
Svensk Kärnbränslehantering AB
Swedish Nuclear Fuel
and Waste Management Co

Box 250, SE-101 24 Stockholm 
Phone +46 8 459 84 00

R-07-38

C
M

 G
ru

pp
en

 A
B

, B
ro

m
m

a,
 2

01
1

DarcyTools version 3.4
– Concepts, Methods and Equations 

Urban Svensson and Hans-Olof Kuylenstierna 

Computer-aided Fluid Engineering AB

Michel Ferry 
MFRDC, Orvault, France

December 2010

R
-07-38

D
arcyTools version 3.4 – C

oncepts, M
ethods and Equations 



Tänd ett lager: 
P, R eller TR.

DarcyTools version 3.4
– Concepts, Methods and Equations 

Urban Svensson and Hans-Olof Kuylenstierna 

Computer-aided Fluid Engineering AB

Michel Ferry 
MFRDC, Orvault, France

December 2010

ISSN 1402-3091 

SKB R-07-38

This report concerns a study which was conducted for SKB. The conclusions  
and viewpoints presented in the report are those of the authors. SKB may draw  
modified conclusions, based on additional literature sources and/or expert opinions.

A pdf version of this document can be downloaded from www.skb.se.



R-07-38	 3

Preface

As the first author of this report, I take the liberty to write a preface and explain a few things about 
the work leading to Version 3.4 of DarcyTools. This is necessary as Michel and Hans-Olof have not 
been involved in the writing of the main part of the report, and they may not even share all the views 
expressed.

The contributions from Michel and Hans-Olof can be specified as follows:

Michel:	 Development and writing of most of the software that constitutes DarcyTools V3.4. 
Author and owner of the solver MIGAL. Author of Appendices A and H.

Hans-Olof:	 Development of methods and writing of software for generation of fracture networks 
and their representation (in terms of properties) in the continuum model. Development 
of methods and writing of software for the particle tracking routine PARTRACK. 
Author of Appendices B, C and D.

My contribution has been in the development of concepts and methods, real world applications and 
tests. I have also coordinated the efforts and done my best to ensure that we deliver the product our 
client, SKB, expects.

Urban Svensson
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Abstract

DarcyTools is a computer code for simulation of flow and transport in porous and/or fractured media. 
The fractured media in mind is a fractured rock and the porous media the soil cover on the top of 
the rock; it is hence groundwater flows, which is the class of flows in mind.

DarcyTools is a general code for this class of problems, but the analysis of a repository for nuclear 
waste is the main intended application.

A number of novel features are introduced in DarcyTools. The most fundamental is perhaps the method 
to generate grid properties (DarcyTools is a continuum porous-media code); a fracture network, with 
properties given to each fracture, is represented in the computational grid by a method that is based 
on intersecting volumes (fracture volumes and grid cell volumes). This method is believed to result 
in very accurate anisotropy and connectivity properties.

The report focuses on the concepts, assumptions, equations and key features of DarcyTools. The main 
part of the report is fairly short; a number of appendices give more detailed accounts of various aspects 
of the code.
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Sammanfattning

DarcyTools är ett datorprogram för simulering av flöde och transport i ett poröst och/eller sprickigt 
medium. Det sprickiga mediet är ett sprickigt berg och det porösa mediet jordlagret som täcker berget; 
det är således grundvattenströmning som är applikationsområdet.

DarcyTools är ett generellt program för grundvattenströmning, men tillämpningar som rör analyser 
av förvar för uttjänt kärnbränsle står i fokus.

Ett antal nya koncept och metoder utgör hörnpelare i DarcyTools. Den kanske mest fundamentala av 
dessa rör metoden för att representera hydrauliska egenskaper i beräkningsnätet (DarcyTools är en 
så kallad ”porös kontinuum kod”). Metoden bygger på en direkt representation av ett spricknätverk, 
som kan innefatta flera miljoner sprickor. Tanken är att denna metod skall ge en god beskrivning av 
bergets anisotropi och sprickors konnektivitet.

Rapporten beskriver koncept, antaganden, ekvationer och illustrerar nyckelegenskaper. Huvuddelen 
av rapporten är tämligen kort; ett antal appendix beskriver olika aspekter av programmet mer i detalj.
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1	 Introduction

1.1	 Background
DarcyTools is a computer code for simulation of flow and transport in porous and/or fractured media. 
The fractured media in mind is a fractured rock and the porous media the soil cover on the top of the 
rock; it is hence groundwater flows, which is the class of flows in mind. The code is intended to be 
applicable to a wide range of groundwater flows, but the analysis of a repository for nuclear waste is 
the main intended application.

DarcyTools is developed by a collaborative effort by SKB (The Swedish Nuclear Fuel and Waste 
Management Company), MFRDC (Michel Ferry, R&D Consulting) and CFE AB (Computer-aided 
Fluid Engineering AB). It builds upon earlier development of groundwater models, carried out by 
CFE during the period 1990–2002. The following reports, give a general account of this work and 
hence give a background to the work to be described in this report:

•	 Groundwater flow at Äspö and changes due to the excavation of the laboratory (Svensson 1991). 
This report gives predictions of the influence of the laboratory prior to its construction.

•	 A regional analysis of groundwater flow and salinity distribution in the Äspö area (Svensson 
1997a). Results from this study have been useful for generating boundary conditions for smaller 
scale models.

•	 A site scale analysis of groundwater flow and salinity distribution in the Äspö area (Svensson 
1997b). This model may be considered as representing a synthesis of the detailed information 
provided in Rhén et al. (1997).

•	 Representation of fracture networks as grid cell conductivities (Svensson 1999a). This report 
describes, for the first time, the principles used for generating property fields in DarcyTools.

•	 A laboratory scale analysis of groundwater flow and salinity distribution in the Äspö area 
(Svensson 1999b). In this study the new methods were applied and evaluated.

•	 PARTRACK – A particle tracking algorithm for transport and dispersion of solutes in a sparsely 
fractured rock (Svensson 2001a). This report describes the particle tracking techniques used in 
DarcyTools.

•	 Impact of the tunnel construction on the groundwater system at Äspö. Task 5. Äspö Task Force 
on groundwater flow and transport of solutes (Svensson et al. 2002).

These reports give a general overview of the early developments that have lead to the present version 
of DarcyTools. It should also be pointed out that in the listed reports the CFD code PHOENICS 
(Spalding 1981) was used as an equation solver. DarcyTools is based on a solver called MIGAL 
(Ferry 2002). It has however been carefully evaluated that the two solvers produce very similar 
solutions and the reports listed are thus still valid as background reports for DarcyTools.

The present report will focus on the theoretical basis of DarcyTools. Two accompanying reports 
cover other aspects:

•	 Verification, validation and demonstration (Svensson 2010a) (Hereafter denoted Report 2).

•	 User’s guide (Svensson and Ferry 2010) (Hereafter denoted Report 3).

Early “real world applications” of DarcyTools can be found in Svensson (2001c) and Follin et al. 
(2005, 2006). 

Two basic approaches in groundwater modelling can be identified; in one we define grid cell conduc-
tivities (sometimes called the continuum porous-medium (CPM) approach, e.g. Jackson et al. (2000), 
in the other we calculate the flow through the fracture network (DFN approach). Both approaches 
have their merits and drawbacks, which however will not be discussed here (for a discussion, see 
Sahimi 1995). Instead we will try to combine the benefits of both approaches. This is done by 
transferring the hydraulic and geometric properties of a DFN to a CPM grid.
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The traditional way to calculate grid cell conductivities in continuum models is through an upscaling 
procedure (for reviews see: Wen and Gómez-Hernández (1996), Renard and de Marsily (1997) and 
Pozdniakov and Tsang (1999)). These methods are however of no direct use in the present work. 
Attempts have been made, see La Pointe et al. (1995), Niemi et al. (1999) and Jackson et al. (2000), 
to use a DFN-model to calculate grid cell conductivities. These methods have similarities with the 
present approach as the cell conductivity will be based on the properties of a fracture network. We 
will however not use a flow simulation to estimate the grid cell conductivities; instead the fracture 
network is represented in the continuum model by a method based on the intersecting volumes 
between the fractures and the grid cells. Methods to include a limited number (say 10–20) of major 
deformation zones in a CPM-model have been presented, see for example Svensson (1991) and 
Gómez-Hernandez et al. (1999). The method in DarcyTools is different from these methods in that 
all fractures and deformation zones are considered, when the conductivity field is generated. This 
means that we may need to represent 106 to 108 fractures as grid cell conductivities. Further, if the 
properties (geometry, transmissivity, etc) of the major deformation zones are known, these zones 
are treated deterministically, while unknown, or background, fractures are generated from statistical 
distributions.

1.2	 Objectives and scope
The objectives of this report can be summarised as:

•	 Provide the theoretical basis of DarcyTools.

•	 Illustrate how DarcyTools works.

•	 Discuss and evaluate the present status of DarcyTools.

A review of applications of DarcyTools is not made in the present report.

1.3	 The Äspö HRL
The present report will not describe real world applications. Several references to model studies and 
field data related to Äspö Hard Rock Laboratory (HRL) will however be made and a brief introduction 
to Äspö HRL will therefore be given.

The Äspö Hard Rock Laboratory is located near the Oskarshamn nuclear power plant on the East 
Cost of Sweden, see Figure 1-1. The access tunnel starts on the mainland, continues under the Baltic 
and reaches the spiral part of the tunnel beneath the island of Äspö. The total length of the tunnel 
is 3,600 m and it reaches a depth of 460 m. A vertical elevator shaft connects the laboratory to the 
Äspö Research Village. 

Mean precipitation minus evapotranspiration, P-E, has been estimated to be about 200 mm/year for 
the region. For the island of Äspö one can expect that the groundwater recharge (i.e. P-E) is smaller 
as the distance to the sea is shorter (no storage of water in lakes and ponds during periods of heavy 
precipitation). A value of 100 mm/year was used in the site scale model (Svensson 1997b).

Around the island of Äspö the Baltic Sea has a salinity of about 0.6%. It is known from boreholes on 
Äspö that the fresh water lens below Äspö has a thickness of 100 to 200 m under natural conditions; 
below this level the salinity increases to reach a value of about 2% at a depth of 800 m below 
ground. As the water density increases with salinity we have a density stratified water below the 
island of Äspö. This is an important feature of the groundwater flow system.

Three model domains are outlined in Figure 1-1; these will be referred to throughout the report.

The major fracture zones at Äspö are shown in Figure 1-2 and boreholes in Figure 1-3. These figures 
will be referenced to when field measurements are discussed.
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1.4	 Outline
The main part of the report is fairly short; this with the intention that the reader should be able to 
get a good overview of DarcyTools from a few hours of reading. The appendices will provide more 
detailed descriptions of various central topics.

1.5	 Limitations
DarcyTools is developed continuously, both with respect to hardware developments (like multi-core 
platforms) and with respect to new features. Two new features which are not covered in the present 
version of the documentation are.

•	 Resaturation of the tunnel backfill. This feature is however well described in two separate reports 
(Svensson 2010c, Enssle and Poppei 2010).

•	 The ice, or permafrost, module. This feature is to be further developed and is for this reason not 
yet finally documented.

Figure 1-1. The island of Äspö and the Äspö Hard Rock Laboratory. The black rectangle shows the area of 
the Site scale model (Svensson 1997b). The red rectangle shows the Laboratory model (Svensson 1999b) and 
the blue rectangle indicates the domain for the Repository model (Svensson 2001d).
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Figure 1-2. Major fracture zones in the area, after Rhén et al. (1997).
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Figure 1-3. Boreholes in the Äspö area, after Rhén et al. (1997).
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2	 Situation considered

2.1	 Introduction
As mentioned, the application area for DarcyTools is flow and transport in fractured and/or porous 
media. This section provides a general description of physical processes, scales, etc that need to be 
considered. The description is generic, but inspired by the conditions at and experiences from the Äspö 
Hard Rock Laboratory (HRL). Hence (sparsely) fractured rock is the hydrogeological medium in mind.

2.2	 The 10 km scale view
The regional groundwater flow in unconfined aquifers introduces the concepts of recharge and 
discharge areas, see Figure 2-1. Recharge areas, i.e. where a net inflow is found, are usually found in 
topographically high places while the discharge areas are located in topographic lows. The discharge 
areas may take the form of a stream, river or a lake.

The general flow pattern is hence from high to low areas; a system of local flow cells is formed and 
the groundwater table follows the surface topography. However, this is an idealized picture which is 
based on the assumptions of a steady, constant density flow in a homogeneous aquifer. These assump-
tions are seldom fulfilled and care should hence be taken when interpreting field data, based on this 
view. In particular, most natural aquifers are anisotropic and heterogeneous.

Figure 2-1. Situation considered – the 10 km scale view.
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2.3	 The km scale view
A km scale view is given in Figure 2-2. Let us assume that it is of interest to determine the origin 
of water leaking into the tunnel. Two main sources are precipitation and sea water (excluding brine 
water from below). To track the precipitation water one has to follow a water parcel through the 
unsaturated zone, through the saturated soil cover and finally its way through the fracture network. 
It is essential to determine the position of the groundwater table, as it determines the pressure gradients 
in the porous media and may influence the conditions deep into the rock. The other source, the sea 
water, introduces density effects, as the seawater is heavier than fresh water. The heavier saltwater 
penetrates the coastal zone and modifies the pressure distribution (the Ghübern Herzberg relation). 
Due to this effect the inflow to the tunnel may be dominated by sea water or the precipitation water, 
all depending on the actual conditions (density difference, tunnel position, etc).

2.4	 The m scale view
The main novel features of DarcyTools are concerned with the fracture network and we will therefore 
focus on the description of fractures (giving the porous media less attention). In Figure 2-3 part of 
a fracture network is shown. Different parts of the network have been marked with letters; these 
parts will now be described:

A: Represents a deformation zone. The deformation zone is assumed to be composed of a number 
of smaller fractures through which the flow takes place. Most of the small fractures do however not 
contribute to the flow but are still important for transport and 

dispersion of a tracer. Deformation zones are often the main flow conductors due to their high 
transmissivity and size (length scale > 100 m). The thickness is typically > 1 m.

B: Some fractures are best characterised as “a single opening”. 

Typically the thickness, or the aperture, is on the order of 10–3 m. The fractures marked with B in 
Figure 2-3 have a through-flow and may hence contribute to the total flow rate. If the transport time 
through the B fractures is different from the transport time in the fracture zone a dispersion effect 
will also result from the parallel flow path.

Figure 2-2. Situation considered – the km scale view.
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C: Isolated fractures of groups of fractures can not contribute to the flow, transport or dispersion, as 
flow in the matrix is neglected. In the numerical model these are removed before the generation of 
grid data is performed.

D: Some fractures, or deformation zones, may form “dead end systems”. The exchange with fractures 
with a significant flow is then by molecular diffusion. When storage of water over long time periods, 
say longer than 100 years, is studied it is essential to represent the dead-end systems correctly.

E, F: There is always a lower limit on the fracture size that can be represented correctly in a numerical 
simulation. In the present study it will be assumed that fractures below a certain size, to be discussed, 
do not contribute significantly to the total flow. However, for transport and dispersion it is probably 
necessary to consider all scales, as a large fraction of the pore volume is expected to be due to the 
small scale features of the porosity field.

2.5	 The mm scale view
It was mentioned above that the opening, or aperture, of a fracture is typically of the order of 1 mm 
or smaller. The aperture has however not a constant value, as is illustrated in Figure 2-4. On this scale 
it is useful to introduce the notion of the mobile zone, for the volume that has flowing water, and the 
immobile zone which represents all volumes with stagnant water. In Figure 2-4, the stagnant pools, 
the crossing fractures and the matrix may all contain stagnant water. The fracture may also contain 
material of various kinds, so called gouge material.

The geometrical complexity of a fracture opening is essential to consider when small scale dispersion 
processes are to be described. The exchange between the mobile and immobile zones is often assumed 
to be due to molecular diffusion only.

Figure 2-3. Situation considered – the m scale view.
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2.6	 The flow system
If only the flow field is of interest, we do not need to consider the detailed properties of a fracture 
(as outlined in Figure 2-4). The fracture transmissivity is normally what is needed. In addition the 
following topics may be of importance.

•	 A method to handle the unsaturated zone is required. Depending on the situation at hand the 
method may range from quite simple (only position of the groundwater table) to complex two-
phase algorithms.

•	 Density stratification. If waters of different densities meet, it is essential to account for the 
effects.

•	 In addition to the fracture transmissivities one needs information about the conductivity of the 
soil cover, if present.

These are some of the key elements that govern the flow system. Note that we at this stage are not 
discussing the required input to a numerical model, which of course is more extensive (boundary 
conditions, properties, etc).

2.7	 Transport and dispersion
When discussing transport and dispersion of solutes it is useful to distinguish between two different 
problems with respect to the time scale. The first kind of problem is the field experiment with a time 
scale from weeks to perhaps a year. A longer time scale, which may be thousands of years, needs to 
be considered when the water types present in the fracture network is to be analyzed. At Äspö HRL, 
water from the last glaciation (about 11,000 years ago) has been found already at a depth of a few 
hundred metres. The relevant processes for the two problems will now be described, in turn.

Figure 2-4. Situation considered – the mm scale view.
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Let us think of a typical cross-borehole tracer experiment where a tracer is injected in one borehole 
and the arrival in another, pumped, borehole is studied. The curve describing the time distribution 
of the concentration in the pumped borehole is called the breakthrough curve (BTC). Obviously 
the tracer is transported by advection between the two boreholes, and the flow field is hence an 
important element in the analysis. A number of dispersion processes will however affect the tracer 
as it travels through the fracture network. The most important of these are.

•	 Intersections. At a fracture intersection a tracer cloud may split up and enter pathways with 
different lengths and fluid velocities. This type of dispersion is often called macro-dispersion.

•	 Channelling. Spreading occurs within each fracture plane as the different streamlines have 
different path lengths and velocities. The flow channels may also merge or split up.

•	 Taylor dispersion. A velocity profile exists between the two bounding walls of the fracture. 
The resulting dispersion effect is called shear- or Taylor dispersion.

•	 Matrix diffusion and sorption. Interaction with the rock, stagnant pools and microfissures 
causes a number of processes that in effect lead to a delay and dispersion of a tracer pulse. 
These include: sorption on the fracture walls, diffusion into the rock matrix with sorption on 
inner surfaces and interaction with gouge.

As mentioned earlier, the diffusion into dead-end fractures of various sizes (see Figure 2-3 and 2-4) 
is by molecular diffusion. In order to illustrate the typical penetration depth for this process one may 
think of a substance with a certain molecular diffusion coefficiant (Dmol = 10–10 m2/s) and an experi-
mental time scale of, say, one month (t ≈ 2.6×106 s). The penetration length can then be estimated as 

016.0=× tDmol  
m. As the immobile zone is mainly made up of small fractures one can conclude 

that small scale dispersion is mainly governed by processes on the mm to cm scale.

For the transport problem on long time scales we may use the salinity field to illustrate some key features. 
First we can note the time scale for exchange in larger (> metres) dead-end fracture systems. If we put 
Dmol = 10–10 m2/s and L = 10 m, we find that the time scale is 1012 seconds, or 30,000 years (t = L2/Dmol). 
It is thus not surprising to find water from the last glaciation, or the Litorina Sea (≈ 7,000 years BP), 
in the fracture system at Äspö HRL. Gravitational forces may further enhance the entrapment of water 
in dead-end zones. If, for example, Litorina water (which has higher salinity than the present Baltic 
water) is located in a dead-end fracture extending downwards from the mobile zone gravitational forces 
will enhance the entrapment. The same principle applies to glaciation water (which has a lower density 
than present Baltic water) in a dead-end fracture extending upwards from the mobile zone. If we further 
note that the volume of all immobile zones is larger than the volume of the mobile zone, one can draw 
the conclusion that the salinity field is “stiff” and requires very long time scales to reach a steady state. 
On a shorter time scale all processes listed above are of course also active for the dispersion of salt.

2.8	 The transient nature of the problem
From the discussion of the salinity field one can conclude that the groundwater system is never in a 
steady state. Note that any change in the salinity field will modify the flow field as these are linked 
through the gravitational force.

In order to emphasize the transient nature of the problem the following list of processes have been 
compiled:

•	 Glaciations. Time scale of 10,000 to 100,000 years.

•	 Diffusion into dead-end fractures. Time scale from minutes to 100,000 years.

•	 Sea level variations. From daily variations to long time effects due to the land uplift.

•	 Precipitation. From daily, seasonal to yearly variations.

•	 Tidal effects. Time scale of one day.

