide frequency band, the dispersive properties of
the Lamb waves need to be addressed. A necessary step in both simulation and compensation of
dispersion is the estimation of the theoretical dispersion characteristics of the monitored struc-
ture. If accurate estimates of the material properties of the object are available, the dispersion
characteristics can be determined by solving the Rayleigh-Lamb frequency equations. For ho-
mogeneous isotropic plates the wavenumber at angular frequency ω, k(ω), can be calculated by
solving the Rayleigh-Lamb frequency equations [21],

tan(qd/2)

tan(pd/2)
= − 4k2(ω)pq

(q2 − k2(ω))2
for symmectric modes, (2.1)

tan(qd/2)

tan(pd/2)
= −(q2 − k2(ω))2

4k2(ω)pq
for antisymmectric modes, (2.2)

where d is the thickness of the plate, p2 = (ω/cL)2 − k2(ω), and q2 = (ω/cS)2 − k2(ω), cL is
the longitudinal bulk wave velocity and cS is the shear bulk wave velocity of the material. An
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Figure 2.2: Dispersion curves for a 6 mm Al plate. Phase velocity (left) and group velocity (right).
Solid lines (S0,S1, ...) - symmetric modes. Dashed line (A0,A1, ...) - asymmetric modes. Dash-dot lines
show the frequency band of the signal used in experiments in Sec. 2.5.

example of the theoretical dispersion curves calculated for the 6 mm aluminium plate is shown
in Figure 2.2.

Another possibility is to experimentally estimate the dispersion using, for example, the 2D
FFT approach proposed by Alleyne and Cawley [22]. This can be particularly valuable for
complex structures, and for evaluating the response of the array elements in terms of mode
excitation.

Depending on the frequency of the signal and the thickness of the plate, the number of Lamb
modes may range from two to infinity. The Lamb modes are named S0, S1, . . . for symmetric
modes, and A0, A1, . . . for antisymmetric modes. In the following sections a simple index,
n = 0, 1, 2, 3, . . ., is used to identify modes S0, A0, S1, A1, . . . . The frequency dependent
wavenumber of the n-th mode is denoted kn(ω).

Directionality of arrays

Arrays are commonly used as spatial filters enabling directional resolution. 1D arrays, such
as uniform linear arrays (ULA), where all array elements are uniformly distributed on a line,
offer at best 180◦ azimuthal coverage. Furthermore, the performance of a ULA in terms of
angular resolution is highly dependent on the azimuth. 2D arrays on the other hand, offer
360◦ azimuthal coverage. Examples of most common 2D array configurations are circular and
rectangular arrays.

The most fundamental model of an array is the array steering vector or the array manifold

vector. The steering vector consists of phasors producing the phase-shifts corresponding to the
propagation over the array for a particular wavenumber (kx, ky). Thus, the steering vectors
represent an array for a single mode at a particular frequency and incident angle.

Although the steering vector is not used explicitly in the algorithm, it will be used as when
describing the basic theory of the MVBF. The steering vector for a rectangular array can be
constructed by stacking rows of ULA steering vectors [23]. Let the steering vector for the mr:th
row be

amr(kx, ky) =
[
ejmrkyd ej(kxd+mrkyd) · · · ej((Mc−1)kxd+mrkyd)

]T

. (2.3)

where d is the element spacing and Mc the number of columns.

For a URA built of Mc columns and Mr rows, the stacked steering vector takes the following

7



Figure 2.1: Overview of the imaging problem. Single transmitter and 4x4 rectangular matrix of receivers
(left) and 4x4 rectangular active array with current transmitter zp and receiver zm (right). A scatterer
is located at zr.

The objective in both cases is to detect and estimate the size of defects in a plate structure.
The acquired data allows an estimation of the reflected power in each point z = [x, y]T in the
region of interest (ROI) located in the vicinity of the array.

Let gp,m(t) denote the received signal for the p:th transmitter and m:th receiver (for the
first case p is equal to 1). Each of the P transmitting elements is excited separately, but
the backscattered signals are received by all M receiving elements either simultaneously or
multiplexed through repeated transmitter excitation. The approach is general in the sense that
either an active array (pulse-echo mode), or a combination of transmitting and receiving arrays
(pitch-catch), can be considered. It is assumed that gp,m(t) is an analytic (complex) signal,
hence, all negative frequency components are zero.

The dispersive and multi-modal properties of the propagating Lamb waves need to be ad-
dressed to achieve adequate results. Omni-directional coverage in both near- and far-field of the
array is desirable to fully utilize the array. The results presented below have been acquired using
uniform rectangular arrays (URAs). However, the method is not restricted to any particular
array configuration.

2.3 Theoretical background

2.3.1 Lamb waves

To perform imaging using Lamb waves over a wide frequency band, the dispersive properties of
the Lamb waves need to be addressed. A necessary step in both simulation and compensation of
dispersion is the estimation of the theoretical dispersion characteristics of the monitored struc-
ture. If accurate estimates of the material properties of the object are available, the dispersion
characteristics can be determined by solving the Rayleigh-Lamb frequency equations. For ho-
mogeneous isotropic plates the wavenumber at angular frequency ω, k(ω), can be calculated by
solving the Rayleigh-Lamb frequency equations [21],

tan(qd/2)

tan(pd/2)
= − 4k2(ω)pq

(q2 − k2(ω))2
for symmectric modes, (2.1)

tan(qd/2)

tan(pd/2)
= −(q2 − k2(ω))2

4k2(ω)pq
for antisymmectric modes, (2.2)

where d is the thickness of the plate, p2 = (ω/cL)2 − k2(ω), and q2 = (ω/cS)2 − k2(ω), cL is
the longitudinal bulk wave velocity and cS is the shear bulk wave velocity of the material. An

6

0 500 1000 1500
0

2000

4000

6000

8000

10000

Frequency [kHz]

P
h

as
e 

v
el

o
ci

ty
 (

c p
) 

[m
/s

]

S
0

S
1

S
2

S
3

A
0

A
1

A
2

A
3

0 500 1000 1500
0

1000

2000

3000

4000

5000

6000

7000

Frequency [kHz]

G
ro

u
p

 v
el

o
ci

ty
 (

c g
) 

[m
/s

] S
0

S
1 S

2

A
0

A
1 A

2

A
3

Dispersion curves for 6 mm Al plate. Phase velocity (top) and group
Figure 2.2: Dispersion curves for a 6 mm Al plate. Phase velocity (left) and group velocity (right).
Solid lines (S0,S1, ...) - symmetric modes. Dashed line (A0,A1, ...) - asymmetric modes. Dash-dot lines
show the frequency band of the signal used in experiments in Sec. 2.5.

example of the theoretical dispersion curves calculated for the 6 mm aluminium plate is shown
in Figure 2.2.
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FFT approach proposed by Alleyne and Cawley [22]. This can be particularly valuable for
complex structures, and for evaluating the response of the array elements in terms of mode
excitation.

Depending on the frequency of the signal and the thickness of the plate, the number of Lamb
modes may range from two to infinity. The Lamb modes are named S0, S1, . . . for symmetric
modes, and A0, A1, . . . for antisymmetric modes. In the following sections a simple index,
n = 0, 1, 2, 3, . . ., is used to identify modes S0, A0, S1, A1, . . . . The frequency dependent
wavenumber of the n-th mode is denoted kn(ω).

Directionality of arrays

Arrays are commonly used as spatial filters enabling directional resolution. 1D arrays, such
as uniform linear arrays (ULA), where all array elements are uniformly distributed on a line,
offer at best 180◦ azimuthal coverage. Furthermore, the performance of a ULA in terms of
angular resolution is highly dependent on the azimuth. 2D arrays on the other hand, offer
360◦ azimuthal coverage. Examples of most common 2D array configurations are circular and
rectangular arrays.

The most fundamental model of an array is the array steering vector or the array manifold

vector. The steering vector consists of phasors producing the phase-shifts corresponding to the
propagation over the array for a particular wavenumber (kx, ky). Thus, the steering vectors
represent an array for a single mode at a particular frequency and incident angle.

Although the steering vector is not used explicitly in the algorithm, it will be used as when
describing the basic theory of the MVBF. The steering vector for a rectangular array can be
constructed by stacking rows of ULA steering vectors [23]. Let the steering vector for the mr:th
row be

amr(kx, ky) =
[
ejmrkyd ej(kxd+mrkyd) · · · ej((Mc−1)kxd+mrkyd)
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form

a(kx, ky) =




a0(kx, ky)

...
aMr−1(kx, ky)



 . (2.4)

For Lamb waves, array steering is performed by matching the phase shifts corresponding to
a particular mode’s dispersion characteristics for a given frequency. The signals from the array
elements are aligned to coherently sum signals that match a selected direction and mode. Other
modes and directions will not add up constructively which should result in their suppression.

The normalized output from a SBF to wavenumber (kx, ky), assuming a narrowband1 signal
is

y(t) =
1

M
aH(kx, ky)x(t), (2.5)

where x(t) = [x0(t)x1(t) . . . xM (t)]T contains the signals received by the M array elements, and
H denotes the conjugate transpose. For SBFs it is common to apply some weight function on
the array elements to reduce the sidelobe level, so called apodization. Therefore a more general
description of the beamformer is

y(t) = wHx(t) (2.6)

where w is the weight (apodization) vector. Apodization is normally used in beamformers to
suppress sidelobes. The weight vector of a SBF is simply a weighted steering vector, which is
completely independent of the received signal. By contrast, adaptive beamformers, such as the
MVBF, form data dependent weight vectors according to some predefined criterion.

Beamforming of broadband signals is performed either in time domain, where delays are
used to align the signals from a particular direction, or by processing each frequency component
separately and superimposing the results.

Mode suppression

Besides dispersion, the interference from multiple propagating modes creates difficulties when
interpreting Lamb wave measurement data. The backscattered signal from a defect can consist
of multiple dispersed modes arriving at different times, which could be misinterpreted as defects,
overlap weaker defects, and make time-of-flight estimation difficult.

As discussed earlier, a 2D array is required for 360◦ coverage, but as it will be explained
below, 2D arrays offer another advantage over 1D arrays which is highly relevant for Lamb
waves.

Consider two different overlapping plane wave Lamb modes impinging on a ULA from 0◦,
as illustrated in Fig. 2.3. The modes have different wavenumbers and propagate at different
velocities. Unless there is a priori information available concerning the shape and propagation
of the modes, these are obviously impossible to separate for any beamformer. The reason is that
all the array elements are approximately at the same distance to the source, in other words,
all modes have the same steering vector for this angle, the unit vector 1. A 2D array, on
the other hand, allows separation since its elements are at different distances from the target
and non-focused modes will therefore not add up coherently. SBFs rely completely on this
concept which, to work efficiently, requires relatively many array elements. The benefits of
using adaptive beamformers is that they allow much more efficient use of the limited array size.
Examples illustrating this are presented in Section 2.5.

1An impinging signal is considered narrowband if the signal’s complex envelope is approximately constant
during its propagation over the array.
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Figure 2.3: Two Lamb modes with different wavenumber impinging on a ULA.

Mode conversion

When a Lamb wave is reflected or transmitted at a boundary, some of the energy of the particular
incoming Lamb mode may be converted into other modes. Depending on the characteristics of
the boundary, and the frequency content of the impinging Lamb wave, the conversion is possible
between modes of different order, e.g. A0 to A1, as well as between antisymmetric and symmetric
modes [21]. Thus, a signal received as a particular mode may be the result of any other mode
propagating from the transmitting transducer to the boundary at a different velocity. A few
simulation examples featuring mode conversion will also be presented in Section 2.5.

Simulation model

To enable evaluation of the MVBF compared to the SBF under ideal conditions, a simplified
simulation model has been used. The model simulates multiple reflections of two propagating
modes impinging on the array, the S0 and A0 mode.

In practice, the excitation of a particular mode depends both on the transducer and the
excitation frequency. Here, it is simply assumed that both modes have been excited and the
resulting out-of-plane surface displacement is T (ω) for both modes. Further, assume that there
are R pointscatterers in the plate that scatter incident waves equally in all directions and that
no secondary scattering occurs. The transmitting elements p = 1 . . . P , act as omnidirectional
pointsources, and are excited individually. Let Gp,m(ω) denote the signal received by array
element m from an excitation of transmitter p. The received signals from a scatterer are given
by the sum of the two modes and the corresponding phase-shifts due to dispersion in the path
from the transmitting array element p, to the reflector r, and back to the receiving element m.
The resulting signals are superpositions of the contributions from the R reflectors

Gm(ω) =
R∑

r=1

1∑

n=0

1
√

zr,pzr,m
Rr,nT (ω)e−jkn(ω),(zr,p+zr,m) (2.7)

where the distances, zr,p = �zr − zp�, and zr,m = �zr − zm�, are the scatterer–transmitter and
scatterer-receiver distance, respectively, and zr, zm, and zp, shown in Fig. 2.1, are the positions
of the scatterer, the receiver, and the transmitter, respectively. The frequency independent
reflection coefficient for reflector r and mode n is denoted Rr,n. The first factor in (2.7) is due
to the divergence of the cylindrical waves from the point-sources and point-scatterers.

For the case with mode conversion, where some of the power of mode n is converted into
another mode n′ at the reflector, the expression in the sum (2.7) becomes

Rr,nn′T (ω)e−j(kn(ω)zr,p+kn′ (ω)zr,m) (2.8)
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form
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where Rr,nn′ is the amplitude of the converted mode at reflector r, and kn′(ω) the wavenumber
of mode n′.

2.3.2 Minimum Variance Distortionless Response beamformer

Contrary to the SBF explained in Sec 2.3.1, the MVBF beamformer is capable of adaptive
suppression of interfering signals and modes. To achieve this it requires information on the
noise and interference environment in the form of the spatial covariance matrix. The elements
of the spatial covariance matrix are the interelement covariance estimates of the signals received
by the array. The estimation of the covariance matrix is the most critical step in the MVDR
approach and its accuracy has significant impact on the final result.

Before proceeding to the broadband implementation of the MVBF used in this work, the
narrowband MVBF is reviewed. A narrowband signal assumption leads to the basic formulation
of the MVBF, which is the most common in the literature.

A covariance matrix estimate using Ns samples of the vector x(t) is given by

R̂ =
1

Ns

Ns∑

t=1

x(t)xH(t). (2.9)

The MVDR method, also known as Capon’s method, was originally proposed for frequency-
wavenumber estimation of seismic waves [24]. The MVDR method sets a data dependent weight
vector which minimizes the influence of interfering signals while passing the desired signal undis-
torted.

The weight vector w of the MVBF is designed so that the signals with the wavenumber
(kx, ky) are to be passed with gain 1, i.e., wHa(kx, ky) = 1, while the output power from the
array, P (kx, ky) = wHRw is minimized. This means that the resulting weight vector will
minimize the influence of interferers. The solution to this optimization problem is simply [25]

w(kx, ky) =
R̂−1a(kx, ky)

aH(kx, ky)R̂−1a(kx, ky)
, (2.10)

and the corresponding estimated power of the signal with the wavenumber (kx, ky) is

PMV DR(kx, ky) =
1

aH(kx, ky)R̂−1a(kx, ky)
. (2.11)

The MVBF in its standard form, similarly to many other advanced array processing meth-
ods, assumes narrowband signals. Furthermore, it is not able to separate backscattered signals,
since they are typically correlated, which may result in so-called signal cancellation [26]. This
manifests itself as the suppression and spatial perturbation of the relevant signal by the beam-
former. Another major disadvantage of the MVBF is that it is sensitive to errors in the steering
vector, where even small errors can lead to suppression of the desired signal [27]. The following
sections will address those issues.

2.4 Methods

Generally, there are two ways of obtaining high range resolution in imaging: either using using
short pulses or long pseudo-random sequences. The first way, which is most commonly used in
ultrasonic imaging, requires transmitting broadband signals that, when scattered are received by
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the array elements. However, many array processing methods, such as MVBF, are formulated
for narrowband signals. Thus, the most straightforward and most commonly used approach to
handle broadband signals is to perform the estimation for each frequency separately using the
frequency domain version of the covariance matrix, that is, the spectral matrix. The drawback
of such an approach is that the correlation between different frequencies of the signal is not
utilized. Additionally, a poor signal-to-noise ratio (SNR) leads to high variance in the estimates
of the individual narrowband spectral matrices [28]. Furthermore, since broadband signals are
typically limited in time, there is a trade-off between the frequency resolution and the number of
snapshots used for averaging, which also has a negative impact on the individual spectral matrix
estimates. To utilize the broadband nature of the signal a number of preprocessing procedures
have been proposed in the literature, for example, the coherent subspace approach [29] and the
steered covariance matrix [28].

Signal cancellation can be reduced by using, for example, spatial smoothing [30], which
decorrelates the signals and also reduces the variance of the estimated covariance matrix. Spatial
smoothing can only be applied on arrays with regular geometries that can be divided into a set
of identical subarrays. Furthermore, spatial smoothing reduces the effective aperture size to
that of the subarray.

The decorrelating preprocessing step is necessary in passive scenarios, or for setups consisting
of only one transmitter, such as the first setup defined in Sec. 2.2. For active arrays setups,
where each element can be excited separately, such as the second setup defined in Sec. 2.2,
this problem is avoided. The multiple and slightly different snapshots created by the separate
element excitations have the same effect as the subarray averaging of the spatial smoothing
approach [31], without the reduction in effective aperture size. For setups having significantly
fewer transmitters than receivers, a combination of multiple transmitters and spatial smoothing
may be considered.

2.4.1 Steered pseudo-covariance matrix

To take advantage of the bandwidth of broadband signals, the steered covariance matrix ap-
proach was introduced by Krolik [28] for far-field broadband source localization. The idea is
to pre-steer the received data before estimating the covariance matrix (2.9). What is gained
by doing so is that all frequency components of a potential broadband signal from the steered
direction will have a unit steering vector, 1, which allows for a direct application of (2.10) to
calculate a broadband adaptive weight vector.

The basic concept of this approach has been applied on near-field data for adaptive beam-
forming of linear arrays in medical ultrasound by Wang [13] et al., Sasso and Cohen-Bacrie [14]
and Synnev̊ag et al. [15]. In this work this approach is extended to 2D arrays and dispersive
signals.

For non-dispersive signals, such as those in the acoustical environment of medical ultrasound,
the steering of the received signals prior to calculation of the covariance matrix is performed
using delays. The delays are chosen to align potential reflections from a particular point z,

hp(z) = [g0(τ0(z)) g1(τ1(z)) · · · gM−1(τM−1(z))]T , (2.12)

where τm(z) is the delay corresponding to the propagation time from the transmit element p to
the point z, and back to the receiver m.

Using time delays for broadband dispersive Lamb waves will not lead to coherent alignment
the signals since the frequency components propagate at different phase velocities. Instead, the
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where Rr,nn′ is the amplitude of the converted mode at reflector r, and kn′(ω) the wavenumber
of mode n′.
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R̂ =
1

Ns

Ns∑

t=1

x(t)xH(t). (2.9)
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1

aH(kx, ky)R̂−1a(kx, ky)
. (2.11)
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alignment is obtained by backpropagating the signal gp,m(t), for a particular mode n as [11]

hp,m,n(z) =
√

zr,pzr,m

∑

ωs

Gp,m(ωs)e
jkn(ωs)(zr,p+zr,m) (2.13)

where Gp,m(ωs) is the Fourier transform of the received signal gp,m(t), p denotes the transmitter,
and zr,p = �zr − zp� and zr,m = �zr − zm�. The first factor compensates for the divergence
and the exponential introduces the proper phase-shift to compensate for the dispersion and
propagation.

The procedure only compensates for the dispersion and propagation of one mode. Other,
interfering modes are not aligned. In the sequel it is assumed that a particular mode is selected,
hence the mode index, n, is dropped for notional convenience.

To avoid spatial aliasing, the frequencies used in (2.13) should be limited so that the minimum
wavelength for any mode is at least twice the element distance in the array. Assuming that
gp,m(t) is a complex (analytical) signal, spectral components above the Nyquist frequency in the
discrete Fourier transform are zero. Note that there is risk that other modes wrap-around due to
the phase shifts and in such cases the received signals should be zero-padded before processing.

Potential wave attenuation is not compensated for since it is assumed to be small. However,
if the attenuation is significant and known, it is straightforward to include a compensating term
in (2.13).

To estimate the reflected power from a focus point z, the received signals from all array
elements are phase-shifted according to (2.13) to compensate for the propagation and dispersion
corresponding to the distance between the transmitter p, the focus point z and the receiver m.
This results in a focused vector

hp(z) = [hp,1(z) hp,2(z) · · · hp,M (z)]T , (2.14)

for each transmitter p. A rank one covariance matrix for transmitter p is

R̂p(z) = hp(z)hH
p (z). (2.15)

In order to get proper estimate of the covariance matrix is is necessary to have several snapshots.
One option is to average over nearby points, analogous to (2.9). However, since broadband
signals are considered, which will be spatially confined around the actual scatterer, this may
not improve the estimate. A better approach is to utilize the multiple snapshots acquired over
the successive transmitter excitations. In addition to improving the estimate of the covariance
matrix, it will lead to a decorrelation of the backscattered signals, which was discussed in the
beginning of this section.

Let the matrix H(z) be defined as

H(z) = [h1(z) h2(z) · · · hP (z)]. (2.16)

The focused covariance matrix can then be estimated as the average of all rank 1 covariance
matrices from each transmitter, hp(z)hH

p (z), as

R̂(z) =
1

P
H(z)HH(z). (2.17)

Thus, each point in the ROI requires a separate covariance matrix which results in more compu-
tational effort compared to a conventional covariance matrix. The advantage, however, is that
this approach enables processing of dispersed near-field broadband signals, which is not possible
using the standard MVDR approach in (2.10).
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2.4.2 MVBF

Since the proper phase shifts for steering and dispersion compensation for each frequency are
already applied in the steered covariance matrix R̂(z), the steering vector for point z takes
simply the form of the unit vector 1, which results in the following MVBF weight vector

w(z) =
R̂−1(z)1

1TR̂−1(z)1
. (2.18)

Note that if the number of transmitters P is less than the number of receivers M , the covariance
matrix (2.17) will be non-invertible. This will be addressed in Section 2.4.4.

The weight vector w(z) is then applied on the received signals from each excitation and the
outputs are subsequently averaged

y(z) =
1

P

P∑

p=1

wH(z)hp(z). (2.19)

The backpropagation step in (2.13) has already aligned the signals for the particular mode,
making the SBF output simply the average of the focused signals

y(z) =
1

P

P∑

p=1

1Hhp(z). (2.20)

Note that apodization can be applied to the SBF by replacing the unit vector by a suitable
weight vector.

The steering vector for the steered covariance matrix is constructed with an assumption of
equal amplitude over the array elements for the signal of interest. This assumption will affect
the behavior of the MVBF approach compared to the SBF in the presence of near-field defects
that reflect the transmitted waves in a way that leads to significantly different amplitudes over
the array elements. This could typically occur when a defect is oriented in such a way that the
reflected energy only reaches some array elements. The SBF will simply produce an output based
on the average over the array, while the MVBF could in the worst case cancel the signal. The
diagonal loading approach described below, will to some degree increase the MVBF’s tolerance
to such signals.

2.4.3 Focusing regions

When performing the focusing operation for each element pair hp,m,n(z) in both directions (i.e.,
transmitter-receiver and receiver-transmitter), the focused range forms an ellipse intersecting
the focus point z, where the elements are located in the focal points of each ellipse. Each pair
of elements forms a different ellipse, which leads to the problem that the focused signals from
different element pairs can potentially contain contributions from different defects. Furthermore,
because of the different angles between the transmitters, the scatterers, and the receivers it is
possible that a single interfering defect spreads out spatially, which limits the performance of
the MVBF. Therefore, the near-field covariance matrices, R̂p(z), from each transmitter p, are
not realizations of the same interference environment, which calls for a more appropriate name,
a pseudo-covariance matrix. Two examples of such ellipses are illustrated in Fig 2.4.

Although each transmission improves the estimate of the covariance matrix close to the
point in focus, the resulting data could include more interferers that could actually reduce the
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Figure 2.4: Elliptic focusing regions for 2x1 (a) and 4x4 (b) array.

performance of the MVBF. The MVBF is most efficient when there are only a few spatially
confined interferers. When the number of interferers increases, it is likely that the adaptive
performance is also reduced. This effect can be seen in the simulation results.

Since this issue is aggravated by an increase in the number of transmitters used for averaging
in (2.17), one approach to mitigate the problem is to divide the transmitters into L subarrays
and perform the estimation using each transmitting subarray l separately. Thus, a weight vector
wl(z) is calculated using a covariance matrix estimate from only a subset of the transmitters.
The outputs, using received data and the weights from the covariance matrix estimates of each
subarray, are then averaged

y(z) =

L∑

l=1

yl(z). (2.21)

2.4.4 Robustness and rank issues

It is well known that steering vector errors can have a severe effect on the estimate of the MVDR
algorithm [27]. This can cause the resulting weight vector to suppress the actual signal instead
of the intended unit gain. A common approach to balance adaptive performance and robustness
is through diagonal loading of the sample covariance matrix. This is performed by adding a
positive constant to the diagonal elements of the covariance matrix

R̂load = R̂ + αI. (2.22)

The difficulty is to determine the amount of loading that is appropriate. Using the same approach
as in [15], α is set as

α =
1

ǫM
tr{R̂(z)} (2.23)

where ǫ scales the amount of loading and tr{} is the trace. Eq. (2.22) makes the loading
proportional to the average power of the focused signals. Although this is desirable since it
adds less absolute loading to points where the signals are weak, ǫ is still a user parameter. The
increase in robustness comes at the cost of lower adaptivity. The diagonal loading also makes the
MVBF less sensitive to differences in amplitude over the array caused by directional near-field
defects.
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Another issue which is common in practical applications is that the covariance matrix does
not have full rank or is poorly conditioned. Rank deficiency occurs, for example, when the
number of transmitters is less than the number of receivers. Sufficient diagonal loading ensures
that the pseudo-covariance matrix is well-conditioned.

2.4.5 The Algorithm

The previous sections explained in detail the proposed method. The whole procedure can be
summarized in the following steps performed for each point z in the region of interest for a
particular Lamb mode n :

1. Compensate for dispersion using the dispersion characteristics of mode n, kn(ω), (2.13)

2. Create focused vector for point z, (2.16)

3. Calculate averaged covariance matrix (2.17)

4. Apply diagonal loading (2.22) - (2.23)

5. Calculate the MVBF weight vector and estimate the power (2.18) - (2.19)

Forming a dispersion compensated SBF only requires steps 1 and 2 and its output estimate is
then given by (2.20).

2.5 Results

In this section the results of comparison of the proposed MVDF with SBF DAS beamformer
will be presented. The MVDF method was evaluated using both simulated and experimental
data using an aluminium plate with artificial defects.

2.5.1 The imaging object

The object used for the evaluation was a 6 mm thick, 750x750 mm aluminum plate (6082-T6)
with artificial defects. The artificial defects included pairs of drilled-through holes, a 1 cm wide
notch, and some artificial pits with depths 1 to 3 mm. Due to difficulties in creating realistic
simulation models for the notch and the pits, only the circular holes were used in the simulation
model. The layout of the defects and the positions of the array and the transmitter are shown
in Fig. 2.5. The pairs of holes are labeled A, B and C. Pair A consists of two holes, 7 mm in
diameter, 28 mm apart while pair B and C consists of two 5 mm holes each, located 21 and 10
mm apart, respectively.

The dispersion characteristics

To experimentally determine the amplitude of the transmitted Lamb modes and to validate
the theoretically determined dispersion curves, a single transmitter/receiver pair was used to
perform measurements allowing the calculation of a spatio-temporal FFT [22]. In this experi-
ment the transmitting transducer was excited by a single square pulse, 1 µs long with amplitude
16 V. The receiving transducer was shifted along a 75 mm line in 1 mm intervals, resulting in
75 signals. The spatio-temporal FFT resulted in a multi-mode signal that can be seen in the
frequency-wavenumber power spectrum shown in Fig. 2.6.

From the Fig. 2.6 it can be seen that the received S0 mode had a higher amplitude than
the A0 mode around 350 kHz. The initially used longitudinal and transversal velocities for
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confined interferers. When the number of interferers increases, it is likely that the adaptive
performance is also reduced. This effect can be seen in the simulation results.
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From the Fig. 2.6 it can be seen that the received S0 mode had a higher amplitude than
the A0 mode around 350 kHz. The initially used longitudinal and transversal velocities for
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calculating the theoretical dispersion curves did not result in a sufficiently good agreement with
the experimentally determined curves. The best match for the A0 mode was achieved when
setting the longitudinal wave velocity to 6198 m/s and the shear wave velocity to 3158 m/s.
The resulting theoretically determined dispersion curve is shown in Fig. 2.6.

