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Abstract

This report summarises the commonly accepted theoretical basis describing interaction between 
colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals 
attractive force and the electrical repulsive force. The report describes in some depth the origin of 
these two forces, how they are formulated mathematically as well as how they interact to sometimes 
result in attraction and sometimes in repulsion between particles. The report also addresses how the 
mathematical models can be used to quantify the forces and under which conditions the models can 
be expected to give fair description of the colloidal system and when the models are not useful. This 
report does not address more recent theories that still are discussed as to their applicability, such as 
ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will 
be discussed in future reports.
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Sammanfattning

Denna rapport sammanfattar de vanligaste etablerade teorierna och modellerna som beskriver samverkan 
mellan kolloidala partiklar i elektrolytlösningar. De två viktigaste krafterna är den attraktiva van der 
Waals-kraften och kraften orsakad av elektrostatiska effekter. Rapporten går igenom och beskriver 
detaljerat hur dessa krafter uppstår, hur de kan formuleras i matematiska modeller liksom hur de sam-
verkar för att ibland attrahera och ibland repellera partiklar. Rapporten beskriver hur de matematiska 
modellerna kan användas för att kvantifiera krafterna och under vilka omständigheter modellerna 
kan förväntas ge en rimlig beskrivning av kolloidala system och när modellerna inte är användbara. 
Denna rapport behandlar inte nyare teorier vilkas tillämpbarhet fortfarande diskuteras såsom jon-jon 
korrelationseffeter och Coulombisk attraktions teori (CAT). Dessa och andra modeller kommer att 
behandlas i kommande rapporter.
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1	 Introduction

In this report, we are concerned with particle-particle interactions, and the focus is put on the main 
forces that may operate between colloidal particles dispersed in a liquid.

By the term, “pair-interaction”, we mean interaction between two particles, embedded in an infinitely 
large amount of electrolyte solution acting as the environment. Basically, we consider the components 
of the Gibbs and/or Helmholtz energy and the disjoining pressure, respectively, quantifying them as far 
as possible for plate-like particles for a range of conditions.

For two parallel plates, at a distance s apart, the disjoining pressure Π(s) is the amount by which the 
normal component of the pressure tensor exceeds the outer pressure. If both plates are infinitely large, it 
would be the force between unit area of the one plate and the other infinite large plate. Thermodynamically, 
depending on the process conditions, the Gibbs energy Ga(s) or the Helmholtz energy Fa(s) is the 
isothermal reversible work of bring these two surfaces from an infinite distance to distance s apart. 
From that we find, for parallel flat plates,

Tps
sGsΠ

,

a )()(
∂

∂−= 								        (1‑1)

or

TVs
sFsΠ

,

a )()(
∂

∂−= 								        (1‑2)

For isolated pair interactions in incompressible systems, these two functions are identical. Therefore, 
we shall generally consider the Gibbs energy Ga due to the process conditions chosen. However, if we 
want to consider pair interactions in confined geometries or the interaction between a pair selected 
from a large collection of particles, the Helmholtz energy is the appropriate choice. Then Ga and Fa 
may differ significantly.

With this knowledge at hand, we shall now briefly review and discuss some types of interactions in 
some depth.

London-Van der Waals or dispersion interaction
These forces are ubiquitous; they depend on the nature of the particles and the medium, and on the 
geometry of the particles. As a first approximation, we can write the Van der Waals contribution to 
the Gibbs energy of interaction between two particles, a distance s apart, as,

Ga,VdW = –A12 (3) f (geometry, s)							       (1‑3)

where A12(3) is the Hamaker constant for the interaction between particles of nature 1 and nature 2, 
respectively, across the medium 3.

For homo-interaction (material 1 identical to material 2), with Hamaker constants of the type A11(3), 
Ga,Vdw < 0 (attractive). For hetero-interaction the Hamaker constant can, in a few situations, be negative. 
In practice, such situations occur most often when one of the components is a vapour.

Electrostatic interaction
The origin of these forces is double layer overlap. One of the most striking features of double layers 
is the very strong influence that indifferent electrolytes exert: they reduce ψd, the potential of the outer 
Helmholtz plane (i.e. the potential of the diffuse part of the double layer), and compress that layer 
(i.e. the Debye length κ–1 is reduced). As electro-static interaction is mainly determined by the diffuse 
parts of the double layers, this synergistic electrolyte effect makes itself strongly felt in the stability of 
hydrophobic colloids. This is the origin of the Schulze-Hardy rule.
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The trend is that two isolated particles with the same charge sign repel each other. An exception to 
this rule takes place when one particle is highly charged, but the other only slightly. In this case, upon 
approach, even when both charges have the same sign, the higher charged one may induce a reverse 
charge onto the other, followed by attraction.

Unlike Van der Waals attraction, the electrostatic contribution to the Gibbs energy of interaction, 
Ga,el, is independent of the nature of particles, at a given charge or potential; on the other hand, 
Ga,VdW is virtually insensitive to electrolytes and, for that matter, insensitive to the presence of a 
double layer.

Expressions for Ga,el vary widely, depending on the geometry of the system, strong or weak overlap, 
high or low electrolyte concentration, etc, but for weak overlap and low potentials many of them 
have this shape:

Ga, el = f (DL)(ψ d)2 exp(–κh)							       (1‑4)

where f (DL) contains properties of the two double layers, and solution- and geometrical quantities (such 
as the dielectric permittivity and particle size), whereas h is the distance between the two outer Helmholtz 
planes, which is shorter than s in Equation 1-3 by an amount of twice the Stern layer thickness.

From Ga,el, the disjoining pressure Πel can be obtained by differentiation with respect to h, but there 
are also ways to compute Πel directly. Obviously, the exponential factor in Equation 1-4 stems from 
the exponential potential decay of the isolated diffuse double layer. On the other hand, equations such 
as the one above often contain ψd rather than the surface potential ψ0; this is so, because it is the overlap 
of the diffuse parts which is most important. This has a historical background. In the original theory, 
as developed independently by Deryagin and Landau, and by Verwey and Overbeek, the conscious 
assumption was made that, upon interaction, the surface potentials on the particles would remain constant 
and equal to their values at infinite separation of the particles. As these authors ignored Stern layers, their 
surface potential ψ0 is often replaced by our ψd, which explains the appearance of this potential in the 
above equation. At the same time, the distances h and s were set equal. In reality, the process is much 
more complicated; upon interaction, the charge- and potential distribution over the Stern- and diffuse parts 
will change. This process is called regulation. In addition, diffuse double layer potentials are not directly 
measurable. However, experience has shown that the replacement of ψd by the electrokinetic potential ζ is 
often warranted, where the potentials ψd and ζ are those for isolated particles.

Generally speaking, electrostatic interaction is an important feature, and we shall have to pay much 
attention to it.

Steric interaction
These interactions are caused by macromolecules and can be repulsive or attractive. It is anticipated 
that the steric contribution to the Gibbs energy of interaction, Ga,ster, can be very high, tending to outweigh 
electrostatic repulsion, depending on its range of action. Particularly in systems with weak double 
layers (as for dispersions in nonaqueous media of low polarity) steric stabilization is often the sole 
mechanism that keeps particles apart, whereas depletion flocculation is relatively weak.

Since the particles we are mostly concerned with are clay particles, we shall not pay any attention on 
steric forces in this report. However, it should be stressed that steric, electric, and dispersion forces 
are not additive at all. Polymer trains modify the composition of the Stern layer, and hence the potential 
ψd. For random (homo)polymer adsorption the volume fraction in loops and tails is usually low enough 
for us to ignore its influence on the diffuse part of the double layer. Further, enrichment of polymer on 
surfaces modifies the Hamaker constant A12(3) and the effective s, because a third phase is introduced.

Magnetic interaction
This represents a special case, but when such forces are operative they often outweigh other interactions. 
It is very difficult to stabilize colloids against magnetic attraction. We shall not discuss magnetic colloids.
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Solvent structure-mediated interaction
We will use this, admittedly somewhat clumsy, term to cover all interaction phenomena caused 
by the structure of the intervening liquid, insofar as it is modified by the presence of a surface. 
Structural modification near a hard wall includes the density oscillations, reorganization caused by 
hydrogen bonding to the solid, or by hydrophobic dehydration. In the literature these phenomena 
come under a hotchpotch of names, reflecting the specific interpretation the various authors have in 
mind, such as “water structure forces”, “structural forces”, “hydration forces”, or even “acid-base 
interactions”. Sometimes these names reflect the inability to interpret certain observed phenomena 
quantitatively in terms of well-understood interactions. In fact, solvent structure-mediated interactions 
are current subjects of study. Some aspects are reasonably well understood (e.g. the density oscillations 
have been reproduced in the surface force apparatus), others have alternative interpretations.

Approximately, however, an empirical formula can be given as,

Ga, str = Kstr λ exp(–s/λ)								        (1‑5)

in which λ is of the range of molecular interactions in the solvent.

Are these forces additive? The answer is not unequivocal, since it depends on the kinds of forces 
involved and on the dynamics of interaction. For practical purposes, dispersion and electrostatic 
forces are additive. By the term, “practical purposes”, we mean that, in practice, interaction forces 
can rarely be measured with an absolute accuracy of better than 5%, and that we therefore do not 
have to worry about non-additivities smaller than that. The most obvious deviation from additivity 
arises when there is steric interaction in combination with double layer overlap, because then the 
ionic charge distribution and its dynamics will be affected by the absorbed train and loop segments.

In this report, we shall discuss Van der Waals interactions between molecules in Chapter 2, and then 
Van der Waals interactions between macrobodies in Chapter 3. Following these, we shall focus on 
the models available for electric double layers in Chapter 4, and the theories for double layer overlap 
in Chapter 5. Solvent structure-mediated interactions will be briefly reviewed and discussed in 
Chapter 6, and the extended DLVO theory will be presented in Chapter 7.
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2	 Attraction between molecules

Nowadays, it is generally accepted that there are three types of attractive interactions between any 
pair of molecules, known as Keesom-Van der Waals, Debye-Van der Waals, and London-Van der 
Waals or dispersion forces. These forces are collectively called Van der Waals forces, and they are 
ubiquitous in nature /1/.

2.1	 Attraction in a vacuum
As we shall discuss in more detail below, the Keesom- and Debye-Van der Waals forces are classical in 
the sense that they can be fully understood and interpreted in terms of classical electrostatics. Dispersion 
forces are, however, of a quantum mechanical nature and the London Equation, describing the attraction 
between two induced dipoles, could be derived only after the advent of quantum mechanics.

2.1.1	 Keesom-Van der Waals forces
Keesom-Van der Waals forces are interactions between pairs of polar molecules. Inside each of the 
polar molecules a spontaneous separation of positive and negative charge has taken place. Thus, polar 
molecules have permanent dipoles as a property, and they can attract or repel each other electrostatically, 
depending on their spatial orientation. If two free polar molecules approach each other, attractive 
orientations are energetically more likely than repulsive ones, so that statistically they prevail.

To start with, let us now consider two dipoles that are in fixed position with respect to each other in a 
vacuum. The electric field strength E1 of the first dipole with a dipole moment of p1 can be written as /2/,

3
0

1
5

0

1
1 44

)(3
rπrπ εε

prrpE −
⋅

= 								        (2‑1)

where r is counted with respect to the centre of the first dipole.

The electric energy of the second dipole with a dipole moment of p2 then reads /1, 2/,

Φ2 = –p2 · E1									         (2‑2)

If the two dipoles reside on molecules 1 and 2, respectively, they would be free to rotate and statistical 
averaging of the interaction energy over all spatial orientations of the two dipoles would be required. 
This could be done by considering that in a thermal average the low energy configurations occur 
preferentially determined by a Boltzmann weighting factor. Thus, the interaction energy of molecule 
2 can be given by /3/,

∫ 




 Φ
−Φ=Φ Ω

Tkπ
dexp

4
1

B

2
2K2 							      (2‑3)

where the integration is performed over polar angle, θ, and azimuthal angle, φ, with,

dΩ = sinθdθdφ									         (2‑4)

and when integrated over all orientations, dΩ gives 4π.

In the case of relatively weak interactions, we can expand the exponential function in Equation 2-3 
as a power series. If only the zeroth- and first-order terms are retained, we have,

∫ 




 Φ
−Φ=Φ Ω

Tkπ
d

4
1

B

2
2

2K2 							       (2‑5)
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At r.h.s. of the equation, the integration of the simple term vanishes because positive and negative 
values of the energy are equally possible. The integration of the quadratic term remains, however. 
Thus, combination of Equations 2-1, 2-2 gives,

6
B

2
0

2
2

2
1

K2 )4(3 Trkπ
pp

ε
−=Φ 								        (2‑6)

The same equation could be derived for the interaction energy of molecule 1 on which the first 
dipole resides.

Thus, the total energy of attraction is,

6
B

2
0

2
2

2
1

K )4(3
2

Trkπ
pp

ε
−=Φ 								        (2‑7)

This is the Keesom Equation, and it applies to the interaction of two polar molecules.

2.1.2	 Debye-Van der Waals forces
Debye-Van der Waals forces particularly mean attractions between polar and non-polar molecules. A 
non-polar molecule has no permanent dipole of its own. However, if it approaches a polar molecule, 
the electric field of which would induce an uneven charge distribution in it. The induced dipole is to 
be oriented in such a way as to attract the polar molecule. Since induction also takes place in polar 
molecules, Debye forces have to be added to the Keesom forces.

Let us now consider a dipole and a non-polar molecule that are in fixed position with respect to each 
other in a vacuum. The electric field produced by the dipole can also be quantitatively described by 
Equation 2-1 if we label it as “1”. The induced dipole moment, p2, is then proportional to the field 
E1 with the polarizability α2 of the non-polar molecule, i.e.

p2 = α2E1									         (2‑8)

Intuitively one would expect that the polarizability will increase with molecular size, since in smaller 
molecules the electrons can be displaced over shorter distance and will be more tightly bound to the 
nuclei. In fact, the polarizability, reflecting to what extent the charges inside a molecule can shift, is 
proportional to the molecular volume.

With Equation 2-8 at hand, one may use Equation 2-2 to compute the electric energy of the induced 
dipole without any consideration. This is, however, wrong, because Equation 2-2 does not account for 
those part of energy that is necessary to polarize the neutral molecule. To tackle this problem appropri-
ately, we should start from the definition of the dipole moment. Let there be in the polarized molecule 
charges +q and –q a distance dr apart, the dipole moment is then given by,

p2 = qdr										         (2‑9)

and the force acting on the induced dipole is,

F2 = qdE1									         (2‑10)

Thus, the electric energy of the induced dipole reads

∫∞
⋅−=Φ

r
rF d22 									         (2‑11)

Substitution of Equations 2-9 and 2-10 into it immediately yields,

∫∞
⋅−=Φ 122

1 d
E

Ep 								        (2‑12)

Then combination of Equation 2-8 and 2-12 gives,

∫∞
⋅−=Φ 1122

1 d
E

EEα 								        (2‑13)
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The result is,

2
2 12 2

1 Eα−=Φ 									         (2‑14)

and it can be explicitly written as, following from Equation 2-1,

( )θ
ε

α 2
62

0

2
12

2 cos31
)4(2

+−=Φ
rπ

p
							       (2‑15)

If the dipole 1 resides on molecule 1, it would be free to rotate and statistical averaging of the inter-
action energy over all spatial orientations would be required. In this case, however, the polarizing 
and polarized molecules are always optimally aligned, because the electronic frequencies in an atom 
are orders of magnitude higher than those for the rotation of dipoles. Thus, spatially averaging goes 
to, for the interaction energy of the molecule 2,

∫Φ=Φ Ωd
4
1

2D2 π
								        (2‑16)

Substituting Equation 2-15 into it then yields,

62
0

2
12

D2 )4( rπ
p

ε
α−=Φ 								        (2‑17)

Thus, as expected in view of the physical principles on which it rests, this expression contains the 
permanent dipole moment and the polarizability of the non-polar molecule, but not the temperature.

On the other hand, Debye forces also operate if the non-polar molecule is replaced by a polar one. 
Then, the second molecule induces a dipole in the first. The contribution to the interaction energy is 
identical to Equation 2-17 except that the subscripts are inter-changed. Taking the two as additive, 
the total energy of attraction is,

62
0

2
21

2
12

D )4( rπ
pp

ε
αα +

−=Φ 								        (2‑18)

This is the Debye Equation, which describes the attraction between a permanent and an induced dipole.

As we discussed earlier, Debye forces have to be added to those due to dipole-dipole interactions. 
The extent to which the two are additive depends, however, on the strength of the coupling between 
spontaneous and induced polarization /1/.

2.1.3	 London-Van der Waals forces
London-Van der Waals or dispersion forces operate between non-polar molecules, and are of a quantum 
mechanical nature. Some impression can be obtained by considering molecules as having positive nuclei 
around which electrons circulate with an extremely high frequency. At every instant, the molecule is 
therefore polar, but the direction of this polarity changes with this high frequency. When two such 
“oscillators” now approach, they start to influence each other, as in the Keesom case, attractive situa-
tions having higher probabilities than repulsive ones. Because of the electrodynamic nature of this type 
of interaction, the information from the first oscillator to the second regarding its spatial orientation is 
transported with the speed of electromagnetic waves. This speed is very high but nevertheless it is finite 
and, if the atoms are far apart, there is a substantial delay in the response of the second oscillator to the 
orientation of the first one. Its phase lags behind that of the first atom. The result is that the attraction 
is relative weaker than it is at short distances and mathematically this results in a relatively more rapid 
decrease with distance.

Although this reasoning gives some feeling about the origin and nature of dispersion forces, fully 
understanding the interaction energy could be reached only after the advent of quantum mechanics. 
Therefore, we shall dispense with a rigorous examination of the situation involved and consider only 
the harmonic oscillator model and the final results.
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As shown in Figure 2-1, the harmonic oscillator model works on a linear arrangement of two dipoles, 
whose length li is negligible compared to the distance between their centres, and whose moment pi is 
equal to eli in magnitude.

The dipoles are formed by symmetrical vibration of electrons in two dimensions in the two identical 
molecules, in which it is assumed that only the outer electron contributes to the polarizability. Then, 
combination of Equations 2-1 and 2-2 gives the interaction energy of two dipoles in this arrangement 
as /4/,

3
0

21
1 4

))((2
rπ
elel

ε
±=Φ 								        (2‑19)

where positive sign applies for parallel dipoles, and negative sign for antiparallel dipoles.

In addition, each of the vibrating dipoles may be regarded as a harmonic oscillator, for which the 
potential energy is given by,

2 2
i =Φ

(eli)
2

α
									         (2‑20)

Combining these energy contributions we have the following expression to be used as the potential 
energy of this system,

3
0

21
2

2
2

1

4
))((2

2
)(

2
)(

rπ
elelelel

εαα
±+=Φ 						      (2‑21)

When this energy function is substituted into the one-dimensional Schrödinger Equation and suitable 
mathematical operations are carried out, the allowed energy is found to be,

ψ = (n1 + 1/2)hξ1+ (n2 + 1/2)hξ2							       (2‑22)

where n = 0, 1, 2, … is the vibrational quantum number, h is the Plank’s constant and the macroscopic 
vibration frequencies are given by,

21

3
0

1 4
21 





−=

rπ
vξ ξ

ε
α

21

3
0

2 4
21 





+=

rπ
v

ε
αand 				    (2‑23)

We observe that both ξ1 and ξ2 approach v as r→∞. Thus v is identified as the frequency of vibration 
for the system in the case where the electrons vibrate independently.

From Equation 2-22, we know that the lowest energy, ψ1, for the two coupled oscillators is the 
situation in which n1 = n2 = 0, i.e.

( )211 2
1 ξξh +=ψ 									        (2‑24)

and the energy of the two independent oscillators in their ground state is,

hv
2
120 ×=ψ 									         (2‑25)

Figure 2-1. A linear arrangement of two dipoles, used to define the potential energy in the Schrödinger 
equation for the London interaction energy.
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The difference between ψ1 and ψ0 gives then the contribution of dispersion forces to the interaction 
energy,

( )vξξh 2
2
1

21L −+=Φ 								        (2‑26)

Substituting the expressions for ζ1 and ζ2, given by Equation 2-23, into this equation, we obtain the 
following result,












−





++





−=Φ 2

4
21

4
21

2
1

21

3
0

2

21

3
0

L rπrπ
hv

ε
α

ε
α 					     (2‑27)

Expanding the square roots by the binomial expression and retaining no terms higher than second 
order yields,

62
0

2

L )4(2 rπ
hv

ε
α−=Φ 								        (2‑28)

When the molecules are capable of vibration in all three dimensions, the constant in the above 
expression becomes 3/4 rather than 1/2, i.e.

62
0

2

L )4(4
3

rπ
hv
ε

α−=Φ 								        (2‑29)

When the molecules are unlike, their individual frequencies and polarizabilities should be involved, 
and the counterpart of Equation 2-29 is /1, 4/,

62
0

21

21

21
L )4(2

3
rπvv

vvh
ε
αα

+
−=Φ 							       (2‑30)

This is the London Equation, which describes the attraction between two induced dipoles that are not 
far apart.

2.1.4	 Properties of Van der Waals forces
In examining the Keesom, Debye and London Equations we see that (1) they share as a common 
feature an inverse sixth-power dependence on the separation distance r, i.e. the interaction energy all 
decreases as r–6, and (2) the molecular parameters describing the polarization of a molecule, polarizability 
and dipole moment, serve as proportionality factors in these expressions.

Due to the very different origin of dispersion interactions, however, London forces differ from the 
other two in two more respects. First, London interactions are to some extent additive, meaning 
that in large collections of molecules the total energy is not very different from the sum of the pair 
interaction energies. Secondly, London forces exhibit the phenomenon of retardation, meaning that, 
for large r, ΦL decreases more rapidly with separation than at small r.

For very large separations (r > c/v) of two identical molecules, the total energy of the London 
interaction becomes /1/,

72
0

2

R )4(4
23

rππ ε
hcα−=Φ 								        (2‑31)

where we use the subscript R instead of L to indicate that the London interaction is now retarded, 
and c is the speed of light in a vacuum.