The list can be made longer, but the message is probably clear: “transient effects on a variety of 
scales need to be considered”.
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2.9	 Summing up
The intention of this chapter was to describe the problem considered in a general way. One may 
however put emphasis on different aspects of the problem (the important area of two-phase flows has 
for example not been mentioned, nor have the storativity and specific yield effects been described). 
It should also be noted that the description given has some bias towards issues of interest to nuclear 
waste repositories, although the ambition was to give a general account of the problem. 

Based on the qualitative descriptions given the following consensus statement is formulated:

•	 Flow, transport and dispersion in a sparsely fractured rock are governed by processes that have 
time scales ranging from minutes to thousands of years and space scales ranging from millimetres 
to several kilometres. The coupling between scales, in space and time, is strong and it is generally 
not possible to neglect these interactions.
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3	 Concepts, Assumptions and Methods

3.1	 Introduction
The qualitative description of the previous chapter sets the scene for the concepts, assumptions and 
methods to be introduced in this section. If the previous section was general, the present chapter is 
very specific for DarcyTools. The descriptive presentation method will however be continued, leaving 
the mathematics to Chapter 4. We will hence not try to “prove” the correctness of the concepts, 
assumptions and methods, as this will be the objective of a separate report (Report 2).

First a key assumption in DarcyTools will be presented, then the fracture network and its representa-
tion in the grid (including subgrid processes) is discussed. After this concepts related to transport are 
reviewed, then the groundwater table is discussed and finally some assumptions regarding properties 
are given.

3.2	 The key assumption
The most fundamental assumption in DarcyTools is related to the structure of the fracture network, 
which is assumed to follow a power law distribution. More precisely it is assumed that the number 
of fractures per unit volume, n, in the length interval, dl, is given by:

I /
a a

ref ref

l dl l
n a

l l

    + = ∗ −           
							       (3-1)

where I is the intensity, lref a reference length and a the power law exponent. Depending on how 
I and a are chosen, networks with different characteristics can be generated. In DarcyTools simu
lations it will often be assumed that a = –2.6 (following La Pointe et al. 1999) and that I is given 
avalue resulting in a “sparsely fractured rock” (details later). This is the situation at Äspö HRL (Rhén 
et al. 1997), where the major deformation zones have been thoroughly studied and it is believed 
that they provide the “first order” response in, for example, a pump test (Stanfors et al. 1999). The 
length scale of the major deformation zones is typically above, say, 300 m and the transmissivity is 
of the order of 10–5 m2/s. Deformation zones smaller than 300 m have also been mapped at Äspö, 
and found to be hydraulically important, and should hence also be considered in the conductivity 
field. DarcyTools is developed for a fracture network of the kind found at Äspö HRL. Sometimes 
the intensity parameter is related to fracture surface area, P32. It is possible to relate I to P32, see 
Follin et al. (2005).

From this assumption of a sparsely fractured network, it follows that the flow is distributed on 
relatively few flow channels, as it is the large scale fractures and zones that provide the connectivity 
in the network. In DarcyTools it will be assumed that all essential flow channels can be described 
in the computational grid. However, as discussed above, dispersion is often dominated by processes 
on the mm scale, which can not be described explicitly. This Separation Of Scales (SOS-concept) 
is a consequence of the sparsely fractured rock and will form the basis for the subgrid model to be 
described.

3.3	 Concepts used for fracture descriptions
The real world fracture network will be represented as a system of conductive elements and storage 
volumes, see Figure 3-1 (which is based on Figure 2-3). As mentioned, not all fractures can be repre-
sented in the generated fracture network. The smallest fracture size, lmin, is chosen to be comparable 
to cell size, ∆, in the computational grid. Fractures smaller than lmin will be represented as storage 
volumes, which are defined as volumes that are in contact with the flow channels and exchange 
matter with these by molecular diffusion. Note that fracture F in Figure 3-1 will not be represented 
as a flow channel in the generated network, as it is supposed to illustrate a fracture smaller than lmin. 
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Each of the conductive elements (A, B and D in Figure 3-1) is assumed to have a thickness, be, 
conductivity, Ke, kinematic porosity, θe, flow wetted surface, aw and diffusion coefficient, De. 
The storage volumes (E and F in Figure 3-1) are described by their linear dimensions, volumes 
and diffusion coefficients. Below, it will be discussed how these parameters can be estimated.

If the open space in a fracture can be described as “the space between two parallel walls” it is easy to 
estimate the flow wetted surface (FWS); it will be 2 m2/(m2 fracture). If the fracture is very irregular 
or have parallel flow channels it is harder to estimate a realistic value. In DarcyTools the FWS will 
be given as an input parameter for each major (or deterministic) fracture zone and each group of 
random fractures.

All properties (conductivity, porosity, diffusivity and FWS) are assumed to be uniformly distributed 
over the thickness of the conductive element.

Some nomenclature for fractures needs to be introduced. A fracture that has one single opening will 
in the following be called a single fracture, while a deformation zone consists of several crossing 
fractures. For a single fracture we call the width of the opening the aperture, which is typically less 
than 10–3 metres. For a deformation zone, the thickness is on the order 10–100 m. In the present study, 
we will make no distinction between a single fracture and a deformation zone; both are idealized as an 
element with thickness and length. If the transmissivity of the single fracture, or the deformation zone, 
is denoted T we can define the hydraulic conductivity of the element as K = T/b. In the following we 
will call the conductive element a fracture for short.

A few more things can be noted in Figure 3-1:

•	 isolated fractures, C, are removed in the generated fracture network,

•	 the deformation zone, A, may have a varying thickness in the generated network. A method to gene
rate conductive elements with varying thickness has been developed (described in Appendix C), 
but this method can presently only be used for major deterministic deformation zones (often 15–20 
in number) as it is time-consuming on the computer.

3.4	 Representation of properties on a grid
Most numerical models of groundwater flow subdivide the studied domain into smaller volumes. If 
a computational grid is defined, we call these smaller volumes grid cells, and we apply the conserva-
tion laws and other constitutive relations to these. Also material properties, like hydraulic conductivity 
and porosity, need to be specified for the grid cells. Often these properties are measured on a smaller 
scale (support scale) and a technique to express these on the scale of the grid cells is thus needed 
(upscaling). When material properties for all grid cells have been obtained, the flow simulation can be 
performed. In DarcyTools, we will however not follow this traditional route and the main argument for 
this can be stated as follows:

•	 In a sparsely fractured rock it is believed that most of the flow is due to a limited number of 
major fractures and deformation zones. The main task is thus to identify these and to represent 
them in the numerical model. If refined modelling is required, the next size class of fractures or 
deformation zones should be considered. From this point of view it seems more logical to first 
consider large fractures, and then progressively smaller ones, than to upscale properties from a 
small scale.

It is not possible to represent all fractures in the grid, simply because there are too many. In DarcyTools 
the smallest fracture considered will often be of the same size as the grid size. Smaller fractures, 
l < lmin, are however also of importance (for dispersion) and in DarcyTools represented as storage 
volumes (immobile zones), see Figure 3-2. In fact, storage volumes are defined as all immobile 
zones , with l < lmin, that exchange matter with the flowing water by molecular diffusion only.
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Figure 3-1. Representation of the real world fracture network (top) as conductive elements and storage 
volumes.
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We have thus subdivided all fractures in contact (isolated fractures are not considered) into conductive 
elements and storage volumes. Storage volumes will be treated as subgrid effects and are represented 
in the subgrid model FRAME, to be described below. Conductive elements are represented as grid 
properties by the GEHYCO method which can now be formulated as:

•	 A conductive element contributes to the grid value of a variable by an amount which is equal to 
the intersecting volume times the value of the variable in question. Contributions from all elements 
that intersect the control volume are added and the sum is divided by the volume of the cell.

This basic principle will now be explained and illustrated, using Figure 3-3. A conductive element 
of thickness b is crossing a computational grid, which has a cell size of ∆. A staggered grid is to be 
used, which means that scalar quantities, like pressure and salinity, are stored at cell centres while 
velocity vectors are stored at cell wall centres, see Figure 3-3. This grid arrangement was first intro-
duced by Harlow and Welch (1965) and is described in textbooks, see for example Patankar (1980). 
Each variable is assumed to be representative for a certain control volume, which is the volume the 
discretized equations are formulated for. For a velocity cell it is clear that the driving pressure force 
can be easily formulated. As we are going to apply the Darcy law to the velocity cell we also need 
a relevant cell conductivity to obtain the cell wall velocity. How to calculate this conductivity, and 
other properties, is the main subject of the GEHYCO method.
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To obtain the porosity, as an example, of the scalar cell marked in Figure 3-3 the following steps are 
performed.

•	 Calculate the intersecting volume between the conductive element and the cell; this volume is 
marked in the figure.

•	 If the porosity of the conductive element is θe, the contribution to the free volume is θeVi, where 
Vi is the intersecting volume.

•	 Calculate the contributions from all conductive elements that cross the cell.

•	 Obtain the cell porosity as the sum of all contributions divided by the cell volume.

In Figure 3-3 a control volume for a velocity cell is also marked. The procedure to obtain the 
conductivity for this control volume is analogue to the steps above.

By this procedure the porosity, flow wetted surface and storativity are determined for all scalar cells 
and the conductivities and diffusivities for all cell walls.

An assumption in the statement above is that “contributions from all elements that intersect a cell 
are added”. If two, or more, fractures intersect a velocity cell, the cell conductivity should represent 
a fracture intersection (neglecting the case of parallel fractures of various orientation). Neretnieks 
(1993) discusses various concepts about channelling at intersections, but concludes that no firm 
information is available. He cites however a number of observations that support the idea that “fracture 
intersections form easy pathways”. In lack of any firm information, it will therefore be assumed that 
contributions can be added. Fracture intersections will hence form “easy pathways”.

The basic principle of the GEHYCO method is obviously very simple but, as will be demonstrated, 
still general enough to handle even complex fracture networks. A few properties of the method can 
already at this stage be identified:

•	 All cell wall conductivities will be different, as we generate three conductivity values (in a 3D 
case) for each scalar cell (the normal terms of the tensor). In fact, all six cell wall conductivities 
will be different, but only three are considered to belong to each cell; the others belong to neigh-
bouring cells. A conductivity field that is anisotropic on the cell scale is hence always generated.

•	 A fracture smaller than the cell size can not generally contribute to the anisotropy or correlation 
of the conductivity field.

Some simple calculations that illustrate the GEHYCO method, and also demonstrates the accuracy 
that can be expected, can be found in Appendix G.
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Figure 3-2. Representation of kinematic (or mobile) and storage (or immobile) volumes in the grid. The 
open rectangle in the grid represents a kinematic volume (generated by the conductive element), while filled 
rectangles represent storage volumes. The single opening fracture and the deformation zone are hence both 
represented as a conductive element, which has no storage volumes.

Figure 3-3. Illustration of concepts and methods for calculating grid properties.
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3.5	 Subgrid processes, FRAME
In Figure 3-4 some subgrid processes and concepts are introduced. Let us consider a computational 
cell with a through flow, i.e. a cell with a flow channel. The flow “sees” a certain surface area, the 
flow wetted surface (FWS), as it passes the cell. The FWS may bring the flowing water in contact 
with other fractures, gouge material, stagnant pools, etc. Most of these volumes can be expected to 
have stagnant water and mass exchange is hence due to molecular diffusion. For a stagnant pool the 
relevant diffusion coefficient may be that for pure water, while diffusion into crossing fractures and 
the rock matrix may proceed with a diffusion rate that is several orders of magnitude smaller. As above, 
we will call the volume with flowing water the mobile zone and the volumes with no advection the 
immobile zone. Fractures and volumes which are not in contact with the mobile zone are of course 
of no relevance and can be excluded from the discussion. 

The situation outlined in Figure 3-4 is quite complicated and does not lend itself to direct descriptions 
of individual processes. In order to derive a simple model that can be employed in large (many grid 
cells) 3D models, the following basic assumption will be made:

•	 The immobile zones can be represented by a set of boxes, each with its own length scale, volume 
and effective diffusion coefficient.

The idealized problem is illustrated in Figure 3-5. The box with the smallest length-scale (dimension 
perpendicular to the mobile zone) will have the largest diffusion coefficient and normally also the 
largest contact area with the mobile zone. This volume will hence have a fast response. The actual 
response time can be estimated from the length scale, l, and the effective diffusion coefficient, De, as:

eD

l
t

2

≈ 	

For l = 10–3 m and De = 10–10 m2/s the time is 104 s (≈ 3 hours). For l= 1 m and De = 10–12 m2/s the 
time will be 1012 s (30,000 years), which illustrates that both short and long time scales may be 
treated within the same concept. In the following we will call these boxes storage volumes, which 
thus represent an idealized view of the immobile zones.

The next step is to devise methods to calculate the FWS, storage volumes, diffusion coefficients, 
etc. Fractal scaling laws will be used in this context and as we have adopted a multirate diffusion 
approach we call the subgrid model FRAME (a subgrid model based on FRActal scaling laws and 
Multirate Equations). Methods to derive the FWS are described in detail in Appendix E, and here we 
will focus on the properties of the storage volumes. The following steps will determine these.

•	 Divide the immobile volumes, illustrated in Figure 3-4, into a number of size groups with respect 
to the length-scale.

•	 Generate the number of fractures in each size group from a power-law with exponent a (fractal 
dimension). Note that the same power-law as used for the resolved fracture network is used also 
for the subgrid system. This will give the number of fractures per m3, for the size group in question.

•	 Only immobile zones in contact with the FWS can be in contact with the mobile zone. Modify 
the number of fractures in each size group with respect to this constraint. 

•	 Assume that the aperture of a fracture is proportional to the length scale, i.e. eT ~ lγ. Note that for 
l ≈ lmin, it can be expected that the immobile zones are due to fractures. For l ≈ lmin the volumes 
are perhaps due to stagnant pools and it may be questionable to speak about an aperture.

•	 The effective diffusion coefficient, De, is expected to be close to the molecular value for water, 
Dm, for the smallest volumes and then show a decreasing trend with the length scale of the 
immobile zone. The following relation is assumed:
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By these steps the volume, contact area and effective diffusion coefficient have been determined for 
each storage volume, as a function of a, γ and Ψ. However, these parameters will not be specified 
individually as they can be related to the “late time slope of the breakthrough curve”; this will be 
further discussed in Chapter 4 (see also Appendix B), where the details of the model implementation 
are described.
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Regarding the size interval to be considered, it was shown above that a length scale of 10–3 m results 
in a storage volume that has a response on the order of a few hours. Smaller, or faster, boxes are prob-
ably not required, unless a very fast experiment is to be simulated. The upper limit should be the cell 
size, ∆, as larger fractures are normally treated explicitly in the resolved fracture network. However, ∆ 
is often in the range 1–10 m and the largest storage volume will hence be very slow. From a practical 
point of view (save computer time) the upper limit may hence be chosen with respect to the time 
scale of the problem considered. Note also that fractures in the resolved network may form dead-end 
systems that exchange matter with the flowing water by molecular diffusion only.

The concepts and assumptions introduced give a very simplified view of the expected subgrid 
processes. However, it should be remembered that the objective is to derive a subgrid model that 
can be employed in large 3D, transient models.

Figure 3-4. Illustration of subgrid processes and concepts.

Figure 3-5. The assumed structure of subgrid volumes and areas.
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3.6	 Transport
DarcyTools has two built-in options for transport simulation; a particle tracking algorithm, 
PARTRACK, and advection/dispersion equations. The reasons why two methods are needed are 
based on the following assumptions.

•	 Salinity. The salinity field strongly influences the flow field through the density field. It is difficult 
to describe the salinity field by a set of particles and an advection/dispersion equation is therefore 
the best choice.

•	 Temperature. The main heat flux component is conduction and an advection/dispersion equation 
is hence the obvious choice for this variable. It will further be assumed that the water and rock is 
always in thermal equilibrium and only one temperature is thus solved for.

•	 Tracers. Simulation of tracer transport is best performed with a particle approach as this method 
is free from numerical dispersion effects. It is also possible to treat sorbing tracers (like radio
nuclides) with this technique.

These are the main scalars that need to be considered in applications. If additional scalar simulations 
are requested a decision about the most appropriate method has to be taken.

Transport of salt and tracers are assumed to be restricted to the water phase. Dispersion is hence due 
to mixing at fracture intersections (macro dispersion) and exchange with immobile zones (micro 
dispersion, as embodied in FRAME). FRAME is hence developed for both the advection/dispersion 
equation (as used for salt) and PARTRACK (as used for tracers).

3.7	 Groundwater table
As was stated in Chapter 2, the groundwater table may determine the pressure field deep down into 
the rock. Unfortunately it is not straight forward to calculate the position of the groundwater table. 
From the literature two methods are available:

•	 The variably saturated approach, which means that the unsaturated zone is included in the 
simulation and that the so called Richards equation is solved.

•	 Free surface approach. The main assumption of the method is that the conditions in the unsatu-
rated zone do not significantly affect the position of the groundwater table.

A novel method to determine the groundwater table, which is in between these two, is introduced 
in DarcyTools. The basic idea is as follows: If a simulation like the one in Figure 3-6 is performed 
without taking any notion of the groundwater table a certain pressure distribution results. A surface 
with atmospheric pressure is calculated, but pressure gradients and hence a horizontal flow is 
calculated above this surface. As the hydraulic conductivity is significantly smaller for the region 
above the surface with the atmospheric pressure this is obviously not correct. The key feature of 
the method is to prevent the horizontal flow above the surface of atmospheric pressure by simply 
reducing the horizontal conductivity. This is done in an iterative manner, meaning that the position 
of the atmospheric pressure is determined and horizontal conductivities are recalculated (note that 
if a rising surface is calculated, the horizontal conductivities below the surface should be restored 
to the fully saturated values). It can be shown, see Report 2, that this method gives a steady state 
groundwater table that is in agreement with available analytical solutions.

The transient problem introduces a new feature; if the groundwater table is lowered a delayed drainage 
of the volumes above the water table will occur. A significant amount of water can be released and 
affect the position of the water table. In DarcyTools this specific yield effect is described by a source 
term in the mass balance equation:

Qsy = ksyVsy (t) [m3/s]

sy
sy

dV
Q

dt
= −
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where Vsy is the volume of drainable water at time t and ksy a time constant for the drainage. We thus 
keep track of the drainable water in each cell above the water table and let this water be transported, 
by gravity, down to the water table. In Report 2, it is shown that this approach gives results that are 
in fair agreement with available analytical solutions. However, the method is not computationally 
effective and therefore not recommended for general use. A tentative suggestion is to instead use 
the storativity term to model the effect. In Report 2 (Case B6) this method is tested.

3.8	 Porosity and state laws
Finally, we will briefly review some assumptions related to the properties of the media and the fluid.

The porosity field is based on the porosities ascribed to the conductive elements. In the analysis of 
the resulting porosity field it is however of interest to also characterize the porosity as based on the 
volume of the computational domain. For this reason the following definitions will be used:

•	 θa is the porosity based on all generated fractures, including isolated fractures or clusters of 
fractures.

•	 θc is the connected part of θa, i.e. isolated fractures and clusters have been removed. 

•	 θf is the part of θc that has a significant flow, i.e. stagnant volumes have been removed.

θf requires a definition of what should be called “stagnant volumes”. The definition to be adopted 
here is:

•	 If the stagnant parts of the kinematic porosity field are neglected, i.e. the porosity is put to zero, 
this should result in a reduction of the flow through the domain that is smaller than 1%. This 
should be fulfilled for pressure gradients in all three coordinate directions.

These porosity measures will be further analyzed in Section 7.3. 

Other media properties are flow wetted surface and storativity. Also these will be calculated as 
grid cell data, based on the ascribed values to the conductive elements. In the fracture network 
the conductivity of conductive elements is specified; this because input data are often given as a 
transmissivity, T, and a thickness, b, and the conductivity is then T/b. In the simulation model the 
permeability is however used as the influence of fluid properties needs to be taken into account.

Figure 3-6. Illustration of concepts used for determination of the groundwater table. The dotted inclined 
lines indicate pressure distributions, with pressure <0 above the groundwater table.
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State laws for water that take into account the effects of pressure, temperature and salinity are very 
complex indeed. For the present range of applications, it is expected that the following assumptions 
are adequate:

•	 Density is linearly and quadraticly (i.e. two terms) related to both salinity and temperature.

•	 Viscosity is linearly and quadraticly (i.e. two terms) related to temperature.

•	 Specific heat of mass is linearly and quadraticly (i.e. two terms) related to salinity.