Ideally, all received modes should be processed and used as a basis for the evaluation of
the structure. Due to the shorter wavelength of the A0 mode compared to the S0 mode, and
poor agreement between simulated and measured dispersion characteristics for the S0 mode,
only results from focusing using the A0 mode dispersion characteristics are presented here. For
the frequency range used in the experiments, the A0 mode had wavelengths down to 7 mm. To
avoid spatial aliasing, this required an array element spacing of a maximum of 3.5 mm.

2.5.2 The test setups

The imaging performance of the proposed method was evaluated separately for two setups
specified in Sec 2.2:

1. A single stand-alone transducer was used for the excitation and the back-scattered signals
were received by two different rectangular arrays: Array 1 formed of 8x8 elements with
3.5 mm element spacing, and Array 2 formed of 8x8 elements with 7 mm element spacing.

2. Repeated measurements were performed with the transmitting transducer at 9 different
positions, and the backscattered signal received by the 8 element linear array at 8 different
positions for each transmitter position.

Small pinducers from Valpey Fisher Corp were used both as receivers and transmitter. The
pinducers had a diameter of 1.5 mm and a resonance frequency of 1.1 MHz, which was well above
the frequency range used in the experiments. The pinducers were coupled to the plates through
a thin layer of oil which limited the detection and generation to out-of-plane displacement.

To limit the influence of aliasing, the element spacing in the array should be no larger than
3.5 mm. However, the shape of the pinducers allowed a minimum element distance of 7 mm,
which is comparable to the minimum wavelength of the A0 mode. Furthermore, limitations in
the number of available pinducers and the electronics allowed only an 8 element linear array and
a single transmitter to be used simultaneously in the setup.

The receiving arrays were formed virtually by repeated measurements performed using a
linear uniform array with 8 pinducers with 7 mm spacing. To form the Array 2 the measurements
were repeated with the linear receiving array shifted at 8 different positions. Array 1 with 3.5
mm element spacing was formed by taking measurements at 2x8 different positions using 4
elements of the receiving array.

2.5.3 Simulation results

The simulated results are separated into two parts: a simulation study evaluating the mode sup-
pression capabilities of the proposed method, and the results comparing imaging performance.

Mode suppression

The mode suppression performance of the SBF and MVBF was evaluated using simulated
datasets from three different, fully active, array configurations illustrated in Fig. 2.7. The
array configurations are subsets of the 8x8 array, where the 1x8 and 2x8 are the top rows of
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calculating the theoretical dispersion curves did not result in a sufficiently good agreement with
the experimentally determined curves. The best match for the A0 mode was achieved when
setting the longitudinal wave velocity to 6198 m/s and the shear wave velocity to 3158 m/s.
The resulting theoretically determined dispersion curve is shown in Fig. 2.6.

Ideally, all received modes should be processed and used as a basis for the evaluation of
the structure. Due to the shorter wavelength of the A0 mode compared to the S0 mode, and
poor agreement between simulated and measured dispersion characteristics for the S0 mode,
only results from focusing using the A0 mode dispersion characteristics are presented here. For
the frequency range used in the experiments, the A0 mode had wavelengths down to 7 mm. To
avoid spatial aliasing, this required an array element spacing of a maximum of 3.5 mm.

2.5.2 The test setups

The imaging performance of the proposed method was evaluated separately for two setups
specified in Sec 2.2:

1. A single stand-alone transducer was used for the excitation and the back-scattered signals
were received by two different rectangular arrays: Array 1 formed of 8x8 elements with
3.5 mm element spacing, and Array 2 formed of 8x8 elements with 7 mm element spacing.

2. Repeated measurements were performed with the transmitting transducer at 9 different
positions, and the backscattered signal received by the 8 element linear array at 8 different
positions for each transmitter position.

Small pinducers from Valpey Fisher Corp were used both as receivers and transmitter. The
pinducers had a diameter of 1.5 mm and a resonance frequency of 1.1 MHz, which was well above
the frequency range used in the experiments. The pinducers were coupled to the plates through
a thin layer of oil which limited the detection and generation to out-of-plane displacement.

To limit the influence of aliasing, the element spacing in the array should be no larger than
3.5 mm. However, the shape of the pinducers allowed a minimum element distance of 7 mm,
which is comparable to the minimum wavelength of the A0 mode. Furthermore, limitations in
the number of available pinducers and the electronics allowed only an 8 element linear array and
a single transmitter to be used simultaneously in the setup.

The receiving arrays were formed virtually by repeated measurements performed using a
linear uniform array with 8 pinducers with 7 mm spacing. To form the Array 2 the measurements
were repeated with the linear receiving array shifted at 8 different positions. Array 1 with 3.5
mm element spacing was formed by taking measurements at 2x8 different positions using 4
elements of the receiving array.

2.5.3 Simulation results

The simulated results are separated into two parts: a simulation study evaluating the mode sup-
pression capabilities of the proposed method, and the results comparing imaging performance.

Mode suppression

The mode suppression performance of the SBF and MVBF was evaluated using simulated
datasets from three different, fully active, array configurations illustrated in Fig. 2.7. The
array configurations are subsets of the 8x8 array, where the 1x8 and 2x8 are the top rows of
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the larger array. The datasets were generated using the model described in Sec 2.3.1 with the
dispersion characteristics of the 6 mm aluminium plate shown in Fig. 2.2.

Two Lamb modes were simulated, the A0 and S0 modes, which were reflected from a single
reflector located 375 mm from the center of the 8x8 array. Both modes were reflected with
unit reflection coefficient. All array elements were excited sequentially and the back-scattered
signals were calculated for each array element. The element spacing was 3.5 mm, which was
approximately half the minimum wavelength of the A0 mode in the frequency range used. The
input signal was a 1 cycle 300 kHz sinusoid which was bandpass filtered to a bandwidth of 260
kHz. No apodization was applied on the SBF.

In this step no mode conversions were simulated. The focusing was performed using the
dispersion characteristics of the A0 and S0 modes. The results obtained using a single 8 element
linear array, a 2x8 array and the full 8x8 array, when focusing on the A0 and S0 mode, are
presented in Figs 2.8 and 2.9, respectively. In the frequency range of the simulated signals, the
A0 mode is only slightly dispersive. By contrast, the S0 mode is highly dispersive, which can be
seen in Fig. 2.8 where it is smeared over a wide range. In Fig. 2.9 the dispersion compensation
of the S0 has the reverse effect on the A0 mode, it becomes dispersed.

Figure 2.7: Array configurations used for mode suppression evaluation.

In the second step the suppression capabilities of the compared methods were evaluated
including mode conversion in the simulation. The same array configurations as in the previous
simulations were used but this time a single reflection caused mode conversion between the A0

and S0 modes. Figure 2.10 shows the results for the three considered array configurations and
for two reflected modes. The S0 mode was converted into a S0 and an A0 mode, where the power
was divided equally between both modes. For simplicity the A0 mode was assumed to result in
a pure A0 mode on reflection.

The simulated results in Figs. 2.8 - 2.10 show that the MVBF can be very efficient in
suppressing interfering modes. In terms of angular resolution, the MVBF clearly outperforms
the SBF. As expected, the single row array completely fails to suppress the interfering mode, but
with only a two row array, the MVBF performed very well in suppressing the interfering mode.
For the eight rows array, both approaches showed reasonable performance in mode suppression,
although the MVBF offers much better resolution.

The mode converted signals in Fig. 2.10 proved to be more difficult to suppress and the
SBF performed significantly worse in this case. From the algorithm’s point of view, mode
conversion does not differ from that for the non-converted case. However, in this case there are
two interfering signals to suppress, the unconverted and the converted S0 mode, which leads to
poorer performance when only two rows are available.
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Figure 2.8: Simulated results illustrating the capability of suppressing the S0 mode when focusing on
the A0 mode of the reflected S0 −A0 modes using 1x8, 2x8 and 8x8 array. MVBF (left) and SBF (right)
in each pair. The MVBF performs well using only two rows.
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Figure 2.9: Simulated results illustrating the capability of suppressing the A0 mode when focusing on
the S0 mode of the reflected S0 −A0 modes using 1x8, 2x8 and 8x8 array. MVBF (left) and SBF (right)
in each pair.
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the larger array. The datasets were generated using the model described in Sec 2.3.1 with the
dispersion characteristics of the 6 mm aluminium plate shown in Fig. 2.2.

Two Lamb modes were simulated, the A0 and S0 modes, which were reflected from a single
reflector located 375 mm from the center of the 8x8 array. Both modes were reflected with
unit reflection coefficient. All array elements were excited sequentially and the back-scattered
signals were calculated for each array element. The element spacing was 3.5 mm, which was
approximately half the minimum wavelength of the A0 mode in the frequency range used. The
input signal was a 1 cycle 300 kHz sinusoid which was bandpass filtered to a bandwidth of 260
kHz. No apodization was applied on the SBF.

In this step no mode conversions were simulated. The focusing was performed using the
dispersion characteristics of the A0 and S0 modes. The results obtained using a single 8 element
linear array, a 2x8 array and the full 8x8 array, when focusing on the A0 and S0 mode, are
presented in Figs 2.8 and 2.9, respectively. In the frequency range of the simulated signals, the
A0 mode is only slightly dispersive. By contrast, the S0 mode is highly dispersive, which can be
seen in Fig. 2.8 where it is smeared over a wide range. In Fig. 2.9 the dispersion compensation
of the S0 has the reverse effect on the A0 mode, it becomes dispersed.

Figure 2.7: Array configurations used for mode suppression evaluation.

In the second step the suppression capabilities of the compared methods were evaluated
including mode conversion in the simulation. The same array configurations as in the previous
simulations were used but this time a single reflection caused mode conversion between the A0

and S0 modes. Figure 2.10 shows the results for the three considered array configurations and
for two reflected modes. The S0 mode was converted into a S0 and an A0 mode, where the power
was divided equally between both modes. For simplicity the A0 mode was assumed to result in
a pure A0 mode on reflection.

The simulated results in Figs. 2.8 - 2.10 show that the MVBF can be very efficient in
suppressing interfering modes. In terms of angular resolution, the MVBF clearly outperforms
the SBF. As expected, the single row array completely fails to suppress the interfering mode, but
with only a two row array, the MVBF performed very well in suppressing the interfering mode.
For the eight rows array, both approaches showed reasonable performance in mode suppression,
although the MVBF offers much better resolution.

The mode converted signals in Fig. 2.10 proved to be more difficult to suppress and the
SBF performed significantly worse in this case. From the algorithm’s point of view, mode
conversion does not differ from that for the non-converted case. However, in this case there are
two interfering signals to suppress, the unconverted and the converted S0 mode, which leads to
poorer performance when only two rows are available.
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Figure 2.8: Simulated results illustrating the capability of suppressing the S0 mode when focusing on
the A0 mode of the reflected S0 −A0 modes using 1x8, 2x8 and 8x8 array. MVBF (left) and SBF (right)
in each pair. The MVBF performs well using only two rows.
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Figure 2.9: Simulated results illustrating the capability of suppressing the A0 mode when focusing on
the S0 mode of the reflected S0 −A0 modes using 1x8, 2x8 and 8x8 array. MVBF (left) and SBF (right)
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Figure 2.10: Simulated results of suppression capabilities of S0 mode and mode-converted S0−A0 mode
when focusing on the A0 mode using 1x8, 2x8 and 8x8 array. MVBF (left) and SBF (right) in each pair.
Again, the MVBF performs very well compared to the SBF.

Simulated imaging results

Comparison of the imaging performance of the proposed method, evaluated for both setups
specified in Sec 2.5.2 with the SBF DAS beamformer is presented below.

Two Lamb modes were included in the simulations, the S0 and the A0 mode. Only the
holes, edges, and corners, were included and were simulated as point-scatterers, with a positive
real frequency independent reflection coefficient. The reflection coefficients were proportional to
the diameter of the holes. For simplicity, the edge and corner reflections were also simulated
as point-scatterers, with reflection coefficients 10 times that of the smallest holes. No multiple
scattering or mode conversions were assumed. The notch and pits were not included in the
simulation.

Since the transducers were coupled to the plate using oil the transducer-plate interaction was
modeled assuming out-of-plane components only. The transfer functions used for this purpose
were calculated using the model described in Section 2.3.1. The input signal was a 300 kHz,
single cycle sinusoid, bandpass filtered to a bandwidth of 260 kHz. White Gaussian noise was
added to the simulated received signals giving a signal-to-noise ratio (SNR) of 25 dB.

The theoretical level of relative excitation between the S0 and A0 modes, expressed as a
normalized |Hn(ω)|, is shown in Fig. 2.11. It can be seen that the A0 mode has a higher
excitability than the S0 mode around 300 kHz. Since this transfer function operates on the
input signal, the slope of the curve shifts the center frequency of resulting A0 mode from 300
kHz to 280 kHz, maintaining approximately the same bandwidth. The wavelength of the A0

mode is 10.5 mm at 280 kHz.
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Figure 2.11: Normalized excitability of the S0 and A0 modes.
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Figure 2.12: Simulation results from 6 mm plate for Array 1, ǫ = 50. MVDR (a) and SBF (b) focusing
on the A0 mode. Holes are indicated by white crosses or arrows. Note that the arrows do not point at
the exact position of the defect. Log scale cut at -30 dB.

Setup 1 – single transmitter

Fig. 2.12 shows the result from the MVDR and the SBF on signals obtained through the
simulation of Array 1. Reflections from the hole pairs A, B and C can be seen in the lower part
of the images. The true hole positions are marked either with white crosses or arrows. The
results from Array 2 are shown in Fig. 2.13.

Fig. 2.14 shows the angle and range resolvability of the pair of holes A obtained for the
results presented in Fig. 2.13. The projections were created by taking the maximum values in
range and angle, respectively, in the vicinity of the defects. Note that the transmitter position
outside the array in conjunction with the holes locations in the near field of the array, leads to
elliptic shaped beams, where the transmitter and the center of the array are in the focus points
of the ellipses. This makes angle and range resolution somewhat distorted when plotting range
and angle from the the center of the array. The projections were therefore created using a point
between the center of the array and the transmitter as a reference for the range and angle.

From the profiles in Fig. 2.14 it is clear that the MVDR approach yields higher resolution
than the SBF method on simulated data. Underestimation can be seen in the results where the
SBF correctly estimates the same amplitude on both defects, while the MVDR underestimates
the amplitude of one of the holes.
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Figure 2.10: Simulated results of suppression capabilities of S0 mode and mode-converted S0−A0 mode
when focusing on the A0 mode using 1x8, 2x8 and 8x8 array. MVBF (left) and SBF (right) in each pair.
Again, the MVBF performs very well compared to the SBF.

Simulated imaging results

Comparison of the imaging performance of the proposed method, evaluated for both setups
specified in Sec 2.5.2 with the SBF DAS beamformer is presented below.

Two Lamb modes were included in the simulations, the S0 and the A0 mode. Only the
holes, edges, and corners, were included and were simulated as point-scatterers, with a positive
real frequency independent reflection coefficient. The reflection coefficients were proportional to
the diameter of the holes. For simplicity, the edge and corner reflections were also simulated
as point-scatterers, with reflection coefficients 10 times that of the smallest holes. No multiple
scattering or mode conversions were assumed. The notch and pits were not included in the
simulation.

Since the transducers were coupled to the plate using oil the transducer-plate interaction was
modeled assuming out-of-plane components only. The transfer functions used for this purpose
were calculated using the model described in Section 2.3.1. The input signal was a 300 kHz,
single cycle sinusoid, bandpass filtered to a bandwidth of 260 kHz. White Gaussian noise was
added to the simulated received signals giving a signal-to-noise ratio (SNR) of 25 dB.

The theoretical level of relative excitation between the S0 and A0 modes, expressed as a
normalized |Hn(ω)|, is shown in Fig. 2.11. It can be seen that the A0 mode has a higher
excitability than the S0 mode around 300 kHz. Since this transfer function operates on the
input signal, the slope of the curve shifts the center frequency of resulting A0 mode from 300
kHz to 280 kHz, maintaining approximately the same bandwidth. The wavelength of the A0

mode is 10.5 mm at 280 kHz.
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Figure 2.12: Simulation results from 6 mm plate for Array 1, ǫ = 50. MVDR (a) and SBF (b) focusing
on the A0 mode. Holes are indicated by white crosses or arrows. Note that the arrows do not point at
the exact position of the defect. Log scale cut at -30 dB.

Setup 1 – single transmitter

Fig. 2.12 shows the result from the MVDR and the SBF on signals obtained through the
simulation of Array 1. Reflections from the hole pairs A, B and C can be seen in the lower part
of the images. The true hole positions are marked either with white crosses or arrows. The
results from Array 2 are shown in Fig. 2.13.

Fig. 2.14 shows the angle and range resolvability of the pair of holes A obtained for the
results presented in Fig. 2.13. The projections were created by taking the maximum values in
range and angle, respectively, in the vicinity of the defects. Note that the transmitter position
outside the array in conjunction with the holes locations in the near field of the array, leads to
elliptic shaped beams, where the transmitter and the center of the array are in the focus points
of the ellipses. This makes angle and range resolution somewhat distorted when plotting range
and angle from the the center of the array. The projections were therefore created using a point
between the center of the array and the transmitter as a reference for the range and angle.

From the profiles in Fig. 2.14 it is clear that the MVDR approach yields higher resolution
than the SBF method on simulated data. Underestimation can be seen in the results where the
SBF correctly estimates the same amplitude on both defects, while the MVDR underestimates
the amplitude of one of the holes.
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Figure 2.13: Simulation results from 6 mm plate for Array 2, ǫ = 20. MVDR (a) and SBF (b) focusing
on the A0 mode. Holes are indicated by white crosses or arrows. Note that the arrows do not point at
the exact position of the defect. Log scale cut at -30 dB.
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Figure 2.14: Angle and range resolvability of hole pair A using the MVDR and SBF on simulated data
from Array 2 on 6 mm plate.
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Signal cancellation due to closely spaced defects is an important issue for the MVDR algo-
rithm. In the simulation results using Array 2 in Fig. 2.13, the reflections from the pair of holes
labeled C seem to cancel, which leads to underestimation of their amplitude. The cancellation
was much less severe when using Array 1 even with less diagonal loading, see Fig. 2.12.

Setup 2 – multiple transmitters

The simplified simulation model in Section 2.3.1 was used along with the estimated dispersion
characteristics to create datasets for three different active array sizes, a 4x4, a 6x6 and an 8x8
rectangular array, positioned at the center of the plate in the geometrical setup in Fig. 2.5.

A full dataset of transmitter - receiver combinations was generated. Figs 2.15, 2.16 and 2.17
show the resulting images for the active uniform rectangular arrays. No apodization was applied
on the SBF.

Since the focusing is performed using the A0 mode dispersion characteristics, the interfering
dispersed S0 mode from edge and corner reflections can be seen at even 45◦ angles, particularly
for the 4x4 array. The larger arrays yield higher resolution and weaker S0 mode, which is to be
expected. The hole pair B was not resolved by any of the arrays. A false echo can be seen in
the lower right quadrant of the images. It is not caused by aliasing, but is due to the combined
contributions from the defects and the corner reflected S0 mode. This is related to the discussion
on focusing effects in Sec 2.4.3 above.
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Figure 2.15: Simulated results using a 4x4 array. MVBF (left) and SBF (right).

The MVBF was not capable of suppressing the false echo and even though it appears less
smeared than that for the SBF, it has, at least relatively, slightly higher amplitude. The problem
could be reduced by using only a subset of the transmitters in each covariance matrix estimate.

If no reciprocity between the transmit-receive pairs is assumed, the 8x8 array will produce
64x64 combinations. The 8x8 array was divided into four 4x4 non-overlapping transmit subar-
rays. Using only the transmitters from each subarray for estimation lead to four sets of 16x64
received signals. This results in four weight vectors calculated using the covariance matrices
from each transmitting subarray. The outputs from the array using the different weight vectors
were then averaged. The results from the procedure are shown in Fig. 2.18.

Generally, from the simulated results of the plate inspection it is apparent that the MVBF
approach performs much better than the SBF, especially in terms of resolution. For the 4x4
array in Fig. 2.15, the effects from edge and corner reflections of the S0 mode can be clearly seen
at 45◦ intervals for both the SBF and the MVBF, although the MVBF was much more efficient in
suppressing these effects. In the ideal simulation environment, where there is no uncertainty of
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Figure 2.14: Angle and range resolvability of hole pair A using the MVDR and SBF on simulated data
from Array 2 on 6 mm plate.
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Signal cancellation due to closely spaced defects is an important issue for the MVDR algo-
rithm. In the simulation results using Array 2 in Fig. 2.13, the reflections from the pair of holes
labeled C seem to cancel, which leads to underestimation of their amplitude. The cancellation
was much less severe when using Array 1 even with less diagonal loading, see Fig. 2.12.

Setup 2 – multiple transmitters

The simplified simulation model in Section 2.3.1 was used along with the estimated dispersion
characteristics to create datasets for three different active array sizes, a 4x4, a 6x6 and an 8x8
rectangular array, positioned at the center of the plate in the geometrical setup in Fig. 2.5.

A full dataset of transmitter - receiver combinations was generated. Figs 2.15, 2.16 and 2.17
show the resulting images for the active uniform rectangular arrays. No apodization was applied
on the SBF.

Since the focusing is performed using the A0 mode dispersion characteristics, the interfering
dispersed S0 mode from edge and corner reflections can be seen at even 45◦ angles, particularly
for the 4x4 array. The larger arrays yield higher resolution and weaker S0 mode, which is to be
expected. The hole pair B was not resolved by any of the arrays. A false echo can be seen in
the lower right quadrant of the images. It is not caused by aliasing, but is due to the combined
contributions from the defects and the corner reflected S0 mode. This is related to the discussion
on focusing effects in Sec 2.4.3 above.
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Figure 2.15: Simulated results using a 4x4 array. MVBF (left) and SBF (right).

The MVBF was not capable of suppressing the false echo and even though it appears less
smeared than that for the SBF, it has, at least relatively, slightly higher amplitude. The problem
could be reduced by using only a subset of the transmitters in each covariance matrix estimate.

If no reciprocity between the transmit-receive pairs is assumed, the 8x8 array will produce
64x64 combinations. The 8x8 array was divided into four 4x4 non-overlapping transmit subar-
rays. Using only the transmitters from each subarray for estimation lead to four sets of 16x64
received signals. This results in four weight vectors calculated using the covariance matrices
from each transmitting subarray. The outputs from the array using the different weight vectors
were then averaged. The results from the procedure are shown in Fig. 2.18.

Generally, from the simulated results of the plate inspection it is apparent that the MVBF
approach performs much better than the SBF, especially in terms of resolution. For the 4x4
array in Fig. 2.15, the effects from edge and corner reflections of the S0 mode can be clearly seen
at 45◦ intervals for both the SBF and the MVBF, although the MVBF was much more efficient in
suppressing these effects. In the ideal simulation environment, where there is no uncertainty of
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Figure 2.16: Simulated results using a 6x6 array. MVBF (left) and SBF (right).
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Figure 2.17: Simulated results using a 8x8 array. MVBF (left) and SBF (right).
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Figure 2.18: Simulated results using a 8x8 array with 4 transmitter subarrays. MVBF (left) and SBF
(right).
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element positions or dispersion characteristics, even the 4x4 array using the MVBF outperforms
the 8x8 array using SBF in terms of resolution. Because of the relatively small array sizes, the
holes in pair B were not resolved in any of the simulation examples. However, the holes in pair
C were resolved on all array sizes for the MVBF, and on the 6x6 and 8x8 arrays for the SBF,
even though the distance between the holes in pair C were smaller than pair B. This is simply
because pair C are at different distances from the center of the array and are therefore resolved
in time.

The false echo seen in the center of the lower right quadrant of all the simulated image
results, except for Fig. 2.18, is due to the multiple transmitter excitation. As discussed in
Section 2.4.1, the covariance matrices formed by each transmission do not cover the same inter-
ference environment. It can be seen in the images that the false echo is in approximately the
same range as the other defects, which is the reason for its appearance. Fig. 2.18 shows that
using fewer transmitters for each estimation can reduce these problems, at the cost of increased
signal cancellation. Furthermore, hole pair B were underestimated compared to the SBF, and
also compared the images in Figs. 2.15–2.17, where the full set of transmitters were used.

2.5.4 Experimental imaging results

Experimental verification of imaging has been until now performed for a single transmitter
only; experiments with multiple transmitter array will be carried out when a new multi-output
instrument will be delivered.

Due to the limited number of available transducers and limitations of the electronics only an
8 element uniform linear array was used simultaneously for the reception. The array pinducers
were connected to an Agilent Infiniium oscilloscope through a custom built multiplexing box
followed by an AD8335 amplifier from Analog Devices. The sampling rate of the oscilloscope
was set to 25 MHz. Due to the limited resolution of the oscilloscope (8 bits), the received edge
reflections had to be saturated to get sufficient resolution of the weaker defect reflections. The
received signal from each element was averaged 16 times. The direct signal from the transmitter
to the array was removed before processing the signals. The input signal, a single square pulse,
1 µs long with amplitude 16 V, was generated by a HP8116 function generator.

Diagonal loading was applied to all MVBF results according to (2.22).

A comparison between the SBF and the MVDR approaches using Array 1 and 2 can be seen
in Figs 2.19 and 2.20, respectively. Due to poor SNR the log scale is cut at −12 dB compared
to −18 dB for Array 1. The holes are well pronounced in the lower part of the images where
their true positions are marked with white crosses, or where necessary, arrows. The pit and the
notch are seen at 0◦ and 180◦, respectively.

Similarly to the simulated results in Fig. 2.14, Fig. 2.21 shows the angle and range resolv-
ability of hole pair A obtained for the results presented in Fig. 2.20. The effect from the elliptic
shaped beams also applies to the experimental results.

From the profiles in Fig. 2.21 it is clear that the MVDR approach yields higher resolution
than the SBF method on both simulated and experimental data. Underestimation of the MVDR
is less clearly seen than in the simulated results.

Signal cancellation due to closely spaced defects is an important issue for the MVDR algo-
rithm. In the experimental results the underestimation problem was most severe for Array 1
as can be seen from Fig. 2.19. Both methods yield different amplitudes for the holes A but
show reasonable accuracy in position. The MVDR has significant problems with both power
and position of pair B and C. The SBF approach yields more reasonable amplitude estimates
but it is very difficult to determine the positions of the defects.
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Figure 2.16: Simulated results using a 6x6 array. MVBF (left) and SBF (right).
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Figure 2.17: Simulated results using a 8x8 array. MVBF (left) and SBF (right).
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Figure 2.18: Simulated results using a 8x8 array with 4 transmitter subarrays. MVBF (left) and SBF
(right).
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element positions or dispersion characteristics, even the 4x4 array using the MVBF outperforms
the 8x8 array using SBF in terms of resolution. Because of the relatively small array sizes, the
holes in pair B were not resolved in any of the simulation examples. However, the holes in pair
C were resolved on all array sizes for the MVBF, and on the 6x6 and 8x8 arrays for the SBF,
even though the distance between the holes in pair C were smaller than pair B. This is simply
because pair C are at different distances from the center of the array and are therefore resolved
in time.

The false echo seen in the center of the lower right quadrant of all the simulated image
results, except for Fig. 2.18, is due to the multiple transmitter excitation. As discussed in
Section 2.4.1, the covariance matrices formed by each transmission do not cover the same inter-
ference environment. It can be seen in the images that the false echo is in approximately the
same range as the other defects, which is the reason for its appearance. Fig. 2.18 shows that
using fewer transmitters for each estimation can reduce these problems, at the cost of increased
signal cancellation. Furthermore, hole pair B were underestimated compared to the SBF, and
also compared the images in Figs. 2.15–2.17, where the full set of transmitters were used.

2.5.4 Experimental imaging results

Experimental verification of imaging has been until now performed for a single transmitter
only; experiments with multiple transmitter array will be carried out when a new multi-output
instrument will be delivered.

Due to the limited number of available transducers and limitations of the electronics only an
8 element uniform linear array was used simultaneously for the reception. The array pinducers
were connected to an Agilent Infiniium oscilloscope through a custom built multiplexing box
followed by an AD8335 amplifier from Analog Devices. The sampling rate of the oscilloscope
was set to 25 MHz. Due to the limited resolution of the oscilloscope (8 bits), the received edge
reflections had to be saturated to get sufficient resolution of the weaker defect reflections. The
received signal from each element was averaged 16 times. The direct signal from the transmitter
to the array was removed before processing the signals. The input signal, a single square pulse,
1 µs long with amplitude 16 V, was generated by a HP8116 function generator.

Diagonal loading was applied to all MVBF results according to (2.22).