For intermediate separations, there is gradual transition from the r–6 to the r–7 power law. Casimir and 
Polder /5/ wrote,






−=Φ
c
rf

rπ
h ω

επ 62
0

2

R )4(8
3 ωα 							       (2‑32)
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where ω = 2πv is the angular frequency, and the function at the r.h.s is a complicated integral but 
according to Overbeek /6/ it may be replaced by the following expressions:










<




−







<<




−

=






c
r

r
c

r
c

c
r

c
r

c
rf

ω
ωω

ωω
ω

3for 04.245.2

30for 04.101.1
2 				    (2‑33)

These are good approximations and useful for the calculation of retarded forces between macroscopic 
bodies. For short separation r, Equation 2-32 reduces to the London Equation 2-29 within 1%.

2.1.5	 Superposition of Van der Waals forces
In general, we may think of any molecule as possessing a dipole moment and polarizability. This 
means that each of the three types of interaction may operate between any pair of molecules. Thus, 
we may write the total energy of Van der Waals attraction as,

ΦA = ΦK + ΦD + ΦL								        (2‑34)

For a pair of identical molecules, combination of Equations 2-7, 2-18, and 2-29 then gives,

ΦA = –β11r –6									         (2‑35)

with the interaction parameter given by,
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where the subscript 11 has been added to β as a reminder that this result applies to a pair of identical 
molecules.

Of course, in non-polar molecules where p = 0, two of the three sources of attraction make no contribu-
tion to ΦA. All molecules display, however, the dispersion component of attraction, because all are 
polarizable and that is the only requirement for the London interaction.

Not only is the dispersion component the most ubiquitous of the attractions, but it is also the most 
important in almost all cases. Only in the case of highly polar molecules such as water is the Keesom 
interaction greater than the dispersion component. Likewise, the mixed interaction described by the 
Debye Equation is generally the smallest of the three.

On the other hand, for interacting molecules in a vacuum or in a gas, retardation of the dispersion 
forces does not have to be accounted for, because retardation sets in only at distances where the 
forces are already so weak to become negligible. However, for the interaction between macrobodies, 
including colloids, retardation must often be taken into account.

2.2	 Attraction in a medium
For two molecules 1 and 2, a certain distance apart in a medium 3, the Van der Waals forces between 
them are reduced as compared with the case in a vacuum or in a gas, because of the dielectric screening 
of the medium. For Keesom and Debye interactions, the force is reduced by a factor equal to the relative 
dielectric permittivity of the media ε3 (as in Coulomb’s law) due to their electrostatic origin. For London 
interactions, however, any screening of an intervening homogeneous medium cannot be accounted 
for in like manner, as elucidated clearly by McLachlan’s work /7~10/.

2.2.1	 The McLachlan formula
As a generalization, McLachlan extends the London Equation in two respects /7~10/. First, he takes 
into account that atoms and molecules may have more than one electron participating in the ionization, 
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i.e. a number of frequencies v may be needed for vibration of electrons around the nuclei. Secondly, 
he considers the consequences of a medium between the interacting molecules.

For non-retarded forces, he gives the following equation to describe the interaction energy in a medium,
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It is noted that this expression has an r6 in the denominator, as in the London Equation. However, the 
relative permittivity of the media ε3 occurs squared and not linearly. In addition, the polarizabilities 
of the molecules, i.e. α1 and α2, are not constant anymore but depend on frequency v, as does ε3, and 
an integration over all frequencies has to be carried out in order to find the interaction energy ΦM.

For retarded forces, he also gives an equation similar to Equation 2-37 but it contains an r7 and an ε3
5/3 

in the denominator.

On the other hand, it could be shown that expression 2-37 would reduce to the London Equation 2-30 
under the conditions for which the latter has been derived. Before we demonstrate this, however, it is 
better to understand more about dielectric permittivities and polarizabilities in an alternating electric field.

2.2.2	 Dielectric permittivity
The frequency dependence of the relative permittivity, ε, could be well understood if we consider a 
polar molecule in an alternating electric field /1/.

Let the rotational relaxation time for dipole orientation be τ. If the frequency of the applied field (v or ω) 
is low, that is if vτ << 1, the dipoles can follow the alternations of the field; the medium is therefore 
continually polarized and as a result the permittivity is high. The system is then fully relaxed, and the 
value that the permittivity assumes under these conditions is called the static limit ε(0) or the static 
relative permittivity or simply the dielectric constant.

Coulomb, Keesom and Debye forces require ε0ε(0) in the denominator if interaction in a homogeneous 
medium is considered.

When the frequency v is increased to approach 1/τ, the dipole orientation starts to lag behind that dictated 
by the field. In mathematical language, p and E are no longer in phase. For such high frequencies that 
vτ >> 1, the dipoles do not move anymore. Then the permittivity is constant again, but at a much lower 
value ε(∞) because the medium can now polarize only by electronic polarizations of the molecules. In 
the region around vτ ≈ 1, ε decreases with v, as show in Figure 2-2 (curve ε′), and the frequency v = 1/τ 
is known as the resonance frequency. For permanent dipoles it is around 1011 Hz, and for electronic 
polarization around 1015 Hz, which is in the visible range of the spectrum.

Figure 2-2 contains another curve, ε″(v), with a maximum equal to half of ε′(0)+ ε ′(∞). This quantity 
is a measure of the conversion of the electrical energy of the applied field into heat, i.e. it measures the 
energy dissipation. Such dissipation is a maximum when the frequency of the field equals the resonance 
frequency of the dipoles; under those conditions, the dipoles can pick up most of the energy of 
the field and convert it into heat. For full alignment (vτ << 1) or no alignment at all (vτ >> 1), no 
energy is dissipated and ε″ = 0.

Figure 2-2. Sketch of dielectric relaxation.
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It follows that under conditions where relaxation phenomena occur the quantity we have called ″dielectric 
permittivity″ virtually consists of two components, a contribution ε′(v), which is a measure of the storage 
of applied energy by polarization (this part relaxes when the field is turned off) and a contribution ε″(v), 
which is a measure of energy dissipation (which already relaxes when the field is on). Thus, in order to 
distinguish the storage and the dissipative part, we may write the total permittivity as,

)(''i)(')(ˆ vvv εεε −= or )(''i)(')(ˆ ωεωεωε −= 				    (2‑38)

The circumflex has been added as a reminder that this quantity is complex. The minus sign in this 
expression is not critical; it is a matter of mathematical convenience.

The complex permittivity is usually a complicated function of frequency, since it is a superimposed 
description of dispersion phenomena occurring at multiple frequencies. It could, however, be shown 
that ε′(ω) and ε″(ω) are actually related to each other in the following way,
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where τr denotes the relaxation time of the system.

Thus, as a general phenomena and expressed by the famous Kramers-Kronig relations /11, 12/, we 
can write,
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in which x is the dummy frequency variable over which ε″ has to be integrated in order to find ε′(ω). 
In vacuum ε ′(∞) = 1. The counterpart of Equation 2-41 is,
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Using the Kramers-Kronig relations, it is then possible obtain ε″(ω) from ε′(ω) and vice visa. Hence, 
after changing to imaginary frequencies, the integration in Equation 2-37 can be carried out.

2.2.3	 Polarizability
According to its definition, the polarizability α is a measure of the extent to which electrons in an 
atom or molecule can adjust their orbitals in an applied field. If the field is static in the sense that 
the frequency is low as compared to the electronic vibrations and frequencies, the polarizability is a 
constant and approximately given by /1/,

α ≈ 4πε0a3									         (2‑43)

in which a stands for the molecular radius.

Usually, we call this the polarizability. In the terminology of this section we could write it as α(0), the 
zero-frequency limit of α(ω). In fact, most electronic vibrations are in the ultraviolet so that α(ω) keeps 
its static value up to the visible range of the spectrum, as shown in Figure 2-3 for a typical molecule.

If the angular frequency of the external field is identical to the frequency ωk of a given electron k, 
this electron could respond very well to the field, meaning that it can absorb energy from the field 
during every oscillation, so that its amplitude would rise without bounds, if no damping would take 
place. This phenomenon is an example of electronic resonance with resonance frequency ω = ωk.

In general, a molecule may have many resonance frequencies. This implies that the polarizability is 
also frequency dependent and therefore we write α(ω) instead of α. As, moreover, there is a storage 
part and a dissipative part, the latter determined by the damping, it becomes expedient to write α as a 
complex quantity, in the same way as for the dielectric permittivity as shown in Equation 2-38.
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Expressions for α(ω) can be obtained by classical electron theory. For an assembly of k independent 
undamped oscillations Lorentz /1/ gives,

2
k

k
2

)ω(
ω 2ω

α
m
e f= ∑

k
								        (2‑44)

where fk is the number of electrons oscillating with frequency ωk and m the mass of the electron.

Equation 2-44 can also be derived quantum mechanically. Thus, below the visible light range, as ω 
<< ωk, we may write,
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which, for only one oscillator with frequency ω1, reduces to,
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Using classical mechanics, it can be shown that this expression is virtually equivalent to Equation 2-43, 
if we consider that the centrifugal force on the electron, circulating around the nuclei at a distance a, is 
balanced by the Coulomb attraction force. Hence, our expressions for the polarizability are consistent.

However, as damping is not accounted for, Equation 2-44 would predict infinitely high polarizabilities 
at the resonance frequency ω = ωk. To tackle this problem, an extension is required and this leads to,
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where γk is a constant, of dimensions s-1, characterizing the extent of damping and it can be obtained 
experimentally from the width of the kth absorption band.

Now the polarizability is a complex quantity which, by analogy to Equation 2-38, can be written as,
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Figure 2-3. Sketch of the frequency dependency of the polarizability and of the contributions of the various 
frequency ranges to the dispersion energy of interaction.
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We see that the real and imaginary part of α(ω) are in principle accessible quantities. They are interrelated 
again by the Kramers-Kronig relations: Equations 2-41 and 2-42 also apply if ε′(ω) – ε ′(∞) is replaced 
by α′(ω) and ε″(ω) by α″(ω).

In Equation 2-37 one needs α′(iv), which can be obtained by replacing ω2 in Equation 2-49 by (iω)2 = 
–(2πv) 2. Nevertheless, it is noted that Equation 2-49 gives α′(ω) as a discrete sum of contributions of 
differing ωk, whereas the McLachlan Equation 2-37 contains a continuous frequency dependence. The 
latter approximation is valid, however, because over the relevant frequency range (usually 1014–1016 s–1) 
the steps between the various frequencies ωk are so small that for practical purposes the sum may be 
replaced by an integral. On the other hand, as the zero-frequency state contributes only by a negligible 
amount, it is allowed in Equation 2-37 to take zero as the lower integration limit and the term ωγk in the 
denominator contributes significantly only for ω ≈ ωk.

Thus, with proper quantifications of the dielectric permittivity and polarizability of the medium as 
a function of frequency, it is possible to use the McLachlan formula to interpret dispersion forces. 
However, it should be kept in mind that in the interaction between two molecules there is no external 
field. The oscillating field of one molecule of a pair acts as the external field, polarizing the second. 
As to the forms of the equations this makes no difference but, in line with the second-order nature 
of Van der Waals forces, no dissipation of electrical energy can result, i.e. Van der Waals attractions 
cannot lead to a rise in temperature of the system.

Now the McLachlan formula has sufficiently been elucidated, and at this stage we can consider it for 
two one-electron molecules in a gas (ε3 = 1) at frequencies not close to the resonance frequency, i.e. 
for the conditions for which the London equation applies. For the polarizability of the first molecule 
Equation 2-44 gives,
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It can be rewritten as, with the help of Equation 2-46,
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In the McLachlan formalism, however, imaginary frequencies are used, meaning that ω has to be 
replaced by iω and as a result we can write,
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In this case γ = 0, implying that α″ does not contribute to α(iω).

For two unlike molecules 1 and 2, the McLachlan formula (2-37) now leads to,
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It gives immediately, after performing the integration,
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which is identical to the London Equation 2-30 if we replace ω by 2πv.
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3	 Interaction between macrobodies

There are two ways of describing Van der Waals interactions between colloidal particles and bigger 
units, which we collectively called macrobodies, i.e. the microscopic and the macroscopic approach.

The former one, also known as the Hamaker-De Boer theory /13, 14/, is an approximate treatment in 
which the total interaction energy is obtained by pair-wise summation of London-Van der Waals energies 
between all molecules of the interacting bodies. The quality of the underlying assumption of additivity of 
London-Van der Waals forces is however difficult to assess, since it is not so easy to quantify the influ-
ence of nearby molecules on the electric field emanating from given molecules. Neither can the effects 
of the medium and retardation be introduced rigorously in this theory. The best check is a comparison of 
the final results with those from the exact theory or with experiments. In this way, it has been found that 
usually the Hamaker-De Boer theory is correct within 10~30% with respect to the absolute magnitude 
and also it predicts the proper distance dependence in the limiting cases of short and long distances. As 
many practical systems are not particularly well defined and as it is much simpler to handle than the exact 
theory, the Hamaker-De Boer treatment remains an attractive alternative /1/.

The macroscopic approach, also known as the Lifshits theory /15, 16/, is more advanced and more 
abstract than the Hamaker-De Boer approximation. It considers interacting macrobodies as continuous 
media, and the origin of attraction does not differ from that between two atoms as in the London theory 
in that it is due to a correlation between fluctuations. Implementation of the Lifshits theory is, however, 
not so easy because for quantification the frequency dependences of macroscopic parameters such as 
dielectric permittivities of the medium are required, which are not always available.

3.1	 The Hamaker-De Boer approximation
The main assumptions behind the Hamaker-De Boer theory /13, 14/ can be summarized as follows:

1.	 The molecular forces are pair-wise additive.

2.	 For mathematical convenience, the discrete sum over pairs is replaced by an integration.

3.	 The molecular forces are not screened by intervening molecules, i.e. they are not reduced by a 
factor of ε3 squared as that described by the McLachlan formula.

4.	 Retardation is disregarded, i.e. the particle separation may not be too large.

To begin with, we will pay our attention on the treatment of macrobody interaction in a vacuum, 
where the Hamaker-De Boer approximation is expected, and proved, to be most accurate.

3.1.1	 Attraction in a vacuum
Let us consider the case of a single molecule or atom close to a semi-infinite plate, as shown in 
Figure 3-1a.

The molecule of type 1 is situated in a vacuum, at a distance s from the plate. To our end, we can 
divide the plate into small rings of radius x and thickness dx in the xy-plane. The rings are located 
a distance z from the molecule 1, in the direction parallel to the plate-surface normal, and have a 
thickness dz in the respective direction.

The volume of each ring is thus dV = 2πxdxdz and the number of enclosed molecules of type 2 is dN 
= ρΝ2dV, where ρΝ2 is the number density of the molecules of the plate. Any molecules inside such 
ring is then located a distance r from the molecule outside the plate with r2 = x2+z2.

According to the London Equation 2-30, we can write the energy of attraction between a molecule of 
type 1 and a molecule of type 2, at a distance r apart, simply as,

ΦL = –β12r –6									         (3‑1)
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with the interaction parameter given by,
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where the subscript 12 serves as a reminder that the two molecules are unlike in general.

Thus, the total energy of attraction between the molecule and the ring reads,
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where we use G to denote the energy of attraction when a macrobody is involved, instead of Φ. The 
subscript VdW has been added to G to emphasize the fact that this energy is actually the Van der Waals 
contribution to the Gibbs energy of interaction.

Integration of this equation over the entire volume of the plate gives then the energy of Van der Waals 
attraction between the molecule and the semi-infinite plate as,
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This is an important equation. It gives the London-Van der Waals contribution to the adsorption energy 
which can now be computed as a function of the distance s. For very small s, however, this equation 
becomes less accurate because then the replacement of the sum by an integral is not a good approximation.

Now suppose that the molecule 1 is located inside a second semi-infinite plate with a number density 
of molecules of ρΝ1, as sketched in Figure 3-1b. We recognize that all molecules in a slice of the second 
plate a distance z from the first plate will be attracted toward the latter one with an energy given by 
Equation 3-4. If we position a volume element with unit area and thickness dz at this location in the 
second plate, which contains ρΝ1dz molecules, the energy of attraction between this element and the 
first plate would be given by,
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where the subscript a serves as a reminder that we are dealing with an energy per unit area.

Integration of the above equation over values of z from the distance of closest approach s to infinite 
gives then the energy of attraction between a column of unit cross-section of plate 1 and the entire 
plate 2 as,
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Figure 3-1. Schematic illustration of calculating the Van der Waals interaction (a) between a molecule and 
a semi-infinite plate and (b) between two semi-infinite parallel plates.
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where we have introduced the Hamaker constant,

A12 = π2β12ρN1ρN2								        (3‑7)

For two semi-infinite parallel plates of the same material, the Hamaker constant becomes,

A11 = π2β11ρN
2
1									         (3‑8)

where the subscript 11 serves as a reminder that the two phases are of the same material.

According to the Berthelot principle /1/, for cases where the molecules of the two plates are not very 
different, we may have,

A12 ≈ (A11A22)1/2									         (3‑9)

This expression says, essentially, that the attraction between two dissimilar bodies can be roughly 
given by the geometrical mean of the homogeneous attraction for the two species considered separately.

If the molecular properties of the materials under consideration are well known, we can use Equation 3-7 
or 3-8 to calculate the Hamaker constant. Alternatively, it can be derived from the macroscopic theory 
or from experiments. The Hamaker constant has energy units, and at room temperature it typically 
lies in the range of 10–20~10–19 J or 5~50 kBT in a vacuum.

Equation 3-6 has two notable features. First, the attraction energy can be written as the product of a 
known material property and a geometrical factor. This rule remains valid for all geometries in the 
Hamaker-De Boer approximation and in the un-retarded limit of the macroscopic theory. Secondly, the 
s2 term in the denominator is interesting. Mathematically, s–2 in Equation 3-6 as compared with r–6 in 
Equation 3-1 is due to the four directions over which we have integrated. The interaction between two 
macroscopic plates therefore has a much longer range than that between isolated molecules and this 
feature is responsible for the prominence of dispersion forces in colloidal phenomena.

With Equation 3-6 at hand, the force of attraction per unit area can be obtained directly from partial 
differentiation of the energy, with respect to the distance s; this leads to Van der Waals contribution to 
the disjoining pressure and for the case considered it givess,
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Likewise, Van der Waals energies of attraction have been calculated in the Hamaker-De Boer 
approximation for a host of geometries. These derivations involve no new physical features any 
more: for all cases under consideration we can generally write,
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For the mathematically more complex cases of curved interfaces, however, there is a useful approxi-
mation, known after its originator as the Derjaguin approximation /17/, in which the curved surface 
is replaced by a stepped one.

To illustrate the Derjaguin approximation in a bit more detail, we now consider two spherical particles, 
as shown in Figure 3-2.

In this case, we approximate particle 1 by a stack of circular rings with planer surface of thickness dy 
and area dA. The total energy of attraction between the macrobodies is then considered to be build up 
of contributions of parallel rings where each pair contributes an amount,

dGVdW = Ga,VdWdA								        (3‑12)

As the first factor at the r.h.s is an energy between a unit area of one macrobody and the complete other 
macrobody, given by Equation 3-6, the assumption is that elements adjust to the ring under consideration 
do not influence this ring. This approximation is good if the curvature is not strong, i.e. if the closest 
approach s is small with respect to the radii of curvature of the macrobodies.
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From such energy per ring, the total energy of interaction is obtainable by integration over y (indicated 
in Figure 3-2). As the approximation is limited to short distances, the contributions of layers with 
large y are negligible, so that for convenience the integration may be carried out from y = 0 to y = ∞, 
i.e. we can write,
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0VdW a, VdWdA								        (3‑13)

After replacing dA = 2πydy and relating y to x, the Derjaguin formula for two spheres of radii a1 and 
a2 >> s becomes,
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Substituting Equation 3-6 and carrying out the integration then gives,
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For two spheres of equal radius of a, it becomes,
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Once again, we stress that Equations 3-15 and 3-16 applies only to the limiting case where the radii 
of the spherical particles are much larger than the distance s.

For easy reference, we now summarize some equations obtained for what we think the most important 
scenarios in colloidal phenomena /1/. The meanings of the geometrical parameters are in each case 
given in a sketch. It is recalled that the equations are only valid for non-retarded Van der Waals forces.

(1) Molecule and semi-infinite plate (Figure 3-3)
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Figure 3-2. Illustrating the Derjaguin approximation for obtaining the energy of interaction between 
spherical particles from that for a flat surface.

Figure 3-3.
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(2) Two semi-infinite parallel plates (Figure 3-4)

2a, VsW s12π
A12−=G 								        (3‑18)

Figure 3-4.

Figure 3-5.

(3) Two parallel slabs (Figure 3-5)
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(4) Rods and Laths (Figure 3-6)

For the limiting case of large distance (s >> t, w)
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Figure 3-6. Two parallels rods of length l. The figure gives a cross-section.

For the limiting case of small distance (s << t, w), if θ is not zero,
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For the limiting case of small distance (s << t, w), if θ is zero,
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(5) Two cylinders (Figure 3-7)
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If a2 >> a1, it becomes,
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Figure 3-7.

Figure 3-8. The flocculation process as a pseudo chemical reaction. The solid lines indicate particles of 
the dispersed phase and the dashed lines satellite particles of the solvent.

3.1.2	 Attraction in a medium
By invoking the Archimedes principle, a reasonable consideration of the influence of the intervening 
medium on the attraction between two macrobodies can be obtained. That is, if two macrobodies are 
brought from infinite distance to s in a medium, an equivalent amount of medium has to be transported 
the other way around. Thus, as illustrated in Figure 3-8, this process can be represented as a pseudo 
chemical reaction.

Initially, the two macrobodies (the geometry is immaterial for the argument that follows) 1 and 2 keep 
a large distance apart in medium 3, and therefore, the energy of attraction between 1 and 2 GVdW = 0. 
At the end of the flocculation process, they are separated by a distance s.

The energy change of this pseudo chemical reaction (an exchange phenomenon) involves gains and 
losses. If we now write GVdW, the energy of attraction between two types of particles generally as –Aijf(G), 
where f(G) is an arbitrary but know function of geometry, the gains are –A12f(G), and –A33f(G), whereas 
the losses amount to –A13f(G), and –A23f(G). The energy change is then given by,

ΔGVdW = –A12(3) f (G) = –(A12 – A13 – A23 + A33) f (G)					     (3‑25)
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where A12(3) denotes the Hamaker constant for the interaction between two macrobodies 1 and 2 across 
the medium 3.