As the user will have access to the coefficients of these relations, details in next chapter, it is 
expected that it will always be possible to tune the relations to a specific application, with a high 
degree of accuracy.
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4	 Mathematical formulation

4.1	 Introduction
First the conservation and state laws will be presented and then, as in the previous sections, various 
features will be dealt with; now with focus on the mathematical formulation.

In Section 4.2, temperature has been denoted T, which elsewhere is used for transmissivity.

4.2	 Conservation and state laws
Conservation of mass:

( ) ( ) ( )u v w Q
t x y z
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						      (4-1)

where ρ is fluid density, θ porosity, u, v and w Darcy velocities and Q a source/sink term. The coordinate 
system is denoted x, y, z (space) and t (time).

Mass fraction transport equation:
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where C is transported mass fraction, Dx, Dy and Dz the normal terms of the diffusion-dispersion 
tensor and Qc a source/sink term, that represents the exchange with immobile zones. Qc is determined 
by the subgrid model FRAME. Note that the diffusion coefficients are the effective coefficients that 
include the porosity, see further explanation of the diffusion term in connection with Equation 4-11 
below.

Conservation of heat:
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				    (4-3)

where λx, λy and λz are the normal terms of the equivalent (i.e. rock with fluid) thermal conductivity 
tensor, c is the rock thermal capacity and cp the specific heat of the fluid and QT a source/sink term. 
We are hence only solving for one temperature, assuming thermal equilibrium between the rock and 
the water. Note that we have chosen to use c (Joule/m3°C) for the rock thermal capacity and cp (Joule/
kg ºC) the specific heat of the fluid. The reason for this inconsistency is that this formulation does not 
require the rock density as an input variable.
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The mass conservation equation is turned into a pressure equation under the well known Darcy’s 
assumption:
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where Kx, Ky and Kz are the local hydraulic conductivities in x, y and z direction, g the gravity 
acceleration, ρ0 a reference fluid density and P the dynamic fluid pressure relative to the reference 
hydrostatic pressure.

P = p + ρ0g z									         (4-5)

where p is the total pressure. The hydraulic conductivity, K, is related to the permeability, k, by the 
relation,

gk
K

ρ
µ

= 									         (4-6)

where μ is the dynamic viscosity. 

The fluid properties like the dynamic viscosity, μ, the density, ρ, and the specific heat, cp, are given 
by state laws:
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cP = cP0 (1+b1 S+b2S2								        (4-9)

while the porosity θ and the compaction, γ, of the matrix are given the following dependencies:

θ = θ0 γ										          (4-10)

γ = 1 + (σ/θ0) (P–P0)/ρg								        (4-11)

In the above formulas S represents the salinity (salt mass fraction), θ0 a reference porosity field given 
for a reference pressure field P0 and σ the specific storativity field. nμ, ai, bi, αi, βi, μ0, ρ0, cp0, Tμ and 
Tρ 

are constants.

In the advection/diffusion Equation 4-2, it is common to write the diffusion coefficient as θDmol, 
where Dmol is the molecular diffusion coefficient. In DarcyTools we choose to write the term as 
θDmol = θ0γ Dmol = γ D, where D is now the effective diffusion coefficient. The reason is that it is the 
effective diffusion coefficient that is specified for a conductive element and the GEHYCO-algorithm 
will hence deliver effective diffusion coefficients for cell walls. When a porous media case is simu-
lated and the diffusion coefficients are specified, one thus needs to remember that it is the effective 
coefficients that should be given.

4.3	 Fractures and fracture network
The relations to be discussed below are not an integral part of DarcyTools as they can be altered 
based on site specific information. It is hence more an illustration of the input data required. The 
relations given are largely based on data from Äspö HRL.
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Fracture properties. The relations used to determine fracture properties, like transmissivity and 
porosity, are taken from a tentative evaluation/ compilation (Appendix F). The following summarises 
the main relations:

•	 Transmissivity-fracture size:
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where T is transmissivity and l fracture size. The coefficients of this relation are accessible to the 
user and it is also possible to include a random term in the relation, see Report 3 for details.

•	 Transmissivity-transport aperture: Based on empirical relations and the cubic law, see 
Appendix F, it is suggested that the transport aperture, eT, can be estimated as:

	 eT = 2.0T0.6									         (4-13)

•	 Fracture size-thickness: Field data from Äspö HRL indicate that a fracture thickness, b, of 1% of 
the fracture length is a good choice. The fracture thickness is defined to include the flow channel, 
the gauge material, parallel flow paths, etc. It is hence often one or two orders of magnitude 
larger than the aperture. The kinematic porosity, θ, is calculated from eT and b (θ=eT/b).

•	 Diffusion coefficients: Molecular diffusion in a conductive element should be proportional to the 
product of the transport porosity and the diffusivity value in the pore water (Neretnieks 1993). 
The proportionality constant is related to the properties of the pore space (constrictivity and 
tortuosity). Often we will simply assume that the diffusion coefficient for a conductive element 
is equal to the product of the kinematic porosity and the diffusion value in pure water.

Fracture orientation. Several projects have been carried out with the objective to characterize the 
fracture orientation at Äspö. In DarcyTools fracture sets of different orientations can be generated 
and the spread around these orientations is governed by a Fisher distribution (see Appendix D).

Fracture intensity. The fracture intensity is specified from a power law distribution. For a length 
interval, dl, we then get:
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where n is the number of fractures per unit volume, I the intensity, lref a reference length (= 500 m) 
and a, the power law exponent, put to –2.6 (see La Pointe et al. 1999). At Äspö the intensity was 
determined to 10–8 by generating fractures in the interval 320 to 1,000 m and compare the number 
with the number of deterministic deformation zones in the Laboratory domain. The intensity chosen 
gives 10 to 15 (different realisations) deformation zones in the length interval which can be compared 
to 12 deterministic deformation zones. The parameters can of course be set by the user, see Report 3.

Fracture shape: The fractures are assumed to be squares, with length, L, and have a thickness, b. 
DarcyTools can apply a varying thickness, and hence properties, for a limited number of major 
deformation zones. A correlation structure can be specified for each of these zones by a method 
described in Appendix C.

4.4	 FRAME
We will now return to the subgrid model FRAME described in Chapter 3. The influence from the 
immobile zones on the mobile concentration of a tracer is given by the source/sink term Qc in 
Equation 4-2. Before Qc can be specified some further developments of the ideas introduced in 
Chapter 3 are needed. 

The starting point is the representation of the immobile water in storage volumes, as outlined in 
Figure 4-1. To simulate the mass transfer within a storage volume one needs to solve a 1D diffusion 
equation. However, as has been shown by Haggerty and Gorelick (1995), it is possible to simulate 
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the transport within the storage volume by a series of boxes that exchange matter with the kinematic 
volume; see Figure 4-1. Using this approach the term Qc (in Equation 4-2) and the equations for the 
boxes will take the following form:
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where βj represents the capacity ratios, αj the first order mass transfer coefficient and (Cim)j, the 

tracer concentration in the immobile water represented by box j. The total capacity 
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is equal to the volume ratio between the immobile and mobile zones (for a non sorbing tracer). For 
“layered diffusion”, which is the situation when a storage volume is in contact with a kinematic 
volume, Haggerty and Gorelick (1995) give the following expressions:
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where Da is the apparent pore diffusion coefficient and a the linear dimension of the storage volume. 
For further details about this “multi-rate model of diffusion”, see Haggerty and Gorelick (1995).

As discussed in Chapter 3, FRAME is based on a power-law formulation. The main argument for this 
is that the fractal properties of the subgrid fracture network should be the same as for the resolved 
network. The use of a power-law formulation does however also support a further development of 
the model.

•	 As mentioned, all storage volumes are represented by a series of first order capacity boxes. When 
all storage volumes have been represented, the continuous distribution of capacities is also a power-
law. This can be shown both numerically and analytically.

•	 It can further be shown that the slope of this distribution is related to the late time slope of the 
breakthrough curve, k.

Figure 4-1. Illustration of how a storage volume is simulated as a series of first order boxes.
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•	 In Chapter 3 the properties of the storage volumes were stated to be a function of three parameters: 
a, γ and Ψ. It can be shown, see Appendix B, that these are related to k as follows:
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γ Ψ
Ψ

− − +=
−

								        (4-19)

These developments form the basis for the implementation of FRAME.

We will now return to the source term Qc (Equation 4-15) and see how FRAME is specified for 
an advection/diffusion equation like (4-2). Let us further assume that C is salinity in this equation. 
The parameters that specify the model are:

•	 βi, the volume ratio between the immobile and mobile zones.

•	 αmin and αmax, the minimum and maximum mass transfer coefficients. Note that these specify the 
length interval of the storage volumes considered as αmin = Dmol/l2

max and αmax = Dmol/l2
min, where 

Dmol is the molecular diffusion coefficient and lmax and lmin the maximum and minimum lengths 
of storage volumes.

•	 k, the late time slope of the break-through curve. k determines how βt is distributed over the 
spectrum of mass transfer coefficients.

In the numerical implementation a few more parameters need to be considered:

•	 nα, the number of α-intervals that the total spectrum should be divided into.

•	 The FWS is also needed to consider in applications were a cell to cell variation of FWS is taken 
into account. The method employed is to calculate a βt that varies from cell to cell. This is done 
by using FWS/volm (where volm is the volume of the mobile zone) as a weighting factor and then 
ensure that the global mean of βt has the prescribed value. 

Thus:
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vol vol
β β
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where overbars indicate a global average.

4.5	 PARTRACK
The particle tracking routine in DarcyTools is called PARTRACK.

PARTRACK has two basic modes of operation; the first is the traditional way of moving the particle 
along the local velocity vector, while the second method uses the so called “cell-jump” approach. 
The first method is based on an interpolation of the velocity components (defined at cell walls) 
to obtain the local velocity vector within the cells. The second approach is believed to be more 
appropriate for transport in a fractured media and is therefore described in some more detail:

•	 A particle entering a scalar cell will, if no dispersion effects are activated, stay in the cell for a 
time which is equal to the free volume of the cell divided by the flow rate through the cell (a so 
called plug-flow). If dispersion effects are active the travel time will however be different and 
will also be different for different particles.

•	 When the particle is ready to leave the cell, it will leave through one of the cell walls that have 
an outgoing flow direction. The choice between cell walls with an outgoing flow is made with a 
likelihood that is proportional to the outflows. If several particles are traced, the cloud will thus 
split up in proportion to the flow rates. Complete mixing in a cell is hence assumed.

It should be noted that no time is spent when moving from one cell to the neighbour. Next we will 
discuss some details about the two points above.

When the particles are travelling through the cell, the retardation due to matrix diffusion, sorption 
and Taylor dispersion need to be accounted for. The concept of particle states is used to simulate 
these processes. As an illustration let’s outline how Taylor dispersion can be simulated. If the velocity 
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profile is described as a number of layers, each with a certain velocity, we identify these layers as the 
different states a particle can be in. If correct frequencies can be ascribed for moving to a neighbouring 
layer, it is realized that particles will experience different velocities when staying in the cell and a 
Taylor dispersion effect will result. If we further should like to account for sorption on the fracture 
walls a particle state is also needed for this process. We also need to find out the frequency by which 
a particle will leave the velocity layer close to the wall and enter the “sorbed state” and also the 
frequency by which it will go back. 

If Taylor dispersion is simulated by PARTRACK a “cross diffusion coefficient”, fxdift, needs to be 
specified. A parabolic velocity profile is assumed and fxdift is then equal to the diffusion coefficient 
divided by the square of the aperture.

PARTRACK uses FRAME to account for matrix diffusion and sorbtion processes. The parameters 
introduced for FRAME applies also to PARTRACK. However, as PARTRACK can also handle 
sorbing tracers we need to introduce the retardation factors for the mobile, Rm, and immobile zone, 
Rim. These will affect the FRAME parameters as follows:

•	 n,  where im
t n

m

R

R
β β β=  is the volume ratio for a non-sorbing tracer.

•	 αmin = Dmol/(l 2 
maxRim)

•	 αmax = Dmol/(l 2 
minRim)

Presently the best source of information regarding sorbing tracers is the SKB report IPR-06-21. For a 
discussion of how retardation are included in the multi rate model, see Haggerty and Gorelick (1995).

4.6	 Finite volume equations and solver
CFD (Computational Fluid Dynamics) methods transform the differential equations into algebraic 
ones, which can be solved numerically. DarcyTools uses the so-called finite volume method, which 
can be thought of as having three well-defined stages:

1)	 Discretize the computational domain into a number of cells, which fill entirely the domain.

2)	 Integrate each differential equation for each cell, to yield an algebraic equation.

3)	 Solve the resulting set of algebraic equations.

The differential equations were given in the previous sections. After the integration, step 2 above, 
an algebraic equation of the following type results:

aPΦP = aWΦW + aEΦE + aSΦS + aNΦN + aBΦB + aTΦT + Sφ				    (4-21)

where Φ denotes the variable in question, a coefficients and Sφ source terms. For further details, see 
Appendix A.

It is equations of type (4-21) that are solved by the solver MIGAL (see Appendix A); in fact MIGAL 
can solve linked systems of this kind of equations, a feature that is used for the pressure-salinity 
coupling in the present set of equations.

From version 3.4 DarcyTools can take full advantage of computers with multi-core processors. This 
parallelization option is briefly described in Appendix H.
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5	 Confidence building

5.1	 Some definitions
During the last twenty years CFD (Computational Fluid Dynamics) has become a standard simulation 
tool in most engineering problems, dealing with groundwater flow and transport. This development 
has been driven by readily available software packages and the significant increase in affordable com-
puter speed and memory capacity. CFD is however not a simple technique to use; generally speaking a 
basic understanding of several subjects like fluid mechanics, numerical analysis and computer software 
programming is required. For groundwater modelling an understanding of hydrogeology is of course 
also needed. In a recent project, ERCOFTAC (Casey and Wintergerste 2000), guidelines for CFD 
simulations are discussed and summarized. Partly based on this report, the following main sources 
of errors and uncertainties in groundwater simulations can be identified:

•	 Mathematical model. The mathematical model does not describe the real flow exactly. For example, 
in textbooks the approximations inherent in the Darcy equation are often analyzed and listed. 
Another often used approximation is that the water is incompressible. 

•	 Discretization. Numerical solutions are performed on a grid in space and time. The difference 
between the solution on this grid and the exact solution of the modelled equations is called the 
discretization error.

•	 Convergence and round-off errors. Typically a CFD simulation involves iterative procedures. 
Convergence errors occur because these iterations are stopped by a certain criteria before they are 
completed. Round-off errors are due to the limited number of digits when a number is stored in 
the computer memory.

•	 Application uncertainties. This includes uncertainties about the geometry of the domain (for 
example a fracture network), boundary conditions, fluid properties, etc.

•	 Code errors. It is difficult to get software “bug-free”.
•	 User errors. These are the errors that result from mistakes or carelessness by the user.

More points could have been listed (errors in postprocessing, interpretation of results, etc) but the list 
given probably gives the most important ones. In this context it may be of interest to refer to the fol-
lowing definitions (from ERCOFTAC):

Error:		  A recognizable deficiency that is not due to lack of knowledge.

Uncertainty:	 A potential deficiency that is due to lack of knowledge.

As the present report will deal with flow and transport in a fractured rock, one should view the points given 
from this perspective. The significance of the different points may still vary depending on the modelling 
approach chosen and the problem studied. Here we mainly concern ourselves with a fracture network, as 
represented in a continuum model. All of the above discussed errors and uncertainties may still be relevant 
to consider and it is not easy, in the author’s view, to neglect (or set priority to) any of the points. For the 
modelling approach chosen it is however expected that the “quality” of a simulation is strongly dependent 
on how well the fracture network is represented in the continuum model. The fracture network is however 
only partly known (geometry, properties, etc) and we therefore need to consider the uncertainty introduced.

The question whether a computer code is credible or not and methods to answer this question are given in 
an issue of the AIAA Journal (1998). Based on the papers presented, Table 5-1 has been created. The table is 
an attempt to illustrate the actions involved in the confidence building process. A few comments to the table.

•	 The order (from top to bottom) is essential. It is not possible to achieve certification without having 
demonstrated verification and validation.

•	 There is a consensus in the literature about the definitions of verification and validation. Additional 
steps and actions in the confidence building are still open to discussion.

•	 Some authors emphasize that it is important to distinguish between confidence building in a com-
puter code and in a specific application. Related to this issue is the concept “fitness for purpose”. It 
is for example of little value to have a very accurate numerical solution if the algorithm is so slow 
that the code is impractical for its intended use.
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Table 5-1. Processes and actions involved in confidence building.

C 
O 
N 
F 
I 
D 
E 
N 
C 
E 
 
B 
U 
I 
L 
D 
I 
N 
G

Process Definition Action

Verification. Demonstrate that the equations 
are solved correctly.

Comparison with analytical solutions 
and other models.

Validation. Demonstrate that the right 
equations are solved.

Comparison with measurements 
(laboratory and field data).

Certification. Assess whether the right things 
are done and whether they are 
done right.

Evaluate software construction and 
working procedures.

More (QA-systems, wide range of applications, publications in international journals, etc).

5.2	 Verification of DarcyTools
The verification cases performed can be found in Report 2 and are summarized in Table 5-2.

All cases tested show “good result”, i.e. the comparison with the corresponding analytical solution, 
or another model study, is satisfactory; the reader is referred to the report to study the details.

A few words may however be needed to explain the objectives when selecting the test cases and the 
way the comparisons have been carried out.

•	 The test cases should include one, two and three dimensional, steady and transient cases.

•	 A wide range of relevant physical processes should be included, i.e. density stratification, 
unsaturated zones, storativity effects, etc.

•	 The representation of fractures in a continuum model is a key feature of DarcyTools and should 
be well covered by the test cases.

Some verification studies described in the literature are focused on grid refinement studies. Here the 
listed objectives have however been considered to be more important with the “fitness for purpose” 
argument in mind.

Table 5-2. Compilation of verification cases.

Group Case Comment

A. Numerical methods A1. One dimensional transient diffusion
A2. One dimensional steady advection/
diffusion
A3. Two-dimensional pressure problem
A4. Test of grid, fractures as objects
A5. Test of grid, cell removal

This group of cases intends to show 
that the numerical methods work as 
expected.

B. Porous media B1. Regional groundwater circulation
B2. Steady groundwater table
B3. Theis problem
B4. Water inflow to a circular tunnel
B5. Specific yield
B6. Transient groundwater table
B7. Water inflow to a grouted tunnel.

This group considers some classical 
hydrogeological test cases.
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Group Case Comment

C. Fractured media C1. Three fractures in a two dimensional 
domain
C2. A multi-fracture fracture zone
C3. Single fracture in a box
C4. Many fractures in a box
C5. Percolation theory
C6. Diffusion in a dead-end fracture
C7. Matrix-fracture temperature problem

This group of cases deals with the rep-
resentation of fractures in a continuum 
model.

D. Transport and dispersion D1. Taylor dispersion
D2. Breakthrough curve, PARTRACK
D3. Breakthrough curve, adv/diff equation
D4. Seven fractures in a 2D domain, 
PARTRACK
D5. Three fractures in a 2D domain, 
PARTRACK
D6. Single fracture in a box, PARTRACK

This group considers transport, reten-
tion, dispersion and particle tracking 
cases.

E. Buoyancy effects E1. Henry’s problem
E2. Two fluid problem 
E3. Coupled temperature- salinity fields
E4. Upconing
E5. The floating island

This group considers comparisons 
where density stratification, due to 
salinity and temperature gradients, 
is a key factor.

5.3	 Validation of DarcyTools
As validation should be concerned with comparisons to measurements and DarcyTools has not yet 
been widely used for real world applications, it is not surprising that rather few such comparisons 
can be reported at this stage. However, as discussed in Chapter 1, it is relevant to include cases 
that were carried out with PHOENICS as the equation solver, as it has been carefully evaluated 
that the two solvers give very similar solutions. Note that the descriptions of the fracture network 
(GEHYCO) and other descriptions of physical processes are in most respects the same in the 
PHOENICS cases to be discussed, as in the present version of DarcyTools.

For simulations of flow and transport in a fractured rock, it is difficult to separate the steps “validation” 
and “calibration”. To discuss this we first need to define “calibration” (following AIAA Journal 1998):

•	 Calibration is the process of tuning a code, in order to improve its prediction of global quantities, 
for realistic geometries, of design interest.

If we require that validation studies should be concerned with comparisons with field measurements, 
we also need to accept that these measurements are obtained in conditions that are to a large extent 
unknown. We do not know the fracture network (its geometry, fracture properties, boundary conditions, 
etc). In the author’s view, we therefore have to accept the following tentative definition of validation:

•	 For the flow and transport in a fractured rock, validation of a simulation can be claimed if 
calibration can be performed with all adjustable parameters within realistic limits.