A comparison between the SBF and the MVDR approaches using Array 1 and 2 can be seen
in Figs 2.19 and 2.20, respectively. Due to poor SNR the log scale is cut at −12 dB compared
to −18 dB for Array 1. The holes are well pronounced in the lower part of the images where
their true positions are marked with white crosses, or where necessary, arrows. The pit and the
notch are seen at 0◦ and 180◦, respectively.

Similarly to the simulated results in Fig. 2.14, Fig. 2.21 shows the angle and range resolv-
ability of hole pair A obtained for the results presented in Fig. 2.20. The effect from the elliptic
shaped beams also applies to the experimental results.

From the profiles in Fig. 2.21 it is clear that the MVDR approach yields higher resolution
than the SBF method on both simulated and experimental data. Underestimation of the MVDR
is less clearly seen than in the simulated results.

Signal cancellation due to closely spaced defects is an important issue for the MVDR algo-
rithm. In the experimental results the underestimation problem was most severe for Array 1
as can be seen from Fig. 2.19. Both methods yield different amplitudes for the holes A but
show reasonable accuracy in position. The MVDR has significant problems with both power
and position of pair B and C. The SBF approach yields more reasonable amplitude estimates
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Figure 2.19: Measurement results from 6 mm plate for Array 1, ǫ = 50. MVDR (a) and SBF (b)
focusing on the A0 mode. Defects are indicated by white crosses or arrows (holes, lower part of the
image), and dashed lines (pittings and notch, at 0◦ and 180◦, respectively). Note that the arrows do not
point at the exact position of the defect. Log scale was cut at -18 dB.
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Figure 2.20: Measurement results from 6 mm plate for Array 2, ǫ = 5. MVDR (a) and SBF (b) focusing
on the A0 mode. True positions of the defects are indicated by white crosses or arrows (holes, lower part
of the image), and dashed lines (pittings and notch, at 0◦ and 180◦, respectively). Note that the arrows
do not point at the exact position of the defect. Log scale was cut at -12 dB.
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Figure 2.21: Angle and range resolvability of hole pair A using the MVDR and SBF on measured data
from Array 2 on 6 mm plate..
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In the results for Array 2 presented in Fig. 2.20, both holes in pair B are detected. Although
both methods estimate the amplitude of the right hole lower than for the left, its position is too
far to the right. Pair C can not be resolved and is detected as a single defect. Both methods
underestimate the amplitude but the MVDR more severely. Since both methods have problems
with pairs B and C it can not be concluded that this is an effect related to the MVDR approach.

The saturation of the edge reflections created significant amount of noise in post-processed
data from both algorithms in the areas closer than 100 mm to the edges, which is the reason
for not showing images covering the whole plate. After increasing the amplitude range of the
oscilloscope, and thereby avoiding saturation, these problems disappeared. Unfortunately, the
insufficient dynamic range made the much weaker signals from the defects undetectable using
either of the algorithms.

An obvious limitation of the measurement setup is the simultaneous use of only 8 array
elements, which hindered assessing the potential effects of interelement scattering that may be
encountered for a full 2D array.

2.6 Conclusions

A method for adaptive beamforming of Lamb waves has been presented in this chapter. The
dispersion of the Lamb modes was compensated using theoretically predicted dispersion curves.
Dispersion compensated data was processed using both a standard SBF beamformer and the
MVDR beamformer. Simulated and experimental results show that the MVDR approach can
yield better performance compared to the standard SBF approach in terms of higher resolution
and better suppression of interfering Lamb modes.

Signal cancellation that may result in the underestimation of the signal amplitudes, is an
issue that needs to be addressed when working with the MVDR algorithm. Increasing the
number of subarrays used for spatial smoothing can reduce signal cancellation effects and increase
robustness at the cost of lower resolution and adaptivity of the filter. Diagonal loading also
reduces signal cancellation to some degree and improves robustness of the estimation.

The MVDR algorithm, presented in the paper can be easily generalized to an active array
with multiple transmitters.
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x [mm]

y 
[m

m
]

−200 −100 0 100 200

−200

−100

0

100

200

−12

−10

−8

−6

−4

−2

0

(a)

x [mm]

y 
[m

m
]

−200 −100 0 100 200

−200

−100

0

100

200

−12

−10

−8

−6

−4

−2

0

(b)

Figure 2.20: Measurement results from 6 mm plate for Array 2, ǫ = 5. MVDR (a) and SBF (b) focusing
on the A0 mode. True positions of the defects are indicated by white crosses or arrows (holes, lower part
of the image), and dashed lines (pittings and notch, at 0◦ and 180◦, respectively). Note that the arrows
do not point at the exact position of the defect. Log scale was cut at -12 dB.

220 225 230 235 240
−14

−12

−10

−8

−6

−4

−2

0

Angle [deg]

P
ow

er
 [d

B
]

MVDR

DAS

0.2 0.21 0.22

−15

−10

−5

0

Range [m]

P
ow

er
 [d

B
]

Figure 2.21: Angle and range resolvability of hole pair A using the MVDR and SBF on measured data
from Array 2 on 6 mm plate..

26

In the results for Array 2 presented in Fig. 2.20, both holes in pair B are detected. Although
both methods estimate the amplitude of the right hole lower than for the left, its position is too
far to the right. Pair C can not be resolved and is detected as a single defect. Both methods
underestimate the amplitude but the MVDR more severely. Since both methods have problems
with pairs B and C it can not be concluded that this is an effect related to the MVDR approach.
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2.6 Conclusions
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Dispersion compensated data was processed using both a standard SBF beamformer and the
MVDR beamformer. Simulated and experimental results show that the MVDR approach can
yield better performance compared to the standard SBF approach in terms of higher resolution
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issue that needs to be addressed when working with the MVDR algorithm. Increasing the
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This chapter concerns the use of migration techniques, originally developed in seismic explo-
ration for the examination of the Earth’s interior, to ultrasonic data. In particular, we consider
the immersion test setup for which time domain methods such as SAFT are cumbersome to
use due to the refraction at the layer interfaces. The particular form of migration considered
in the work, the so-called phase shift migration, is well suited for treating this problem since it
provides simple means for focusing through media consisting of several horizontal layers and it
has, in addition, computational advantages since it operates in the frequency domain and, thus,
benefit from the computational efficiency of the fast Fourier transform.

In a previous study [1], we considered phase shift migration for 2D reconstructions using a
single scanned transducer. For ease of reference, a version of this work is presented in Section
3.1 in the form of an article that has been accepted for publication in IEEE Transactions on
Ultrasonics and Ferroelectrics, 2010. In the remaining of this chapter, two extensions of this
work are then presented. The first of these, presented in Section 3.2, is to go from 2D to 3D data
in order to fully utilize the resolution enhancement potential of the technique. This section also
gives a more detailed algorithm description and complexity analysis, as well as an examination
of the resolution of the reconstructed images.

The second extension, which is presented in Section 3.3, consists in generalizing the technique
to allow for the processing of data acquired using an array. Finally, in Section 3.4, a robustness
issue related to objects having front surfaces that are slightly tilted relative to the scanning axis
is considered and a solution to the problem in proposed.

3.1 Phase shift migration for imaging layered objects and ob-

jects immersed in water

Section 3.1 is c©2010 IEEE. Reprinted, with permission, from IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 2010.

Here the use of phase shift migration for ultrasonic imaging of layered objects and objects
immersed in water is proposed. The method, which was developed in reflection seismology, is a
frequency domain technique that in a computationally efficient way restores images of objects
that are isotropic and homogeneous in the lateral direction but inhomogeneous in depth. The
performance of the proposed method was evaluated using immersion test data from a block
with side drilled holes with an additional scatterer residing in water. In this way, the method’s
capability of simultaneously imaging scatterers in different media and at different depths was
investigated. The method was also applied to a copper block with flat bottom holes. The results
altogether verify that the proposed method is capable of producing high resolution and low noise
images for layered or immersed objects.

3.1.1 Introduction

One important imaging method in ultrasonic testing is the synthetic aperture focusing tech-
nique (SAFT), which was introduced in ultrasonic nondestructive testing (NDT) in the early
1970s [2, 3] and that has been in wide use since the late 1980s. In basic SAFT, a synthetic
array is emulated in post-processing using pulse-echo data acquired with a physically scanned
single-element transducer. The post-processing consists of delay-and-sum beamforming and the
resulting images generally have far better lateral resolution than the B-scans from which they are
constructed. Moreover, the lateral resolution is independent of depth. The coherent summation
also yields an increase in signal-to-noise ratio resulting in an improved depth-of-field.
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The early versions of SAFT were time domain implementations, followed later by implemen-
tations in the frequency domain [4–7], evolving from acoustical holography [8] and diffraction
tomography. The frequency domain implementations are particularly attractive if the sound
speed is constant throughout the entire propagation medium, something which holds when a
homogeneous and isotropic object is tested in contact. Then SAFT can be implemented in a
computationally very efficient form using a method that was first proposed in geophysics [9],
called Stolt migration or the frequency wavenumber method [5, 6, 10].

Practical drawbacks with contact testing are transducer wear and potentially poor or nonuni-
form acoustical coupling between transducer and test object due to rough surfaces. Therefore,
immersion testing is often preferred in NDT. Note that the above mentioned assumption of hav-
ing constant sound speed in the propagating medium then no longer holds since the propagation
involves, at least, two sound speeds, one in water and one in the solid. Thus, unfortunately, the
conditions required by the frequency wavenumber method do not hold. In time domain SAFT,
the problem manifests itself in that the refraction at the liquid-solid interface complicates the
computation of the travel times required in the algorithm. Such complications are of course
present in any situation having test objects consisting of layers with different sound speeds.

Despite the above mentioned difficulties, which to some extent have prevented the use of
SAFT for immersion test data, various methods have been proposed to treat the immersion
case. One such, which is restricted to one refracting layer only, is to use transducers that are
focused on the object’s surface, see e.g. [11], in this way emulating a scenario similar to contact
testing with a transducer having a diameter of the size of the focal diameter. Note, however,
that diffraction causes the acoustical field emitted from a focused transducer to take a form
that may deviate from the spherical wave anticipated from a small transducer [12], thus to some
extent violating the assumptions on which SAFT rely and thereby limiting the usefulness of the
approach.

More generally, in inhomogeneous materials, the travel times required in time domain SAFT
can be calculated using ray tracing techniques [13–15] that typically are time consuming, thus,
limiting their practical usefulness. For the special case of horizontally layered materials, travel
time approximations can be obtained more efficiently by means of so-called root-mean-squared
(RMS) velocities [16], provided that the sound speed differences between layers are relatively
small. This holds in many cases in reflection seismology where it is often used and in medical
ultrasound where it has recently been used in the context of aberration correction [17]. When
testing metals in immersion, the sound speed contrast is typically high and the RMS-velocity
approach has this far not been used in the NDT community.

In reflection seismology, the case of objects consisting of horizontal homogenous layers has
been treated extensively. There, a method called phase shift migration [18] has been developed
for treating this scenario. Together with Stolt migration it has become an important tool for
analyzing the Earth’s interior structure [19] and it has been generalized in different ways, for
instance, to admit also some lateral variations in sound speed [20]. Phase shift migration is
a frequency domain approach that makes explicit use of the wave equation in the processing.
Viewing the measured signals at the sensors as a boundary condition for the wave equation,
the field is extrapolated using a phase-shift operator in the frequency domain to ”hypothetical
measurements” of the field at a set of different depths. From these, the image can be obtained
in a fairly straightforward manner, see Section 3.1.2.

Due to its iterative nature, the method is computationally less efficient than Stolt migration
but, on the other hand, phase shift migration can treat the more complicated scenario of having
a sound speed that is constant in the lateral direction but varying in depth.

In this work, we investigate phase shift migration for imaging data acquired using immersion
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testing, which is an application that is particularly well suited for phase shift migration since
the sound speeds necessary in the processing typically are known to a great accuracy. The
application used for illustration is immersion testing of copper blocks using a single scanned
transducer and the experiments aim at demonstrating the potential of phase shift migration
for this application. Note however that there are other potential important applications of the
method. One such is inspection, in contact or in immersion, of metal objects with a protective
stainless steel overlay having a different sound speed than the backing material.

Phase shift migration has been used earlier for ultrasonic imaging in [21]. Furthermore,
the image formation equations in [7] are essentially identical to those in phase shift migration.
However, in neither of these two references, the potential of allowing vertical sound speed varia-
tions was exploited. This was done in [8] but the imaging was performed using monochromatic
signals.

Here we limit the work to concern only 2D migration and postpone an extension to full
3D migration to Section 3.2. The theory and the algorithm are given in Section 3.1.2 below.
Experiments illustrating the approach are presented in Section 3.1.3 and, finally, conclusions
and a discussion are given in Section 3.1.4.

3.1.2 Theory

In this section, a derivation of the reconstruction algorithm used in the work is given. The
derivation presented below is based on what in geophysics is traditionally called the ”exploding
reflector” model [19, 22]. The reader should note that this model does not describe the single
transducer scanned pulse-echo measurements scenario, hereafter called the monostatic1 case, it
is rather an analogous physical scenario for which a simple imaging algorithm can be developed.
The idea is thus to first solve the imaging problem for this simple case and then show how the
monostatic case can be transformed to it by simple means.

In the exploding reflector model, the reflectors in the medium are assumed to ”explode”
simultaneously at time t = 0, each with a strength that is proportional to its reflectivity, creating
a field that is simultaneously measured using an array of sensors. The model neglects multiple
reflections between layers and only up-going waves are considered. Furthermore, transmission
losses at layer interfaces are neglected, see Appendix 3.A.1 for comments on this.

The derivation deviates from those found in the classical references, such as [18], in the
respect that the vertical sound speed variations are introduced early in the model and not
appearing as a last modification of a solution developed for a medium with constant sound
speed, see [23] for comments on such inconsistencies.

The derivation is followed by a description of the steps necessary for adapting the monostatic
case to an analogous exploding reflector scenario and a summary of the algorithm is subsequently
given.

Phase shift migration for the ”exploding reflector” scenario

In the following, we consider propagation of longitudinal waves in a medium illustrated in Fig.
3.1. It consists of L horizontal isotropic layers with thicknesses d1, ..., dL and sound speeds,
c1, ..., cL, respectively. The coordinate axes x and z point in the horizontal and vertical direc-
tions, respectively, with z pointing downwards. We let Zl denote the z-coordinate of the lower
side of layer l, i.e., Zl =

∑l
q=1 dq and Z0 = 0.

1The term monostatic is borrowed from the radar community.
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Let p(x, z, t) denote the field resulting from the reflectors in the medium, exploding simul-
taneously at t = 0. This field is observed along the horizontal line Z0 = 0 and our aim is to
extrapolate this observed field to lines at other depths within the medium. As will be described
later, these can then be used straightforwardly to create an image of the media.
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Figure 3.1: The layered media considered in the derivation.

The field extrapolation can be done by decomposing the field into a set of up-going harmonic
plane wave components and performing the extrapolation separately for each component and
superimposing the results. Consider one such up-going harmonic component within the l:th
layer. It can be written as

pl(x, z, t) = Pl(kx, ω) exp(j(kxx + kl,z(z − Zl−1) − ωt)), (3.1)

where ω is the angular frequency, kx and kl,z are components of the wave number vector in
the lth layer, and Pl(kx, ω) is the complex amplitude of the component. We have here used
Snell’s law that states that kx is preserved at a refracting interface that is parallel to the x-axis.
Thus, we write kx without a layer index, l. Note that writing the component’s z-dependence as
a function of the difference z − Zl−1 instead of z merely serves the purpose of simplifying the
notation in the following.

For a point belonging to the lth layer, the 2D scalar lossless wave equation states that

[
∂2

∂x2
+

∂2

∂z2
− 1

c2
l

∂2

∂t2

]
p(x, z, t) = 0. (3.2)

By inserting (3.1) into (3.2) we get

(
−k2

x − k2
l,z +

ω2

c2
l

)
pl(x, z, t) = 0, (3.3)

and for a non-trivial solution, the dispersion relation

k2
x + k2

l,z =
ω2

c2
l

(3.4)

must be fulfilled. From this we can obtain kl,z as a function of ω, cl, and kx. If we consider only
propagating, i.e., non-evanescent, waves we have that

kl,z = −
√

ω2

c2
l

− k2
x, with

ω2

c2
l

≥ k2
x, (3.5)
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where we have used that kl,z is negative for an up-going wave component.

By inserting (3.5) into (3.1) we obtain

pl(x, z, t) = Pl(kx, z, ω) exp (j(kxx − ωt)) , (3.6)

with
Pl(kx, z, ω) = Pl(kx, ω)αl(kx, z − Zl−1, ω), (3.7)

where αl(kx, ζ, ω) is defined as

αl(kx, ζ, ω) = e
−jζ

√
ω2

c2
l

−k2
x

. (3.8)

To find Pl(kx, ω), first consider layer l = 1. Note that at z = 0, the component p1(x, z, t) is
simply

p1(x, z = 0, t) = P1(kx, ω) exp(j(kxx − ωt)) (3.9)

and, since the exponent is the conjugate of the kernel in a 2D Fourier transform2 over x and
t, the complex amplitude P1(kx, ω) must simply be the Fourier coefficient for the pair (kx, ω)
which we obtain by a 2D Fourier transformation of the field measured at Z0.

For a point within layer l = 2, the field extrapolated to depth Z1 is used as the boundary
condition defining the solution within the layer. This gives us the solution

p2(x, z, t) = P2(kx, z, ω) exp(j(kxx − ωt)), (3.10)

with
P2(kx, z, ω) = P1(kx, ω)α1(kx, d1, ω)α2(kx, z − Z1, ω). (3.11)

By proceeding in a similar way for the remaining layers, we find that the component can be
extrapolated to a general point within layer l using eq. (3.6) with

Pl(kx, z, ω) = P1(kx, ω)αl(kx, z − Zl−1, ω)

l−1∏

q=1

αq(kx, dq, ω). (3.12)

Note again that transmission losses at the interfaces are neglected. A correction for these
can easily be included in the model but for the purpose of imaging and with the relatively small
angle of divergence for the transducer used in this work, such a correction is of limited value;
see further comments in Appendix 3.A.1.

The multiplication by α(·) represents a phase shift and it is from this relation phase shift

migration has gotten its name. Eq. (3.12) describes the relation between the 2D Fourier trans-
form of the field observed at Z0 = 0, and the 2D Fourier transform of the field that would have
been measured at z �= 0, had the sensors been placed at that particular depth instead of Z0.
Thus, pl(x, z, t) can be recovered by a 2D inverse Fourier transform.

Consider now an exploding reflector at the particular depth, z, identical with the depth of a
hypothetical sensor plane. Since the vertical distance between the sensor plane and the reflector
then is zero, the contribution from the reflector will appear at t = 0. Moreover, compared to any
other observation time, the field originating from the reflector will be maximally concentrated
in space at t = 0. This holds regardless of x-position and we realize that by simply reading
out the field at time t = 0 from pl(x, z, t) for all points at the same depth, z, we will obtain a

2See Appendix 3.A.2 concerning the sign conventions used in the Fourier transform.
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where we have used that kl,z is negative for an up-going wave component.
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By proceeding in a similar way for the remaining layers, we find that the component can be
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Pl(kx, z, ω) = P1(kx, ω)αl(kx, z − Zl−1, ω)
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Note again that transmission losses at the interfaces are neglected. A correction for these
can easily be included in the model but for the purpose of imaging and with the relatively small
angle of divergence for the transducer used in this work, such a correction is of limited value;
see further comments in Appendix 3.A.1.

The multiplication by α(·) represents a phase shift and it is from this relation phase shift

migration has gotten its name. Eq. (3.12) describes the relation between the 2D Fourier trans-
form of the field observed at Z0 = 0, and the 2D Fourier transform of the field that would have
been measured at z �= 0, had the sensors been placed at that particular depth instead of Z0.
Thus, pl(x, z, t) can be recovered by a 2D inverse Fourier transform.

Consider now an exploding reflector at the particular depth, z, identical with the depth of a
hypothetical sensor plane. Since the vertical distance between the sensor plane and the reflector
then is zero, the contribution from the reflector will appear at t = 0. Moreover, compared to any
other observation time, the field originating from the reflector will be maximally concentrated
in space at t = 0. This holds regardless of x-position and we realize that by simply reading
out the field at time t = 0 from pl(x, z, t) for all points at the same depth, z, we will obtain a

2See Appendix 3.A.2 concerning the sign conventions used in the Fourier transform.
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horizontal image line that has optimal lateral resolution. Time t = 0 is sometimes called the
imaging condition for this scenario.

The inverse Fourier transform for obtaining p(x, z, t = 0) is

pl(x, z, t = 0) =

∫ ∫
Pl(kx, z, ω)ejkxxdkxdω, (3.13)

where we have used that e−jωt = 1 for t = 0. The integral can be evaluated by first integrating
Pl(kx, z, ω) over ω, followed by a 1D inverse Fourier transform over kx.

Finally, note that eq. (3.12) allows for an efficient recursive computation within each layer.
If we have Pl(kx, z, ω), we can obtain Pl(kx, z + ∆z, ω) with z and z + ∆z using

Pl(kx, z + ∆z, ω) = Pl(kx, z, ω)αl(kx, ∆z, ω) (3.14)

so if we choose an image grid that is regular in z, the factor αl(kx, ∆z, ω) will be the same for
each image line within layer l, meaning that it can be pre-calculated and stored in a lookup
table to speed up the computations.

Adaptations to the case of pulse-echo measurements.

The phase shift migration equations were derived assuming an exploding reflector model and this
model must be adapted to the monostatic case. The sound paths in the pulse-echo measurements
are twice as long as those in an exploding reflector scenario so the pulse-echo measurements can
be translated into an analogous exploding reflector scenario by simply dividing the physical
sound speed by two.

As a consequence, the phase shift factor should for the monostatic case be redefined as

αl(kx, ζ, ω) = exp

{
−jζ

√
4ω2

c2
l

− k2
x

}
. (3.15)

Another deviation from the above presented theory is that the field measurements are in-
fluenced by the transducer characteristics. The electro-acoustical properties of the transducer
affect the measured signal both at transmission and reception and the overall effect is that the
received signals become band pass filtered and, more importantly, phase delayed. If these delays
are not compensated for, the imaging condition t = 0 will be poorly synchronized with the waves
resulting from a scatter at z, and this will cause a deterioration of the lateral resolution.

A simple way to compensate for these phase delays is to correlate the received signals with
the double path impulse response of the transducer3 which is the method chosen here. After the
correlation, the maximum peak of an echo from a small reflector at a certain range will appear
correctly synchronized with the two-way travel time predicted by the range. A good approxi-
mation of this impulse response used in the correlation is obtained by measuring the response
from a reflector in the far field, parallel to the transducer surface [24], and the correlation is
conveniently performed in the frequency domain for each acquired signal, s(xn, Z0, t), as

PC(xn, Z0, ω) = S(xn, Z0, ω)H∗

tr(ω), (3.16)

where S(xn, Z0, ω) is the Fourier transform of s(xn, Z0, t) and H∗

tr(ω) is the complex conjugate
of the Fourier transform of the double path transducer impulse response, htr(t).

3The double path impulse response is a convolution between the electro-mechanical impulse response in trans-
mit and the mechanical-electrical in receive.
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We should note yet another deviation between reality and the assumptions used in the
derivation. Since the diameter of the planar transducer is larger then the involved wave lengths,
only the field from a limited set of angles centered around the normal to the transducer surface
is sensed. Thus, the field that is processed is not the true field at the scanning surface but
a spatially filtered version of it. Since the resolution in the reconstructed image is inversely
proportional to the spatial bandwidth, and this bandwidth, in turn, is inversely proportional
to the aperture of the sensor, the resolution will be proportional to the aperture. This is in
accordance with the results presented in [25], showing that the resolution in synthetic aperture
imaging is approximately D/2 where D is the aperture of the sensor. See Appendix 3.A.3 for
further details on the theoretically predicted resolution.

Summary of the algorithm

The algorithm summarized in this section aims at reconstructing an Nz ×Nx image from points
on a regular grid in a region of interest (ROI) that is defined as the rectangle z ∈ [zmin, zmax],
x ∈ [xmin, xmax]. In the following we let zp denote the z-coordinates of the pth horizontal image
line.4 These lines are separated by a distance ∆z = (zmax − zmin)/(Nz − 1) and we have that
zp = zmin +(p−1)∆z. In a similar way, the Nx vertical image lines are separated by the spatial
sampling distance ∆x.

Let pC(xn, Z0, t) denote a signal acquired at the transducer position xn, which has been
correlated to the transducer double path impulse response as described in eq. (3.16). The 2D
phase shift migration algorithm can be summarized as follows:

1. Apply a 2D fast Fourier transform (FFT) to the data:
P1(kx, ω) = P1(kx, Z0, ω) ← FFTtx {pC(x, Z0, t)}, where the subscripts on the FFT indi-
cates which variables are transformed.

2. If zmin is not zero, use eq. (3.12) to compute P (kx, zmin, ω).

3. Set z1 = zmin and do the following for all image lines p = 1 to Nz:

(a) Compute p(x, zp, t = 0) by first summing P (kx, zp, ω) over ω,

P (kx, zp) =
∑

ω

P (kx, zp, ω) (3.17)

followed by a 1D inverse fast Fourier transform:

p(x, zp, t = 0) ← IFFTx {P (kx, zp)} , (3.18)

and assign p(x, zp, t = 0) to the p:th horizontal image line.

(b) If zp and zp+1 both belong to the same layer, l, use eq. (3.14) to compute
P (kx, zp+1, ω) for all values of kx and ω. Else, if zp belongs to l and zp+1 belongs to
l + 1, compute P (kx, zp+1, ω) in two steps as
P (kx, zp+1, ω) = P (kx, Zl, ω)αl+1(kx, zp+1 − Zl, ω) with
P (kx, Zl, ω) = P (kx, zp, ω)αl(kx, Zl − zp, ω).

Again note that the phase factors, α(·), appearing in steps 2 and 3(b) should be for the monos-
tatic case as defined in eq. (3.15).

Since going from continuous to discrete data may introduce aliasing problem, zero-padding
is generally required to avoid this. See Appendix 3.A.4 for a discussion on aliasing issues in both
the temporal and spatial domains.

4Please note the distinction between superscripts identifying the image lines and the subscripts used to identify
layer interface coordinates
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horizontal image line that has optimal lateral resolution. Time t = 0 is sometimes called the
imaging condition for this scenario.
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3.1.3 Experiments

Two experiments were performed. The first aimed at demonstrating the method’s ability to treat
a scenario with scatterers residing in two layers having different sound speeds. This experiment
was performed with a copper block immersed in water and containing a number of side drilled
holes (SDHs). A wire target was placed in the water in front of the block, in this way creating
a scenario with scatterers present both in the slow water media, with c1 = 1480 m/s, and in the
fast copper media, with c2 = 4690 m/s. The second experiment aimed at demonstrating how the
method can be used with immersion test data to improve the resolution in C-scans and improve
the amplitude contrast between isolated reflectors and the contributions from grain scattering.
In this experiment the test object was a copper block with flat bottom holes (FBHs).

Immersion measurements of copper block with SDHs and a wire target in water

The immersion test setup used in the first experiment is shown in Fig. 3.2. A planar circular
2.25 MHz transducer from Panametrics with 10 mm diameter was scanned along the x-axis and
pulse-echo measurements were acquired at positions x1, ..., x210 that were separated by ∆x = 1
mm. The inspected object containing SDHs was placed with its front surface in the horizontal
plane.

xx
1
x
2

x
N

φ 1 mm 

7 mm

74 mm

0.3 mm wire target

z

110 mm

4 mm

15 mm

2.25 MHz transducer
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Figure 3.2: Schematic setup for immersion testing of the copper block containing SDHs. The ultrasonic
transducer was scanned in the x-direction and pulse-echo measurements were performed at discrete
locations x1, ..., xN that were separated by ∆x = 1 mm.

The acquired data is presented in Fig. 3.3(a) as an envelope B-scan, obtained by Hilbert
transformation of the raw data. The front surface echo is seen at approximately t = 150µs
corresponding to the water path of approximately 110 mm and the wire target can be seen at
x = 110 mm at t = 140µs. A secondary echo from the wire is also seen at t = 160µs at the
same scanning position. It corresponds to a sound path transducer-Cu-wire-Cu-transducer. The
SDHs are seen as hyperbolic patterns at various depths.

In Fig. 3.3(b), the image reconstructed using phase shift migration is presented. In this
image, in which the horizontal image lines are separated by ∆z = 0.1 mm, the responses from
the SDHs are concentrated to small spots and the same holds for the wire target. Note that a
geometrical correction is obtained through the migration since the method takes into account
the different sound speeds at different layers. Thus, the wire target’s distance between to the
front surface of the block can be correctly measured in the image to be 7 mm. Due to the
shorter wavelength in water, the wire target has a better vertical resolution than the SDHs in
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Figure 3.3: (a) The B-scan from the copper block with SDHs and with a wire target in front of the
upper surface. (b) Result from phase shift migration.

the copper block. Note also that the lateral resolution of the SDHs is approximately uniform
throughout the entire object.