Thus, we may conclude that all the Hamaker-De Boer Equations derived for the energy of attraction 
in a vacuum would remain valid in a medium, provided the Hamaker constant A11 or A12 is replaced by,

A12(3) = A12 – A13 – A23 + A33							       (3‑26)

Application of the Berthelot principle, as given by Equation 3-9, would then lead to,

( )( )33223311)3(12 AAAAA −−= 						      (3‑27)

This gives rise to a number of interesting observations:

1.	 For homo-interaction (materials 1 and 2 are identical), the Hamaker constant A11(3) is always 
nonnegative, regardless of the relative magnitudes of A11 and A33. Thus, two bodies of the same 
material in a medium invariably attract each other unless their Hamaker constant exactly matches 
that of the medium, in which case the force is zero.

2.	 The Hamaker constant A11(3) is always equal to A33(1). Hence, two water droplets in air attract 
each other equally strongly as two air bubbles of the same size in water.

3.	 For hetero-interaction (materials 1 and 2 are unlike), the Hamaker constant A12(3) can be negative 
if the A33 value for the medium is intermediate between A11 and A22 for the interacting bodies, i.e. 
A11 < A33 < A22 or A11 > A33 > A22. This implies that bodies of different material in a medium may 
repel each other. The repulsion is not due to the fact that the London forces are repulsive, but to 
the excess nature of A11(3): the excess attraction between 1 and 3 leads to the repulsion of 2 or the 
other way around.

It should be noted that these findings are qualitatively, but not quantitatively, supported by the macro-
scopic theory. The distance dependence at small s is found, so is the feature that in hetero-interaction 
the Van der Waals interaction may be repulsive. However, the equality of A11(3) and A33(1) is not entirely 
correct and the reason for the imperfection of the Hamaker-De Boer approximation must obviously be 
sought in the inaccurate account of the screening of London forces by the intervening medium.

3.1.3	 Retarded attraction
In the framework of the Hamaker-De Boer approximation, retarded interaction energy can be obtained 
along the same lines as the non-retarded ones, except that Equation 2-31 is the starting equation instead 
of the London Equation 2-30.

Generally, we can write the energy of retarded attraction between a molecule of type 1 and a molecule 
of type 2, at a distance r apart in a vacuum, in a way similar to Equation 3-1, i.e.

ΦR = –β ’
12r –7									         (3‑28)

where β ’
12 is the retarded interaction parameter.

Consequently, the Hamaker-De Boer Equations for the non-retarded energy of attraction undergo two 
modifications: (1) the exponent in the denominator is increased by 1; (2) the Hamaker constant A12 
is replaced by 6πΒ12, if we denote B12 as the retarded Hamaker constant for which the Berthelot 
principle also applies.

Thus the retarded interaction energy for two semi-infinite parallel plates can be given by, with the 
help of Equation 3-6,

3
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a, VdW s2
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−=G 									         (3‑29)

and the force of attraction per unit area becomes,

4VdW
12

s2
3BΠ −= 									         (3‑30)
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In fact, for two perfectly conducting bodies (metals), it has been found by Casimir /18/ that,

4VdW s480
πhcΠ −= 									         (3‑31)

This gives, by comparison of Equations 3-30 and 3-31,

72012
πhcB = 									         (3‑32)

where it should be noted that the retarded Hamaker constant B12 does not have energy units, and 
typically it is of the order 10–28 J m.

For the transition region between non-retarded and retarded interaction no analytical expressions are 
available. The easiest procedure to obtain the energy of interaction, GVdW, is by using Overbeek’s 
approximate analytical expression (2-33), inserting it in Equation 2-32 and then carrying out the 
integrations needed. It may be interesting to note that Görner and Pich /18/ used this method to find 
the following alternative relation between the retarded and the Hamaker constant across a vacuum:

A
π

B 2 1212 40
45.2 λ≈ 									         (3‑33)

where λ is the wavelength of the electron vibration.

3.2	 The Lifshits theory
Unlike the Hamaker-De Boer approach, the Lifshits theory considers interacting macro-bodies as 
continuous media, characterized by macroscopic parameters, especially their frequency-dependent 
(i.e. complex) dielectric permittivities.

Basically, the origin of attraction does not differ from that between two molecules or atoms as in the 
London theory in that it is due to a correlation between fluctuations. A macrobody contains many 
electrons, whose local densities can fluctuate. The amplitudes and frequencies of these fluctuations 
depend on the electron density and the strength of binding of the electron to the nuclei. These properties 
are reflected in the complex permittivity, as defined by Equation 2-38, a characteristic quantity of 
the substance. As a consequence of the spontaneous electronic fluctuations there is a fluctuating 
electro-magnetic field in and around the macrobody. The average field strength <E> of such a field is 
of course zero, but <E2> is finite. If two macrobodies come close enough for their fluctuation fields 
to overlap, a correlation between the two occurs, which can be shown to reduce the Gibbs energy; 
that is, it leads to attraction.

Quantitatively, based on the quantum electrodynamics of continuous media, the Lifshits theory elaborated 
a more general equation for the force between two macrobodies 1 and 2 in media 3 as /1/,
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where ξ is a dimensionless integration variable, running from 1 to ∞.

As expected, the interaction force requires integration over ω, the angular frequency of vibration 
of electrons. If ε1(ω), ε2(ω) and ε3(ω) are known, this integration can be carried out. The distance 
dependence and hence the geometry is, however, given in an involved way: s occurs in the exponents, 
and the ensuing dependence Π(s) is not simple.
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Note that Equation 3-34 is an encompassing equation. It covers the media effect and applies both 
to short and long distances. It fails only when the distances become so short that the granularity of 
the media has to be taken into account. Once Π(s) is found, the energy of Van der Waals attraction 
between two bodies can be obtained by integration.

The properties of Equation 3-34 become more transparent when some limiting cases are considered.

3.2.1	 Non-retarded attraction
First, we look at the case of two semi-infinite parallel plates a short distance apart. As s in the exponent 
is now small, only high values of ξ contribute significantly. After taking the limits of the pre-exponential 
factors for ξ >> 1, b1 = b2 = ξ, changing the lower integration limit over ξ from unity to zero and intro
ducing the dimensionless variable.

csξx 21
32 εω= 									         (3‑36)

Equation 3-34 reduces to,
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To a good approximation, the -1 may be neglected as compared to the term with ex, after which the 
integration over x can be carried out analytically, leading to,
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The (Gibbs) energy of attraction is then obtained by integration over s. this gives,
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which is the same result as in the Hamaker-De Boer theory, as given by Equation 3-6 with A12(3) 
instead of A12, provided,
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Thus, for non-retarded forces, the Hamaker-De Boer approximation and this variant of the Lifshits 
theory give the same distance dependency. This is in fact the case for all other geometries, so that all 
the Hamaker-De Boer Equations we have obtained for short distances remain valid. However, the 
Hamaker constant now requires a macroscopic reinterpretation.

From Equation 3-40, we see that the Hamaker-De Boer approximation A11(3) = A33(1) is corroborated, 
but in the more complete expression (3-34), it is no longer exact, although it is not easy to say by how 
much the two Hamaker constants differ.

3.2.2	 Retarded attraction
Next, we consider the long distance case, again for planar symmetry. In this situation, ε(iω) may 
be replaced by its static value ε(0), because the high-frequency waves are already damped out and 
we are now primarily dealing with long wavelengths or low frequencies. Thus, b1 and b2 may now 
be written as b1(0) and b2(0). After introducing the parameter x, as given by Equation 3-36, and 
eliminating ω, Equation 3-34 becomes,
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It is seen that the force now decreases as s–4, and by comparison with Equation 3-30 the retarded 
constant Β12 can be obtained.

Thus, the Lifshits theory accounts automatically for retardation and, in the limiting cases for short 
and long distances, it corroborates the Hamaker-De Boer distance dependence.

For metals interacting across a vacuum, we have ε1(0) = ε2(0) = ∞, ε3 = 1, and therefore, b1(0) = 
b2(0) = ∞. Equation 3-41 then simplifies to,
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This equation verifies Casimir’s result, as given by Equation 3-31. For all metals the retarded Van 
der Waals force is the same: the equation does not contain material-specific parameters.

For the cases of intermediate distances and other than planar geometries, the Lifshits Equations have no 
analytical solutions and do not display the simple factoring into a material-dependent and a geometrical 
contribution as it was found in the Hamaker-De Boer approximation. The reason is that generally overlap 
takes place of contributions due to different frequency ranges. Hence, implementation of the Lifshits 
theory is not so easy, because integrations have to be carried out numerically and because complete 
dielectric spectra over the entire frequency range are not available for many substances.

This does not by any means exhaust the potential applications of the Lifshits theory. It can also be 
applied to a molecule interacting with a medium, leading to the Lifshits equivalent of Equation 3-4, 
or to obtain the force between two atoms or molecules.

Yet another interesting aspect of the Lifshits theory is that it can also set conditions for positive (repulsive) 
Van der Waals forces. Clearly, positive values of Π(s) in the Lifshits Equation 3-34 are possible: it is seen 
that the sign is obtained by integration of differences between permittivities over the entire frequency 
range, i.e. the situation is more complicated than assumed in the Hamaker-De Boer approximation.

All of this underlines the generality of the Lifshits theory. However, a question remains, i.e. how to 
apply it in practice? To answer this question, we should realize that (1) not all parts of the dielectric 
spectrum are equally important and that (2) the approximation in Equation 3-34 of an integral over 
frequencies is not always realistic; in fact for a discrete spectrum it is better to relate ε to α using the 
Debye equation,
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and interpret the latter according to Equations 2-44 and 2-45.

If crucial parts of the dielectric spectrum are well known and plausible estimates can be made of the 
less relevant parts, satisfactory results can be obtained without too much trouble. Examples of such 
computations are now becoming available in the literature. General rules about the parts of the spectrum 
that dominate cannot, however, be given: metals and water exhibit quite different dispersion.

Formally, for planar symmetry, the disjoining pressure can always be written as,
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where A12(s), the Hamaker function, is distance generally dependent.

In the literature /1/, a number of approximate formulas for A12(s) are available. For most systems, at a 
short-distance of separation, A12(s) becomes independent of s and identical to the Hamaker constant.
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4	 Electric double layers

In general, electric double layers can be categorized into two kinds. One is the relaxed double layers, 
and the other one is the polarized double layers.

The relaxed double layers all form spontaneously by adsorption or desorption of charged species, and  
hence, the ensuing surface charge depends, according to some isotherm equations, on the concentration 
of the charge-determining species, i.e. on pAg for silver halide, pH for oxides, or on the concentration 
of anionic surfactants.

The polarized double layers are, however, generated by virtue of either an externally applied source, 
such as the mercury-solution interface, or isomorphic substitution of metal ions in the interior of the 
solid by ions of lower valency, such as the plates of clay minerals. Hence, the surface charge of the 
polarized double layers cannot be varied by changing the composition of the solution. Semiconductors 
with built-in vacancies or interstitial ions may also belong to this category, depending on the extent to 
which this charge can relax during an experiment.

In some cases, these two kinds of double layers may coexist to form a “mixed” double layer as typically 
encountered with clay minerals. The clay mineral platelet has on the edges a charge that is comparable 
with that on oxides, in that it is caused by adsorption or desorption of protons. At low pH, the edge surface 
charge is positive. However, the charge on the plates is negative and it has a very different origin, viz. 
isomorphic substitution in the interior of the solid (such as Al3+ → Mg2+, etc). This phenomenon has 
taken place during the genesis of the mineral and is caused by the limited availability of some species. 
The ensuing frozen-in shortage of positive space charge is felt, for a number of phenomena, as a negative 
surface charge that is manifested on the faces.

4.1	 General description
The charge (either positive or negative) on the surface together with the compensating countercharge in 
the solution constitute an electrical double layer. The countercharge is, in fact, made up of two contribu-
tions; one from co-ions which have the same sign as the surface and the other one from counterions which 
have the opposite sign to the surface. Hence, a double layer contains surface-, co- and counterions.

4.1.1	 The surface charge
As we mentioned previously, double layers for relaxed interfaces are solely created by preferential 
adsorption of certain types of ions. If it is known which of these ions are the surface ions (i.e. ions so 
strongly bound to the surface that the charge they impart may be identified as the surface charge), the 
surface charge density σ0 or simply the “surface charge” can, in principle, be analytically determined. 
Immediately it is recognized that the decision to call ions “surface ions” is a bit arbitrary: some ions, 
binding moderately strongly, may be called “surface ions” by some and “specifically bound” by others. 
Thus, to avoid confusion, we shall restrict the notion of “surface ions” to species that are constituents of 
the particle or have a particularly high affinity to it. Often for such ions Nernst’s law applies. For example, 
for colloidal AgI or AgI electrolytes Ag+ and I– will be defined as surface ions. Anionic surfactants, 
however strongly they may adsorb, are classified as specifically adsorbing. For oxides, H+ and OH– ions 
are identified as the surface ions but chemisorbing phosphate or cadmium ions are categorized as 
specifically adsorbing. In case of doubt careful specification is mandatory.

Surface ions may also be called “potential-determining” ions. This term is more common, but less 
precise, because it is not stated which potential is determined and therefore the measurability of that 
potential is subject to question.

For polarized interfaces, the surface charge is either fixed by the history of the particle (e.g. covalently 
bound sulphate groups on the surface of a latex particle are determined by the emulsion polymerization 
process) or it is the result of an applied potential (as in a dropping-mercury electrode). Also for these 
systems a variety of techniques are available to find the surface charge.
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4.1.2	 The countercharge
The countercharge of an electric double layer consists of an excess of counterions and a deficit of co-ions. 
The counterions feel the electrostatic attraction of the surface but at the same time tend to distribute 
themselves evenly over the solution, owing to thermal motion. The result is a compromise in which 
their concentration is high near the surface and decreases gradually till the bulk value is reached at 
large distance. The co-ions are, on the other hand, repelled from the surface; their concentration is 
very low near the surface and increases gradually until the bulk value is again reached.

If the countercharge is distributed as described above, without any specifically binding to the surface, 
the double layer is called purely diffuse. Otherwise additionally a thin layer, called the Stern layer, 
adjacent to the surface would be found with specifically adsorbing ions. Thus, a double layer can be 
divided generally into three parts: the surface, the Stern layer and the diffuse layer. Correspondingly, 
the charges are termed as the surface charge σ0, the specifically adsorbed charge σs and the diffuse 
charge σd, respectively.

Often, one speaks of specific adsorption when part of the countercharge is bound to the surface by non-
electrostatic forces. The term derives from the fact that non-electrostatic binding energies typically depend 
on the nature of the ion, say on its radius, whereas for purely Coulombic interactions between point 
charges, as is the case in diffuse layers, usually the interaction is generic: identical for all ions of the 
same valency.

In addition, for the diffuse part of an electrical double layer, the excess charge attributed by cations,

∑ +++ =
j jj

d FΓzσ 									        (4‑1)

and that by anions,

∑=− k -k-k
d FΓzσ 								        (4‑2)

are called the ionic components of charge, because both of them are parts of the diffuse charge, i.e.
ddd σσσ =+ −+ 									         (4‑3)

For a positive surface, the ionic components of charge are both negative, whereas for a negative 
surface, they are both positive.

4.1.3	 The Gibbs energy
The concept of the Gibbs or Helmholtz energy of electrical double layers plays a central role in colloid 
science. It is, for instance, needed in describing the properties of poly-electrolytes, dissociated mono
layers and the interaction of colloids.

By definition we can write, for flat interfaces at constant pressure,
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and
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σσ dddd nATSF µγ 							       (4‑5)

where G and F are the Gibbs and Helmholtz energy, respectively, with the superscript σ specifying 
for the interfaces, A and γ denote the interfacial area and the surface tension, respectively, S is the 
entropy, T is the absolute temperature, whereas ni and µi are the number of moles and the chemical 
potential of the species i in the interface.

To our end, we may further express both energies explicitly in terms of the electrical and non-
electrostatic (chemical) contributions. For the Gibbs energy, this gives,

ΔGσ = ΔGσ (el.) + ΔGσ (nonel.)							       (4‑6)

In principle the electrical contribution can be obtained by some reversible isothermal charging processes, 
depending on the nature of the system and on the rigour one wants to obtain. Provided that during the 
charging no density changes take place (i.e. absence of electrostriction), the Gibbs and Helmholtz 
energies would be identical, and so would be enthalpies and entropies.
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The charging runs, however, differently for relaxed and polarized interfaces. We shall discuss the former 
category in some detail because it is more typical and because the uncharged (reference) state is 
physically better imaginable.

Regarding the charging process, there are two options, each having its merits and draw-backs, some 
of which appear only in later stages.

The first approach is similar to the Debye-Hückel type of charging: at the onset all ions are uncharged 
and there is no adsorption; infinitesimal amounts of charge are then transported from some types of 
ions to others, allowing the systems to adjust or regulate its configuration after each step. During this 
process, the adsorption of some of the ions (the surface ions, also called the potential-determining ions) 
will change by an amount determined by their chemical affinities. The surface and the solution side of 
the double layer are in this way simultaneously charged.

The alternative starts with the situation that uncharged colloidal particle are brought into an infinitely 
large solution, containing surface ions, specifically adsorbing as well as indifferent ions. The system 
is not in equilibrium, which poses a problem of principle because we must carry out some reversible 
charging process. Surface ions will adsorb because of chemical forces together with any specific 
adsorption; this is the very driving force for double layer formation: ∆Gσ(nonel.) < 0. Concomitantly 
an electrical double layer forms, for which ∆Gσ(el.) > 0 because ions of like sign have to be brought 
into close proximity. Relaxed double layers never form on the basis of purely electrical interactions.

The balance between ∆Gσ(nonel.) and ∆Gσ(el.) changes during the charging process. Chemical 
interactions are short range. Hence, if taken per unit of added adsorbed charge, ∂∆Gσ(nonel.)/ ∂Γi 
is essentially independent of Γi. In this section we assume this independence to be the case in order 
to emphasize the principles. This situation arises for most double layers on homogeneous surfaces 
at not too high surface charge and also applies to double layers formed by specific adsorption of 
ionic surfactants, as long as lateral interaction is negligible. On the other hand, ∂∆Gσ(el.)/ ∂Γi is not 
constant; it increases with charging because the potentials increase. In fact, the charging continues 
spontaneously until ∂∆Gσ(el.)/ ∂Γi = ∂∆Gσ(nonel.)/ ∂Γi. Integrated over the entire process, ∆Gσ must 
be negative because the double layer forms spontaneously for relaxed double layers.

Specifically, for a simple double layer in which all surface ions adsorb in the same plane without any 
specific adsorption, we can write the electrical contribution to the Gibbs energy per unit area as,
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where σ0 and ψ0 are the surface charge density and surface potential, respectively. The primes indicate 
the variable values when the double layer is reversibly charged from zero to its final charge σ0 with a 
final potential of ψ0.

In the above equation, we do not add a contribution due to the secondary rearrangement of charges in the 
solution side of the double layer because, by virtue of the continuous equilibrium with the solution, this 
rearrangement involves no change in Gibbs energy. In further detail, the work gained by transporting, say, 
a counterion from the solution to a position in the double layer where the potential is ψ(x) just equals the 
corresponding loss of entropy and therefore the resulting ionic distribution follows the Boltzmann’s law /1/.

Now consider the chemical contribution. Recall that we assumed ∂∆Gσ(nonel.)/ ∂Γi to be constant for 
each chemically adsorbing species i. At any plane in the double layer where chemical adsorption takes 
place, this process continues until eventually the decrement in ∆Gσ(nonel.) is just equal and opposite 
to the increment of ∆Gσ(el.). Mathematically, when adsorbing the last ion, d∆Gσ(nonel.) = const = 
–d∆Gσ (el., final step) = –ψ0dσ0. Hence, we may integrate and write the chemical contribution to the 
Gibbs energy per unit area as,

ΔGa
σ (nonel.) = –ψ0σ0								        (4‑8)

Combination of Equations 4-6, 4-7 and 4-8 immediately gives,
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which is always negative.
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Likewise, in the more complicated case where not only surface ions adsorb but specific adsorption of 
ions of type j also takes place, we have,
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and
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where ψ j is the potential of the inner Helmholtz plane.

Thus, Gibbs energies can be computed if the charges are known as functions of the potentials. The 
function σ0(ψ0) is obtainable from colloid titrations provided Nernst’s law applies. Often σj can be 
determined analytically, but ψ j may offer problems. Under certain conditions it may be approximated 
by the electrokinetic potential ζ. Alternatively, the Gibbs energy is obtainable through double-layer 
models, e.g. Gouy-Chapman theory gives explicit equations for σ0(ψ0) that can be integrated.

Note also that in both Equations 4-9 and 4-11 the diffuse part of the double layer does not contribute 
to the Gibbs energy, because no non-electrostatic interactions are involved: in this part changes in 
electrochemical potential due to changes in concentration are balanced exactly by changes in potential, 
according to Boltzmann’s law /1/.

When the surfaces are heterogeneous, however, these expressions must be replaced by more complicated 
ones. In the relatively simple situation that it consists of independent patches, each small enough 
to be homogeneous, Equations 4-7 and 4-9 or 4-10 and 4-11 may be applied to each patch and all 
contributions added.

4.2	 The Poisson-Boltzmann model
The counterions of a diffuse double layer are subjected to two opposing tendencies. Electrostatic 
forces attract them to the charged surface, whereas diffusion tends to bring them from the surface 
toward the bulk solution, where their concentration is smaller.

Simultaneously, the co-ions are repelled by the surface, and back-diffusion from the bulk solution 
toward the surface counteracts the electric repulsion.

When equilibrium is established in the double layer, the average local concentration of ions can be 
described as a function of the average electric potential, ψ, according to Boltzmann’s law,
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where cj is the concentration of ions of type j per unit volume near the surface, and cj∞ is the concen-
tration far from the surface, i.e. the bulk concentration. The valence number zj is either a positive or 
negative integer.