This definition immediately raises the question “what are realistic limits?”. For major fracture zones 
we may be able to define bounds for properties (thickness, transmissivity, porosity, etc) and these 
bounds then define the “realistic limits”. However, for most applications properties and boundary 
conditions can not be given with error bounds and we have to accept the admittedly weak definition 
given. Flow and transport around a repository introduce a number of special considerations (for a 
discussion, see Cliffe et al. 1998). As one example we may mention the analysis of the impact of an 
inland ice on the performance of a repository. It is not possible to validate a model, by comparisons 
with field data, for such a case; still predictions are needed.

Validation cases are described in Report 2 and summarized in Table 5-3. As can be seen the validation 
cases are taken from calibration studies in various projects. We thus follow the definition of validation 
given above.
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Table 5-3. Compilation of validation cases.

Case Project (Reference) Comments

A site scale validation (Case V1) Impact of the tunnel construction on 
the groundwater system at Äspö. 
Task 5 (Svensson et al. 2002).

Calibration focuses on:
– Groundwater table
– Pressure in boreholes
– Kinematic porosity
– Water composition 
 
Code: PHOENICS

A laboratory scale validation 
(Case V2)

A laboratory scale analysis of ground-
water flow and salinity distribution in 
the Äspö area (Svensson 1999b).

Calibration focuses on:
– Fracture transmissivities
– Pressure in boreholes
– Conductivity distributions 
 
Code: PHOENICS

A repository scale validation 
(Case V3)

Prototype repository. Groundwater 
flow, pressure and salinity distribu-
tions around the Prototype repository. 
Continuum model No1 (Svensson 
2001d).

Calibration focuses on:
– Tunnel inflows (skin)
– Pressure in boreholes
– Conductivity distributions 
 
Code: DarcyTools

An experimental scale validation 
(Case V4)

Simulation of tracer transport 
considering both experimental and 
natural time scales (Svensson and 
Follin 2004).

Calibration focuses on 
– PARTRACK
– Sorbing and non-sorbing tracer 
retention. 
 
Code: DarcyTools

A pump test (Case V5) The Olkiluoto site, Finland.
- Numerical simulations of the pump 
tests in boreholes KR14-KR18 Äspö 
Task Force; Task7B (Svensson 
2010b).

Calibration focuses on
• Pump tests 
• Representation of boreholes in 
a large scale model. 
 
Code: DarcyTools

5.4	 Concluding remarks
It is clear from this chapter that the process of confidence building is complex and involves many 
aspects. The bottom line is if a particular simulation is credible or not. The computer code, and its 
verification and validation, is of course a key factor when credibility is judged, but the user of the code 
is also important. CFD simulations are still far from routine calculations and the modeller normally 
makes a number of decisions when formulating the problem conceptually and mathematically. 
The “credibility of the modeller” is hence also a factor to consider.
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6	 A generic Äspö model

6.1	 Introduction
In the chapter on Confidence Building it was noted that DarcyTools has not been extensively used in 
real world applications. The application to be discussed in this section has similarities with the con-
ditions at Äspö HRL, but is generic in nature; it will hence not add to the validation studies reported. 
Instead the objective is to show some of the features and capabilities of DarcyTools in a realistic, but 
generic, application. The reason for keeping the case generic is that the description of input data and 
results can be brief, as we can not discuss these in relation to field data.

The situation studied is outlined in Figure 6-1. It is a coastal site, with sea water of a brackish nature 
(salinity of 1%). We assume a certain precipitation on land and we hence have a density stratification 
to take into account. Two hills give a certain topography on land. A tunnel, with a certain inflow, will 
be placed below the small island in the experimental volume shown in the figure. The focus of the 
analysis will be on the effects of the tunnel. The situation has a clear resemblance with the Äspö region. 
The fracture system will however be much simpler in this demo, as compared to the detailed informa-
tion available for Äspö HRL. Four major fracture zones, shown in Figure 6-1, are assumed to represent 
the deterministic system. Random fractures will be generated to build a working fracture network.

It should be mentioned that the set-up in DarcyTools will be used as a work example in the User’s 
Guide (Report 3).

6.2	 Problem specification
A summary of the problem specification is given in Table 6-1. It is not the intention to give a complete 
account of the input data; this is considered to be outside the scope (the specification of the fracture 
network would be lengthy, for example). A few comments may be needed as a complement to the 
key features in the table (see also Figure 6-1):

•	 Domains. The site model covers the whole domain, while the laboratory model is located below 
the island. The first of these two grids follows the topography, while the second grid is a cartesian 
box. The experimental model is placed in the laboratory model, enclosing the tunnel area.

•	 Properties. Porosity is specified for each fracture and fracture zone. The diffusion coefficient is 
given a value of ten times the value for molecular diffusion for salt; diffusion is hence insignifi-
cant. Transmissivities, orientations, etc for the random fractures are set according to the values 
found appropriate for Äspö HRL.

•	 Random fractures. When the fracture network for the site domain is generated, random fracture 
in the interval 40 → 1,000 m are generated. Random fractures in the interval 10–40 m are then 
added for the laboratory volume. For the experimental volume random fractures in the interval 
2–10 m are added.

6.3	 Results
Some sample results will be presented for the situation with the tunnel present.

In Figure 6-2 a vertical section showing the salinity field can be found. The salinity fields show the 
typical fresh water lenses below land and the island. The upconing of salt water below the tunnel is 
also worth noting. 

Next we study the conditions around the tunnel, see Figures 6-3 and 6-4. The salinity and pressure 
fields on the surface of the enclosing experimental volume are shown.
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Figure 6-1. Situation considered (top) and deterministic fracture zones
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Figure 6-2. Vertical section through the island. Salinity field (in %) with upconing due to the tunnel. 
Blue colour indicates fresh water.

Table 6-1. Summary of problem specification.

Domains and grids Site: 

Laboratory: 

Experimental: 
 
Tunnel: 

2 × 2 × 1 km3

∆ =32 m

500 × 500 × 400 m3

∆ = 16 m

200 × 100 × 100 m3

∆ = 8 m
∆ = 2 m

Properties – Deterministic zones according to Figure 6-1, 
Transmissivity = 10–5 m2/s

– Random fractures
Site: l = 40 → 1,000 m
Laboratory: l = 00 → 40 m
Experimental: l = 2 → 10 m

– Diffusion coefficients: 10–8 m2/s, constant

Boundary conditions Top: Precipitation on land , 50 mm/year 
Pressure and salinity fixed below sea 
Vertical boundaries: Zero flux at x = 0

 boundary.  
 Prescribed pressure  
 and salinity on other vertical 
 boundaries. Fixed  
 salinity at bottom  
 boundary.

Tunnel : Grouting with a maximum conductivity of 10–8 m/s.
Groundwater table: As part of the simulation the groundwater 
table is calculated. 
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Figure 6-3. Salinity field (in %) around the tunnel.



R-07-38	 45

Figure 6-4. Pressure field (Pa) around the tunnel.

6.4	 Concluding remarks
It has been shown that some features of the Äspö site, like fresh water lenses and upconing, can be 
simulated in a simple generic set-up.
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7	 Illustration of some key concepts

7.1	 Introduction
Several development projects preceded the present report on DarcyTools. A number of fundamental 
issues dealing both with flow and transport in fractured rocks and numerical modelling techniques 
were addressed. It is not possible to include these studies in the present report, but a brief review of 
some key results is within scope. The reason for reviewing these related studies is that they illustrate 
the concepts used and highlight some aspects of DarcyTools that are believed to be essential for a 
groundwater code.

The laboratory model of Äspö HRL, see Chapter 1, will be used for the simulations as we are going 
to illustrate features that are believed to be important in real world applications.

7.2	 Spatial and temporal discretization errors
In this section results that show the magnitude of the discretization errors, that can be expected in 
a real world application, will be presented. As we are interested in general trends and results, the 
estimated magnitudes will be based on the average of ten realizations of the background fracture 
network. This will also give a perspective on the discretization error, as it can be compared to the 
variations due to different realizations.

It was stated in Chapter 3, that the smallest generated fracture size should be of the same size as the 
grid cells, i.e. lmin ≈ ∆. In a grid independence study, it is however preferable to keep all parameters 
the same, except for the studied parameter ∆. For this reason lmin is equal to 3 m when flow rates are 
studied and 10 m in the transport simulations, motives for these values are given below.

Flow and Pressure
As a background to the grid independence study some general characteristics of the fracture network 
will be discussed. It was stated in Chapter 3, that an underlying assumption of the present method 
to represent a fracture network is that “large fractures are more important for the flow rate than 
small ones”. In Table 7-1 some calculations of the mean block, or domain, conductivity in the West to 
East direction are shown. As can be seen the block conductivity does not change a lot if lmin is 5, 10 or 
15 m. In the following lmin will be put to 3 m, which ought to ensure that all fractures important for the 
flow simulation are included. Table 7-1 also shows that the block conductivity changes more when ∆ 
is changed; this aspect will be analyzed in detail below. Table 7-2 shows the block conductivity in 
different realizations for three of the values shown in Table 7-1. Different realizations can clearly result 
in rather different block conductivities. Block conductivities with only the major deterministic defor-
mation zones present are shown in Table 7-3. There is no stochastic element in these simulations and 
there is hence no need for several realisations. Some grid dependence is found for the South to North 
direction, while the two other directions show very little sensitivity to variations in ∆. We may also note 
that, for the West to East direction, the block conductivity is 30–50% of the block conductivity shown 
in Table 7-1. The major deformation zones and the background fracture network thus have about the 
same significance for the flow rate.

The block conductivities in the West to East direction, as a function of ∆, are shown in Figure 7-1. 
Ten realizations of the background fracture network were generated to get the average values shown 
in the figures; lmin was equal to 3 m in all calculations. In the figure two graphs are shown. In the top 
one block conductivity is shown as a function of Ni, the number of cells in the coordinate direction 
studied. This curve shows that the block conductivity approaches a certain value in an asymptotic 
manner; this is the normal behaviour in grid refinement studies. The lower figure shows the same 
data, but expressed as a function of ∆. The advantage of this representation is that it is possible to 
extrapolate the curve to ∆ = 0.0 , and hence get an estimate of the discretization error. At this stage 
we will only note that the error is around 10% (from extrapolation) for the solutions with ∆ = 3 m.
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Table 7-1. Block conductivity for a pressure gradient in the West to East direction, for various lmin 
and ∆.

lmin Conductivity x 10–7 (m/s) for various ∆ (m).
5 10 15 20

5 0.66 0.84 1.00 1.17
10 0.66 0.81 0.97 1.14
15 0.66 0.81 0.97 1.13
20 0.61 0.76 0.93 1.07

Table 7-2. Block conductivity for a pressure gradient in the West to East direction. Ten realiza-
tions based on lmin = 5 metres and various ∆.

Realization Conductivity x 10–7 (m/s) for various ∆ (m).
5 10 20

1 0.76 0.94 1.20
2 0.66 0.83 1.06
3 0.63 0.79 1.04
4 0.57 0.74 1.01
5 0.65 0.78 1.03
6 0.59 0.83 1.18
7 0.56 0.75 1.02
8 0.59 1.06 1.08
9 0.87 0.92 1.36

10 0.71 0.77 1.21

Table 7-3. Block conductivity in the three coordinate directions with only major deterministic 
deformation zones present, for various ∆.

Direction Conductivity x 10–7 (m/s) for various ∆ (m).
3 5 10 15 20

West-East 0.30 0.31 0.31 0.32 0.33
South-North 0.80 0.85 0.98 1.10 1.22
Low-High 4.26 4.22 4.23 4.22 4.26



R-07-38	 49

Figure 7-1. Block conductivity in the West to East direction as a function of the number of cells in the 
coordinate direction (top) and as a function of ∆.
(----------) All fractures included.
(------) Only major fracture zones.

Some illustrations of what happens when ∆ is varied are given in Figures 7-2, and 7-3. In the first 
figure, the flow and pressure distributions for a mean pressure gradient from West to East are shown. 
The general impression from these figures is that a ∆ equal to 3 m resolves the major fracture zones 
(deterministic and stochastic) with high accuracy. For ∆ = 10 m some of the details in the flow 
distribution are lost. One may also note that the pressure distributions are rather similar for ∆ = 3 
and 10 m. Figure 7-3 shows the conductivity fields for ∆ = 3 and 10 m. The smaller ∆ gives a fairly 
detailed picture of the fracture network.
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Figure 7-2. Flow and pressure distribution for a mean pressure gradient from West to East. Pressure 
distribution shown with 20 isolines. ∆ = 3 m (top) and 10 m.
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Figure 7-3. Conductivity fields for ∆ = 3 m (top) and 10 m. All conductivities larger than 10–8 m/s shown.

Transport and Dispersion
Estimating the discretization errors when simulating a tracer pulse that moves through the domain is 
more difficult than the steady state flow rate, as we then have to consider the errors both in space and 
time. In order to simplify the analysis only flow in the West to East direction will be considered. As 
the flow simulations further indicate that ∆ > 10 m produces quite “smeared” solutions, only ∆ = 3,5 
and 10 m will be discussed.

The following situation is studied. In a steady flow field a tracer marks the water at the inlet (Western) 
boundary during a period of one year. After about fifteen years the pulse leaves through the Eastern 
boundary.
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A typical breakthrough curve is shown in Figure 7-4. It is the concentration at the outlet, in fracture 
zone NE1, that is shown in the figure. The tracer will leave the domain through several fractures 
but the maximum flux is expected through NE1. Regarding lmin it was argued in Chapter 3 that a 
good choice is to put it equal to ∆. However in a grid refinement study it is preferable to keep the 
geometry fixed and only vary ∆. For this reason lmin will be put to the largest ∆, i.e. 10 m, in the 
following calculations. 

In the grid refinement study, we will use the maximum concentration at the outlet as a simple descrip-
tion of the breakthrough curve. The main result of the exercise is given in Figure 7-5. The smallest 
time step used, 0.25 months, is seen to be close to the time step independent solution (from an extra
polation). It is also interesting to note that ∆ = 3 and 5 m give very similar results. Hence, with ∆ = 3 m 
and ∆t = 0.25 months, we are probably close to a grid independent (in space and time) solution. The 
time step discussed are of course related to the mean transport time, and hence to the prescribed mean 
head gradient.

In Figure 7-6 the tracer distribution after ten years is shown for two ∆. As can be seen, the main 
characteristics of the plume are quite well described in both grids. The breakthrough curves for the 
smallest time steps used are given in Figure 7-7. Also this figure indicates that ∆ = 3 m resolves the 
transport problem with acceptable accuracy. The main difference between the three curves is the 
arrival time for the peak concentration. This difference is due to the increase in flow rate with ∆, as 
discussed above.

A concluding comment on the discretization errors in the transport simulations shown may be in 
place. The breakthrough curves in Figure 7-7 mainly differs in the arrival times, which can be 
explained by the increase in flow rate with ∆ (as discussed above). The peak value and the shape of 
the breakthrough curves are however very similar. This is a strong indication that the grid representa-
tion of the flow and porosity fields is based on sound principles. The flow field looks quite different 
for ∆ = 3 and 10 m (see Figure 7-2) and the grid representation of the porosity fields is smeared in 
a similar way as the conductivity field (see Figure 7-3). Still the transport problem is solved in a 
similar way in both grids.

Figure 7-4. Breakthrough pulse through NE1 at the outlet boundary. 
∆ = 5 m, ∆t = 1 month.
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Figure 7-5. Maximum concentration in fracture zone NE1 at the outlet plane, as resolved by different ∆ 
and ∆t.
(----------) ∆ = 3 m.
(------) ∆ = 5 m.
(-.-.-.-.) ∆ = 10 m.

Conclusions
The objective of the work presented has been to estimate the discretization error, in space and time, 
in simulations of flow and transport in a realistic fracture network. This has been done for a test 
case with a prescribed mean pressure gradient in a coordinate direction. The block conductivity and 
transport characteristics for such situations have been studied for a range of grid cell sizes, ∆, and 
time steps, ∆t.

From the study the following main conclusions can be formulated:

•	 The space resolution, ∆, should be of the order of 1%, or smaller, of the domain size. For the test 
case studied the error, i.e. the difference between the actual and the estimated grid independent 
solution, in the block conductivity may then be around 10%.

•	 The estimated magnitude of the discretization errors is regarded to be small in comparison to the 
uncertainty in input data (for example transmissivities and porosities).

•	 The minimum fracture size in the background fracture network should be comparable to the grid 
size. This ensures that all important flow channels are resolved and provides a natural link to 
a subgrid model (the subgrid model considers the dispersion effect due to all fractures smaller 
than the grid size).
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Figure 7-6. Tracer distribution (in % of inlet concentration) after ten years. 
∆ = 3 m (top) and ∆ = 10 m.
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7.3	 Porosity and connectivity
In this section we will apply the porosity concepts to the laboratory model of the Äspö HRL.

In Section 3.6, some domain related porosity concepts were defined (θa, θc and θf). θf is the porosity 
based on “all volumes with a significant flow”, i.e. stagnant parts have been removed from θc. As 
outlined in Section 3.8, some calculations are required to identify the stagnant volumes.

A typical sequence of calculations is shown in Table 7-4. For a head gradient of 10–3, it is found that 
disregarding all cells with a maximum absolute cell wall flux of 3×10–11 m/s will result in a decrease 
of the average flux through the domain that is smaller than 1%. Note that the number of stagnant 
cells is not related to the flux value 3×10–11 m/s, as a different head gradient would result in another 
flux value; the 1% reduction limit will however still be valid.

Table 7-4. Determination of stagnant parts of the kinematic porosity field. The ratio Q/Qm, where 
Q is the actual flow rate and Qm the flow rate for θc , is determined for various limits on the 
absolute maximum flow rate through a cell wall, |Vlimit|.

|Vlimit| [m/s] Q/Qm [%]

East-West North-South High-Low

10–10 93.7 96.9 99.0
5×10–11 97.3 98.8 99.5
3×10–11 99.0 99.5 99.7

Figure 7-7. Breakthrough curves for ∆ = 3 m (----------),
5 m (------) and 10 m (-.-.-.-.). ∆t = 0.25 months.
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Table 7-5. Kinematic porosity values based on total volume of domain and on volume of 
active cells.

Case Porosity based on 
total volume

Number of active 
cells (%)

Porosity based on 
volume of active cells

All fractures included 1.19×10–4 70 1.7×10–4

Isolated fractures or 
clusters removed

1.13×10–4 45 2.5×10–4

Stagnant volumes 
and isolated fractures 
removed

1.09×10–4 35 3.1×10–4

In Figure 7-8 three porosity fields are shown; in the top one all generated fractures contribute to the 
porosity field, in the middle one all isolated volumes are disregarded and in the lower one also the 
stagnant volumes have been removed. It is clear that most of the flow is due to a limited number of 
fractures. Table 7-5 gives some further details. It is interesting to note that the porosity based on the 
total volume varies little between the cases listed. The explanation is that the isolated and stagnant 
parts of the porosity field are due to small fractures with low transmissivity and hence also low porosity. 
Figure 7-9 provides support for this explanation. When isolated and stagnant parts are removed 66% 
of all cells have a porosity ≤10–7. 

A visualization of the kinematic porosity (θc) and flow field is shown in Figure 7-10. The porosity 
is illustrated with an isosurface for a value of 3×10–5, while the isosurface for the magnitude of the 
Darcy flux has a value of 3×10–11 m/s (this was the value that identified stagnant volumes). The flow 
direction is from west to east.

7.4	 Gravitational effects
At the Äspö HRL old water types (like Glacial water) have been found already at a depth of a few 
hundred metres. As discussed earlier, it is possible to explain the storage of water by a slow exchange 
with the storage volumes. Gravitational effects may however also contribute to the isolation of a water 
volume; salt water in the bottom of a fracture is not easily replaced by fresh water. In this test it will 
be demonstrated that water can be stored for long periods even without storage volumes.

A qualitative study of the gravitational effects will be carried out. As in the previous case we specify 
a pressure gradient in the west to east direction. The inflow and outflow sections are however 
now limited to a 10 m high horizontal band at a depth of 380 m. The initial salinity in the domain is 
zero, while the inflowing water has a salinity that varies in time, according to Figure 7-11. The total 
simulation time is 10,000 years. What one can expect is that the salt water will replace the water in 
the lower half of the domain, while some water with zero salinity may remain (note that the inflowing 
water always has a salinity > 0%) in the upper half of the domain.

