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1 Introduction 
 
 
 

DarcyTools is a computer code for simulation of flow and transport in porous and/or fractured 
media. The fractured media in mind is a fractured rock and the porous media the soil cover on 
the top of the rock; it is hence groundwater flows, which is the class of flows in mind. 

A number of novel methods and features form the present version of DarcyTools. In the 
verification studies, these methods are evaluated by comparisons with analytical solutions for 
idealized situations. The five verification groups (see Table 3-1 below), thus reflect the main 
areas of recent developments. 

The present report will focus on the Verification and Validation of DarcyTools. Two 
accompanying reports cover other aspects: 

- Concepts, Methods, Equations and Demo Simulations, Svensson et al. (2004) (Hereafter 
Report 1). 

- User’s Guide, Svensson and Ferry (2004) (Hereafter Report 2). 

The objective of this report is to compile all verification and validation studies that have been 
carried out so far. After some brief introductory sections, all cases will be reported in 
Appendix A (verification cases) and Appendix B (validation cases). 
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2 Confidence building 
 
 
 
During the last twenty years CFD (Computational Fluid Dynamics) has become a standard 
simulation tool in most engineering problems, dealing with groundwater flow and transport. 
This development has been driven by readily available software packages and the significant 
increase in affordable computer speed and memory capacity. CFD is however not a simple 
technique to use; generally speaking a basic understanding of several subjects like fluid 
mechanics, numerical analysis and computer software programming is required. For 
groundwater modelling an understanding of geohydrology is of course also needed. In an 
ongoing project, ERCOFTAC (Casey and Wintergerste, 2000), guidelines for CFD 
simulations are discussed and summarised. Partly based on this report, the following main 
sources of errors and uncertainties in groundwater simulations can be identified: 
 
• Mathematical model. The mathematical model does not describe the real flow exactly. For 

example, in textbooks the approximations inherent in the Darcy equation are often 
analysed and listed. Another often used approximation is that the water is incompressible.  

• Discretisation. Numerical solutions are performed on a grid in space and time. The 
difference between the solution on this grid and the exact solution of the modelled 
equations is called the discretisation error. 

• Convergence and round-off errors. Typically a CFD simulation involves iterative 
procedures. Convergence errors occur because these iterations are stopped by a certain 
criteria before they are completed. Round-off errors are due to the limited number of 
digits when a number is stored in the computer memory. 

• Application uncertainties. This includes uncertainties about the geometry of the domain 
(for example a fracture network), boundary conditions, fluid properties, etc. 

• Code errors. It is difficult to get software “bug-free”. 

• User errors. These are the errors that result from misstakes or carelessness by the user. 

More points could have been listed (errors in postprocessing, interpretation of results, etc) but 
the list given probably gives the most important ones. In this context it may be of interest to 
refer to the following definitions (from ERCOFTAC): 

Error:  A recognisable deficiency that is not due to lack of  
knowledge. 

Uncertainty: A potential deficiency that is due to lack of  
knowledge. 

As DarcyTools deals with flow and transport in a fractured rock, one should view the points 
given from this perspective. The significance of the different points may still vary depending 
on the modelling approach chosen and the problem studied. Here we concern ourselves with a 
fracture network, as represented in a continuum model. All of the above discussed errors and 
uncertainties may still be relevant to consider and it is not easy, in the author’s view, to 
neglect (or set priority to) any of the points. For the modelling approach chosen it is however 
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expected that the “quality” of a simulation is strongly dependent on how well the fracture 
network is represented in the continuum model. The fracture network is however only partly 
known (geometry, properties, etc) and we therefore need to consider the uncertainty 
introduced. 

The question whether a computer code is credible or not and methods to answer this question 
are given in a recent issue of the AIAA journal (AIAA, 1998). Based on the papers presented, 
Table 2-1 has been created. The table is an attempt to illustrate the actions involved in the 
confidence building process. A few comments to the table: 

• The order (from top to bottom) is essential. It is not possible to achieve certification 
without having demonstrated verification and validation. 

• There is a consensus in the literature about the definitions of verification and validation. 
Additional steps and actions in the confidence building are still open to discussion. 

• Some authors emphasise that it is important to distinguish between confidence building in 
a computer code and in a specific application. Related to this issue is the concept “fitness 
for purpose”. It is for example of little value to have a very accurate numerical solution if 
the algorithm is so slow that the code is impractical for its intended use. 

Table 2-1. Processes and actions involved in confidence building. 

Process 
 

Definition Action 

Verification Demonstrate that 
the equations are 
solved correctly. 
 

Comparison with 
analytical solutions 
and other models. 

Validation Demonstrate that 
the right equations 
are solved. 
 

Comparison with 
measurements 
(laboratory and 
field data). 
 

Certification Assess whether the 
right things are 
done and whether 
they are done 
right. 
 

Evaluate software 
construction and 
working 
procedures. 

C 
O 
N 
F 
I 
D 
E 
N 
C 
E 
 
B 
U 
I 
L 
D 
I 
N 
G 

More (QA-systems, wide range of applications, publications 
in international journals, etc) 
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3 Verification  
 
 
 

The verification cases performed can be found in Appendix A and are summarised in  
Table 3-1. 

All cases tested show “good result”, i.e. the comparison with the corresponding analytical 
solution, or another model study, is satisfactory; the reader is referred to the cases to study the 
details. 

A few words may however be needed to explain the objectives when selecting the test cases 
and the way the comparisons have been carried out. 

- The test cases should include one, two and three dimensional, steady and transient cases. 

- A wide range of relevant physical processes should be included, i.e. density stratification, 
unsaturated zones, storativity effects, etc. 

- The representation of fractures in a continuum model is a key feature of DarcyTools and 
should be well covered by the test cases. 

Some verification studies described in the literature are focused on grid refinement studies. 
Here the listed objectives have however been considered to be more important with the 
“fitness for purpose” argument in mind. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 5

Table 3-1. Compilation of verification cases. 
Group Case Comment 

A. Numerical methods A1. One dimensional transient 
diffusion 
A2. One dimensional steady 
advection/diffusion 
A3. Flow through a complex 
channel 
A4. Tests of grids  
A5. Test of pressure-salinity 
coupling 
 

This group of cases intends to 
show that the numerical methods 
work as expected 

B. Porous media  B1. Regional groundwater 
circulation 
B2. Steady ground-water table 
B3. Theis problem 
B4. Transient pressure in a 
borehole 
B5. Specific yield, Neuman 
(1975) 
B6. Horizontal well problem 
 

This group considers some 
classical geohydrological 
testcases 

C. Fractured media C1. Three fractures in a two 
dimensional domain 
C2. Intersecting fracture zones 
C3. Single fracture in a box 
C4. Many fractures in a box 
C5. Percolation theory 
C6. Diffusion in a dead-end 
fracture 
C7. Matrix-fracture temperature 
problem 
 

This group of cases deals with 
the representation of fractures in 
a continuum model 

D. Transport and dispersion D1. Taylor dispersion 
D2. Break-through-curve, 
PARTRACK 
D3. Break-through-curve, 
adv/diff egn 
D4. Seven fractures in a 2D 
domain, PARTRACK 
D5. Three fractures in a 2D 
domain, PARTRACK 
D6. Single fracture in a box, 
PARTRACK 
 

This group considers transport, 
retention, dispersion and particle 
tracking cases. 

E. Buoyancy effects 

 

 

 

 

E1. Henry’s problem 
E2. The salt dome  
E3. Coupled temperature-  
salinity fields 
E4. Upconing 
E5. The floating island 
E6. Two fluid problem 
 

This group considers 
comparisons where density 
stratification, due to salinity and 
temperature gradients, is a key 
factor. 
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4 Validation  
 
 
 

As validation should be concerned with comparisons with measurements and this report 
describes version 2.1 of DarcyTools, it is not surprising that very few such comparisons can 
be reported at this stage. However, as discussed in Report 1, it is relevant to include cases that 
were carried out with PHOENICS as the equation solver, as it has been carefully evaluated 
that the two solvers give very similar solutions. Note that the descriptions of the fracture 
network (GEHYCO) and other descriptions of physical processes are in most respects the 
same in the PHOENICS cases to be discussed, as in the present version of DarcyTools. 

For simulations of flow and transport in a fractured rock, it is difficult to separate the steps 
“validation” and “calibration”. To discuss this we first need to define “calibration” (following 
AIAA, 1998): 

• Calibration is the process of tuning a code, in order to improve its prediction of global 
quantities, for realistic geometries, of design interest. 

If we require that validation studies should be concerned with comparisons with field 
measurements, we also need to accept that these measurements are obtained in conditions that 
are to a large extent unknown. We do not know the fracture network (its geometry, fracture 
properties, boundary conditions, etc). In the author’s view, we therefore have to accept the 
following tentative definition of validation: 

- For the flow and transport in a fractured rock, validation of a simulation can be claimed if 
calibration can be performed with all adjustable parameters within realistic limits. 

This definition immediately raises the question “what is realistic limits?”. For major fracture 
zones we may be able to define bounds for properties (thickness, transmissivity, porosity, etc) 
and these bounds then define the “realistic limits”. However, for most applications properties 
and boundary conditions can not be given with error bounds and we have to accept the 
admittedly weak definition given. 

Validation cases are described in Appendix B and summarised in Table 4-1. As can be seen 
the validation cases are taken from calibration studies in various projects. We thus follow the 
definition of validation given above. 
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Table 4-1. Compilation of validation cases. 
 

Case Project (Reference) Comments 
A site scale validation 
(Case V1) 

Impact of the tunnel 
construction on the 
groundwater system at 
Äspö. Task #5 Svensson et 
al. (2002). 
 

Calibration focuses on: 
- Groundwater table 
- Pressure in boreholes 
- Kinematic porosity 
- Water composition 
 
Code: PHOENICS 
 

A laboratory scale 
validation (Case V2) 

A laboratory scale analysis 
of flow and salinity 
distribution in the Äspö 
area, Svensson (1999). 

Calibration focuses on: 
- Fracture 

transmissivities 
- Pressure in boreholes 
- Conductivity 

distributions 
 
Code: PHOENICS 
 

A repository scale 
validation (Case V3) 

Prototype Repository 
Groundwater flow, pressure 
and salinity distributions 
around the Prototype 
Repository. Continuum 
model No1, Svensson 
(2001). 
 

Calibration focuses on: 
- Tunnel inflows (skin) 
- Pressure in boreholes 
- Conductivity 

distributions 
 
Code: DarcyTools 

An experimental scale 
validation (Case V4) 
 

Simulation of tracer 
transport considering both 
experimental and natural, 
i.e. long, time scales, 
Svensson (2003). 
 

Calibration focuses on  
- PARTRACK 
- Sorbing and non-

sorbing tracer retention. 
 
Code: DarcyTools 
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5 Concluding remarks 

 
 
 

It is clear from Section 2 that the process of confidence building is complex and involves 
many aspects. The bottom line is if a particular simulation is credible or not. The computer 
code, and its verification and validation, is of course a key factor when credibility is judged, 
but the user of the code is also important. CFD simulations are still far from routine 
calculations and the modeller normally takes a number of decisions when formulating the 
problem conceptually and mathematically. The “credibility of the modeller” is hence also a 
factor to consider. 

The number and range of verification and validation cases presented is, in the author’s view, a 
good indication of the qualities of DarcyTools. More cases are not urgently needed; real world 
applications would however contribute to the confidence building. As DarcyTools is one of 
the codes used for the SKB Site Investigations, such applications will soon be available. 
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APPENDIX A Verification cases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 A2

         ONE-DIMENSIONAL TRANSIENT DIFFUSION 
     (Case A1) 
 
 
 
 
 
      1 Introduction 

The simplest possible test case is perhaps the one-dimensional transient diffusion 
problem. In order to relate this problem to fractured rocks, we will chose diffusion 
coefficients and dimension that describe “diffusive exchange with a dead-end fracture”. 
However, the chosen simulation parameters are of course of no significance for the test 
problem, i.e. we may equally well study the non-dimensional problem. 

The situation considered is outline in Figure A1:1. Initially the concentration in the 1D 
domain is 1.0. At time = 0.0 the concentration at the left boundary is suddenly reduced 
to 0.0, while the right boundary is of the zero flux type. 

The analytical solution to this problem can be found in Versteeg and Malalasekera 
(1995): 

( ) ( ) ( ) ( )
1

2
1 0

1

14 exp cos
2 1

n

n n
n

C x t C t x
n

αλ λ
π

+∞

=

−
= −

−∑     (A1:1) 

where ( )2 1
2n

n
L

λ π
−

=  and α  denotes diffusion coefficient, t time and 0C  initial 

concentration. 

The objective of the test case is to verify that DarcyTools can predict one-dimensional 
transient diffusion correctly. 

 

 

 

Figure A1:1. One-dimensional transient diffusion. Outline of situation studied. 
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          2 Numerical simulation 
Three different diffusion coefficients will be evaluated. With the coefficients and 
dimensions chosen, see Table A1:1, the time scale of the problem will be about 104 
years. 

Simulation parameters are summarised in Table A1:1. 

Table A1:1. Simulation parameters. 

Domain 

Initial condition 

1D, 10 metres  

c = 1.0 

Boundary conditions 0=c  at 0=x , 0/ =∂∂ xc  
at Lx = , for 0>t  

Diffusion coefficients Varied: 0.5, 1.0 and 
10100.2 −×  m2/s 

Grid Space: NX = 200 uniform 

Time: 5=∆t  years, uniform

 

 

        3 Results / Discussion 
The concentration at Lx =  was used for the comparison with the analytical solution, 
see Figure A1:2. A near perfect agreement is found. 

 

 

        4 Conclusion 
DarcyTools can calculate one-dimensional transient diffusion, with high accuracy. 
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Figure A1:2. One-dimensional transient diffusion. Comparison of the concentration at 
Lx =  as given by the analytical solution (            ) and DarcyTools ( • • • ).
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 A5

         ONE-DIMENSIONAL STEADY ADVECTION / DIFFUSION 
     (Case A2) 
 
 
 
 
 
       1 Introduction 

The situation studied is outlined in Figure A2:1. A steady flow, with a velocity of 2 m/s 
along the x-axis, is convecting a property φ . The property φ  is subject to sources and 
sinks and is also diffused along the x-axis. The steady state distribution of φ  is the 
solution of interest. This distribution is given by the following equation:  

 ( ) s
xx

u
x

+







∂
∂

∂
∂

=
∂
∂ φΓφρ     (A2:1) 

where u denotes velocity, Γ  diffusion coefficient and s sources and sinks. 

This test case has been presented in the book by Versteg and Malalasekera (1995), 
where also an analytical solution is given. An attempt was made to calculate the φ -
distribution from the analytical solution. This was however not successful; one possible 
reason for this is that there may be a printing error in the equations presented. The 
analytical solution was therefore taken from the graphical presentation, given by 
Versteg and Malalasekera (1995). 

The objective of the test case is to see how well DarcyTools predicts the φ  distribution 
when both convection and diffusion are significant in the flow direction. 

 

Figure A2:1. The situation considered. 
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          2 Numerical simulations 
Some of data specifying the problem are given in Figure A2:1; a complete account is 
given in Table A2:1. 

Three grid sizes will be tested in order to evaluate if a gridindependent solution can be 
obtained. 

Table A2:1. Simulation parameters. 

Domain 1D, Lenght = 1.5 metres 

Velocity 2.0 m/s, uniform 

Boundary Conditions Lxdxdx ==φ==φ at  0/ ,0at  0  

Source/Sink 200−=a , b =100 (see Figure A2:1) 

Properties 03.0=Γ   kg/m/s, 1=ρ  kg/m3 

Grid Varied: NX = 100, 200 and 300, uniform 

 

 

        3 Results / Discussion 
A comparison with the analytical solution and a grid independence test can be found in 
Figure A2:2. 

Starting with the comparison with the analytical solution, it is seen that a close 
agreement is achieved. As mentioned above, the analytical solution was taken from a 
figure given by Versteg and Malalasekera (1995) and there is course some uncertainty 
involved in that procedure. The agreement is thus concluded to be acceptable. 

The grid independence test shows that NX = 100 is not enough to generate a grid 
independent solution. Solutions for NX = 200 and 300 are however very close. The 
reason for the fairly fine discretisation needed is probably the use of a hybrid difference 
scheme. This scheme has been chosen for its many favourable properties (conservative, 
stable, etc) but it is a first-order scheme in terms of the Taylor series truncation error. In 
practical groundwater simulations it is however not expected that “diffusion in the flow 
direction” is a significant process and there is hence no strong reason to abandon the 
hybrid scheme, based on the results from the present test case. 
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          4 Conclusion 
DarcyTools predicts a correct steady state distribution of a scalar, subject to the 
combined effects of convection and diffusion. A fairly large number of grid cells is 
however needed to obtain a grid independent solution. 
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Figure A2:2. Comparison with analytical solution (top) and grid independence test. 
Symbols top:                     Analytical solution 
                             • • • •   Numerical solution 
               bottom:               Numerical solution NX = 300 
                                          Numerical solution NX = 200 

                                                    Numerical solution NX = 100
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          TWO-DIMENSIONAL PRESSURE PROBLEM 
     (Case A3) 
 
 
 
 
 
       1 Introduction 

In this test the pressure solver in DarcyTools will be used to predict the flow through a 
channel that has a complex pattern, see Figure A3:1. The channel will be given a much 
higher conductivity than the background and the flow through the domain will hence be 
restricted to the channel. A pressure drop from the lower left corner to the upper right is 
prescribed through the boundary conditions. In the channel a linear pressure drop is the 
correct solution. 

The objective of the test case is to verify that DarcyTools predicts a correct flow and 
pressure distribution for the situation described. 

 

 

Figure A3:1. Flow through a complex channel. Outline of situation studied and 
coordinates for the centre line of the channel. 
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          2 Numerical simulation 
The channel will be implemented by simply specifying the relevant cell wall 
conductivities. The general method in DarcyTools for describing a fracture in a 
continuum model (GEHYCO) will hence not be used here; a number of other test cases 
are devoted to GEHYCO. 

As we follow the gridsystem, the length of the channel will not be exactly the same as 
shown in Figure A3:1 (360 metres in the figure as compared to 359 in the numerical 
representation). This will be taken into account when calculating the through-flow 
analytically, aQ . 

Most of the test case specification is given in Figure A3:1; same additional data are 
given in Table A3:1. 

Table A3:1. Simulation parameters. 

Domain 100 x 100 x 1 metres  

Conductivity (channel) 510−  m/s 

Grid 0.1=∆  m, uniform 

 

 

        3 Results / Discussion 
The through-flow was predicted with an accuracy of 5 correct digits 
(  1.00001/ =calca QQ , where calcQ  is the predicted flow). 

The calculated pressure distribution is shown in Figure A3:2. As can be seen a complex 
pattern is obtained, but the pressure drop along the channel is linear, as expected. 
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          4 Conclusion 
It is concluded that the flow through a channel that runs along the coordinate directions 
can be calculated with high accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Figure A3:2. A channel in a 2D domain. Pressure distribution. The solid line indicates 
the centreline of the fracture.
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TESTS OF GRIDS  
(Case A4) 
 
 
 
 
 
 

        1 Introduction 
In this test case various grid options in DarcyTools will be evaluated. For a common situation, 
see Figure A4-1, different grids will be used and the results compared. It is thus an 
intercomparison between model results, as no analytical solution is available for the situation 
considered. 

The situation outlined in Figure A4-1, is an idealised case of an island in a salt water sea. The 
salinity at the vertical boundaries is prescribed to vary from 1.0% at the top boundary to 3.0% 
at the bottom. At the top boundary the salinity is 1% except for the square where a fixed 
inflow of fresh water (0% salinity) is prescribed. This will give a fresh water lens below the 
“island”. 

The objective of the test case is to demonstrate that similar solutions are obtained for a range 
of different grid arrangements. 

 

 

Figure A4-1. Outline of situation studied. 
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            2 Numerical simulations 
The input data are given in Table A4:1, see also Figure A4-1. The following grid types will be 
tested: 

- Cartesian, with constant ∆  

- BFC:s, i.e. simplified, or floating, BFC grid 

- BFC 

- Cartesian with embedded grid 

The grids will be plotted together with the simulation results. 

 

Table A4:1. Simulation parameters. 

Domain 

Boundary conditions 
 
 
 

 
 
 
 

Properties 

 
Grid 

1 x 1 x 1 km3 

Top: Prescribed pressure and salinity below  
         “sea” (1%), prescribed mass flow 
         ( )mm/year 100=− EP  with zero 
         salinity below “island”. 

Vertical and bottom: Prescribed salinity and  
                                  pressure. Salinity 1% at  
                                  ground level and 3% at  
                                  bottom 
Conductivity = 10-7 m/s 
Diffusivity = 0.0 

NX = NY = NZ = 50 m 
∆  varied, see result section 

 

          3 Results / Discussion 
We will study the salinity distribution in a xz-plane through the island (y = 500 m), see Figure 
A4-1. 

The salinity distribution as calculated in the Cartesian grid is shown in Figure A4-2. This 
simulation will be regarded as a reference, to be compared with solution obtained on other 
grids. For this purpose we will select the isolines 0.1 and 2.0% salinity; this reference figure is 
also shown in Figure A4-2. 

The first comparison concerns the BFC:s grid, see Figure A4-3. The grid is distorted in the 
interior, but in agreement with the Cartesian grid at the boundaries. It is concluded that the 
BFC:s grid gives the same salinity distribution as the Cartesian grid. 
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Next we study the BFC grid solution, see Figure A4-4. Now both the vertical and horizontal 
grid lines are distorted in the interior. The solution is however in good agreement with the 
Cartesian one. 

Finally an embedded grid case is tested, see Figure A4-5. As can be seen both the parent and 
embedded grid are of the Cartesian type. Once again we find a good agreement with the 
reference solution. 