The electric field thus formed can be quantified properly, without proof, by Poisson’s equation,

( )
0ε

ρψε −=∇⋅∇ 								        (4‑13)

with the space charge density given by,

∑=
j jjczFρ 									         (4‑14)

where the sum over j covers all ionic species present.
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For constant ε (the relative dielectric permittivity of the solution), Poisson’s equation reduces to,
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εε
ρψ −=∇ 									         (4‑15)

Thus, combination of Equations 4-12, 4-14 and 4-15 gives the Poisson-Boltzmann (PB) Equation, 
for the diffuse part of the double layer, as,
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At this point we should understand that the PB Equation was developed firmly based on the following 
premises, viz.

1.	 The ions are point charges.
2.	 The ionic adsorption energy is purely electrostatic.
3.	 The average electrostatic potential is identified with the potential of mean force.
4.	 The solvent is primitive, i.e. a structureless continuum, affecting the distribution only through its 

macroscopic dielectric permittivity εr, for which the bulk value is taken.

Note that the Poisson Equation 4-15, supplemented by Equation 4-14, implies that the potentials asso-
ciated with various charges combine in an additive manner. The Boltzmann Equation 4-12 involves, 
however, an exponential relationship between the charges and the potentials. Thus, a fundamental 
inconsistency is introduced when Equations 4-12 and 4-15 are combined via Equation 4-14. As a result, 
the Poisson-Boltzmann Equation 4-16 does not have an explicit general solution anyhow and must 
be solved numerically. Only for certain limiting cases can it be solved analytically, and these involve 
approximations which at the same time overcome the objection just stated.

Now introducing a normalized dimensionless potential,

RT
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the PB Equation 4-16 may be rewritten as,
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For flat geometry, the Laplace operator becomes,
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and then, Equation 4-18 reduces to,

( )∑ −−=
j jj∞j

0

2

2

2

exp
d
d yzcz

RT
F

x
y

εε
						      (4‑20)

with the distance x being counted from the surface if the double layer is purely diffuse or from the outer 
Helmholtz plane.

This equation can be integrated after multiplying both sides with 2(dy/dx). As
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and
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the equation can be integrated to give,
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where C is the integration constant, and it can be found from the boundary condition that at large distance 
from the surface dy/dx → 0 and y → 0; this gives,
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Hence,

( ) ( )[ ] 21

j j∞j jj∞

21

0

2
exp2sign

d
d ∑∑ −−







−= cyzc

RT
Fy

x
y

εε
				    (4‑25)

Although this equation becomes analytically unsolvable for most systems, it can be used to evaluate 
some important quantities. In the following, we shall restrict ourselves to flat surfaces and work 
mainly on Equations 4-20 and 4-25, discussing about the basic properties of the diffuse double layers 
for different cases.

4.2.1	 Electrolyte mixture and the Debye-Hückel approximation
When dealing with electrolyte mixtures, the ionic concentrations cj∞ can be rewritten in terms of 
concentrations of electroneutral electrolytes, ci∞. Suppose one molecule of electrolyte i dissociates 
into vi+ cations of valency zi+, and vi− anions of valency zi−, Equation 4-25 becomes generally,
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When the electrolytes possess common ions, some terms may be grouped together.

The electric field strength
For flat surfaces, the electric field strength in a diffuse double layer is given by,
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and thus, from Equation 4-26, we can immediately write,

( ) ( ) ( ) ( ) ( )[ ] 21
i -iii∞i -i-ii∞i iii∞

21

0

expexp2sign ∑∑∑ +−−+−





= +++ vvcyzvcyzvcRTyxE

εε
	(4‑28)

The diffuse charge
Using Gauss’ law, the diffuse charge can be related to the field strength such that,
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Hence, Equation 4-28 immediately gives,
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where yd is the dimensionless potential of the diffuse part, i.e. the potential y at x = 0, either at the 
surface if the double layer is purely diffuse or at the outer Helmholtz plane.

The differential capacitance
The differential capacitance of a diffuse double layer is defined as,
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where σ0 and ψ0 denote the surface charge and surface potential, respectively.

As a whole, electric double layers are always electroneutral. Thus, if the countercharge is purely 
diffuse, we have,

σ0 + σd = 0									         (4‑32)

and

ψ 0 = ψ d										         (4‑33)

This gives,
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d
d

d
d
ψ
σ−=C 									         (4‑34)

where the superscript d has been added to C as a reminder that this applies for a purely diffuse 
double layer or, more generally, the diffuse part of the double layer.

As a result, differentiating Equation 4-30 with respect to ψd immediately yields,
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It indicates that, in the plot of Cd vs. yd, the capacitance minimum does not coincide with the zero point 
of the diffuse potential.

The potential distribution
Generally, no analytical solution can be given for y(x) for electrolyte mixtures. When the Debye-Hückel 
approximation holds, however, the PB equation can be linearized, and as a result it becomes analytically 
solvable.

In the limit of low potentials, the exponentials in Equation 4-20 can be expanded as a power series. 
If only the zeroth- and first-order terms are retained, the equation becomes,
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with the reciprocal Debye length κ given by,
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where I is the ionic strength of the bulk solution and noticeably it has a unit of mol m–3 here.

Integration of Equation 4-36, following the same procedure from Equation 4-20 to Equation 4-25, yields,
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This equation can be integrated once again, using the boundary condition that y = yd at x = 0, to give 
the analytical solution of the potential distribution in a diffuse double layer,

y = yd exp (–κx)									         (4‑39)

Making y explicit, by Equation 4-17, we obtain,

ψ = ψ d exp (– κx)								        (4‑40)
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Thus, at low potentials, the absolute value of the electrostatic potential in a flat diffuse double layer 
drops exponentially with distance, reducing to ψd/e over a distance κ–1.

Although the Debye-Hückel approximation is strictly applicable only in the case of low potentials, this 
analysis reveals some features of the diffuse double layer that are general and of great importance as far 
as stability with respect to flocculation of dispersions and electrokinetic phenomena are concerned.
1.	 The distance away from the surface that an electrostatic potential persists may be comparable to 

the dimensions of colloidal particles themselves.
2.	 The distance over which significant potentials exist decreases with increasing electrolyte concentration 

and the valence of the ions in the bulk solution. The valence plays a dominant role as compared to 
the concentration.

3.	 The indifferent electrolytes not only compress the double layer but also reduce the potential of 
the diffuse part of the double layer.

More importantly, in this limiting case, the basic quantities that characterize the diffuse double layers 
would become physically better imaginable.

The electric field strength
With the help of Equations 4-27 and 4-38, we can immediately write the electric field strength in a 
diffuse double layer as,

E = κψ										          (4‑41)

where the potential ψ, as given by Equation 4-40, is a function of x.

The diffuse charge
Following Gauss’ law, as described by Equation 4-29, the diffuse charge can be found directly from 
Equation 4-41, to give,
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and the inverse of this expression yields,
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The differential capacitance
By differentiating Equation 4-42 with respect to ψd, we can obtain the differential capacitance of a 
diffuse double layer as,

Cd = ε0εκ									         (4‑44)

This result shows that a purely diffuse double layer at low potentials behaves just like a parallel plate 
capacitor in which the separation between the plates is given by κ–1. This explains why κ–1 is also 
called the double layer thickness. It is important to remember, however, that the actual distribution 
of counterions in the diffuse double layer is diffuse, as shown later, and approaches the unperturbed 
bulk value only at large distance from the surface.

The Gibbs energy
With the help of Equations 4-9 and 4-42, the Gibbs energy per unit area can now be computed for a 
purely diffuse double layer; it gives,
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Using the dimensionless potential yd, it can also be written as,
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or, by Equation 4-42, we have,
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4.2.2	 Single electrolyte and the Gouy-Chapman theory
If only one electrolyte is involved in the bulk solution, the PB equation can be written in a bit more 
handy form.

To start with, we consider the electrolyte to be asymmetrical. Suppose one molecule of the electrolyte 
dissociates into v+ cations of valency z+, and v− anions of valency z−, the cation and anion concentrations 
are then given by,

c+ = v+c	 and	 c– = v–c 							       (4‑48)

where we have used c to stand for the bulk concentration of the electroneutral electrolyte, instead of c∞.

Thus, Equation 4-20 becomes,
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and correspondingly Equation 4-25 reduces to,
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The electric field strength
From Equation 4-50, the electric field strength in a diffuse double layer is immediately found as,
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The diffuse charge
With the help of Equation 4-51, the diffuse charge can be determined as,
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The differential capacitance
When an asymmetrical electrolyte is involved, the differential capacitance of a diffuse double layer 
is found directly from differentiation of Equation 4-52 with respect to ψd, to give,
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Because of electroneutrality, we have,

z+c+ = –z–c–	 and	 z+v+ = –z–v–						      (4‑54)

Subsequently, we can rewrite Equation 4-53 as,
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or in the following way,
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with the reciprocal Debye length κ given, for the present case, by,
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Thus, in the plot of Cd vs. yd, the capacitance minimum generally does not coincide with the zero 
point of the diffuse layer potential for asymmetrical electrolytes, but it is shifted in the direction 
where the multivalent ion is the co-ion.

The potential distribution
Similar to that for electrolyte mixtures, no general analytical formula can be given for y(x) for 
asymmetrical electrolytes. However, in special cases where the electrolyte is or may be regarded as 
symmetrical, the PB equation can be solved analytically on the basis of the Gouy-Chapman theory.

For a symmetrical electrolyte, for which v+ = v– = 1 and z+ = –z– = z, Equation 4-49 reduces to,
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with the reciprocal Debye length κ given, for the present case, by,
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where we have used c+ = c– = c.

Integration of Equation 4-58, following the same procedure from Equation 4-20 to Equation 4-25, 
yields,
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This equation can be integrated once again, using the boundary condition that y = yd at x = 0, to give 
the analytical solution of the potential distribution in a diffuse double layer,
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Introducing γ to stand for the hyperbolic tangent,
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we may abbreviate Equation 4-61 as,

γ = γd exp(–κx)									         (4‑63)

In the limit case of low potentials (i.e. when the Debye-Hückel approximation holds), the hyperbolic 
tangent may be replaced by the first, linear, term of its series expansion, to give Equations 4-39 and 
4-40. This has been approved to be a good approximation for zy ≤ 2 (ψ ≤ 50 mV for z = 1, ψ ≤ 25 mv 
for z = 2, etc).

Another situation of interest in which Equation 4-61 simplifies considerably is the case of large values 
of x at which the potential has fallen to a small value regardless of its initial value. Under these conditions, 
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the hyperbolic tangent on the l.h.s. of Equation 4‑61 may be replaced by the first term of its series 
expansion. This gives,

zy = 4γd exp(–κx)	 for large values of x						      (4‑64)

For very large values of yd, γd goes to unity, and then the above equation becomes,

zy = 4 exp(–κx)	 for large values of yd and x					     (4‑65)

This expression shows clearly that, in the case of large diffuse potentials, the potential in the outer 
portion of the diffuse double layer would be independent of the inner potential.

On the other hand, with Equation 4-60 at hand, we may characterize the diffuse double layer in a 
relatively simple way for the case where only one symmetrical electrolyte is involved.

The electric field strength
From Equation 4-60, the electric field strength in a diffuse double layer is immediately found as,
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In the limit of low potentials, when the Debye-Hückel approximation holds, it reduces then to 
Equation 4-41.

The diffuse charge
With the help of Equation 4-29, the diffuse charge can be found directly from Equation 4-66 for x → 0, 
to give,
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The inverse of this equation can be written as,
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with

φ = (8ε0εcRT)–1/2									        (4‑69)

The differential capacitance
The differential capacitance of a diffuse double layer can, for the present case, be found from dif-
ferentiation of Equation 4-67 with respect to ψd, and it can conveniently be written as,









++=





= 4d

2d

0

d

0
d )(O

8
)(1

2
cosh zyzyzyC εκεεκε 					    (4‑70)

Thus, just like the charge, Cd increases proportionally to c1/2 because of screening.

Moreover, the above expression shows that, in the plot of Cd vs. yd, the capacitance is an even function 
and symmetrical with respect to the point of zero charge. The capacitance is, however, finite at that 
point the charge is zero and equal to,

Cd = ε0εκ	 (σ d = 0)							       (4‑71)

which is nothing else than the formula for a flat condenser with plate distance κ-1.



42	 TR-10-26

The Gibbs energy
The Gibbs energy per unit area can now also be computed for a purely diffuse double layer by 
combination of Equations 4-9 and 4-67; this gives,
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It may be rewritten, with Equations 4-70 and 4-71 at hand, as,
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It is seen that this quantity is a measure of the screening. However, it should be noted that capacitances 
are purely electrostatic quantities whereas the Gibbs energy has a non-electrostatic root.

The ionic components of charge
In the Gouy-Chapman model, we can write the ionic components simply as,
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Integrations can be carried out with the help of Equation 4-60, i.e.,
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Subsequently, it gives,
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In this way, one obtains,
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Similarly,
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These two components of charge satisfy the requirement of Equation 4-3, and for low potentials 
reduce to,

σ d
+ = σ d

– = – cz2 Fyd/κ								        (4‑80)

On the other hand, with increasingly positive yd, the excess charge attributed by anions increases 
exponentially, whereas the excess charge attributed by cations asymptotically approaches the limit,

lim σd
+ = –2czF/κ 	  	  						      (4‑81) 

yd→∞

This expression shows that in the limit of maximum expulsion effectively two Debye lengths of the 
double layer are devoid of co-ions.
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4.3	 The Stern model
It is not difficult to point to a number of imperfections in the Poisson-Boltzmann theory. These mainly 
include the following /19/:

1.	 The finite sizes of the ions are neglected.

2.	 Non-Coulombic interaction between counter- and co-ions and surface (specific adsorption) is 
disregarded.

3.	 The permittivity of the medium is assumed to be constant.

4.	 Incomplete dissociation of the electrolyte is ignored.

5.	 The average potential and the potential of the mean force are assumed to be identical.

6.	 The solvent is considered to be primitive.

7.	 Polarization of the solvent by the charged surface is not taken into account.

8.	 The surface charge is assumed to be homogeneous and smeared-out.

9.	 Surfaces are considered flat on a molecular scale.

10.	Image forces between ions and the surface are neglected.

Considering this long list of iniquities, it is not surprising that conditions are readily found where 
the Poisson-Boltzmann model breaks down. A typical illustration is that at high surface potential 
(y0 >> 1) the double layer charge and capacitance on mercury and silver iodide remain far below 
that predicted. On most surfaces and in many electrolytes specific adsorption is observed (different 
σ0 for different ions of the same valency at given pAg, pH, etc). The extent of it and the sequence 
depend on the natures of the surface and electrolyte. On the other hand, perfect applicability of 
Poisson-Boltzmann equations is observed in other experiments. For instance, interaction forces at 
not too short distance between two charged surfaces, as measured in the surface force apparatus and 
the effect of the electrolyte concentration on the thickness of the liquid films and on the negative 
adsorption are all well described. Hence, it is appropriate to delineate the domain of applicability of 
the Poisson-Boltzmann theory and to consider appropriate corrections. This leads to development of 
the Stern model that has over the decades since its inception rendered excellent services, especially 
in dealing with experimental systems.

In the Stern model, the solution side of the double layer is, following the older ideas of Helmholtz, 
subdivided generally into two parts: an inner part, or Stern layer where all complications regarding 
finite ion size, specific adsorption, discrete charges, surface heterogeneity, etc, reside and an outer 
part, Gouy or diffuse layer where ions can move in any directions. The diffuse layer is by definition 
ideal, i.e. it obeys the Poisson-Boltzmann statistics. The borderline between the Stern layer and the 
diffuse layer, though somewhat artificial, is usually called the outer Helmholtz plane (oHp), whereas 
the plane where all specifically adsorbed ions, if considered, reside is called the inner Helmholtz 
plane (iHp).

The Stern layer may, however, have different structures, depending on the detail and the complexity 
involved. Correspondingly, we may classify the Stern models into several categories, as being 
discussed below.

4.3.1	 The zeroth-order Stern model
In this simple model, as illustrated schematically in Figure 4-1, only the effect of finite ion size is 
considered by ignoring the existence of the inner Helmholtz plane.

Therefore, the Stern layer is charge-free and it acts as a molecular condenser in which the potential 
decreases linearly with the distance from the surface, i.e.

Δ2ψ = 0										         (4‑82)

Thus, the potential distribution in the Stern layer of thickness d is given, for flat surfaces, by,

ψ = ψ 0 + (ψ d – ψ 0)x/d	 at	 0 ≤ x ≤ d					     (4‑83)
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where the potential of the diffuse part ψd is lower than when the entire double layer were diffuse 
because then ψd would have been equal to ψ0.

In the diffuse layer, the charge distribution remains by definition ideal, meaning that all the relevant 
equations of the Poisson-Boltzmann theory remain valid after replacing x by x-d. Hence, in the follow-
ing, we pay our attention mainly on the Stern layer, discussing about its physical properties.

The capacitance
Similar to Equation 4-34 for the diffuse layer, the differential capacitance to the Stern layer is given by,
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and correspondingly the integral capacitance reads,
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where the superscript s has been added to both C and K as a reminder that it applies only for the 
Stern layer.

Since the charge balance Equation 4-32 still holds for electrical double layers for this simple case, 
we can write,
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Thus, at given σ0 and ψ0, combination of Equations 4-31, 4-34 and 4-86 gives,

ds

111
CCC

+= and ds

111
KKK

+= 					     (4‑87)

That is, the total double layer capacitance consists of two capacitances in series. The smaller of the 
two gives the main contribution to the overall capacitance.

In general, however, both Cs and Ks depend on σ0 and ψ0 (because the relative dielectric permittivity 
in the Stern layer, εs, depends on the electric field) but only indirectly on the electrolyte concentration 
(because it affects σ0 at given ψ0).

Figure 4-1. Identification of the various planes and potentials associated with an electric double layer in 
the zeroth-order Stern layer model.
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Using Gauss’ law at a given σ0, we have,
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from which the integral capacitance can be found as,
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Hence, when the quotient is independent of σ0 or ψ0, the differential capacitance is also a constant 
and can, with the help of interconversion between the two capacitances, also be written as,

d
C

s
0s εε

= 									         (4‑90)

The Gibbs energy
The capacitances Cs and Ks not only dictate the difference between ψd and ψ0, but also are useful in 
quantifying the Gibbs energy for Gouy-Stern layers.

Qualitatively, the zeroth-order Stern model differs from the purely diffuse model in that the screening 
is poorer. Higher potentials are required to obtain a certain surface charge. Quantitatively, we have 
in principle Equation 4-9 for the purely diffuse case for the relaxed double layers, which in the zeroth-
order Stern model can be modified to account for the fact that ψ can now maximally become ψd. To 
that end, it is more expedient and transparent to decompose the electrical contributions to the Gibbs 
energy into two components by considering the existence of the outer Helmholtz plane (oHp). Thus, 
we may write,
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The first two integrals, representing the purely electric contributions, can be understood by visualizing 
the charging process to occur in two steps. First a charge σ0 = -σd is brought to the outer Helmholtz 
plane; the (positive) electrical work is represented by the first integral. Second, this charge, to become 
the surface charge, is transported from there to the surface, for which the second integral, also positive, 
is the electrical work involved. The non-electric contributions, represented by the third term, is nothing 
else than that for purely diffuse models.

Mathematically, however, combination of these three terms immediately yields,
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This result is identical to Equation 4-9, for purely diffuse double layers. In words, the Gibbs energy 
for a double layer with a charge-free inner layer is the same as that for a purely diffuse layer, the 
quantitative difference being that at given ψ0, σ0 is lower. No additional terms are needed for the 
charge-free layer because all ions are diffuse and, hence, do not contribute.

On the other hand, we may replace the first integral by,
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and the second integral by, with the help of Equation 4-86 for a constant capacitance of the inner 
layer (implying Ks = Cs),
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and then making use of the charge balance Equation 4-32, we arrive at,

∫+−=∆
d

0

'd'd
s

20
σ
a d

2
)( ψ

ψσ σ
C

G 							       (4‑95)

This is a useful formula because the integral on the r.h.s. is the equation for a purely diffuse layer 
(σ0’ = –σd’ in this case), whereas the first term modifies it for the charge-free layer. Moreover, this 
formula shows that the purely diffuse limit is obtained for Cs → ∞.

Thus, using Equation 4-72 for a symmetrical electrolyte, the above equation becomes,
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4.3.2	 The triple layer model
In more general cases, specific adsorption should also be taken into account in addition to finite ion 
size. Then, the inner Helmholtz plane (iHp) where specifically adsorbed ions reside splits the Stern 
layer into two parts, as sketched in Figure 4-2; an inner part, or inner Helmholtz layer of thickness 
β, is located between the charged surface and the inner Helmholtz plane, and an outer part, or outer 
Helmholtz layer of thickness γ, located between the inner and the outer Helmholtz planes.

In both layers, the potentials decrease linearly with the distance from the surface, i.e. both of them 
act as molecular condensers in which Equation 4-82 also hold.

For flat surfaces, the potential distribution in the Stern layer can thus be explicitly written as,

ψ = ψ 0 + (ψ s–ψ 0) x/β	 for	 0 ≤ x ≤ β					     (4‑97)

and

β
βψψψψ

−
−−+=
d
x)( sds 	 for	 β ≤ x ≤ d				    (4‑98)

where ψs denotes the potential at the inner Helmholtz plane.

Figure 4-2. Identification of the various planes and potentials associated with an electric double layer in 
the triple layer model.
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The capacitance
In this triple layer model, three charges and three capacitances can be distinguished. For the two 
inner layers differential capacitances are defined as,
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where σs stands for the specifically adsorbed charge.

The corresponding integral capacitances then read,
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In this case, the charge balance equation becomes,

σ 0 + σ s + σ d = 0									        (4‑103)

Hence, we can write,
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It follows immediately that, at given σ0 and ψ0,
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These results show that, in this case, Cs or Ks cannot be split into two components in series, and there-
fore, the total double layer capacitance cannot be simply represented by three capacitances in series.

At a given σ0, however, the counterpart of Equation 4-89 can be given by,
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and, if both capacitances are constant (invariant with σ0 or ψ0), we would have,
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Note that in general Cs
1 ≠ Cs

2 and Ks
1 ≠ Ks

2, although it is not easy to say by how much they differ 
because interpretation of capacitances in terms of macroscopic parameters like ε and thickness is by 
no means physically realistic on the scale of one or two molecular diameters.