The result after 10,000 years of simulation can be studied in Figure 7-11. The two vertical sections 
show the result with (top) and without gravity activated. Obviously gravity is a very important factor 
when storage of old water types is to be analyzed.

A comment may be needed on the “horizontal band of 10 m” giving the inflow and outflow boundaries. 
The salinity of the inflowing water is intended to illustrate different stages, with different salinities, 
of the Baltic Sea. In the present model set-up we do not simulate the contact with the Baltic Sea, as 
the top of the model domain is at a depth of 200 m, and we are thus forced to specify “unrealistic” 
boundary conditions. It should however be noted that the purpose of the simulation is to illustrate 
the effect of density variations, in a qualitative way.



R-07-38	 57

Figure 7-8. Kinematic porosity fields at a depth of 450 m, based on all generated fractures (top), all 
connected fractures (middle) and all connected fractures disregarding stagnant volumes. All cells with 
a porosity >0 are marked black.
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Figure 7-9. Porosity distribution in the computational grid. Number of cells with different kinematic porosity 
shown for the case where all generated fractures are kept (top), isolated fractures removed (middle) and 
isolated fractures and stagnant volumes removed.
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Figure 7-10. Illustration of porosity (top) and flow fields. Depth interval shown is 400 to 500 m below 
ground level. The flow is from West to East. View from South. The figures are isosurfaces (surfaces of equal 
value) of porosity and absolute flow magnitude. Colour has no significance.
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Figure 7-11. Effect of gravity. Vertical sections of salinity (in %) field after 10,000 years of simulation with 
(top) and without gravity activated (middle). Salinity of inflowing water as a function of time (bottom).
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7.5	 PARTRACK
Transport simulations can be based on two principally different methods, solving an advection/
diffusion equation for the solute or tracking particles. In DarcyTools both methods are used. It is of 
course of value to base both methods on the same concepts and assumptions concerning the subgrid 
processes.

The particle tracking routine PARTRACK is described and tested in Svensson (2001a). That version 
was however based on a lognormal distribution of rate coefficients. FRAME, as described in this 
report, is based on power-law distributions, which are preferred as the general fracture network is 
based on such distributions. 

As part of the general development of FRAME, a power-law distribution has also been introduced in 
PARTRACK. The objective of this section is to show some sample results that demonstrate that this 
has been achieved.

As PARTRACK is now based on FRAME, it will also use the same input parameters. For the results 
to be presented the following was specified: βt = 10, k = 1.8 and De = 10–10 m2/s (constant for the 
applications presented).

A one-dimensional channel with a steady state flow, with uniform velocity, is used. The length of the 
channel is 10 m and the transport velocity 10–4 m/s. This gives an advective transport time of 105 s 
(» 28 hours). The concentration at the outlet as a function of time, i.e. the breakthrough curve (BTC), 
is used to illustrate the results.

In Figure 7-12, three BTC:s are shown. If no dispersion effects are active, all particles will arrive 
after about 27 hours. If Taylor dispersion is added an insignificant dispersion will result for Dm 
= 10–10 m2/s. Decreasing Dm to 10–12 m2/s gives some dispersion as can be seen in Figure 7-12. If 
FRAME is added, the BTC will be significantly modified as can be expected.

Figure 7-12. BTC:s in a one-dimensional channel.
---------- No dispersion.
......... Taylor dispersion added (Dm = 10–12 m2/s).
------- FRAME and Taylor dispersion added.
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Next we use the laboratory model in order to show a real world application. In the West to East flow 
considered, particles are released in fracture zone EW1, see Figure 1-1, and then tracked through 
the domain till they reach the eastern boundary. Figure 7-13 shows the flow paths generated by 100 
particles. The main flow path is through EW1, changing to the NNW structures and leaving through 
NE1. Note that in this view from above, NE1 gives a wider impression, as this zone is not vertical. 
It is also worth noting that rather few flow paths are active in the transport.

The only objective of these simulations is to show some introductory simulations from PARTRACK 
and the subgrid model FRAME. More sensitivity studies and applications will be presented elsewhere. 
Verification and Validation studies are also found in Report 2.

7.6	 Conclusions
The key feature of the GEHYCO method is that properties (conductivity, flow wetted surface and 
kinematic porosity) are defined for conductive elements that form a fracture network. The specific 
results from the present study can be summarized as follows:

•	 the fracture network generates a connected system of pore-space that we define as the kinematic 
porosity. Part of this porosity is defined as stagnant volumes, based on a flow criterion,

•	 storage volumes are representing fractures smaller than the minimum fracture size in the network 
and all other volumes that exchange matter with the kinematic volumes by molecular diffusion 
only. Computationally storage volumes are simulated by the model FRAME,

•	 simple test cases, generic studies and applications to the Äspö HRL demonstrate that the concepts 
are useful and easily employed in numerical models of the continuum type.

Figure 7-13. Flow channels formed by 100 particle tracks in a flow field with gradient from West to East. 
Blue indicates high intensity of tracks, red low.
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8	 Discussion

Even if the main part of this report is, intentionally, short it may be difficult to “put the pieces together” 
and get a good grasp of DarcyTools. We will therefore use the discussion section to summarize the 
key features of DarcyTools and also to give a hint about possible future developments.

Key features:

•	 Mathematical model. DarcyTools is based on conservation laws (mass, heat, momentum and 
mass fractions) and state laws (density, porosity, etc.). The subgrid model utilizes the multi-rate 
diffusion concept and the fracture network (resolved and subgrid) is based on fractal scaling laws.

•	 Unstructured grid. DarcyTools is based on a Cartesian unstructured grid, which offers great 
flexibility in description of geometries.

•	 Continuum model. Even if a fracture network forms the basis of the approach, DarcyTools 
should be classified as a continuum porous-medium (CPM) model.

•	 Fractures and fracture network. Fractures and deformation zones are idealised as conductive 
elements, to which properties (conductivity, porosity, flow wetted surface, etc.) are ascribed. 
Empirical laws are used for the determination of these properties. The fracture network is based 
on fractal scaling laws and statistical distributions (random in space, Fisher distribution for 
orientation, etc).

•	 GEHYCO. This is the algorithm, based on the intersecting volume concept that transforms the 
fracture network (with properties of conductive elements) to grid cell properties.

•	 FRAME. Subgrid processes are parameterized as “diffusive exchange with immobile zones”. 
FRAME uses the multi-rate diffusion model and fractal scaling laws, to formulate a simple and 
effective subgrid model.

•	 SOLVE. When the continuum model is generated, effective CFD-methods are used to solve 
the resulting finite-volume equations. DarcyTools uses the MIGAL-solver, which is a multigrid 
solver with the capability to solve coupled problems (like pressure and salinity) in a fully coupled 
way. A parallel option takes advantage of multi-core processors.

•	 PARTRACK. This particle tracking algorithm is fully integrated with DarcyTools and uses the 
same basic concepts as FRAME. PARTRACK can handle Taylor dispersion, sorption and matrix 
diffusion simultaneously in large 3D grids (> 106 cells).

•	 Verification and Validation. A set of verification and validation studies is presented (see Report 2). 
This is considered to be an essential feature of the code.

Future versions
It is expected that Version 3.4 will last for several years to come. Detailed improvements will most 
certainly be done, motivating future releases, as experiences from applications are gathered. It is also 
expected that technical developments (hardware, numerical techniques, etc) will be implemented.

The present view is that Version 4.0 will include a Navier-Stokes solver. This feature will open new 
possibilities to simulate, for example, flow and transport inside a fracture.
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9	 Conclusion

The main objective of this report is to provide the theoretical basis of DarcyTools. The main part of 
the report is written in a descriptive style, with the intention that also non-specialists in groundwater 
modelling may find it accessible. More detailed accounts of various topics are provided in appendices. 

It is the ambition to establish DarcyTools as a state of the art computer code for simulation of flow 
and transport in fractured and/or porous media. Many novel and powerful features have been intro-
duced. These features have been verified and also been shown to be “fit for purpose” considering 
the applications at hand.
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Appendix A

Numerical Methods

A.1	 Introduction
DarcyTools computes fracture network flows using a continuum model in which the mass conservation 
Equation A-1 is associated to several mass fraction transport Equations A-2 for the salinity and/or 
particle mass concentrations, and to a heat transport Equation A-3. In relations (1), (2) and (3) ρ, u, 
v, w, T and C represent respectively the fluid density, the velocity components, the temperature and 
the mass fraction of the transported quantity. Q, Qc and QT are source terms per unit volume of fluid 
mass (i.e. injection-withdrawal), of mass of transported quantity (e.g. local exchanges with the rock) 
and of heat (i.e. enthalpy). 
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Dx, Dy and Dz are the normal terms of the diffusion-dispersion tensor. λx, λy and λz are the normal 
terms of the equivalent (i.e. rock with fluid) thermal conductivity tensor, c is the rock thermal capacity 
and cp the specific heat of the fluid. 

The mass conservation equation is turned into a pressure equation under the well known Darcy’s 
assumption (Equation A-4).
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where Kx, Ky and Kz are the local hydraulic conductivities in x, y and z direction, g the gravity 
acceleration, ρ0 a reference fluid density (8) and P the dynamic fluid pressure relative to the reference 
hydrostatic pressure.

P = p + ρ0g z									         (A-5)

The hydraulic conductivities K are related to the permeability k field through relation (6):

µ
ρgkK = 									         (A-6)
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The fluid property like the dynamic viscosity μ, the density ρ and the specific heat cp are given by 
state laws:

μ = μ0[1 + a1S + a2S2 + b1(T–Tμ) + b2(T–Tμ)2]nμ					     (A-7)

ρ = ρ0[1 + a1S + a2S2 – β1(T–Tρ) – β2(T–Tρ) 2]					     (A-8)

cp = cp0 (1 + c1S + c2S2)								        (A-9)

while the porosity θ and the compaction of the matrix γ are provided with the following dependencies:

θ = θ0 γ									         	 (A-10)

γ = 1 + (σ/θ0)(P–Pref)/ρg								        (A-11)

In the above formulas S represents the salinity (salt mass fraction), θ0 a reference porosity field given 
for a reference pressure field Pref, σ the specific storativity field. nμ, ai, bi, ci, αi, βI, μ0, ρ0, cp0, Tμ, and 
Tρ are constants.

A.1.1	 Finite Volume Integration
The finite volume method integrates Equations A-1, A-2 and A-3 over the faces of a finite number of 
control volumes by converting volume integrals into surface integrals using Ostrogradsky’s theorem:
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)( 							       (A-12)

So that, according to the Mean Value Theorem:
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where, Ai and ni are respectively the area and the outside-normal of the cell face named i and where 
the field value Fi is evaluated at face center. 

Figure A-1. Unstructured Cartesian control volumes, faces and normals.
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A.1.2	 Grid arrangement
Among the common grid arrangements, DarcyTools uses the “node-centered” arrangement in which 
the pressure and the scalar variables (mass fractions) are located at center of grid cells. The main 
advantage of this formulation is in the fact that control volumes coincide with grid cells and that cell 
vertexes are directly defined by grid nodes.  

The main drawback is in the fact that, for non-uniform meshes, the faces of control volumes may 
not be located mid-way between variable locations or may not be orthogonal to the line joining cell 
centers. More sophisticated interpolations are therefore necessary to get a second order discretisation 
of convective and diffusive fluxes. 

A.1.3	 Stability 
The strength of the finite volume integration is its conservative formulation for which any flux 
getting out from a control volume is automatically entering the neighboring volume. Nevertheless 
this strength may be a drawback when considering the convergence process. Given a bounded 
conservative scheme, the convective term interpolation for an east cell face can be written:
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.)1(.. ρφαφαρφ −+==  					     (A-14)

where the value of αe depends on u to ensure the monotony and remains in the interval [0,1] to 
ensure the boundess of the scheme. The subscripts e, E, and P indicate respectively the east face 
value, the east variable and the center variable. 

Therefore, for the convective term of the transport Equation A-2, by applying relation (14) for the 
integrals of relation (12) leads to the following algebraic relation:
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Because of Equation A-1 and for stationary problem with no internal mass source term, relation (15) 
apparently leads to a central coefficient (applied to fP) equal to the opposite sum of neighboring 
coefficients. This property, even if not necessary, is highly desirable for stability. Unfortunately, 
during the convergence process, relation (1) may be temporarily highly unsatisfied. Hence, in spite 
of the bounded form Equation A-14 the discretisation of the transport equation from Equation A-2 
may become unstable. For this reason, DarcyTools substitutes the source term CQ of Equation A-2 
by its evaluation from relation (1) and finally solves Equations A-16 and A-17 instead of 
Equations A-2 and A-3.

Variable location  

Control volume 

Boundary 

Velocity  

Figure A-2. Node-centered arrangement labeling.

P E W 

e w 
 
Figure A-3. East-West stencil labeling.
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The main advantage of this technique is to ensure a central coefficient always equal to the opposite 
sum of neighboring coefficients. A second advantage is that the source terms (CQ and cpQT) due 
to fluid mass source disappears from relation (16) and (17). This simplifies the implementation of 
boundary conditions since the internal mass source terms have to be specified only once: for the 
mass conservation Equation A-1. In return, the mass fractions C must be specified where the fluid 
mass source Q is positive (no necessary condition when Q<0). It should also be noted that, for time 
varying density or porosity, the time derivative term lost its conservative form.

A.1.4	 Spatial scheme 
Also for stability reason, the fluxes discretisation in space must involved both convective and diffusive 
terms in order to produce positive coefficients. Then, considering the face f separating two control 
volumes I and J, 

DarcyTools uses the hybrid scheme to express the fluxes as:

Ff = cφf –dφ,xf = a–φP(i) –a+φE(i) = a+φP(j) –a–φW(j)					     (A-18)
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with the faces values linearly interpolated as:
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Figure A-4. East-West face flux labeling.
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A.2	 Time derivative
To ensure the precision of time dependent simulations, DarcyTools implements two different implicit 
time schemes. The default one is the Euler first order implicit scheme given by:
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The alternative is a second order implicit scheme that differentiates a parabola forced through solu-
tions at three non-equally spaced time levels:
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where ∆t1 and ∆t2 represent respectively the time steps tn-tn-1 and tn-1-tn-2. 

A.2.1	 Algebraic Set of Equations
After the discretisation step, Equation A-1 as well as all the Equations A-16 can be written with the 
general algebraic form:

φφφ Saa
nb

nbnbPp += ∑ 								         (A-23)

where ap and anb are positive coefficients and where ap, because of the transient term, is greater than 
the sum of the neighboring coefficients anb. Whenever it is possible, if the source term operator Sf 
depends on the solution field f DarcyTools increases the diagonal dominance of the operator by 
rewriting it as follows:

Sφ = Qsrc – Qphi φP  with  Qphi > 0						      (A-24)

and by including Qphi into the central coefficient.

( ) src
nb

nbnbPphip QaQa +=+ ∑ φφ 							      (A-25)

This linearization of the operator source term is also a practical way for users to fix different kind of 
boundary conditions. For example, setting a BIG value in Qphi and a BIGxVAL value in Qsrc becomes 
equivalent to the Dirichlet boundary condition: f=VAL. Setting Qsrc to VQ and Qphi to zero is also the 
easiest way to specify an inlet fluid mass flux in the pressure Equation A-1. When an inlet fluid mass 
is set (Q>0) it can also be of interest to specify only the inlet salinity instead of fixing the mean cell 
value by a Dirichlet condition. In that case the implicit input must be removed by setting Qphi to VQ 
and the effective input forced by setting Qsrc to VQSin.

A.3	 Discretisation
With structured grids, local refinements may drastically increase the total number of cells by propa
gating cell size reductions until boundaries. To avoid this generation of useless cells in regions of 
poor interest, DarcyTools uses adaptive Cartesian grids. Starting with a single cell that covers the 
entire domain, the grid generator successively splits cells requiring refinement in two half children 
cells and repeats this procedure for each direction until the cell size or the total number of cells 
reaches threshold values. 

Figure A-5. Structured vs unstructured grids.
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A.3.1	 Grid geometry
To minimize the storage required for grid node coordinates, the cell size and origin location are 
represented by 4 bytes and 1 byte integers. 

type T_CELL

integer(4) :: ix = 0

integer(4) :: iy = 0

integer(4) :: iz = 0

integer(1) :: lx = 0

integer(1) :: ly = 0

integer(1) :: lz = 0

integer(2) :: mk = 0

end type

So that cell minimum and maximum coordinates are given by:

x0 = xor + dxmin * ix

y0 = yor + dymin * iy

z0 = zor + dzmin * iz

x1 = xor + dxmin * (ix + 2**lx)

y1 = yor + dymin * (iy + 2**ly)

z1 = zor + dzmin * (iz + 2**lz)

with

dxmin = xspan * 2**(-lm)

dymin = yspan * 2**(-lm)

dzmin = zspan * 2**(-lm)

xor, yor and zor represents the origin coordinates of the domain and xspan, yspan and zspan the size 
of the domain in x, y and z direction. ix, iy and iz are the position indices of the cell, lx, ly and lz are 
the coarsening levels and lm the maximum allowed coarsening level. The 2 bytes integer attribute 
mk is a marker used to transfer the cell properties from the grid generator to the solver.

Though cell information could be stored in an octree data structure, DarcyTools implements a fully 
unstructured data structure for performance and flexibility reasons. Hence, the cells information is 
stored in a T_CELL array and the connectivity in three T_FACE arrays corresponding to x, y and z 
faces. Each face contains only two 4 bytes integer values named low and high. These values are the 
indices of the cells located respectively on the low and high side of the face (e.g. west and east side 
of an x face). 

type T_FACE

integer(4) :: low = 0

integer(4) :: high = 0

end type

A high or low null value indicates that the face is located on the domain boundary. Strictly negative 
values mean that the face is located on a removed zone boundary whose marker corresponds to the 
value.

Figure A-6. Face between unequal sized cells.
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Then, accordingly to relation (13), DarcyTools integrates the divergence term of the continuity and 
the conservation equations by traversing the faces arrays and by adding the flux contributions to each 
discrete equation (i.e. to each control volume balance). Since the size of the two linked cells (low and 
high) may differ due to the local refinement capability, the area of the face involved in the flux evalua-
tion is given by the smallest cell.

Ax = dymin * dzmin * 2**(min(lylow,lyhigh)+min(lzlow,lzhigh))

Ay = dxmin * dzmin * 2**(min(lxlow,lxhigh)+min(lzlow,lzhigh))

Az = dxmin * dymin * 2**(min(lxlow,lxhigh)+min(lylow,lyhigh))

A.4	 Governing equations
The governing equations become:
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where the only additional source term is given by:
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the mass fluxes by:
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and the normal partial derivatives by:
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In relations (26) to (31), the subscripts i, j and k are relative to the x, y and z faces of the given control 
volume and the di, dj and dk values are +1 when the faces are east, north or high and –1 otherwise. 
In relation (31) xC, yC and zC represent the coordinates of the cell center of the high and low cells 
of the given face.

A.5	 Operator format
The DarcyTools unstructured format for the operator (A) is as follows: Given N the number of cells 
and LEN the number of non-zero Aij coefficients MIGAL data structure consists of three arrays:

1-	 A real array A containing the real values Aij. The first N positions in A contain the diagonal 
elements Aii of the matrix, in order. Starting from position N+1 and up to LEN, the non-zero 
elements of A, excluding its diagonal elements, are stored row-wise.

2-	 An integer array JA containing the column indices of the element Aij as stored in the array A, 
including its diagonal. The length of JA is LEN.

3-	 An integer array LA containing the pointers to the beginning of each row in the arrays A and JA. 
The length of LA is N+1 with LA(N+1) containing the number LEN+1 i.e. the address in A and 
JA of the beginning of a fictitious row N+1. Since the first N values of A contains the diagonal 
LA(1) contains the number N+1.

Following this format, the product P=A.X can be computed by:

N=LA(1)-1

DO I=1,N

 P(I) = A(I)*X(I)

 DO L=LA(I),LA(I+1)-1

 P(I) = P(I) + A(L) * X(JA(L))

 ENDDO

ENDDO

When the operator couples nbv variables, each Aij coefficient becomes a (nbv,nbv) block instead of 
being a single real value. However, the connectivity arrays LA and JA remain identical. Each block 
is stored in the natural fortran order A(IV,JV,L) where IV and JV represent the variable indexes and L 
the matrix index. For a block operator the product P=A.X can be computed by: 

N=LA(1)-1

DO I=1,N

 DO IV=1,NBV

  P(IV,I) = A(IV,1,I)*X(1,I)

  DO JV=2,NBV

   P(IV,I) = P(IV,I) + A(IV,JV,I)*X(JV,I)

  ENDDO

  DO L=LA(I),LA(I+1)-1

   DO JV=1,NBV

    P(IV,I) = P(IV,I) + A(IV,JV,L) * X(JV,JA(L))

   ENDDO

  ENDDO

 ENDDO

ENDDO
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A.6	 MIGAL solver
DarcyTools uses the MIGAL algebraic multi-grid solver to solve the successive algebraic sets of 
equations resulting from discretisation. This use sums up in a single call to the routine MIGAL. 