The diffuse spot centered at x = 110 mm and z = 132 mm corresponds the above men-
tioned double reflection Cu-wire-Cu. Since multiple reflections are not taken into account in the
development of the method, such echoes generally lead to blurred artifacts as the one seen here.

The lateral resolution can be further examined in Fig. 3.4, where local profile plots for the
SDHs as well as the wire target are shown both for the B-scan and the reconstructed image.
These profiles were obtained by calculating the maximum amplitudes within a depth interval
covering the target of interest and projecting the values onto the x-axis. For ease of comparison,
the profiles have been normalized to the same maximum amplitudes.
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Figure 3.4: Profile plots of the SDHs and the wire target in (a) the original B-scan and (b) the
reconstructed image. The profiles of SDHs are shown grey with various line styles to separate visually
and the wire target is shown as a solid black line.

Inspection of the profile plots confirms the conclusion that the lateral resolution in the
reconstructed image is practically independent of the depth. This holds also for the wire target
which is surrounded by a medium with a different sound speed than the SDHs. If we define
the resolution to be the length of the cross section at 50% of the maximum of the amplitude,
we get a resolution that is approximately 5 mm for both the holes and the wire target. This is
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3.1.3 Experiments

Two experiments were performed. The first aimed at demonstrating the method’s ability to treat
a scenario with scatterers residing in two layers having different sound speeds. This experiment
was performed with a copper block immersed in water and containing a number of side drilled
holes (SDHs). A wire target was placed in the water in front of the block, in this way creating
a scenario with scatterers present both in the slow water media, with c1 = 1480 m/s, and in the
fast copper media, with c2 = 4690 m/s. The second experiment aimed at demonstrating how the
method can be used with immersion test data to improve the resolution in C-scans and improve
the amplitude contrast between isolated reflectors and the contributions from grain scattering.
In this experiment the test object was a copper block with flat bottom holes (FBHs).

Immersion measurements of copper block with SDHs and a wire target in water

The immersion test setup used in the first experiment is shown in Fig. 3.2. A planar circular
2.25 MHz transducer from Panametrics with 10 mm diameter was scanned along the x-axis and
pulse-echo measurements were acquired at positions x1, ..., x210 that were separated by ∆x = 1
mm. The inspected object containing SDHs was placed with its front surface in the horizontal
plane.
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Figure 3.2: Schematic setup for immersion testing of the copper block containing SDHs. The ultrasonic
transducer was scanned in the x-direction and pulse-echo measurements were performed at discrete
locations x1, ..., xN that were separated by ∆x = 1 mm.

The acquired data is presented in Fig. 3.3(a) as an envelope B-scan, obtained by Hilbert
transformation of the raw data. The front surface echo is seen at approximately t = 150µs
corresponding to the water path of approximately 110 mm and the wire target can be seen at
x = 110 mm at t = 140µs. A secondary echo from the wire is also seen at t = 160µs at the
same scanning position. It corresponds to a sound path transducer-Cu-wire-Cu-transducer. The
SDHs are seen as hyperbolic patterns at various depths.

In Fig. 3.3(b), the image reconstructed using phase shift migration is presented. In this
image, in which the horizontal image lines are separated by ∆z = 0.1 mm, the responses from
the SDHs are concentrated to small spots and the same holds for the wire target. Note that a
geometrical correction is obtained through the migration since the method takes into account
the different sound speeds at different layers. Thus, the wire target’s distance between to the
front surface of the block can be correctly measured in the image to be 7 mm. Due to the
shorter wavelength in water, the wire target has a better vertical resolution than the SDHs in
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Figure 3.3: (a) The B-scan from the copper block with SDHs and with a wire target in front of the
upper surface. (b) Result from phase shift migration.

the copper block. Note also that the lateral resolution of the SDHs is approximately uniform
throughout the entire object.

The diffuse spot centered at x = 110 mm and z = 132 mm corresponds the above men-
tioned double reflection Cu-wire-Cu. Since multiple reflections are not taken into account in the
development of the method, such echoes generally lead to blurred artifacts as the one seen here.

The lateral resolution can be further examined in Fig. 3.4, where local profile plots for the
SDHs as well as the wire target are shown both for the B-scan and the reconstructed image.
These profiles were obtained by calculating the maximum amplitudes within a depth interval
covering the target of interest and projecting the values onto the x-axis. For ease of comparison,
the profiles have been normalized to the same maximum amplitudes.
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Figure 3.4: Profile plots of the SDHs and the wire target in (a) the original B-scan and (b) the
reconstructed image. The profiles of SDHs are shown grey with various line styles to separate visually
and the wire target is shown as a solid black line.

Inspection of the profile plots confirms the conclusion that the lateral resolution in the
reconstructed image is practically independent of the depth. This holds also for the wire target
which is surrounded by a medium with a different sound speed than the SDHs. If we define
the resolution to be the length of the cross section at 50% of the maximum of the amplitude,
we get a resolution that is approximately 5 mm for both the holes and the wire target. This is
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in accordance with the results for synthetic aperture imaging [25], stating the resolution to be
approximately D/2 for a sensor with an aperture of D. Here we have D = 10 mm.

Immersion test of copper block with FBHs

In the second experiment, a volume scan of a copper block with FBHs was performed. The
dimensions of the block are shown in Fig. 3.5 and the scanning was conducted at a distance of
41 mm above the block. The purpose of the experiment was to illustrate the improvements in
detectability and lateral resolution that can be achieved through the method. The block had a
grainy structure that caused both strong back scattering noise as well as sound attenuation and
the responses of the FBHs were therefore relatively difficult to detect in standard B-scans. Only
the 4 mm diameter FBH gave a response strong enough to be easily detected in those images.
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Figure 3.5: Copper block with four FBHs.

Figures 3.6 and 3.7 show two examples of envelope B-scans from the data set along with the
corresponding reconstructed images. Fig. 3.6 shows an extracted B-scan over the 1 mm and
4 mm FBHs. The 1 mm hole is not seen at all but the response from the 4 mm FBH can be
seen at an interval around x = 82 mm and t = 82µs. Note that the width of the response is
approximately 15 mm. In the corresponding reconstructed image, the response from the 4 mm
FBH at around z = 97 mm5 is reduced in size significantly.

Fig. 3.7 shows an extracted B-scan over the 2 mm and 3 mm holes and we can see weak
responses from these holes at around t = 82µs, for x around 18 mm and 80 mm, respectively.
The 3 mm and 2 mm FBHs at around z = 97 mm in the corresponding reconstructed image are
better localized in the x-direction thus providing better conditions for extracting a C-scan.

C-scan images from the depth interval covering the FBHs in the Cu-block were extracted from
the raw data as well as from the reconstructed images by projecting the maximum amplitude
values within the interval onto the x − y plane. The depth interval of interest corresponds to
the interval z ∈ [95, 99] mm when the water path is taken into account. In the C-scans that are
presented in Fig. 3.8, the FBHs of diameters 2, 3, and 4 mm are visible in both C-scans but
the resolution is much improved in the C-scan based on the migrated data. In particular, the
3 mm diameter FBH is in the original C-scan partly masked by disturbances caused by early
parts of the back wall echo entering the time window of interest. In the migrated C-scan, these
disturbances are less prominent and the true position of the FBH is more easily found.

Note that the improvement in resolution only concerns the direction of migration; the mi-
gration has not significantly improved the resolution in the y-direction.

5Note that the water path is included in the z measure.
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Figure 3.6: (a) Original B-scan acquired at y = 18 mm passing over the 1 mm and 4 mm FBHs. (b)
Image resulting from phase shift migration. The response of the 1mm FBH is too weak to be seen.
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Figure 3.7: (a) Original B-scan acquired at y = 63 mm passing over the 3 mm and 2 mm FBHs. (b)
Image obtained by migration of the B-scan.

Both C-scans in Fig. 3.8 have been normalized with respect to their maximum pixel value
providing a fair comparison of the noise level in the images and we note that phase shift migration
has improved the signal-to-noise ratio, resulting in a better contrast.

3.1.4 Conclusions and discussion

Phase shift migration has been proposed for ultrasonic imaging of objects immersed in water
and the algorithm has been demonstrated to correctly treat media with different sound speeds
and to yield images with an improved lateral resolution under such conditions.

The experiment with the copper block with SDHs, showed that the lateral resolution in the
reconstructed image is independent of depth to a good approximation. It was also demonstrated
using data from a block with FBHs that the phase shift migration, along with the improvement
in resolution, helps in improving the amplitude contrast between isolated reflectors and the
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in accordance with the results for synthetic aperture imaging [25], stating the resolution to be
approximately D/2 for a sensor with an aperture of D. Here we have D = 10 mm.

Immersion test of copper block with FBHs

In the second experiment, a volume scan of a copper block with FBHs was performed. The
dimensions of the block are shown in Fig. 3.5 and the scanning was conducted at a distance of
41 mm above the block. The purpose of the experiment was to illustrate the improvements in
detectability and lateral resolution that can be achieved through the method. The block had a
grainy structure that caused both strong back scattering noise as well as sound attenuation and
the responses of the FBHs were therefore relatively difficult to detect in standard B-scans. Only
the 4 mm diameter FBH gave a response strong enough to be easily detected in those images.
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Figures 3.6 and 3.7 show two examples of envelope B-scans from the data set along with the
corresponding reconstructed images. Fig. 3.6 shows an extracted B-scan over the 1 mm and
4 mm FBHs. The 1 mm hole is not seen at all but the response from the 4 mm FBH can be
seen at an interval around x = 82 mm and t = 82µs. Note that the width of the response is
approximately 15 mm. In the corresponding reconstructed image, the response from the 4 mm
FBH at around z = 97 mm5 is reduced in size significantly.

Fig. 3.7 shows an extracted B-scan over the 2 mm and 3 mm holes and we can see weak
responses from these holes at around t = 82µs, for x around 18 mm and 80 mm, respectively.
The 3 mm and 2 mm FBHs at around z = 97 mm in the corresponding reconstructed image are
better localized in the x-direction thus providing better conditions for extracting a C-scan.

C-scan images from the depth interval covering the FBHs in the Cu-block were extracted from
the raw data as well as from the reconstructed images by projecting the maximum amplitude
values within the interval onto the x − y plane. The depth interval of interest corresponds to
the interval z ∈ [95, 99] mm when the water path is taken into account. In the C-scans that are
presented in Fig. 3.8, the FBHs of diameters 2, 3, and 4 mm are visible in both C-scans but
the resolution is much improved in the C-scan based on the migrated data. In particular, the
3 mm diameter FBH is in the original C-scan partly masked by disturbances caused by early
parts of the back wall echo entering the time window of interest. In the migrated C-scan, these
disturbances are less prominent and the true position of the FBH is more easily found.

Note that the improvement in resolution only concerns the direction of migration; the mi-
gration has not significantly improved the resolution in the y-direction.

5Note that the water path is included in the z measure.
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Figure 3.6: (a) Original B-scan acquired at y = 18 mm passing over the 1 mm and 4 mm FBHs. (b)
Image resulting from phase shift migration. The response of the 1mm FBH is too weak to be seen.
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Figure 3.7: (a) Original B-scan acquired at y = 63 mm passing over the 3 mm and 2 mm FBHs. (b)
Image obtained by migration of the B-scan.

Both C-scans in Fig. 3.8 have been normalized with respect to their maximum pixel value
providing a fair comparison of the noise level in the images and we note that phase shift migration
has improved the signal-to-noise ratio, resulting in a better contrast.

3.1.4 Conclusions and discussion

Phase shift migration has been proposed for ultrasonic imaging of objects immersed in water
and the algorithm has been demonstrated to correctly treat media with different sound speeds
and to yield images with an improved lateral resolution under such conditions.

The experiment with the copper block with SDHs, showed that the lateral resolution in the
reconstructed image is independent of depth to a good approximation. It was also demonstrated
using data from a block with FBHs that the phase shift migration, along with the improvement
in resolution, helps in improving the amplitude contrast between isolated reflectors and the
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Figure 3.8: C-scan based on (a) raw data and (b) migrated data. Note that the C-scans are seen from
a top view with the 4 mm diameter FBH seen at the upper right corner.

contributions from grain scattering and, thus, is a useful tool for the detection of defects that
are buried deeply in grainy materials.

The method considers longitudinal propagation only and any contribution associated with
shear waves are neglected. Two facts motivate this approximation: First, the velocity of shear
waves is around half of the velocity of the longitudinal which means that the contributions from
the two modes appear well separated in time, at least for deeply buried reflectors. Second,
the echo transmittance for shear waves is very small compared to the longitudinal. See Ap-
pendix 3.A.1 for numerical examples of the relative strengths of the mode components for the
experiments presented in the paper.

The algorithm is implemented using FFT routines and the current implementation allows
processing of the B-scans that takes less time than the data acquisition. As an example, the
acquisition time of the B-scan, of size 1325 × 210, used in the experiments presented in the
first part Section 3.1.3 was approximately 3 minutes whereas the processing time was 3.5 s
on a dual core 2.80 GHz laptop. Finally, we note that the method can be straightforwardly
extended to processing of 3D data, thus allowing for simultaneous improvement in both the
lateral dimensions.
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3.2 Extension to 3D data

The material presented in Section 3.1 was restricted to the migration of 2D data only. The
migration concept can, however, straightforwardly be extended to 3D data and this extension
is described here. 3D data is collected by acquiring A-scans at a scanning grid in the xy-
plane and the extension to processing 3D data has the benefit of improving the resolution in
both these lateral directions. This, however, comes at the cost of increased computational
and memory demands. By organizing the computations in different ways, it turns out that
we can trade between computational efficiency and memory requirements and we here propose
two different algorithm implementations of which the first is suitable for fast processing on a
powerful computer with a large internal memory and the second is slower but more memory
efficient and can be run on most commonly available computers.

Due to the close relation between 2D and 3D migration, there is some overlap between
the presentation here and that given in Section 3.1, both regarding theory and experiments.
However, in this section, more algorithmic details are given and the computational complexity
as well as the image resolution are examined in more detail.

The steps for modifying the 2D phase shift migration to the 3D case are given below in
Section 3.2.1. This is followed in Section 3.2.2 by a summary of the two proposed algorithm
implementations together with an analysis of the asymptotic computational complexity of these.
A series of experiments are presented in Section 3.2.3 and the results from these are concluded
in Section 3.2.4.

3.2.1 Extending the 2D algorithm to 3D

We here consider a scenario similar to that described in Section 3.1.2, but with the exception
that the field is a function of all three space coordinates, i.e., we here represent the field by
p(x, y, z, t). Within the l:th layer, the scalar wave equation can be written as

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
l

∂2

∂t2

]
p(x, y, z, t) = 0. (3.19)

By decomposing the field into plane harmonic wave components, which now depend on wave
number components ky also, and following the same line of arguments as those leading to eqs.
(3.3) and (3.4), we obtain the dispersion relation

kl,z = −
√

ω2

c2
l

− k2
x − k2

y, with
ω2

c2
l

≥ k2
x + k2

y. (3.20)

Thus, the wave number component kl,z in the 3D case depends on ω, kx and ky instead of only
ω and kx, as in the 2D case and the basic field extrapolation relation for 3D becomes6

Pl(kx, ky, z, ω) = P1(kx, ky, ω)αl(kx, ky, z − zl−1, ω)
l−1∏

q=1

αq(kx, ky, dq, ω), (3.21)

where α(·) in the 3D case is defined as

αl(kx, ky, ζ, ω) = exp

{
−jζ

√
4ω2
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l

− k2
x − k2

y

}
, (3.22)

6c.f. eq. (3.12)

43



x  [mm]

y
  [

m
m

]

20 40 60 80 100

10

20

30

40

50

60

70

80

4 mm

2 mm3 mm

back wall 

disturbance

(a)

x  [mm]

y
  [

m
m

]

20 40 60 80 100

10

20

30

40

50

60

70

80

4 mm

3 mm 2 mm

back wall 

disturbance

(b)

Figure 3.8: C-scan based on (a) raw data and (b) migrated data. Note that the C-scans are seen from
a top view with the 4 mm diameter FBH seen at the upper right corner.

contributions from grain scattering and, thus, is a useful tool for the detection of defects that
are buried deeply in grainy materials.

The method considers longitudinal propagation only and any contribution associated with
shear waves are neglected. Two facts motivate this approximation: First, the velocity of shear
waves is around half of the velocity of the longitudinal which means that the contributions from
the two modes appear well separated in time, at least for deeply buried reflectors. Second,
the echo transmittance for shear waves is very small compared to the longitudinal. See Ap-
pendix 3.A.1 for numerical examples of the relative strengths of the mode components for the
experiments presented in the paper.

The algorithm is implemented using FFT routines and the current implementation allows
processing of the B-scans that takes less time than the data acquisition. As an example, the
acquisition time of the B-scan, of size 1325 × 210, used in the experiments presented in the
first part Section 3.1.3 was approximately 3 minutes whereas the processing time was 3.5 s
on a dual core 2.80 GHz laptop. Finally, we note that the method can be straightforwardly
extended to processing of 3D data, thus allowing for simultaneous improvement in both the
lateral dimensions.
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3.2 Extension to 3D data

The material presented in Section 3.1 was restricted to the migration of 2D data only. The
migration concept can, however, straightforwardly be extended to 3D data and this extension
is described here. 3D data is collected by acquiring A-scans at a scanning grid in the xy-
plane and the extension to processing 3D data has the benefit of improving the resolution in
both these lateral directions. This, however, comes at the cost of increased computational
and memory demands. By organizing the computations in different ways, it turns out that
we can trade between computational efficiency and memory requirements and we here propose
two different algorithm implementations of which the first is suitable for fast processing on a
powerful computer with a large internal memory and the second is slower but more memory
efficient and can be run on most commonly available computers.

Due to the close relation between 2D and 3D migration, there is some overlap between
the presentation here and that given in Section 3.1, both regarding theory and experiments.
However, in this section, more algorithmic details are given and the computational complexity
as well as the image resolution are examined in more detail.

The steps for modifying the 2D phase shift migration to the 3D case are given below in
Section 3.2.1. This is followed in Section 3.2.2 by a summary of the two proposed algorithm
implementations together with an analysis of the asymptotic computational complexity of these.
A series of experiments are presented in Section 3.2.3 and the results from these are concluded
in Section 3.2.4.

3.2.1 Extending the 2D algorithm to 3D

We here consider a scenario similar to that described in Section 3.1.2, but with the exception
that the field is a function of all three space coordinates, i.e., we here represent the field by
p(x, y, z, t). Within the l:th layer, the scalar wave equation can be written as
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(3.3) and (3.4), we obtain the dispersion relation

kl,z = −
√

ω2

c2
l

− k2
x − k2

y, with
ω2

c2
l

≥ k2
x + k2

y. (3.20)
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ω and kx, as in the 2D case and the basic field extrapolation relation for 3D becomes6
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6c.f. eq. (3.12)
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if we take into account the adaptation to the pulse-echo scenario, as in eq. (3.15). Note again
that since we only restrict our attention to propagating waves, only triplets of ω, kx, and ky that
yield a positive expression inside the square root in eq. (3.22) are considered. The remaining
are nulled out in the processing.

Similar to the 2D case, the imaging condition is t = 0. The difference is that we now, for
each depth z, obtain an image cross section instead of a line. This cross section is obtained as

pl(x, y, z, t = 0) =

∫ ∫ ∫
Pl(kx, ky, z, ω)ejkxxejkyydkxdkydω, (3.23)

for z belonging to layer l.

Finally, a somewhat more refined analysis of the resolution than that given in Section 3.1,
taking into account the circular shape of the transducer, leads to the following theoretically
predicted lateral resolution in the restored images:

δx,y =
D

2 · 1.22
≈ 0.41D (3.24)

where D is the diameter of the transducer. See Appendix 3.A.3 for details.

3.2.2 Algorithm implementations

The computation involved in the phase shift migration can be organized in several ways, leading
to different implementations. We here present two different implementations of 3D phase shift
migration algorithms. The first of these requires a large data set to be stored in memory during
processing but is computationally faster, making it suitable for powerful computers with large
internal memory. The second is computationally slower, but more memory efficient. Apart
from possible differences caused by numerical round-off errors, the two algorithms give identical
results.

The algorithms both take advantage of the the fact that the transmitted pulses and, thus, the
received signals are limited to a frequency pass band between flow and fhigh. Furthermore, the
computations are performed on negative frequencies only7; the positive frequencies are nulled
out.

We let s(xm, yn, Z0, ti) denote the A-scan acquired at transducer position (xm, yn, Z0), for
0 ≤ i ≤ Nt − 1, where Nt is the number of time samples recorded in each A-scan. The sampling
period is denoted by ∆t. The A-scans are stored in a three dimensional array of size Nx ·Ny ·Nt,
where Nx and Ny are the number of points in the x− and y− directions, respectively. These
points are separated by the spatial sampling distances ∆x and ∆y. The reconstruction results in
a new data block of size Nx ·Ny ·Nz, where the number of z-values, Nz, can be chosen arbitrarily.
These are separated in depth by ∆z, which is also chosen by the user. Together, Nz and ∆z
determine the height of the ROI.

As in the 2D case, zero-padding must be applied to avoid aliasing, and a correlation between
the A-scan and the double path transducer impulse response, htr(k), should be performed in
order to compensate for the phase delays introduced to the signals by the transducer, see Section
3.1.2. The correlation is conveniently performed in conjunction with the nulling out of positive
frequencies. The two preprocessing steps are performed as follows:

7Acoustics and electrical engineering use different sign conventions for Fourier transforms. Due to these
differences, there is a risk of confusion when discussing positive or negative frequencies. See Appendix 3.A.2 for
comments on the sign conventions used in the FFT:s
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1. To avoid aliasing, zero-pad the data in all three dimensions:

szp(xm, yn, Z0, ti) =






s(xm, yn, Z0, ti) for






m ∈ [0, Nx − 1]

n ∈ [0, Ny − 1]

i ∈ [0, Nt − 1]

0 for






Nx ≤ m ≤ Nx,zp

Ny ≤ n ≤ Ny,zp

Nt ≤ i ≤ Nt,zp,

(3.25)

where Nx,zp, Ny,zp and Nt,zp are the numbers of points in the x-, y- and z-directions after
zero padding. For a discussion on the aliasing effects and how to choose the number of
appended zeros, see Appendix 3.A.4.

2. For each nonzero A-scan in the data cube, i.e., for m = 0 . . . Nx−1 and n = 0 . . . Ny−1, cor-
relate the A-scan with the transducer impulse response and at the same time null out pos-
itive ω. This is done by first computing the discrete Fourier transform of szp(xm, yn, Z0, ti)
with respect to time

S(xm, yn, Z0, ωs) ← FFTt {szp(xn, yn, Z0, ti)} , (3.26)

yielding values at discrete ωs ∈ [− π
∆t

, π
∆t

], in steps of ∆ω = 2π
Nt,zp∆t

, followed by the
correlation combined with nulling out the positive side of the spectrum

PC(xm, yn, Z0, ωs) =

�
S(xm, yn, Z0, ωs)H

∗

tr(ωs) if ωs < 0

0 otherwise,
(3.27)

where H∗

tr(ωs) is the complex conjugate of the Fourier transformed htr(ti).

At this stage we can reduce the data set in size by removing all frequency components
outside the transducer frequency pass band, thus, leaving us with a data cube of size
Nx,zp · Ny,zp · BNt,zp

2Fs , where B = fhigh − flow is the bandwidth of the transducer and
Fs = 1/∆t is the temporal sampling frequency

Note that the data is usually acquired using a time gate which means that the time between
transmission and the start of the measurement, t0, is usually non-zero, and this must be
taken into account in the processing. This is done by phase shifting each A-scan in the
frequency domain, which can be combined with the correlation, and equation (3.27) then
becomes

P (xm, yn, Z0, ωs) =

=

�
S(xm, yn, Z0, ωs)H

∗

tr(ωs) exp(−jωs · t0 · Fs) if ωs < 0

0 otherwise.
(3.28)

In summary, the preprocessing results in a 3D array, P (xm, yn, Z0, ωs), of size Nx,zp · Ny,zp ·
BNt,zp

2Fs and this array is the input to the two algorithms. They both reconstruct an 3D image of
the ROI that starts at depth zmin and has thickness (Nz − 1)∆z. The image planes obtained at
each depth are below enumerated by p.

Algorithm 1

1. Apply a 2D FFT on P (xm, yn, Z0, ωs) along both x and y:

P (kx, ky, Z0, ωs) ← FFTxyP (xm, yn, Z0, ωs) (3.29)
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if we take into account the adaptation to the pulse-echo scenario, as in eq. (3.15). Note again
that since we only restrict our attention to propagating waves, only triplets of ω, kx, and ky that
yield a positive expression inside the square root in eq. (3.22) are considered. The remaining
are nulled out in the processing.

Similar to the 2D case, the imaging condition is t = 0. The difference is that we now, for
each depth z, obtain an image cross section instead of a line. This cross section is obtained as

pl(x, y, z, t = 0) =

∫ ∫ ∫
Pl(kx, ky, z, ω)ejkxxejkyydkxdkydω, (3.23)

for z belonging to layer l.

Finally, a somewhat more refined analysis of the resolution than that given in Section 3.1,
taking into account the circular shape of the transducer, leads to the following theoretically
predicted lateral resolution in the restored images:

δx,y =
D

2 · 1.22
≈ 0.41D (3.24)

where D is the diameter of the transducer. See Appendix 3.A.3 for details.

3.2.2 Algorithm implementations

The computation involved in the phase shift migration can be organized in several ways, leading
to different implementations. We here present two different implementations of 3D phase shift
migration algorithms. The first of these requires a large data set to be stored in memory during
processing but is computationally faster, making it suitable for powerful computers with large
internal memory. The second is computationally slower, but more memory efficient. Apart
from possible differences caused by numerical round-off errors, the two algorithms give identical
results.

The algorithms both take advantage of the the fact that the transmitted pulses and, thus, the
received signals are limited to a frequency pass band between flow and fhigh. Furthermore, the
computations are performed on negative frequencies only7; the positive frequencies are nulled
out.

We let s(xm, yn, Z0, ti) denote the A-scan acquired at transducer position (xm, yn, Z0), for
0 ≤ i ≤ Nt − 1, where Nt is the number of time samples recorded in each A-scan. The sampling
period is denoted by ∆t. The A-scans are stored in a three dimensional array of size Nx ·Ny ·Nt,
where Nx and Ny are the number of points in the x− and y− directions, respectively. These
points are separated by the spatial sampling distances ∆x and ∆y. The reconstruction results in
a new data block of size Nx ·Ny ·Nz, where the number of z-values, Nz, can be chosen arbitrarily.
These are separated in depth by ∆z, which is also chosen by the user. Together, Nz and ∆z
determine the height of the ROI.

As in the 2D case, zero-padding must be applied to avoid aliasing, and a correlation between
the A-scan and the double path transducer impulse response, htr(k), should be performed in
order to compensate for the phase delays introduced to the signals by the transducer, see Section
3.1.2. The correlation is conveniently performed in conjunction with the nulling out of positive
frequencies. The two preprocessing steps are performed as follows:

7Acoustics and electrical engineering use different sign conventions for Fourier transforms. Due to these
differences, there is a risk of confusion when discussing positive or negative frequencies. See Appendix 3.A.2 for
comments on the sign conventions used in the FFT:s
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1. To avoid aliasing, zero-pad the data in all three dimensions:

szp(xm, yn, Z0, ti) =






s(xm, yn, Z0, ti) for






m ∈ [0, Nx − 1]

n ∈ [0, Ny − 1]

i ∈ [0, Nt − 1]

0 for






Nx ≤ m ≤ Nx,zp

Ny ≤ n ≤ Ny,zp

Nt ≤ i ≤ Nt,zp,

(3.25)

where Nx,zp, Ny,zp and Nt,zp are the numbers of points in the x-, y- and z-directions after
zero padding. For a discussion on the aliasing effects and how to choose the number of
appended zeros, see Appendix 3.A.4.

2. For each nonzero A-scan in the data cube, i.e., for m = 0 . . . Nx−1 and n = 0 . . . Ny−1, cor-
relate the A-scan with the transducer impulse response and at the same time null out pos-
itive ω. This is done by first computing the discrete Fourier transform of szp(xm, yn, Z0, ti)
with respect to time

S(xm, yn, Z0, ωs) ← FFTt {szp(xn, yn, Z0, ti)} , (3.26)

yielding values at discrete ωs ∈ [− π
∆t

, π
∆t

], in steps of ∆ω = 2π
Nt,zp∆t

, followed by the
correlation combined with nulling out the positive side of the spectrum

PC(xm, yn, Z0, ωs) =

�
S(xm, yn, Z0, ωs)H

∗

tr(ωs) if ωs < 0

0 otherwise,
(3.27)

where H∗

tr(ωs) is the complex conjugate of the Fourier transformed htr(ti).