Many more grid types and combinations of embedded grids can be handled in DarcyTools, for 
example a Cartesian grid with non-uniform ∆  or an embedded grid which is of different type 
from the parent grid. More tests can, and perhaps should, hence be done. 

 

          4 Conclusion 
For the grids tested a consistency in the predicted results has been demonstrated. More cases 
may be needed to test all grid options in DarcyTools. 
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Figure A4-2. Cartesian grid. Salinity distribution (top) and reference figure. 
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Figure A4-3. BFC:s grid. Dotted lines represent the solution on the Cartesian grid, solid line 
the BFC:s solution. 

Figure A4-4. BFC grid. Dotted lines represent the solution on the Cartesian grid, solid the 
line the BFC solution. 
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Figure A4-5. Embedded grid. Dotted lines represent the solution on the Cartesian grid, solid 
line the embedded grid solution.
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TEST OF PRESSURE-SALINITY COUPLING  
(Case A5) 
 
 
 
 
 

         1 Introduction 
The situation considered in Case A4, will in this test be used to study some properties of the 
coupled pressure-salinity option available in DarcyTools. For a Cartesian and a BFC:s grid 
the solution and convergence properties will be compared with the uncoupled solution. 

The objective of the test is to evaluate if the two solution techniques give the same results and 
to compare execution times. 

 

          2 Numerical simulation 
All data were introduced in Case A4 and will not be repeated here. 

Four cases will be run and the development of the pressure and salinity in a monitoring point 
will be analysed. The monitoring point is chosen at 500== yx  metres, at a depth of about 
250 metres; this is right below the fresh water lens. 

 

          3 Results / Discussion 
The development of pressure and salinity in the monitoring point can be studied in  
Figure A5-1 (Cartesian grid) and A5-2 (BFC:s grid). The horizontal line in the figures 
indicates the fully converged solution; as can be seen the uncoupled solution for salinity did 
not reach this value in 250 sweeps. In order to demonstrate that the same solution is 
eventually reached by the two solution methods, the uncoupled solution was continued till the 
value in the monitoring point was within %1±  of the final value. The number of sweeps 
needed to reach this convergence criterion can be studied in Table A5-1. As can be seen more 
than 500 sweeps were needed for the uncoupled solution method. 

The first impression of these tests is that the coupled solution is superior to the uncoupled one. 
However, one should note that the coupled solution requires roughly three times longer 
execution time per sweep. If this is taken into account we find that the coupled solution is 
about twice as fast as the uncoupled one. 

This test is far from complete and should only be considered as a first indication. If more tests 
are to be done the following aspects should be evaluated: 

• MIGAL provides a number of settings that influence the convergence speed. A range of 
these needs to be evaluated. 
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• Other situations (for example Henry’s problem) should be included, to see if the 
convergence statistics are general. 

 

         4 Conclusion 
For the problem considered, including two grid types, the coupled solution was found to be 
roughly twice as fast as the uncoupled one. 
 
Table A5-1. Convergence statistics. Number of sweeps needed to reach an error limit of 
±1% of the converged value in a monitoring point. 
 

Case Uncoupled Coupled 

 Pressure Salinity Pressure Salinity 

Cartesian  

 
BFC:s 

138 
 

109 

432 
 

600 

27 
 

21 

104 
 

144 
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Figure A5-1. Convergence history in a monitoring point, for Cartesian grid. Salinity (top) 
and pressure head. (         ) Uncoupled solution, (         ) Coupled solution. 
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Figure A5-2. Convergence history in a monitoring point, for BFC:s grid. Salinity (top) and 
pressure head. (         ) Uncoupled solution, (         ) Coupled solution.
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REGIONAL GROUNDWATER CIRCULATION,  
TOTH (1963)  
(Case B1) 
 
 
 
 
 

           1 Introduction 
The natural ground water table often follows the topography. If one assumes that the ground 
water table coincides with the topography it is possible, under some further assumptions, to 
predict the ground water circulation. 

Toth (1963) (as described in Fetter (1994)) provides an analytical solution for the case of a 
linear slope with an over-laying undulating sin-wave shaped upper boundary. This solution is 
illustrated in Figure B1:1. 

The objective of this testcase is to compare the numerical solution by the analytical solution, 
as given in Figure B1. The comparison will only be qualitative. 

 

 

 

Figure B1-1. The effect of increased basin depth is shown on these two figures. In Part A, the 
basin depth/length ratio is 1:20; in Part B, it is 1:2. The shallow basin has only local flow 
systems, whereas the deep basin has local, intermediate, and regional flow systems. The 
water-table configuration is the same for both basins. From Fetter (1994). 
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           2 Numerical simulation 
A computational domain of length 20 km and depth 10 km is specified, i.e. a two-dimensional 
situation is studied. 

The linear part of the slope has a total elevation of 400 metres, while the undulating part has 
an amplitude of 50 metres. 

Further details are given in Table B1:1. 

Table B1:1. Simulation parameters 
 

Domain 2D, 220 10 km ×    

 
Boundary Conditions Zero flux on all boundaries except for the top boundary 

where a fixed pressure, according to the topography, is 
prescribed. 

 
Properties Permeability = 16 22 10  m−  ×    

Porosity = 310−  
Viscosity = [ ]32 10  kg / ms−×  
Density = 1 000 [kg/km3] 

 
Grid       Uniform, 200,  100NX NZ= =  

 
 

            3 Results / Discussion 
The predicted ground water circulation is shown in Figure B1:2, which can be compared with 
the lower figure in Figure B1:1. A close agreement is found. 
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           4 Conclusion 
A qualitative agreement with the solution by Toth (1963) has been demonstrated. 
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Figure B1:2. Simulated groundwater circulation below an undulating topography.
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          STEADY GROUND-WATER TABLE  
     (Case B2) 
 
 
 
 
 
       1 Introduction 

The problem addressed is illustrated in Figure B2:1. In a two-dimensional vertical 
section the ground water elevation is sought. The groundwater flow may be forced by a 
pressure difference between the boundaries ( )21 hh −  or a vertical inflow at the top 
boundary, or both simultaneously. Only the steady state solution is to be considered. 

The groundwater level, h, at distance, x, is given by (from Fetter, 1994): 

 
( ) ( ) xxL

K
w

L
xhhhh   2

2
2

12
1 −+

−
−=    (B2:1) 

where K is conductivity and other notation as given in Figure B2:1.  

The objective of the test case is to verify that the algorithm used in DarcyTools 
(GRWT) predicts a groundwater table that is in agreement with the analytical solution. 

 

 

 

 

Figure B2:1. The groundwater table problem. Illustration of the situation and notation 
used. 
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          2 Numerical simulation 
The analytical solution is based on the Dupuit assumptions; a fact that needs to be 
considered in the numerical model set-up. One way to simulate the Dupuit assumptions 
is to introduce a higher conductivity in the vertical direction (as compared to the 
horizontal ones). This will make the vertical pressure distribution close to the 
hydrostatic one. A few test calculations revealed that increasing the vertical 
conductivity by a factor of 100 would “do the trick”. 

Predicting the groundwater table is of interest when the model domain includes the 
ground, i.e. the topography of the domain. For this reason we will try two grid types; 
cartesian and BFC:s. 

Further details of the test case are given in Table B2:1. 

 

Table B2:1. Simulation parameters. 

Domain 100 (horizontal) x 50 (vertical) metres 

Conductivity 810−  (horizontal), 610−  (vertical) m/s 

Boundary Conditions Bottom: zero flux 
Top: prescribed flux (base case 100 
mm/year or 9102.3 −×  m/s) 

Left: hydrostatic pressure, 301 =h  m 

Right: hydrostatic pressure, 202 =h  m 

Grid 1=∆  m, uniform for cartesian grid, 
stretched for BFC:s. 
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          3 Results / Discussion 
The comparison with the analytical solution is shown in Figure B2:2. The agreement is 
very close and needs no further comments. 

Figure B2:3 shows the results for the two grid types. The vertical coordinates were 
stretched with up to 10 metres (at the top boundary and x = 50 metres) using a sin-
function in the x-direction and a linear expansion in the z-direction. The flow pattern 
and the level of the groundwater table are however the same for both grids, as expected. 

 

 

         4 Conclusion 
The steady state groundwater table, as predicted by DarcyTools, is in good agreement 
with the corresponding analytical solution. 

 

 

 

Figure B2:2. Comparison between analytically (       ) and numerically (• • •) 
calculated groundwater table for two P-E values. 
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Figure B2:3. Predicted flow and groundwater table for a cartesian (top) and a BFC:s grid.
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          THEIS PROBLEM  
     (Case B3) 
 
 
 
 
 
       1 Introduction 

Theis problem deals with the transient drawdown due to a well that is discharging at a 
constant rate, Q, from an areally extensive confined aquifer. The situation considered is 
outlined in Figure B1:1. Some further specification: 

- The potentiometric surface is initially horizontal.  

- There is no source of recharge to the aquifer. 

- The aquifer is compressible and water is released instantaneously from the aquifer, 
as the head is lowered. 

The analytical solution to this problem is given by the following relations (as presented 
in Fetter, 1994): 

duu
e

T
Qhh

u

u

−∞

∫=−
π40     (B3:1) 

The integral in Equation B1:1 can be replaced with an infinite series so that the  
Theis equation becomes: 

 

 

Figure B3:1. Fully penetrating well pumping from a confined aquifer (from Fetter, 
1994). 
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The argument u is given as 

Tt
Sru

4

2

=      (B3:3) 

where h is hydraulic head, T transmissivity, b the aquifer thickness, r radial distance and 
S aquifer storativity (product of the specific storativity and aquifer thickness). 

In DarcyTools the relation between the porosity, φ , and pressure, p, is expressed as a 
state law (see main report). It can be shown that the two ways of expressing the 
storativity effect are related as follows: 

( )00 / θ=σ bS     (B3:4) 

where 0σ  is the coefficient in the state law and 0θ  the porosity before pumping starts. 

The objective of the testcase is to demonstrate that the storativity effect, as expressed in 
DarcyTools, is in accordance with Theis analytical solution. 

 

        2 Numerical simulations 
The flow towards the well will be radial and the problem is hence best handled in polar 
coordinates. This system is however not provided in DarcyTools and we thus need to 
simulate the problem as a 2D problem (it is 1D in polar coordinates) in cartesian 
coordinates. Due to symmetry conditions we need however only to consider one quater 
of the domain and the “pumped cell” is hence placed in the lower left corner of the 
domain. 

Further details of the simulations are given in Table B3:1. 

Table B3:1. Simulation parameters. 

Domain 2D, 1000 x 1000 x 10 metres 
Transmissivity 310−  m2/s 
Pumping rate 3105.2 −×  m3/s 
Storativity Varied: 0.005, 0.01 and 0.02 

Boundary conditions Zero flux condition on all boundaries 

Grid Expanding in x and y directions, one cell 
in z-direction (NX = 100, NY = 100,  
NZ = 1). First cell in expansion 1.0 metre, 
the last one 15 metres.  
Time direction: Ten days of integration 
time, subdivided into 1000 steps. 
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         3 Result / Discussion 
The comparison between the analytical and numerical solution, for three storativity 
values, is shown in Figure B3:2. A point at a radius of 100 metres from the well was 
chosen for the comparison. It is clear from the figure that a near perfect agreement is 
achieved (the error is always less than 1%). 

 

        4 Conclusion 
It has been shown that DarcyTools is in good agreement with the analytical solution of 
Thies problem. 

 

 

 

 

Figure B3:2. Comparison between analytically (        ) and numerically (•••) calculated 
drawdown at a radius of 100 metres from a well.
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          TRANSIENT PRESSURE IN A BOREHOLE  
     (Case B4) 
 
 
 
 
 
       1 Introduction 

This is Case 1 in the Hydrocoin series of test cases. From the Hydrocoin report we 
quote: 

Background 

This case concerns the transient flow of water from a borehole which penetrates 
a confined aquifer consisting of a homogeneous, isotropic permeable medium 
which is underlain by a single horizontal fracture. The case is shown 
schematically in Figure B4:1. The purpose of this test case is to verify the ability 
of codes to model transient tests in boreholes. Such tests are used to extract 
information about the hydraulic properties of a rock mass, namely the 
permeability of the rock matrix and the transmissivities of fractures. 

Thus a problem has been formulated involving unsteady flow from a finite-
radius borehole in a finite cylindrical region of permeable rock with a single 
fissure. Also, the piezometric head in the borehole is assumed to change 
continuously from its initial to its final value. It should be borne in mind that this 
problem, as well as the other Level 1 cases, is explicitly designed to test 
numerical codes rather than to model a realistic experimental situation. 

Conceptual model 

A vertical borehole is assumed to penetrate a saturated permeable layer of rock 
which is underlain by horizontal fracture and confined between impermeable 
horizontal boundaries (see Figure B4:1). From symmetry considerations, this is 
seen to be equivalent to the case where a horizontal fracture bisects a permeable 
medium. 

A prescribed time dependent head relative to a fixed head at a radial distance b is 
maintained in the borehole. The pressure field induced in the matrix and fracture 
could in principle be monitored using piezometers. 

Assumptions 

It is assumed that flow in both the rock matrix and the fracture can be described 
by Darcy’s law. The matrix is taken to be homogeneous and isotropic and 
characterised by hydraulic conductivity and a specific storage. The fracture is 
characterised by a transmissivity and a storage coefficient. It is further assumed 
that there is no vertical hydraulic gradient in the fracture. 
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Figure B4:1. Schematic diagram of the test problem (from the Hydrocoin report). 

         2 Numerical simulation 
The problem is best described in cylindrical coordinates; a coordinate system which 
however is not provided in DarcyTools. An approximate description of a cylindrical 
grid can be obtained with the BFC:s option, see Figure B4:2. This is the coordinate 
system to be used. 

Simulation parameters are summarized in Table B4:1. 

 

Table B4:1. Simulation parameters 

Domain Borehole radius = 0.1 m, b = 10.0, d = 5.0 m, 
with notation from Figure B4:1. 
 

Boundary Conditions Transient head = 1.0 ( )1.0/1 te−−  [m] 
zero flux at y = 0 and maxyy =  
Head = 0.0 at x = 0 
 

Properties Matrix 
Conductivity = 10-9 m/s 
Specific storage coeff = 10-7 m-1 
Fracture 
Conductivity = 10-6 m/s 
Specific storage coeff = 10-7 m-1 

 
Grid  NX = 105, Ny = 56, NZ = 2 

see Figure B4:2. The timestep was 0.01 s, 
initially and gradually increased to 1.0 s 



 A34

          3 Results/Discussion 
The transient build up of the head in two selected points is shown in Figure B4:3. 
Considering that the grid is an approximation of a grid in cylindrical coordinates, the 
solution is considered to be in good agreement with the analytical solution. 

As specified in Table B4:1, two cell layers were used in the z-direction. This is not 
required from the problem specification, but was found to be necessary for the 
numerical solution. This point and the sensitivity to the conductivity between the two 
layers, should be clarified. 

 

 

 

 

 

 

 

 

Figure B4:2. The computational domain. 
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Figure B4:3. Comparison between simulated (          ) and analytically determined 

(        ) head build up in two points. Top figure gives point A (see Figure B4:2) and 
bottom one point B. 
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          4 Conclusion 
A good agreement between the simulated and analytically determined head built up has 
been demonstrated. 

Some aspects of the simulation remain to be clarified.  
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SPECIFIC YIELD, NEUMAN (1975) 
(Case B5) 
 
 
 
 
 

          1 Introduction 
The pumping of an unconfined aquifer generates a characteristic time-drawdown curve in a 
near borehole piezometer; first a steep part, then an almost flat part and finally a relatively 
steep late-time segment. The flat part is attributed to “delayed yield”, which is the 
gravitational drainage of the unsaturated zone. 

Neuman (1975) gives an analytical solution which covers all three parts. The assumptions of 
this solution are different to the ones in the numerical technique embodied in DarcyTools (see 
Part A). In particular, Neuman (1975) assumes that the water table remains at its original 
position, while the numerical model considers a moving ground water table. 

The objective of this case is to compare the first two parts of the drawdown curve and in 
particular the levels of the flat part. For longer pumping (and larger drawdowns) the two 
solutions may not be comparable, but this point will not be investigated here. 

 

           2 Numerical simulation 
The problem will be specified as a three dimensional one in cartesian coordinates, although a 
two dimensional solution in cylindrical coordinates would have been more appropriate. An 
outline is given in Figure B5:1; we are hence only studying one quarter of the complete 
domain (due to symmetry conditions). 

Input data are given in Figure B5:1 and Table B5:1. 

 

 

Figure B5-1. Outline of situation studied. 
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Table B5:1. Simulation parameters 
 
Domain 3250 250 10 m × ×    

 
Boundary Conditions Zero flux  

 
Sink due to pumping 3 35 10  m /s−  ×    

 
Properties Permeability = 11 22 10  m−  ×    

Porosity = 210−  
Density = 1 000 [kg/km3] 
Spec. storativity = 52 10−×  
Delay time = 50 s 
Specific yield = 0.2 
 

Grid x and y: Uniform for 20 metres with cell size 0.5 m, then 
expanding up to 250 metres, using 60 cells. 
z: Uniform. NZ = 16. 

 

           3 Results / Discussion 
The simulated time-drawdown curves in three points (at different distances from the well) are 
shown in Figure B5:2. The levels of the flat part, as given by the analytical solution, is also 
given in the figure. As can be seen a surprisingly close agreement, considering the different 
basic assumptions, is found. 

 

 

           4 Conclusion 
It is found that the flat part of the time-drawdown curve is in agreement with the analytical 
solution by Neuman (1975). 
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Figure B5:2. Time-drawdown at distances 4.5 (top), 10 (middle) and 20 (bottom) metres from 
the well. Dotted lines give the corresponding analytical solutions for the flat part.
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HORIZONTAL WELL PROBLEM 
(Case B6) 
 
 
 
 
 

          1 Introduction 
Analytical solutions of the drawdown in an unconfined aquifer, due to a horizontal well, are 
presented by Zhan and Zlotnik (2002). 

The situation studied is outlined in Figure B6:1. The drawdown in four different piezometer 
locations is studied, as a function of time. A uniform sink strength, in space and time, is 
assumed. 

The analytical solution assumes that the change in the water table is much smaller than the 
depth of the aquifer. Further, a delayed drainage can be specified by what is called a “delay 
index”, 11/α , with dimension time. The numerical solution handles a moving ground water 
table and the top boundary condition is thus not similar to the one in the analytical solution. A 
similar time constant for the delayed drainage is however also present in the numerical 
method. 

The objective of the testcase is to compare the time-drawdown curves in the four piezometer 
locations and to evaluate the significance of the delay index. 

 

 

 

 

Figure B6:1. Outline of situation studied. Locations of piezometers at point A (0, 10 m, 5 m), 
B (10 m, 10 m, 5 m), C (0, 10 m, 2.5 m), and D (0, 10 m, 7.5 m). Figure from Zhan and 
Zlotnik (2002). 
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           2 Numerical simulation 
The coordinates for the four points are given in Figure B6:1. Other input data are summarised 
in Table B6:1. 

Due to symmetry conditions only one quarter of the domain needs to be considered. 

Table B6:1. Simulation parameters 
 
Domain 3200 200 10  m × ×    

 
Boundary Conditions Zero flux  

 
Sink due to pumping 3 35 10  m /s−  ×    

 
Properties Permeability = 11 22 10  m−  ×    

Porosity = 210−  
Density = 1 000 [kg/km3] 
Spec. storativity = 52 10−×  
Delay time = 100 s 
Specific yield = 0.2 
 

Grid x and y: Uniform for 10 metres with cell size 0.25, then 
expanding up to 200 metres, using 60 cells. 
z: Uniform. NZ = 40. 
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           3 Results / Discussion 
It was not possible to get a close agreement with the analytical solution for the drawdown in 
the four points. The reason for this is not clear but the different top boundary conditions is one 
possibility. 

This expectation is supported by the fact that a slightly modified vertical conductivity, 
increasing zK  from 410−  to 41.7 10−×  m/s, brings the numerical solution into fair agreement 
with the analytical one. 

In Figure B6:2 the two solutions for the four points are compared. All curves have been made 
dimensionless in the same way (for details, see Zhan and Zlotnik (2002)) and are hence 
directly comparable. A fair agreement is found. 

Next the influence of the time scale for the drainage is evaluated, see Figure B6:3. If the delay 
time, given in Table B6:1, is 100 s or smaller the drainage can be regarded as instantaneous 
and a smaller value will not change the result. Also Zhan and Zlotnik found that the influence 
of their 1α , which is the inverted time, had a limit of about 0.01; a larger value did not 
produce any change. In the numerical simulation it was not possible to increase the delay time 
to any big number as the ground water table would then be lowered down to the horizontal 
well. A value of 1 000 s was however acceptable, see Figure B6:2. The analytical solution 
postulates that the ground water table movement is small and one may hence question if the 
analytical solutions are realistic for small 1α  - values. 
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Figure B6:2. Non-dimensional drawdown versus non-dimensional time for four piezometer 
locations. Analytical (top) and numerical solutions. 
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Figure B6:3. Sensitivity to delay index in point A. Analytical (top) and numerical solutions. 
In the numerical solution the delay times shown are 100 s (dotted line) and 1 000 s. 
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           4 Conclusion 
A fair agreement with the analytical solution for the case considered could be achieved by a 
slight modification of the vertical conductivity (multiplied with a factor of 1.7). The reason 
for this is not clear but could be due to the different top boundary conditions in the two 
solutions. 
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           THREE FRACTURES IN A 2D DOMAIN (Case C1) 
 
 
 
 
 
         1 Introduction 

This case considers the steady flow through three crossing fractures in a 2D domain, see 
Figure C1:1. Pressure is prescribed on the left and right boundaries, while the top and 
bottom boundaries are of zero flux type. 