A.6.1	 The basics
The set of linear Equations A-23 or resulting of the discretisation of the continuity and the transport 
equations can be expressed as:

A x = S										          (A-32)

where A represents the matrix of coefficients, x the variables array and S the right hand side vector of 
source terms. 

They are several well-established iterative schemes to solve this set of linear equations. These include 
Jacobi, Gauss-Seidel, incomplete LU factorization, etc. But, each of them has a rate of convergence 
depending on the condition number of the matrix A. Hence, as the number of cells will increase, and 
because of the elliptic nature of the diffusion operator contained in the equation, the condition number 
of the matrix will increase and the rate of convergence will deteriorate. Further, a characteristic of 
all these iterative schemes is that the initial rate of convergence is rapid for the first iterations, and 
deteriorates as the iterations progress. It can be shown that the cause of this slow convergence is 
primarily the sluggish rate of convergence of the low frequency errors that are present in the solution. 
As the grid refined, these low frequency errors dominate the overall rate of convergence.

Hence, the concept of the multi-grid technique as implemented by MIGAL is as follows. Given the 
fact that the low frequencies converge slowly, it is possible to accelerate their rate of convergence 
by making them behave as high frequencies on coarser grids. For this, the basic principle consists 
in working on a subset of the fine grid points (e.g. keeping only odd or even nodes) to reduce the 
number of points and automatically raise the error signal frequency in the transformed grid space 
(see Figure A-7).

MIGAL proceeds as follows. Consider that we initiate a solution on a given fine grid. A few iterations 
are then performed on this fine grid to obtain an estimation xF. For these iterations, the convergence 
is usually fast. 

xF =Ã–1S										         (A-33)

The notation (~) means Ã–1 is not the inverse of matrix A but only an approximate (e.g. few relaxations 
of an iterative solver). Subsequently, the convergence begins to worsen so that the calculations are 
switches to a coarser grid with the aim of improving the fine grid estimation xF at lower cost. For that, 
the residuals and the corresponding defect correction operator are formed on the fine grid and inter
polated (“restricted”) to the next coarse grid by:

R A δxF = R (S–AxF)								        (A-34)

where the restriction operator R (e.g. pure injection) is a (NIc x NIF) matrix that shorten the dimension 
of the right hand side from NIF to NIc.

Figure A-7. Fine to coarse grid error frequency mutation.
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At this point a second operator is introduced to shorten the left hand side of the operator. It is done 
by changing the fine grid correction variable dxF for a coarse grid variable named dxc so that the former 
can be interpolated (“prolongated”) from the latter by:

δxF = P δxc									         (A-35)

where the prolongation operator P (e.g. linear interpolation) is a (NIF x NIc) matrix that reduces 
the coarse grid operator size to (NIc x NIc)

(R A P) δxc = R (S – AxF)								       (A-36)

Once the coarse grid operator (RAP) is formed, a few iterations are performed to obtain dxc to 
the required accuracy and the fine grid correction is retrieved using Equation A-35. 

Of course, since the error spectrum contains a wide range of frequencies, it is necessary to consider 
a number of coarse grids and to successively build the coarse operator of the coarse operators. On 
the coarsest grid, which must be a small grid, a direct solver can be used or, like with MIGAL, the 
necessary number of iterations can be performed. Finally the manner in which the grids are visited 
can vary. 

In the simplest case, called V-cycle, each grid is visited in turn on the downward and upward legs of 
a V-cycle. On each grid a number of iterations are performed and the next grid is visited. With the 
W-cycle, each grid is visited in turn on the downward leg of the a W-cycle, then after that the cor-
rection is prolongated by one level, the error is again restricted to the lower level and the correction 
prolongated up to the next upper level (see Figure A-10). The iterations can be done during both the 
restriction part of the cycle (downward limb) and during the prolongation part (upward limb).

Figure A-9. Linear prolongation.

Figure A-10. V and W multi-grid cycles.

Figure A-8. Pure injection restriction. 
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A.7	 GMRES acceleration
The emphasis of basic multi-grid procedures is to improve the performance of the classical iterative 
solver (smoother) by adapting the operator to their intrinsic capabilities. This technique encounters 
some limits when the coefficients are highly anisotropic and when the mesh aspect ratios are quite large 
but the ILU0 smoother of MIGAL has demonstrated to be robust enough in many 3D applications. 
The main difficulty of the flows processed by DarcyTools comes from the sharp spatial variations of 
the coefficients that couple the high and low frequencies error components during the restriction/
prolongation procedure and finally deteriorate the overall performance. To fight this wavelength 
coupling problem DarcyTools may use MIGAL as a GMRES preconditioner. 

The GMRES method is a projection method based that consists in finding the optimal solution of 
the system (32) that belongs to the m-th Krylov subspace Km.

Km = span {r0, AM–1r0, [AM–1]2r0,...,[AM–1]m–1r0}					     (A-37)

where r0 is the initial residual of (32) and where M–1 is a right preconditioning matrix whose function 
is to lower the condition number of the algebraic set of equations. 

AM–1u = S,  u = Mx								        (A-38)

For a given dimension m, the MIGAL-GMRES algorithm involves an Arnoldi loop that constructs 
an orthogonal basis of the right-preconditioned Krylov subspace by a modified Gram-Schmidt process, 
in which the new vector to be orthogonalized is obtained from the previous vector of the process. 

The preconditioning matrix is only involved in the z=M–1v products and does not need to be explicitly 
formulated. Instead, since relation (38) shows that M=A is the best preconditioning choice, some 
multi-grid cycles of MIGAL are advantageously used to compute an approximated value of z as 
being the solution of Az=v. 

The drawback is that, since M now changes for each vector z depending on the convergence of MIGAL, 
it is necessary to store the orthogonal basis Zm to retrieve the solution xm. Therefore, since reaching 
an expected level of accuracy usually involves large sub-spaces, the method may become impractical 
because of large memory and computational requirements. For this reason MIGAL use a restarted 
GMRES procedure (step 4. Figure A-1) which limits the Krylov-subspace basis to a given size and 
iterates the initial estimation x0.

Figure A-11. MIGAL-GMRES algorithm.

1. Start: Choose x0 and a dimension m of the Krylov subspaces and initialize 

a (m+1) x m matrix H  to zero 

2. Arnoldi process: 

• Compute r0=S-Ax0, b=||r0|| and v1 = r0/b 

• For j=1,…,m 

- Compute zj =M-1 vj 

- Compute w = A zj 

- For i=1,…,j 

Hi,j = (w,vi) 

w = w – Hi,j vi 

- Compute hj+1,j = ||w|| and vj+1 = w/Hj+1,j 

• Define Zm = [z1,…,zm] 

3. From the approximate solution: Compute xm = x0 + Zm ym where 

ym=argminy||be1 – Hy|| and e1=[1,0,…,0]T 
4. Restart: if satisfied stop, else set x0 = xm and goto 2. 
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MIGAL preconditions the Krylov subspace by one multi-grid cycle. To increase this number 
of preconditioning cycles users may specify the parameter IPRECO in the MIGAL parameters 
list. For particularly difficult problems it is possible, on coarse grid levels, to replace the ILU(0) 
smoother by a GMRES ILU(0) preconditioned smoother. For this users have to stipulate the size of 
the desired Krylov subspace by setting the parameter IGMS to any non-zero value. The coarse grid 
smoother then becomes a GMRES solver right-preconditioned by NBPRER or NBRELAX ILU(0) 
relaxations depending of the limb of the multi-grid cycle actually performed. For flexibility, the 
IGMS parameter may be set independently of IGMRES, i.e. that MIGAL can implement different 
combinations of the multi-grid and GMRES algorithms.

A.8	 Agglomeration algorithm 
With unstructured meshes, MIGAL uses an agglomeration method for automatic grid coarsening. 
The idea of the agglomeration method is to fuse together or agglomerate neighbouring fine grid 
control volumes, creating a smaller set of larger control volumes or “blocks”. This process can be 
performed recursively, as shown in Figure A-13, thus generating an entire sequence of coarse meshes. 

In fact, agglomeration multi-grid can be viewed as a graph algorithm, similar to algebraic multi-grid 
methods, where “seed” cell initiating an agglomerated block corresponds to a coarse grid point and 
the neighboring agglomerated points correspond to fine grid points, in the algebraic multi-grid termino
logy. In the same ways that semi-coarsening algebraic multi-grid, the agglomeration multi- grid method 
can employ a weighted graph to fit its coarsening strategy to its smoother anisotropic capabilities. 
The underlying aim of these weights is to select first the error components poorly damped by the 
relaxation scheme on the finer grid. 

MIGAL uses four parameters to control the agglomeration of the control volumes, nbmin, nbmax, 
ilink and alpha. The two former are respectively the minimum and maximum number of fine cells 
to group together in one coarse block. The two latter are the kind of linking criterion to apply and 
the relative threshold of this criterion. The overall algorithm proceeds as follows:

1.	 Select a seed cell among cells (free cells) which have not yet been assigned to a block. Start a 
new block agglomeration.

2.	 Build a list (front) with the free neighboring cells of the seed cell which satisfy the agglomeration 
criterion.

3.	 If the front is empty but the seed cell satisfies the agglomeration criterion with a cell of a neigh
boring block, and if the size of this block is lower than nbmax, then assign the seed cell to the 
block and return to step 1.

Figure A-12. Multi-grid/GMRES possible combinations. (*)=default

SOLVER NBGRID IGMRES IPRECO IGMS 

ILU(0) 1 0 - 0 

GMRES not-preconditioned 1 n 0 0 

GMRES ILU(0) preconditioned 1 n n 0 

Multi-grid[ILU(0)]* n 0 - 0 

GMRES multi-grid[ILU(0)] preconditioned n n n 0 

Multi-grid[GMRES-ILU(0) preconditioned] n 0 - n 

GMRES multi-grid[GMRES-ILU(0) preconditioned] 
preconditioned 

n n n n 
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4.	 Assign front cells to the current block unless its size reaches nbmax and propagate the front to 
the free neighboring cells satisfying the agglomeration criterion. 

5.	 Perform an accretion step in order to make blocks as “rounded” as possible, rather than extended 
with connections to many other blocks. The accretion step adds to the current block those cells 
having two or more strong (as defined in step 2 above) connections to the block. Repeat this step 
until nbmax is reached or no more cells can be agglomerated this way.

6.	 If the total number of cells of the block is lower than nbmin, then repeat steps 4 and 5 until at 
least nbmin is reached.

Nbmin and nbmax default values are respectively the mean number of neighbors per cell and four 
times nbmin. For the few cases that would not perform well with this initial setting, reducing the 
minimum block size may improve the rate of convergence. For instance nbmin=3 may be used for 
3D isotropic cases in order get closer of the performance of the structured multi-grid solver.

Figure A-13. Single fracture case.
Porosity, Original fine mesh and agglomerated levels (ilink=2, α=0.75).
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A.9	 Coarsening criterion 
The coarsening algorithm should be able to handle arbitrary anisotropic meshes, but should also be 
able to reproduce structured-mesh semi-coarsening patterns for uniformly anisotropic problems on 
structured meshes. A simple-minded technique for graph-weighted coarsening would be to agglomerate 
the neighboring free cell which has the strongest connection to the current seed cell. The difficulty with 
this approach is that in regions where the anisotropic character is weak, the algorithm does not revert 
to the multi-directional coarsening strategy of the original algorithm. A more sophisticated approach is 
to pre-compute the maximum and/or the mean connection strength for each cell, and then agglomerate 
the free neighboring cell j to a block cell i only if:
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Where nbi and nbj represent the number of connections of cells i and j, and α is a relative threshold 
which determines the degree of anisotropic coarsening. For α=0 unweighted coarsening is recovered, 
while when α=1 coarsening occurs only along stronger connections. MIGAL default values are 
ilink=0 and α=0.75 which reproduce directional coarsening in regions of strong anisotropies, and 
full or unweighted coarsening elsewhere. 

Nevertheless, the choice of the coarsening criterion often depends on the relation between anisotropy 
and boundary conditions, and a user control is sometimes preferable. For example the AND rather 
and OR criterion alternative should be preferred for domain made of materials having very different 
conductivities see Figure A-14. In such a case ilink=2 or ilink=3 will clearly separate materials 
during coarsening while ilink=0 or ilink=1 allows agglomeration of heterogeneous cells.

It is important to note that, unlike coarsening criteria 0 and 1, the coarsening criteria 2 or 3 may lead 
to cells without strongly linked neighbor when 0<α. Hence during the recursive generation of coarse 
grid operators, MIGAL uses an extra parameter (ratio) to stop coarsening when the number of cells 
is not decreased by, at least, a factor of ratio:1. The default setting is ratio=1.5. It avoids the use of 
unnecessary coarse grids and, by limiting the total number of cells, decreases the overall CPU time 
per cycle.
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Figure A-14. Strong anisotropy case.
Porosity, Original fine mesh and agglomerated levels (ilink=2, a=0.75).
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Appendix B

Some aspects of using the multirate model with a power law 
distribution of rates
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Appendix C

A numerical method for generating a two-dimensional set of 
random numbers with a certain multivariate normal distribution

by Hans-Olof Kuylenstierna, 1994-06-15.
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C.1	 Introduction
This report describes a numerical method for generating a two-dimensional set of random numbers 
with a multivariate normal distribution characterized by a certain covariance structure.

A reader who only wants to learn the numerical method and the character of the random numbers 
that can be calculated using it can read Chapters C.1–C.8 straight through and skip the appendices. 
A reader who is also interested in derivations should read the entire report, in which case the fol-
lowing order is recommended: Chapters C.1–C.3, Appendix C1, Chapters C.4–C.7, Appendix C2, 
Chapter C.8, Appendix C3.

C.2	 Multivariate normal distributions
In this chapter we shall introduce the concept of multivariate normal distribution.

Let n and m be non-negative integers, and let aij, 1≤ i ≤ n, 1 ≤ j ≤ m, and bi, 1≤ i ≤ n, be real numbers. 
Consider the joint probability distribution of the n stochastic variables Yi = Σm 

j=1aijXj + bi, 1 ≤ i ≤ n, 
where Xj, 1 ≤ j ≤ m, are independent stochastic variables with a standard normal distribution, i.e. a 
normal distribution with expected value 0 and standard deviation 1. This joint probability distribution 
will depend on the choice of n, m, aij, 1 ≤ i ≤ n, 1≤ j ≤ m, and bi, 1 ≤ i ≤ n.

Now consider the totality of joint probability distributions obtained from all possible choices of n, m, 
aij, 1 ≤ i ≤ n, 1≤ j ≤ m, and bi, 1 ≤ i ≤ n, as described in the previous paragraph. These distributions 
are called “multivariate normal distributions”.

The following theorem is an elementary result about multivariate normal distributions: Let n be a non-
negative integer, let Xi, 1 ≤ i ≤ n, be stochastic variables with a multivariate normal distribution, and let 
also Xi, 1 ≤ i ≤ n, be stochastic variables with a multivariate normal distribution. If E[Xi] = E[Yi], 1 ≤ i 
≤ n, and Cov(Xi1, Xi2) = Cov (Yi1, Yi2), 1 ≤ i1, i2 ≤ n, then the two multivariate normal distributions are 
the same. In other words, a multivariate normal distribution is completely characterized by its expected 
values and covariances.

Multivariate normal distributions are discussed in Ross (1985, p 65–68).

C.3	 Definition set 1
The definitions in this chapter shall be valid in some parts of the report. In those parts, it will be 
explicitly stated that the definitions in this chapter shall be valid.

Let x0, y0, a and b be real numbers which satisfy a, b > 0 and x2 
0 + y2 

0 = a2–b2. Define the quadratic 
form Q by letting 

( ) ( ) ( )
22

22
0

2
00

22
0

2 2
,

ba
yxbxyyxxybyxQ ++−+

=

for all real numbers x and y.
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C.4	 Presentation of the quadratic form Q
Definition set 1 shall be valid in this chapter.

In this chapter we shall become a little familiar with the quadratic form Q.

With regard to the result of Section C1.2, it is clear that Q(x, y) ≥ 0 for all x and y, equality holding 
precisely when x, y = 0.

In Section C1.4 it is shown that the equation Q(x, y) = 1 describes an ellipse with foci (–x0, –y0) and 
(x0, y0) and half axis lengths a and b.

More generally, in Section C1.5 it is shown that for every real number d > 0 the equation Q (x, y) = d 2 
describes an ellipse which has the same centre, orientation and shape but which is d times as large as 
the one described by Q (x, y) = 1.

C.5	 Presentation of the numerical problem
Definition set 1 shall be valid in this chapter. Consider the following problem: Let nr and nk be 
non-negative integers. Construct a numerical method for generating random numbers Hrk, 1 ≤ r ≤ nr, 
1 ≤ k ≤ nk, (Hrk are treated formally as stochastic variables here) which have a multivariate normal 
distribution characterized by 

E[Hrk] = 0, 1 ≤ r ≤ nr,  1 ≤ k ≤ nk,

( ) ( )
.,1,,1,

2
, exp ,Cov 2121

1212
2211 krkrkr nkknrr

kkrrQ
HH ≤≤≤≤





 −−
−=

We shall not give an exact solution to this problem in the report. However, in Chapter C.6 a variant 
of this problem where the covariances are only specified approximately will be given, and in 
Chapter C.8 a solution to this approximate problem will be given.

C.6	 The approximate version of the numerical problem
Definition set 1 shall be valid in this chapter.

The approximate version of the numerical problem is the following: Let nr and nk be non-negative 
integers, and let ε be a positive real number. Construct a numerical method for generating random 
numbers Hrk, 1 ≤ r ≤ nr, 1 ≤ k ≤ nk, which have a multivariate normal distribution which satisfies

E[Hrk] = 0, 1 ≤ r ≤ nr,  1 ≤ k ≤ nk,

Var (Hrk) = 1, 1 ≤ r ≤ nr,  1≤ k ≤ nk,

( ) ( )
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2 1 2 1
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,
Cov ,  exp , 1 , , 1 , .

2r k r k r k

Q r r k k
H H r r n k k nε
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 

C.7	 Definition set 2
The definitions in this chapter shall be valid in some parts of the report. In those parts, it will be 
explicitly stated that the definitions in this chapter shall be valid.

The definitions in this chapter are given under the assumption that definition set 1 is valid, as the entities 
introduced there are referred to here. In those parts of the report where definition set 2 will be valid, 
definition set 1 will also be valid.

Numbers which can be written as integers divided by 2 we shall call “half-integers”. (If this is a 
standard term I do not know.) As Z normally denotes the set of integers, let Z1/2 denote the set of 
half-integers. If e.g. r0 is a half-integer variable and r01 and r0h are half-integers, the expression 
r01 ≤ r0 ≤ r0h (1/2) shall mean that r0 shall assume all half-integer values from r01 to r0h.

Let xh and yh be non-negative half-integers.
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Let
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i.e. Mn is the set of those half-integer pairs in which the absolute value of the first half-integer is less 
than or equal to xh and the absolute value of the second half-integer is less than or equal to yh, and Mf  
is the set of those half-integer pairs that do not belong to Mn. “n” and “f” stand for “near” and “far”, 
respectively.

In the report expressions like (r, k) – Mn, where r and k are integers, will occur.

(r, k) – Mn means the set of half-integer pairs which can be written as differences between (r, k) and 
elements in Mn.

Let
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In the sum in the definition of σn, the term exp (–2Q(0.0)) = exp (–2×0) = 1 is always present, and 
all terms are positive, so σn ≥ 1. The definition of σf is correct because the infinite series converges, 
which is shown in Section C2.4.

C.8	 The solution to the approximate numerical problem
Definition sets 1 and 2 shall be valid in this chapter. We also keep the definitions from Chapter C.6.

The following is a solution to the approximate numerical problem:
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and let xh and yh be the smallest half-integers that still satisfy
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Let Fr0k0, 1–xh ≤ r0 ≤ nr + xh (1/2), 1–yh ≤ k0 ≤ nk + yh (1/2), be independent random numbers with a 
standard normal distribution these can be easily generated on a computer. Let
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The joint probability distribution of the Hrk will then meet the specifications given in Chapter C.6.