At this stage we can reduce the data set in size by removing all frequency components
outside the transducer frequency pass band, thus, leaving us with a data cube of size
Nx,zp · Ny,zp · BNt,zp

2Fs , where B = fhigh − flow is the bandwidth of the transducer and
Fs = 1/∆t is the temporal sampling frequency

Note that the data is usually acquired using a time gate which means that the time between
transmission and the start of the measurement, t0, is usually non-zero, and this must be
taken into account in the processing. This is done by phase shifting each A-scan in the
frequency domain, which can be combined with the correlation, and equation (3.27) then
becomes

P (xm, yn, Z0, ωs) =

=

�
S(xm, yn, Z0, ωs)H

∗

tr(ωs) exp(−jωs · t0 · Fs) if ωs < 0

0 otherwise.
(3.28)

In summary, the preprocessing results in a 3D array, P (xm, yn, Z0, ωs), of size Nx,zp · Ny,zp ·
BNt,zp

2Fs and this array is the input to the two algorithms. They both reconstruct an 3D image of
the ROI that starts at depth zmin and has thickness (Nz − 1)∆z. The image planes obtained at
each depth are below enumerated by p.

Algorithm 1

1. Apply a 2D FFT on P (xm, yn, Z0, ωs) along both x and y:

P (kx, ky, Z0, ωs) ← FFTxyP (xm, yn, Z0, ωs) (3.29)
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yielding values at discrete kx ∈ [− π
∆x

, π
∆x

] in steps of 2π
Nx,zp∆x

, and ky ∈ [− π
∆y

, π
∆y

] in steps

of 2π
Ny,zp∆y

.

2. If the first z-value in the ROI is zmin �= 0 and belongs to the l:th layer, use eq. (3.21) to
migrate the data so that when the iteration over zp starts, the initial z-value is zmin. The

calculation should be done for triplets (ωs, kx, ky) that satisfy 4ω2
s

c2
− k2

x − k2
y ≥ 0:

P (kx, ky, z = zmin, ωs) = P (kx, ky, Z0, ωs)αl(kx, ky, zmin − Zl−1, ωs)
l−1∏

q=1

αq(kx, ky, dq, ωs)

(3.30)

3. Set z1 = zmin and do the following for all p = 1 . . . Nz:

(a) Calculate, for the same values of kx, ky and s as in item 2,

P (kx, ky, z
p+1, ωs) = P (kx, ky, z

p, ωs)αl(kx, ky, ∆z, ωs) (3.31)

where zp+1 = zp + ∆z.

(b) Calculate the field p(x, y, zp+1, t = 0) by first summing P (kx, ky, z
p+1, ωs) over ωs,

P (kx, ky, z
p+1, t = 0) =

∑

ωs∈Ω

P (kx, ky, z
p+1, ωs), (3.32)

where Ω = [−2πfhigh,−2πflow], followed by a 2D inverse Fourier transform:

p(xm, yn, zp+1, t = 0) ← IFFTkx,ky

{
P (kx, ky, z

p+1, t = 0)
}

, (3.33)

and assign p(xm, yn, zp+1, t = 0) for m = 1...Nx and n = 1...Ny, to the (p + 1):th
image cross section.

Algorithm 2

In algorithm 2, the frequency components are processed in sequence, instead of processing the
entire data cube at the same time and the contributions from each frequency component are
accumulated. In this way, the 3-dimensional data cube is broken down into a set of 2-dimensional
matrices which reduces the memory requirements considerably. The disadvantage is that the
computations become more time consuming.

The algorithm can be described as follows:

1. Allocate a three-dimensional array with zeros of size Nx,zp ·Ny,zp ·Nz for the reconstructed
data cube:

Res = zeros(Nx,zp, Ny,zp, Nz). (3.34)

2. Loop over each frequency component ωs ∈ Ω. For the current ωs, extract the two-
dimensional matrix of size Nx,zp · Ny,zp that contains the x− and y−values for that fre-
quency, and do the following:

(a) Perform a 2-dimensional Fourier transform of the matrix:

P (kx, ky, Z0, ωs) ← FFTxy {p(xm, yn, Z0, ωs)} (3.35)
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(b) If zmin �= 0 and belongs to the l:th layer, use eq. (3.21) to migrate the data so that
when the iteration over zp starts, the initial z-value is zmin. The calculation should
be done for kx ∈ [− π

∆x
, π

∆x
] and ky ∈ [− π

∆y
, π

∆y
], satisfying k2

x + k2
y < 4ω2

s/c2
l :

P (kx, ky, zmin, ωs) = P (kx, ky, Z0, ωs)αl(kx, ky, zmin − Zl−1, ωs)
l−1∏

q=1

αq(kx, ky, dq, ωs).

(3.36)

(c) Set z1 = zmin and do for all p = 1 . . . Nz:

i. Calculate, for the same values of kx and ky as in item 2b

P (kx, ky, z
p+1, ωs) = P (kx, ky, z

p, ωs)αl(kx, ky, ∆z, ωs) (3.37)

ii. Calculate the contribution to the field from the frequency component ωs by a 2D
inverse Fourier transform

ps(xm, yn, zp+1, t = 0) ← FFTkx,ky

{
P (kx, ky, z

p+1, ωs)
}

, (3.38)

and accumulate this to the (p + 1):th image cross section in Res:

Res(:, :, p + 1) ← Res(:, :, p + 1) + ps(xm, yn, zp+1, t = 0) (3.39)

Computational complexity

We here examine how the computational complexity grows with the size of the data sets. For
simplicity we consider only the asymptotic behavior and ignore the proportionality factors since
these, to a large extent, depend on the particular computer on which the computations are
performed. The Big-O notation is used to express the rates of growth. In the following analysis
we will use that, for a fixed chosen depth resolution, ∆z, the number of image cross sections
will be proportional to the number of recorded times samples, Nt. Similarly, the number of used
frequency components will also be proportional to Nt.

8

The computation times for the two algorithms described in section 3.2.2 are dominated by
a few critical computations. In Algorithm 1, the most time consuming part is the phase shift
in item 3a, where approximately 60 % of the computation time is spent, and evaluating the
time this takes gives a good approximation for the overall computation time of the algorithm.
The considered operation is an entry wise multiplication between two 3D arrays of sizes Nx,zp ·
Ny,zp · BNt,zp

2Fs and it resides within a for-loop, with the number of iterations growing linearly
with Nz. Using the proportional relation between Nt and Nz mentioned above, we get that the
computational complexity of every iteration is O(Nx,zpNy,zpNz), and the whole algorithm will
have complexity O(Nx,zpNy,zpN

2
z ).

In Algorithm 2, the operations that dominate the computation time are instead the large
number of 2D Fourier transforms and the adding of contributions to the field in item 2(c)ii and
of these two operations, the 2D Fourier transform has the largest complexity. The operations are
found within a nested for-loop, one over ωs that has a number of iterations that is proportional
to Nz as discussed above, and one over zp, thus, requiring Nz steps. This makes the total number
of iterations proportional to N2

z . The 2D FFT has complexity O(Ny,zpNx,zp log2(Nx,zpNy,zp)),
causing the time for each iteration to have complexity
O(Nx,zpNy,zp log2(Ny,zpNx,zp)) for large Nx,zp and Ny,zp. Altogether, this means that the com-
plexity of Algorithm 2 is O(Nx,zpNy,zpN

2
z log2(Ny,zpNx,zp)), which is a factor log2(Ny,zpNx,zp)

higher than for Algorithm 1.

8Although a fixed transducer frequency band width is considered, the number of frequency bins representing
this band in the FFT will grow with growing Nt since the bins become more densely spaced for larger Nt.
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yielding values at discrete kx ∈ [− π
∆x

, π
∆x

] in steps of 2π
Nx,zp∆x

, and ky ∈ [− π
∆y

, π
∆y

] in steps

of 2π
Ny,zp∆y

.

2. If the first z-value in the ROI is zmin �= 0 and belongs to the l:th layer, use eq. (3.21) to
migrate the data so that when the iteration over zp starts, the initial z-value is zmin. The

calculation should be done for triplets (ωs, kx, ky) that satisfy 4ω2
s

c2
− k2

x − k2
y ≥ 0:

P (kx, ky, z = zmin, ωs) = P (kx, ky, Z0, ωs)αl(kx, ky, zmin − Zl−1, ωs)
l−1∏

q=1

αq(kx, ky, dq, ωs)

(3.30)

3. Set z1 = zmin and do the following for all p = 1 . . . Nz:

(a) Calculate, for the same values of kx, ky and s as in item 2,

P (kx, ky, z
p+1, ωs) = P (kx, ky, z

p, ωs)αl(kx, ky, ∆z, ωs) (3.31)

where zp+1 = zp + ∆z.

(b) Calculate the field p(x, y, zp+1, t = 0) by first summing P (kx, ky, z
p+1, ωs) over ωs,

P (kx, ky, z
p+1, t = 0) =

∑

ωs∈Ω

P (kx, ky, z
p+1, ωs), (3.32)

where Ω = [−2πfhigh,−2πflow], followed by a 2D inverse Fourier transform:

p(xm, yn, zp+1, t = 0) ← IFFTkx,ky

{
P (kx, ky, z

p+1, t = 0)
}

, (3.33)

and assign p(xm, yn, zp+1, t = 0) for m = 1...Nx and n = 1...Ny, to the (p + 1):th
image cross section.

Algorithm 2

In algorithm 2, the frequency components are processed in sequence, instead of processing the
entire data cube at the same time and the contributions from each frequency component are
accumulated. In this way, the 3-dimensional data cube is broken down into a set of 2-dimensional
matrices which reduces the memory requirements considerably. The disadvantage is that the
computations become more time consuming.

The algorithm can be described as follows:

1. Allocate a three-dimensional array with zeros of size Nx,zp ·Ny,zp ·Nz for the reconstructed
data cube:

Res = zeros(Nx,zp, Ny,zp, Nz). (3.34)

2. Loop over each frequency component ωs ∈ Ω. For the current ωs, extract the two-
dimensional matrix of size Nx,zp · Ny,zp that contains the x− and y−values for that fre-
quency, and do the following:

(a) Perform a 2-dimensional Fourier transform of the matrix:

P (kx, ky, Z0, ωs) ← FFTxy {p(xm, yn, Z0, ωs)} (3.35)
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(b) If zmin �= 0 and belongs to the l:th layer, use eq. (3.21) to migrate the data so that
when the iteration over zp starts, the initial z-value is zmin. The calculation should
be done for kx ∈ [− π

∆x
, π

∆x
] and ky ∈ [− π

∆y
, π

∆y
], satisfying k2

x + k2
y < 4ω2

s/c2
l :

P (kx, ky, zmin, ωs) = P (kx, ky, Z0, ωs)αl(kx, ky, zmin − Zl−1, ωs)
l−1∏

q=1

αq(kx, ky, dq, ωs).

(3.36)

(c) Set z1 = zmin and do for all p = 1 . . . Nz:

i. Calculate, for the same values of kx and ky as in item 2b

P (kx, ky, z
p+1, ωs) = P (kx, ky, z

p, ωs)αl(kx, ky, ∆z, ωs) (3.37)

ii. Calculate the contribution to the field from the frequency component ωs by a 2D
inverse Fourier transform

ps(xm, yn, zp+1, t = 0) ← FFTkx,ky

{
P (kx, ky, z

p+1, ωs)
}

, (3.38)

and accumulate this to the (p + 1):th image cross section in Res:

Res(:, :, p + 1) ← Res(:, :, p + 1) + ps(xm, yn, zp+1, t = 0) (3.39)

Computational complexity

We here examine how the computational complexity grows with the size of the data sets. For
simplicity we consider only the asymptotic behavior and ignore the proportionality factors since
these, to a large extent, depend on the particular computer on which the computations are
performed. The Big-O notation is used to express the rates of growth. In the following analysis
we will use that, for a fixed chosen depth resolution, ∆z, the number of image cross sections
will be proportional to the number of recorded times samples, Nt. Similarly, the number of used
frequency components will also be proportional to Nt.

8

The computation times for the two algorithms described in section 3.2.2 are dominated by
a few critical computations. In Algorithm 1, the most time consuming part is the phase shift
in item 3a, where approximately 60 % of the computation time is spent, and evaluating the
time this takes gives a good approximation for the overall computation time of the algorithm.
The considered operation is an entry wise multiplication between two 3D arrays of sizes Nx,zp ·
Ny,zp · BNt,zp

2Fs and it resides within a for-loop, with the number of iterations growing linearly
with Nz. Using the proportional relation between Nt and Nz mentioned above, we get that the
computational complexity of every iteration is O(Nx,zpNy,zpNz), and the whole algorithm will
have complexity O(Nx,zpNy,zpN

2
z ).

In Algorithm 2, the operations that dominate the computation time are instead the large
number of 2D Fourier transforms and the adding of contributions to the field in item 2(c)ii and
of these two operations, the 2D Fourier transform has the largest complexity. The operations are
found within a nested for-loop, one over ωs that has a number of iterations that is proportional
to Nz as discussed above, and one over zp, thus, requiring Nz steps. This makes the total number
of iterations proportional to N2

z . The 2D FFT has complexity O(Ny,zpNx,zp log2(Nx,zpNy,zp)),
causing the time for each iteration to have complexity
O(Nx,zpNy,zp log2(Ny,zpNx,zp)) for large Nx,zp and Ny,zp. Altogether, this means that the com-
plexity of Algorithm 2 is O(Nx,zpNy,zpN

2
z log2(Ny,zpNx,zp)), which is a factor log2(Ny,zpNx,zp)

higher than for Algorithm 1.

8Although a fixed transducer frequency band width is considered, the number of frequency bins representing
this band in the FFT will grow with growing Nt since the bins become more densely spaced for larger Nt.
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3.2.3 Experiments

A number of experiments were performed to examine the performance of the algorithms in
various aspects. The first experiment was performed using contact test data from the copper
block with SDHs used earlier in Section 3.1.3. By using contact data, potential difficulties
caused by refraction were avoided and this experiment partly served the purpose of verifying
the 3D code. More importantly, the experiment served to illustrate how phase shift migration is
typically unable of improving the resolution with scatterers residing in the nearfield or close to
the nearfield-farfield limit of the transducer. Note that although 3D migration was performed,
the setup was essentially that of a 2D scenario and conclusions about resolution improvement
can only be drawn regarding the cross-hole direction, i.e., in the x-direction.

The second experiment was performed in immersion on the same block and it is rather
similar to the experiment presented in 3.1.3, with the main difference being that 3D data and
3D migration is used rather than 2D. The experiment served the purpose of verifying that the
extension to 3D introduced no unexpected computational artifacts. Moreover, a quantitative
examination of the resolution in the x-directions is presented.

The two subsequent experiments aimed at analyzing the resolution improvements in both
the x- and y-directions. The first of the two experiments was performed in immersion using
data from an aluminium block with FBHs and the second used more challenging immersion test
data from the copper block with FBHs that was used earlier in Section 3.1.3.

All processing in the above mentioned experiments were performed using Algorithm 1.
The final experiment concerns computational aspects and the computation times for Algorithm
1 and 2 are compared to each other and matched to their respective predicted performances
given by the above asymptotical complexity analysis.

Contact testing of a copper block with SDHs

In the first experiment, 3D migration was performed on data from a contact test with water
acting as contact agent. The test object was the 74 mm thick copper block with 15 SDHs at
descending depths, described earlier in Section 3.1.3. The holes were drilled 27 to 31 mm into the
block. A circular planar contact transducer of diameter 15 mm and with a center frequency of
2.25 MHz and a bandwidth of 3.1 MHz was used in the experiment. It was scanned over an area
of 230 mm in the x-direction, and 20 mm in the y-direction, with scanning steps ∆x = ∆y=1
mm. Approximately 12 mm of the holes’ lengths were covered in the scan, see Figure 3.9, and
14 of the 15 holes were fully covered in x-direction. The front- and backwall echoes from the
copper block were significantly stronger than echoes from the holes within the block and these
were removed from the A-scans in order to avoid potential problems in the reconstruction caused
by saturation in the A/D converter.

An envelope B-scan example extracted from the data cube at y = 7 mm is presented in
Figure 3.10. The gathered data was processed with 3D phase shift migration and the result
for y = 7 mm is shown in Figure 3.11, from which can be seen that the holes closest to the
front surface of the copper block are not resolved as good as the holes deeper into the block.
This is most probably associated with the holes with poorer resolution being in, or close to, the
nearfield of the transducer. For a 2.25 MHz transducer with a diameter of 15 mm, transmitting
into copper, we have a nearfield/farfield limit of 27 mm, see eq. (3.69) in Appendix 3.A.3, and
we see that the holes at larger depths than this all have fairly uniform resolution.

Profile plots were created using both original and processed data for the same y-value, and
these are shown overlaid in Figure 3.12. The halfpower resolution of the holes were estimated
both before and after processing, and the results are summarized in table 3.1. In the profile
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Figure 3.9: Experimental setup for contact testing of a copper block.

Figure 3.10: Original envelope B-scan of a copper block with 15 SDHs, of which 14 are fully covered
by the transducer.
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3.2.3 Experiments

A number of experiments were performed to examine the performance of the algorithms in
various aspects. The first experiment was performed using contact test data from the copper
block with SDHs used earlier in Section 3.1.3. By using contact data, potential difficulties
caused by refraction were avoided and this experiment partly served the purpose of verifying
the 3D code. More importantly, the experiment served to illustrate how phase shift migration is
typically unable of improving the resolution with scatterers residing in the nearfield or close to
the nearfield-farfield limit of the transducer. Note that although 3D migration was performed,
the setup was essentially that of a 2D scenario and conclusions about resolution improvement
can only be drawn regarding the cross-hole direction, i.e., in the x-direction.

The second experiment was performed in immersion on the same block and it is rather
similar to the experiment presented in 3.1.3, with the main difference being that 3D data and
3D migration is used rather than 2D. The experiment served the purpose of verifying that the
extension to 3D introduced no unexpected computational artifacts. Moreover, a quantitative
examination of the resolution in the x-directions is presented.

The two subsequent experiments aimed at analyzing the resolution improvements in both
the x- and y-directions. The first of the two experiments was performed in immersion using
data from an aluminium block with FBHs and the second used more challenging immersion test
data from the copper block with FBHs that was used earlier in Section 3.1.3.

All processing in the above mentioned experiments were performed using Algorithm 1.
The final experiment concerns computational aspects and the computation times for Algorithm
1 and 2 are compared to each other and matched to their respective predicted performances
given by the above asymptotical complexity analysis.

Contact testing of a copper block with SDHs

In the first experiment, 3D migration was performed on data from a contact test with water
acting as contact agent. The test object was the 74 mm thick copper block with 15 SDHs at
descending depths, described earlier in Section 3.1.3. The holes were drilled 27 to 31 mm into the
block. A circular planar contact transducer of diameter 15 mm and with a center frequency of
2.25 MHz and a bandwidth of 3.1 MHz was used in the experiment. It was scanned over an area
of 230 mm in the x-direction, and 20 mm in the y-direction, with scanning steps ∆x = ∆y=1
mm. Approximately 12 mm of the holes’ lengths were covered in the scan, see Figure 3.9, and
14 of the 15 holes were fully covered in x-direction. The front- and backwall echoes from the
copper block were significantly stronger than echoes from the holes within the block and these
were removed from the A-scans in order to avoid potential problems in the reconstruction caused
by saturation in the A/D converter.

An envelope B-scan example extracted from the data cube at y = 7 mm is presented in
Figure 3.10. The gathered data was processed with 3D phase shift migration and the result
for y = 7 mm is shown in Figure 3.11, from which can be seen that the holes closest to the
front surface of the copper block are not resolved as good as the holes deeper into the block.
This is most probably associated with the holes with poorer resolution being in, or close to, the
nearfield of the transducer. For a 2.25 MHz transducer with a diameter of 15 mm, transmitting
into copper, we have a nearfield/farfield limit of 27 mm, see eq. (3.69) in Appendix 3.A.3, and
we see that the holes at larger depths than this all have fairly uniform resolution.

Profile plots were created using both original and processed data for the same y-value, and
these are shown overlaid in Figure 3.12. The halfpower resolution of the holes were estimated
both before and after processing, and the results are summarized in table 3.1. In the profile

48

Figure 3.9: Experimental setup for contact testing of a copper block.

Figure 3.10: Original envelope B-scan of a copper block with 15 SDHs, of which 14 are fully covered
by the transducer.
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Figure 3.11: One cross-section of the results from 3D phase shift migration of the data collected from
a contact scan of a copper block with SDHs.

plot, we see another example of the effects of having the scatterers residing in the nearfield of
the transducer; the amplitudes of the profiles are not strictly decreasing with depth, as should
be the case for scatterers in the farfield.

Figure 3.12: Profile plots for the original data in Figure 3.10 and the processed data in Figure 3.11

From table 3.1, it can be seen that the experimental resolution for the holes residing in the
farfield is fairly close to the theoretically predicted resolution of 0.41D = 6.2 mm.

Finally, C-scans were created using both sets of data. These are presented in Figures 3.13
and 3.14. By comparing these, we see that the improvement in resolution is most apparent in
the x-direction and for the deeper holes. Although some improvement can be experienced also in
the y-direction, we should note that the setup is not well suited for the evaluation of resolution
improvement in this direction. One contributing fact is that the holes do not have flat bottoms
and the ending points of the holes are therefore poorly defined.
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Table 3.1: Estimated halfpower resolution in x-direction for SDHs in a copper block, each 1 mm in
diameter, in the original data, and after processing with 3D phase shift migration. The theoretically
predicted resolution is 6.2 mm.

Hole number Original data After 3D phase shift migration
δx[mm] δx[mm]

1 7.6 8.5
2 6.9 7.4
3 6.8 7.9
4 6.3 6.6
5 6.9 6.1
6 7.2 6.2
7 7.2 6.3
8 8.5 6.1
9 9.7 6.0
10 9.3 5.9
11 8.8 5.9
12 11.2 5.7
13 9.7 6.3
14 14.3 5.3

Figure 3.13: Original contact C-scan of a copper block with SDHs.
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Figure 3.11: One cross-section of the results from 3D phase shift migration of the data collected from
a contact scan of a copper block with SDHs.
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be the case for scatterers in the farfield.

Figure 3.12: Profile plots for the original data in Figure 3.10 and the processed data in Figure 3.11

From table 3.1, it can be seen that the experimental resolution for the holes residing in the
farfield is fairly close to the theoretically predicted resolution of 0.41D = 6.2 mm.

Finally, C-scans were created using both sets of data. These are presented in Figures 3.13
and 3.14. By comparing these, we see that the improvement in resolution is most apparent in
the x-direction and for the deeper holes. Although some improvement can be experienced also in
the y-direction, we should note that the setup is not well suited for the evaluation of resolution
improvement in this direction. One contributing fact is that the holes do not have flat bottoms
and the ending points of the holes are therefore poorly defined.

50

Table 3.1: Estimated halfpower resolution in x-direction for SDHs in a copper block, each 1 mm in
diameter, in the original data, and after processing with 3D phase shift migration. The theoretically
predicted resolution is 6.2 mm.
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Figure 3.13: Original contact C-scan of a copper block with SDHs.
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Figure 3.14: C-scan of a copper block with SDHs after 3D phase shift migration.
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Immersion testing of a copper block with SDHs

In the second 3D experiment, the same copper block with SDHs as before was used but now the
test was performed in immersion using the same transducer as in Section 3.1.3, with a diameter
of 10 mm and a center frequency and bandwidth of, 2.25 MHZ and 1.5 MHz, respectively.
The immersion setup is shown in Figure 3.15 and Figure 3.16 shows an example of an original
envelope B-scan acquired at y=7 mm.

Figure 3.15: Setup for immersion testing of a copper block with 15 SDHs, of which 14 are fully covered
by the transducer.

As discussed above, the setup with SDHs is not well suited for evaluating resolution in the
y-direction and, therefore, we here present only results as cross sectional images in the zx-plane.

The gathered 3D data was processed and the result for the cross section at y=7 mm is shown
in Figure 3.17. If we compare with the results presented in Figure 3.11 for the contact test, we
note that the lateral resolution is fairly similar for holes at the different depth, in contrast to
what we observed for the shallowest holes in the contact test. This observation further confirms
the conclusion that the poor resolution of these holes is because they reside in the transducer
nearfield.

As with the contact test, profile plots were made for both the original and the processed
data, and these are shown overlaid in Figure 3.18. From these profile plots, the resolution in
x-direction was estimated and the estimates are presented in table 3.2. There it can be seen
that the experimental resolution is again fairly close to the theoretically predicted resolution of
0.41D= 4.1 mm.

It can be seen in Figure 3.18, in this experiment the amplitude of the profiles is decreasing
with depth, as would be expected as the holes reside in the farfield.
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Figure 3.14: C-scan of a copper block with SDHs after 3D phase shift migration.
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y-direction and, therefore, we here present only results as cross sectional images in the zx-plane.

The gathered 3D data was processed and the result for the cross section at y=7 mm is shown
in Figure 3.17. If we compare with the results presented in Figure 3.11 for the contact test, we
note that the lateral resolution is fairly similar for holes at the different depth, in contrast to
what we observed for the shallowest holes in the contact test. This observation further confirms
the conclusion that the poor resolution of these holes is because they reside in the transducer
nearfield.

As with the contact test, profile plots were made for both the original and the processed
data, and these are shown overlaid in Figure 3.18. From these profile plots, the resolution in
x-direction was estimated and the estimates are presented in table 3.2. There it can be seen
that the experimental resolution is again fairly close to the theoretically predicted resolution of
0.41D= 4.1 mm.

It can be seen in Figure 3.18, in this experiment the amplitude of the profiles is decreasing
with depth, as would be expected as the holes reside in the farfield.
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Figure 3.16: Original envelope B-scan from an immersion testing of a copper block with SDHs.

Figure 3.17: One cross-section of the results from 3D migration of the data collected in the experiment
with an immersed copper block with SDHs.
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Figure 3.18: Profile plots for the original data in Figure 3.16 and the processed data in Figure 3.17

Table 3.2: Halfpower resolution in x-direction for SDHs in an immersed copper block, each 1 mm in
diameter, in the original data, and after processing with 3D phase shift migration. The theoretically
predicted resolution is 4.1 mm.

Hole number Original data After 3D PSM
δx[mm] δx[mm]

1 7.1 4.1
2 8.0 4.2
3 8.1 4.2
4 8.3 3.7
5 9.4 4.1
6 11.3 4.2
7 12.4 4.2
8 12.9 4.4
9 13.5 4.4
10 15.2 4.3
11 16.1 4.3
12 17.9 4.1
13 16.3 4.2
14 21.2 4.3

55



Figure 3.16: Original envelope B-scan from an immersion testing of a copper block with SDHs.

Figure 3.17: One cross-section of the results from 3D migration of the data collected in the experiment
with an immersed copper block with SDHs.
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Figure 3.18: Profile plots for the original data in Figure 3.16 and the processed data in Figure 3.17

Table 3.2: Halfpower resolution in x-direction for SDHs in an immersed copper block, each 1 mm in
diameter, in the original data, and after processing with 3D phase shift migration. The theoretically
predicted resolution is 4.1 mm.

Hole number Original data After 3D PSM
δx[mm] δx[mm]

1 7.1 4.1
2 8.0 4.2
3 8.1 4.2
4 8.3 3.7
5 9.4 4.1
6 11.3 4.2
7 12.4 4.2
8 12.9 4.4
9 13.5 4.4
10 15.2 4.3
11 16.1 4.3
12 17.9 4.1
13 16.3 4.2
14 21.2 4.3
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Figure 3.19: Experiment setup for immersion testing of an aluminium block with FBHs.

Immersion testing of an aluminium block with FBHs

To examine how resolution is affected, both in the x- and y-direction, when extending the
frequency domain method from 2D to 3D, an immersion test was made on a 41 mm thick
aluminium block illustrated in Figure 3.19. The block contained three FBHs, one (A) 2.6 mm
into the block, (B) drilled 4.5 mm, and (C) drilled 8.3 mm. The holes all had a diameter of 4.8
mm.

Figure 3.20 shows a C-scan of the original data acquired in the experiment. The data was
processed with 2D phase shift migration by processing the B-scans one by one along the x-axis,
and a C-scan extracted from the result of this processing is shown in Figure 3.21. Figure 3.22
shows the results after 3D phase shift migration.