It is possible to determine the flow in all individual parts of the network analytically, as 
well as the pressure in the fracture crossings; these data will be used for verification of 
the numerical results. It is of special interest to study the accuracy of the numerical 
solution as a function of the fracture thickness, b, in relation to the cell size, ∆ . 

The objective of the test case is to verify that DarcyTools is in agreement with the 
analytical solution for the case considered. 

 

 

 

 

 

 

 

 

Figure C1:1. Flow in a two-dimensional fracture system. Outline of situation 
considered. 

0.50 
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   2 Numerical simulation 
The computational domain is specified in Figure C1:1 and some further details are 
given in Table C1:1. The pressure difference ( ( )01 −P  and the fracture conductivity are 
of no importance, as we will normalize all results with the data from the analytical 
solution. The number of grid cells is held constant and the ratio ∆/b  is hence varied by 
varying the fracture thickness b. 

A test with a fracture network, where all the fractures do not directly connect the two 
sides with prescribed pressure, will also be carried out. In this test part of fracture c 
(from inlet to point  2  ) and part of fracture b (from point  3  to outlet) will be removed. 

Table C1:1. Simulation parameters 

Domain 
1P  

Fracture Conductivity 
Fracture thickness  
Grid 

2D 10 x 5 metres 
9810 Pa  

5105 −×  m/s 
∆/b  varied: 0.1, 0.5, 1.0 and 2.0 

400 x 200 cells,∆  = 0.025 m 
 

 

         3 Results / Discussion 
All results are summarised in Table C1:2. Both the total flux through the domain, Q, 
and the pressures in points 1, 2 and 3 have been normalised with the corresponding 
values from the analytical solution. The general picture is that the numerical solution is 
in close agreement with the analytical one, it should however be noted that calculated 
flow decreases, in relation to the analytically calculated, with a decreasing ratio ∆/b . 

 

Table C1:2. Flow and pressure in a fracture network. Values calculated with 
DarcyTools have been normalised with the corresponding values from the 
analytical solution. 

Fracture thickness normalised with ∆  ( )∆/b . Parameter 

0.1 0.5 1.0 2.0 1.0, 
 fractures 
removed 

Q 0.960 0.987 0.997 1.001 0.998 

1P  1.000 1.001 1.001 1.001 0.998 

2P  0.998 0.999 0.999 1.000 1.005 

3P  0.998 1.000 1.000 1.000 0.982 
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          4 Conclusion 
Flow and pressure in three crossing fractures in a 2D domain can be accurately 
calculated by DarcyTools. 
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          INTERSECTING FRACTURE ZONES  
     (Case C2) 
 
 
 
 
 
       1 Introduction 

The case is described in the Hydrocoin report, from where we quote: 

Background 

This test case concerns steady-state flow in a two-dimensional vertical slice of a 
fractured rock. The region contains two inclined fracture zones which have a 
higher permeability than the surrounding rock. The fracture zones intersect one 
another depth. 

The purpose of this problem is to test capabilities of different codes to treat large 
permeability contrasts. In view of the complicated geometry, no attempt was 
made to find an analytical solution for this problem. Thus, the accuracy of the 
solutions is judged by examining the convergence with respect to spatial 
discretisation. 

It is recognised that the flow in crystalline rock systems is generally poorly 
described by two-dimensional models. However, a two-dimensional problem 
was chosen since it was deemed tractable by the majority of the participants, 
especially since convergence tests for three-dimensional problem would have 
been extremely expensive and time consuming. The main point of this case, 
namely the solution convergence of a problem with large permeability contrasts, 
can still be appropriately tested in two dimensions. 

Conceptual model 

A two-dimensional cross-section of a fractured rock mass is intersected by two 
fracture zones as shown in Figure C2:1. The zones, which have different widths 
and inclinations, intersect at depth within the modelled region. 

The topography has been made simple so that it consists of two valleys located 
where the fracture zones meet the surface. To simplify the problem definition, 
the shape of the surface is described by straight lines. It should be noticed that in 
order to define the horizontal derivative unambiguously at the top corners, the 
surface is taken to be horizontal for the first ten metres. Although the surface 
topography is symmetric, the flow is influenced by the asymmetry of the fracture 
zones. 

Assumptions 

It is assumed that Darcy’s law is applicable to both the fracture zones and the 
rock matrix. Moreover, both units are assumed to be homogeneous and isotropic 
media with hydraulic conductivities fK  and mK  respectively. 
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The rainfall is assumed to be sufficient to cause the water table to be coincident 
with the surface. The remaining boundaries are assumed to be impermeable to 
water flow. 

 

          2 Numerical simulations 
The original Hydrocoin case was focused on grid refinement. Here only a very fine grid 
will be used (it is expected that the solution on the grid represents the grid independent 
solution). 

The details of the simulation are summarized in Table C2:1. 

Table C2:1. Simulation parameters. 

Domain See Figure C2:1. 
 

Boundary Conditions Prescribed pressure at top: zero flux on all 
other boundaries. 
 

Properties Conductivity fractures = 10-6 m/s 
Conductivity background = 10-8 m/s 
 

Grid  160 (horizontal) x 110 (vertical) cells, 
stretched to follow the upper boundary. 

 

 

         3 Results/Discussion 
The distribution of hydraulic heads at the levels of -200 m and –800 m are shown in 
Figures C2:2 and C2:3, respectively. The top diagrams in these figures represent the 
Hydrocoin results and the bottom ones the present predictions. A fair agreement is 
found.  

The flow and pressure distributions are illustrated in Figure C2:3. This figure is 
included to provide a more complete view of the present simulation and is not used for 
comparisons with the Hydrocoin results. 

 

        4 Conclusion 
A fair agreement with the head distributions provided by the Hydrocoin simulations has 
been demonstrated. 
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Figure C2:1. Geometry of the modelled domain. 
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Figure C2:2. Distribution of hydraulic head at a level of –200 m. Hydrocoin results 
(top) and present prediction. 
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Figure C2:3. Distribution of hydraulic head at a level of –800 m. Hydrocoin results 
(top) and present prediction. 
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Figure C2:4. Predicted flow and pressure. Uniform length on velocity vectors.
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          SINGLE FRACTURE IN A BOX  
     (Case C3) 
 
 
 
 
       1 Introduction 

It was noted in the main part of the report that the accuracy of the representation of a 
fracture depends on the angles the fracture forms with the coordinate directions and the 
thickness of the fracture (in relation to the cell size ∆ ). The purpose of this test case is 
to establish the magnitude of the errors that can be expected due to these effects. 

The situation studied is outlined in Figure C3:1. The pressure is held constant on two 
opposite faces ( 0.0=y  m and 0.100=y  m) and a zero flux condition is used on all 
other boundaries. At the inflow boundary the position of the fracture is fixed, with 
centreline coordinates (10.0, 0.0, 10.0). The fracture position at the downstream 
boundary is varied in order to test a wide range of angles to the coordinate directions. 
Also a range of thicknesses was tested, but the height of the fracture, H, was kept 
constant at 5 metres. 

 

Figure C3:1. A single fracture in a 3D domain. Outline of situation studied (top) and 
illustration of fracture centre line and mean streamline. All distances in metres. 
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          2 Numerical simulations 
Most of the simulations parameters are introduced in Figure C3:1, some further details 
are summarised in Table C3:1. 

A systematic variation of the fracture thickness and the downstream position will be in 
focus in the simulations. 

Table C3:1. Simulation parameters 
 

Domain 100 x 100 x 100 metres 

Boundary conditions  Fixed pressure difference (= 1 metre 
head) between two opposite faces. Zero 
flux on other faces 

Fracture dimensions Height = 5 metres, thickness varied (see 
Result section) 

Fracture position Fixed at inflow boundary (see Figure 
C3:1), varied at outflow boundary (see 
Result section) 

Fracture conductivity 410−  m/s 

Grid 1=∆  metre, uniform 

 

 

        3 Results / Discussion 
Results are presented in Table C3:2. Five downstream fracture positions and five 
fracture thicknesses were tested. The five downstream fracture positions will give a 
fracture that, for the first position, is parallel to the y- coordinate while the last position 
gives a fracture that almost follows a diagonal in the box. Note also that the x and z 
coordinates for the downstream positions are different; this ensures that the fracture will 
have different angles to all three coordinate directions (except for the first position). The 
grid representation of the transmissivity, T, is obtained from the calculated flow rate, 

cQ , the head difference, dh, between the inlet and outlet planes, the fracture height, H, 
and the centre line length of the fracture, L. 
 

 
dh
L

H
Q

T c=    (C3:1) 

 
In Table C3:2 the ratio 0/TT , where T0 is the true, prescribed, transmissivity, is given 
for the five downstream positions and fracture thicknesses, b. For the first position, i.e. 
the fracture that is parallel to the y-coordinate, the transmissivity is represented exactly 
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in the grid. For other angles it is found, as expected, that the error generally increases 
with decreasing ∆/b . In Table C3:2 also the average 0/TT  as a function of ∆/b  can be 
found. The average ratio for all 25 tested situations is 0.984. 
A comment may be needed to the value 1.007 (x = 90, z = 70, 0.2/ =∆b ) in  
Table C3:2. It is expected that the method gives 0.1/ 0 ≤TT  for all thicknesses and all 
angles the fracture forms with the coordinate directions. The explanation for values 
larger than 1.0 is that the mean streamline may be shorter than the centreline of the 
fracture, see Figure C3:1. The T-values in Table C3:2 were all calculated using the 
centreline of the fracture as the distance between the inlet and outlet plane and may 
hence overestimate the length somewhat. 

Table C3:2. Single fracture in a 3D domain. The transmissivity as represented in 
the computational grid, T, normalised with the true transmissivity, T0 , for various 
fracture thicknesses and orientations. 

 
Transmissivity ratio, T/T0 
Fracture thicknesses, b/∆ 

Fracture coordinates at 
downstream boundary 

[m] 2.0 1.0 0.5 0.25 0.125 
x = 10.0, z = 10.0 1.000 1.000 1.000 1.000 1.000 
x = 30.0, z = 25.0 
x = 50.0, z = 40.0 

0.997 
0.997 

0.993 
0.989 

0.981 
0.970 

0.953 
0.947 

0.949 
0.926 

x = 70.0, z = 55.0 1.001 0.995 0.983 0.969 0.966 
x = 90.0, z = 70.0 1.007 1.002 0.996 0.993 0.989 

                      Average  1.000 0.996 0.986 0.972 0.966 
 

 

        4 Conclusion 
It is concluded that the flow through a single fracture, with arbitrary orientation to the 
coordinate directions, can be expected to be accurately predicted (maximum error about 
1%) provided that 0.1/ >∆b . If 125.0/ =∆b  the average error is about 3%, but for 
some fracture orientations an error of 5% can result. 
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          MANY FRACTURES IN A BOX  
     (Case C4) 
 
 
 
 
 
       1 Introduction 

This case is based on the same computational domain as case C2 (see Figure C2:1). It is 
thus a box with dimensions 100 x 100 x 100 metres, which is discretized using a cell 
size , ∆ , of 1 metre. A range of thicknesses, b, will be considered, but the height, H, of 
the fractures will be held constant and equal  to 5 metres. 25 fractures will be generated 
with start and end positions randomly distributed on the squares 0.900.10 << x , 

0.900.10 << z . The total flow rate, tQ , will be equal to the sum of the flow in each 
fracture: 

∑ ∑ ∑===
L

HTdh
L
dhHTQQt

1    (C4:1) 

where dh is the applied head difference, T the fracture transmissivity and L the length of 
a fracture. 

The objective of the test case is to evaluate how well we can represent the transmissivity 
of several, randomly oriented, crossing fractures. 

 

        2 Numerical simulation 
In order to calculate the average fracture transmissivity as represented in the grid, T, we 
need to know the total flow rate and the sum of 1−L , where L is the fracture length. 
These lengths are calculated and stored during the generation of the fractures. The 
generated fracture system, consisting of 25 fractures, is shown in Figure C4:1. As can 
be seen a complex system of crossing fractures is generated. Simulations were carried 
out for a range of fracture thicknesses and the average fracture transmissivity, T, was 
estimated from Equation C4:1. 

The simulation parameters are summarised in Table C4:1. 

 

        3 Results / Discussion 
Results from simulations are found in Table C4:2. As for the previous test cases we find 
that the error increases with decreasing fracture thickness. For 0.2/ =∆b  the ratio 

1/ 0 >TT ; this is probably due to the estimate of the mean streamline length, discussed 
in the previous test cases. 
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         4 Conclusion 
It is concluded that the flow rate through a simple fracture network in 3D is calculated 
correctly by DarcyTools, provided the fracture thickness ( )∆/b  is not to small. 

        Table C4:1 Simulation parameters 

Domain 100 x 100 x100 metres 

Boundary Conditions Fixed pressure on two opposite faces  
(y =0.0 and 100 metres) 

Fracture thickness Varied; ∆/b  = 0.125, 0.25, 0.5, 1.0 and 
2.0 

Fracture transmissivity 410−×b  m2/s 

Grid 1=∆  metre, uniform 

 

Figure C4:1. 25 fractures in a 3D domain. Illustration of the fracture system. The 
bottom of the box has been marked with a grid. Colours do not indicate any varying 
property. 
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Table C4:2. Many fractures in a 3D domain. The average transmissivity as 
represented in the computational grid, T, normalised with the true transmissivity, 
T0 , for a range of fracture thicknesses. 
 
Fracture thickness/∆ Average transmissivity  

 
2.0 
1.0 
0.5 
0.25 
0.125 

1.011 
1.000 
0.990 
0.971 
0.960 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 A61

           PERCOLATION THEORY  
     (Case C5) 
 
 
 
 
 
       1 Introduction 

Percolation theory deals with the question whether two, or more, faces of a box are 
connected through a fracture network. Below a certain fracture density, d, (number of 
fractures per unit volume) the box faces are not connected, while they are connected 
above this value. The critical density, dc, is called the percolation threshold. Estimates 
of dc for various fracture networks can be found in the percolation literature and we 
want to ensure that our fracture network connects the box faces at the correct fracture 
density. 

In a numerical simulation only finite size systems can be considered, while theoretical 
estimates of dc often assume infinite systems. Many studies are also restricted to 
orthogonal fracture sets; a recent example is Bour and Davy (1998). Fewer results are 
available for the situation we have in mind. However, in Robinson (1984) randomly 
oriented square planes in a finite volume are studied and a critical density is given. The 
percolation criterion was that all six faces should be connected by one single cluster. The 
critical density given by Robinson for a box of 20 x 20 x 20 m3 filled with thin squares of 
side length one metre is 1.231 planes per unit volume; this value will be used as a 
reference.  

A fracture network, at the critical fracture density, is shown in Figure C5:1. The 
fractures have random positions and orientations and a side length of 10 metres; all 
isolated fractures and fracture clusters have been removed. 

The objective of the case is to show that a fracture network at the percolation threshold 
results in connected flow channels, when the network has been represented as grid cell 
conductivities. 
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Figure C5:1. A fracture network that connects two opposite faces of the box (top) and 
the corresponding flow channels. Fracture density at the percolation threshold.  
Fracture size is 10 metres. The two connected sides of the box have been marked with 
grids. 
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          2 Numerical simulations 
Thin (thickness = 0.1 m) squares (10 x 10 m) will be distributed randomly in a box with 
dimensions 100 x 100 x 100 metres. Also the orientation of the fractures will be 
random.  

A range of fracture densities will be tested and for each a flow calculation will be 
carried out. The relation between the flow rate, Q, and the fracture density is sought. 

The simulation parameters are summarised in Table C5:1. 

 

Table C5:1 Simulation parameters 

Domain 100 x 100 x100 metres 

Boundary Conditions Fixed pressure on two opposite faces  
(y =0.0 and 100 metres) 

Fracture size 10 x 10 x 0.1 metres 

Fracture transmissivity 410−  m2/s 

Fracture density Varied: 333 m 105.1108.0 −−− ×→× . 

Grid 1=∆  metre, uniform 

 

 

        3 Results / Discussion 
The main result is given in Figure C5:2, where the flow rate versus the fracture density 
is shown. The two vertical lines give the estimated critical density as given by Robinson 
(1984) (discussed above) and Charlaix et al. (1984): 

×= dp  (average area of the fractures) ×  (average half perimeter) (C5:1) 

Charlaix et al. (1984) proposed that the dimensionless number p must lie between 1.5 
and 3 at the percolation threshold. The line in Figure C5:2 was based on a 25.2=p , 
which is in the middle of the range given. 

The results are regarded as evidence that fracture connectivity is maintained when a 
network is represented as grid cell conductivities. As we are using networks at the 
percolation threshold, the network represents the weakest possible connection between 
the two box faces; still flow channels are generated. 
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An important aspect of the problem considered is the probabilistic nature of cd  (both 
position and orientation are random variables). It is hence not possible to estimate cd  
from a single realisation of the network. An analysis that considers this aspect, and also 
analyses a network with fractures of a side length 5 metres, is given in Svensson (2001). 

 

        4 Conclusion 
It has been shown that, a fracture network at the percolation threshold, represented as 
grid cell conductivities, results in a connected flow system. 
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Figure C5:2. Predicted (•••) relation between fracture density and flow through the 
domain. Lines represent estimates of cd  from the literature; (           ) Charlaix et al. 
(1984), (           ) Robinson (1984)

Density *1.E3

F
lo

w
*1

.E
4

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Frame 001  24 Jan 2002  Internally created data set

 

 

 

 



 A66

          DIFFUSION IN A DEAD-END FRACTURE  
     (Case C6) 
 
 
 
 
 
       1 Introduction 

This test case, see Figure C6:1, has previously been used to verify that a correct flow 
rate through a single fracture is calculated and also that a correct transport time is 
obtained (Svensson, 2001). Now, it is the diffusive transport that is in focus. Initially the 
fracture has a concentration (of some substance) of 1.0. A zero flux boundary condition 
is prescribed at y = 10 metres and a concentration of 0.0 is prescribed for y = 0 metres. 
The fracture position at the downstream boundary is varied in order to test a wide range 
of angles to the coordinate directions. Also a range of thicknesses was tested, but the 
height of the fracture was kept constant at 0.5 metres. 
 
This problem has an analytical solution, for example presented by Versteeg and 
Malalasekera (1995), which reads: 
 

( ) ( ) ( ) ( ) cosexp
12

14, 12

1

1
1 xtD

n
txc nna

n

n

λλ−
−

−
π

= ∑
∞

=

+

        (C6:1) 

 

where ( )
L

n
n 2

12 π−
=λ , and t is time, L total length of the fracture, 1x coordinate starting 

from the zero flux boundary and following the fracture and aD  the diffusion coefficient. 

The objective of the test case is to verify that the numerical solution is in agreement 
with the analytical one. 
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Figure C6:1. Diffusion in a dead-end fracture. Outline of situation studied. All 
distances in metres. 
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          2 Numerical simulation 
The time scale of the problem can be estimated as aDL /2 . As we are interested in "long 
time storage of water" we choose 1010−=aD  m2/s, which gives a time scale of the order 
of s1210 . The integration time will be 10 000 years, which is equal to s11103× . 

The simulation parameters are summarised in Table C6:1, see also Figure C6:1. 

Table C6:1. Simulation parameters 
 

Domain 10 x 10 x 10 metres 

Initial and Boundary conditions 

10at   0 /
0at  0 ,0

0 ,1

==∂∂
=>=

==

yyc
ytc

tc
 

Fracture dimension Height = 0.5 metres, thickness varied (see 
Result section) 

Fracture position Fixed at y = 0 metres boundary (see Figure 
C6:1), varied at y = 10 metres (see Result 
section) 

Diffusion coefficient 1010−  m2/s 

Grid 1.0=∆  metre, uniform. 

 

 

         3 Results / Discussion 
Results are presented in Table C6:2. Five downstream fracture positions and four 
fracture thicknesses were tested. The five downstream fracture positions will give a 
fracture that, for the first position, is parallel to the y- coordinate while the last position 
gives a fracture that almost follows a diagonal in the box. Note also that the x and z 
coordinates for the zero flux boundary are different; this ensures that the fracture will 
have different angles to all three coordinate directions (except for the first position). The 
concentration at the zero flux end of the fracture is normalised with the analytically 
determined concentration, ac , all after 104 years. 
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Table C6:2. Diffusion in a dead-end fracture. Concentration as represented in the 
grid, c , normalised with the true concentration , ac , for various fracture 
thicknesses and orientations. All for a time of 10 000 years and at the zero flux 
boundary. 

 
Concentration (c/ca) 

Fracture thickness (b /∆) 

Fracture 
coordinates at 

zero flux 
boundary [m] 

Analytically 
determined 

concentration, 
ca 

0.1 0.5 1.0 2.0 

X = 1.0, Z = 1.0 0.588 1.0 1.00 1.00 1.00 

X = 3.0, Z = 2.5 0.612 1.05 1.02 1.01 1.01 

X = 5.0, Z = 4.0 0.685 1.05 1.02 1.01 1.00 

X = 7.0, Z = 5.5 0.772 1.02 1.01 1.01 1.00 

X = 9.0, Z = 7.0 0.852 1.00 1.00 1.00 1.00 

                                        Average 1.02 1.01 1.01 1.00 
 

From Table C6:2 one may conclude that accurate concentrations are calculated provided 
∆/b  is not to small; if ∆/b  is larger than 0.5 the error is less than 2%. In Svensson 

(1999a), it was found that the flow rate through a single fracture in a 3D domain was 
under-predicted with a few percent. The error in the concentrations has  
the same origin, as the diffusive flux is represented in the grid by a procedure that is 
analogous to that of the Darcy flux. 
 
The concentration at the zero flux boundary as a function of time is given in Figure 
C6:2. As can be seen, the numerical solution is in fair agreement with the analytical one 
also for the development in time. 
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          4 Conclusion 
Accurate diffusive transport is calculated for a single fracture of varying thickness and 
orientation in a 3D domain, provided the fracture thickness in relation to the grid size is 
not to small. If 5.0/ >∆b , the maximum error in the calculated concentrations is found 
to be less than 2%. 
 