A derivation of this solution is given in Appendix C.
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Appendix C1

Properties of the quadratic form Q

C1.1	 Introduction
Throughout this appendix, definition set 1 shall be valid.

In this appendix, various properties of the quadratic form Q will be deduced. The results of the 
appendix are used in different parts of the report.

C1.2	 (x2 + y2)/ a2 ≤ Q (x, y) ≤ (x2 + y2)/b2

In this section we shall show that
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for all real numbers x and y.

Indeed, we have
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C1.3	 x2 ≤ (b2 + x0 
2) Q (x, y) and y2 ≤ (b2 + y0 

2) Q (x, y)
In this section we shall show that

x2 ≤ (b2 + x0 
2) Q (x, y), y2 ≤ (b2 + y0 

2) Q (x, y)

for all real numbers x and y.

To show the first inequality, we have
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The second inequality can be shown analogously.
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C1.4	 Q (x, y) = 1 describes an ellipse

In this section we shall show that the equation Q (x, y) = 1 describes an ellipse with foci (–x0, – y0) 
and (x0, y0) and half-axis lengths a and b.

Consider the following sequence of equations:
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Obvious equivalences and implications have been indicated with arrows. Each equation containing 
“+ –” or “+ –” signs is to be regarded as the statement that both versions of the equation hold. Because 
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of the direction of the two implication arrows, it is clear that the last equation in the sequence implies the 
first one. However, the first one also implies the last one, which we shall show here. Start by assuming 
that the first equation holds. Then the fifth equation must also hold. Moreover, in Section C1.2 it is shown 
that (x2 + y2)/a2 ≤ Q (x, y). As Q (x, y) =1, we have 2 2 .x y a+ ≤  As x0 

2 + y0 
2 = a2 – b2, we also have 

2 2
0 0 .x y a+ ≤  Now the Schwarz inequality gives us ,2222

0
2
000 aaayxyxyyxx =×≤+×+≤+  

which in turn yields 0 ≤ a2 ± (x0x + y0y). Together with this fact, the fifth equation gives us the sixth 
one. Adding together the two versions of this equation and dividing the sum equation by a directly 
gives us the last equation.

As the first and the last equation in the sequence are thus equivalent, it only remains to show that the 
last equation describes the specified ellipse.

An ellipse can be defined as the set of those points whose distances to two given points, the foci of 
the ellipse, have a constant given sum. This is indeed expressed by the last equation of the sequence, 
if (–x0, –y0) and (x0, y0) are the foci and 2a is the total distance. Imagining an ellipse, one can see that 
the total distance is equal to the length of the long axis of the ellipse, and one can also see that half the 
interfocal distance, half the short axis and half the given total distance form a right triangle. The half 
long axis length must therefore be a, and the half short axis length must be:
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C1.5	 Q (x, y) = d 2 also describes an ellipse
In this section we shall show that for every real number d > 0 the equation Q (x, y) = d 2 describes 
an ellipse which has the same centre (x, y = 0), orientation and shape but which is d times as large 
as the one described by Q (x, y) = 1. (The ellipse Q (x, y) = 1 is discussed in the previous section.)

We can convince ourselves that the ellipse mentioned which is d times as large as the Q (x, y) = 1 
one, must be described by the equation Q (x/d, y/d) = 1. However, this equation is equivalent to 
Q (x, y) = d 2, which is easily seen on inspection of the definition of Q.

C1.6	 Linear transformation between (x, y) and (ξ, η) coordinates
In this section we shall introduce a coordinate transformation and determine some of its properties.

Define
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and introduce a linear transformation from new coordinates ξ and η to the old ones x and y by
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The area scale of the transformation is
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I.e. if a variable substitution in a double integral is to be made, the formula

dx dy = ab dξdη

should be used.

We have

( ) ( ) =+−+=− ηξηξ ηξηηξηηη yyxxxyxy ttttttytxt 	

= (txξtyη – txηtyξ) ξ = abξ,

( ) ( ) =+++−=+− ηξηξ ηξξηξξξξ yyxxxyxy ttttttytxt

= (txξtyη – txηtyξ) η = abη,

so the inverse transformation is given by
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and therefore
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C1.7	 Identity with four Q	
In this section we shall show that

( ) ( ) ( ) ( )( )221112122121 ,,2,, yxQyxQyyxxQyyxxQ +=−−+++

for all real numbers x1, y1, x2 and y2.

Using the coordinate transformation in Section C1.6, we let (x1, y1) and (x2, y2) correspond to (ξ1, η1) 
and (ξ2, η2), respectively. As the transformation is linear, (x1 + x2, y1 + y2) and (x2–x1, y2–y1) will then 
correspond to (ξ1 + ξ2, η1 + η2) and (ξ2–ξ1, η2–η1), respectively. With the new coordinates the above 
equation can be written

( ) ( ) ( ) ( ) ( ),2 2
2

2
2

2
1

2
1

2
12

2
12

2
21

2
21 ηξηξηηξξηηξξ +++=−+−++++

which is an obvious identity.

C1.8	 Triangle inequality with Q
In this section we shall show that

( ) ( ) ( ),,,, 12121122 yyxxQyxQyxQ −−≤−

( ) ( ) ( )22112121 ,,, yxQyxQyyxxQ +≤++

for all real numbers x1, y1, x2 and y2.

Changing to new coordinates as in the previous section, the above inequalities can be written

( ) ( ) ,2
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12

2
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2
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2
2

2
2 ηηξξηξηξ −+−≤+−+

( ) ( ) .2
2

2
2

2
1

2
1

2
21

2
21 ηξηξηηξξ +++≤+++

These inequalities are the well-known triangle inequality in two dimensions, which we do not prove 
here.
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Appendix C2

Properties of σf

C2.1	 Introduction
Throughout this appendix, definition sets 1 and 2 shall be valid.

In this appendix, a few properties of σf will be deduced. The results of the appendix are used in 
Chapter C.7 and Appendix C3.

C2.2	 An upper estimation of an integral
In this section we shall show that if c and d are real numbers which satisfy 0 < c ≤ d/2, then 

( )( )( )
( )

≤×−−∫∫
≥

dydxcyxQ
dyxQ 2,

2
,2exp

(( ) ) .2 exp 2cdab −−≤ π

Indeed, we have

( )( )( )
( )

=×−−∫∫
≥

dydxcyxQ
dyxQ 2,

2
,2 exp

= [substitution from x, y to ξ, η as described in Section C1.6]=

( )( ) =×−+−= ∫∫
≥+

ηξηξ
ηξ

ddabc
d 222

2222 exp 

[ ] ===== ρϕρηξϕρηϕρξ dddd ,sin ,cos

( )( ) =×−−= ∫ ∫
∞

ρϕρρ
π

ddcab
d

2

0

22 exp

( ) ( )( ) ≤×−−−
−

= ∫
∞

ρρρ
ρ

ρπ dcc
c

ab
d

22 exp 2

( ) ( )( ) =×−−−≤ ∫
∞

ρρρπ dccab
d

22 exp 4

( )( )[ ] ( )( )22 2exp2exp cdabcab
d

−−=−−−=
∞

πρπ ,

because ρ/(ρ–c) ≤ 2 when ρ ≥ 2c.

C2.3	 A sufficient condition that σf ≤ δ
In this section we shall show that for any given real number δ > 0, if we choose the real number d 
and the half-integers xh and yh so that they satisfy

,
22
12 exp 4,

2
1 2

2

δπ ≤




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
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
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×
≥
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4
1,

4
1 2

0
2

h
2
0

2
h ybdyxbdx +≥++≥+

then σf ≤ δ.
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Indeed, we have

( )( )
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i.e. σf ≤ δ. However, some of the above steps need comments:

Comment 1. Because |x–x'| ≤1/4 and |y–y'| ≤1/4, (x–x')2 + (y–y')2 ≤ 1/8. According 
to Section C1.2, Q(x–x', y–y') ≤ ((x–x')2 + (y–y')2)/b2. According to Section C1.8, 

( ) ( ) ( ) .,,, yyxxQyxQyxQ ′−′−−≥′′  Using these facts, we have

( ) ( ) ( ) ≥′−′−−≥′′ yyxxQyxQyxQ ,,,

( ) ( ) ( ) ( ) ( )
≥

′−+′−
−≥′−′−−≥

b

yyxx
yxQyyxxQyxQ

22

,,,

( ) .
22
1,

b
yxQ

×
−≥

Because (x', y') ∈Mf, |x'| > xh or |y'| > yh. As x', xh, y' and yh are half-integers, |x'| ≥ xh + 1/2 or |y'| ≥ yh 
+ 1/2 must hold. As |x–x'| ≤ 1/4 and |y–y' ≤ 1/4, |x| ≥ xh + 1/4 or |y| ≥ yh + 1/4 must hold. According to 
comment 2, then Q(x, y) ≥ d 2 most hold. As d satisfies d ≥ (√− 2×b), we have

( ) .
22
1

2
1,

bb
dyxQ

×
>

×
≥≥

The above inequality ( ) ( ) ( )byxQyxQ ×−≥′′ 22/1,,  can therefore be squared, and we obtain

( ) ( ) .
22
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

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×
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b
yxQyxQ
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Comment 2. We shall show that if |x| ≥ xh + 1/4 or |y| ≥ yh + 1/4, then Q(x, y) ≥ d 2. In fact, remembering 
that 2

0
2

h 4/1 xbdx +≥+  and ,4/1 2
0

2
h ybdy +≥+  we can conclude that ( ) 22

0
22 / dxbx ≥+  or 

x2/(b2 + x2 
0) ≥ d2 or y2/(b2 + y2 

0) ≥ d 2. However, according to Section C1.3 Q(x, y) is greater than 
or equal to both x2/(b2 + x2 

0) and y2/(b2 + y2 
0). Therefore Q(x, y) ≥ d 2 must hold in both cases.

Comment 3. The inequality follows directly from what is shown in Section C2.2.

C2.4	 σf is finite for all xh and yh

Consider the definition of σf :

( )( )
( )

.,2 exp 
f,

f ∑
∈

−=
Myx

yxQσ

In order that the definition shall be valid, it is necessary that the infinite series in the definition 
converges. This is indeed the case, as we shall show in this section.

For any choice of the non-negative half-integers xh and yh, Mf will contain all but a finite number of 
the elements of Z1/2 × Z1/2. Therefore, either the series will converge for all choices of xh and yh, or 
it will diverge for all choices. But in Section C2.3 it was shown that if sufficiently large xh and yh 
values are chosen, the series will converge. Thus, the series will converge for all choices of xh and yh.
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Appendix C3

Derivation of the solution to the approximate numerical problem
Definition sets 1 and 2 as well as the definitions made in Chapters C.6 and C.8 shall be valid in this 
appendix.

In this appendix we shall show that the numerical method described in Chapter C.8 really is a solution 
to the approximate numerical problem stated in Chapter C.6. The derivation will be given in four parts.

Part 1. We shall show that the Hrk have a multivariate normal distribution.

This is really the case, as the Hrk are linear combinations of a set of independent random numbers 
with a standard normal distribution.

Part 2. We shall show that E[Hrk ] = 0, 1 ≤ r ≤ nr, 1 ≤ k ≤ n.

This is the case because the Hrk are linear combinations of a set of random numbers with expected 
value 0.

Part 3. We shall show that Var(Hrk) = 1, 1 ≤ r ≤ nr, 1 ≤ k ≤ n. 

As the Fr0k0 are independent and have variance 1, we have
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This part of the derivation of the numerical method is rather complicated. We shall derive the 
inequality in a single sequence of inequalities and equalities. After that, some of the steps in the 
sequence will be commented.
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The Fr0k0 are independent and have variance 1, so Cov(Fr01k01, Fr02k02) is equal to 1 when (r01k01) = 
(r02k02) and 0 otherwise. Therefore we have
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Comment 2. We shall show that
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From the definition of Q it is easy to see that 2Q((r2–r1)/2, (k2–k1)/2) = Q(r2–r1, k2–k1)/2. This fact 
together with the result of Section C1.7 gives us
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Comment 3. We shall show that the three sums on the left side of the inequality sign are less than or 
equal to σn σf, σf σn and σ2 

f, respectively.

We shall only derive the first of these three inequalities here, as the other two can be derived 
analogously.
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Comment 4. We shall show that exp (–Q(r2–r1, k2–k1)/2) ≤ 1.

It is sufficient to note that Q(r2–r1, k2–k1) ≥ 0 which follows from the result of Section C1.2.

Comment 5. σn ≥ 1, as we noted in Chapter C.7.

Comment 6. We shall convince ourselves that σf ≤ ε/3 and σf ≤ 1/2.

The conditions on d, xh and yh given in Chapter C.8 imply that 
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According to Section C1.3, then σf ≤ min (ε/3, 1/2).
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Appendix D

Generation of random points with a Fisher distribution
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Appendix E

Deriving estimates of the flow wetted surface in DarcyTools

E.1	 Introduction
A substance dissolved in water (hereafter called a tracer) can be transported through a rock volume, 
provided there is a system of connected fractures and a flow through these. The tracer may enter 
crossing fractures, with or without a flow, and may also diffuse into the rock matrix. The strength 
of the diffusive process is related to the flow rate and the flow wetted surface (to be defined below) 
as it is through this surface matrix diffusion and diffusion into smaller fractures take place.

An up to date review of how the flow wetted surface (FWS) can be derived or estimated is given by 
Andersson et al. (1998) and there is hence no need to give an extensive background here. An account 
of how the FWS is derived in Discrete Fracture Network (DFN) models is given by Outters and 
Shuttle (2000).

The present analysis will be concerned with how the FWS can be derived in the stochastic continuum 
model DarcyTools. In DarcyTools the rock volume is divided into a regular system of computational 
cells and the key question is hence how the FWS can be estimated for such a cell. In Figure E-1 the 
situation is illustrated, schematically. If, as an illustration, we assume that the cell has the dimensions 
1×1×1 m3, the channel shown may have a surface area of 1×0.5 m2. The FWS would then be 1 m2, as 
an exposed area is found on both sides of the channel. It is clear from this illustration that the FWS 
can not be much larger than 2 m2/m3, if the simple channel model with two bounding surfaces is 
accepted. However, the surface may be very irregular and may also comprise parallel channels and 
the upper limit of 2 m2/m3 is hence only a “rough guide”.

When a tracer travels through the channel illustrated in Figure E-1, it may exchange matter by diffusion 
with the rock volume exposed by the FWS. The significance of this exchange can be expected to be 
related to two parameters: the FWS per unit volume of water in the channel, aw, and the residence time, 
t. The exchange will increase with both these parameters and a new variable the F-quotient (Andersson 
et al. 1998) has been introduced for this product:

F = aw × t									         (E-1)

By simple algebra it is possible to write Equation E-1 as:

F = arL/q

where L is the cell dimension, ar the FWS per unit rock volume and q the Darcy velocity. The present 
report will mainly be concerned with ar and F, determined locally for a cell or integrated along a flow 
channel.

The objective of this appendix is hence to demonstrate how the FWS and F- quotient can be 
determined in DarcyTools.

E.2	 Evaluated methods
Three different ways of calculating the FWS, for a computational cell, in DarcyTools will be 
investigated; these will now be described.

E.2.1	 Gehyco method
The general method used in DarcyTools to derive hydraulic properties is called GEHYCO (GEneral 
HYdraulic COnditions). The central idea is to calculate “how much of a conductive element that 
intersects a computational cell and let that volume generate a contribution to the cell property in 
question”. A full account of this method can be found in Svensson (2001b).
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Figure E-1. Illustration of a computational cell with a channel with flow.

It is also possible to determine how much of a fracture surface that intersects a cell and let this “inter
secting surface” give a contribution to the FWS in the cell. This method is hence conceptually straight 
forward and does not involve any further assumptions than those involved in the specification and 
generation of the fracture network.

E.2.2	 P32 Method
When the background fracture network is generated, a power law distribution is assumed for the 
intensity, i.e. number of fractures in a size interval per unit volume. It is straight forward to use this 
power law to calculate the expected number of fractures for a number of length intervals and hence 
obtain the total surface area per unit volume, P32.

In Table E-1 the contributions from different size groups are given together with the total area P32. 
As can be seen, fractures down to a length-scale of three metres are assumed to contribute to P32. 
The reason for choosing three metres as the lower limit, is that the cell size in the model simulations 
to be presented is three metres; the assumption being that all flow channels are picked up by the 
fracture network and grid chosen.
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When the global P32 has been determined, we need to distribute the surface to each cell. This is done 
with the kinematic porosity as a weighting factor, as cell porosity values are available from GEHYCO. 
Finally we note that the local ar value is twice the local P32 value. An underlying assumption of this 
method is that the local ar-value is directly proportional to the local kinematic porosity; this is no more 
than an assumption.

Table E-1. Estimate of global P32 value from a power law for fracture intensity. The Laboratory 
scale model (Svensson 1999b) is used for the estimates.

Fracture set Length interval [m] Number, excluding 
isolated fractures

P32 Σ P32

Determ zones
1
2
3
4
5
6
7

160–320
80–160
40–80
20–40
10–20
5–10
3–5

12
70

425
2,050
9,150

38,800
95,600

0.014
0.004
0.004
0.007
0.008
0.009
0.008
0.006

0.014
0.018
0.022
0.029
0.037
0.046
0.054
0.060
0.06

E.2.3	 Aperture method
The third method to be evaluated derives the FWS by the following steps:

•	 A conductivity is available at each of the six cell walls.

•	 A transmissivity can be obtained by multiplying with the cell dimension, ∆.

•	 Use the relation between transport aperture and transmissivity (eT = 2.0T0.6) presented in 
Appendix H to calculate eT, based on six cell wall values.

•	 The free volume in the cell is given by θk∆3, where θk is the kinematic porosity, and the area can 
hence be calculated as:

3

2.0 k
r

T

a
e

θ ∆= 									         (E-2)

The method apparently involves a number of assumptions that can not easily be evaluated.

E.3	 Results
In the evaluation of the methods a slightly modified version of the Laboratory scale model (Svensson 
1999b) will be used. One modification is that the cell size is put to 3 metres (instead of 5 metres) and 
another that only a simple forcing (flow from west to east) will be used. The Äspö HRL is not included 
in the model and all flow channels will hence start at the western boundary and leave through the 
eastern one.

E.3.1	 FWS values in cells
We start by discussing the global mean values of ar, see Table E-2, and the corresponding histograms, 
see Figure E-2. Starting with the mean values, it is clear that all three estimates are in fair agreement 
and are also in agreement with the mean value of 0.1 m2/m3 suggested by Andersson et al. (1998). 
The distributions are however different, as can be seen in the histograms, see Figure E-2.

First it should be explained that the bar 0.5–1.0×10–2 represents all cells with an ar less than 10–2 m2/m3. 
Roughly two thirds of all cells have a very small ar. This is due to the fact that the same fraction of 
cells is not intersected by any fracture and hence get zero porosity and zero ar. From the histograms 
one may also note that all three methods generate most “active” ar-values in the two intervals 0.1→0.5 
and 0.5→0.1. It is also worth noting that method three (aperture based) generates very few cells with 
an ar-value greater than 1.0.
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E.3.2	 FWS values along flow channels
The global ar-values are not of much relevance, as it is the FWS along flow channels that will affect 
the exchange with the rock matrix. For this reason we will study the correlation between the cell 
Darcy velocity and cell ar-value, for the simple flow situation described above, see Figure E-3. At 
a first glance the result may look rather similar for the three methods; a closer examination reveals 
however some interesting differences:

•	 Method three shows a week correlation between the Darcy velocity, q, and ar. If ar does not 
increase with q this implies that eT increases with q, as a larger q should be correlated with 
a larger “channel cross section area”.

•	 Method two shows a linear increase of ar with q. The interpretation of this behaviour is that 
“a doubling of q doubles the width of the channel, with eT kept constant”.

•	 Method one can be viewed as being in between these two extremes and perhaps be interpreted 
as “increased q is correlated with an increase in both width and aperture of the channel”.

A tentative conclusion is that method one is the more realistic one, from this point of view.

Next we study the variation of ar along a streamtube. This requires that flow paths are calculated. 
In DarcyTools this is carried out in the submodel PARTRACK (Svensson 2001a). In the west to 
east flow considered, particles are released in fracture zone EW1, see Figure 1-2, and then tracked 
through the domain till they reach the eastern boundary. Figure E-4 shows the flow paths generated 
by 100 particles. The main flow path is through EW1, changing to the NNW structures and leaving 
through NE1. Note that in this view from above, NE1 gives a wider impression as this zone is not 
vertical. It is also worth noting that rather few flow channels are active in the transport.