The Gibbs energy
To compute the Gibbs energy for Gouy-Stern layers, we may simply extend the charging process 
leading to Equation 4-91. First, a charge (σ0 + σs) = –σd is brought to the outer Helmholtz plane, then 
it is moved to the inner Helmholtz plane, and finally part of this charge, σ0, is transported from there 
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to the surface. In the triple layer model, however, the non-electric contributions to the Gibbs energy 
should be discriminated between those for the charge-determining and specifically adsorbing ions. 
For charge-determining ions, the expression is exactly the same one as Equation 4-8, i.e.

ΔG σ
a, cd (nonel.) = ψ 0 σ 0								        (4‑109)

while for specifically adsorbed ions, we have,

ΔG σ
a, sa (nonel.) = –ψ s σ s				    				    (4‑110)

because specific adsorption at the inner Helmholtz plane also proceeds until balanced by the opposing 
electrical contribution.

Hence, generally,
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By virtue of charge balance, Equation 4-103, it is readily verified that this expression is consistent 
with Equation 4-11.

Now, introducing Equations 4-99 and 4-100 for the differential capacitances of the inner and outer 
Helmholtz layers and assuming both to be constant (differential and integral capacitances would then 
be identical), the above equation yields,
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This is obviously an extension of Equation 4-95.

Hence, using Equation 4-72 for a symmetrical electrolyte, the above equation becomes,
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This equation shows that the Gibbs energy has a diffuse contribution plus two addition terms, weighted 
by the two reciprocal capacitances. The purely diffuse case is retrieved only when these capacitances 
are infinitely high.

4.3.3	 Variant form of the triple layer model
A great difficulty of applying the triple layer model is to assess ψs, which is required to formulate an 
adsorption isotherm for counterions. This quantity is quite esoteric. In some cases ψs is identified with 
ψ0, but this is a very poor approximation. Somewhat better, simpler models, somewhere between the 
zeroth and first order have been proposed. Two of them are:

(1) Ignore the break in dψ/dx at the inner Helmholtz plane. Then ψs is simply related to ψ0 and ψd as,
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(2) Assume that specific adsorption takes place at the outer Helmholtz plane. This means that 
the inner Helmholtz plane no longer exists and therefore ψs is identified with ψd. In this case, 
Equation 4-106 reduces to,
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and correspondingly Equation 4-112 becomes,
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This result is identical to Equation 4-95 for the zeroth-order approximation. It implies that the Gibbs 
energy for a double layer with a charge-free inner layer, but with specific adsorption at the outer 
Helmholtz plane, is the same as that without specific adsorption. The quantitative difference is that, 
at given ψ0, σ0 is lower in the latter case.

Other assumptions, such as setting the relative dielectric constant of the outer Helmholtz layer equals 
to that of the bulk value, do not lead to simpler formulations. Neither do that regarding the position 
of the outer Helmholtz plane, this is the reason why it is usually assumed in the triple layer model 
that the charge density at the outer Helmholtz plane is zero (i.e. no ion resides on this plane) without 
any consideration. However, if the outer Helmholtz plane is taken to be located at the centre of the 
first row of counterions, we may, by setting up a force balance to the outer Helmholtz plane, arrive at 
the following expression /20/,
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where σoHp denotes the charge density at the outer Helmholtz plane, and n is the optical refractive index 
of the bulk solution (for water, it is about 1.33 at 300K).

Using Gauss’ law for this specific case, the effective surface charge density (σ0 + σs) can be expressed 
as a function of the electric field, i.e.

σ 0 + σ s = ε0εs
2E|x=β								        (4‑118)

Also, the relative dielectric constant of the double layers depends strongly on the electric field. For 
water we can write /20/,
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where ρw is water density, pw is electric dipole of a single water molecule (2.02 Debye units) and the 
Langevin function is given by,

L(x) = coth(x) –1/x								        (4‑120)

Thus, combination of these equations could be used to evaluate the ratio on the l.h.s. of Equation 4-117 
as a function of the effective surface charge density. The result shows that the charge density σoHp at 
the outer Helmholtz plane, if it is explicitly positioned, is negligible only in the case when (σ0 + σs) is 
smaller than 10 µC/cm2.

4.3.4	 Specific adsorption of ions
Specific adsorption of ions is, as stated previously, their adsorption by non-electrostatic forces. By this 
mechanism, ions can accumulate on a surface even against electrostatic repulsion. The non-electric 
Gibbs energy of adsorption generally depends on the nature of ions and the surface, hence the term 
“specific”. In practice, sometimes situations are met where ions do not specifically adsorb on an 
uncharged surface, but do so once there are charges on the surface, such as alkali ions on iodide. 
Wherever appropriate, we shall call this type specific adsorption of the second kind.

Since the Stern theory pays much attention on specific adsorption, an approach has to be provided to 
determine the specifically adsorbed charge, σs, at each σ0. In other words, to complete the triple layer 
model, one needs an adsorption isotherm equation.

Theoretically, this could be done straightforwardly on the basis of the isotherm equations available 
for uncharged molecules: simply an electrostatic contribution zjFψs has to be added to the non-
electrostatic Gibbs energy of adsorption. Multilayer specific adsorption of ions does not have to be 
considered, because ions beyond the Stern layer are (by definition) generically adsorbed.

As we mostly consider surface charges, residing on certain sites at the surface, localized adsorption 
is the most likely mechanism. Lateral interaction is, because of the long range of the electrostatic 
forces and the usually low degrees of occupancy, dominated by the electrostatic forces and in the 
mean field treatment accounted for by a zjFψs term.
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Under these conditions the specific or non-electrostatic adsorption Gibbs energy is only determined 
by the ion-surface interaction. Hence, an intrinsic binding constant can be introduced as /19/,

Kj = exp(–ΔadsGj/RT)								        (4‑121)

where ∆adsGj denotes the specific adsorption Gibbs energy per mol of j species adsorbed.

At low coverages, it is often a good approximation to assume Kj to be constant. However, the total 
Gibbs energy of adsorption is not constant because the electrostatic part changes with σ0. Note also 
that this equation requires Kj to be dimensionless. When Kj is not dimensionless and nevertheless this 
equation is still used, the implication is that ∆adsGj is referred to an (arbitrary) reference, determined 
by the concentration units /19/.

With thee Kj expression at hand, we may now formulate adsorption isotherm equations. To that end, 
assumptions have to be made about the kinds of ions that bind, and on the planes where they adsorb. 
Stern himself considered the specific adsorption of cations and anions, both at the outer Helmholtz 
plane. More likely are situations where only one ionic type adsorbs at the inner Helmholtz plane. 
For that case, the Langmuir Equation is readily extended by adding the electrostatic contribution, 
zjFψs, to the non-electrostatic adsorption Gibbs energy. Thus, for a charged adsorbate, we obtain,
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with the fraction of surface coverage, θj, given by,

θj = Nj/N0									         (4‑123)

where xj is the mole fraction of ions of type j in the bulk solution, Nj and N0 are the number of 
specifically adsorbed ions and the number of sites per unit area of the surface, respectively (the N0 
adsorption sites for specifically adsorbing ions are not necessarily identical to those for surface ions. 
The specifically adsorbed charge can be smaller or larger than the surface charge).

Making θj explicit and introducing,

σ s = zjeNj									         (4‑124)

the above equation gives, with the help of Equation 4-17,
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A variant of this equation applies to the case where, say positive, charges on the surface act as the 
sites where specific adsorption of anions may take place, i.e. when the specific adsorption is of the 
second kind. Then, ion pairs are formed and held together by both electrostatic and non-electrostatic 
interactions. For that case, the surface charge is,

σ 0 = –zjeN0									         (4‑126)

and the specifically adsorbed charge can be given by, with the help of Equation 4-123,

σ s = –θjσ 0									         (4‑127)

Hence, using the charge balance Equation 4-103, the diffuse charge reads,

σ d = (θj–1) σ 0									         (4‑128)

and Equation 4-125 becomes,
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In summary, it is not difficult to formulate Stern adsorption isotherm equations. The main problem 
is to determine ys, for which assumptions have to be made. First, there is the assumption of the mean 
field, and then the localization of the inner Helmholtz plane is at issue. The quality of these models 
is not easily assessed, but ultimately comparison with the experiments is decisive.
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5	 Overlapping double layers

When discussing about electrostatic interactions resulting from overlapping of double layers, the 
term homo-interaction is used for the interaction between particles that have identical values of the 
potential and/or charge, irrespective of the nature of the particles and solvents, whereas the term 
hetero-interaction refers to when particles have different potentials and/or charges.

5.1	 Homo-interaction
We start by considering the simplest situation of two identical particles, each carrying identical 
electrical double layers, embedded in a solution of fixed concentrations (i.e. having fixed chemical 
potentials) of an electrolyte, containing charge-determining ions and an indifferent electrolyte. The 
particles are assumed not to settle down, but to move randomly by Brownian motion. When they 
meet upon a chance encounter, repulsion is felt. We may ask, why? The answer is not as obvious 
as may appear at first sight. The most direct, but oversimplified reply, “because they are charged, 
and equal charges repel each other”, is immediately parried by the equally oversimplified counter-
statement that the double layers do not interact at all electrostatically because, as a whole, they are 
un-charged. In the nineteen thirties this issue occupied the minds of some colloid scientists; there 
are even papers concluding that the electric interaction between identical particles is repulsive at a 
certain distances but attractive at others. Had the diffuse double layers been spatially fixed, then one 
could imagine a repulsion at long distance (because of overlap of the extreme parts of these double 
layers, carrying charges of the same sign) and attraction at shorter distance (because the surface 
charge of the one particle starts to attract the countercharge of the other). However, diffuse double 
layers are not static. They can, and will, regulate their structures upon overlap, leading to a change in 
entropy which also contributes to the Gibbs energy of interaction /21/.

Thus, for relaxed double layers, the surface potential y0 is expected to be fixed upon interaction, 
because the concentration of charge-determining ions remains constant in the system, so that the 
Nernst equilibrium would be retained. When y0 is fixed (at its value for separation s → ∞), the 
surface charge σ0 should decrease upon overlap; in Verwey-Overbeek language, by desorption of 
charge-determining ions. The reason for this is that the proximity of the second surface with the 
same charge makes it unattractive for such ions to be on the surface. Eventually, in the limit s → 0, 
σ0 → 0. With this in mind, it becomes evident that at least part of the disjoining pressure Πel is of a 
chemical nature.

Double layers in isolation form spontaneously by adsorption and desorption of charge-determining 
ions. Hence, the adsorption of such ions is inhibited when a second particle approaches, meaning that 
work has to be done against their chemical affinity. Stated otherwise, the particles repel each other. 
Usually, this mechanism is called, interaction at constant potential, or surface charge regulation, since 
such a type of interaction requires adjustment of the surface charge.

The alternative, interaction at constant charge, applies to systems with fixed surface charges, such as 
polystyrene sulphate lattices or the plates of clay minerals. In this case, y0 shoots up upon overlap of 
polarized double layers and the corresponding contribution to the Gibbs energy of interaction is of a 
purely electrical nature (because no adsorption and desorption takes place). Consequently, we may also 
call this process, surface potential regulation, since such a type of interaction requires adjustment of the 
surface potential.

Not only because of the neglect of the Stern layer, but also on dynamic grounds, can something be 
stated against these mechanisms. For many systems with initially relaxed double layers, surface ions 
simply do not have the time to desorb during a Brownian encounter. Then, there are two options: (1) 
the system behaves as a system of constant charge or, (2), the surface charge proper will not decrease, 
but it is made ineffective by adsorption of counterions. The latter mechanism requires a Stern layer 
over which the countercharge is regulated. Intermediate cases can also be imagined, depending on the 
nature and magnitudes of the ion fluxes and their yields on the time scale of a Brownian collision.
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5.1.1	 Interaction at constant potential
This type of interaction rarely occurs in practice because there is no reason for yd, the potential of the 
diffuse part of the double layer, to remain fixed upon interaction. Only in the absence of a Stern layer 
may yd be replaced by y0, the surface potential, which may remain constant as far as it is determined 
by Nernst’s law. However, as we shall show later on, double layers that are purely diffuse exist only 
at very low surface potentials and low electrolyte concentration. In the more realistic situation of 
overlap between two Gouy-Stern double layers, regulation across the Stern layer never leads to 
constancy of yd.

Nevertheless, we shall start the description for the simple case of fixed yd because it contains a number 
of relevant principles and steps that recur in other cases. Physically speaking it means that for the 
moment we ignore Stern layers and dynamic issues.

Interaction in a symmetrical electrolyte
Consider now two identical parallel flat particles, with identical diffuse double layers, embedded in 
one symmetrical (z-z) electrolyte at fixed p and T. Upon approach, y(x) between the two surfaces is, 
as sketched in Figure 5-1, increased above the value it would have had for one single double layer. 
As the potentials at the surface (yd = y0 in this case) are assumed to remain fixed, the slopes (dy/dx) 
near the two surfaces decrease. Because of Gauss’ law we have for the left double layer,
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quantifying the reduction of the surface charge in terms of the slope, i.e. in terms of the electric field 
adjacent to the surface and
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for the right double layer.

For homo-interaction, the minimum potential ym is half way between the two plates. At this minimum, 
the field strength is zero, meaning that the total charges, including those on the surfaces, between x 
= 0 and x = xm, and between x = xm and x = h are zero. However, the potential at the minimum is not 
zero, meaning that an out force is needed to maintain it at the increased value.

The midway potential
To find out the potential distribution, we must integrate the Poisson-Boltzmann Equation 4-58 for 
the range between x = 0 and x = h. For easy reference, we write this equation once again,
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In the previous chapter, we demonstrated how it can be integrated. The result is,
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The integration constant C can be found from the boundary condition that at the midway between the 
two plates dy/dx = 0 and y = ym; this gives,

C = –cosh(zym)									         (5‑5)

Hence, we have,
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For 0 ≤ x ≤ xm, we need the minus sign because y is a decreasing function of x. For the right half, xm 
≤ x ≤ h, the plus sign is need.

To find the midway potential, ym, an integration of Equation 5-6 over one half of the x-range is 
needed. This gives /22/,
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The result can be written as,
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with the elliptic integral of the first kind given by,

( ) ∫ −
=

ϑ

χφ
χϑφ

0 22E
sin1

, dF 							       (5‑9)

Thus, an exact numerical solution is available for the midway potential. However, it is too complicated 
to be used in practice and approximate solutions should be sought for some limiting cases.

To that end, we may consider the case where the overlap of double layers is so weak that ym is 
determined by linear superposition of the two constituting potentials. In this LSA approximation, 
deformation of double layers upon overlap is ignored. Hence, it applies only to very weak overlap, 
κh/2 >> 1, irrespective the value of yd, which might be high. When this approximation holds, there 
is no difference between the electrostatic interaction at constant potential and at constant charge. It 
depends on h, and hence, on the type of measurement whether the LSA is satisfactory.

Recall from Equation 4-61 that for a single double layer the potential decay is given by,

)exp(
4

tanh
4

tanh
d

xzyzy κ−





=





 							       (5‑10)

If applied to the midway situation y → ym, x → h/2, and as a large κh corresponds with a low ym the 
hyperbolic tangent on the l.h.s. may be replaced by the first term of its series expansion. Thus, in the 
LSA, we have,
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This expression shows that ym increases linearly with yd if the latter potential is low, but becomes 
independent of yd when yd is very high.

On the other hand, if the overlap of double layers is very strong, the Poisson-Boltzmann Equation 5-3 
can appropriately be linearized with respect to the derivation of y from yd. In this Ohshima approxi-
mation /23/, the potential distribution near the plate surface can be written as,
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This expression can be used to evaluate ym only for the case of strong overlap, κh/2 << 1. On setting 
x = h/2 in Equation 5-12, we obtain the following relationship between ym and yd,
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For small κh, it reduces to,
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The diffuse charge
For the diffuse charge, combination of Equations 5-1 and 4-32 gives,
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The potential slope at the r.h.s. is obtained directly from Equation 5-6. Thus, we find,
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Consequently, with the help of Equation 4-59, it can be rewritten as,

( ) [ ])cosh()cosh(4sign md
0

dd zyzycRTy −−= εεσ 					     (5‑17)

For ym = 0, this equation reduces to Equation 4-67, giving the surface charge density of one isolated 
double layer, σd(h = ∞).

Therefore, in the LSA, we can simply substitute Equation 5-11 into the above equation to obtain σd. 
In the Ohshima approximation, however, it is better to work directly on Equation 5-15, by substitution 
of Equation 5-12. The result is,
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For small κh, it reduces to,

σd = –czF sinh (zy d)h								        (5‑19)

Thus, Equation 5-18 has the correct limiting form as κh → 0, but it does not reduce to Equation 4-67 
in the limit κh →∞.

The Gibbs energy of interaction
To compute the electrical contribution to the Gibbs energy of interaction, Ga,el, we may consider two 
relaxed double layers, originally far apart (h → ∞), embedded in a solution of constant composition, 
i.e. with p, T and all chemical potentials fixed, and adsorption equilibrium is assumed to prevail. When 
the distance between the particles is reduced from ∞ to h, the only changes that occur thermodynamically 
are those in the two surface excess Gibbs energies. Hence,

[ ])()(2 σ
a

σ
aela, ∞∆−∆= GhGG 							       (5‑20)

where the ∆’s may be dropped because both terms refer to the same reference state of no adsorption.

Figure 5-1. Schematic representation of the dimensionless potential between two identical parallel flat 
diffuse double layers. The dashed curves are the profiles for the two double layers far apart. The spatial 
variable x is counted from the l.h.s. plate.
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The Gibbs energy of one isolated diffuse double layer is already available, and generally it is given 
by Equation 4-9. If only one symmetrical electrolyte is involved, Equation 4-72 is the solution. For 
easy reference, we may rewrite the latter equation as,
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The Gibbs energy of the overlapped diffuse double layer can also be found by a charging process 
along the line used for that of the isolated one. The only difference is that the integration does not 
take place from 0 to yd, but from ym to yd. Thus, similar to Equation 4-9, we can write,
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As ym is known from Equation 5-8, the integral can be solved. However, this requires a laborious 
mathematical procedure /22/, for which we give no details here.

Substitution of Equations 5-21 and 5-22 gives immediately Ga,el. The result is,
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which can be converted into an integration over the potential,
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As with Equation 5-7, this expression can be converted to elliptic functions, for which tables are 
available. Also, an approximate solution of Ga,el can be found for cases where the LSA is satisfactory. 
Then, substitution of Equation 5-11 into the above equation gives /22/,
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As the derivation of this equation is easier via the disjoining pressure than via Equation 5-24, we 
postpone this until the following subsection.

Equation 5-25 has, in fact, a fair validity range, as can be judged from comparison with the numerical 
solutions. It quantifies the independence of yd at large yd and the proportionality with (yd)2 if yd is low. 
Moreover, it predicts an overall linearity of lnGa,el with κh. For low κh, however, Equation 5-25 
overestimates Ga,el at low yd, but under-estimates it at high yd.

On the other hand, Equation 5-25 shows the dual effect of the electrolyte concentration. For h → 0, 
Ga,el increases proportionally to c1/2, i.e. proportionally to κ. However, higher κ implies stronger 
screening and hence Ga,el decreases rapidly with h.

The influence of the valency z is complicated: increase of z increases Ga,el at very short distance, but 
the decay is steeper. Perhaps the dominant effect is that at given potential y0 multivalent counterions 
tend to lower yd more than do monovalent ions. This is a feature that acts beyond the purely diffuse 
double layer.

Also, an approximate solution of Ga,el is available for cases of strong overlap, where the plate separation 
is small and hence the Ohshima approximation holds, and it is given by /23/,
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The disjoining pressure
There are two ways to obtain the disjoining pressure Πel. The first is by differentiation of the Gibbs 
energy of interaction Ga,el with respect to the distance, as in Equation 1-1. In this way, Equation 5-24 
or 5-25 and 5-26 can be used to obtain the exact solution or good approximations, respectively. The 
second approach is by identifying the force that has to be required to keep the plates at a certain distance. 
The basic idea is that overlap leads to an increase of the counterion concentration between the two 
plates, and hence to an osmotic pressure. This pressure depends on h, and at given h it also depends on 
the position x between the plates. In addition to this osmotic pressure there is also a pressure resulting 
from the electrostatic field known as the Maxwell stress, which also depends on x at given h. The sum 
of these two pressures must be independent of x, otherwise the system would be mechanically unstable, 
i.e., this sum is only a function of h.

Consider again the two identical parallel flat plates, a distance h apart. What is behind the plates does 
not matter. The intervening liquid must be in contact with an infinitely large reservoir of fixed composi-
tion, which can adsorb any electrolyte expelled from between the plates if h is reduced, and which 
also acts as a buffer for expelled electrolyte to keep the chemical potentials constant. In this scheme, 
no volume work and no work to change the chemical potentials are involved, and hence, Gibbs and 
Helmholtz energies are identical.

Now we bring the plates from infinite distance to a state where the double layers overlap. To keep the 
two plates at distance h in mechanical equilibrium upon an infinitesimal displacement, the change in 
the hydrostatic pressure dp plus the change in the electrical pressure, which can be written as ρdψ, must 
be zero. In formula, we have,

dp + ρdψ = 0									         (5‑27)

Thus, substituting the Poisson’s Equation 4-15 for ρ, we find,

0
d
d

d
d

2d
d 2

0 =




−
xx

p ψεε 								        (5‑28)

It gives immediately, upon integration,
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This equation states clearly that the sum of the hydrostatic pressure and the Maxwell stress is independent 
of position x. Subtraction of the external pressure p∞ (where the Maxwell stress is of course zero) 
gives Πel, i.e.,
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The first term on the r.h.s. is the osmotic pressure pos. which results from an increase of the counterion 
concentration. According to Boltzmann’s law, as in Equation 4-12, for the symmetrical electrolyte 
under consideration, the excess concentration of counterions is c(ezy-1) and that of co-ions c(e–zy-1). 
The total excess concentration at any position x between the two plates is then given by 2c[cosh(zy)-1], 
and hence, the ensuing osmotic pressure can simply be written as,

pos = p – p∞ = 2cRT[cosh(zy) –1]							       (5‑31)

Substitution of this expression into Equation 5-30 yields,
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or, by Equation 4-17,
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Not surprisingly, this equation can also be obtained by differentiation of Equation 5-23 with respect 
to the distance h, as in Equation 1-1.