 

 

 

 

 

 

 

 

 
Figure C6:2. Diffusion in a dead-end fracture. Concentration at the zero flux boundary 
for three positions of the fracture  
(x = 9.0, z = 7.0 (top) x = 5.0, z = 4.0 (middle) and  
x = z = 1.0 (bottom)). Solid line gives the analytical solution.
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MATRIX-FRACTURE TEMPERATURE PROBLEM 
(Case C7) 
 
 
 
 

           1 Introduction 
This study concerns the convective-conductive processes in a fracture plane and the 
surrounding rock matrix, see Figure C7:1. A point heat source is located at (7.875, 0.125, 
0.125) (cell centre coordinates) and the steady state temperature distribution in the fracture 
and the rock is sought. 

An analytical solution for this case is given by Probert and Claesson (1997). They found that 
the temperature distribution is governed by a dimensionless parameter, p: 

2
w w wcc qp ρ
λ

=      (C7:1) 

where, 

wρ =  water density 3kg / m    

wc =  water heat capacity 3/ m  J C  
o  

wcq =  water flow in fracture 3m / ms    

λ =  heat conductivity of the rock W / m C  
o  

For further details see Probert and Claesson (1997). The objective of this testcase is to 
compare the numerical and the analytical solution. Two different p-values will be considered. 

Z
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Figure C7:1. Outline of the situation studied. 
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            2 Numerical simulation 
The general outline of the computational domain is given by Figure C7:1. Additional input 
data are summarized in Table C7:1. The prescribed pressures at the  x = 0 and x = 50 
boundaries will give a uniform flow wcq , in the x- direction. 

Note that due to symmetry conditions only one quarter of the domain is specified in the 
numerical solution. 

Table C7:1. Simulation parameters 
 
Domain 350 75 75  m × ×    

 
Boundary Conditions 5

0 2.93 10xP = = ×  [ ]Pa  

50 0.xP = =  
Zero flux on other boundaries. 
Temperature put to zero at maxz z= , maxy y=   
and at fracture inlet.  
 

Heat source 600/4 = 150 [W]. 

 
Properties Viscosity = 31.78 10  −×  [ ]kg / ms  

Fluid heat capacity = 4200 3/ m  J C  
o  

Density = 1 000 3kg / m    
Porosity = 0.01  
Permeability = 1210−  [m2] 
Thermal conductivity = 3.5 W / m C  

o  

Rock thermal capacity = 62 10×  3/ m  J C  
o  

 
Grid NX = 120, NY = 100, NZ = 100, expanding  

from the heat source. 
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           3 Results / Discussion 
The numerical solution is compared with the corresponding analytical solution for p = 1, 
Figure C7:2, and p = 5, Figure C7:3. As can be seen, a good agreement is obtained for both  
p values. 

The numerical solution was found to be sensitive to the boundary conditions at maxz z=  and 

maxy y= . It was hence necessary to increase the domain size in these directions until the near 
source temperature fields were unaffected by the boundary conditions. This explains the large 
domain size in these directions. 

 

 

         4 Conclusion 
The temperature distribution in a fracture-matrix system is studied. A good agreement 
between the numerical and analytical solutions has been demonstrated. 
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Figure C7:2. Temperature distribution in the fracture plane for p = 1. Analytical (top) and 
numerical solution. Note that the origo in the x-direction is different in the two figures.  
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Figure C7:3. Temperature distribution in the fracture plane for p = 5. Analytical (top) and 
numerical solution. Note that the origo in the x-direction is different in the two figures. 
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TAYLOR DISPERSION,PARTRACK  
(CASE D1) 
 
 
 
 
 

          1 Introduction 
If a cloud of particles is introduced in a fully developed flow between two parallel walls, the 
particles will be dispersed longitudinally at a rate given by (Sahimi, 1995): 
 

 
m

L D
uhD

22

105
2

=  (D1:1) 

 
where LD  is the longitudinal dispersion coefficient, h half the aperture, u the mean velocity 
and mD  the molecular diffusion coefficient of the solute the particles represent. When we use 
PARTRACK to simulate Taylor dispersion we subdivide the space between the two walls into 
a number of layers. 
The objective of this testcase is to verify that PARTRACK predicts Taylor dispersion 
correctly.  
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            2 Numerical simulations 

Input data are summarised in Table D1:1. 
 
Table d1:1. Simulation parameters 
 

Domain 4 310 0.1 5 10   m−  × × ×    

 
Boundary Conditions At x = 0 a fixed flux is prescribed, at x 0 10 the pressure is 

fixed to zero 10 000 particles were injected as a Dirac 
pulse ay x = 0 

 
Properties The fixed flux conditions gives a velocity of 10-4 m/s, 

other properties are of no significance. 
Molecular diffusion coefficient mD  is varied 

 
Grid NX = 100, NY = NZ = 1 

 

 

            3 Result / Discussion 
Three runs, with mD  equal to 10-9, 10-10 and  
10-11 m2/s respectively, were carried out in order to compare the simulated dispersion with 
Equation D1:1. The result can be studied in Figure D1:1. From the breakthrough curves the 
mean arrival time and the standard deviation, σ , was calculated. The standard deviation is 
then related to the longitudinal dispersion coefficient, LD  ( tDs L2= , where t is the mean 
transport time). As can be seen a perfect agreement between the analytically determined and 
simulated dispersion is obtained. The breakthrough curves, also shown in Figure D1:1, show 
that the Taylor dispersion effect is small for 910−=mD  m2/s, while a significant spread is 
obtained for 1110−=mD  m2/s. This result is of course related to the parameters and geometry 
used in this testcase. 
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Figure D1:1. Taylor dispersion in a single fracture. Comparison with Equation D1:1 (top) 
and breakthrough curves. 
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           4 Conclusion 
The results presented show that PARTRACK predicts Taylor dispersion in perfect agreement 
with the analytical solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 A79

          BREAK-THROUGH-CURVE, PARTRACK 
     (CASE D2) 
 
 
 
 
 

        1 Introduction 
The objective of this study is to compare the solutions given by DarcyTools with the 
analytical solutions for single rate diffusion. The multi-rate diffusion model in 
DarcyTools is hence “degenerated” to a single rate model; this is done by specifying 
the late time slope, k, to -3/2. 

The situation studied is outlined in Figure D2:1. A channel with constant width and 
aperture is bounded by an infinite matrix. A Dirac pulse injection is prescribed and 
the BTC at the outlet is studied. 

The analytical solution of the equation describing this case is given by, for example, 
Barten (1996), Cvetkovic et al. (1999) and Neretnieks (2002). It can be written as: 

( ) ( ) ( )








−

−−−= −

α
γα

Π
γαΘ

t
ttm

4
exp

2

2
2/3   (D2:1) 

where m is mass flux at the outlet, ( )tΘ  Heaviside step function and t time. The two 
parameters α  and γ  are defined as: 

,/ qLR mmθα =      (D2:2) 

qRDL imwimf /θδγ =     (D2:3) 

with definitions of parameters as given in Table D2:1, below. 

 

         Figure D2:1. Outline of situation studied. 
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          2 Numerical simulations 

A reference case is given by the values specified in Table D2:1. The two parameters 
minα  and maxα  are chosen to give a large enough range of capacity boxes. The 

specification of these does however influence the setting of nβ , the volume ratio for 
a non sorbing tracer. The analytical solution is for an infinite matrix, while a 
specification of minα  implies a limitation. The method to calculate nβ  for such a case 
is described in Part A. 

Table D2:1. Simulation parameters. 
 
Domain 3105.0 ,1.0 ,0.10 −×=== bWL  

Surface to volume ratio: bf /1=δ  
Properties Porosity mobile zone: 0.1=mθ  

Porosity immobile zone: 05.0=imθ  
Retention mobile zone: 0.1=mR  
Retention immobile zone: 0.1=imR  
Diffusivity: 1010−=wD  
Volume ratio: nβ  = 20.85 

Transport Flow velocity: 510−=q  
Injection: Dirac pulse 

imR/10 9
min

−=α  

imR/105 2
max

−×=α  
 
 

          3 Result / Discussion 
For the reference data a perfect agreement with the analytical solution is obtained, 

see Figure D2:2. For the cases to follow β  was evaluated as: n
m

im

mm

imim

R
R

VR
VR

ββ ×== . 

In Figure D2:3 the effect of changing mR  and imR  by a factor of five can be studied. 
The change from the reference case is calculated correctly. 

Figure D2:4 shows consistency checks, which are based on the parameters α  and γ , 
given by (D2:2) and (D2:3) respectively. In the first case (Figure D2:4, top), mR , q 
and imθ  were all increased by a factor of 2.0. As both α  and γ  remain the same, the 
BTC should be unaffected. This is also found. Similarly we may increase imθ  with a 
factor of two and decrease wD  with a factor of four and still get the same BTC, 
which is also the case (Figure D2:4, bottom). 
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                4 Conclusion 
It is clear that the numerical solutions, based on a particle tracking technique, is in 
good agreement with the analytical solution of the governing advection/diffusion 
equation. 
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Figure D2:2. Comparison with the analytical solution for the reference parameters. 
Linear scale (top) and log-log scale. Solid line gives analytical solution. 
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Figure D2:3. Effect of changing mR  (top) and imR  by a factor of five. Solid line gives 
analytical solution. 
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Figure D2:4. Consistency checks. mR , q and imθ  increased (top), imθ  increased and wD  
decrease 
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          BREAK-THROUGH-CURVE, ADV/DIFF EGN 
     (CASE D3) 
 
 
 
 
 

        1 Introduction 
The objective of this study is to compare the solutions given by DarcyTools with the 
analytical solutions for single rate diffusion. The multi-rate diffusion model in 
DarcyTools is hence “degenerated” to a single rate model; this is done by specifying 
the late time slope, k, to -3/2. 

The situation studied is outlined in Figure D3:1. A channel with constant width and 
aperture is bounded by an infinite matrix. A Dirac pulse injection is prescribed and 
the BTC at the outlet is studied. 

The analytical solution of the equation describing this case is given by, for example, 
Barten (1996), Cvetkovic et al. (1999) and Neretnieks (2002). It can be written as: 

( ) ( ) ( )








−

−−−= −

α
γα

Π
γαΘ

t
ttm

4
exp

2

2
2/3   (D3:1) 

where m is mass flux at the outlet, ( )tΘ  Heaviside step function and t time. The two 
parameters α  and γ  are defined as: 

,/ qLR mmθα =      (D3:2) 

qRDL imwimf /θδγ =     (D3:3) 

with definitions of parameters as given in Table D3:1, below. 

 

   Figure D3:1. Outline of situation studied. 
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                2 Numerical simulations 

The case is given by the values specified in Table A1. The two parameters minα  and 

maxα  are chosen to give a large enough range of capacity boxes. The specification of 
these does however influence the setting of nβ , the volume ratio for a non sorbing 
tracer. The analytical solution is for an infinite matrix, while a specification of minα  
implies a limitation. The method to calculate nβ  for such a case is described in Part A. 

Table D3:1. Simulation parameters. 
 
Domain 3105.0 ,1.0 ,0.10 −×=== bWL  

Surface to volume ratio: bf /1=δ  
Properties Porosity mobile zone: 0.1=mθ  

Porosity immobile zone: 05.0=imθ  
Retention mobile zone: 0.1=mR  
Retention immobile zone: 0.1=imR  
Diffusivity: 1010−=wD  
Volume ratio: nβ  = 20.85 

Transport Flow velocity: 510−=q  
Injection: Dirac pulse 

imR/10 9
min

−=α  

imR/105 2
max

−×=α  
 
 

                3 Result / Discussion 
As the numerical solution is based on the advection/diffusion equation it is expected 
that numerical diffusion will influence the predicted break-through-curve. This is 
also seen in Figure D3:2, where predicted BTC is compared with the analytical one. 
A fair agreement is however found. 

 

                4 Conclusion 
The numerical solutions, based on an advection/diffusion equation, is in fair 
agreement with the analytical solution of the governing equation. 
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Figure D3:2. Comparison with analytical solution (solid line).
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SEVEN FRACTURES IN A 2D DOMAIN, PARTRACK 

(CASE D4) 
 
 
 
 

          1 Introduction 
The two dimensional fracture network considered is shown in Figure D4:1. A pressure 
gradient is applied, to give a flow from left to right with a pore velocity of about 410−  m/s. 
 
This case is of interest for the following reasons: 
 
• It is possible to determine the flow in each part of the fracture network analytically. 
 
• If we assume complete mixing in fracture intersections, one can determine analytically 

how a cloud of particles, injected at the upstream side, will leave through the outlets. 
 
The analytical solution gives the flow-rates in each of the fracture sections. If we inject a 
cloud of particles in fracture A-A, it will split up in fracture intersections in proportion to the 
flow rates (assuming complete mixing in fracture intersections). The fractions at the outlet 
plane are given in Figure D4:1, assuming that all fractures have the same transmissivity.  
 

The objective is to verify that the numerical solution is in agreement with the analytical one. 
In particular it is of interest to see how a particle cloud is split up at intersections. 
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Figure D4-1. A fracture network. Outline of situation studied. The %-figures give the 
proportions for the split-up of a tracer cloud at the outlet boundary (assuming complete 
mixing). 
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           2 Numerical simulations 
The size of and fracture system in the domain is given in Figure D4:1. Additional input data 
are summarised in Table D4:1. 
 
Table D4-1. Simulation parameters 
 
Domain 22 ,  10 5 mD  ×    

 
Boundary Conditions [ ]0 9810xp Pa= =  

10 0xP = =  
 
zero flux on other boundaries. 
 

Properties Density = 1 000 [kg/m3] 
Viscosity = 32.0 10  −×  [kg/ms] 
Permeability = 122.0 10−×  [m2] 
 

Grid NX = 400, NY = 200, uniform 

 

 
 

3 Result / Discussion 
First a steady flow calculation is performed then 100 000 particles are injected in Fracture A-
A at x = 0. From the analytical solution we know the flow in each part of the channel system 
and it is hence possible to calculate how a cloud of particles will split up at a fracture 
intersection. The underlying assumptions is that the cloud will be split up in proportions to the 
outgoing flows at the intersection, i.e. the “fully mixed assumption”. 
The result is summarised in Table D4:2. An almost perfect agreement is found. 
 
Table D4-2. Distribution of particles at the boundary x = 10. 
 

Outlet Solution 

top middle (A-A) bottom 

Analytical 27.7% 55.6% 16.7% 

Numerical 27.8% 55.6% 16.6% 

  
 

          4 Conclusion 
It has been shown that the “well mixed assumption at fracture intersections” is correctly 
implemented in the numerical algorithms.
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THREE FRACTURES IN A 2D DOMAIN 
(Case D5) 
 
 
 
 
 

          1 Introduction 
The two dimensional fracture network considered next is shown in Figure D5:1. A pressure 
gradient is applied, to give a flow from left to right with a pore velocity of about 410−  m/s. 
 
This case is of interest for the following reasons: 
 
• It is possible to determine the flow in each part of the fracture network analytically. 
 
• The transport time for a particle is known, whatever path it takes. 
 
• If we assume complete mixing in fracture intersections, one can determine analytically 

how a cloud of particles, injected at the upstream side, will leave through the outlets. 
 
The analytical solution gives the flow-rates in each of the fracture sections. If we inject a 
cloud of particles in fracture B-B, it will split up in fracture intersections in proportion to the 
flow rates (assuming complete mixing in fracture intersections). These fractions are given in 
Figure D5:1, assuming that all fractures have the same transmissivity. From the analytical 
solution we can thus get both the arrival time and size of each breakthrough pulse. In the 
numerical solution of the flow field we assume that the kinematic porosity of the fractures is 
equal to 0.05. The fracture thickness, b, will be varied in order to test a range of ratios ∆/b , 
where ∆  is the grid size (equal to 0.1 metre). In all simulations 510  particles were injected in 
fracture B-B. 
 

The main objective is to verify that the numerical solution is in agreement with the analytical 
one. It is a part of this objective to evaluate the sensitivity to the ratio ∆/b . 
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           2 Numerical simulations 
Input data are summarized in Table D5:1. 
 
Table D5:1. Simulation parameters. 
 
Domain 

1P  
Fracture Conductivity 
Fracture thickness  
Grid 

2D 10 x 5 metres 
9810 Pa  

5105 −×  m/s 
∆/b  varied: 0.1, 0.5, 1.0 and 2.0 

400 x 200 cells,∆  = 0.025 m 
 

           3 Result / Discussion 
We first calculate the flow and porosity fields by the flow model. A cloud of particles, 
injected in fracture B-B, is then tracked by PARTRACK. The result can be studied in Figure 
D5:2. In order to understand the result one may first note that the transport time in fracture B-
B is 27.8 hours and that all other pathways have longer transport times. The size of the pulses 
is explained by noting that 100% enters in fracture B-B, about 50% go each way in each 
crossing. The first pulse that leaves fracture B-B will thus contain about 25% of the injected 
pulse. It will however not be exactly 25% as the flow rates in the fracture sections are not 
exactly the same. As seen in Figure D5:2, the numerical solution is in good agreement with 
the analytical solution. One may question why we do not get an exact agreement. The answer 
is probably that we do not get the assumed split up of the particle cloud in fracture 
intersections. In the analytical solution we assumed that the cloud will split up in proportion 
to the outflows. In the numerical solution, we solve for the flow and transport in the 
intersection. The effect can be noted in the intersection between fractures A-A and C-C. The 
particles arrive in fracture A-A and should split up in about equal fractions in the two outlets. 
From Figure D5:2 it is seen that the numerical solution gives fewer particles in fracture A-A, 
as compared to the analytical solution. This is probably due to the local flow pattern in the 
fracture intersection. In the literature, see for example Park and Lee (1999), two concepts for 
solute transport in a fracture intersection are used; "complete mixing" and "streamline 
routing". The effect described is due to streamline routing in the fracture intersection.  

The results given in Figure D5:2 are based on a fracture thickness, b, of 0.05 m ( )5.0/ =∆b . 
The sensitivity to the fracture width is presented in Table D5:2, where results for 

1.0  ,5.0  ,1.0/ =∆b  and 2.0 are given. It is seen that the transport time does not vary strongly 
with ∆/b , while the size of the breakthrough pulse depends strongly on ∆/b  (see for 
example fracture A-A). As discussed above, this is due to the two dimensional representation 
of the fracture intersection. 

 
          4 Conclusion 

The transport times for a simple two dimensional fracture network are in agreement with the 
analytical solution. The simulated partitioning of a particle cloud in a fracture intersection is 
close to complete mixing for small fracture thicknesses, while the streamline routing effect is 
important when ∆>b . 
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Figure D5:1. A fracture network. Outline of situation studied. The %-figures give the 
proportions for the split-up of a tracer cloud at the three fracture intersections (assuming 
complete mixing). 
 

 
 
 
 
 
 
 
 
Figure D5:2. A fracture network. Breakthrough curve in fracture  
A-A. Solid bar gives the analytical solution. 



 A94

 
 
 
Figure D5:2. Cont. Breakthrough curves in fractures B-B (top) and C-C. 
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Table D5:2. A fracture network. Breakthrough curves (time, t, and fraction, f) in various 
fracture outlets as a function of normalised fracture thickness (b/∆). 
 

Fracture thickness normalised with ∆ (b/∆). Analytical 
solution 0.1 0.5 1.0 2.0 

Breakthrou
gh curve in 

fracture ta(h) fa(%) t/ta f/fa t/ta f/fa t/ta f/fa t/ta f/fa 
A-A 29.2 24.7 1.02 0.94 1.02 0.95 1.00 0.75 1.00 0.50 
B-B 27.7 25.8 1.00 1.02 1.00 1.02 1.00 1.01 0.99 0.90 
B-B 28.8 12.5 1.01 1.06 1.01 1.05 0.98 1.20 0.95 1.87 
C-C 28.3 24.9 1.01 1.00 1.00 1.00 1.00 1.09 1.00 1.00 
C-C 29.4 12.1 1.02 0.99 1.02 0.99 1.01 1.09 1.00 1.31 
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SINGLE FRACTURE IN A BOX, PARTRACK 
(Case D6) 
 
 
 
 
 

          1 Introduction 
This test case is the same as used in Case C3, to evaluate how the flow rate through a single 
fracture varied with the orientation and thickness of the fracture. The situation studied is 
outlined in Figure D6:1. The pressure is held constant on two opposite faces (y = 0.0 m and y 
= 10.0 m) and a zero flux condition is used on all other boundaries. At the inflow boundary 
the position of the fracture is fixed, with centreline coordinates (1.0, 0.0, 1.0). The fracture 
position at the downstream boundary is varied in order to test a wide range of angles to the 
coordinate directions. Also a range of thicknesses were tested, but the height of the fracture 
was kept constant at 0.5 metres.  
 
For each of the situations studied, a steady state flow calculation is first performed. 
PARTRACK is then used to calculate the transport time from the inlet to the outlet. 
 
The objective is to verify that PARTRACK gives correct transport times for fractures of 
different thicknesses and orientations. As the flow and porosity is calculated in the flow 
model, the test case also evaluates the integrated performance of the flow and transport 
model. 
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Figure D6:1. Outline of situation studied. A single fracture in a 3D domain. Outline of 
situation studied. All distances in metres. 
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            2 Numerical simulations 
Most of the simulations parameters are introduced in Figure D6:1, some further details 
are summarised in Table D6:1. 
A systematic variation of the fracture thickness and the downstream position will be in 
focus in the simulations. 

Table D6:1. Simulation parameters. 