Figure E-5 shows the variation of ar for one flow path. The same trends as in Figure E-3 can be 
identified, i.e. method three generates a fairly constant ar, method two shows the largest variations 
and method one is somewhere in between.

E.3.3	 F-quotients along flow channels
Figure E-6 shows the variation of the cell F-quotients (Fi = ar, i ∆/qi) along a flow path. The same 
differences between the methods as for ar can be expected, but the implications for the F-quotients 
are a little bit different:

•	 In method three ar is fairly constant and this is probably the reason for the rather small variation 
seen in this figure.

•	 Method two was found to give a correlation between ar and q. It is hence not surprising that the 
F-quotient is fairly constant for long periods.

•	 Method one has a weaker correlation between ar and q and hence shows a larger variability.

In Outters and Shuttle (2000) the integrated F-quotient along a flow path versus time was analysed. 
In that report also a curve was fitted to the results from the numerical model. Here, this curve will 
be used for comparisons with the three methods analysed in the present report. The F-quotient was 
hence summed up along a flow path; this was done for one hundred particles and the result can be 
studied in Figure E-7. The following should be noted:

•	 All results are in fair agreement with Outters and Shuttle (2000) (straight line in the figures). The 
fact that the present results are generally below the straight line can be explained by a somewhat 
higher P32-value used in the model by Outters and Shuttle. Method three, which has the highest 
average ar, is closest to the straight line.

•	 Method two, which has a strong correlation between ar and q, gives the smallest spread around 
the mean value.
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Table E-2. Global mean values of ar for the three methods evaluated.

Method

ar

(m2/m3)

GEHYCO P32 Aperture

0.12 0.13 0.18

Figure E-2. Histograms of ar [m2/m3]. Method one (top), two (middle) and three (bottom).
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Figure E-3. Correlation between flow wetted surface ar, and Darcy velocity, q. Method one (top), two 
(middle) and three (bottom).
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Figure E-4. Flow channels formed by 100 particle tracks in a flow from west to east. Blue indicates high 
intensity of tracks, red low.
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Figure E-5. Variation of ar along a single flow path. Method one (top), two (middle) and three (bottom).
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Figure E-6. F-quotients along a flow path. Method one (top), two (middle) and three (bottom).
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Figure E-7. Integrated F-quotients along flow paths. Straight line gives the result from Outters and Shuttle 
(2000). Method one (top), two (middle) and three (bottom).
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E.4	 Discussion and conclusions
The present analysis assumes that all fractures and fracture zones have a simple geometric shape, i.e. 
the bounding surfaces are two parallel planes. This is of course a gross simplification that needs to 
be taken into account when the results are evaluated. The following points should also be considered:

•	 The ar values determined give all the surface area in a cell. It may well be the case that only a 
fraction of this area is in direct contact with the flowing water.

•	 On the other hand, a real fracture is not made up of two parallel planes, but may be highly irregular, 
which increases the possibly active surface (as compared to the assumptions made in this report).

•	 A steady flow field was used in the present analysis. In reality one may expect transient “pulses” 
on a variety of times scales; from tidal effects, yearly groundwater level variations to periods 
with an inland ice on the very long time scale. These transients may disperse a tracer within 
a fracture plane and also activate fractures that otherwise could not be reached by the tracer. 
A larger flow wetted surface would hence be the result.

The ar-values derived should hence more be considered as index of a flow wetted surface, rather 
than an absolute estimate of the magnitude.

In Andersson et al. (1998) four topics are suggested, as having the potential to improve our under-
standing of the flow related migration parameters:

•	 develop the theoretical understanding of migration and matrix diffusion,

•	 study the effect of diffusion into stagnant or low flow zones in a single fracture,

•	 migration modelling directly in the flow codes,

•	 exploring for further evidence of matrix diffusion from tracer tests, static diffusion tests, geology 
and geochemistry.

This project has not been focused on these suggestions, but it may be the case that DarcyTools, 
with the features introduced in this report (FRAME and FWS-derivations), goes some way towards 
these goals. Presently PA-studies use global estimates of FWS in estimates of the F-quotients. It is 
possible to get some perspective on these estimates from the present study. In Figure E-8, the integrated 
F-quotients for 100 particles using two methods are compared. In one of the methods we use the global 
estimate of ar, while the other method use the local cell values. If the two methods were giving equal 
results, the points should fall on the straight line in Figure E-8. This is not the case, the method using 
local cell values gives a significantly larger variation of F-quotients.

With the precautions mentioned above in mind, the following conclusions from the study are 
formulated:

•	 Three partly independent methods to estimate the flow wetted surface from the groundwater code 
DarcyTools have been evaluated. All three methods give global estimates of ar that are in fair 
agreement and these are also in agreement with the expected value for the Äspö HRL (Andersson 
et al. 1998).

•	 Method one, which is based on the GEHYCO technique, is considered to be the best choice as it 
directly calculates ar from the fracture network without any additional assumptions.
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Figure E-8. F-quotients determined with local and global FWS values.
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Appendix F

Empirical relations for the determination of fracture properties

F.1	 Introduction
It is necessary to specify the properties of the conductive elements, even if some of the required 
information is uncertain or unknown.

The relations to be presented are not claimed to be the “best possible input data”, but merely 
represent what is presently available (a more complete compilation is needed).

F.2	 Transmissivity-fracture size
The following relation was found in a calibration study for the laboratory domain considered also in 
this report (see Report 2):
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This relation is shown in Figure F-1 (labelled LABM (99)) together with data from field investigations 
(Äspö Major zones, Prototype Repository, TRUE Feature A, TRUE Block Scale) and some mean 
values from simulation models (DFN Aberg, DFN TRUE Block Scale). As already mentioned, the 
compilation is far from complete and we will restrain from any firm statements. However, relation 
(F-1) does not seem to contradict the information compiled.

F.3	 Transmissivity-transport aperture
The transport aperture, eT, will be used to calculate the kinematic porosity of a conductive element. 
In Figure F-2 one experimental curve (Rhén et al. 1997), one curve used in other models (Doe 1993. 
Unpublished manuscript referenced by Dershowitz et al. 1999) and the relation resulting from the 
cubic law are shown. The solid line is given by:

eT = 2.0T0.6									         (F-2)
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This relation is regarded as a good compromise, based on the following arguments:

•	 The curve by Rhén et al. (1997) is mainly based on fracture zones with relatively high transmissivity.
•	 The curve by Doe (1993) is mostly used for transmissivities in the range 10–7 → 10–5 m2/s.
•	 The cubic law applies to “single opening fractures” and is hence best suited for small transmissivities.

It should once again be pointed out that the only purpose of this compilation is to show that the 
relation used, Equation F-2, is in fair agreement with some easily compiled information.

Fracture size-thickness
It will be assumed that fractures are squares with dimension L×L m2 and that the fracture thickness, 
b, is 1% of the fracture length scale, L. Field data from Äspö, (see Figure F-3), do not seem to 
contradict this relation. The definition of “fracture thickness” is given in Section 3.3.

Diffusion coefficients
Effective molecular diffusion in a conductive element should be proportional to the product of the 
kinematic porosity and the diffusivity value in the pore water (Neretnieks 1993). The proportionality 
constant is related to the properties of the pore space (constrictivity and tortuosity). 

In DarcyTools, we will simply assume that the diffusion coefficient for a conductive element is equal 
to the product of the kinematic porosity and the diffusion value in pure water.

Figure F-1. Relation between fracture size and transmissivity.

Compiled data:

•	 TRUE BLOCK fractures (#5, 7, 9, 20) (Winberg 1998).

•	 TRUE Feature A (Winberg et al. 2000).

•	 Äspö. Major fracture zones NNW* (Rhén et al. 1997).

•	 Prototype Repository. South and North major zones and minor zones (Forsmark and Rhén, 1999).

•	 DFN, Aberg (Dershowitz et al. 1999).

•	 DFN, TRUE Block Scale (Winberg 2000).
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*Unpublished manuscript referenced by Dershowitz et al. 1999

RHÉN (1997)

SUGGESTED

DOE (1993)*

CUBIC LAW

Figure F-2. Relation between fracture transmissivity and transport aperture.

Figure F-3. Relation between fracture thickness and length. 

Compiled data:

•	 Äspö (zones NNW*) (Rhén et al. 1997).

•	 TRUE BLOCK (Winberg 1998).

•	 Feature A (Winberg et al. 2000).



R-07-38	 139

Appendix G

Some simple calculations illustrating the GEHYCO method

G.1	 Some simple calculations illustrating the GEHYCO method
Calculations (which can be done without a computer) for a 2D case will be presented, with the 
objective to illustrate the basic idea of GEHYCO. The case to be discussed concerns a conductive 
element that runs at an angle of 45o to the coordinate directions and has a thickness, be, comparable 
to the grid size, ∆, see Figure G-1. The exact flux, Qa, from cell centre (2, 2) to cell centre (3, 3) is 
given by:

∆
=

2
dhbKQ eea 									         (G-1)

where Ke is the element conductivity and dh the head difference. In the grid representation there will 
be two flow paths between the points in question. The velocity cell conductivity, Kc, is calculated as 
the “element conductivity times the intersecting volume divided by the cell volume” according to 
the basic principle of the method, thus:
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for both the velocity cell between (2, 2) and (3, 2) and the cell between (3, 2) and (3, 3). The head 
gradient from point (2, 2) to (3, 2) is thus dh/2∆. We can now formulate the flux, as represented in 
the grid, as: 

∆
=

∆∆
∆

=
2222

2 dhbKdhbKQ eee
ec 							       (G-3)

As we have two flow paths between the points, it is found that the grid representation gives the same 
flux as the exact solution.

Figure G-1. Illustration of how flow and transport is simulated on the grid.
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Next we consider the transport time between the two points in question. Analytically it is easily 
calculated as the distance divided by the pore velocity:

22 22
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dhU n K dhK

θ ∆ θ ∆∆

∆

= = = 							       (G-4)

where t is the transport time, UD the Darcy velocity and θe the kinematic porosity. When estimating 
the transport time in the grid representation of the element, it is instructive to think of a particle that 
travels the distance. If we further accept that the residence time of the particle in a cell is equal to 
the free volume of the cell divided by the flow rate through the cell, the following calculations can 
be carried out. First one should note that the particle has to move through the grid in the “staggered 
arrangement”, i.e. from (2,2) to (3,2), or (2,3), and then to (3,3). The two pathways have the same 
transport time and we only need to consider one of them. The two cells in question (2,2) and (3,2) 
have however different free volumes and through flows and we need to calculate the residence time 
for each and add the times.

Cell (2,2): 2,2
e iV

t
Q

θ= 								        (G-5)

Where Vi is the intersecting volume and Q is the flow rate through cell (2.2). After some algebra it is 
found that:

( )2,2
2 2 2

2
e

e
e

t b
K dh

θ ∆ ∆= − 							       (G-6)

Cell (3,2): By the same procedure it is found that:
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By adding these two residence times, it is found that the transport time in the grid representation is 
equal to the analytical solution (Equation G-4).

Diffusive transport can be regarded as a combination of the two cases, flow and transport, discussed. 
First one should note that the diffusive flux is analogue to the Darcy flux, if the head gradient is replaced 
by the concentration gradient and the conductivity by the diffusion coefficient. It is clear that diffusion 
coefficients thus need to be evaluated at cell walls. If the diffusive term is part of an advection/diffu-
sion equation for a scalar, we should evaluate the balance equation for a scalar control volume, see 
Figure 3-3. It is thus the free volume of the scalar cell, discussed already, that is affected by the fluxes 
at the cell walls. Hence, solving an advection/diffusion equation for a scalar quantity, does not require 
any new elements in the grid representation.

The calculations presented intend to illustrate how the properties of the conductive elements are 
represented in the grid. It is of course reassuring that the method gives correct result for the simple 
case studied, but it is not a proof that the method is exact. In fact, see Svensson (1999a, 2001), it is 
well established that some fracture orientations, in relation to the grid, give an error in the simulated 
flow and transport times. This error has also been found to depend on the thickness of the element 
in relation to the grid size (be/∆). Estimating this error is one of the main issues in the verification 
studies, see Report 2.
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Appendix H

Parallel DarcyTools

H.1	 Introduction
From Version 3.4, DarcyTools implements a domain decomposition technique for parallel runs on 
multi-core shared memory computers and distributed memory clusters. The technique consists in 
decomposing the domain into several blocks and allocating one process per block. For users ease, 
none of the existing CIF command has been modified and new capabilities have been gathered into 
a single new command named <blockgen>. This command is for partitioning the domain grid into 
blocks, for partitioning the initialization files according to the domain decomposition and for merging 
output files for post-processing.

blockgen
The <blockgen> command is considered only by the new BlockGeN program (BGN). The first 
argument <nblocks> sets the number of blocks for grid or file partitioning and for file merging. The 
<gridpart> argument then specifies whether BGN will generate block grids from the original domain 
or will consider that the block grids already exists and simply have to be read. The <binary> argument 
fixes the type of output file format. When set to true, output files are formatted. When set to false, 
output files are unformatted. The <tecplot> argument refers to a <tecplot> command name for output-
ting grids similarly to the <gridgen> command. The <load> argument is for grid partitioning only and 
fixes the percentage of the total domain cells that a block must contain. This argument is ignored when 
the <partfile> argument exists and sets the file name of a user defined partition. Finally the <partition> 
and <merge> arguments can be used to specify names of files to be partitioned or merged according to 
the grid partitioning.

<blockgen>

<nblocks>	 : number of blocks			   [1=] 

<load>	 : block id, load in percent	 [0+]

<partfile>	 : user partition file name	 	 [1-] (default=’’)

<tecplot>	 : tecplot name	  		  [1-] (default=’’)

<binary>	 : grid output files format 	 [1-] (default=T)

<gridpart>	 : grid partitioning			  [1-] (default=T)

<partition>	: file to partition			  [0+] (default=’’)

<merge>	 : file to merge (no #xxx suffix) 	[0+] (default=’’)

H.2	 Grid partitioning
The BGN program reads the grid file defined by the <run> command (xyz by default) and partitions 
the grid into N (set by <nblocks>) blocks ready for N processes. N+1 new grid files are created and 
named by adding the ‘#xxx’ suffix to the original grid file name (for instance xyz#0, xyz#1, xyz#2 
for 2 blocks generated from the file xyz). The xyz#0 file contains a redundant grid made of the top 
boundary cells i.e. cells of the land and sea locations. The xyz#nnnn files contain the grid for blocks 
1 to N. 

Besides the new grid files, N block files are also created with names following the ‘blk#nnnn’ pattern. 
Those files contain the additional information necessary for connecting blocks. Users shouldn’t care 
about their content.

When specifying a TECPLOT output file, the BGN program generates N Tecplot files with the 
‘#nnnn’ suffix (when the name of the tecplot file terminates with .plt, the suffix is inserted before .plt). 
Every Tecplot file outputs the same information (grid, locations and cellmk) but is restricted to its 
block only. To gather the global view users simply have to load files using the TECPLOT program.
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Partitioning
By default, DarcyTools implements a Hilbert space-filling curves technique to take advantage of 
the Cartesian structure of the grid. Given a list of cells in the original domain, a space-filling curve 
is built that passes through each cell once. The map is constructed so that cells that are close in 3D 
space remain close when mapped. Thus the curve preserves locality. 

A space-filling curve on a simple Cartesian mesh is shown in Figure 1. Once the curve is constructed, 
the decomposition domain is performed by dividing it into N subintervals, where N is the desired 
number of processor. The length of any subinterval can be specified by the <load> argument of the 
<blockgen> command, in term of percentage of the total length. When only some of the blocks have 
an associated load, the remaining amount of cells is equally distributed among free blocks.

For a better load balancing, one can use the <partfile> argument of the <blockgen> command to 
specify the name of a specific partition file. Partition files contain the block ID for each cell of 
the original grid according to the following format:

write(iunit,*) ‘#BG#V300’

write(iunit,*) nbcells

write(iunit,*) (iblock(i),i=1,nbcells)

When iblock(i) is smaller than 1, BGN automatically allocates the cell to additional blocks. In that 
way one can specify all blocks from 1 to NBLOCKS or can specify only some of them and let the 
program use the space filling technique for remaining cells. 

Halo
The parallelization techniques employed in DarcyTools rely on a Single-Program Multiple-Data 
(SPMD) approach which first consists in partitioning the grid and then in executing the same piece 
of code redundantly on each block. This way, computing the interior solution of a given block, works 
similarly to any computation in a single grid domain. Only the boundary conditions have to differ 
and additional boundary conditions must be added to reflect the influence of the neighboring blocks 
flows. This is achieved by adding “halo” cells to the block grids. 

Halo cells are additional cells coinciding one by one to interior cells of neighboring blocks. They are 
used to duplicate the solution periodically provided by neighboring blocks. During their FIF coding, 
users may always consider that cell values are correct while external face values of halo cells are 
undefined similarly to external face values of the entire domain. 

Duplicating data between block (sub-domains) is achieved with an MPI library as illustrated on 
Figure H-3. 

Halo cells values are strictly equal to neighboring block values. However users should be aware that 
Tecplot output files contain halo cells which, because of the printing order of superposed cells, may 
lead to misinterpretation when visualizing blocks.

Figure H-1. Illustration of Paneo-Hilbert space-filling curve partitioning.
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H.3	 Programming
As mentioned above, the advantage of the Single-Program Multiple-Data (SPMD) strategy is that 
the same piece of code is executed by each process. The convergence of the entire domain solution 
is reached by successive updates of halo cells.

For this purpose the process in charge of a given block adds extra Dirichelt boundary conditions to 
temporarily fix the halo values. Then it computes a new internal solution to fit these halo-values and, 
in a third step, transmits the newly computed internal cell values to the corresponding halo cells of 
the neighboring blocks. For a better efficiency these steps (5,6,7-Figure H-5) have been integrated 
directly into the MIGAL solver and halo-values are updated after each fine grid relaxation of the 
multi-grid procedure.

At the present stage of the development, this block-Jacobi approach induces a strong penalty in 
terms of rate of convergence for purely linear cases, and users are invited to increase the solver work 
per cycle by increasing MIGAL’s parameters such as NBRELAX, IPRECO or IGMRES. However, 
DarcyTools usually involves several non-linear models such as Salinity, Ground Water Table or 
Tunnel sections, and hundreds of iterations are necessary to ensure convergence. In such cases 
the Block-Jacobi approach is usually acceptable. 

Figure H-2. Example of domain decomposition with addition of halo cells.

Figure H-3. Sketch of halo structure and data fluxes between two blocks.

Figure H-4. Five blocks without (left) and with (right) halo cells.
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FIF coding
A drawback of the SPMD strategy is that users must think parallel, keeping in mind that the sole data 
associated to the block are accessible from user functions. For instance, assuming that cells having 
the highest altitude in the grid are land or sea cells is not valid any more. The grid of the process is 
no longer the grid of the entire domain but only the grid of the block. For a successful FIF coding 
users should keep in mind, at least three important rules:

1-	 The same user function is executed for every block in parallel. For this reason users should pay 
attention not to write into the same file and should instead write in several distinct files.

2-	 Users should keep in mind that locations can be empty for a given block and should adapt their 
algorithm accordingly. Typically, land or sea locations cannot be simultaneously empty with 
the sequential version; it is often the case with the parallel version. 

3-	 When computing, for example, a sum of a variable on the entire domain or on a given location, 
users must remember that their calculation is only local to the block that the process is in charge 
of. They should also avoid halo cells in their summation since halo-values will already be summed 
with the internal cells of the neighboring blocks. New facilities (M_BCI module) are provided for 
reducing local values over blocks.

Beside this, FIF coding can remain unchanged and users are not required to identify halo cells whose 
values can safely be computed in the same way than interior cell values. 

H.4	 Concluding remarks
Considering the current direction of computer hardware development, it is believed that parallelization 
of software is the main way forward to speed up simulations. Version 3.4 is the first parallel version 
and experiences are so far limited. The chosen SPMD approach does however look promising.

Figure H-5. Time step algorithm for parallel version.

Step 1 :  Initialize the time step 
Step 2 :  Compute properties 
Step 3 :  Build discrete operator (A) 
Step 4 :  Compute boundary conditions (b) 
Step 5 :  Set Dirichlet conditions on halo (x=xneighbor) 
Step 6 :  Solve one multi-grid cycle (Ax=b) 
Step 7 :  Exchange values on halo with neighbors 
Step 8 :  Go to step 2 until convergence 
Step 9 :  Output time step results 
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