In addition, it should be noted that Equation 5-33 applies actually to any point between the plates. 
Thus, it is only necessary to know the potential and the potential gradient at some point between the 
plates in order to calculate the disjoining pressure. If we choose the plate surface to work with, Πel 
can be written as, with the help of Equation 5-15,
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However, due to the symmetry of the system under consideration, it is wise to choose the mid-point 
between the plates, where the Maxwell stress becomes zero and therefore Πel becomes equal to the 
osmotic pressure pos. Thus, at the mid-point, Equation 5-33 gives,
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This equation can also be obtained directly from Equation 5-27, by which we can write,
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Because for a symmetrical electrolyte, we know from Equations 4-12 and 4-14 that,

ρ = –2czFsinh(zy)								        (5‑37)

integration of Equation 5-36 would give Equation 5-35 immediately.

Equation 5-35 is deceptively simple, but requires a model to find the midway potential, ym. In addition, 
it shows that the h-dependence of Πel stems from the h-dependence of ym.

Also, Equation 5-35 can be simplified very much for the case of low midway potentials (when the 
LSA is satisfactory). In that case, the hyperbolic cosine in Equation 5-35 can be replaced by the first 
two terms of its series expansion. This leads, in the LSA, to,

Пel = cRT(zym)2									         (5‑38)

Thus, substitution of Equation 5-11 for ym gives,
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Upon integration with respect to h, this leads to Equation 5-25 for the Gibbs energy of interaction. So, 
at least for this approximate case the equivalence is proved between the two methods for describing the 
repulsion. For the validity of Equation 5-39, similar things can be said, as given below Equation 5-25.

For the case where the overlap of double layers is very strong, κh/2 << 1, with large zym, simplification 
of Equation 5-35 cannot be made in the same way as in the LSA. Then, we should apply the Ohshima 
approximation to Equation 5-35 directly, by substitution of Equation 5-13 or 5-14. If the latter equation 
was used for ym, we have,
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Alternatively, combination Equations 5-34 and 5-18 can be used to evaluate Πel.

Interaction in the Debye-Hückel approximation
Generally, no analytical solutions can be given for Πel and Ga,el if the two parallel flat plates are 
embedded in an electrolyte mixture. However, in cases of low y everywhere (i.e. when the Debye-
Hückel approximation holds with zyd ≤ 3.46), it is very easy to arrive at analytical expressions.
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The midway potential
The starting equation is, of course, the linearized PB equation. For easy reference, we write 
Equation 4-36 once again here,
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The general solution of this equation is,

y = Acosh(κx) + Bsinh(κx)							       (5‑42)

which can be verified by substitution.

The integration constants A and B can be found from the boundary conditions, as shown in 
Figure 5-1. From x = 0 and y = yd, we find,

A = yd										          (5‑43)

and from x = h and y = yd, we find,
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Hence, the potential distribution between the two plates is given by,
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For the midway potential, we then have,
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which can be reworked, by using the relationships between hyperbolic functions, to give,
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The diffuse charge
Multiplication of the two sides of Equation 5-41 by 2(dy/dx) leads to,
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where the integration constant C can be found from dy/dx = 0 at y = ym. Hence,
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the minus sign applies to the left of the minimum, the plus sign to the right.

With this slope at hand, the diffuse charge can be determined from Equation 5-15. The result is,
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Substitution of Equation 5-47 gives,
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or
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Thus, with the help of Equation 4-42 for the diffuse charge of one isolated double layer, we have,
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This suggests that the decrease of σd sets in only when κh/2 < 2, to become substantial only below 
κh/2 ≈ 1, and all three parameters yd, c and z influence the decrease.

The disjoining pressure
For an electrolyte mixture, we know from Equations 4-15 and 5-41 that in the Debye-Hückel 
approximation, the space charge density can simply be written as,

ρ = –ε0εκ2ψ									         (5‑54)

Thus, working on Equation 5-36 gives,
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Immediately, substitution of Equation 5-47 leads to,
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Otherwise, by combination with Equation 5-51, we can express Πel in terms of σd,
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At this stage, there can be no difference between interaction at constant potential and at constant 
charge, which only tells us what mechanism the final situation was reached. It should however be 
added that Equation 5-56 is preferable for the former case, whereas Equation 5-57 for the latter case. 
On the other hand, for very special cases where only one symmetrical electrolyte is considered in the 
Debye-Hückel approximation, Equation 5-56 can be rewritten as, by substitution of Equation 4-59 
for κ,
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It can also be obtained directly from Equation 5-38 by substitution of Equation 5-47.

If, further, applying Equation 5-10 to the plate surface y → yd, x → 0 (because y is low everywhere), 
we get,
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which can be used to extend the potential range of Equation 5-58 without affecting the trends in the 
decay of Πel.

Thus, replacing zyd in Equation 5-58 by the r.h.s. of the above expression yields,
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This equation is generally valid provided the interaction is not very strong.
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The Gibbs energy of interaction
Upon integration of Equation 5-56 with respect to h, we obtain the Gibbs energy of interaction, 
which can be written as,
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Thus, for very special cases where only one symmetrical electrolyte is considered in the Debye-
Hückel approximation, it becomes, by substitution of Equation 4-59 for κ or by integration of 
Equation 5-58 directly,
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which reads explicitly,
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This equation exhibits the usual exponential decay at large κh, but shows that for low κh the decay is 
less steep.

Likewise, the same procedure from Equation 5-58 to Equation 5-60 can be applied to improve the 
validity range of Equation 5-62. The result is,
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5.1.2	 Interaction at constant charge
We now focus on the case that upon interaction the diffuse charge σd remains fixed, as a result of 
which ψd has to increase. Physically, situations of constant charge will be met for parallel clay 
particles provided the surface charge and the electrolyte concentration are so low that Stern layer 
corrections are negligible.

Interaction in a symmetrical electrolyte
Consider again two parallel flat plates, a distance h apart, embedded in a symmetrical electrolyte 
at fixed p and T. In Figure 5-2, the distribution of charge from each plate is shown as if the other 
plate were absent. Now, an essential feature of the interaction of double layers at constant charge 
is that the total diffuse charge remains constant. As the plates approach each other this charge is 
compressed into a decreasing volume and so the charge density in the region between the plates 
increases, giving a repulsive force.

The midway potential
To find ym, we should also start from the Poisson-Boltzmann Equation 5-3. However, for the present 
case, it is convenient to introduce a new dimensionless variable,
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Then, Equation 5-3 becomes,
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and the result of integration is given in Equation 5-6, which can now be rewritten as,

η2 +cosh(zym) = 2cosh(zy)							       (5‑67)
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Immediately, we have,

[η2 + 2cosh(zym)]2 = 4 [1 + sinh2(zy)]						      (5‑68)

Hence, by using the relationships between hyperbolic functions, we obtain,
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Following this, substitution of Equation 5-66 gives,
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Thus, we have,
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and integration from x = 0 to x = h/2 can be performed,
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where η0 is the value of η at x = 0, a scaled surface charge density, and it can be obtained from 
Equation 5-1 as,
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The result is,
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This can be expressed in terms of elliptic integral as /24/,
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where the elliptic integral of the first kind, FE, has been defined in Equation 5-9.

Thus, an exact numerical solution is also available for the midway potential for the case of interaction 
at constant charge. However, it is too complicated to be used in practice and, as with the case of 
interaction at constant potential, approximate solutions should be sought for some limiting cases.

In this regard, as we discussed previously, there is no difference between the electrostatic interaction at 
constant potential and at constant charge in the LSA approximation. This implies that Equation 5-11 
is also valid for the present case. However, it expresses ym in terms of yd, which does not remain constant 
but increases upon approach of the two plates with constant charge. As a result, it becomes inconvenient 
to use Equation 5-11, because then a relationship between yd and σ0 (or σd) has to be provided, which 
is not directly available for the case of weak overlap with large κh.

Hence, it is preferable in the LSA to express ym in terms of σ0, instead of yd, for the present case. To that 
end, we notice that Equation 5-71 also holds for a single double layer, if we replace ym by zero. This gives,

4
d

2d 2 +−= ηη
κ

η
x

								        (5‑76)

Thus, integration of this equation from x = 0 to x can be performed,
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and the result is,
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Since at large x the potential has fallen to a small value with |y| << 1, it follows from Equation 4-60 that,

η ≈ –zy										          (5‑79)

We then have, from Equation 5-78, for the region |y| << 1,
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This can be considered the surface charge equivalent of Equation 4-64.

With Equation 5-80 at hand, we can easily apply the LSA approximation to the case where the overlap 
of double layers is very weak. Hence, in the LSA, the constant charge equivalent of Equation 5-11 is 
given by,
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Likewise, for the present case, the potential distribution near the plate surface can also be obtained 
by applying the Ohshima approximation /25/. That is, we may also linearize the Poisson-Boltzmann 
Equation 5-3 with respect to the derivation of y from yd. In this case, however, the boundary condition 
at the plate surface is not y = yd any more, as for the case of interaction at constant potential, but given 
by Equation 5-73 for a fixed σ0. The result is, then, significantly different from Equation 5-12 and it 
can be written as /25/,
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Strictly speaking, this expression applies only for the region very near the surface. Thus, it can be 
used to evaluate ym appropriately only for the case where the overlap of double layers is very strong 
such that κh/2 << 1.

On setting x = h/2 in Equation 5-82, we obtain the following relationship between ym and yd,
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For small κh, it reduces to,
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It should, however, be noted that, for the present case, yd adjusts itself upon interaction whereas σd is 
fixed. Thus, only when the relationship between yd and σd is available can we use these equations in 
the Ohshima approximation.

The diffuse charge
Because there is no difference in the PB equation and the boundary condition half way the plates 
between interaction at constant potential and at constant charge, Equation 5-6 holds for both cases. 
Consequently, for the diffuse charge, Equation 5-16 or 5-17 is also valid for the present case. 
However, now, σd is fixed whereas yd and ym both depend on the distance h.
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Thus, in the LSA, we can substitute Equation 5-11 into Equation 5-16 or 5-17 to determine implicitly 
how yd or ym changes with h. Otherwise, we can use the Ohshima approximation to obtain explicitly 
the relationship between yd and σd (or σ0).

On setting x = 0 in Equation 5-82, we obtain immediately /25/,
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This is exactly the same thing as Equation 5-18, and hence it holds for both cases. It should, however, 
be added that this equation does not give the correct limiting form as κh → ∞, i.e. Equation 4-67, 
which can now be written as,
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where the subscript ∞ has been added to yd as a reminder that it applies only for an isolated double 
layer.

Nevertheless, as a good approximation for interaction at constant charge, combination of 
Equations 5-85 and 5-86 gives,
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For small κh, it reduces to,
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while for small zyd, it can be approximated by,
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Because for small κh, the above equation tends to Equation 5-88, we deem that it gives a good 
approximation to Equation 5-87 even for large zyd. Thus, in the case of strong overlap, we can use 
Equation 5-89 to estimate zyd fairly well by /25/,
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in which the diffuse potential of the isolated diffuse double layer can be determined from Equation 4-68 
as a function of σd.

Figure 5-2. Schematic representation of the variation of diffuse layer charge density with distance from 
charged plates. When the plates interact at constant charge an amount of charge indicated by the shaded 
areas has to be accommodated between the plates. The spatial variable x is counted from the l.h.s. plate.
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With this equation at hand, we can apply Equation 5-83 or 5-84 to give ym at low κh in the Ohshima 
approximation.

The disjoining pressure
Following the concept of Πel, we know that the disjoining pressure is, in fact, insensitive to the mode 
of charge regulation; it just represents a pressure at a given distance h and state of the surface. Thus, 
Equations 5-33, 5-34 and 5-35 all remain valid for Πel for the case of interaction at constant charge.

Likewise, in the LSA, Equation 5-39 also works for the present case, but in practice it is seldom 
used because now no simple and direct relationship between yd and σ0 (or σd) is available for weak 
overlap. Hence, we should look for another route, to express Πel directly in terms of σ0 (or σd). To 
this end, we may substitute Equation 5-81 into 5-38 to give /24/,
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This equation may be considered the constant charge equivalent of Equation 5-39.

For the case where the overlap of double layers is very strong, however, Equation 5-40 is no longer 
valid because now the Ohshima approximation gives a different relationship between ym and yd, as 
in Equation 5-83. For the present case, we had better work on Equation 5-34 by substitution of 
Equation 5-90; this gives,
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Alternatively, in a more complicated way, combination of Equations 5-35, 5-83 and 5-90 can be used 
to evaluate Πel at low κh.

The Gibbs energy of interaction
For interaction of diffuse double layers at constant potential, the surface charge adjusts itself upon 
approach of the particles, maintaining adsorption/desorption equilibrium at the surface. For interaction at 
constant charge, however, no adsorption or desorption takes place upon overlap, although the adsorption 
contribution, given by Equation 4-8, to the Gibbs energy of the diffuse double layer is of course 
retained. Thus, upon overlap the Gibbs energy of interaction, as in Equation 5-20, reduces to,
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a (el.)(h) – ΔG σ
a (el.)(∞)]						      (5‑93)

where only the electrical contribution to the Gibbs energy of the double layer enters, and the 
superscript (σ) has been added to G as a reminder that it applies only at fixed charge.

Making ΔG σ
a (el.) explicit, by Equation 4-7, we obtain for purely diffuse double layers,
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where in the second integral the subscript ∞ has been added to ψ as a reminder that it applies only 
for an isolated double layer.

If expressed in terms of y, we can write,
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This equation tells us that we must charge the diffuse double layer twice, first when the two surfaces 
are a distance h apart, then when they are isolated (h → ∞). In both cases, the charging takes place 
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from 0 to σd, i.e. to the diffuse charge for isolated particles. The two integrals differ because the 
relationship between yd and σd is different for different overlap distances.

Working on this equation, integration by parts leads to,
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where we have split the integral for h = ∞ into two parts.

The sum of the first and second integral in the above equation is nothing else than the Gibbs energy 
of interaction for the constant potential case. Thus, we have,
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In this equation, we may use Equation 5-86 for σd, and then the result is
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This equation always holds for interaction in a symmetrical electrolyte. Since the term in square brackets 
is always positive, we simply have,
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Therefore, interaction at constant charge is more repulsive than that at constant potential. The physical 
reason for this is that in the former situation the countercharge refuses to seep away when the force, 
exerted by the second double layer, is imposed.

The difference between the two Gibbs energies vanishes at such weak overlap that the LSA is satisfactory. 
Then, Equation 5-25 also works. However, the same reason as for Equation 5-39 makes it seldom used 
in practice. Hence, for the case of interaction at constant charge, we also prefer to express Ga,el directly 
in terms of σ0 (or σd). This could be done straightforwardly by integration of Equation 5-91 with respect 
to h, and then we have /24/,
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This equation may be considered the constant charge equivalent of Equation 5-25.

For the case of strong overlap, however, similar equations as the above one cannot easily be obtained. 
In that case, the Ohshima approximation holds and thus we may substitute Equation 5-26, for the 
Gibbs energy of interaction at constant potential, into Equation 5-98 directly. This leads to /25/, for 
interaction at constant charge but at low κh,
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This equation should be used in combination with Equations 5-90 and 4-68.

Interaction in the Debye-Hückel approximation
Based on the linear PB Equation 5-41, we have formulated analytical solutions of yd, ym, σd, Πel and 
Ga,el for interaction of diffuse double layers at constant potential when y everywhere between the 
particles is fairly small in an electrolyte mixture. Assuming this Debye-Hückel approximation still 
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holds for the constant charge case, Equations 5-51 and 5-52 would also be valid. However, now their 
variations are preferable because of a fixed σd. Thus, from Equation 5-52, we can write the surface 
potential as,
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or simply, by Equation 4-43,
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Similarly, from Equation 5-51, we can write,
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or simply,
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Likewise, we now prefer to express Πel directly in terms of σd, and hence Equation 5-57 is the good 
choice, which for easy reference is written here once again,
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Upon integration with respect to h, we obtain,
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This is of course very different from Equation 5-61, where yd keeps constant. In fact, only now the 
difference between interaction at constant potential and at constant charge in the Debye-Hückel 
approximation comes into play.

The relationship between the two Gibbs energies can easily be found by combination of 
Equations 5-61 and 5-107, and it is given by,
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Obviously, the above equations are very useful in highlighting the basic properties of interaction of 
diffuse double layers at constant charge. These equations are, however, poor approximations at low 
κh because then the required increase of surface potentials is incompatible with the Debye-Hückel 
approximation. In fact, the condition of fairly small y everywhere is satisfied only for particles of 
low and constant surface potential. For the case of constant charge interaction, the surface potentials of 
the particles can reach very high values at low κh, even though the potentials of the isolated particles 
may be quite small. Consequently, the linear PB equation is not appropriate in the constant charge 
case, and all the above equations should be treated with considerable reserve.

Hence, to overcome this problem, we should avoid using the linear PB equation from the very beginning 
for the present case. Instead, we may follow the “compression” approach to exploit the fact that 
conservation of the surface (diffuse) charge implies conservation of the countercharge /26/.
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The midway potential
For an isolated charged plate, embedded in a symmetrical electrolyte, it is known from Equations 4-40, 
4-42 and 5-54 that, at low surface potentials, the charge density drops exponentially with distance from 
the plate, and it can be written as,

ρ∞ (x) = –2czF(zy d
∞) exp(–κx)							       (5‑109)

where the subscript ∞ serves also as a reminder that it is for an isolated double layer.

For two parallel flat plates, a distance h apart, the total diffuse charge (originating from the two isolated 
plates) should remain constant in the case of interaction at constant charge. Thus, the part of charge 
which for isolated plates is located at distances beyond h (shaded areas in Figure 5-2) has to be accom-
modated between the plates. For unit area of the plates, this “accommodated” charge is given by,
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Assuming that this “accommodated” charge is distributed uniformly between the plates, it will give 
rise to an “extra” charge density,

ρ'(h) = –4czF(zy d
∞) exp(–κh)/(κh)							       (5‑111)

Based on this concept, we may assume that the charge density at a point between the two interacting 
plates is given by the sum of the charge densities which would be produced at that point by the isolated 
plates plus the “extra” charge density given above. Hence, we have,

ρ = ρ∞(x) + ρ∞(h–x) + ρ'(h)							       (5‑112)

Immediately, with the help of Equations 5-109 and 5-111, we can write,

ρ = –2czF(zy d
∞)[exp(–κx) + exp(κx) exp(–κh) + 2exp(–κh)/(κh)]			   (5‑113)

However, for interaction in a symmetrical electrolyte, it has been known that the charge density should 
also follow Equation 5-37, which we write here once again,

ρ = –2czF sinh(zy)								        (5‑114)

Thus, combination of Equations 5-113 and 5-114 yields,

sinh(zy) = (zy d
∞)[exp(–κx) + exp(κx) exp(–κh) + 2exp(–κh)/(κh)]			   (5‑115)

Roughly speaking, this equation applies to any point between the plates. However, due to the assumptions 
we have made, it is expected that this equation estimates y fairly well only for those points at or around 
the mid-point between the plates.

For the midway potential, we then have,
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The term in square brackets is very well approximated by csch(κh/2)/2 (always better than 2%). 
Thus, to a good approximation,
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This gives explicitly,
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The diffuse charge
By Equation 4-42, the diffuse charge σd can be determined from the isolated diffuse potential, if the 
latter is known, i.e.
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Otherwise, if σd is known, we should work the other way around.

The disjoining pressure
Due to the symmetry of the system under consideration, it is wise to choose the mid- point between 
the two plates to calculate Πel. Thus, combination of Equations 5-35 and 5-117 gives, by using the 
relationships between hyperbolic functions /26/,
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The Gibbs energy of interaction
Upon integration of Equation 5-120 with respect to h, we obtain,
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Comparison with the exact numerical solutions suggests that the validity of Equations 5-120 and 5-121 
is excellent for zy d

∞ ≤ 2 down to κh ~ 0.2. However, it should be stressed that this “compression” 
approach is applicable only for interaction of diffuse double layers in a symmetrical electrolyte, 
where a very simple relationship between ρ and y is available, as in Equation 5-114. For electrolyte 
mixtures, this relationship becomes so complicated that the potential distribution between the two 
plates is hard to formulate and therefore we cannot get analytical solutions of Πel and Ga,el.

5.1.3	 Interaction between Gouy-Stern double layers
Not much methodical thinking is needed to realize that interactions at constant potential or at constant 
charge are idealizations, rarely met in practice.

In fact, there are almost always Stern layers and charge redistributions, i.e. regulation almost always 
takes place over the diffuse part, the Stern layer and the surface upon overlap of the Gouy-Stern double 
layers. Thus, we may distinguish spatial and surface regulation. The former implies ion fluxes from 
one part of the double layer to the other; the latter only considers charge adjustment in one layer (the 
surface and/or the inner Helmholtz plane). The latter cannot proceed without the former.

In many situations, however, it is more likely that during a collision the charge on the surface remains 
essentially intact, the diffuse charge moving to the Stern layer. Hence, acting as an effective surface 
charge, σ0 + σs is reduced. The extent to which this reduction takes place depends on the capacitances 
of the Stern and the diffuse layer. In this connection, the term ‘capacitance’ should be taken in its 
general meaning as indicating its purely electrical capacitance, determined by dielectric permittivities 
and thicknesses, and its chemical capacity, determined by ion uptake by specific binding. A Stern 
layer, together with the layer containing the surface charge, has a high regulation capacity when it 
can adsorb much charge without greatly affecting the potentials in it. The converse is true for a low 
regulating capacity. The ion uptake capacity is therefore determined by inner and outer Helmholtz 
layer capacitances, and specifically adsorbed charge σs. The chemical part of the regulation capacity 
is determined not only by the specific adsorption Gibbs energy of the ions, but also by the degree of 
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occupancy θ. Stern layers for which σs ≈ σs(sat) have a lower capacity than those for which the inner 
layer is almost empty. The higher the Stern layer regulation capacity is, the better the constant yd 
limit is attained.