Domain 10 x 10 x 10 [m3] 

Boundary conditions  Fixed pressure difference (= 1 metre 
head) between two opposite faces. Zero 
flux on other faces 

Fracture dimensions Height = 0.5 metres, thickness varied (see 
Result section) 

Fracture position Fixed at inflow boundary (see Figure 
D6:1), varied at outflow boundary (see 
Result section) 

Fracture conductivity 410−  m/s 

Grid 0.1∆ =  metre, uniform 

 

            3 Result / Discussion 
Results are presented in Table D6:2. Five downstream fracture positions and four fracture 
thicknesses were tested. The five downstream fracture positions will give a fracture that, for 
the first position, is parallel to the y- coordinate while the last position gives a fracture that 
almost follows a diagonal in the box. Note also that the x and z coordinates for the 
downstream positions are different; this ensures that the fracture will have different angles to 
all three coordinate directions (except for the first position). The transport times are 
normalised with the analytically determined transport time, at , which is easily obtained from 
the specified pressure gradient, kinematic porosity and fracture length. 

From Table D6:2, one may conclude that accurate transport times are calculated provided 
∆/b  is not too small; if ∆/b  is larger than 0.5 the error is less than 3%. In Case C3 it was 

found that the flow rate through a single fracture in a 3D domain was underpredicted with a 
few percent. The error in the transport times is thus mainly due to the error in the flow rates, 
which can be concluded from a comparison with Table 4-2 in Case C3. 

It is also of interest to note that the spread of the breakthrough curve in all simulations was 
small. Ideally all particles should arrive at the same time, but some numerical dispersion is 
present as particles will have different flow paths. The standard deviation of the breakthrough 
curve was however always less than 2% of the transport time and the numerical dispersion 
effect is hence small (as compared to other effects to be discussed). 
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           4 Conclusion 
Accurate transport times are calculated for a single fracture of varying thickness and 
orientation in a 3D domain, provided the fracture thickness in relation to the grid size is not 
too small. If 5.0/ >∆b , the maximum error in the calculated transport time is found to be less 
than 3%. 
 
Table D6:2. A single fracture in a 3D domain. Transport time as represented in the grid, 
t , normalised with the true transport time, at , for various fracture thicknesses and 
orientations. 
 

Transport time (t/ta) 
Fracture thickness (b/∆) 

Fracture 
coordinates at 
downstream 

boundary [m] 

Analytically 
determined 

transport time, ta 
[h] 0.1 0.5 1.0 2.0 

X = 1.0, Z = 1.0 27.50 1.00 1.00 1.00 1.00 
X = 3.0, Z = 2.5 29.02 1.06 1.02 1.01 1.00 
X = 5.0, Z = 4.0 34.37 1.08 1.03 1.01 1.00 
X = 7.0, Z = 5.5 42.97 1.04 1.02 1.01 1.00 
X = 9.0, Z = 7.0 54.98 1.02 1.01 1.00 1.00 

                                                Average  1.04 1.02 1.01 1.00 
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          HENRY’S PROBLEM  
     (Case E1) 
 
 
 
 
 
       1 Introduction 

Henry’s problem is the most widely used, classic, test case for density stratified 
simulations. The basic situation in mind is that of sea water intrusion into a fresh water 
aquifer, see Figure E1:1. At the left boundary, the inland boundary, a fixed fresh water 
inflow is specified while the right side boundary has a prescribed hydrostatic pressure 
distribution based on a given salinity. The top and bottom boundaries are of zero mass 
flux type. 

Henry’s problem is discussed in detail in Ségol (1994), where also Henry’s analytical 
solution and a number of numerical solutions are presented and discussed. The present 
study will be based on, and make reference to, the review of Henry’s problem as given 
in Ségol (1994). 

The objective of the test case is to simulate Henry’s problem and compare the result 
with Henry’s analytical solution and results from other model (all as presented in Ségol, 
1994). 

 

 

 

 

 

 

 

 

Figure E1:1. Illustration of Henry’s, or the seawater intrusion, problem. 
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          2 Numerical simulations 

The numerical simulation will be based on the parameters and boundary conditions 
specified in Table E1:1, see also Figure E1:1. We are seeking the steady state solution 
and the initial conditions are hence of no importance. The data within brackets in Table 
E1:1 are the values specified in Ségol (1994); here SI units are used throughout. 

Table E1:1. Parameters for Henry’s problem. 

Domain 
 

 
Hydraulic Conductivity 
 
Density difference 
 
Porosity 

 
Dispersion coefficient 
 
Fresh water inflow 

 
Grid 
 

Rectangular section with a length of 
200 m and a depth of 100 m 
 
1.157 x 10-5 m/s (= 1m/day) 
 
25 kg/m3 

 
0.35 
 
7.639 x 10-7 m2/s (= 0.066 m2/day) 
 
7.639 x 10-8 m3/m2, s 
 
Coarse: ∆ = 4m (NX = 50, NZ = 25),  

uniform 
Fine:      ∆ = 2m (NX = 100, NZ = 50),  

uniform 
 

 

        3 Result / Discussion 
Henry’s analytical solution, and a number of numerical simulations, are shown in Figure 
E1:2. The sharp interface solution is the solution obtained if no mixing occurs between 
the salt and fresh water; this solution is included only as a reference. It is seen that 
Henry’s solution gives a penetration length of about 90 metres, while the numerical 
models, shown in the same figure, give a penetration length of about 80 metres. 
DarcyTools is found to give a penetration length of about 85 metres. 

This is a grid independent solution as can be seen in Figure E1:3; reducing the cell size 
with a factor of two does not change the penetration length. 

One may question why the numerical models are not closer to the analytical solution. 
One possibility is the type of boundary conditions used at the “seaward side”. Some 
model studies fixed the depth of the mixed water outflow region, while others let the 
model decide the depth of the division point between inflow and outflow. In the present 
study a hydrostatic assumption based on a fixed density difference was used for the 
whole vertical. Further discussions about possible causes of deviations between 
numerical and analytical solutions can be found in Ségol (1994). 
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          4 Conclusion 
It has been demonstrated that a grid independent solutions of Henry’s problem, by 
DarcyTools, is in fair agreement with the analytical solution. 
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Figure E1:2. Comparison between Henry’s solution and a number of numerical models 
(top), figure from Ségol (1994). Result from DarcyTools (bottom).  
The isochlor s = 0.5 smax is chosen to illustrate the salt-water wedge. 
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Figure E1:3. Grid independence test. Solution with cell size 4 metres (top) and 2 
metres. 
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         THE SALT DOME  
     (Case E2) 
 
 
 
 
 
       1 Introduction

This case is described in the Hydrocoin report, from where we quote: 

Background 

There are number of important situations where groundwater flow is influenced 
by density and viscosity variations due to the presence of dissolved salt. The 
most notable of these situations concerns flow in regions surrounding salt domes 
or bedded salt deposits which may be used for the disposal of radioactive waste. 
However, such considerations are also important for repositories at coastal sites. 

The particular problem considered here is an idealisation of the situation found 
in the rocks overlaying the Gorleben salt domain in Germany. The uppermost 
Quaternary aquifer at this site contains fresh water, but at a depth of 300 m the 
groundwater is saturated with salt. 

The geophysical measurements in boreholes demonstrate that the interface 
between fresh and salt water usually is sharp. The interface is a result of the 
hydrogeological situation and of diffusive/dispersive processes. Site specific 
mathematical models containing these processes could possibly be validated by 
making use of the measured salt water distribution. 

Conceptual model 

In the present idealised example the porous sedimentary rock is assumed to have 
homogeneous and isotropic rock properties. Since this is a verification exercise 
rather than a site-specific simulation, it is sufficient to consider a two-
dimensional vertical cross-section. 

Assumptions 

The flow is assumed to be isothermal and governed by Darcy’s law using an 
appropriately mass-averaged velocity. The permeability is assumed to be 
homogeneous and isotropic. The assumptions and equations underlying the flow 
of concentrated salt solutions are discussed in some recent reports by 
HYDROCOIN participants. In the interests of simplicity the viscosity is 
assumed to be independent of the brine concentration. 
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           2 Numerical simulation 
The computational domain is a two-dimensional rectangular vertical slice, see Figure 
E2:1. 

The application of DarcyTools to this case uses two simplifications, as compared to the 
problem formulation in the Hydrocoin report: 

- The density-salinity relation is based directly on mixing proportions in the 
specification, while DarcyTools uses a linear relation. The linear relation is an 
approximation that introduces a small error. 

- The salinity equation should be solved subject to the dispersion tensor 

( ) /ij T ij L T i jE U U U Uα δ α α= + −  

 where U is velocity, ijδ  Kronechers delta, Tα  transverse dispersion length and Lα   
 longitudinal dispersion length. DarcyTools only considers dispersion in the  
 coordinate directions and the off-diagonal components are hence neglected. 

The simulation parameters are summarized in Table E2:1. 

Table E2:1. Simulation parameters. 

Domain 900 x 300 m 
 

Boundary Conditions Top: ( )900/1105 xp −=  
         0=s  
Bottom: p, zero flux 
              maxss =  between points 5 and 4   
              (Figure E2:1) 
Vertical walls: zero flux 
 

Properties 

( )
( )

8

2

2

3
max max

1.05 10  m/s
/

/
2, 20

 gives a 1200 kg/m
0.2

xx T L T x

zz T L T z

T L

K
E U U U

E U U U

S
n

α α α

α α α
α α

ρ

−= ×

= × + −

= × + −

= =

=
=

 

 
Grid  uniform m, 5  ,60180 =∆×  
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Figure E2:1. Computational domain. 
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         3 Results/Discussion 
The concentration distributions are best visualised from contour plots. Two contour 
plots, which were considered to be accurate by the Hydrocoin project team, are shown 
in Figure E2:2 together with the DarcyTools simulation. As can be seen a good 
agreement is found. 

It was the experience of the Hydrocoin exercise that this case was very difficult to 
handle numerically (new methods had to be developed). No special arrangements were 
needed in DarcyTools, but several thousand timesteps were needed to get a steady state 
solution. Due to lack of time, the advanced options in MIGAL for handling coupled 
equations were not evaluated. This should be done. 

 

        4 Conclusion 
A good agreement with the Hydrocoin simulations, that were regarded to be the most 
accurate, was obtained. 
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Figure E2:2. Contour plots by NAMAER (top), SUTRA (middle) and DarcyTools.
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COUPLED TEMPERATURE AND SALINITY FIELDS 

(CASE E3) 
 
 
 
 

           1 Introduction 
This case considers the coupled buoyancy effect due to temperature and salinity fields. If a 
point heat source is placed in a stable salinity field an upward movement will result. This 
movement will eventually be halted by the stable salinity gradient. The task is to calculate the 
maximum vertical displacement. 

An analytical estimate of this displacement is given in Claesson et al. (1992). In a porous 
media the maximum vertical displacement due to an instantaneous point heat source is: 

04
max 2

E
Z

α
π

=      (E3:1) 

where  

[ ]0  heat source E J=  

4
0  buoyancy parameter m /T

c z

J
C C
αα

α
 = =    

Tα =  thermal expansion coefficient 1/ C  
o  

cα =  salt expansion coefficient [ ]1/ %  

0
zC =  initial salinity gradient [ ]% / m  

C = aquifer volumetric heat capacity, rock 3/ m  J C  
o  

The objective of this test case is to compare estimates by the above formula with the 
corresponding results from the numerical solution. 
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            2 Numerical simulations 

The heat source is placed in the middle of a box with dimensions 100 x 100 100 m3, see  
Table E3:1 for additional data. 

Note that not all of the parameters in Table E3:1 influence the simulation results to be 
presented here. 

Table E3:1. Simulation parameters 
 
Domain 3100 100 100 m × ×    

Boundary Conditions Zero flux on all boundaries. 
 

Heat source Variable 
 

Property data Porosity = 0.01 
Density = 1 000 3kg / m    

Viscosity = 32.0 10  −×  [ ]kg / ms  

Permeability = 12 22.0 10  m−  ×    

Heat capacity, fluid = 4 200 3/ m  J C  
o  

Heat capacity aquifer = 62.0 10  ×  3/ m  J C  
o  

Thermal conductivity = 710  −  W / m C  
o  

Thermal expansion coefficient = 410  −  1/  C  
o  

Salinity expansion coefficient = 210  −  [ ]1/  %  
 

Initial salinity gradient 0.01 [ ]% / m  

Grid Uniform NX =  NY = NZ = 50 
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           3 Result / Discussion 
The simulated maximum vertical displacement is in Figure E3:1 compared with the estimate 
from the analytical solution. The word “estimate” is used as Claesson et al. (1992) consider 
the formula as “an upper limit on the displacement” and that the formula is “normally more 
correct for large displacements, while it overestimates the small displacements”. The 
agreement found in Figure E3:1 is hence regarded as acceptable. 

An illustration of the disturbed salinity field, in a vertical section through the position of the 
heat source, can be found in Figure E3:2. This snapshot is at a rather late stage, i.e. long after 
the maximum displacement has been established. 

          4 Conclusion 
The maximum displacement in a coupled temperature-salinity problem has been simulated 
and the results have been compared with an analytical solution. An acceptable agreement has 
been demonstrated. 
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Figure E3:1. Maximum displacement as a function of the strength of the heat source. Solid 
line represents the analytical solution and the symbols the numerical solution. 
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Figure E3:2. Illustration of the disturbed salinity field. Vertical section through the position 
of the heat source.
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          UPCONING  
     (Case E4) 
 
 
 
 
 
        1 Introduction 

If a well is placed in a two-layered aquifer, with a freshwater layer above a saltwater 
layer, a phenomenon known as upconing may take place, see Figure E4:1. It is of course 
the pressure drop due to the pumping that causes the rice of the interface. 

An approximate solution, for small rises, is discussed in Domenico and Schwartz 
(1990). They also discuss a critical elevation at which the interface is no longer stable 
and saltwater flows to the well. In order to avoid this, the pumping rate, Q, should not 
exceed maxQ , given by: 

 








 ρ−ρ
π=

f

fs

p
KdQ 2

max 6.0    (E4:1) 

where d is the distance from the well to the original interface, K conductivity, sρ  
density of saltwater and fρ  the freshwater density. 

 

 

 

Figure E4:1. The upconing phenomenon. 
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The objective test case is to make a qualitative comparison between results obtained by 
DarcyTools and Equation (E4:1). The comparison can only be qualitative as Equation 
(E4:1) is based on relations only valid for small interface rises. 

 

 

        2 Numerical simulations 
In polar coordinates the problem is two-dimensional but here it will be treated as a 3D 
problem, as DarcyTools does not provide polar coordinates. Due to symmetry 
conditions we only need to consider one quarter of the domain. A summary of the 
simulation parameters is given in Table E4:1. 

 

Table E4:1. Simulation parameters. 

Domain 500 x 500 x 110 metres (x, y, z) 

Boundary Conditions.  Prescribed pressure at maxx  and maxy . 
Zero flux condition on other boundaries. 
Salinity prescribed at bottom of domain. 
 

Pumping rate  Varied 

Distance d (Figure E4:1) 50 metres 

Conductivity 510−  m/s 

Diffusivity (salt) 910−  m2/s 

Salinity below interface 1 % ( 8.7=ρ∆  kg/m3) 

Grid Expanding in x and y directions, starting 
with 2=∆  metres. Uniform with 2=∆  m 
in the vertical direction. 

 

 

        3 Results / Discussion 
The predicted relation between the pumping rate and the salinity at the bottom of the 
well is shown in Figure E4:2. In this figure also the critical pumping rate, as  
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given by Equation (E4:1), is indicated. As already mentioned we can not evaluate the 
result more than in a qualitative way; both DarcyTools and Equation (E4:1) do however 
predict a maxQ  of the same magnitude. 

 

4 Conclusion 
A qualitative agreement with the analytically predicted critical pumping rate, for 
saltwater intrusion into a well, has been demonstrated. 
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Figure E4:2. Relation between salinity at the bottom of the well and the pumping rate, 
as predicted by DarcyTools. Vertical line indicates the critical pumping rate according 
to Equation (E4:1). 
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          THE FLOATING ISLAND  
     (Case E5) 
 
 
 
 
 
        1 Introduction 

This case is of special interest as it has some resemblance to the situation at the island of 
Äspö (location of the SKB Hard Rock Laboratory). The situation considered is outlined 
in Figure E5:1. A fresh water lens is formed below the island, due to the precipitation. 
As the surrounding seawater is more dense, due to its salinity, one may think of the 
freshwater as floating in the saltier seawater. 

An analytical solution to this problem can be found in Fetter (1994); the groundwater 
height, h, as a function of distance from the shore, x, is given by: 

 

 ( )( )
( )GK

xaawh
+
−−

=
1

22
2     (E5:1) 

 

where w is the recharge on the island, a half-length of the island, K conductivity and 
( )fsfG ρ−ρρ= /  ( sρ  and fρ  are seawater and freshwater densities, respectively). 

The objective of this test case is to compare the groundwater tables as predicted by 
DarcyTools and as given by Equation E5:1. 

 

 

Figure E5:1. Illustration of the floating island problem. 
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          2 Numerical simulations 
The simulation parameters for this case are given in Table E5:1, see also Figure E5:1. 
Some comments. 

- The vertical conductivity is increased in order to simulate the Dupuit assumption (as 
discussed in Case B2). 

- As the salinity is fixed to 1.0 below sea and at the bottom boundary, the salinity will 
be uniform except for the region close to fresh water lens. 

- The grid is generated as follows: First a cartesian grid is set up with 10=∆  metres, 
except for the top 4 cell layers which have z∆ = 1, 2, 3 and 4 metres respectively. 
The top 100 hundred meters of the grid is then stretched/compressed to follow the 
topography (-10 metres av x = 0 and 10 metres at x = 500 metres). 

 

Table E5:1. Simulation parameters. 

Domain 2D, 1000 x 500 metres. Upper boundary 
follows a sin-curve. 

Conductivity 710−  m/s (horizontal) 

510−  m/s (vertical)  

Diffusivity (salt) 910−  m2/s 

Boundary Conditions Bottom: zero mass flux, salinity fixed to   
              1.0 
Top: prescribed mass flux on island, 
prescribed pressure below sea level. Zero 
salinity on island, fixed salinity (= 1.0) 
below sea level. 

Grid NX = 100, NZ = 53, BFC:s 
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           3 Results / Discussion 
The comparison with the analytical solution is given in Figure E5:2; as can be seen a 
near perfect agreement is obtained. The flow and salinity distribution can be studied in 
Figure E5:3. For a recharge of 50 mm/year it is seen that the freshwater lens reaches a 
depth of about 200 metres. It may further be noted that the fresh water is discharged into 
the sea in a very narrow region close to the shore-line. 

 

 

        4 Conclusion 
The predicted groundwater table on the floating island is in very good agreement with 
the corresponding analytical solution. 
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Figure E5:2. Numerically (•••) and analytically (            ) predicted groundwater table 
for two recharges. 
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Figure E5:3. Flow and salinity distributions. The line shows the extent of the fresh 
water lens.
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TWO-FLUID PROBLEM 

(CASE E6) 
 
 
 

         1 Introduction 
The motion of an interface between two fluids with different densities and viscosities is 
studied, see Figure E6:1. The buoyancy flow induced by the density difference will cause the 
two-fluid interface to tilt. 

An analytical solution of this problem is found in Hellström et al. (1988). They found that the 
horizontal velocity at the interface is given by 

( ) 0

1 sin
1 ln

1 sin

z
Hq z q

z
H

π

κ
ππ

  +     =
  −     

    (E6:1) 

where  

0
1 2

k gq ∆ρ
µ µ

= =
+

 a characteristic velocity 

and 

∆ρ =  density difference 

g =  gravitational constant 

k =  permeability 

µ =  viscosity 

κ =  anisotropy factor (= 1 for isotropic permeability) 

The objective of this testcase is to compare the numerical and analytical solution for a 
common situation. 
 

 

Figure E6:1. Outline of the situation studied. 
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           2 Numerical simulations 

The domain is outlined in Figure E6:1. A summary of input data is given in Table E6:1. It 
should be noted that not all of the parameters specified influence the simulations to be 
discussed. It should further be pointed out that the parameters are not representing any real 
fluid; they are only chosen to suit the present comparison. 
 
Table E6:1. Simulation parameters 
 
Domain 22 ,  40 10 mD  ×     

 
Boundary Conditions Zero flux on all boundaries. 

 
Property data 

1 210 ,  20T C T C= =o o   

1 21000,  950ρ ρ= =  3kg / m    
3 3

1 22 10 ,  6 10µ µ− −= × = ×  [ ]kg / ms  

Permeability = 1210−  2m    
Porosity = 1.0 
Heat capacity aquifer = 62.0 10  ×  3/ m  J C  

o  

Heat capacity fluid = 4 200 3/ m  J C  
o  

Thermal conductivity = 1010  −  W / m C  
o  

 
Grid NX = 160, NZ = 40, uniform 

 
 

          3 Result / Discussion 
The main result of this study is the comparison of velocity profiles, shown in Figure E6:2. 
The agreement is very good indeed and requires no further comments. 

An illustration of the velocity field is given in Figure E6:3. From this figure one can conclude 
that the vertical boundaries are placed sufficiently remote from the interface. 

 

           4 Conclusion 
The tilting of a vertical interface between two fluids with different densities and viscosities 
has been studied. It is concluded that the numerical result agrees very well with the analytical 
solution. 

 



 A123

VELOCITY [ m/s]

V
E

R
T

IC
A

L
C

O
O

R
D

IN
A

T
E

[m
]

-2E-07 -1E-07 0 1E-07 2E-07
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

 

 

Figure E6:2. Comparison between numerical ( ■ ) and analytical (    ) solution. 
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Figure E6:3. Illustration of the velocity field close to the interface. 
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APPENDIX B Validation cases 
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Case V1 A site scale validation 
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Introduction 

This validation study is taken from the report “Impact of the tunnel construction on the 
groundwater system at Äspö. Task 5 Äspö task force on groundwater flow and transport of 
solutes; Svensson et al. (2002). 