The resolution before and after the two different processings was estimated and the estimates
are presented in table 3.3. from which can be seen that the resolution in y-direction after
processing with the 3D algorithm is, as expected, much better than after processing with the 2D
algorithm. In x-direction, the resolution after processing 2D data and 3D data is approximately
the same. It can also be seen in the table that the hole named A has worse resolution than the
other holes, which is due to that hole not being fully covered by the scan as seen in Figure 3.20,
thus not benefitting from the full synthetic aperture as (B) and (C).
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Figure 3.20: C-scan of the original data acquired from scanning an immersed aluminium block with
FBHs.

Figure 3.21: C-scan after 2D phase shift migration along the x-axis.

Figure 3.22: C-scan after 3D phase shift migration.
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Figure 3.20: C-scan of the original data acquired from scanning an immersed aluminium block with
FBHs.

Figure 3.21: C-scan after 2D phase shift migration along the x-axis.

Figure 3.22: C-scan after 3D phase shift migration.
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Table 3.3: Estimated halfpower resolution in x- and y-direction for FBHs in an aluminium block, each
4.8 mm in diameter, in the original data, and after processing with 2D and 3D phase shift migration.
The theoretically predicted resolution is 4.1 mm.

Hole Original data After 2D PSM After 3D PSM
δx [mm] δy [mm] δx [mm] δy [mm] δx [mm] δy [mm]

A 8.3 8.5 6.1 10 5.9 7.3
B 8.9 9.2 5.4 10.9 5.4 5.4
C 7.8 8.7 5.3 9.9 5.4 5.4
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Immersion testing of a copper block with FBHs

The aluminium block from the last section was fairly free from backscattering noise, with the
FBHs clearly visible in the original data. To examine how the algorithm handles more challenging
noisy data, an immersion test was done on the 60 mm thick copper block with four FBHs that
was used in the experiments presented in Section 3.1.3 and is illustrated in Figure 3.5.

A C-scan was extracted from the original data acquired in the experiment, and is shown in
Figure 3.23. In the C-scan, the 4 mm hole is clearly visible, and the 2 mm hole is discernable,
though both are quite blurry. The 1 mm hole cannot be detected at all, and in the neighborhood
of the nominal position of the 3 mm hole, there is a strong echo that does not originate from the
hole, but is rather a contribution from the back surface echo. Since none of the holes are well
defined in the C-scan, the estimates of resolution in the raw data image are very rough. The
resolution for the 1 mm and the 3 mm holes could not be satisfactorily determined and they
are not presented. The estimated resolution for the 2 mm and the 4 mm holes are presented in
table 3.4.

3 mm 2 mm

4 mm

Figure 3.23: C-scan of the original data acquired from scanning an immersed copper block with FBHs.

The data acquired from the experiment was processed, both with 2D and 3D phase shift
migration and the resulting C-scans after the respective processings are shown in Figures 3.24
and 3.25. It is obvious from the figures that the resolution in y-direction is significantly improved
in the results after 3D migration compared to the results after 2D migration. The resolution,
both in x- and y-direction was estimated for both results and presented in table 3.4.

It is worth noting that the strong contribution from the back surface echo in the original
C-scan presented in Figure 3.23 is much less pronounced in the result after 2D processing, and
still even weaker in the result after 3D processing. Although difficult to find in the original data,
the 3 mm hole is clearly visible both in Figure 3.24 and Figure 3.25.

In order to more easily see how the relative noise level is changed after processing of the
data, profile plots were made of the original data, as well as of the 2D- and 3D processed data
by taking the maximum of the y-values covering the 4 mm hole for all x-values. The resulting
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Table 3.3: Estimated halfpower resolution in x- and y-direction for FBHs in an aluminium block, each
4.8 mm in diameter, in the original data, and after processing with 2D and 3D phase shift migration.
The theoretically predicted resolution is 4.1 mm.

Hole Original data After 2D PSM After 3D PSM
δx [mm] δy [mm] δx [mm] δy [mm] δx [mm] δy [mm]

A 8.3 8.5 6.1 10 5.9 7.3
B 8.9 9.2 5.4 10.9 5.4 5.4
C 7.8 8.7 5.3 9.9 5.4 5.4
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Figure 3.24: C-scan after 2D migration of data from the immersed copper block with FBHs.

Figure 3.25: C-scan after 3D migration of data from the immersed copper block with FBHs.

plots are shown in Figure 3.26. It can be seen from the figure that the relative noise level drops
from the original data to the 2D processed data, and drops further from the 2D processed data
to the 3D processed data.
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Table 3.4: The estimated halfpower resolution in x- and y-direction for FBHs in a copper block for
the original data, and after processing with 2D and 3D phase shift migration. The theoretical resolution
is 4.1 mm in both the x- and y-directions for the 3D processed data. For the 2D processed data this
theoretical resolution holds only in the x-direction.

Hole Original data After 2D PSM After 3D PSM
δx [mm] δy [mm] δx [mm] δy [mm] δx [mm] δy [mm]

A: 3 mm - - 5.8 10 5.2 5.4
B: 2 mm ∼ 15 ∼ 14 8.0 14.1 7 5.7
C: 1 mm - - - - - -
D: 4 mm ∼17 ∼17 6.9 15.9 6.6 6.1

(a) The original data. (b) The 2D processed data. (c) The 3D processed data.

Figure 3.26: Profile plots of the 4 mm hole in the original data, the 2D processed data, and the 3D
processed data.
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Figure 3.24: C-scan after 2D migration of data from the immersed copper block with FBHs.

Figure 3.25: C-scan after 3D migration of data from the immersed copper block with FBHs.

plots are shown in Figure 3.26. It can be seen from the figure that the relative noise level drops
from the original data to the 2D processed data, and drops further from the 2D processed data
to the 3D processed data.
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Computational complexity

In a final experiment for the 3D algorithms, the computation times required by the two algo-
rithms described in 3.2.2 were estimated and compared. All the processing for the 3D exper-
iments presented earlier was performed using Algorithm 1 on a high performance computer
with a large internal memory. Unfortunately, this computer could not be used for an exper-
imental examination on how the size of the data affects computation time, the reason being
that other activity on the server disturbed the evaluation in an unpredictable way, making it
impossible to compare the computation times from two different processings. Instead, the eval-
uation of computation times for the two 3D algorithms was made on a personal computer, with
clock frequency 998 MHz, and 2.0 GB RAM. The performance of this computer was too poor
to be able to run Algorithm 1 with other than fairly small sets of data, which served little
purpose. Therefore, the code was reduced to only contain a for-loop containing the critical, most
time-consuming parts of the code9, namely the phase shift in item 3a, as well as the summation
over frequencies in item 3b. This reduced code could be run with larger sets of data. The same
thing was done with the code for Algorithm 2, from which the nested for-loop was kept, with
the code lines corresponding to item 2c.

The two reduced versions of the algorithms were run with dummy data, for a scenario
that corresponds to a setup that takes measurements in a time interval between 25 and 53 µs,
corresponding to 700 time samples at 25 MHz sampling. For a speed of sound of 4690 ms−1,
corresponding to copper, and a separation between depths cross-sections set to ∆z = 2 · 10−4m,
this corresponds to a reconstructed data volume of approximately 330 such cross-sections. The
bandwidth of the pulses was set to 3.5 MHz.

The reduced version of Algorithm 1 was empirically found to have a computation time
that was approximately 60 % of the computation time for the whole algorithm for the same size
of the data. In contrast, the reduced version of Algorithm 2 had computation times that were
approximately the same as those for the whole algorithm. Therefore, in order to be able to more
fairly compare the computation times for the two algorithms, those from the stripped version of
Algorithm 1 were divided with 0.6.

Figure 3.27 shows the computation time as a function of the number of samples after zero-
padding, Nx,zp and Ny,zp, that, for simplicity, were set equal. The theoretical curves based on
the discussion in section 3.2.2, with proportionality factors fitted to the experimental curves, are
also plotted in the figure. The graph clearly shows that Algorithm 1 outperforms Algorithm

2 when it comes to computation time, and that there is a considerable difference in speed
that grows fast with Nx,zp and Ny,zp. Note, however, that Algorithm 2 can be run on most
commonly available computers, even for very large data sets.

We should note that at least Algorithm 1 allows for a processing that can be made faster
than the data acquisition for relatively large data sets. As a simple numerical example, with the
data size parameters given above and for a scan over an area consisting of 100 × 100 scanning
points, and assuming that zero-padding to about the double this data size in both x- and
y- direction is required, we will get a processing time of approximately 3 minutes. The data
acquisition time will be 10000 times the acquisition time of one A-scan. To compete with the
processing time, we must acquire approximately 30 A-scans every second, which is somewhat
unrealistic. This number should be compared to the acquisition time of about one second that
the currently available equipment at our lab was capable of.10

9See section 3.2.2 for a discussion on asymptotical growth rates of the computation times.
10The main limiting factor is the mechanical scanner that is programmed to stop at every acquisition point. By

allowing for measurements with a moving transducer, the acquisition time can be reduced significantly but will
most probably still not be small enough to result in an overall acquisition time that is smaller than the processing
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Figure 3.27: Theoretical and experimental plots of the calculation times for Algorithm 1 (the lower
curve) and Algorithm 2 (the upper curve), as a function of Nx,zp and Ny,zp when Nt = 700.

3.2.4 Summary and discussion on 3D phase shift migration

In this section we have described how the phase shift migration can be used on 3D data sets and
we have presented two alternative algorithms for doing this. Algorithm 1 is suitable for high-
performance computers and Algorithm 2 is suited for computers with less internal memory.
We should note that one obvious generalization of the work present here would be to combine
the best of the two algorithms in the way that we iterate over the frequency components, as in
Algorithm 2, but instead of only one component at a time, we use small bands and sum over
all the frequency components in this band before performing the time consuming 2D Fourier
transform, as is done in Algorithm 1. Although we have not implemented this, it is fairly
obvious that this would give an algorithm with a performance somewhere in between the two
algorithms that allows for trading smoothly between memory requirements and processing time
and, thus, providing an algorithm that can be an optimized for the computer that is currently
available for the user.

We have experimentally verified that the 3D algorithms, as expected, yield a resolution
improvement in both x- and y-directions, compared to the improvement in a single direction
which is the case for 2D reconstruction. Although we have not provided any detailed theoretical
analysis of the expected resolution for the immersion case, which should take into account
refraction effects and angle dependent transmission losses, we have seen that the resolution
obtained in the experiments are well in agreement with the theoretically predicted resolution
for the less general case of imaging of homogeneous isotropic media.

We have also noted that the theoretical resolution is only obtained when the targets are
further away from the transducer than the nearfield/farfield limit. For targets residing in the
nearfield, we typically should expect somewhat worse resolution than this.

time.
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Computational complexity

In a final experiment for the 3D algorithms, the computation times required by the two algo-
rithms described in 3.2.2 were estimated and compared. All the processing for the 3D exper-
iments presented earlier was performed using Algorithm 1 on a high performance computer
with a large internal memory. Unfortunately, this computer could not be used for an exper-
imental examination on how the size of the data affects computation time, the reason being
that other activity on the server disturbed the evaluation in an unpredictable way, making it
impossible to compare the computation times from two different processings. Instead, the eval-
uation of computation times for the two 3D algorithms was made on a personal computer, with
clock frequency 998 MHz, and 2.0 GB RAM. The performance of this computer was too poor
to be able to run Algorithm 1 with other than fairly small sets of data, which served little
purpose. Therefore, the code was reduced to only contain a for-loop containing the critical, most
time-consuming parts of the code9, namely the phase shift in item 3a, as well as the summation
over frequencies in item 3b. This reduced code could be run with larger sets of data. The same
thing was done with the code for Algorithm 2, from which the nested for-loop was kept, with
the code lines corresponding to item 2c.

The two reduced versions of the algorithms were run with dummy data, for a scenario
that corresponds to a setup that takes measurements in a time interval between 25 and 53 µs,
corresponding to 700 time samples at 25 MHz sampling. For a speed of sound of 4690 ms−1,
corresponding to copper, and a separation between depths cross-sections set to ∆z = 2 · 10−4m,
this corresponds to a reconstructed data volume of approximately 330 such cross-sections. The
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The reduced version of Algorithm 1 was empirically found to have a computation time
that was approximately 60 % of the computation time for the whole algorithm for the same size
of the data. In contrast, the reduced version of Algorithm 2 had computation times that were
approximately the same as those for the whole algorithm. Therefore, in order to be able to more
fairly compare the computation times for the two algorithms, those from the stripped version of
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Figure 3.27 shows the computation time as a function of the number of samples after zero-
padding, Nx,zp and Ny,zp, that, for simplicity, were set equal. The theoretical curves based on
the discussion in section 3.2.2, with proportionality factors fitted to the experimental curves, are
also plotted in the figure. The graph clearly shows that Algorithm 1 outperforms Algorithm

2 when it comes to computation time, and that there is a considerable difference in speed
that grows fast with Nx,zp and Ny,zp. Note, however, that Algorithm 2 can be run on most
commonly available computers, even for very large data sets.

We should note that at least Algorithm 1 allows for a processing that can be made faster
than the data acquisition for relatively large data sets. As a simple numerical example, with the
data size parameters given above and for a scan over an area consisting of 100 × 100 scanning
points, and assuming that zero-padding to about the double this data size in both x- and
y- direction is required, we will get a processing time of approximately 3 minutes. The data
acquisition time will be 10000 times the acquisition time of one A-scan. To compete with the
processing time, we must acquire approximately 30 A-scans every second, which is somewhat
unrealistic. This number should be compared to the acquisition time of about one second that
the currently available equipment at our lab was capable of.10

9See section 3.2.2 for a discussion on asymptotical growth rates of the computation times.
10The main limiting factor is the mechanical scanner that is programmed to stop at every acquisition point. By

allowing for measurements with a moving transducer, the acquisition time can be reduced significantly but will
most probably still not be small enough to result in an overall acquisition time that is smaller than the processing
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Figure 3.27: Theoretical and experimental plots of the calculation times for Algorithm 1 (the lower
curve) and Algorithm 2 (the upper curve), as a function of Nx,zp and Ny,zp when Nt = 700.

3.2.4 Summary and discussion on 3D phase shift migration

In this section we have described how the phase shift migration can be used on 3D data sets and
we have presented two alternative algorithms for doing this. Algorithm 1 is suitable for high-
performance computers and Algorithm 2 is suited for computers with less internal memory.
We should note that one obvious generalization of the work present here would be to combine
the best of the two algorithms in the way that we iterate over the frequency components, as in
Algorithm 2, but instead of only one component at a time, we use small bands and sum over
all the frequency components in this band before performing the time consuming 2D Fourier
transform, as is done in Algorithm 1. Although we have not implemented this, it is fairly
obvious that this would give an algorithm with a performance somewhere in between the two
algorithms that allows for trading smoothly between memory requirements and processing time
and, thus, providing an algorithm that can be an optimized for the computer that is currently
available for the user.

We have experimentally verified that the 3D algorithms, as expected, yield a resolution
improvement in both x- and y-directions, compared to the improvement in a single direction
which is the case for 2D reconstruction. Although we have not provided any detailed theoretical
analysis of the expected resolution for the immersion case, which should take into account
refraction effects and angle dependent transmission losses, we have seen that the resolution
obtained in the experiments are well in agreement with the theoretically predicted resolution
for the less general case of imaging of homogeneous isotropic media.

We have also noted that the theoretical resolution is only obtained when the targets are
further away from the transducer than the nearfield/farfield limit. For targets residing in the
nearfield, we typically should expect somewhat worse resolution than this.

time.
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Since the resolution is determined by the aperture size, we should expect to obtain better re-
solved images by simply decreasing the diameter of the transducer. Of course, such improvement
comes at a price. First, by making the transducer smaller we also obtain weaker signals and,
thus, become more sensitive to electrical noise. This can be fought by using coded excitation
techniques as described in [26] but this requires more advanced equipment that is capable of ex-
citing the transducers with arbitrary waveforms. Second, by reducing the size of the transducer,
we also need to reduce the scanning step in order to avoid spatial aliasing and this may lead to
impractically long data acquisition times when scanning large areas.
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3.3 Extension to array data

In Sections 3.1 and 3.2, phase shift migration was applied to monostatic data. The migration
concept can also be carried over to multistatic data, i.e., data acquired using an array. The
main benefit of using arrays is the increased coverage due to the parallel reception at several
elements and, thus, a potentially increased data acquisition speed.

Array systems allow for flexible acquisition of ultrasonic data and the traditional use of
phased arrays is to use electronic steering at transmit to create narrow beams, and dynamic
focusing, or delay-and-sum, in receive to sequentially image the ROI, sector by sector. However,
the method for acquiring data that is suitable for a subsequent processing using phase shift
migration differs from this. Instead of focusing in transmit, we sequentially transmit a wide
beam at one element at a time and receive at all array elements. For an array consisting of Ntr

array elements, such a measurement results, in its most complete form, in a data set consisting
of Ntr B-scans, each of size Nt × Ntr, where Nt is the number of time samples. This so-called
full array data set is then used for reconstructing a ROI beneath the array. Note, however,
that such a full data set is not necessarily required for the reconstruction; using a subset of this
may be sufficient and this will result in less computation as well as acquisition time. The cost
of reducing the size of the data set will be poorer signal to noise ratio and potentially worse
resolution.

We should note that, although this data acquisition mode differs from the traditional angle
sweep, the full array data set contains all the information necessary to emulate the such a sweep
of beams with focusing both in transmit and receive by post-processing the data. This can be
done using the so-called synthetic transmit aperture (STA) technique, which is a delay-and-
sum based method, described earlier in [26]. In fact, the phase shift migration algorithm for
processing array data presented here share some similarities with STA. Note once again though
that delay-and-sum is straightforward only for isotropic and homogenous objects but becomes
cumbersome to use in cases when refraction is present, such as, in immersion tests, and this is
the motivation for instead using phase shift migration.

The steps necessary to adapt phase shift migration to array data are described below in
Section 3.3.1. A few experiments illustrating the concept are presented in Section 3.3.2 and
conclusions and a discussion are given in Section 3.3.3

3.3.1 Phase shift migration for array measurements

Migration using a full array data set is in the geophysical community called pre-stack migration

and numerous different versions and implementations of pre-stack migration have been proposed,
see e.g. [27, 28]. It has also been adopted to the radar community and the version used here
is based on the work presented in [29], which concerned ground penetrating radar. Migration
using array data is somewhat more complicated than using monostatic data. Since the waves in
the array case are transmitted and received at different positions, the exploding reflector model
can no longer be used to simplify the theoretical development and wavefield extrapolation is
required for both the received field and for simulating the transmitted field.

Compared to the version presented in [29], the version presented here has been somewhat
modified to treat the problem of sound speed variations and refraction in a consistent way, by
making use of frequency domain wavefield extrapolation both at transmit and receive.11

To develop the phase shift migration for a full array data set, let us first consider a single

11In the work presented in [29], time domain techniques were used for finding the forward propagation delays
that are necessary in the imaging condition described below.

65



Since the resolution is determined by the aperture size, we should expect to obtain better re-
solved images by simply decreasing the diameter of the transducer. Of course, such improvement
comes at a price. First, by making the transducer smaller we also obtain weaker signals and,
thus, become more sensitive to electrical noise. This can be fought by using coded excitation
techniques as described in [26] but this requires more advanced equipment that is capable of ex-
citing the transducers with arbitrary waveforms. Second, by reducing the size of the transducer,
we also need to reduce the scanning step in order to avoid spatial aliasing and this may lead to
impractically long data acquisition times when scanning large areas.

64

3.3 Extension to array data

In Sections 3.1 and 3.2, phase shift migration was applied to monostatic data. The migration
concept can also be carried over to multistatic data, i.e., data acquired using an array. The
main benefit of using arrays is the increased coverage due to the parallel reception at several
elements and, thus, a potentially increased data acquisition speed.

Array systems allow for flexible acquisition of ultrasonic data and the traditional use of
phased arrays is to use electronic steering at transmit to create narrow beams, and dynamic
focusing, or delay-and-sum, in receive to sequentially image the ROI, sector by sector. However,
the method for acquiring data that is suitable for a subsequent processing using phase shift
migration differs from this. Instead of focusing in transmit, we sequentially transmit a wide
beam at one element at a time and receive at all array elements. For an array consisting of Ntr

array elements, such a measurement results, in its most complete form, in a data set consisting
of Ntr B-scans, each of size Nt × Ntr, where Nt is the number of time samples. This so-called
full array data set is then used for reconstructing a ROI beneath the array. Note, however,
that such a full data set is not necessarily required for the reconstruction; using a subset of this
may be sufficient and this will result in less computation as well as acquisition time. The cost
of reducing the size of the data set will be poorer signal to noise ratio and potentially worse
resolution.

We should note that, although this data acquisition mode differs from the traditional angle
sweep, the full array data set contains all the information necessary to emulate the such a sweep
of beams with focusing both in transmit and receive by post-processing the data. This can be
done using the so-called synthetic transmit aperture (STA) technique, which is a delay-and-
sum based method, described earlier in [26]. In fact, the phase shift migration algorithm for
processing array data presented here share some similarities with STA. Note once again though
that delay-and-sum is straightforward only for isotropic and homogenous objects but becomes
cumbersome to use in cases when refraction is present, such as, in immersion tests, and this is
the motivation for instead using phase shift migration.

The steps necessary to adapt phase shift migration to array data are described below in
Section 3.3.1. A few experiments illustrating the concept are presented in Section 3.3.2 and
conclusions and a discussion are given in Section 3.3.3

3.3.1 Phase shift migration for array measurements

Migration using a full array data set is in the geophysical community called pre-stack migration

and numerous different versions and implementations of pre-stack migration have been proposed,
see e.g. [27, 28]. It has also been adopted to the radar community and the version used here
is based on the work presented in [29], which concerned ground penetrating radar. Migration
using array data is somewhat more complicated than using monostatic data. Since the waves in
the array case are transmitted and received at different positions, the exploding reflector model
can no longer be used to simplify the theoretical development and wavefield extrapolation is
required for both the received field and for simulating the transmitted field.

Compared to the version presented in [29], the version presented here has been somewhat
modified to treat the problem of sound speed variations and refraction in a consistent way, by
making use of frequency domain wavefield extrapolation both at transmit and receive.11

To develop the phase shift migration for a full array data set, let us first consider a single
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array B-scan obtained by transmitting only at the i:th element in the array and receiving with
all elements. In radar terminology this is called a common-shot measurement and, as described
in [29], the reconstruction of an image line in the ROI, using this single B-scan only, is obtained
by extrapolating the measured field to the depth of interest, and applying an image condition
to this extrapolated field. As described below, both these steps differ somewhat from those for
the monostatic case.

Consider again the layered media illustrated in Figure 3.1, and suppose that the array is
placed with elements regularly spaced in the x-direction at the level Z0 = 0. Let p(x, i, Z0, t)
denote the received field originating from the i:th transmission. As a preprocessing step, this
field should have been correlated with the transducer element impulse response to compensate
for undesired phase delays, c.f. Section 3.1.2. This preprocessed field can then be extrapolated to
some arbitrary depth, z, residing in layer l, by first transforming the field to the (kx, ω)-domain,
yielding P1(kx, i, ω), and computing

P (kx, i, z, ω) = P1(kx, i, ω)αl(kx, z − Zl−1, ω)
l−1∏

q=1

αq(kx, dq, ω), (3.40)

where α(·) now is defined as

αl(kx, ζ, ω) = e
−jζ

√
ω2

c2
l

−k2
x

, (3.41)

where, as in Section 3.1.2, cl is the sound speed within the l:th layer. Note that, in contrast
to the field extrapolation for the monostatic case, the array measurement can be considered as
a direct field measurement, with no need to make the exploding reflector analogy. This means
that the true sound speed should be used, and not the half speed.

P (kx, i, z, ω) can be transformed back to the space-time domain by an inverse 2D Fourier
transform to yield p(x, i, z, t), which is the reflected field that would, hypothetically, be measured
at an array placed at depth z resulting from a transmission at element i.12 The imaging condition
for the common-shot case is somewhat more complicated than for the monostatic case since it
must take into account the propagation delay between the transmitter and the scatter of interest.
If a point-like scatterer is present at depth z, the reflected field measured at the same depth
would be optimally focused at this scatterer. However, if we define t = 0 as the time of array
element excitation, the scattered field would appear after a time, τ(x, i, z), that corresponds to
the propagation delay between the transmitter and the scatterer. As a consequence, the imaging
condition relevant to the common-shot case is t = τ(x, i, z) rather than t = 0, and the read-out
of an image line at depth z from the extrapolated field should be

Im(x, i, z) = p(x, i, z, τ(x, i, z)), for all x along the line at depth z. (3.42)

This can be computed in the frequency domain as

Im(x, i, z) =

∫ ∫
P (kx, i, z, ω) exp(jkxx) exp(jωτ(x, i, z))dkxdω. (3.43)

By processing the B-scans separately, we obtain one reconstructed image for each transmis-
sion, i = 1...Ntr, and the final image recovered using the full array data set is then obtained by
simply superimposing these images, which is in close analogy to the STA technique.

Note that, due to the delay τ(x, i, z) that depends on the x-position, the expression in eq.
(3.43) cannot be efficiently computed for all x-positions along one image line using the IFFT

12Physically, this field would be a superposition of the incident and the reflected field. Recall, however, that
we here only restrict our attention to the up-going waves, i.e., the reflected field.
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as was the case for monostatic data. Instead, it must be computed separately for each x. For
this reason, it is very difficult, perhaps even impossible, to implement phase shift migration for
array data in a way that is as efficient as for monostatic data.

This far, we have not considered the problem of finding the delays τ(x, i, z) required in the
processing. For a homogenous isotropic medium, these are trivial to compute but since our
considered scenario involves refraction, and since one of the main reason for using phase shift
migration in the first place was to avoid difficulties in computing propagation delays for such a
scenario, the implementation of the above imaging condition should preferably be solved in an
alternative way.

We here propose one such alternative that makes use of wave field extrapolation in a very
similar form as that used in the phase shift migration, to compute the field arising from the
transmitting array element. It is based on the following observation: For an impulsive excitation
of the transducer array element, i, the observed field at a point (x, z), often referred to as a
spatial impulse response, will essentially be a sharp pulse arriving after a propagation delay,
τ(x, i, z), and by correlating this impulse with the migrated field at the point of interest, we
obtain essentially the same effect as compensating the extrapolated field for this delay.

Say that the spatial impulse response at a point (xm, z), resulting from an excitation at
element i, is ptr(xm, i, z, t). Then the correlation between the spatial impulse response and the
extrapolated received field at the same point can be written as the time convolution

pcorr(xm, i, z, t) = ptr(xm, i, z,−t) ∗ p(xm, i, z, t) (3.44)

and the imaging condition consists, after the delay compensation, of reading out the delay
compensated field, pcorr(xm, i, z, t) at t = 0.

The compensation and imaging condition steps can be performed in the frequency domain
as, c.f., eq. (3.13),

Pcorr(xm, i, z, ω) =

∫
[P tr(xm, i, z, ω)]∗P (xm, i, z, ω)dω, (3.45)

where superscript ∗ denotes the complex conjugate.

The wave field extrapolation for computing the spatial impulse responses is nothing but a
wave field simulation, and the only differences between this simulation and the extrapolation
used for the received field are that we here consider down-going instead of up-going waves
and that the boundary condition is different. In this case this condition consists of a field
ptr(x, i, Z0, t) that is zero for all x except for an impulse at t = 0 at the position of element
i. The only consequence of considering down-going instead of up-going waves is that the phase
shift factor will have a positive sign instead of the negative sign in eq. (3.41), which means that
the simulation can be performed using the complex conjugate of the same phase factor αl(·)
that is used in the extrapolation of the received field.

In summary, the simulation of the field at (x, z) can be performed as follows:

1. Fourier transform ptr(x, i, Z0, t) with respect to x and t to obtain P tr
1 (kx, i, ω).

2. Extrapolate the field to z by a multiplication with the corresponding phase shift factor as

P tr(kx, i, z, ω) = P tr
1 (kx, i, ω)α∗

l (kx, i, z − Zl−1, ω)

l−1∏

q=1

α∗

q(kx, dq, ω). (3.46)
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1 (kx, i, ω).

2. Extrapolate the field to z by a multiplication with the corresponding phase shift factor as

P tr(kx, i, z, ω) = P tr
1 (kx, i, ω)α∗

l (kx, i, z − Zl−1, ω)

l−1∏

q=1

α∗

q(kx, dq, ω). (3.46)
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3. The impulse responses for all point on a line at depth z are obtained by performing an
inverse Fourier transform with respect to kx:

P tr(x, i, z, ω) =

∫
P tr(kx, i, z, ω) exp(jkxx)dkx. (3.47)

The above presented way of implementing the simulation of the transmitted field allows for a
relatively efficient processing all B-scans along with the field simulations. First we note that the
phase factor used in the processing of the common-shot B-scans are identical for all i = 1...Ntr;
there is no dependence on transmitter element i in α(·). Furthermore, there is a shift invariance
in the x-direction in the simulation of the transmitted field in the sense that the simulated
field at xk, resulting from an excitation of element i, is identical to the field observed at xk+m,
resulting from an excitation of element i + m, provided that the image grid in x has the same
resolution as the element spacing in the array.