Thus, upon overlap of such layers charge and potential are both regulated, i.e. they both adjust as a 
function of distance h. we note that such regulation also includes adjustment of the co-ion distribution, 
i.e. regulation of negative adsorption.

The spatial charge regulation model
Let us now consider the following realistic situation: there is a double layer of which the surface 
charge σ0 is fixed during particle encounter, either because it is strongly bound, or because it cannot 
desorb and escape to the bulk during the collision. Double layer overlap leads to a reduction of σd, 
which can be achieved by transporting counterions from the diffuse to the Stern layer, and hence a 
reduction of σ0 + σs.

To formulate an interaction model for this case, we first assemble all the equations that we have at 
our disposal. For this sake, it is logical to start with the disjoining pressure, as given by Equation 5-35, 
because it is generally valid for symmetrical electrolytes. To make the h-dependence explicit, we had 
better rewrite this expression as,

Пel
 (h) = 2cRT[cosh zym (h) –1]							       (5‑123)

Once Πel(h) is known, we can integrate to find the Gibbs energy of interaction,
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where h′ is the integration variable. We used this equation before.

The relation ym(h) is rigorously available in terms of elliptical integrals, as in Equation 5-8 or 5-75. 
However, as we want to derive an analytical expression, we shall use Equation 5-47 instead, i.e.
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which is fairly valid when the Debye-Hückel approximation holds.

An alternative is Equation 5-11, in which we also make the h-dependence explicit to give,
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This expression is more restricted, because it requires the LSA approximation. In either way, we 
relate ym(h) to yd(h).

Next, we use Equation 5-16 to determine the diffuse charge, i.e.

( ) [ ] [ ] )(cosh)(cosh 22sign)( ddd hzyhzyFczyh m−−=
κ

σ 				    (5‑127)

where the variation of the diffuse charge with distance is now constrained by the charge balance,

σ 0 + σ s (h) + σ d (h) = 0								        (5‑128)

where σ0 does not depend on h by choices of conditions.

For the potential at the inner Helmholtz plane, Equation 4-99 gives, if the capacitances of the Gouy-Stern 
double layers are invariant with σ0,
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Likewise, for the diffuse potential, Equation 4-100 gives,
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Finally, we have the adsorption isotherm for ions at the inner Helmholtz plane, for which we have 
Equation 4-125, i.e.
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account for specific adsorption, if any. In the absence of specific adsorption Kj = 1.

With minor changes, all of this can be modified to attain the case of constant surface potential y0. In 
that case, σ0 becomes σ0(h) in Equations 5-128, 5-129 and 5-130, whereas in Equation 5-129 y0(h) 
becomes the constant y0.

For whatever cases, however, the set of equations have to be solved simultaneously, by which we can 
evaluate the potential and the charge distribution, Ga,el and Πel, all as a function of h.

For the case of interaction at constant surface charge, we have found:

1.	 Upon overlap, the diffuse charge reduces, and even strives toward zero, implying that then the 
surface charge σ0 is completely compensated by σs. The rate of this reduction is governed by both 
inner and outer Helmholtz layer capacitances.

2.	 Upon decreasing h, first ym approaches yd, corresponding to the disappearance of the countercharge 
in the diffuse layer. Thereafter, yd also approaches yi, whose increase eventually parallels that of y0.

3.	 The Gibbs energy of interaction, Ga,el, increases with increasing capacitance of the outer Helmholtz 
layer, due to the increase of the charge in the diffuse layer (at fixed σ0, the capacitance of the inner 
Helmholtz layer is invariant).

4.	 As a function of Kj, Ga,el passes though a minimum. At low Kj the decrease of Ga,el at any h results 
from the increasing specific adsorption, which leads to a lower fraction of σ0 that is compensated 
by σd. When Kj continues to grow, specific adsorption can become superequivalent, σd changes 
sign and when σs has become very strong the limiting case of interaction at constant (σ0 + σd) is 
approached.

5.	 The disjoining pressure has qualitatively the same features as that of the Gibbs energy of interaction.

6.	 Situations with constant σd or constant yd apply only for large κh;

Similarly, for the case of interaction at constant surface potential, we may conclude:

1.	 Upon interaction, the diffuse countercharge approaches zero, some of this charge moves to the 
inner Helmholtz plane, the other part helps to reduce σ0. However, the latter charge does not 
attain the zero value (except for h → 0) because the specifically bound charges remain present 
and fully compensate σ0 at very short distance.

2.	 The Gibbs energy of interaction Ga,el increases with increasing capacitance of the inner Helmholtz 
layer, because high values of this capacitance keeps ys high (at fixed y0, the capacitance of the 
outer Helmholtz layer is invariant).

3.	 The disjoining pressure has qualitatively the same features as that of the Gibbs energy of interaction.

4.	 Situations with constant σd or constant yd apply only for large κh;

As a trend, interaction at fixed σ0 remains stronger than that at fixed y0, depending on parameters that 
have been used in the simulations.

The surface charge regulation model
Charge regulation upon overlap of double layers is the rule. The exception is that all charges remain 
in position with respect to the surface to which they belong. Therefore, most interaction models involve 
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tacitly or explicitly some displacement of charge, i.e. of charge regulation. Even interaction at constant 
surface charge σ0 involves spatial ionic transports, notably from the diffuse to the Stern layer. However, it 
may be noted that in the literature the term “charge regulation” is mostly used in a much more restricted 
sense, viz. in that σ0 becomes σ0(h) because the charge forming-equilibria shift upon interaction. With this 
in mind, we may assume that the regulation of the surface charge is governed by a site binding mecha-
nism (which is usually made to the case ignoring Stern layers). By this, we actually relax the condition 
that σ0 or y0 is fixed, but let these two parameters adjust themselves as a function of h, in addition to the 
transport across the Gouy, Stern and surface layer.

Consider now an amphoteric surface containing hydroxyl groups (ROH) that can either become 
negatively charged by donating a proton (leading to RO– groups) or positively charged by adsorbing 
one (to form ROH2

+). The two pertaining dissociation equilibria are characterized by the acid and 
base dissociation constants Ka and Kb, respectively. Hence, we have,
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Here, the square brackets indicate surface concentration in mole m–2, and the superscript 0 refers to 
the surface. The ion product of water Kw is dimensionless, and so are the constants Ka and Kb.

When the dimensionless potential in the surface is y0, the surface concentration can be related to its 
bulk value by the Boltzmann Equation, i.e.

x 0
H+ = xH+ exp(–y 0)								        (5‑134)

which, in turn, can be related to the pH,

xH+ = 1000Vw exp(–2.303pH)							       (5‑135)

where the molar volume Vw of the water enters to correct for the dimensionless problem incurred by 
the definition of pH.

Assuming that both positive and negative charges reside in the same plane, identified as the surface, 
and the number of binding sites remains infinite, the surface charge can be written as,

σ 0 = F([ROH +
2]–[RO–])								        (5‑136)

Thus, from Equations 5-132, 5-133 and 5-134, we find,
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At the point of zero charge (p.z.c.), we then have
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and correspondingly the pH is, with the help of Equation 5-135,
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with

ΔpK = pKa –pKb									        (5‑140)

This is expected: the larger ∆pK, the lower the proton concentration must be in the solution to render 
the surface electroneutral. For ∆pK = 0, pHz.p.c. = 7.
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Now, it is convenient to introduce the concept of the (dimensionless) Nernst potential, yN, by which we 
may relate the surface concentration at the p.z.c. to its bulk value in a way similar to Equation 5-134, 
i.e. we can write,

)exp( N
H

p.z.c.
H yxx −= ++ 								        (5‑141)

Thus, we find,

y N = –2.303(pH–pHp.z.c.)								        (5‑142)

and more, combination of Equations 5-138 and 5-141 gives,
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Substituting this expression into Equation 5-137 leads to,

σ 0 = F[ROH]δ sinh(yN–y0)							       (5‑144)

with the dissociation coefficient given by
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It is seen that δ acts as a capacity factor: the larger its value, the higher the surface charge is at given 
potential, or, the less sensitive the potentials are to changes in the charge.

Had we not allowed the number of binding sites to be infinite, Equation 5-144 would have become 
more complicated. In that case, we have /21/,
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Obviously, σ0 depends on h through y0 and on pH via yN; sometimes the Nernst potential yN and the 
actual potential y0 may be thought to have a different position.

This model can, of course, be extended to include more types of surface groups without changing 
the essential features of surface charge regulation. It can also be applied to the case of interaction 
between dissimilar surfaces, ignoring or accounting for Stern layers.

More importantly, incorporation of this kind of surface charge regulation models into the spatial charge 
regulation models can be done straightforwardly, by which we may study what happens in the case 
where σ0 or y0 are not fixed. In practice, it has been found that the Gibbs energy of interaction Ga,el 
would then become pH-dependent. At the p.z.c. it is zero, because there is no charge on the surface; 
the more distant pH is from pHp.z.c., the larger Ga,el.

5.2	 Hetero-interaction
Consider two interacting charged parallel plates, on which the two electric double layers are different. 
We are interested in the changes in the structures of these double layers, the Gibbs energy of interaction 
and the disjoining pressure, all as a function of the distance h between the two outer Helmholtz planes, 
i.e. the planes beyond which the countercharge is diffusely distributed. By “different” we mean that 
the (dimensionless) potentials y0, ys and yd, and the charge densities σ0, σs and σd may be different with 
respect to signs and/ or magnitudes.

5.2.1	 Qualitative analysis
Qualitatively, new features may take place as compared to homo-interactions. When two surfaces 
with different potentials but of equal sign approach each other, the long distance interaction is always 
repulsive, but at short distance it may become attractive because of induction: the surface with the 
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higher potential may impose a potential with opposite sign on the other. Whether or not in practice such 
a reversal takes place depends, of course, on the regulation capacities of the two Stern layers.

With interactions at fixed charge, repulsion would however always result, even though the surfaces 
may have charges of opposite sign.

When two unequal double layers overlap a variety of phenomena can occur, determined by the two 
surface potentials y1 and y2, and/or surface charges σ1 and σ2 and the ways in which the two charge 
distributions regulate. As in homo-interactions, the overlap takes primarily place between the two diffuse 
double layer parts, with the boundary conditions y1

d(s), y2
d(s), σ1

d(s) and σ2
d(s) depending on the regula-

tion capacities of the two surfaces and the two Stern layers. When these capacities are large, much charge 
can be retained in the non-diffuse parts without significant change of yd; in the limit of infinite regulation 
capacity, the case of “constant diffuse potential” is attained. In the opposite limit the case of “constant 
diffuse charge” is approached. Hence, systems can be imagined in which one of the two double layers 
behaves as “quasi-constant potential”, the other as “quasi-constant charge”.

As compared with homo-interactions the other new element is the asymmetry of the potential profile 
between the two surfaces. The minimum potential is no longer located at the half-distance but shifted 
towards the surface with the lower yd. In some situations the minimum even disappears completely 
as a result of induction, and then attraction prevails.

In passing it is noted that something similar can also happen between two double layers that are 
identical with respect to their charges and potentials at large distance, but which have surfaces of 
different regulation capacities.

5.2.2	 Quantitative analysis
Anticipating quantitative analysis, we may state that for interaction between dissimilar double layers 
the potentials or charges of the lower-charged surface are more critical than those of the higher-charged 
one. This is a consequence of the tendency of diffuse double layers to accommodate most of their charges 
in the part where the potentials are high, i.e. close to the outer Helmholtz planes.

In principle, as for homo-interaction, there are two ways at our disposal to quantify the hetero-interaction:

1.	 Solve the Poisson-Boltzmann Equation; find the Gibbs energy by an appropriate charging procedure; 
subtract the Gibbs energy for the two double layers far apart, finding the Gibbs energy of interaction; 
upon differentiation of Ga,el with respect to h gives the disjoining pressure.

2.	 Start with the disjoining pressure; use the Poisson-Boltzmann Equation to find the minimum 
potential; integration provides then the Gibbs energy of interaction.

If we follow the first route, Equation 5-4 would also remain valid for the present case for symmetrical 
electrolytes, which for easy reference we write here once again,
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However, establishing the integration constant C is now slightly more complicated than for homo-
interactions, and in fact several options are available.

The integration constant
For cases with a minimum potential ym, we would still have,

C = –cosh(zym)									         (5‑148)

The difference, as compared with homo-interactions, is that the position xm does not coincide with 
h/2 any more.

For cases without a minimum potential, the derivative of the potential at the point of zero potential 
could be used to evaluate C, i.e. we can write,
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Alternatively, we can determine C by relating the field strength at x = 0 and x = h to the corresponding 
diffuse charges, using Equations 5-1 and 5-2, which are now written as,
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Hence, the third pair of solutions is,
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This equation offers, at the same time, a relationship between y1
d, σ1

d, y2
d and σ2

d.

The disjoining pressure
If we follow the second route, Equation 5-33 can also be obtained for the present case, which is now 
written as,
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Combining this with Equation 5-147 yields,

Пel (h) = –2cRT [C(h) +1]							       (5‑154)

where we have made the h-dependence explicit.

Phenomenologically, this final equation is simple and general but the elaboration is not. We see that 
the sign of Πel depends on C; it may change as a function of h. Πel(h) is repulsive if C < –1, it is attractive 
for C > –1. On the basis of diffuse double layer theory only, it is virtually impossible to discriminate 
between the various options of repulsion and attraction, because the sigh of Πel is sensitive to the extent 
of constancy of y1

d, y2
d, σ1

d and σ2
d upon interaction. The resilience of these crucial parameters against 

the action of the double layer of the second particle is determined by the two primary (spatial and planar) 
regulation capacities. For these, no simple general rules can be given, although several advanced partial 
solutions can be found in the literature.

Approximate analytical solutions
As shown previously for homo-interaction, the Debye-Hückel approximation often gives a rapid 
approximate result. For hetero-interaction between two parallel flat plates with constant diffuse 
potentials, the following equation, derived by Hogg et al. /27/, has become popular,
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The practicality of this equation stems from the fact that only the two ζ-potentials are needed. It should 
describe weak overlap fairly well, but of course does not suffice to predict the low κh behaviour.

For plates of equal potentials, Equation 5-155 reduces to Equation 5-61. Now the typical difference 
between homo-interaction and hetero-interaction arises if we compare the forms of these two equations. 
In the former case the interaction can always be written as a product f(yd)×g(κh), in the latter this is 
no longer the case, except at large κh. This new behaviour is directly correlated with the propensity 
of sign reversal.
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By differentiation of Equation 5-155 with respect to h, we obtain,
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The constant charge equivalent of Equation 5-115 is also available and it reads /28/,
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The difference with the constant potential equivalent is only in the sign of the first term in the curly 
brackets.

Correspondingly, we have,
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This expression has been shown to be reasonably good in describing the interactions between oppositely 
charged plates, because where the potentials between the plates are not very great. It is, however, a 
poor approximation in other cases, especially at close approach of the two plates, because then the 
required increase of surface potentials is incompatible with the Debye-Hückel approximation.

To improve this pair, the “compression” approach could of course be followed to treat hetero-interaction 
at constant charge. By this route, for very special cases where only one symmetrical electrolyte is 
considered in the Debye-Hückel approximation, Gregory /26/ found,
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For plates of equal potentials, Equation 5-159 reduces to Equation 5-120.

Comparison with exact numerical solutions suggests that Equation 5-159 gives much better results under 
most conditions, as compared to Equation 5-158. The exception is when the charges on the plates are 
opposite in sign and equal (or nearly so) in magnitude. The reason for this is that the second term on the 
r.h.s. of Equation 5-159 is not a good representation of the attractive component of the force between the 
two plates. However, when the plate potentials are not greatly different, this term is very much smaller 
than the first and the inaccuracy is not apparent. When the potentials are equal and opposite, the first 
and the third terms cancel out and the inadequacy of the second is then most noticeable. When the plate 
potentials are of the same sign, the second term is small enough to be neglected, and then integration is 
more easily carried out; this gives,
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Note that Equation 5-159 applies only when the potentials of the isolated particles are fairly small (yd 
< 2) down to κh ~ 0.2.

In addition, it should be added that a wealth of equations for Ga,el for different situations of hetero-
interaction has been derived by McCormack et al. /29/; several of these contain elliptic integrals. 
However, the most commonly used expression is the one resulted from the linear superposition 
approximation for symmetrical electrolytes, and it reads,
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This equation works fairly well for weak overlap for hetero-interactions, and in practice it applies to 
both cases, either at constant potential or at constant charge.

Correspondingly, we have,
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For plates of equal potentials, this equation reduces to Equation 5-39.
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6	 Solvent structure-mediated interactions

Basically, the structure of a liquid adjacent to a hard wall differs from that in bulk. Layering takes 
place, extending over a very few molecular layers, resulting in a density distribution normal to the sur-
face ρN(x) displaying oscillations which decay rapidly with x. This is a general phenomenon, observed 
for hydrophilic and hydrophobic surfaces. The origin is the short-distance molecular repulsion.

When two such surfaces approach to such short distance that these structured zones (the liquid layers 
adjacent to the two boundaries) overlap, work has to be done by or on the system to change them, giving 
rise to solvent structure-mediated interactions.

At extremely short distances these interactions are oscillating, the maxima and minima being determined 
by the matching of the strong oscillations, i.e., they are alternatively repulsive and attractive. For some-
what longer distance, it has been found empirically that the decay is of an exponential nature, i.e. the 
disjoining pressure due to the solvent structure-mediated interaction between two hard flat surfaces; 
a distance s apart; can be given by /30/,

Пstr = Kstr exp(–s/λ)								        (6‑1)

where Kstr is a proportionality constant characterizing the strength of interaction and λ is a measure 
of the structure decay as a function of distance. The latter is typically short-range, only around a few 
nanometers.

This expression holds at s ≥ λ, and the distance s = h + 2d if we take the Stern layer with a thickness 
d into account.

Upon integration of Equation 6-1 with respect to s, we obtain the Gibbs energy of the solvent structure-
mediated interaction, as given in Equation 1-5, i.e.

Ga,str = Kstr λ exp(–s/λ)								        (6‑2)

Hence, by means of the Derjaguin approximation for a cylinder of length l and radius a interacting 
with a semi-infinite plate at short distances, we arrive at /31/,

( )λπλ salKΠ −= exp2strstr
							       (6‑3)

and correspondingly,

( )λπλλ salKG −= exp2strstr
							       (6‑4)

Likewise, for two interacting cylinders of equal radius of a, we have,

( )λπλ salKΠ −= expstrstr
							       (6‑5)

and,

( )λπλλ salKG −= expstrstr
							       (6‑6)
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7	 Extended DLVO theory

Traditional DLVO theory considers electrostatic repulsion and Van der Waals attraction as the sole, 
and additive, contributions to pair interaction. The theory is elaborated for flat and spherical sym-
metries, and it mostly assumes purely diffuse double layers at fixed potential and non-retarded Van 
der Waals forces. With this DLVO model, a number of important observations could be accounted 
for, at least semiquantitatively. These include:
1.	 the very strong influence of the valency of the counterion (the Schulze-Hardy rule);
2.	 the relationship between stability and the ζ-potential;
3.	 the rate of coagulation;
4.	 weak secondary minimum coagulation for big particles, leading to shear thinning and thixotropy.

All of this has supported the essential correctness of the model. However, over the half century after 
its publication, it transpired that a number of (mostly quantitative) defects required systematic 
consideration. These mainly include:

1.	 Double layers are not purely diffusive. Only a small but very relevant fraction of the countercharge, 
depending on the nature of the indifferent electrolyte and its concentration, resides in the diffuse part.

2.	 It follows from the above that the surface potential occurring in the DLVO model must be replaced 
by the potential of the diffuse double layer, and likewise, the surface charge by the diffuse charge.

3.	 Counterion specificity is caused by the specific adsorption in the Stern layer. The phenomenon of 
lyotropic series is essentially absent in DLVO theory.

4.	 Van der Waals (dispersion) forces have to be corrected for retardation, except at short distances.

5.	 The presence of a Stern layer results in Van der Waals forces operating over a longer interaction 
distance compared to those in the diffuse layer, i.e. s = h + 2d, where h is the distance between 
the two outer Helmholtz planes and d the Stern layer thickness.

6.	 At very short distances, solvent structure-mediated forces have to be added.

7.	 In the DLVO theory, the double layers are assumed to be continually equilibrated.

Thus, a variety of improvements can be made to the DLVO theory /21/; leading to the development 
of extended DLVO models which we abbreviate as DLVOE for the sake of distinction. Basically, as 
compared to classical DLVO theory, DLVOE covers a number of phenomena that are quite common 
in practice, and which go far beyond the Poisson-Boltzmann level. These additional phenomena include 
ion size effects, non-electrostatic (specific) adsorption, and the effect of ions and surfaces on the structure 
of water. The shortcut to keep all these features tractable was to account for them only in the Stern layer 
that is the layer where they dominate. A further advantage is that diffuse theory is only needed for that part 
of the double layer where the Poisson-Boltzmann premises hold. For this part we can fall back on DLVO, 
with the improvement that yd(h) follows from regulation. One may perhaps generalize the difference 
between DLVO and DLVOE in that the former is essentially electrostatic, whereas the latter also exposes 
the chemistry in the wide sense.

7.1	 Potential energy curves
Throughout the DLVOE theory /21/, Gel, GVdW and Gstr are considered to be additive, whereas the 
surfaces are assumed to be molecularly flat and free of surfactants. Then, the general shape of DLVOE 
interaction curves may be sketched and shown in Figure 7-1.

In the top picture, the Gibbs energy of interaction is given. For two semi-infinite parallel plates this is 
expressed in J m–2, for two spheres and other finite objects it is in J. The lower picture gives the deriva-
tive, which for plates is the disjoining pressure Π, in N m–2, and for two spheres etc is the force f, in N. 
The extremes in G(h) corresponding to zero values in Π(h) or f(h), whereas the extremes in the latter 
are found at the binding points in the Gibbs energy G(h). On the other hand, the occurrence, heights, 
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and shapes of these maxima and minima depend on the magnitudes of the constituting contributions 
(Gel, GVdW and Gsolv,str), and hence on the salt concentration csalt, the pH, the radius a etc.