The hydrochemical field data at Äspö HRL has been presented as distributions of four basic 
water types: Meteoric, Baltic, Glacial and Äspö Brine. The Meteoric water has recently been 
in contact with the atmosphere and originates from precipitation, while Baltic water has its 
origin from the Baltic Sea. The Glacial water is believed to come from the meltwater of the 
last inland ice about 12 000 (or more) years ago. The Äspö Brine water is characterised by its 
high salinity and its age; it is estimated that it has not been in contact with the atmosphere for 
at least 1 million years. The Äspö Brine fraction increases with depth and may be the 
dominating fraction below a depth of, say, 800 metres in the Äspö area. 

The numerical model should be able to determine the composition, expressed as the four 
water types mentioned, of the water leaking into the tunnel. Two problems, which call for 
basic conceptual assumptions, can be identified when formulating such a model: 

• Order of magnitude calculations show that water from outside the computational domain 
will contribute to the inflow to the tunnel already after a few years after the start of the 
construction of the tunnel. We thus need an assumption about the water composition 
outside the domain. 

• The hydrochemical data show that large fractions of Glacial water are present already at a 
depth of a few hundred meters. As there is no source of Glacial water one would expect 
that this water should have been replaced by younger water during the last 12 000 years. 
As mentioned, the inflow to the tunnel will replace the water in the computational domain 
with water from outside the domain in a few years time. So, even if we specify a large 
fraction of Glacial water as an initial condition we would soon "run out" of this water 
type. 

Boundary conditions 

To deal with these problems we need to introduce some assumptions about the water 
composition at the boundaries of the computational domain. The following concepts and 
assumptions are introduced.  

• Vertical boundaries: 

- If  s (Salinity) ≤ 0.1%  we assume that the water is of Meteoric origin. 

- If  0.1 < s ≤ 1.2%  we call this water type "Mixed Water High" (MWH). 

- If  s >1.2%  we call this water type "Mixed Water Low" (MWL). 

The reason for introducing MWB, MWH and MWL is that we can base an assumption about 
the composition of these waters on field data. There is also a reason for choosing the salinity 
value 1.2% as the division between MWH and MWL. When the inland ice had its frontline 
above Äspö one can expect that Glacial water penetrated very deep into the rock. At about 
800 to 1 000 metres, the Äspö Brine provided a lower limit for the circulation. Presumably a 
mixture of Glacial and Äspö Brine waters resulted in the transition region between the two 
water types. At about 8 000 years ago the Litorina Sea, with a maximum salinity of about 
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1.2%, replaced most of the water due to its high density. The maximum penetration depth is 
however given by the salinity 1.2% and we can therefore assume that MWL is composed 
mainly of Glacial and Äspö Brine water. Based on these arguments, we assume the following 
for MWH and MWL: 

• MWH. Composition based on field data from borehole KLX01 10% Baltic, 35% 
Meteoric, 45% Glacial and 10% Äspö Brine. 

• MWL. 10% Baltic, 10% Meteoric, 40% Glacial and 40% Äspö Brine. This is to some 
degree supported by measurements in KLX02, at a depth with a salinity of 1.5%. 

For the water entering through the bottom of the domain, MWB, it will be assumed that the 
composition is the same as for MWL. 

Calibration 

The model is calibrated both with respect to the hydrogeological and hydrochemical 
information available. 

Above conceptual assumptions were discussed; it was stated that the water composition at the 
bottom and vertical boundaries of the domain were tentative and should be considered again 
in the calibration process. Three water types, MWH, MWL and MWB, were introduced, with 
tentative compositions from borehole measurements. 

The focus of the calibration process for water composition is thus on the composition of 
MWH, MWL and MWB. 

In the Task #5 description it was suggested that the calibration should be based on measured 
water composition in boreholes, with the tunnel front at position 2 900 metres. A review of 
the field data on water composition shows that more data are available for position 3 170 
metres (April -94) and the calibration will therefore be based on conditions prevailing at that 
time. 

Calibration criteria 

In the calibration we will try to fulfil the following criteria: 

• Groundwater table for natural conditions. The distribution can be found in Rhén et al. 
(1997). One can expect that a certain variation of the groundwater table is found, between 
seasons and years, and a fair agreement is hence sought. 

• Pressure response in boreholes. During the construction of the Äspö HRL, the pressure 
was monitored in a number of borehole sections. The drawdowns at tunnel front position 
2875 metres can be found in Rhén et al. (1997); these data will be compared with 
simulated drawdowns. 

• Kinematic porosity. The kinematic porosity field is based on the estimated flow aperture 
of each fracture or zone in the network. In the calibration process this basic distribution 
will be kept, but each value will be multiplied by a constant, that is to be determined. The 
time history of the upconing, i.e. the salinity variation in time, will be utilized for this 
purpose.  

• Water composition for natural conditions. The water composition in the Äspö area was 
measured prior to the construction of the Äspö HRL. We will run the model for this 
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situation, assuming steady state conditions, and compare the result with field data. In the 
steady state the water composition in the domain is completely determined by the 
boundary conditions and should thus be sensitive to the assumed compositions of MWH, 
MWL and MWB. A general agreement between measured and simulated distributions is 
the criteria set. 

• Water composition for tunnel front at 3 170 metres. The water composition in 19 
boreholes was measured at this tunnel front position. We want to ensure as close 
agreement as possible with these data. 

• Water composition at time 1996-05. The measured composition in eight borehole 
sections, after the completion of the tunnel, will be compared to simulated values. As 
close agreement as possible is the objective of part of the calibration. 

Calibration process 

It was decided to perform the calibration in three steps. First the hydrological model was 
calibrated (the first two criteria above). This involved determining the conductivity for the top 
five layers of the model and adjusting the transmissivity of some deterministic fracture zones. 
It was the ambition to keep these adjustments as small as possible. Next the kinematic 
porosity factor was determined from the measured upcoing dynamics and finally the water 
composition was considered. Adjustments of the compositions of MWH, MWL and MWB 
were evaluated, with the ambition to get as close agreement with field data as possible. 

Results 

The groundwater table for natural conditions is compared to measurements in Figure V1-1 
and the drawdowns in borehole sections, for a tunnel front position of 2875 metres, are given 
in Table V1-1. Starting with the groundwater table, it is seen that the predicted maximum 
ground water level is about 4 metres. A general agreement with the measured levels (given in 
Rhén et al. (1997)) is also found. The calculated drawdowns in borehole sections in the 
domain were compared with measured ones, all for tunnelfront position 2875 metres. It was 
anticipated that the drawdowns should be sensitive to various realisations of the background 
fracture network. In order to study this five realisations of the network were generated and the 
drawdown for each borehole section and each realisation was calculated. The result can be 
studied in Table V1-1, the location of boreholes can be found in Figure 1-3 (Report 1). It is 
seen that different realisations are best for different boreholes. Realisation two has only two 
borehole sections with an error larger than 10 metres and is for this reason considered to be 
the best one. In the following, it is this realisation of the conductivity field that will be used, if 
not otherwise stated. 

It was found that an increase of the kinematic porosity, based on the flow aperture, with a 
factor of five gives a realistic description of the upconing process, see Figure V1-2. We do not 
know the exact position of the upconing front and therefore both the predicted maximum 
salinity at a depth of 370 metres and the predicted salinity at the tunnel position 2 800 metres 
are given in Figure V1-2. The measurements are from boreholes SA2783 and SA2880. This 
calibration result is considered to be important, as it focuses on the transport velocity of a 
fluid property. 

These results were obtained by prescribing certain conductivities to the top five layers, see 
Table V1-2, and by making small adjustments to the transmissivities of the major fracture 
zones. A small background conductivity, with a lognormal distribution, was also added to all 
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cells. This conductivity had a value of 10-10 m/s north of the line y = 7050 metres (in the Äspö 
coordinate system) and a value of 10-9 m/s south of this line. The standard deviation of 

( )KLog10  was 0.8 for the whole domain. 

The compositions of MWH and MWL given above were found to give results in fair 
agreement with field data, both for initial conditions and for the tunnel front at position 3 170 
metres. The composition of MWB has no significant influence on these comparisons, but is 
important when water from the bottom boundary reach the tunnel level. The salinity at the 
bottom boundary, generated by the regional model, will reach 5-6% when the tunnel is 
completed. Borehole KLX02, at 1 500 metres, has a salinity of 7-8% and Äspö Brine fraction 
of 90%. Based on these data and the comparison of measured and simulated water 
composition at time 1996-05, the following composition for MWB was considered to be more 
accurate: 5% Meteoric, 5% Baltic, 10% Glacial and 80% Äspö Brine. This is the composition 
of MWB to be adopted. A small adjustment of the composition of MWL (giving 12% 
Meteoric, 12% Baltic, 45% Glacial and 31% Äspö Brine) was found to give a minor 
improvement of the results. With these modifications good agreement was also obtained for 
the comparison at time 1996-05. Some results that confirm these statements will now be 
given. 

The calculated initial distributions are given in Figure V1-3. The sections are through the 
centre of the spiral part of the tunnel. The distributions are in general agreement with field 
data, see Gurban et al. (1998). Of particular significance is the band of glacial water 
occupying about 50% of the pore volume at a depth of about 600 metres. Point by point 
comparisons with field data can be found in Table V1-3. It should be mentioned that 
measurements are available also for depths above 300 metres. These were however not 
included in the table as the model predicts 100% Meteoric water for depths smaller than 200 
to 300 metres. In order to be able to compare the average values for the composition, it was 
decided to exclude these data. 

Next we consider the simulated water composition for tunnel front position 3170 metres. 
Point comparisons with field data can be found in Table V1-4; the comparison in Table V1-4 
is also shown as a graph in Figure V1-4. A certain agreement in proportions of different water 
types, as well as trends along the tunnel, can be found. It is not easy to anticipate the degree of 
agreement one can expect in a simulation like this. Distributions for tunnel front position 3 
170 metres are shown in Figure V1-5. This figure is included as an illustration of how the 
tunnel affects the distributions and is not directly used in the calibration process. 

Finally, the comparison for 1996-05 is shown in Table V1-5. Also in this comparison both the 
trends and the average compositions are in fair agreement with field data. 

Conclusions 

From the comparisons presented, the following conclusions are formulated: 

• The hydrogeological simulations are in fair agreement with field measurements. 

• The simulations of water compositions are harder to evaluate. A certain agreement in 
trends can however be claimed. 
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Figure V1-1. Measured (top) and calculated water table for natural conditions. 
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Table V1-1. Errors in calculated drawdown (calculated- measured) for tunnel front at 
2875 metres, using five realisations of the conductivity field. 

Realisation 

Borehole 
section Depth  

m b s l 1 2 3 4 5 
K02-B5 
K02-B4 
K02-V3 
K02-V2 
K02-V1 
 

K03-C5 
K03-C4 
K03-C3 
K03-C2 
K03-C1 
 
K05-E4 
K05-E3 
K05-E2 
K05-E1 
 
K06-F6 
K06-F4 
K06-F3 
K06-F2 
KO6-F1 
 
K07-J5 
K07-J4 
K07-J3 
K07-J2 
K07-J1 
 
K08-M3 
K08-M2 
K08-M1 
 
K09-AE 
K09-AD 
K09-AC 
K09-AB 
K09-AA 
 
K10-BA 
 
K11-CF 
K11-CE 
K11-CD 
K11-CC 
K11-CB 
K11-CA 
 
K12-DE 
K12-DD 
K12-DC 
K12-DB 
K12-DA 
 
K14-FE 
K14-FD 
K14-FC 
K14-FB 
K14-FA 
 

K16-?D 
K16-?C 
K16-?B 
K16-?A 
 
KV2-B6 
KV2-B5 
KV2-B4 

KV2-V3 

-190.00 
-310.00 
-530.00 
-830.00 
-870.00 
 
-210.00 
-350.00 
-510.00 
-610.00 
-670.00 
 
-270.00 
-310.00 
-430.00 
-450.00 
 
-90.07 
-250.00 
-290.00 
-330.00 
-370.00 
 
-110.00 
-210.00 
-290.00 
-370.00 
-470.00 
 
-150.00 
-310.00 
-450.00 
 
-90.07 
-110.00 
-150.00 
-210.00 
-350.00 
 
-50.35 
 
-  30.48 
-  50.35 
-  90.07 
-130.00 
-170.00 
-210.00 
 
-  90.07 
-110.00 
-230.00 
-270.00 
-350.00 
 
-7  0.21 
-110.00 
-130.00 
-130.00 
-170.00 
 
-110.00 
-230.00 
-410.00 
-490.00 
 
-50.35 
-70.21 
-90.07 
-130.00 

  5.37 
- 9.58 
  3.63 
- 5.84 
- 5.43 
 
  6.64 
  0.80 
  1.78 
  1.47 
  0.54 
 
  2.65 
- 8.85 
- 9.44 
- 7.46 
 
   9.30 
-  2.15 
 11.45 
-  2.94 
-  4.48 
 
-34.67 
-10.42 
-  4.48 
   2.50 
-  5.41 
 
   2.37 
   7.42 
-  6.20 
 
   0.49 
   0.37 
-  1.20 
   1.89 
-  2.32 
 
-  2.41 
 
-  5.99 
-  6.02 
-  1.41 
-  2.42 
   2.79 
-  2.07 
 
-  3.02 
-  1.45 
   2.17 
   4.67 
   2.91 
 
-  1.03 
   2.08 
   2.88 
   1.66 
   2.74 
 
   0.36 
-  8.69 
-  5.67 
-  4.16 
 
   1.97 
 12.71 
 10.72 
   6.22 

 7.84 
-9.81 
 5.75 
-5.50 
-5.21 
 
5.85 
0.62 
1.20 
0.98 
0.22 
 
   5.59 
-  4.45 
-  7.11 
-  4.83 
 
   9.55 
-  2.92 
 16.49 
   0.55 
-  0.01 
 
-27.76 
-  6.42 
-  1.00 
   3.47 
-  4.65 
 
   7.08 
   9.63 
-  5.50 
 
   1.64 
   4.73 
   6.17 
   4.88 
-  2.25 
 
-  2.38 
 
-  6.09 
-  6.20 
-  1.05 
-  2.11 
   3.03 
-  1.61 
 
-  4.97 
-  4.02 
   4.68 
   9.84 
   6.49 
 
-  0.43 
   2.61 
   3.56 
   1.94 
   0.86 
 
   0.52 
-  6.93 
-  5.12 
-  3.76 
 
-  1.22 
   6.36 
   7.10 
   5.94 

   8.53 
-11.36 
   4.09 
-  5.69 
-  5.34 
 
   8.11 
   1.74 
   2.28 
   1.64 
   0.38 
 
   1.19 
-  1.91 
-  5.93 
-  4.51 
 
   6.95 
-  4.17 
 15.17 
-  3.38 
-  6.55 
 
-31.98 
-  4.28 
-  2.94 
   2.52 
-  5.26 
 
-  4.10 
   3.98 
-  5.74 
 
   0.80 
   1.39 
-  0.08 
   6.47 
-  2.23 
 
-  2.76 
 
-  6.45 
-  6.49 
-  1.51 
-  2.49 
   2.81 
-  1.95 
 
-  6.58 
-  4.50 
-  1.97 
-  0.26 
-  1.03 
 
-  0.69 
   0.55 
   3.04 
   1.23 
   2.20 
 
-  3.14 
-10.48 
-  5.32 
-  4.35 
 
   1.48 
   6.47 
   8.08 
   6.19 

 15.56 
-10.02 
   5.60 
-  5.43 
-  5.16 
 
   7.02 
   0.13 
   2.51 
   1.78 
   0.28 
 
   5.81 
   0.47 
-  5.35 
-  4.23 
 
   9.27 
-  5.22 
 14.71 
-  1.26 
-  2.89 
 
-28.15 
-  5.17 
-  6.21 
   3.05 
-  4.75 
 
   2.76 
   9.38 
-  5.38 
 
   1.55 
   8.17 
   5.39 
   6.34 
-  2.64 
 
-  2.41 
 
-  5.58 
-  5.50 
-  1.39 
-  2.11 
   3.21 
-  1.57 
 
-  1.89 
-  3.52 
   3.25 
   4.56 
   3.47 
 
-  0.48 
   1.59 
   4.65 
   3.83 
   5.28 
 
   0.52 
-  8.82 
-  5.00 
-  3.64 
 
   0.71 
   9.41 
   9.74 
   5.74 

   0.72 
-10.31 
   4.83 
-  5.54 
-  5.24 
 
5.46 
0.33 
1.57 
1.67 
0.78 
 
 0.26 
-0.15 
-5.54 
-3.68 
 
  8.94 
- 1.47 
 13.24 
- 2.63 
- 5.32 
 
-29.55 
-  8.83 
-  1.21 
   2.88 
-  5.07 
 
 1.04 
 7.67 
-5.69 
 
  0.97 
  1.90 
  7.31 
11.75 
- 2.61 
 
-2.19 
 
-5.90 
-6.01 
-1.33 
-2.25 
 3.04 
-1.72 
 
 0.44 
 1.44 
 1.83 
 6.94 
 3.22 
 
-0.43 
 1.35 
 3.02 
 1.79 
 2.95 
 
 1.54 
-8.90 
-5.25 
-4.88 
 
  2.45 
10.62 
  9.88 
  5.78 

Mean error (m) -  0.99    0.21 -  1.20    0.39 - 0.07 
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Table V1-2. Conductivities for the top five cell layers, as given by the calibration 
process. 

Layer (m) Conductivity m/s 
0-0.5 10-4 

0.5-1.5 10-4 

1.5-3.0 4 x 10-5 

3.0-5.0 10-6 

5.0-10.0 10-7 

 
 
 
 
 
 

 
Figure V1-2. The upconing process. Salinity as a function of time at a depth of 370 metres. 
•  Field data (SA2783 and SA2880) 
    Simulated maximum salinity. 
   Simulated salinity at tunnel coordinate 2 800 metres. 
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Figure V1-3. Vertical sections through the centre of the spiral part of the tunnel, showing the 
simulated initial distributions of various water types. 
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Figure V1-3. Cont. 
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Table V1-3. Comparison between measured and simulated water compositions in 
borehole sections prior to tunnel construction. 
 

Measured (top) and simulated water composition Borehole 
depth [m] Meteoric Baltic Glacial Äspö Brine 
KAS02C 

300 m 
 30.1 
 66.3 

14.8 
  6.5 

40.4 
19.9 

14.8 
  7.3 

KAS02D 
440 m 

 26.9 
 21.7 

15.0 
14.2 

43.0 
45.0 

15.0 
19.1 

KAS02E 
520 m 

 17.9 
 20.4 

17.9 
13.9 

44.7 
45.0 

19.6 
20.6 

KAS02F 
840 m 

 13.6 
 12.0 

13.6 
12.0 

45.4 
45.0 

27.4 
31.0 

KAS02G 
880 m 

 12.3 
 11.9 

12.3 
11.9 

46.8 
44.8 

28.7 
31.3 

KAS03D 
340 m 

 20.2 
 26.7 

14.7 
14.6 

50.3 
43.9 

14.7 
14.8 

KAS03E 
440 m 

 22.6 
 24.5 

12.8 
14.9 

51.7 
45.0 

12.8 
15.7 

KAS03F 
600 m 

 16.0 
 15.5 

16.0 
12.8 

50.9 
45.0 

17.1 
26.7 

KAS03G 
820 m 

 14.4 
 12.0 

14.4 
12.0 

47.2 
45.0 

24.0 
31.0 

KAS03H 
900 m 

 11.1 
 11.9 

11.1 
11.8 

44.5 
44.5 

33.4 
31.8 

KAS04C 
360 m 

 24.9 
 28.8 

17.3 
13.8 

40.5 
42.1 

17.3 
15.4 

KAS06C 
320 m 

34.5 
33.8 

35.4 
12.6 

15.1 
38.9 

15.1 
14.7 

KAS06D 
420m 

 33.7 
  22.3 

31.3 
14.4 

17.6 
45.0 

17.6 
18.3 

Average 
 

 21.4 
 23.7 

17.4 
12.7 

41.4 
42.2 

19.8 
21.4 
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Figure V1-4. Comparison between measured (top) and simulated water composition 
distribution for tunnel front at 3 170 metres. 
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Table V1-4. Comparison between measured and simulated water composition in 
boreholes. Tunnelfront: 3 170 m. 
 

Measured (top) and simulated water composition Borehole 
depth [m] Meteoric Baltic Glacial Äspö Brine 

KAS09 
100 m 

35.0 
17.9 

57.0 
82.0 

  4.0 
  0.1 

  4.0 
  0.0 

KAS14 
100 m 

32.0 
21.7 

64.0 
77.3 

  2.0 
  0.8 

  2.0 
  0.3 

SA0813 
100 m 

48.0 
30.6 

41.0 
66.0 

  5.5 
  2.5 

  5.5 
  0.8 

SA1229 
160 m 

40.0 
18.9 

51.0 
80.2 

  4.5 
  0.7 

  4.5 
  0.2 

SA1420 
200 m 

54.0 
21.2 

28.0 
40.1 

  9.0 
25.6 

  9.0 
13.2 

KAS07 
200 m 

60.0 
18.2 

32.0 
81.2 

  4.0 
  0.4 

  4.0 
  0.2 

SA1641 
220 m 

48.0 
32.1 

16.0 
14.6 

20.0 
37.3 

16.0 
16.0 

SA1696 
220m 

35.0 
45.5 

18.0 
21.8 

29.0 
22.6 

18.0 
10.0 

SA1828 
240 m 

46.0 
70.1 

28.0 
14.4 

13.0 
10.7 

13.0 
  4.9 

SA2074 
280 m 

47.0 
25.4 

29.0 
17.0 

12.0 
41.6 

12.0 
16.0 

SA2175 
280 m 

39.0 
23.3 

39.0 
75.8 

11.0 
  0.6 

11.0 
  0.2 

SA2273 
300 m 

41.0 
26.2 

41.0 
61.9 

  9.0 
  8.2 

  9.0 
  3.8 

SA2600 
340 m 

32.0 
13.1 

19.0 
12.3 

29.0 
45.0 

30.0 
29.7 

SA2783 
360 m 

20.0 
17.7 

20.0 
12.9 

39.0 
44.4 

21.0 
25.1 

SA2834 
360 m 

19.0 
20.5 

19.0 
13.2 

37.0 
44.0 

25.0 
22.4 

KAS08 
440 m 

37.0 
25.6 

29.0 
20.4 

17.0 
36.8 

17.0 
17.2 

KAS07 
460 m 

27.0 
15.8 

18.0 
12.9 

37.0 
45.0 

18.0 
26.3 

KAS05 
480 m 

16.0 
13.0 

16.0 
12.2 

45.0 
45.0 

23.0 
29.7 

KAS03 
560 m 

25.0 
23.5 

23.0 
14.6 

49.0 
44.9 

13.0 
16.9 

Average  36.9 
25.3 

30.9 
38.5 

19.8 
24.0 

12.9 
12.3 
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Figure V1-5. Vertical sections through the centre of the spiral part of the tunnel, showing the 
simulated distributions of various water types. Tunnel front position: 3 170 metres. 
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Figure V1-5. Cont. 
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Table V1-5. Comparison between measured and simulated water composition in 
boreholes at time 1996-05.  
 