We can now summarize the proposed algorithm, which combines the simulation of the trans-
mitted field and the wave field extrapolation of the received field. We consider a general case
where we use only a subset i ∈ I of the transmissions for the reconstruction. The reconstructed
image is then obtained as follows:

1. Initialize the transmitted field ptr(x, isim, Z0, t) with all zeros, except for an impulse at
the x-position for some arbitrarily chosen array element, isim. For all i ∈ I, initialize
p(x, i, Z0, t) as the preprocessed common-shot B-scans, corresponding to the ith transmis-
sion.

2. Compute P tr
1 (kx, isim, ωs), assuming excitation at some arbitrary array element, isim, as

P tr
1 (kx, isim, ωs) ← FFTxt

{
ptr(x, isim, Z0, t)

}
. (3.48)

and P1(kx, i, ωs) for all i ∈ I as

P1(kx, i, ωs) ← FFTxt {p(x, i, Z0, t)} . (3.49)

3. If the first z-value in the ROI is zmin �= 0 and belongs to the l:th layer, extrapolate the
fields so that when the iteration over zp starts, the initial z-value is zmin. The calculations

should be done for triplets (ωs, kx, ky) that satisfy 4ω2
s

c2
l

− k2
x − k2

y ≥ 0:

P (kx, i, zmin, ωs) = P1(kx, i, ω)αl(kx, zmin − Zl−1, ωs)
l−1∏

q=1

αq(kx, dq, ωs) (3.50)

for all i ∈ I and do the same for the simulated transmitted field:

P tr(kx, isim, zmin, ωs) = P tr
1 (kx, isim, ωs)α

∗

l (kx, zmin − Zl−1, ωs)
l−1∏

q=1

α∗

q(kx, dq, ωs) (3.51)

4. Set z1 = zmin and do the following for all image lines p = 1 . . . Nz:

(a) Prepare for the imaging condition by first applying the inverse FFT to the received
extrapolated fields:

P (xm, i, zp, ωs) ← IFFTkx
{P (kx, i, zp, ωs)} (3.52)

for all i ∈ I, yielding values for all m. Similarly, for the transmitted field

P tr(xm, isim, zp, ωs) ← IFFTkx

{
P tr(kx, isim, zp, ωs)

}
(3.53)
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(b) Apply the imaging condition for all m:

Im(xm, i, zp) = Pcorr(xm, i, zp, t = 0) =
∑

s

[P tr(xm′ , isim, zp, ωs)]
∗P (xm, i, zp, ωs),

(3.54)
where m′ = m − i + isim.

(c) Compute fields at the new depth, zp+1, by applying phase shifts:

P (kx, i, zp+1, ωs) = P (kx, i, zp, ωs)αl(kx, ∆z, ωs) (3.55)

and
P tr(kx, isim, zp+1, ωs) = P tr(kx, isim, zp, ωs)α

∗

l (kx, ∆z, ωs) (3.56)

where ∆z = zp+1 − zp.

5. Sum over Im(xm, i, zp) to obtain the final reconstruction result for depth zp:

Im(xm, zp) =
∑

i∈I

Im(xm, i, zp). (3.57)

3.3.2 Array experiments

The copper block with side drilled holes used earlier in Sections 3.1.3 and 3.2.3 was used also
for the illustration of the phase shift migration array and the experiments were performed a 32
element array. The properties of the array placed some constrains on what kind of experiments
could be performed and before presenting the experiments we therefore describe the array and
explain the restrictions in some more detail in the subsection below. This is followed by an
step-by-step illustration of the algorithm and a comparison of the results obtained with different
subsets of a full array data set. Finally, the reconstruction results from a longer section of the
copper block are presented.

The array properties

In the experiments, a 3.5 MHz, 32 element array from Imasonic was used. The array’s strip like
elements has an inter element pitch of 1 mm and 0.15 mm inter element spacing and the strips
have length 20 mm and are cylindrically focused with a radius 45 mm. The array geometry is
shown in Figure 3.28

This array has not been developed with synthetic aperture applications in mind and this
limited somewhat what experiments could be performed. The main limitation is the cylindrical
focusing and the experiments should preferably be performed with the scatterers residing not
too far away from the focal zone, which is at about 45 mm in water. Otherwise, we will
obtain reconstructed images that are unnecessarily blurred. If we take into account that the
focal depth decreases in a situation when the sound enters an object with higher sound speed,
the measurements must be performed with the array quite close to the test block to have the
geometrical focus at least a few millimeters inside copper.13 However, by doing this we obtain
a strong secondary echo that has traveled between the array and the front surface twice. This
echo will mask echoes arriving at about the same time and, since it arrives relatively early, this
may limit the available size of the ROI.

13As a rule of thumb, every depth unit in the faster material should be counted a factor c2/c1 larger, where c1

and c2 are the sound speeds in the slow and the fast material, respectively. For instance, focusing 10 mm inside
copper using a transducer focused at 45 mm in water, requires us to place the transducer at approximately 15
mm above the surface since the 10 mm in copper is counted approximately as 30 mm.
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3. The impulse responses for all point on a line at depth z are obtained by performing an
inverse Fourier transform with respect to kx:

P tr(x, i, z, ω) =

∫
P tr(kx, i, z, ω) exp(jkxx)dkx. (3.47)

The above presented way of implementing the simulation of the transmitted field allows for a
relatively efficient processing all B-scans along with the field simulations. First we note that the
phase factor used in the processing of the common-shot B-scans are identical for all i = 1...Ntr;
there is no dependence on transmitter element i in α(·). Furthermore, there is a shift invariance
in the x-direction in the simulation of the transmitted field in the sense that the simulated
field at xk, resulting from an excitation of element i, is identical to the field observed at xk+m,
resulting from an excitation of element i + m, provided that the image grid in x has the same
resolution as the element spacing in the array.

We can now summarize the proposed algorithm, which combines the simulation of the trans-
mitted field and the wave field extrapolation of the received field. We consider a general case
where we use only a subset i ∈ I of the transmissions for the reconstruction. The reconstructed
image is then obtained as follows:

1. Initialize the transmitted field ptr(x, isim, Z0, t) with all zeros, except for an impulse at
the x-position for some arbitrarily chosen array element, isim. For all i ∈ I, initialize
p(x, i, Z0, t) as the preprocessed common-shot B-scans, corresponding to the ith transmis-
sion.

2. Compute P tr
1 (kx, isim, ωs), assuming excitation at some arbitrary array element, isim, as

P tr
1 (kx, isim, ωs) ← FFTxt

{
ptr(x, isim, Z0, t)

}
. (3.48)

and P1(kx, i, ωs) for all i ∈ I as

P1(kx, i, ωs) ← FFTxt {p(x, i, Z0, t)} . (3.49)

3. If the first z-value in the ROI is zmin �= 0 and belongs to the l:th layer, extrapolate the
fields so that when the iteration over zp starts, the initial z-value is zmin. The calculations

should be done for triplets (ωs, kx, ky) that satisfy 4ω2
s

c2
l

− k2
x − k2

y ≥ 0:

P (kx, i, zmin, ωs) = P1(kx, i, ω)αl(kx, zmin − Zl−1, ωs)
l−1∏

q=1

αq(kx, dq, ωs) (3.50)

for all i ∈ I and do the same for the simulated transmitted field:

P tr(kx, isim, zmin, ωs) = P tr
1 (kx, isim, ωs)α

∗

l (kx, zmin − Zl−1, ωs)
l−1∏

q=1

α∗

q(kx, dq, ωs) (3.51)

4. Set z1 = zmin and do the following for all image lines p = 1 . . . Nz:

(a) Prepare for the imaging condition by first applying the inverse FFT to the received
extrapolated fields:

P (xm, i, zp, ωs) ← IFFTkx
{P (kx, i, zp, ωs)} (3.52)

for all i ∈ I, yielding values for all m. Similarly, for the transmitted field

P tr(xm, isim, zp, ωs) ← IFFTkx

{
P tr(kx, isim, zp, ωs)

}
(3.53)
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(b) Apply the imaging condition for all m:

Im(xm, i, zp) = Pcorr(xm, i, zp, t = 0) =
∑
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[P tr(xm′ , isim, zp, ωs)]
∗P (xm, i, zp, ωs),

(3.54)
where m′ = m − i + isim.
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and
P tr(kx, isim, zp+1, ωs) = P tr(kx, isim, zp, ωs)α

∗

l (kx, ∆z, ωs) (3.56)

where ∆z = zp+1 − zp.

5. Sum over Im(xm, i, zp) to obtain the final reconstruction result for depth zp:

Im(xm, zp) =
∑

i∈I

Im(xm, i, zp). (3.57)

3.3.2 Array experiments

The copper block with side drilled holes used earlier in Sections 3.1.3 and 3.2.3 was used also
for the illustration of the phase shift migration array and the experiments were performed a 32
element array. The properties of the array placed some constrains on what kind of experiments
could be performed and before presenting the experiments we therefore describe the array and
explain the restrictions in some more detail in the subsection below. This is followed by an
step-by-step illustration of the algorithm and a comparison of the results obtained with different
subsets of a full array data set. Finally, the reconstruction results from a longer section of the
copper block are presented.

The array properties

In the experiments, a 3.5 MHz, 32 element array from Imasonic was used. The array’s strip like
elements has an inter element pitch of 1 mm and 0.15 mm inter element spacing and the strips
have length 20 mm and are cylindrically focused with a radius 45 mm. The array geometry is
shown in Figure 3.28

This array has not been developed with synthetic aperture applications in mind and this
limited somewhat what experiments could be performed. The main limitation is the cylindrical
focusing and the experiments should preferably be performed with the scatterers residing not
too far away from the focal zone, which is at about 45 mm in water. Otherwise, we will
obtain reconstructed images that are unnecessarily blurred. If we take into account that the
focal depth decreases in a situation when the sound enters an object with higher sound speed,
the measurements must be performed with the array quite close to the test block to have the
geometrical focus at least a few millimeters inside copper.13 However, by doing this we obtain
a strong secondary echo that has traveled between the array and the front surface twice. This
echo will mask echoes arriving at about the same time and, since it arrives relatively early, this
may limit the available size of the ROI.

13As a rule of thumb, every depth unit in the faster material should be counted a factor c2/c1 larger, where c1

and c2 are the sound speeds in the slow and the fast material, respectively. For instance, focusing 10 mm inside
copper using a transducer focused at 45 mm in water, requires us to place the transducer at approximately 15
mm above the surface since the 10 mm in copper is counted approximately as 30 mm.
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Figure 3.28: Illustration of the array used in the experiments.

Another issue that should be mentioned is that the array is spatially under-sampled, i.e., the
element spacing is larger than required by the Nyquist criterion. As a consequence, the array
will have grating lobes and we may experience spatial aliasing if there are interfering targets in
these grating lobe directions. Note though, that if we actively avoid having targets residing in
these directions, the spatial aliasing can be avoided.

Finally, an analysis of the theoretical resolution is more complicated in the array case than in
the monostatic case. This resolution depends both on the receiving and transmitting apertures,
where we in the latter case mean the set of transmitting elements used to create the data. In STA,
an analysis using the so-called effective aperture is usually made, see [26] for a description of this.
It is unclear, however, that this analysis technique of using the effective aperture is applicable
to phase shift migration reconstructions in general. The curved elements of the array further
complicates the analysis and we here simply leave out a theoretical analysis of the resolution and
restrict our attention to a limited empirical examination. Without the theoretical analysis, we
note though, see Appendix 3.A.3, that the theoretical resolution of a single focused array B-scan
is approximately equal to the element width, which is twice as much as the theoretical resolution
in the monostatic case. We should expect the final resolution to be in the neighborhood of this.

Algorithm illustration

The first experiment serves to provide some intuitive understanding of the algorithm by showing
a number of partial results in the sequence leading to the reconstructed image. The illustration
is made using a full array data set acquired above two of the SDHs residing at depths 16 and
20 mm below the front surface.

The data set from the copper block is visualized in Figure 3.29. The two SDHs are seen very
faintly as hyperbolas that extend laterally over approximately 20 mm.

The B-scans presented in Figure 3.29 represent different field measurements and, as an
illustration, these are extrapolated down to 20 mm inside the copper block which is at the
same depth as the rightmost hole. The extrapolated fields are presented in Figure 3.30. The
extrapolation corresponds to focusing and we see that the responses from the holes are far better
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sdh 1

sdh 2

Figure 3.29: Visualization of a full array data set acquired using a 32 element array. The elements are
fired one by one, resulting in a set of common-shot B-scans. The B-scans obtained from firing elements
i = 0, 2, 10, and 31 are shown

concentrated than in the raw data. Note however that no imaging condition has yet been applied
to these extrapolated fields.

sdh 1

sdh 2

Figure 3.30: The array B-scans extrapolated to the depth 20 mm inside the copper block. The data is
presented in the same way as in Fig. 3.29.

The fields are sequentially extrapolated to the different depths in the ROI and the imaging
condition is applied, i.e., the fields are correlated with the respective simulated fields from the
transmitting element, i, and the result at t = 0 are read out. In this way we obtain the partial
reconstructed images, one for each i. These are shown in Figure 3.31.
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Another issue that should be mentioned is that the array is spatially under-sampled, i.e., the
element spacing is larger than required by the Nyquist criterion. As a consequence, the array
will have grating lobes and we may experience spatial aliasing if there are interfering targets in
these grating lobe directions. Note though, that if we actively avoid having targets residing in
these directions, the spatial aliasing can be avoided.

Finally, an analysis of the theoretical resolution is more complicated in the array case than in
the monostatic case. This resolution depends both on the receiving and transmitting apertures,
where we in the latter case mean the set of transmitting elements used to create the data. In STA,
an analysis using the so-called effective aperture is usually made, see [26] for a description of this.
It is unclear, however, that this analysis technique of using the effective aperture is applicable
to phase shift migration reconstructions in general. The curved elements of the array further
complicates the analysis and we here simply leave out a theoretical analysis of the resolution and
restrict our attention to a limited empirical examination. Without the theoretical analysis, we
note though, see Appendix 3.A.3, that the theoretical resolution of a single focused array B-scan
is approximately equal to the element width, which is twice as much as the theoretical resolution
in the monostatic case. We should expect the final resolution to be in the neighborhood of this.

Algorithm illustration

The first experiment serves to provide some intuitive understanding of the algorithm by showing
a number of partial results in the sequence leading to the reconstructed image. The illustration
is made using a full array data set acquired above two of the SDHs residing at depths 16 and
20 mm below the front surface.

The data set from the copper block is visualized in Figure 3.29. The two SDHs are seen very
faintly as hyperbolas that extend laterally over approximately 20 mm.

The B-scans presented in Figure 3.29 represent different field measurements and, as an
illustration, these are extrapolated down to 20 mm inside the copper block which is at the
same depth as the rightmost hole. The extrapolated fields are presented in Figure 3.30. The
extrapolation corresponds to focusing and we see that the responses from the holes are far better
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Figure 3.29: Visualization of a full array data set acquired using a 32 element array. The elements are
fired one by one, resulting in a set of common-shot B-scans. The B-scans obtained from firing elements
i = 0, 2, 10, and 31 are shown

concentrated than in the raw data. Note however that no imaging condition has yet been applied
to these extrapolated fields.
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Figure 3.30: The array B-scans extrapolated to the depth 20 mm inside the copper block. The data is
presented in the same way as in Fig. 3.29.

The fields are sequentially extrapolated to the different depths in the ROI and the imaging
condition is applied, i.e., the fields are correlated with the respective simulated fields from the
transmitting element, i, and the result at t = 0 are read out. In this way we obtain the partial
reconstructed images, one for each i. These are shown in Figure 3.31.
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Figure 3.31: The reconstructed images obtained by applying the image condition to all points in the
ROI, for each common-shot B-scan.

Note that the all these 32 reconstructed images are geometrically correct in the sense that
the SDHs appear at the correct (x, z) coordinates. However, since the response from a target in
general is strongest when the transmitting element is close, the relative strength of the SDHs are
different in the different images. This is particularly apparent for the front surface that shows
a very strong contribution at x close to the transmitting element.

By superimposing these partial images we obtain the final reconstructed image that is pre-
sented in Figure 3.32. Due to the superposition, the above mentioned differences in strengths
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Figure 3.32: The final migrated image obtained by superimposing the results presented in Figure 3.31.

between results from different transmission are averaged out and the result is an image that
fairly well represent the reflectivity of the targets in the medium.
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Reconstruction using subsets of the full array data set

As described in Section 3.3.1, the reconstruction can be performed using a subset of the received
B-scans. The advantage of this is a reduced data acquisition as well as computation time but
the cost is worse signal-to-noise ratio and, potentially, worse resolution. Here we examine the
effect of using only a subset of the full array data set.

The comparison was done using the same data set as in the algorithm illustration. Figures
3.33 to 3.37 show the reconstruction results obtain using an decreasing amount of data, start-
ing with every second transmission in Figure 3.33 to the extreme of using only the outermost
elements, i = 0 and 31, in Figure 3.37. These images should also be compared to that in Figure
3.32, which is at the other extreme, i.e, a reconstruction obtained by using all transmissions.
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Figure 3.33: The reconstructed image using every second array B-scan in the full data set. Sixteen
B-scans were used.

The intensities in the reconstructed images are shown in dB with their darkest point nor-
malized to have 0 dB at the maximum amplitude at the leftmost hole. This normalization was
done to get a fair comparison between the different levels of noise in the images.

We note that the reconstructed images get an increasing level of noise as the number of B-
scans used for the reconstruction decreases. This would create difficulties when trying to detect
weak targets. However, the resolution does not deteriorate in the same way and we appear to
obtain images of approximately the same resolution regardless of the number of B-scans used.
It is fairly similar for all reconstructed images, except for a slight deterioration for the last, in
which only B-scans associated with the two outermost elements were used.

This is further verified in table 3.5, in which the average of the estimated half power resolution
for the two holes is presented for the presented reconstructions. We note that the resolution is
somewhat larger than the element width.

A full reconstruction of the copper block with SDHs

Finally, we present the reconstruction of a 125 mm long section of the copper block. The block
was inspected with the array placed 20 mm above the block. With the restrictions caused by
the array mentioned above, we chose to restrict our attention to only the upper part of the test
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Figure 3.31: The reconstructed images obtained by applying the image condition to all points in the
ROI, for each common-shot B-scan.

Note that the all these 32 reconstructed images are geometrically correct in the sense that
the SDHs appear at the correct (x, z) coordinates. However, since the response from a target in
general is strongest when the transmitting element is close, the relative strength of the SDHs are
different in the different images. This is particularly apparent for the front surface that shows
a very strong contribution at x close to the transmitting element.

By superimposing these partial images we obtain the final reconstructed image that is pre-
sented in Figure 3.32. Due to the superposition, the above mentioned differences in strengths
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Figure 3.32: The final migrated image obtained by superimposing the results presented in Figure 3.31.

between results from different transmission are averaged out and the result is an image that
fairly well represent the reflectivity of the targets in the medium.
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Figure 3.33: The reconstructed image using every second array B-scan in the full data set. Sixteen
B-scans were used.

The intensities in the reconstructed images are shown in dB with their darkest point nor-
malized to have 0 dB at the maximum amplitude at the leftmost hole. This normalization was
done to get a fair comparison between the different levels of noise in the images.

We note that the reconstructed images get an increasing level of noise as the number of B-
scans used for the reconstruction decreases. This would create difficulties when trying to detect
weak targets. However, the resolution does not deteriorate in the same way and we appear to
obtain images of approximately the same resolution regardless of the number of B-scans used.
It is fairly similar for all reconstructed images, except for a slight deterioration for the last, in
which only B-scans associated with the two outermost elements were used.

This is further verified in table 3.5, in which the average of the estimated half power resolution
for the two holes is presented for the presented reconstructions. We note that the resolution is
somewhat larger than the element width.

A full reconstruction of the copper block with SDHs

Finally, we present the reconstruction of a 125 mm long section of the copper block. The block
was inspected with the array placed 20 mm above the block. With the restrictions caused by
the array mentioned above, we chose to restrict our attention to only the upper part of the test
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Figure 3.34: The reconstructed image using every third array B-scan in the full data set. Eleven B-scans
were used.
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Figure 3.35: The reconstructed image using every fourth array B-scan in the full data set. Eight B-scans
were used.

block. Since the array only covers 32 mm, several reconstructed images were used to build up
the complete image. This was here done by performing a full array measurement every 12:th
mm. The reconstruction of these yielded 32 mm long segments that were overlapping. For each
x-position, the reconstruction corresponding to the array position that was most favorable was
chosen for the building up of the final image. This array position was considered to be the one
that had the particular x-position maximally centered under the array.

The reconstructed image obtained in this way is shown in Figure 3.38. In the figure we see
eight of the overall 15 SDHs in the block. As mentioned above, the secondary reflection from
the array masks the back surface echo. This secondary echo is what causes the strong indicating
seen at z = 80 mm in the figure, not the back surface echo that should appear at about 94 mm
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Figure 3.36: The reconstructed image using every eighth array B-scan in the full data set. Four B-scans
were used.
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Figure 3.37: The reconstructed image using only the first and last array B-scan in the full data set.
Two B-scans were used.

but that here was not included in the ROI.

The resolution of the holes can be further examined in the profile plot in Figure 3.39 and
rough estimates of the half power resolution are presented in table 3.6. We note from the figure
and the table that the resolution, in contrast to the results for the monostatic case, deteriorates
as the depth increases. As discussed above, this is most probably caused by the fixed geometrical
focusing in the y-direction, causing the more deeply buried targets to become more blurred since
they are far away from the geometrical focus. We also note that the resolution of the uppermost
SDHs, which are those closest to the geometrical focal point, is approximately the same as the
array element width.
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were used.

block. Since the array only covers 32 mm, several reconstructed images were used to build up
the complete image. This was here done by performing a full array measurement every 12:th
mm. The reconstruction of these yielded 32 mm long segments that were overlapping. For each
x-position, the reconstruction corresponding to the array position that was most favorable was
chosen for the building up of the final image. This array position was considered to be the one
that had the particular x-position maximally centered under the array.

The reconstructed image obtained in this way is shown in Figure 3.38. In the figure we see
eight of the overall 15 SDHs in the block. As mentioned above, the secondary reflection from
the array masks the back surface echo. This secondary echo is what causes the strong indicating
seen at z = 80 mm in the figure, not the back surface echo that should appear at about 94 mm
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Figure 3.37: The reconstructed image using only the first and last array B-scan in the full data set.
Two B-scans were used.

but that here was not included in the ROI.

The resolution of the holes can be further examined in the profile plot in Figure 3.39 and
rough estimates of the half power resolution are presented in table 3.6. We note from the figure
and the table that the resolution, in contrast to the results for the monostatic case, deteriorates
as the depth increases. As discussed above, this is most probably caused by the fixed geometrical
focusing in the y-direction, causing the more deeply buried targets to become more blurred since
they are far away from the geometrical focus. We also note that the resolution of the uppermost
SDHs, which are those closest to the geometrical focal point, is approximately the same as the
array element width.
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Table 3.5: Average of estimated halfpower resolution in x-direction for the reconstructed SDHs in
a copper block, each 1 mm in diameter. The processing was performed with different subsets of the
common-shot B-scans

Separation between Average resolution after PSM
transmitting elements [mm] δx [mm]

1 2.0
2 1.9
3 1.9
4 1.9
8 1.9
31 2.3

Table 3.6: Estimates of halfpower resolution in x-direction for side drilled holes in a copper block, each
1 mm in diameter, after processing with array phase shift migration using full array data sets.

Hole number Resolution after PSM
δx[mm]

1 1.5
2 1.8
3 1.9
4 2.5
5 2.2
6 2.6
7 2.3
8 2.5
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Figure 3.38: The reconstructed image from the copper block array data set. The image has been
obtained by contatenation from a number of overlapping reconstructions using full array data sets.
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Figure 3.39: Profile plots from the holes in the reconstructed image from the copper block array data
set.

3.3.3 Conclusions and discussion

We have shown how to extend the concept of phase shift migration to treat also data acquired
using an array, thus enabling focusing through refracting layers and we have shown that the
proposed method can yield reconstructed images with a resolution that is in the order of the
element width.

The presented implementation uses frequency domain wave field extrapolation to handle
both the extrapolation of the received fields as well as to implement the imaging condition.
Despite the extensive use of FFTs, and the fact that the method makes efficient reuse of the
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Table 3.5: Average of estimated halfpower resolution in x-direction for the reconstructed SDHs in
a copper block, each 1 mm in diameter. The processing was performed with different subsets of the
common-shot B-scans

Separation between Average resolution after PSM
transmitting elements [mm] δx [mm]

1 2.0
2 1.9
3 1.9
4 1.9
8 1.9
31 2.3

Table 3.6: Estimates of halfpower resolution in x-direction for side drilled holes in a copper block, each
1 mm in diameter, after processing with array phase shift migration using full array data sets.

Hole number Resolution after PSM
δx[mm]

1 1.5
2 1.8
3 1.9
4 2.5
5 2.2
6 2.6
7 2.3
8 2.5
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Figure 3.38: The reconstructed image from the copper block array data set. The image has been
obtained by contatenation from a number of overlapping reconstructions using full array data sets.
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3.3.3 Conclusions and discussion

We have shown how to extend the concept of phase shift migration to treat also data acquired
using an array, thus enabling focusing through refracting layers and we have shown that the
proposed method can yield reconstructed images with a resolution that is in the order of the
element width.

The presented implementation uses frequency domain wave field extrapolation to handle
both the extrapolation of the received fields as well as to implement the imaging condition.
Despite the extensive use of FFTs, and the fact that the method makes efficient reuse of the
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computed phase shift factors, the method is quite computationally demanding. In contrast to the
monostatic case, for which the time bottle-neck is the data acquisition, the phase shift migration
for arrays at this stage requires more time14 than the data acquisition will require for a system
that is dedicated for the considered measurement mode. As an example, the reconstruction of
the 32 channel full array data set used in the illustration of the algorithm was performed in
approximately two minutes.

We should note though that code has not been carefully optimized and we expect to be
able to gain some factor in performance if such an optimization is performed. Note also that
the algorithm is well suited for parallel processing, meaning that a significant increase in speed
should be possible if the algorithm is implemented on a parallel computer or utilizing a graphical
processing unit.

14This holds if computations are performed on a standard computer.
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3.4 Robustness to non-horizontal front surfaces

All versions of phase shift migration presented in this chapter share a common problem that may
cause the resulting images to have poorer quality than necessary. The problem is associated to
the fact that phase shift migration, in its basic form, requires the sound speed to be a function
of depth only. As a consequence, the data must be acquired along a line that is parallel to the
front surface of the test object. Otherwise, since depth is measured in the normal direction from
the scanning axis, this requirement of the sound speed being constant in the lateral direction
will be violated.

The reconstruction results are sensitive to such tilts and it may unfortunately be difficult in
practical applications to avoid some slight tilting. Moreover, tilted front surfaces may occur by
necessity if we have large objects with slightly curved surfaces. In such a case, we can divide the
data set into smaller sections, in which the surfaces can be well approximated as being planar,
and process these separately. For a curved object, some of the sections will however be tilted
with respect to the scanning plane.15

The problem is illustrated in Figure 3.40 that shows a scenario with a tilted test object and
an example of the sound speed at a distance to the scanning axis that is between the minimum
and maximum distances to the front surface. Because of the tilt, there is a step change in the
sound speed for x between the scanning end points and the sound speed obviously depend on
both z and x.
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Figure 3.40: (a) A scenario with a tilted test block. The depth measured from the scanning axis is
50 mm and 52 mm at the beginning and end points of the scan, respectively. (b) The sound speed as a
function of x at the depth z = 51 mm.

Regardless of the cause of the tilted surfaces, it is important to have means to treat it.
Modified versions of phase shift migration have been developed to treat more general cases with
the sound speed varying with both x and z [20, 30]. These methods rely however on the sound
speed being a smooth function of x and they are therefore not appropriate for this scenario.
Here we instead propose to solve the problem using the same wave field extrapolation technique
that is the basis for phase shift migration.

The idea is to extrapolate the measured field to a set of new points placed on a line that
is parallel to the front surface of the object. This transformed data set fulfils the required
assumptions of the front surface and scanning plane being parallel, and standard phase shift

15This is of course provided that the scan is performed along a straight line, which is to prefer here since phase
shift migration is based on such a linear scan.
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Figure 3.40: (a) A scenario with a tilted test block. The depth measured from the scanning axis is
50 mm and 52 mm at the beginning and end points of the scan, respectively. (b) The sound speed as a
function of x at the depth z = 51 mm.