General features
Qualitatively, G and Π exhibit the same extrema, but those for Π are systematically at larger h.

Starting at large h + 2d, first the shallow secondary minimum is observed. The reason for its existence 
is that for large distance, Gel decays as e–κh, which for large κ is steeper than the decay of GVdW. For 
low κ, Gel extends so far that the secondary minimum then becomes invisible.

For big spherical particles where h << a, GVdW decays as (h+2d)–1, i.e.
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and hence it is steeper. Moreover, retardation sets in which also weakens GVdW at large distance. Together 
with the fact that Gel and GVdW both increase with the radius a (as a first approximation both linearly), 
we arrive at the conclusion that the depth of the secondary minimum Gmin(sec) decreases with decreasing 
particle size. In fact, for low a, it effectively disappears and therefore it is virtually impossible to coagulate 
nanoparticles in the secondary minimum.

Figure 7-1. General nature of DLVOE homo-interaction curves. Top, Gibbs energy; bottom, disjoining 
pressure or force. The distance between the two surfaces is h + 2d.
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The repulsive maximum, Gmax, is of course caused by diffuse double layer overlap. It is commonly 
called the energy barrier. This term is sloppy, because to a large extent it is entropically determined, 
viz. by the diffuseness and regulation of charges upon overlap.

When the barrier is high enough, it can stabilize a sol. Semiquantitatively, the probability that an 
encounter between two particles leads to coagulation decays as exp(-Gmax/kBT), where Gmax acts as 
the activation (Gibbs) energy. Barriers with Gmax ~ kBT (which is the unit of thermal energy) offer no 
protection against coagulation, whereas those for Gmax ≥ 10–15 kBT ensure stability for most practical 
purposes. In between a range from rapid to increasingly slow coagulation with decreasing salt 
concentration csalt is found. Although there is no sharp transition between “stable” and “unstable” 
sols, there are methods of determining rather reproducible critical coagulation concentrations.

On the other hand, to create an energy barrier there must be a distance range over which Gel exceeds 
GVdW. This is only possible for low csalt, because only then does Gel decay slowly enough to outweigh 
GVdW, as we can see from the following expression of Gel for interaction of two spherical particles of 
equal radius a,

( )hezyacRTG κ

κ
π −+


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
= 1ln

4
tanh64 d

2
2

)ψ(
el 						      (7‑3)

It must be stressed that the range of action of Gel is at least as relevant as its absolute magnitude. 
Typically, for h → 0, as in Equation 7-3, Gel ~ csalt/κ2, which is independent of csalt.

When two particles can overcome the energy barrier, they can approach each other until they reach 
the primary minimum (the distance where the primary minimum is located will be close to h = 0, 
implying that it is equal to about twice the Stern thickness), giving rise to primary minimum coagulation. 
Depending on d (the Stern layer thickness), this minimum can be deep and narrow, and it is mainly 
determined by the counteraction between GVdW and Gstr.

An interesting issue here is weather primary minimum coagulation can be reversed, say by removing 
the electrolyte (secondary minimum coagulation usually is; sols, coagulated in the secondary minimum 
are shear thinning, if not thixotropic). Stated otherwise, can such coagulated system repeptize by 
removing the electrolyte? The reply to this question depends to a large extent on the possibility of 
leaching the electrolyte from the gap, and the ensuing inner-layer regulation.

Knowing these general features of DLVOE interaction curves, we shall now explore the influence 
of some variables in greater detail. The aim is to obtain a quantitative feeling for the effect of some 
relevant system parameters. To restrict the number of variables we shall only consider spherical particles, 
and forget Gstr for the moment. Hence, the total Gibbs energy of interaction can be written as, for the 
case of constant ψd,

Gtot (h) = G(ψ)
el (h) + GVdW (h)							       (7‑4)

Influence of the Hamaker constant
Upon increasing A11, the height of the energy barrier decreases, whereas the depth of the secondary 
minimum increases. In fact, of the various parameters in Equations 7-2 and 7-3, the effective Hamaker 
constant A11 is the one over which we have least control; its value is determined by the chemical nature 
of the dispersed and continuous phases. The presence of a small amount of colloids in the continuous 
phase leads, however, only to a negligible alternation of the value of A11 for the solvent.

Influence of the retardation
Retardation becomes significant only at large distances and only when the value of Gtot is more critical. 
Its effect would be negligible in cases where either Gel or GVdW prevails everywhere.

Influence of the diffuse potential
The height of the energy barrier increases with increasing values of the diffuse potential, yd, as might be 
expected in view of the increase of repulsion with this quantity. For large values of yd, the hyperbolic 
tangent in Equation 7-3 goes nearly to unity, so sensitivity of the total interaction energy, Gtot, to the 
value of yd decreases as yd increases.
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Influence of the Stern layer thickness
The height of the energy barrier increases with increasing the Stern layer thickness d. In extreme cases 
where the position of the energy barrier is such that GVdW is in its steeper part, Gmax may increase by 
a factor of more than two between d = 0 and d = 0.3 nm. It is unlikely that d is much larger than 0.3 nm 
(that would require very thick hydrated layers, which have never been proven for hydrophobic surfaces 
without steric interaction).

Thus, traditional DLVO theory inherently with d = 0 underestimates Gtot because at the position of 
the maximum GVdW is lower than was thought.

The position of the maximum is, however, only slightly affected by the thickness d.

Influence of the particle radius
Upon increasing the particle radius a, the repulsive part of Gtot becomes more positive, the attractive 
part more negative. Gtot is therefore not exactly proportional to a, as would be predicted by simplified 
short-distance approximations.

Influence of the electrolyte concentration and valency
Of various quantities which affect the shape of the potential energy curves, none is as accessible 
to empirical adjustment as κ. This quantity depends on both the concentration and valency of the 
indifferent electrolyte, and so does the diffuse potential ψd (which has been used in DLVOE instead 
of ψ0 in DLVO).

For κ, we can write, by Equation 4-59,

κ2 = const. cz2									         (7‑5)

whereas for ψd, an empirical formula can be used,

ψ d ≈ ζ = const.c -1/4z-2								        (7‑6)

Thus, with the Debye-Hückel approximation holds, Equation 7-3 immediately gives,

G (ψ)
el ∝ c -1/2 z -4									         (7‑7)

As a result, it is evident that the height of the energy barrier, Gmax, decreases very rapidly with increasing 
csalt and the valency of the counterion, and the latter effect is much more prominent than the former; 
this illustrates qualitatively the Schulze-Hardy rule for the critical coagulation concentration (c.c.c.) 
which we will discuss in detail in the following subsection. At this stage, however, it should be pointed 
out that the c.c.c. is much higher when a Stern layer is involved than otherwise.

7.2	 The c.c.c. and the Schulze-Hardy rule
The c.c.c. is, by definition, the indifferent electrolyte concentration below which a sol is stable and 
above which it is unstable. Although there is no sharp transition between “stable” and “unstable” sols, 
there are methods for determining c.c.c. experimentally. Among these, the coagulation series method 
involves a series of vials, containing a fixed amount of sol, and adding increasing amount of electrolyte 
to establish the concentration above which sedimentation of aggregated particles becomes clearly 
visible after a preset time. This method includes also stirring and/or shaking steps with the purpose of 
making coagulation as efficient as possible, essentially combining perikinetics with orthokinetics. In 
this way, fairly sharp borderlines between “stable” and “unstable” sols are obtainable.

Alternatively, the rate of coagulation method may be used, in which this rate is mostly measured 
optically as a function of csalt. Plots of logW (here, W is a standardized measure of the probability 
that a pair encounter leads to aggregation) against logcsalt consist of a descending and a horizontal 
branch, whose intersection is identified as the c.c.c.
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In practice, both methods show the same trends with respect to valency and nature of the electrolyte, 
although for the rate-method, c.c.c. values are higher by about 30–60%. This phenomenon suggests 
that the electrolyte behaves as if it is not equally efficient in these methods, and thus there is a 
method-specific threshold discriminating between stability and instability, say Gmax = bkBT.

Coagulation by a single electrolyte
Analytical analyses can be made to find approximate relationships between c.c.c. and z if only a 
single electrolyte is involved in the system, i.e. to account quantitatively for the Schulze-Hardy rule. 
For this purpose, we shall use the fact that the disjoining pressure Π becomes zero at Gmax. It should, 
however, be noted that most of our equations apply for symmetrical (z-z) electrolytes, but as the 
co-ions are negatively adsorbed their role is minor, and so we may interpret z as the valency of the 
counterion.

Consider now the case where the particles are not too small, i.e. (hmax+2d) << a, so that Equation 7-1 
may be used instead of 7-2. Then, we can write,
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For mathematical convenience, we may replace ln(1+e–κh) by 0.693e–κh, which is a good approximation. 
This leads to,
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Thus, upon differentiation with respect to h, we obtain,
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On setting Π = 0 in this equation, the distance hmax at which Gtot becomes the repulsive maximum Gmax 
is obtainable, i.e. we have,
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and,
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Hence, combination of these two equations yields,
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This equation may be called the implicit DLVOE expression for hmax. It can be compared with that 
of the DLVO theory, which sets Gmax = 0 and d = 0. Hence, the DLVO theory gives,

κhmax ≈ 1		  (DLVO)							      (7‑14)

The DLVOE theory takes, however, the Stern layer into account, and thus if Gmax = 0 is also set as a 
threshold, we have,

κ(hmax + 2d) ≈ 1		 (DLVOE)						      (7‑15)

This expression suggests that the maximum is situated not far beyond twice the Stern layer thickness, 
and because of the 2d effect, hmax is less dependent on csalt than in the DLVO theory. The physical 
prediction is that, as soon as two particles have overcome the maximum, solvent structure-mediated 
interaction takes over so that there is little or no room for a primary minimum. In order to find such a 
minimum, Gmax should be low; i.e. electrostatic stabilization must be suppressed.
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Equation 7-15 can be re-substituted into Equation 7-11, yielding,
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where c = c.c.c. Basically, this equation therefore comes down to a definition of the c.c.c. in terms of 
yd, A11 and d.

At this point, we shall recall the Schulze-Hardy rule, an empirical rule that is generally valid for 
hydrophobic colloids. It states that the stability decreases very strongly with the valency of the 
counterion. To explain this rule quantitatively, the DLVO theory invokes an expression similar to 
Equation 7-16 with d = 0 and yd → y0. Hence, for the spherical particles we considered, DLVO 
theory would have written,
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It follows immediately from Equation 4-59 that,
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As y0 was supposed to be high, the hyperbolic tangent in Equation 7-18 goes to unity, so that the 
DLVO theory concludes:

c.c.c ∝ z -6									         (7‑20)

In the DLVOE theory, however, the relationship is much more complicated, and actually an important 
improvement of the interpretation of the Schulze-Hardy rule is already obtained by replacing y0 with 
yd. Taking only the first term of the series expansion of the hyperbolic tangent in Equation 7-21, we 
would then arrive at,
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This expression implies that the relationship between c.c.c. and z depends on the way in which yd 
changes with these variables, and this will depend on the system conditions such as the pH and the 
nature of the electrolyte. The particle radius has, however, no influence on the c.c.c. values for the 
short-distance case under consideration.

Assuming that the system obeys Equation 7-6, the above equation gives,

c.c.c ∝ z -5									         (7‑22)

In addition, a number of secondary phenomena can now also be accounted for, such as ion specificity: 
under otherwise fixed conditions, stronger counterion adsorption results in a lower yd, and because of 
the 4th power this propagates very strongly in the c.c.c. values.

Coagulation by electrolyte mixtures
The influence of mixed counterions is a rather subtle phenomenon: if counterion 1 has a certain coagula-
tion propensity and counterion 2 a higher one, is a 50–50 mixture then 50/50 effective, or more so, or 
less? Figure 7-2 shows the various possibilities that have been considered for salt mixtures. This figure 
should be read as follows: starting from pure salt 2, experiments are carried out with 90%, 80% … etc of 
c.c.c.–2, where the concentration of salt 1 (as a fraction of c.c.c.–1) is established to achieve coagulation.

Only when c.c.c.–1 = c.c.c.–2 may additivity be expected. This is the least interesting case. More 
generally the two c.c.c.’s are different, especially so when the counterions have different valencies, 
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or very different specific adsorption Gibbs energies. For the latter case, we may consider in the framework 
of DLVOE theory that, for a particle of fixed surface charge, the charge distribution over the two 
competing counterions at the inner Helmholtz plane will be determined by an ion exchange mechanism. 
For z1 = z2, we then have,
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with

K1,2 = exp[–(ΔadsG1–ΔadsG2)/RT]							       (7‑24)

According to this rule, the Stern layer is, over the entire concentration range, richer in the more strongly 
specifically adsorbing ion, leading to a higher coagulation propensity, or to a lower c.c.c. with synergism 
as the generally expected result.

For systems of fixed surface potential, the situation is more subtle because then σ0 can vary over the 
range. In fact, experimental studies suggest that in some cases synergism is found but in other cases 
superadditivity shows up /21/.

Overcharging – charge reversal
Overcharging is the phenomenon in which more countercharge adsorbs than is required for compensa-
tion of the surface charge. As a result, the ζ-potential inverts its sign, hence the name charge reversal. 
However, this term is sloppy because the surface charge does not reverse its sign. On the contrary, 
its absolute value increases because of the increased screening. For colloid science overcharging is 
an immensely important phenomenon, and it is mostly achieved by the more powerful adsorption 
of ionic surfactants and poly-electrolytes. It is a means of controlling the sign of yd or σd and, in this 
way, controlling the sign of the counterions to which the c.c.c. is very sensitive.

As long as the surface charge is smeared out, overcharging can only occur if counterions absorb 
superequivalently and this can happen only when they have a specific attraction for the surface, i.e. a 
chemical attraction in addition to the Coulombic one.

There is much empirical information on superequivalency and overcharging, but only some of it is 
obtained under sufficiently well-defined conditions (pH, csalt, effect of the adsorbent) to be helpful 
to our understanding. As a general rule, however, specific adsorption can be classified roughly into 
three groups:

(1) Very weak specific adsorption
It is probably safe to state that no ion is really one hundred percent indifferent. NaF on mercury 
approaches this condition. Alkali-ions on AgI and on most oxides are weakly specifically adsorbing. 
Often, the binding only takes place in pairs with surface charge groups (e.g. Na+–I–S on AgI, where 

Figure 7-2. Map of the possible trends for coagulation by salt mixtures. (1) Synergism, (2) additivity, (3) 
superadditivity, (4) antagonism. The axes gives the c.c.c.’s as fractions of the c.c.c.’s of the pure electrolyte.
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S stand for the groups on the surface of the solid). Insofar as such ions do not adsorb measurably on 
the uncharged surface, they cannot affect the p.z.c.; but when the surface charge is high, specificity 
shows up in the double layer capacitance and in the c.c.c. Overcharging does not occur.

(2) Moderate specific adsorption
Some alkali ions do adsorb on uncharged surface, and hence do shift the p.z.c. These ions do exhibit 
overcharging, at least over a short pH-range around the p.z.c. However, the effect is too minor to 
detect electrokinetically or by stability experiments.

Specific adsorption of this kind is more common for monovalent anions than for mono-valent alkali- or 
alkaline earth cations. This difference is probably mainly caused by their larger radius (and, hence 
polarizability), but even at the same ionic radius there are substantial differences between the enthalpies 
and entropies of hydration of cations and anions. A typical illustration is given by relative simple anions 
such as NO3

– which can shift the p.z.c. of AgI; but it is difficult to stabilize AgI sols that are positively 
charged by adsorption of the charge-determining Ag+ ions, because of strong co-adsorption of NO3

– ions.

Moderate specific adsorption, as meant here, does lead to overcharging, but for solid surfaces its 
detectability via electrophoresis or stability studies is not easy because it is measurable only under 
conditions where the sols are unstable. The evidence essentially stems from double layer studies, 
including the shift of the p.z.c. with csalt which takes place in the opposite direction as the i.e.p. that 
can be measured by streaming potentials.

(3) Strong specific adsorption
Multivalent ions, especially cations, form a class of their own, because overcharging has frequently 
been observed for them. The problem is that it is not the ion as such which causes the overcharging, 
but one, or more, hydrolyzed species. Complexes of these ions form in the solution and these can be 
very surface active. The composition of adsorbed complexes depends, however, on pH and quite often 
differs from that in solution. The identification of these surface complexes, and their relevance for 
the interpretation of the Schulze-Hardy type phenomena and overcharging, therefore requires much 
systematic research, first by studying the effect of pH on surface charge, ζ-potential, and stability. 
Although not so much comprehensive investigations are available now, partial studies suggest that the 
following conclusions could be drawn, upon which some of the trends may be sketched and shown in 
Figure 7-3.
3.	 At low pH, Th4+ and Al3+ -ions do not form complexes in the solution or in the double layer. They 

coagulate AgI sols with very low c.c.c. but cannot overcharge.
4.	 At high pH, depending on the nature of the metal ion, complexes are formed. Now overcharging 

is observed at sufficiently high csalt, and sols are restabilized, having become positively charged. 
Eventually, a second c.c.c. is attained, but now with NO–

3 as the counterion. In this manner, irregular 
series develop in the coagulation behaviour.

5.	 For bivalent metal ions, overcharging is observed if they are hydrolysable and the pH is not too low.
6.	 There are indications that, at very high pH, the adsorbability of the hydroxy-complexes decreases, 

eventually to disappear completely.

Figure 7-3. Sketch of the stability regions for AgI sols in the presence of hydrolysable multivalent counterions. 
– high pH, – low pH. The values of ζ and the two c.c.c.’s depend on the nature and valency of the cation.



TR-10-26	 87

8	 Discussion and conclusions

There is a vast literature describing the behaviour of colloids in electrolyte solutions. In particular, several 
recent books have thoroughly compiled and described the forces and mechanisms involved. We have 
extracted and compiled much of this information in a systematic way we deem useful for us to develop 
models which are intended to describe the “chemical erosion” of colloidal smectite particles from 
bentonite clays into low ionic strength water. The specific aim is to assess the possible loss of the buffer 
surrounding canisters containing high level nuclear waste in the Swedish repository of KBS-3 type.

This report mainly concerns itself with the DLVO theory and its extensions. However, there have been 
a considerable number of papers which criticise various aspects of this theory and propose alternative 
approaches to improve on it. For example, the hypernetted chain approximations /32/ and the Monte 
Carlo simulations /33/ both suggest that under some circumstances highly charged particles with divalent 
counterions can develop strong but short-range attractive forces, by virtue of ion-ion correlations. Also, 
the Coulombic attraction theory has been proposed recently by Sogami and Ise /34, 35, 36/ to confirm 
the existence of a long-range attractive electrostatic force in colloidal suspensions. We have not included 
these and similar papers in the present report.
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9	 Notation and constants

Symbols

a	 radius	 m
c	 concentration	 molm-3

c	 velocity of light in a vacuum	 ms-1

d	 thickness of the Stern layer	 m
e	 elementary charge	 C
fk	 numbers of electrons oscillating with frequency	 –
h	 Plank constant	 J s
h	 separation between particles (planes) between Stern layers	 m
kB	 Boltzmann constant	 J K-1

l	 dipole length	 m
m	 electron mass	 kg
n	 vibrational quantum numbers	 –
nσ	 number (excess) of moles in interface	 mol
p, p	 dipole moment	 C m
q	 electric charge	 C
r, r	 distance between dipole centres	 m
s	 distance between macrobodies	 m
x	 distance from surface or Helmholtz plane	 m
xj	 mole fraction of ions of type j in the bulk solution	 –
y	 dimensionless potential	 –
z	 valence number	 –

A	 area	 m2

A	 Hamaker constant	 J
B	 retarded Hamaker constant	 J m
C	 differential capacitance	 C m-2 V-1

E, E	 electric field strength	 N C-1 or V m-1

F	 Faraday constant	 C mol-1

FE	 elliptic integral of the first kind	 –
Fσ	 interfacial (excess) Helmholtz energy	 J
G	 Gibbs energy	 J
Gσ	 interfacial (excess) Gibbs energy	 J
G σ

a	 interfacial (excess) Gibbs energy per unit area	 J m-2

I	 ionic strength	 mol m-3

K	 integral capacitance	 C m-2 V-1

Kj	 intrinsic binding constant	 –
Ka	 acid dissociation constant	 –
Kb	 base dissociation constant	 –
Kw	 water dissociation constant	 –
Kstr	 solvent structure-mediated interaction constant	 N m-2

R	 gas constant	 J K-1 mol-1

S	 entropy	 J K-1

T	 absolute temperature	 K
Vw	 molar volume of water	 m3 mol-1
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Greeks
α	 polarizability	 C V-1 m2 or C2 J-1 m2

β	 interaction parameter of Van der Waals interaction	 J m-6

δ	 acid-base dissociation coefficient	 –
ε	 relative dielectric permittivity	 –
ε0	 dielectric permittivity of vacuum	 C2 N-1 m-2 or C m-1 V-1

φ	 abbreviation, given by φ = (8ε0εcRT)-1/2	 m2 C-1

γ	 surface tension	 N m-1

κ	 reciprocal Debye length	 m-1

μ	 chemical potential	 J mol-1

ν	 frequency	 s-1

ω	 angular frequency	 s-1

ρ	 space charge density	 C m-3

ρw	 water density	 kg m-3

ρN	 number density	 m-3

σ0	 surface charge density	 C m-2

σd	 diffuse charge density	 C m-2

τ	 characteristic time	 s
ξ	 macroscopic vibration frequency	 s-1

ψ	 allowed energy of harmonic oscillators, Schrödinger equation	 J
ψ	 potential	 J
ψ0	 surface potential	 V
ψd	 diffuse potential	 V
ζ	 electrokinetic potential	 V

Ф	 potential energy between two molecules	 J
Г	 surface (excess) concentration	 mol m-2

П	 disjoining pressure	 N m-2

Ω	 solid angle	 –

Constants
h	 Plank constant	 6.6260689633×10–34 J s
kB	 Boltzmann constant, 	 1.380 650424×10−23 J K-1

ε0	 dielectric permittivity of vacuum	 8.8541878176×10–12 C2 N-1 m-2

R	 gas constant	 8.314472 J K-1 mol-1

F	 Faraday constant	 96 485.3383 C mol-1
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