 

Measured (top) and simulated water composition Borehole 
depth [m] Meteoric Baltic Glacial Äspö Brine 
SA2273 
300m 

46.0 
30.6 

38.0 
64.7 

8.0 
3.1 

8.0 
1.6 

Sa2600 
340m 

48.0 
16.5 

20.0 
12.4 

16.0 
38.2 

16.0 
32.8 

SA2783 
360m 

17.0 
35.2 

17.0 
13.2 

37.0 
32.2 

29.0 
19.4 

SA2880 
380m 

18.0 
35.5 

18.0 
18.4 

34.0 
31.1 

31.0 
14.9 

KA3005 
400m 

54.0 
34.9 

21.0 
13.0 

13.0 
30.8 

13.0 
21.2 

SA3067 
400m 

18.0 
60.2 

18.0 
25.3 

43.0 
10.8 

21.0 
  3.7 

KA3110 
400m 

47.0 
46.7 

37.0 
35.7 

  8.0 
12.4 

8.0 
5.2 

KA3385 
440m 

38.0 
18.4 

18.0 
13.0 

25.0 
42.2 

18.0 
26.5 

Average 
 

35.8 
34.8 

23.4 
24.5 

23.0 
25.1 

18.0 
15.7 
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Case V2  A laboratory scale validation 
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Introduction 

The laboratory scale model (Svensson, 1999) was the first application of the GEHYCO 
approach to calculate the conductivity field. Very little information about the properties of the 
background fracture network was available and an important part of the calibration process 
was to find a tentative expression for the transmissivity of the background fractures. 

The boundary conditions are generated from a site scale model. For consistency, also the 
tunnel inflow distribution is taken from the site scale model. The transmissivities of the major 
fracture zones were calibrated in the site scale model and will not be the subject of calibration 
here. These conditions and assumptions will strongly determine the flow, pressure and salinity 
distributions in the present model. It is thus clear that the calibration process is quite 
constrained and in practice limited to the influence of the background fracture network. 

 

The objective of the calibration is to demonstrate that the conductivity fields generated by the 
suggested method can be calibrated to match field data from the Äspö HRL. 

Calibration criteria 

The following calibration criteria were formulated: 

• In a recent study, see Rhén and Forsmark (2000), the frequency of "High Permeability 
Features" (HPF) at the Äspö HRL was studied. It was concluded that fracture zones with a 
transmissivity 510−≥  m2/s are found with an arithmetic mean distance of 75-105 metres. 
This includes also the deterministic fracture zones, which were found to contribute with 
about 48% to the total number of fractures found. The arithmetic mean distance between 
fractures with 610−≥T  m2/s was found to be in the range 35-55 metres. We will evaluate 
the mean arithmetic distances for fractures with 610−≥T  and 510−≥T  m2/s, in the 
fracture network generated. 

• During the construction of the Äspö HRL, the pressure was monitored in a number of 
borehole sections. The drawdowns at tunnel front position 2875 metres (i.e. when the 
tunnel was excavated to a length of 2875 metres) can be found in Rhén et al. (1997); these 
data will be compared with simulated drawdowns. 

• The conductivity distribution for a test scale of 3 metres has been extensively studied at 
Äspö, (La Pointe, 1994, Rhén et al., 1997). The corresponding distribution of cell 
conductivities, with 3=∆ m, will be calculated and compared with field data. 

Other criteria could have been formulated, but it is believed that the above criteria will 
constrain the background fracture network in a useful manner. Main arguments for the criteria 
are: 

• The frequency of HPF:s will determine the transmissivity of large background fractures.  

• It is essential that the model predicts the correct pressure drops in the borehole sections in 
the domain, as the drawdown distribution reflects the mean conductivity of the rock. 

• By studying the conductivity distribution on the 3 metre scale, we can focus on the 
distribution of low conductivity cells. This may be essential for transport simulations. 
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Calibration process 

The difficult step in the calibration process is to find a strategy for how the calibration criteria 
can be met. The more linked the criteria are the more difficult the task is. Fortunately, the 
criteria above are not strongly linked and the strong influence of boundary conditions and 
inflows to the tunnel also make the task easier. A few trial calculations indicated that the 
following strategy would work: 

• First determine the transmissivity distribution for the background fractures. 

• The comparison of conductivity distributions on a 3 metres scale indicated that the 
addition of a background conductivity improved the comparison with the measured 
distribution (details below). The added conductivity is however of the order 10-10 m/s. 
This small added conductivity was found to have a negligible influence on the agreement 
for other criteria. We can thus perform this operation independently. 

• The pressure drops in borehole sections are to a large extent determined by the 
deterministic fracture zones, which have been calibrated in earlier studies. We thus expect 
the drawdowns to be of the right magnitude independently of other adjustments. 

Results 

The main outcome of the calibration is a formula for the transmissivity of the background 
fractures: 

( ) [ ]
[ ]





>

≤
=

−

−

 metres 100for    /sm                10
  metres 100for    /sm   100/10

25

225

L
LL

T   (V2-1) 

The frequency of High Permeability Features (HPF) was the most important criterion when 
establishing this relation, but of course it also ensured that the other criteria were fulfilled. 
Some properties of this relation include: the maximum transmissivity is of the same order as 
that for the deterministic zones and the transmissivity for L = 5 metres is 8105.2 −×  m2/s, 
which ought to ensure that the smallest fractures do not make a significant contribution to the 
conductivity field. 

As mentioned, the test on a 3 metres scale required the addition of a small background 
conductivity. It was found that a lognormally distributed conductivity, with 

( )( ) 0.10log 10 −=Kmean  and ( )( ) 8.0log 10 =Kstd. dev , gives good agreement with field data. 

Results will now be presented, which demonstrate that the calibration criteria have been 
adequately fulfilled. 

High Permeability Features. In Figure V2-1 illustrations of conductivity fields based on 
fractures with 510−≥T  m2/s and 610−≥T  m2/s are found. The arithmetic mean distances 
were calculated by drawing a number of lines in the east-west direction and count the number 
of crossings. It was found that the mean distance for 510−≥T  m2/s (which includes 
deterministic zones) is about 80 metres and that the distance decreases to 57 metres if all 
fractures with 610−≥T  m2/s are counted. The corresponding values from the field  
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Figure V2-1. Illustrations of calculated High Permeability Features. 510−≥T  m2/s (top) and 
610−≥T  m2/s, all for a depth of 450 metres. 



 B22

measurements are 75-105 metres and 35-55 metres, respectively. It should be noted that the 
two fields shown in Figure V2-1 are from different realisations; it is hence only the 
deterministic fracture zones that are the same in the two figures. 

Drawdowns. The calculated drawdowns in borehole sections in the domain were compared 
with measured ones, all for the time when the tunnel was excavated to a length of 2875 
metres. It was anticipated that the drawdowns should be sensitive to various realisations of the 
background fractures. In order to study this eight realisations of the background fractures 
were generated and the drawdown for each borehole section and each realisation was 
calculated. The result can be studied in Table V2-1; the location of boreholes can be found in 
Figure 1-3 (Report 1). It is seen that different realisations are best for different boreholes. 
Recognising this pattern, it is tempting to try to optimise the comparison by using what can be 
called the "Method of local realisations". We thus enclose a borehole in a volume and use 
fractures from the best realisation in this volume. The fracture centre is used to determine if a 
fracture belongs to the enclosing volume. This means that a large fracture with its centre 
outside the volume may still dominate the volume, which shows that there is no guarantee that 
the method improves the comparison in every borehole. In the vertical the volumes extended 
from the top to the bottom of the domain. In Table V2-1 results including local realisations 
can be found. When using this method one has to decide which realisation should be used 
outside the volumes enclosing the boreholes. This realisation is called the base realisation in 
Table V2-1. It is found that the locally optimised fields improve the agreement with measured 
drawdowns. Two measures of the agreement between measured and simulated drawdowns are 
given in Table V2-1, the arithmetic mean error and the goodness of fit value, defined as  

( )
1

2

−

−∑
n

aa
, where a is the error, a  the mean error and n the number of comparisons.  

Two examples of the resulting conductivity fields are given in Figure V2-2. Two base 
realisations are shown, but the realisations around the boreholes are in both cases from the 
optimum realisation. The rectangles in Figure V2-2 indicate the enclosing volumes. By 
studying the same rectangle in both figures, one can see that small fractures inside the two 
rectangles are the same. It should be underlined that this first step towards a conditioning of 
the background fracture network with local realisations is not an integral part of the method 
suggested. It is included only to demonstrate that conditioning to field data is possible. 

Conductivity on a 3 metres scale. In order to collect statistics for the 3 metres scale a smaller 
computational domain was used. The depth interval chosen was 200 to 500 metres. The block 
is thus 300 x 300 x 300 m3 and with 3=∆  metres we get 106 cells in the grid. Isolated 
fractures were not removed for this case, as this was considered to be closer to the 
experimental conditions. Fractures down to a size of 2.5 metres were generated. The reason 
for this is that the smallest fracture size generated should be comparable to the cell size. 

Comparisons with field data are given in Figure V2-3, where it can be seen that the cell 
conductivity distribution based on this fracture network has 36% of the cells with a 
conductivity of less than 10-11 m/s. A minimum conductivity of 10-12 m/s was prescribed to all 
cells. The calculated distribution is not in agreement with the field data. However, adding a 
lognormally distributed conductivity with ( )( ) 0.10log 10 −=Kmean  and 

( )( ) 8.0log  10 =Kstd. dev  to all cells gives a much better agreement with field data. The 
argument for adding a background conductivity is that it represents fractures below the cut-off 
length in the network. It should be noted that adding this conductivity field does not strongly 
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Table V2-1. Measured and calculated drawdowns in borehole sections for various background fracture networks. 
Tunnel front at position 2875 metres. 

 
Error (Calculated - Measured drawdown) (in m) for various realizations of the background 

fracture network 

 
With local 

realizations 
 

Realization number 
 

Base realization 
     

 
Borehole 
section 

 
Contact with 
major fracture 
zone 

 
Measured 
drawdown 
(m) 

 
1 2 3 4 5 6 

 
7 

 
8 

 
 
 
 
 
 

Best 
 
1 

 
4 

K02-B4 
K02-V3 

no 
yes 

51.50 
16.90 

-10.57 
   9.13 
 

  -9.79 
   9.16 
 

  -8.48 
   9.20 

  -9.85 
   9.28 
 

-11.64 
   9.11 
 

-10.89 
   9.02 
 

-11.01 
   8.92 

  -9.92 
   9.22 

3 -10.11 
   9.17 

  -9.38 
   9.26 

K05-E4 
K05-E3 
K05-E2 
K05-E1 
 

no 
no 
no 
yes 

40.40 
39.90 
32.50 
29.20 

   4.40 
  -2.22 
  -3.40 
  -1.41 

   5.15 
  -0.51 
  -2.14 
  -0.96 

   6.48 
   0.73 
  -4.84 
  -3.36 

   4.66 
  -0.74 
  -3.61 
  -1.59 

   5.10 
   0.71 
  -4.55 
  -2.56 

   6.95 
   1.83 
  -4.64 
  -2.99 

 10.59 
  -0.37 
  -4.77 
  -3.09 

   2.28 
   0.93 
  -3.13 
  -1.88 

8    3.69 
  -0.56 
  -2.90 
  -1.58 

   1.99 
   0.41 
  -3.44 
  -2.20 

K06-F4 
K06-F3 
K06-F2 
K06-F1 
 

no 
no 
no 
yes 

33.80 
13.90 
29.10 
30.00 

  -2.42 
 15.84 
  -1.70 
  -4.26 

  -1.60 
 17.64 
   0.35 
  -1.13 
 

  -0.68 
 18.12 
  -0.78 
  -2.97 

  -0.81 
 15.24 
  -1.44 
  -2.82 

  -0.24 
 19.81 
  -1.29 
  -3.76 

  -0.34 
 17.30 
   0.83 
  -1.20 

  -0.95 
 16.21 
  -1.46 
 -3.42 

  -2.10 
 18.38 
  -2.13 
  -2.91 

4   -1.11 
 14.57 
  -2.82 
  -4.30 

  -0.78 
 15.99 
  -1.41 
  -3.35 

K07-J4 
K07-J3 
K07-J2 
 

no 
no 
yes 

37.50 
25.20 
11.70 

  -1.23 
   1.78 
   4.79 
 

  -0.51 
  -0.55 
   4.45 
 

  -0.01 
  -0.59 
   4.41 

  -2.07 
  -1.75 
   4.08 

  -0.23 
  -1.42 
   4.33 

  -5.97 
   4.04 
   5.39 

   0.08 
   3.86 
   4.02 

   0.72 
   0.20 
   3.80 

8    0.68 
   0.65 
   3.93 

   1.09 
   0.83 
   3.81 

K08-M2 
K08-M1 
 

no 
yes 

16.60 
19.50 

   9.59 
  -5.55 
 

   7.75 
  -5.69 
 

   8.04 
  -5.58 

   9.25 
  -5.59 
 

   6.08 
  -5.56 
 

   9.61 
  -5.47 
 

   9.27 
  -5.50 

   9.31 
  -5.60 

5    7.44 
  -5.40 
 

   6.80 
  -5.45 

K12-DC 
K12-DB 
K12-DA 
 

no 
no 
yes 

25.40 
25.30 
24.90 

   3.44 
   2.31 
   2.38 

   2.39 
   3.39 
   4.09 

   3.04 
   3.17 
   3.63 

   3.05 
   3.26 
   3.10 
 

   3.45 
   3.63 
   3.86 

   2.97 
   3.97 
   4.07 

   2.98 
   2.62 
   3.43 

   1.89 
   5.09 
   4.48 

1    3.52 
   2.61 
   3.10 

   3.47 
   2.30 
   2.85 

K16-3 
K16-2 
K16-1 

no 
yes 
no 

28.00 
18.60 
16.70 

  -6.61 
  -6.43 
  -5.59 

  -6.68 
  -6.48 
  -6.09 
 

  -6.50 
  -6.28 
  -4.79 

  -7.72 
  -6.51 
  -5.70 

  -6.56 
  -6.45 
  -4.87 
           

  -5.73 
  -6.28 
  -5.01 

  -8.28 
  -6.40 
  -5.04 

  -7.04 
  -6.48 
   -5.36 

6   -5.97 
  -6.39 
  -5.59 

  -5.77 
  -6.41 
  -5.28 

                             Mean error                                         0.11            0.58             0.57              0.08             0.33             0.83             0.56             0.46                                 0.12            0.25 
                             Goodness                                            6.32            6.29             6.40              6.20             6.76             6.75             6.80             6.54                                 5.86            5.84 
                             of fit 
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Figure V2-2. Conductivity fields for base realisations 4 (top) and 1, see Table V2-1. 
The rectangles indicate volumes where fractures are taken from the optimum 
realisation. 
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Figure V2-3. Measured and simulated conductivity distributions on a 3 metres scale 
and simulated distribution for 5 metres scale. 
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influence the drawdown calculations, nor the frequency of high permeability features, 
presented above. It may however prove important to have also the "low conductivity 
connections" well described when transport simulations are attempted.  

The field data are based on measurements in boreholes with a packer spacing of 3 
metres. It may be questioned if it is relevant to compare these data with grid cell 
conductivities, with 3=∆  metres. If, as an example, we assume that the radius of 
influence is 3 metres in the field measurements we sample a cylinder with diameter 6 
metres and length 3 metres. In order to see the influence of the cell size, the distribution 
for 5=∆  metres (using the main model domain) was also calculated. The result is 
shown in Figure V2-3. It is found that the conductivity distribution for 5=∆  metres is 
different and perhaps closer to the field data. Considering this uncertainty about the 
sampled volume, it is probably not worthwhile to strive for a closer agreement with the 
measured distribution. Further discussions about the field data can be found in La Pointe 
(1994) and Rhén at al. (1997). 

Some further comparisons with data 

In this section we will analyse the generated conductivity field and, when possible, 
compare with data. The results were not directly used in the calibration process but are 
anyway believed to illustrate the properties of, and add confidence to, the generated 
fields. 

The first topic to be discussed is heterogeneity. As there is a large contrast in the 
hydraulic conductivity between fractures and intact rock, it is of interest to compare the 
heterogeneity of the generated conductivity field with field data. This can be done 
(Painter, 1999) by comparing the histograms of the increments in Klog , as shown in 
Figure V2-4. The basic idea is to determine the probability of finding a certain 
difference in K10log  when moving vertically a certain distance (the "lag" in Figure V2-
4). Obviously, if we had a smoothly varying conductivity field the probability to find 
large increments for short lags would be low. The field data shown in Figure V2-4 are 
from 3 metres packer tests in eight boreholes on Äspö (see Rhén et al., 1997). These 
data were analysed, with respect to heterogeneity, by Painter (1999). 

An illustration of the heterogeneity of the generated conductivity field is given in Figure 
V2-5. The cell conductivity, with 5=∆  metres, along a horizontal line is shown. The 
line is parallel to the final part of the tunnel (i.e. section 3400-3600 metres), at the same 
depth, but roughly 100 metres south of the Äspö tunnel. The reason for sampling this 
volume is that conductivity measurements, with 5 metres spacing, have recently been 
carried out in this volume. It is clear from Figure V2-5 that large variations in 
conductivity from cell to cell is a characteristic feature of the field generated. 
Qualitatively the distribution is in good agreement with the measurements. 

An often used parameter to characterise a fracture network is the fracture area per unit 
volume, 32P . In Table V2-2, the contributions from different fracture sets are given. As 
can be seen, 32P  is depending on the cut-off length in the fracture network. For the 
present cut-off length, 5 metres, the 32P  parameter is 0.086. If however offcutl −  was 2.5 
metres 32P  would increase to 0.117, and if offcutl −  was 0.5 metres 32P  would be 0.35; all 
calculated from the power-law distribution. Follin and Hermansson (1996) summarised 
reported estimates based on Äspö data. They found 32P -values in the range 0.0664 to 
2.0 m2/m3. This is a wide range, which however includes the estimates from the present 
model. 
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Figure V2-4. Increment histograms. Measured (•) versus simulated (-) probability 
distribution for different lags. 
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Figure V2-5. Conductivity distribution along an east-west line south of the final part of 
the Äspö tunnel. The conductivity in the north-south direction is shown, but other 
directions are similar. 
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Concluding remarks 

The main conclusion from this calibration exercise is that the suggested method to 
generate conductivity fields can be calibrated to match Äspö data. This was achieved by 
the following actions: 

• Retain the transmissivities for the major fracture zones, as used in the site scale 
model, without modification. 

• Employ a background fracture network with a fracture transmissivity that decreases 
with fracture size, see Equation V2-1. 

• Add a background cell conductivity, which has a lognormal distribution. Also apply 
a lower limit (=10-12 m/s) for the cell conductivity. 

When comparisons with measured drawdowns in borehole sections were made, it was 
found advantageous to use different realisations of the background fracture network for 
different boreholes. This is a novel technique that seems to work well, but may require 
some further evaluation.  

Table V2-2. The fracture intensity P32, expressed as m2/m3, based on deterministic 
fractures and the background fracture network. 

Fracture length 
interval 

P32 
[m2/m3] 

Determ. fracture zones 
160-320 
80-160 
40-80 
20-40 
10-20 
5-10 

0.014 
0.008 
0.007 
0.008 
0.011 
0.016 
0.022 

 
 Σ 0.086 
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Case V3 A repository scale validation 
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Introduction 

This validation study is taken from a recent report (Svensson, 2001), dealing with the 
Prototype Repository Project, which aims to test the components in SKB:s deep 
repository system; see Figure 1-1 (Report 1) for the location of the computational 
domain and Figure V3-1 for the layout of the Prototype Repository. The objective of the 
report mentioned was to “develop and establish an adequate model of the groundwater 
pressure and salinity distributions in the domain”. More precisely five realisations that 
fulfilled some criteria were sought. 

Calibration criteria 

With the objective in mind, it was concluded that the following criteria ought to 
constrain the model in a useful way: 

• Tunnel inflows. Measurements and estimates of the inflow to different tunnel 
parts are available, see Forsmark and Rhén (1999) and Stigsson et al. (2000). 
A recent re-evaluation (Rhén, 2001, pers.com.) of the inflow data has however 
revealed that the inflows are 2-3 times higher than given in the reports 
mentioned. Based on this information, the inflow to the tunnels has been 
divided into three parts, see Figure V3-2. The model should predict these 
inflows as closely as possible. 