Regardless of the cause of the tilted surfaces, it is important to have means to treat it.
Modified versions of phase shift migration have been developed to treat more general cases with
the sound speed varying with both x and z [20, 30]. These methods rely however on the sound
speed being a smooth function of x and they are therefore not appropriate for this scenario.
Here we instead propose to solve the problem using the same wave field extrapolation technique
that is the basis for phase shift migration.

The idea is to extrapolate the measured field to a set of new points placed on a line that
is parallel to the front surface of the object. This transformed data set fulfils the required
assumptions of the front surface and scanning plane being parallel, and standard phase shift

15This is of course provided that the scan is performed along a straight line, which is to prefer here since phase
shift migration is based on such a linear scan.
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migration can subsequently be applied to this data.

In the presentation below, we only consider the tilt compensation for the case of 2D recon-
struction using monostatic data, but the concepts can be straightforwardly extended both to
3D and to the array case. In Section 3.4.1, the problem is outlined in some more detail and
the solution based on wave field extrapolation is presented. In Section 3.4.2, an experiment
illustrating the concept is presented and conclusions and a discussion are finally given in Section
3.4.3.

3.4.1 Problem description and a solution through wave field extrapolation

Consider a transducer that is scanned along the x-direction at depth z = 0, with a scanning
step ∆x. The scan is performed over an object with a planar surface that is tilted with an angle
θ relative to the scanning line.

As mentioned above, the idea is to compensate for the tilt by extrapolating the measured
field to a set of new positions that are placed on a line that is parallel to the object’s front
surface. In other words, we wish to express the field in a new, rotated, coordinate system. The
scenario is depicted in Figure 3.41 in which the original coordinate system is indicated by x and
z and the rotated system is indicated by x′ and z′.
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x=0

z
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water
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Figure 3.41: A scan over an object with a non-horizontal front surface.

The original scanning positions are found at the Nx positions (xi, zi) for i = 0...Nx−1 where
zi = z0 = 0 and with xi given by

xi = i∆x. (3.58)

The position to which we wish to extrapolate the field are, expressed in the original system,
(xnew

i , znew
i ) with xnew

i = xi and znew
i given by

znew
i = i∆z where ∆z = ∆x tan θ. (3.59)

In the rotated system, these points are expressed as (x′

i, z
′

i) with z′i = 0 for all i and with

x′

i = i∆x′, where ∆x′ =
∆x

cos θ
. (3.60)

For an acquired B-scan, represented by p(xi, z0, t), the perhaps most straightforward way to
find the extrapolated field at these points is to apply the wave field extrapolation as described
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in Section 3.1.2, repeatedly with a ∆z-step in depth and, for each iteration, compute the field
by an 2D inverse Fourier transform to obtain the field at depth znew

i and then extract the field
at x-coordinate xnew

i . Let p̃(x′

i, z
′

i, t) denote the compensated field expressed in the rotated
coordinate system. We obtain this field for all x′

i and z′i as follows:

1. Since the first A-scan position requires no extrapolation, we simply store p̃(x′

0, z
′

0, t) =
p(x0, z0, t).

2. Perform a 2D Fourier transform of the measured field with respect to x and t:

P (kx, z0, ω) ← FFTxt {p(x, z0, t)} . (3.61)

3. For i = 1...Nx − 1:

(a) Compute P (kx, znew
i , ω) through the phase shift

P (kx, znew
i , ω) = P (kx, znew

i−1 , ω) exp

(
−j∆z

√
4ω2

c2
− k2

x

)
, (3.62)

for ω < 0 and k2
x < 4ω2

c2
. Set the remaining components to zero. Note that (i) the field

extrapolation is carried out for one medium only, typically water, so we need to con-
sider only one sound speed, c and (ii) the phase shift factor is the one used for mono-

static data. For array data, we should instead use the exponent

(
−j∆z

√
ω2

c2
− k2

x

)
.

(b) Compute p(xk, z
new
i , t), for all k, by a 2D inverse Fourier transform

p(xnew
k , znew

i , t) ← IFFTkx,ω {P (kx, znew
i , ω)} for all k, (3.63)

and store p̃(x′

i, z
′

i, t) = p(xnew
i , znew

i , t).

This preprocessing results in a B-scan that is compensated for the tilt angle, θ and phase shift
migration can be applied straightforwardly on this B-scan. We should note though that we in
this migration must use ∆x′ as the scanning step and that the image grid at the reconstruction
is defined in the rotated coordinate system.

In practice, the angle θ can typically be estimated from the raw data, manually or automat-
ically, by detecting the arrival times of the front echo at, say, the starting and ending points
of the scan. Let these arrival times be denoted by tstart and tend, respectively. Then it can be
shown from simple geometrical arguments that θ can be estimated as

θ = arctan

(
c(tend − tstart)

2(Nx − 1)∆x

)
. (3.64)

3.4.2 Illustration of the tilt compensation concept

To illustrate the concept, we again used the copper block with SDHs that was used in several
earlier presented experiments. The block was tilted approximately 2o with respect to the scan-
ning axis as illustrated in Figure 3.42. The acquired data, which is presented in Figure 3.43,
was compensated as described above, where θ was estimated by eq. (3.64) to be 1.98o. This
compensated B-scan is presented in Figure 3.44.

The resulting reconstructed image obtained by applying phase shift migration on the com-
pensated data is shown in Figure 3.45. This image can be compared to the results obtained from
the same, but non-tilted, block. We see that the reconstructed image shows very little difference
from the image in Figure 3.46 that was reconstructed under such more ideal conditions.
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Figure 3.42: Setup for the experiment from the tilted copper block.
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Figure 3.43: The raw data from a slightly tilted block.
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Figure 3.44: Data that has been compensated for the tilt using wave field extrapolation.

3.4.3 Discussion

In this section we have presented a method for compensation for objects having front surfaces
that are tilted relative to the scanning axis. This compensation has the benefit of providing
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Figure 3.45: The results of phase shift migration applied to tilt compensated data.
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Figure 3.46: The results of phase shift migration applied to data from the non-tilted block.

data that can be processed straightforwardly using phase shift migration. Front surfaces that
are tilted may occur either through simple misplacement of the object or because of processing
of sections of data acquired from large objects that have slightly curved surfaces.

Although we have an accurate method for performing the compensation, it is still to be
recommended to avoid such tilts as far as possible. One reason for this is that the method
requires some additional processing time. Another reason is that the risk of experiencing spatial
aliasing increases with increasing θ. One contributing factor is the slight increase in spatial
sampling step when going from ∆x to ∆x′. In most cases this is however a minor contribution.
More importantly, the compensation transforms the data into a B-scan that can be interpreted
as having been acquired along a line parallel to the front surface, but using a transducer that
is tilted by θ relative the object’s front surface. As discussed in Appendix 3.A.4, a transducer
with finite aperture acts as a spatial lowpass filter, suppressing the plane wave components with
high spatial frequency, kx. Such components corresponds to plane waves with high frequency, ω,
arriving at the transducer from a large incidence angle. By tilting the transducer, the suppression
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In this section we have presented a method for compensation for objects having front surfaces
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Figure 3.46: The results of phase shift migration applied to data from the non-tilted block.

data that can be processed straightforwardly using phase shift migration. Front surfaces that
are tilted may occur either through simple misplacement of the object or because of processing
of sections of data acquired from large objects that have slightly curved surfaces.

Although we have an accurate method for performing the compensation, it is still to be
recommended to avoid such tilts as far as possible. One reason for this is that the method
requires some additional processing time. Another reason is that the risk of experiencing spatial
aliasing increases with increasing θ. One contributing factor is the slight increase in spatial
sampling step when going from ∆x to ∆x′. In most cases this is however a minor contribution.
More importantly, the compensation transforms the data into a B-scan that can be interpreted
as having been acquired along a line parallel to the front surface, but using a transducer that
is tilted by θ relative the object’s front surface. As discussed in Appendix 3.A.4, a transducer
with finite aperture acts as a spatial lowpass filter, suppressing the plane wave components with
high spatial frequency, kx. Such components corresponds to plane waves with high frequency, ω,
arriving at the transducer from a large incidence angle. By tilting the transducer, the suppression
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of these components will becomes less pronounced for waves arriving from the transducer beam
direction and this will increase the risk of spatial aliasing.
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of these components will becomes less pronounced for waves arriving from the transducer beam
direction and this will increase the risk of spatial aliasing.
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3.A Appendix

3.A.1 Comments on transmission losses at layer interfaces

In the modeling, the transmission losses at the layer interfaces were neglected and this will
cause errors in the computed field as it is backpropagated through an interface. We should
note, however, that as long as the effect of the transmission loss can be well approximated by a
constant scaling, independent of angle of incidence and, thus, independent of kx, the resulting
effect on the reconstructed image will merely be an amplitude scaling that will be constant
within each layer. Such a scaling will not influence the lateral resolution.

As an example, the circular transducer used in the experiments presented in 3.1.3 had a
diameter of D = 10 mm and a center frequency Fc = 2.25 MHz and bandwidth of approximately
∆F = 1.5 MHz. Thus, the lowest frequency at which the transducer operated was 1.5 MHz which
yields a maximum wavelength of approximately λ = 1 mm in water.

The divergence angle for a circular transducer is given by [31]

θdiv = arcsin

(
1.22

λ

D

)
. (3.65)

From this we have that the maximum beam divergence is θdiv ≈ 0.122 radians or 7◦. Thus,
we know that the sound enters into the copper object with angle of incidence of at most 7◦.
The echo transmittances [31] for longitudinal-longitudinal waves at a water-copper interface
calculated for angles between 0◦ and 7◦ vary between 0.1345 for 0◦ and 0.1286 for 7◦. Thus, the
difference is maximally 6% and we can safely approximate them as being constant for all angles
of interest.

Furthermore, the echo transmittance for transversal waves appearing as a result of mode
conversion at the boundary is less than 7% of the echo transmittance of longitudinal waves at
7◦ and approximately 3% at 4.7◦ which is the divergence angle at the center frequency. As a
consequence, the contribution of the transversal waves to the final image will be very small and
this motivates neglecting these waves in the processing.

3.A.2 Comments on the sign conventions for FFT:s and the use of standard

software packages

The decomposition of a field into plane harmonic waves, which is the basis for the theory
presented in this chapter, is usually written in physics literature as

p(x, z, t) =

∫ ∫ ∫
P (kx, kz, ω) exp(j(kxx + kzz − ωt)dkxdkzdω, (3.66)

if we consider a 2D scenario. P (kx, kz, ω) represents the complex amplitude of a plane wave
traveling in the direction k = (kx, kz).

Physically this is a convenient decomposition because the exponential term describes in a
straightforward way how a constant wave phase travels. Say, for instance, that kx = 0 and
kz > 0. Then, for a positive ω and increasing t, the phase is constant, C, if kzz − ωt = C, or
z = (C + ωt)/kz. Thus, z will increase with time, which is in accordance with having a positive
kz. Note that we would have the same traveling direction if we switch sign for both kz and ω.

The transform treats both positive and negative values for ω so if we wish to consider planar
wave going in only one direction we must ensure that the combination of signs for kz and ω will
give a correct wave traveling direction. We consider up-going wave, which with our definition
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of coordinate system becomes waves in the negative z direction. A proper combination is then
to choose kz < 0 and ω > 0.

The plane wave decomposition in eq. (3.66) is essentially an inverse Fourier transform that
has a corresponding direct Fourier transform of the field with respect to x, z, and t, as

P (kx, kz, ω) =

∫ ∫ ∫
p(x, z, t) exp(−jkxx) exp(−jkzz) exp(jωt)dxdzdt. (3.67)

Please note the difference between this definition of Fourier transform and the one that is
used in several other application fields, in particular electrical engineering, and which is generally
the basis for the corresponding numerical software for FFT:s. There, the Fourier transform of a
general three-dimensional function, f(x, y, z) is defined as

F (Ωx, Ωy, Ωz) =

∫ ∫ ∫
f(x, y, z) exp(−jΩxx) exp(−jΩyy) exp(−jΩzz)dxdydz, (3.68)

i.e., a negative sign is consistently used in complex exponential for all variables whereas in the
plane wave decomposition, the time variable is treated differently.

Since the implementations used in this work uses standard matlab packages for computations
of 2D or 3D FFT:s, the difference in sign convention must be accounted for. This has been done
by simply, in the matlab implementation, using only the negative frequencies instead of the
positive that are prescribed by the physics. This is the reason for seeing statements, such as,
”the positive frequencies are nulled out” in Section 3.2.2. The positive frequencies there simply
refer to the ”physically negative”

3.A.3 Theoretical resolution

Here predictions of the theoretically achievable resolution are given, both for the z-direction and
the x- and y-direction, although the resolution in the two lateral directions in this work are of
more interest since this resolution is generally poorer than in the range direction. Note that
the expressions presented here should only be seen as rules of thumb, since they are not always
straightforwardly applicable for the experimental setup used in this work. There are some major
differences between the theoretical assumptions used here and the experimental setup. First,
there is an assumption that the speed of sound, c, is constant, which is only true if there is a
homogeneous isotropic medium. In many of the experiments in this work, the measurements
have been acquired using an immersion setup, with the speed of sound depending on depth.
Second, there is an assumption that a single frequency is used in transmission, whereas in the
experiment relatively wide band pulses have been used. Finally, the analysis leading to the
estimates of the lateral resolution is based on an assumption that the scatterers are located in
the far field of the transducer [10] and we should therefore not expect the results to hold in the
near field. The nearfield/farfield limit is approximately given by [31]

znf =
D2f

4c
(3.69)

where f is the frequency and c the sound speed.

As a rough estimate, the resolution in depth is proportional to the wavelength λ of the pulses:

λ =
c

f
, (3.70)

where c is the speed of sound and f is the center frequency of the pulse. However, since we
consider pulse-echo measurements, it is more relevant to consider the effective wavelength which
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Table 3.7: Resolving power in depth in different materials.

Material Speed of sound Resolving power
[ms−1] [m]

Water 1480 1.64 · 10−4

Copper 4690 5.21 · 10−4

Aluminium 6330 7.03 · 10−4

is
λeff =

c

2f
, (3.71)

where the division of the speed of sound by two corresponds to the waves traveling the double
path. The resolving capacity in depth is half the effective wavelength, giving the final expression
[19]

δz =
c

4f
. (3.72)

The pulses used in the experiments all had a center frequency of around 2.25 MHz, and
inserting that in equation (3.72) together with the speed of sound for the different materials
used, gives the resolution power in table 3.7. These measures gives a guiding line in how to
choose the separation, ∆z, between image lines/planes since there is no benefit of choosing it
significantly smaller than the resolving power in depth.

The resolution in x- and y-direction in the monostatic case is derived from the resolution of
a physical array the same size as the synthetic aperture. The synthetic aperture has two times
finer resolution than the physical array, again because of halving the speed of sound, which gives
the effective halfpower beamwidth of the synthetic aperture with length Leff as [10]

δx,y =
Rλ

2Leff

, (3.73)

where λ is the wavelength and R is the distance of the scatterer from the synthetic aperture.

The synthetic aperture for a certain aperture is obtained as

Leff = R sin(θdiv) (3.74)

where θdiv is the divergence angle of the aperture.

For a transducer having a uniform 1D aperture of D, the divergence is given by

θdiv = arcsin(
λ

D
), (3.75)

and for a uniform circular aperture we have the divergence given in eq. (3.65).

If we combine these divergence expressions with eqs. (3.74) and (3.73), we obtain

δx,y =
D

2
(3.76)

for the uniform linear aperture, which is the commonly used expression, and

δx,y =
D

2 · 1.22
≈ 0.41D (3.77)

which is a modified expression for the uniform circular aperture.

Worth noting about the lateral resolution is that both δz and δx,y are independent of depth16.

16This only holds if attenuation can be neglected.
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3.A.4 Comments on the use of the discrete Fourier transform and aliasing

All Fourier transforms involved in the algorithm are performed using discrete data and the fast
Fourier transform has been used for all calculations. Aliasing may then appear both spatially
and temporally. Both the temporal and spatial sampling must fulfil the Nyquist criterion, stat-
ing that the sampling frequency must at least be twice that of the highest frequency component
appearing in the signals. For the temporal sampling, this requirement is fulfilled with a large
margin in all the experiments presented in the chapter. As an example, the experiments pre-
sented both in Section 3.1 and 3.2 were performed with a sampling frequency of 25 MHz whereas
the center frequency of the transducer was 2.25 MHz and with a bandwidth of about 1.5 MHz.

The spatial sampling can be more critical. Let us here for simplicity consider the problem
for the 2D case and consider the spatial coordinate x only.17 In its conventional form, in which a
a scenario with constant velocity and point-like transducers are considered, the spatial sampling
theorem states that the distance between two sampling points on the x-axis, ∆x, should be
separated by no more than λmin/4 for pulse-echo measurements, where λmin is the minimum
wave length appearing in the measurements. As an example: If we use a transducer with an
upper frequency of 3 MHz for the measurements in water, having a velocity of 1500 m/s, we
have that λmin = 0.5 mm and ∆x < 0.125 mm which is a quite small separation that will result
in impractically long acquisition times if large areas are to be scanned.

The requirement ∆x < λmin/4 is, however, quite overpessimistic and does not take into
account the transducer’s directivity. If this is done, we arrive at the much less restrictive
result [32], stating that when a transducer of aperture D is used, the spatial sampling must be
performed at steps no longer than ∆x < D/4. For a transducer of diameter 10 mm we thus
have that ∆x < 2.5 mm which is fulfilled in the experiments presented in Sections 3.1 and 3.2.

Aliasing can occur also at the inverse transform back to spatial coordinates. The Fourier
coefficients represent a function that is periodic both in t and x, and especially the periodicity
in the spatial coordinate may cause problems in the reconstruction. Let Nx denote the number
of spatial samples taken in the x-direction, separated by ∆x. Then an inverse transform back
from the discrete Fourier domain is periodic with a periodicity Nx∆x, equal to the synthetic
aperture. Phase shifts along x caused by the processing in the frequency domain then may wrap
around to the opposite side of the resulting image. This will be particularly apparent if there
is a strong reflector close to one of the endpoints of the scan. This wrap around effect can be
avoided by zero-padding in the x-direction and we illustrate in Figures 3.47 and 3.48 how this
is achieved and what amount of zero-padding that is necessary in order to do so.

Figure 3.47 illustrates a transducer with divergence angle θdiv that is scanned over a region
of interest. Below the beginning point of the scan, a scatterer (A) is present at depth zA. This
scatterer will appear in the raw data as one half of a hyperbolic pattern, peaking exactly at
the leftmost side of the B-scan and the extension of the right side of the hyperbola in the x-
direction will be zA tan θdiv. Consider now the reconstruction of another point (B) that is found
on the same depth as (A) but on the opposite side of the ROI. In the processing for recovering
the reflectivity of point (B), data is summed along a hyperbola that has a lateral extension
determined by the divergence angle and depth, which is the same as for point (A).

The hyperbolic signature of (A) is indicated in Figure 3.48 as a solid line and the data that
is used for reconstructing (B) is shown as a dashed line. Due to the processing being performed
in the frequency domain, the summation along the dashed hyperbola will take place over a
periodic continuation of the B-scan.18 Without zero-padding, this summation will therefore

17The extension to 3D is straightforward; the problem of avoiding aliasing can be treated independently for x
and y.

18The periodic continuation is in the figures shown only in the x-direction.
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Figure 3.47: A transducer with divergence angle θdiv is scanned over a scatterer (A) just below the
beginning point of the scan. The data from this scan is used for reconstructing an image of the region of
interest. In particular, we consider the reconstruction of a point (B) which is on the opposite side of the
scan and at the same depth.

wrap around and involve points along the hyperbola corresponding to (A). If we instead pad
with zA tan θdiv/∆x columns of zeros, the summation over the part of the hyperbola not covered
by the scan will take place over zeros only and will not contribute to the result.

We realize from the example illustrated in Figures 3.47 and 3.48 that the amount of aliasing
caused by the processing in the frequency domain is depth dependent as is illustrated in Figure
3.49 and the zero-padding provides a margin. Since the required margin will depend on depth
we should choose the margin for the worst case, which is for the deepest endpoint in the ROI.
In this way we protect against aliasing for all depths. This is illustrated in Figure 3.50.

If we choose the ROI to have the same start and end point in the x-dimension as the scan
and with zmax being the deepest point in the ROI, we will need a margin of zmax tan θdiv to
avoid aliasing and the minimum total size of the zero-padded data set in the x-direction will
become

Nx,zp =

⌈
Nx +

zmax tan θdiv

∆x

⌉
(3.78)

where ⌈.⌉ denotes the ceiling operator.

More generally, for a ROI of that has length Wx in the x-direction that is not equal to Nx∆x,
it can be shown that the minimum Nx,zp required to avoid aliasing is given by [29]

Nx,min =

⌈
Wx

2 + zmax tan θdiv + Nx∆x
2

∆x

⌉
(3.79)

Finally, we should not that the computational efficiency of the FFT is in general optimal for
transforming sequences with lengths that are powers of 2. Therefore, the number of appended
zeros should preferably be rounded up so that the overall number of samples after zero-padding
becomes a power of 2.
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3.A.4 Comments on the use of the discrete Fourier transform and aliasing

All Fourier transforms involved in the algorithm are performed using discrete data and the fast
Fourier transform has been used for all calculations. Aliasing may then appear both spatially
and temporally. Both the temporal and spatial sampling must fulfil the Nyquist criterion, stat-
ing that the sampling frequency must at least be twice that of the highest frequency component
appearing in the signals. For the temporal sampling, this requirement is fulfilled with a large
margin in all the experiments presented in the chapter. As an example, the experiments pre-
sented both in Section 3.1 and 3.2 were performed with a sampling frequency of 25 MHz whereas
the center frequency of the transducer was 2.25 MHz and with a bandwidth of about 1.5 MHz.

The spatial sampling can be more critical. Let us here for simplicity consider the problem
for the 2D case and consider the spatial coordinate x only.17 In its conventional form, in which a
a scenario with constant velocity and point-like transducers are considered, the spatial sampling
theorem states that the distance between two sampling points on the x-axis, ∆x, should be
separated by no more than λmin/4 for pulse-echo measurements, where λmin is the minimum
wave length appearing in the measurements. As an example: If we use a transducer with an
upper frequency of 3 MHz for the measurements in water, having a velocity of 1500 m/s, we
have that λmin = 0.5 mm and ∆x < 0.125 mm which is a quite small separation that will result
in impractically long acquisition times if large areas are to be scanned.

The requirement ∆x < λmin/4 is, however, quite overpessimistic and does not take into
account the transducer’s directivity. If this is done, we arrive at the much less restrictive
result [32], stating that when a transducer of aperture D is used, the spatial sampling must be
performed at steps no longer than ∆x < D/4. For a transducer of diameter 10 mm we thus
have that ∆x < 2.5 mm which is fulfilled in the experiments presented in Sections 3.1 and 3.2.

Aliasing can occur also at the inverse transform back to spatial coordinates. The Fourier
coefficients represent a function that is periodic both in t and x, and especially the periodicity
in the spatial coordinate may cause problems in the reconstruction. Let Nx denote the number
of spatial samples taken in the x-direction, separated by ∆x. Then an inverse transform back
from the discrete Fourier domain is periodic with a periodicity Nx∆x, equal to the synthetic
aperture. Phase shifts along x caused by the processing in the frequency domain then may wrap
around to the opposite side of the resulting image. This will be particularly apparent if there
is a strong reflector close to one of the endpoints of the scan. This wrap around effect can be
avoided by zero-padding in the x-direction and we illustrate in Figures 3.47 and 3.48 how this
is achieved and what amount of zero-padding that is necessary in order to do so.

Figure 3.47 illustrates a transducer with divergence angle θdiv that is scanned over a region
of interest. Below the beginning point of the scan, a scatterer (A) is present at depth zA. This
scatterer will appear in the raw data as one half of a hyperbolic pattern, peaking exactly at
the leftmost side of the B-scan and the extension of the right side of the hyperbola in the x-
direction will be zA tan θdiv. Consider now the reconstruction of another point (B) that is found
on the same depth as (A) but on the opposite side of the ROI. In the processing for recovering
the reflectivity of point (B), data is summed along a hyperbola that has a lateral extension
determined by the divergence angle and depth, which is the same as for point (A).

The hyperbolic signature of (A) is indicated in Figure 3.48 as a solid line and the data that
is used for reconstructing (B) is shown as a dashed line. Due to the processing being performed
in the frequency domain, the summation along the dashed hyperbola will take place over a
periodic continuation of the B-scan.18 Without zero-padding, this summation will therefore

17The extension to 3D is straightforward; the problem of avoiding aliasing can be treated independently for x
and y.

18The periodic continuation is in the figures shown only in the x-direction.
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Figure 3.47: A transducer with divergence angle θdiv is scanned over a scatterer (A) just below the
beginning point of the scan. The data from this scan is used for reconstructing an image of the region of
interest. In particular, we consider the reconstruction of a point (B) which is on the opposite side of the
scan and at the same depth.

wrap around and involve points along the hyperbola corresponding to (A). If we instead pad
with zA tan θdiv/∆x columns of zeros, the summation over the part of the hyperbola not covered
by the scan will take place over zeros only and will not contribute to the result.

We realize from the example illustrated in Figures 3.47 and 3.48 that the amount of aliasing
caused by the processing in the frequency domain is depth dependent as is illustrated in Figure
3.49 and the zero-padding provides a margin. Since the required margin will depend on depth
we should choose the margin for the worst case, which is for the deepest endpoint in the ROI.
In this way we protect against aliasing for all depths. This is illustrated in Figure 3.50.

If we choose the ROI to have the same start and end point in the x-dimension as the scan
and with zmax being the deepest point in the ROI, we will need a margin of zmax tan θdiv to
avoid aliasing and the minimum total size of the zero-padded data set in the x-direction will
become

Nx,zp =

⌈
Nx +

zmax tan θdiv

∆x

⌉
(3.78)

where ⌈.⌉ denotes the ceiling operator.

More generally, for a ROI of that has length Wx in the x-direction that is not equal to Nx∆x,
it can be shown that the minimum Nx,zp required to avoid aliasing is given by [29]

Nx,min =

⌈
Wx

2 + zmax tan θdiv + Nx∆x
2

∆x

⌉
(3.79)

Finally, we should not that the computational efficiency of the FFT is in general optimal for
transforming sequences with lengths that are powers of 2. Therefore, the number of appended
zeros should preferably be rounded up so that the overall number of samples after zero-padding
becomes a power of 2.

91



data

periodic continuations

response

from A

data used for 

reconstructing B

(a)

data

periodic continuations

response

from A

data used for 

reconstructing B

zero padding

(b)

Figure 3.48: The periodic continuation of the B-scan acquired from the setup shown in Figure 3.47. The
hyperbolic footprint of the scatterer (A) is shown solid and data along the hyperbola that is used in the
reconstruction of (B) is shown as a dashed line. Due to the processing being performed in the frequency
domain, the summation along the dashed hyperbola will take place over a periodic continuation of the
B-scan. Without zero-padding as in (a), this summation will involve points along the (A) hyperbola. If
we instead pad with zA tan θdiv/∆x columns of zeros, the summation over the part of the hyperbola not
covered by the scan will take place over zeros only and will not contribute to the result.

Figure 3.49: For data that is not zero-padded, aliasing will occur in the areas where periodic continu-
ations of the fan-shaped insonified region overlap.
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Figure 3.50: With enough zero-padding to avoid aliasing for the deepest positions, aliasing is avoided
in the entire ROI.

93



data

periodic continuations

response

from A

data used for 

reconstructing B

(a)

data

periodic continuations

response

from A

data used for 

reconstructing B

zero padding

(b)

Figure 3.48: The periodic continuation of the B-scan acquired from the setup shown in Figure 3.47. The
hyperbolic footprint of the scatterer (A) is shown solid and data along the hyperbola that is used in the
reconstruction of (B) is shown as a dashed line. Due to the processing being performed in the frequency
domain, the summation along the dashed hyperbola will take place over a periodic continuation of the
B-scan. Without zero-padding as in (a), this summation will involve points along the (A) hyperbola. If
we instead pad with zA tan θdiv/∆x columns of zeros, the summation over the part of the hyperbola not
covered by the scan will take place over zeros only and will not contribute to the result.

Figure 3.49: For data that is not zero-padded, aliasing will occur in the areas where periodic continu-
ations of the fan-shaped insonified region overlap.
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Figure 3.50: With enough zero-padding to avoid aliasing for the deepest positions, aliasing is avoided
in the entire ROI.
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