• Borehole pressures. Extensive data on borehole pressures, before, under and 
after the excavation of the deposition holes, are available, see Forsmark and 
Rhén (1999), Forsmark et al. (2001). The pressure measurements before the 
excavation will be compared with calculated pressures. Also the relation 
“Pressure-Distance from tunnel” will be studied as this is considered to be a 
well established relation from field data. 

• Conductivity statistics. The conductivity distribution for the 1 metre scale has 
been estimated from borehole sections. This distribution will be compared 
with the cell conductivities in the Repository model (which has a cell size of 1 
metre). It is however not obvious that field data from a packer spacing of 1 
metre can be directly compared to the grid conductivities. 
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Figure V3-1. The Prototype Repository area. Six deposition holes and boreholes 
used for pressure monitoring. 
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Figure V3-2. Total inflow to the tunnels is partitioned into three inflows. 

 

 

Calibration process 

The methods and concepts, embedded in DarcyTools, have earlier been applied to larger 
scale problems, i.e. the Laboratory and Site scale models. The pressure distribution 
around a tunnel is quite a different problem and it was not clear if, for example, the type 
of fracture network generated would be suitable also for this problem. However, it was 
decided to follow the procedures from the Laboratory model as a first test. Fracture 
properties, orientation, intensity, etc were thus determined from the formulae given in 
Svensson (1999), also for the Repository model. In the Laboratory model a background 
conductivity with a lognormal distribution was used as a tuning knob; the same 
approach will be used for the Repository model. 

Preliminary tests showed that it ought to be possible to generate five realisations that 
fulfilled the criteria, simply by tuning the background conductivity. The following steps 
can thus describe the calibration process: 

• Generate a large number of realisations of the conductivity field and select the five 
best based on the following criteria:  

- No large fracture, with its centre outside the Repository model, should be 
present close to the tunnels (Note that large fracture with centres inside the 
domain have been removed and replaced with deterministic fractures).  

- A “realistic” inflow (say 10 → 50 l/min, without skin) in each tunnel section 
shown in Figure V3-2. If a large fracture crossed a tunnel an inflow of perhaps 
several hundred l/min was generated, which means that the two conditions are 
partly linked. However, also a zero inflow case (or close to zero) has to be 
rejected, due to the first calibration criterion chosen. 

Q3 = 10.0 l/min

Q1 =4.5 l/min 

Q2 = 15.0 l/min 

F-tunnel 
G-tunnel 

A-tunnel 
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• For the five realisations chosen, verify that the application of a skin around the 
tunnels can force the inflows to the desired values. 

• Adjust the mean of the background conductivity, 0K , to get good agreement with 
the pressure data from boreholes. The standard deviation ( )010logfor K of the added 
conductivity was fixed to 1.0. 

• Check that the conductivity statistics for the 1 metre scale is in fair agreement with 
field data. 

Results 

Twenty realisations of the conductivity field were generated in order to select five 
acceptable. Some of these twenty realisations generated an inflow of several hundred 
l/min, others zero, in a tunnel section. 

The five best could however be forced, by way of a skin factor, to give a correct inflow 
for all three tunnel sections shown in Figure V3-2. The skin factor multiplied all cell 
wall conductivities of the cells facing the tunnel. As can be seen in Table V3-1 the skin 
factors are in the range 0.02 →10. The upper limit for the skin factor was set to 10.0 
and, as can be seen, this skin was applied for 2Q  in realisation 3. The inflow is still a 
little bit lower than desired. 

In Table V3-1 also the mean values for the added background conductivity are given; 
these are in the range 3.0 → 6.5 x 10-10 m/s. The values were determined from a 
comparison with measured pressures in borehole sections, see Table V3-2. In this 
comparison we will intentionally call the difference between the measured and 
calculated pressures a “difference” and not an error, as an error is something that can be 
identified and corrected. Anyway, the objective of the calibration, using the added 
conductivity as a tuning knob, was to bring down the mean difference to a small value; 
as can be seen in Table V3-2 this was successful. If we like, one can consider the added 
conductivity as representing fractures smaller than the smallest fracture generated in the 
network, i.e. smaller than 1 metre. A conductivity value of around 10-10 m/s seems to be 
of the right magnitude to simulate such fractures. In Table V3-2 also the number of 
comparisons with an absolute difference in head, smaller than 100 metres is given; this 
gives an additional measure of the comparison. It should be added that more pressure 
recordings than given in Table V3-2 are available. The ones selected are those that were 
classified as “best quality” in Forsmark and Rhén (1999). 

Another way of representing the comparison of pressures in Table V3-2, is shown in 
Figure V3-3. Now the pressures, measured and simulated, are shown as a function of 
the distance to the nearest tunnel centre. As we are interested in the nearfield around the 
tunnels, this way of plotting the information is of interest. The first diagram in  
Figure V3-3 shows the mean of all five realisations, as compared to the evaluated trend 
in the measured data. The trend in the measurements was estimated by fitting a straight 
line to the measured heads in Table V3-2. The rest of the diagrams show comparisons 
for each realisation. From Figure V3-3 one can conclude that the pressure head may 
vary with several hundred metres at a distance of, say, 10 metres from the tunnel centre. 
Further, the simulations show the same trend and spread as the measurements. 
 
Finally, we will check the conductivity statistics. As mentioned above, it will be 
assumed that the 1 metre cell conductivities can be compared to the conductivities 
obtain from borehole measurements with a packer spacing of 1 metre. The distributions 
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from the five realisations are given in Table V3-3 and in Figure V3-4 the mean of the 
five realisations is compared to the measured distribution. It is found that the agreement 
is good for conductivities above 10-9 m/s, while a deviation is found below this value. 
The distribution is however sensitive to the value of the added background conductivity 
for small conductivities. This is illustrated in Figure V3-4, where the distribution for a 
background conductivity of 10-11 m/s is also shown. As can be seen this will result in a 
perfect agreement with the measured distribution. It was however regarded as more 
important to optimise the agreement with the pressure measurements, and the 
background conductivities given in Table V3-1 are thus kept. 

Concluding remarks 

It can be concluded that five realisations of the conductivity field, that fulfill the 
calibration criteria, have been found. The agreement with measurements is generally 
very good. 

It is worth noting that this was achieved by adding a small background conductivity, 
while the basic methods and parameter estimates are kept from the Laboratory scale 
model. 

 

Table V3-1. Inflows, skins and background conductivities for the Repository 
model. Skin factors are given with high accuracy in order to facilitate later 
comparisons. 

Realisation Q1 

l/min 

Q2 

l/min 

Q3 

l/min

Skin
1 

Skin2 Skin3 Mean 
conductivity 
added  

m/s [x 10-10] 

1 4.5 15.0 10.0 0.0259 7.3655 0.1019 3.0 

2 4.5 15.0 10.0 0.0715 0.0995 6.1238 5.0 

3 4.5 13.6 10.0 0.0255 10.000 0.2430 6.5 

4 4.5 15.0 10.0 0.0713 0.2595 0.0793 6.5 

5 4.5 15.0 10.0 0.4360 0.0608 0.0352 3.0 
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Table V3-2. Comparison between measured pressures in borehole sections and 
simulated pressures from five realisations of the fracture network. 

Realisation 
1 2 3 4 5 

Borehole Measured 
Head [m] 

Head Diff. Head Diff. Head Diff. Head Diff. Head Diff. 
KA3510A:3 
KA3539G:1 
KA3542G01:1 
KA3542G02:1 
KA3550G01:1 
KA3550G02:1 
KA3563G01:1 
KA3563G01:2 
KA3563G01:3 
KA3566G02:1 
KA3566G02:2 
KA3572G01:1 
KA3573A:1 
KA3573A:2 
KA3579G01:1 
KA3584G01:1 
KA3590G01:1 
KA3590G01:2 
KA3590G02:1 
KA3590G02:2 
KA3590G02:3 
KA3590G02:4 
KA3590G02:4 
KA3593G01:2 
KA3600F:2 
KG0021A01:2 
KG0021A01:3 
KG0021A01:4 
KG0021A01:5 
KG0048A01:1 
KG0048A01:2 
KG0048A01:3 
KG0048A01:4 

393.2 
308.2 
378.7 
321.9 
18.1 
377.6 
327.8 
142.0 
142.1 
24.6 
349.2 
353.6 
191.5 
404.9 
391.5 
204.1 
11.5 
395.6 
389.8 
368.0 
363.4 
276.8 
100.1 
216.1 
409.7 
349.5 
349.6 
331.7 
231.1 
386.2 
364.0 
370.7 
294.0 

404.3 
311.3 
364.5 
154.2 
220.5 
382.1 
261.8 
389.7 
187.8 
188.5 
354.6 
298.9 
359.3 
366.7 
280.3 
416.7 
325.8 
425.1 
340.5 
350.5 
352.2 
339.1 
311.3 
311.7 
404.9 
114.0 
  68.7 
  88.5 
149.2 
267.7 
246.2 
206.2 
234.4 

   11.1 
     3.1 
  -14.1 
-167.7 
 202.4 
     4.5 
  -66.0 
 247.6 
   45.7 
 163.9 
     5.4 
  -54.7 
 167.8 
  -38.2 
-111.1 
 212.6 
 314.3 
   29.5 
  -49.3 
  -17.6 
  -11.2 
   62.3 
 211.2 
   95.6 
   -4.8 
-235.6 
-280.9 
-243.2 
  -81.9 
-118.5 
-117.8 
-164.5 
  -59.5 

407.4 
243.7 
323.3 
240.6 
256.7 
378.8 
288.2 
347.3 
218.9 
201.6 
296.6 
298.3 
303.2 
382.7 
315.0 
322.6 
241.0 
382.1 
272.9 
351.4 
339.8 
320.3 
239.3 
232.1 
276.1 
249.2 
268.6 
239.1 
188.7 
277.2 
278.1 
272.2 
132.3 

   14.2 
  -64.5 
  -55.2 
  -81.3 
 238.5 
     1.2 
  -39.6 
 205.2 
   76.8 
 177.0 
  -52.6 
  -55.3 
 111.7 
  -22.2 
  -76.4 
 118.5 
 229.5 
  -13.6 
-116.9 
  -16.7 
  -23.6 
   43.4 
 139.2 
   16.0 
-133.6 
-100.3 
  -81.0 
  -92.6 
  -42.4 
-109.0 
  -85.9 
  -98.5 
-161.7 

394.6 
289.9 
304.4 
134.1 
174.4 
358.9 
269.1 
336.5 
206.3 
176.8 
333.6 
308.9 
316.8 
371.8 
316.0 
348.3 
325.2 
396.1 
332.9 
382.2 
374.4 
362.0 
317.1 
339.3 
372.5 
197.6 
163.9 
159.2 
111.3 
314.4 
289.7 
295.6 
283.0 

     1.3 
  -18.3 
  -74.1 
-187.8 
 156.2 
  -18.7 
  -58.7 
 194.5 
  -64.2 
 152.2 
  -15.6 
  -44.7 
 125.3 
  -33.0 
  -75.5 
 144.2 
 313.7 
     0.5 
  -56.9 
   14.1 
   11.0 
   85.2 
 217.1 
 123.2 
  -37.2 
-152.0 
-185.6 
-172.5 
-119.8 
  -71.8 
  -74.3 
  -75.1 
  -11.0 

411.2 
291.9 
319.6 
202.6 
198.6 
376.9 
269.6 
341.9 
169.9 
138.1 
323.2 
300.6 
286.3 
373.0 
277.3 
323.7 
268.8 
379.2 
283.8 
360.7 
349.5 
332.1 
270.1 
257.9 
364.3 
234.7 
218.4 
225.8 
204.4 
268.1 
267.1 
276.5 
254.6 

   18.0 
  -16.3 
  -58.9 
-119.3 
 180.5 
    -0.7 
  -58.2 
 199.9 
   27.8 
 113.4 
  -26.0 
  -53.0 
   94.9 
  -31.8 
-114.2 
 119.6 
 257.3 
  -16.4 
-106.1 
    -7.4 
  -14.0 
   55.3 
 170.0 
   41.8 
  -45.4 
-114.9 
-131.2 
-105.9 
  -26.6 
-18.1 
  -96.9 
  -94.2 
  -39.4 

425.5 
338.4 
389.8 
235.1 
230.5 
405.8 
302.8 
292.2 
267.6 
219.2 
337.6 
304.1 
280.1 
324.5 
289.4 
280.0 
218.6 
326.7 
227.8 
332.8 
315.4 
285.8 
  65.5 
137.4 
315.2 
271.3 
255.8 
263.8 
261.5 
241.5 
212.3 
269.3 
315.9 

   32.2 
   30.0 
   11.4 
  -86.8 
 212.4 
   28.2 
  -25.0 
 150.2 
 125.5 
 194.6 
  -11.6 
  -49.5 
   88.7 
  -80.4 
-102.1 
   75.9 
 207.1 
  -68.9 
-162.0 
  -35.3 
  -48.0 
     8.9 
  -34.6 
  -78.6 
  -94.5 
  -78.3 
  -93.8 
  -67.9 
   30.5 
-144.7 
-151.7 
-101.5 
   22.0 

Mean Diff                  -2                -  5                  4                -3                  -9 

Numbers withDiff< 100                 18                  21                20                20                  23 



 B37

 

Figure V3-3. Pressure head as a function of distance to nearest tunnel centre. Average of all 
five realisations compared to measured trend (top); straight line represents measurements.  
Bottom: Realisation 1 and measured data. 
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Figure V3-3, Cont. Pressure head as a function of distance to nearest tunnel centre. 
Realisation 2 (top) and 3.      
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Figure V3-3, Cont. Pressure head as a function of distance to nearest tunnel centre  
Realisation 4 (top) and 5. 
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Table V3-3. Simulated conductivity distributions. Five realisations and the average 
distribution. 
 

Cumulative conductivity distribution (log10 K, in %), K [m/s] Realisation 

<-11 <-10 <-9 <-8 <-7 <-6 <-5 

1 5 25 58 81 92 96 100 

2 3 21 55 83 96 99 100 

3 3 18 50 80 95 99 100 

4 3 17 50 80 94 99 100 

5 5 26 60 84 95 99 100 

Average 4 21 55 82 94 99 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure V3-4. Comparison between measured  (line and crosses) and simulated conductivity 
distribution for a scale of 1 metre. (Basic figure from Stigsson et al., 2000). 
     Mean of five realisations. 
    Realisation 4 with an added conductivity of 10-11 m/s. 
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Case V4 An experimental scale validation 
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Introduction 

Validation implies that the simulations should be compared with measurements. 
However, in this study a “somewhat derived form” of the field data will be used. The 
BTC:s measured in field have been deconvoluted to a unit response function, i.e. the 
BTC represents the expected result from a Dirac pulse input (see Elert and Svensson, 
1999). For the present purpose we will however regard the deconvoluted BTC  as 
field data. 

The objective of the validation study is to show that the numerical model can be 
tuned to fit the experimental BTC:s. It is however not meaningful to use all model 
parameters in such a tuning or to use unrealistic values on parameters. A strategy is 
needed. 

As this is the first comparison with field data (concerned with BTC:s) it is relevant to 
begin with a study that focuses on the most uncertain model parameters. We will call 
this study phase I. The real test of a tracer transport model is however to predict 
BTC:s. To do predictions, the model parameters should be known or possible to 
estimate without reference to the measured BTC. In phase II we will use fixed model 
parameters and only vary property data. 

The problem specification is in most respects identical to the one given for Task 6A 
A general description of Task 6 and further details of this modelling exercise can be 
found in Svensson (2003). For a general description of the PARTRACK model, see 
Report 1. 

Validation, phase I 

If fracture and matrix properties, flow velocity, tracer properties, etc were all known 
the present model would still have two parameters that are undetermined: 

• k, the late time slope. For a single rate diffusion problem we know that 5.1=k , 
but for more complex situations we can only say that 5.1>k . Haggerty et al. 
(2000) found, using a multi-rate model, that 2.21.2 →=k  fits experimental 
data. 

• maxα  (rate for the smallest boxes) is uncertain because it is not clear if we should 
associate the fastest boxes with diffusion into stagnant water or diffusive 
exchange with the matrix. In the later case maxα  should be estimated as 

( )imw RlD 2
min/  while  one may question if imR  should be involved (fully or not at 

all) for the stagnant water interpretation. 

In phase I, k and maxα  will hence be used as tuning knobs, with the objective to learn 
about sensitivity and limits. Some more conditions for the simulation: 

• nβ  (for non sorbing tracers) is first estimated. For sorbing tracers 

mnim RR /ββ ×= . imR  and mR  are estimated from the tracer data (see  
Table V4-1). 

• 10
min 10−=α  for HTO and imHTOww RDD /10/ 10

,
−×  for other tracers. 
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• The unit response BTC:s include the following tracers: HTO, Uranine, Na22, 
Sr85, Rb86 and Co58 (see Table V4-1). 

 

Table V4-1. Tracer property data 
Tracer wD  

( )910−×  

aK  dK  mR  imR  

HTO/Uranine 2.4 0. 0. 1. 1. 

Na22 1.33 7107 −×  6104.1 −×  1.0 1.95 

Sr85 0.78 6108 −×  6107.4 −×  1.02 4.2 

Rb86 2.0 4105 −×  4104 −×  2.0 271. 

Co58 0.5 3108 −×  4108 −×  17. 542. 

 

The first BTC discussed is for HTO, see Figure V4-1. As data are available also for 
Uranine (which should give a similar BTC) we include the data for Uranine as well. 
It is found that 4=nβ  and 2.2=k  give an excellent agreement with the 
measurements. Note that maxα  is not uncertain for this case. 

Next Na22 is considered. It is found from the measurements that “the peak is as high 
as for a non sorbing tracer, but delayed”. It is not possible to obtain this effect, by the 
present model, without a 0.1>mR . So, even if we set out to use the estimated values 
for mR  and imR , we change mR  from 1.0 to 2.7, to get the peak arrival time right. 

maxα  is estimated to be in the range 31033.168.0 −×→ . A 05.2=k  
and 3

max 1068.0 −×=α  give a fair agreement with measurements, as seen in  
Figure V4-2. 

Strontium is the next, weakly sorbing, tracer to be studied. maxα  should be in the 
interval 31078.019.0 −×→ . A somewhat larger value, 3103.1 −× , and a 05.2=k  are 
needed to ensure good agreement, see Figure V4-3. 

For Rubidium the maxα  interval is 35 100.21074.0 −− ×→× . A 4
max 101.1 −×=α  and a 

86.1=k  give a fair agreement, see Figure V4-4, with the measured BTC. 

Cobalt is the final tracer to be discussed. The maxα  interval is now 
36 105.01092.0 −− ×→× . A 0.2=k  and 5

max 105.1 −×=α  is the best two-parameter 
tuning that could be found. The agreement with the measured BTC, see Figure V4-5, 
is however not very good. 
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Validation, phase II 

The objective is now to evaluate how well we can tune the model to the experimental 
data by only changing tracer property data, as represented by mR  and imR . We then 
need to conclude something about k and maxα  from phase I. The k values range from 
1.86 2.2→ . Let us put 0.2=k . maxα  was found to be in the expected range, except 
for Sr85. It is however difficult to make further interpretations of the comparisons. In 
lack of further evidence, maxα  will be based on the 10log  average of the two limits 
(i.e. the average of 10-5 and 10-3 is 10-4). 

Again we start with HTO and estimate nβ . Now we only have one parameter to tune 
as HTO is non sorbing. A 0.10=nβ  gives a fair agreement as can be seen in Figure 
V4-6. One should however note that 0.2=k  is not the best value for the part after 
the peak (compare with Figure V4-1). 

For Na22, see Figure V4-7, 0.2=mR  and 0.1=imR  give a good agreement, with the 
same arguments as in phase I. The estimated values, see Table V4-1, are 0.1=mR  
and 95.1=imR . 

For SR85 5.2=mR  and 0.2=imR  produce a fair agreement, see Figure V4-8. These 
values are of the same magnitude as estimated. 

In Figure V4-9, the comparison for Rubidium is shown. 0.2=mR  and 0.30=imR  
were used in the simulation ( 0.2=mR  and 271=imR  in Table V4-1). However, the 
“average rule” for maxα  did not produce a good agreement for the early part of the 
BTC. A reduction, from 31007.037.0 −×→ , gives a significant improvement. Both 
curves are shown in Figure V4-9. 

The same hold true for Cobalt, see Figure V4-10. The maxα  based on the average is 
5101.2 −× , while the better BTC is based on 5

max 105.0 −×=α . For both curves the 
estimated ( )17=mR  and ( )542=imR  were used. 

Concluding remarks 

In the discussion section of the main Task 6 report (Svensson, 2003) some comments 
about the advantages and limitations of the present model can be found. These 
comments are to a large extent based on the simulations presented in this Appendix. 
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Figure V4-1. Validation, phase I. Solid line gives simulation, open circles HTO and 
filled circles Uranine. 
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Figure V4-2. Validation, phase I. Solid line gives simulation, circles measurements. 
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Figure V4-3 Validation, phase I. Solid line gives simulation, circles measurements. 
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Figure V4-4. Validation, phase I. Solid line gives simulation, circles measurements. 
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Figure V4-5. Validation, phase I. Solid line gives simulation, circles measurements. 
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Figure V4-6. Validation, phase II. Solid line gives simulation, circles measurements. 
Solid line gives simulation, open circles HTO and filled circles Uranine. 
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Figure V4-7. Validation, phase II. Solid line gives simulation, circles measurements. 
Solid line gives simulation, circles measurements. 
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Figure V4-8. Validation, phase II. Solid line gives simulation, circles measurements. 
Solid line gives simulation, circles measurements. 
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Figure V4-9. Validation, phase II. Solid line gives simulation, circles 
measurements.. Dashed line gives simulation with reduced maxα . 
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Figure V4-10. Validation, phase II. Solid line gives simulation, circles 
measurements. Dashed line gives simulation with reduced maxα . 




