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Abstract 

In the purpose of studying the possibilities of a Deep Repository for spent fuel, the 
Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site 
Investigations. Data collected from these Site Investigations are interpreted and 
analysed to achieve the full Site Description, which is built up of models from all the 
disciplines that are considered of importance for the Site Description. One of these 
models is the Rock Mechanical Descriptive Model, which would be developed for any 
site in hard crystalline rock, and is a combination and evaluation of the characterisation 
of rock mass by means of empirical relationships and a theoretical approach based on 
numerical modelling. The present report describes the theoretical approach. 

The characterisation of the mechanical properties of the rock mass, viewed as a unit 
consisting of intact rock and fractures, is achieved by numerical simulations with 
following input parameters: initial stresses, fracture geometry, distribution of rock 
mechanical properties, such as deformation and strength parameters, for the intact rock 
and for the fractures. The numerical modelling was performed with the two-dimensional 
code UDEC, and the rock block models were generated from 2D trace sections 
extracted from the 3D Discrete Fracture Network (DFN) model. Assumptions and 
uncertainties related to the set-up of the model are considered. The numerical model 
was set-up to simulate a plain strain-loading test. Different boundary conditions were 
applied on the model for simulating stress conditions (I) in the undisturbed rock mass, 
and (II) at the proximity of a tunnel. In order to assess the reliability of the model 
sensitivity analyses have been conducted on some rock block models for defining the 
dependency of mechanical properties to in situ stresses, the influence of boundary 
conditions, rock material and joint constitutive models used to simulate the behaviour of 
intact rock and fractures, domain size and anisotropy. To deal with spatial variability 
and data uncertainties of the modelling results, and in order to minimise the number of 
numerical models to run, Monte Carlo simulations are used. The methodology was 
tested in Sweden on a limited set of data coming from the Äspö Hard Rock Laboratory. 
The mechanical properties of the rock mass were determined in two scales, (I) in a 550 
m block in which “ordinary rock units” and “deformation zone units” are identified, and 
(II) in a box located at depth from –380 to –500 m, and divided in 30⋅⋅⋅⋅30⋅⋅⋅⋅30 m cubes.  
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Summary 

In the purpose of studying the possibilities of a Deep Repository for spent fuel, the 
Swedish Nuclear and Fuel Management Company (SKB) is currently planning for Site 
Investigations. These Site Investigations are planned to provide the wide knowledge 
that is necessary to evaluate the reliability of the site for a final waste disposal 
/Andersson et al, 2002/.  

Data collected from these Site Investigations are interpreted and analysed to achieve  
the full Site Description, which is built up of models from all the disciplines that are 
considered of importance for the Site Description. These models are related to geology, 
rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport 
properties and surface ecosystems. 

One of these models is the Rock Mechanical Descriptive Model, which would be 
developed for any site in hard crystalline rock. The rock mass mechanical properties 
cannot be directly measured during Site Investigations, but must be estimated. The 
characterisation of rock mass mechanical properties in the Site is the basis for predicting 
the short- and long-term stability of the rock mass, in consideration to excavations that 
are to be done when planning the final disposal, and to long-term alteration of rocks. 
The Rock Mechanical Descriptive Model shall describe the initial stresses and the 
distribution of rock mechanical properties such as deformation and strength properties 
for the intact rock, for the fractures, for the deformation zones, and for the rock mass 
viewed as a unit consisting of intact rock and fractures. The evaluation of these 
properties can be achieved through the application of empirical relationships or by a 
theoretical approach based on numerical modelling. Both methodologies imply some 
assumptions and uncertainties that need to be considered. The comprehensive Rock 
Mechanical Descriptive Model is a combination and evaluation of both approaches 
(Figure 1-2). 

The basis of the theoretical approach is to determine the mechanical properties by 
numerical modelling and using known parameters of the rock, i.e. fracture geometry, 
and mechanical properties for the intact rock and for the fractures. The first task was  
to develop the methodology to use for modelling the rock mass behaviour. Then this 
methodology was applied in a “Test Case” on a limited set of real input data. 

The methodology was developed in the purpose of characterising the mechanical 
properties of the rock mass, in any of the potential site. The reliability of the modelling 
is dependent onto the type/quality of input data, the numerical code chosen for 
numerical simulations, and the interpretation of the outcome (section 2). The input data 
must consider the fracture geometry, as well as mechanical properties of intact rock and 
fractures. The non-site related procedure developed for the characterisation of the rock 
mass is presented in a flow-chart (Figure 2-1). 

Fracture geometry is often really complex and presents a non-linear spatial variability. 
This issue was handled by numerical stochastic modelling. Statistical data on fractures 
were used as input to simulate a three-dimensional Discrete Fracture Network (DFN) 
in the FracMan software. The numerical modelling was achieved by using the two-
dimensional code UDEC, and the rock block models were generated from 2D trace 
sections extracted from the 3D DFN model.  
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The numerical model was set-up to simulate a plain strain-loading test. Vertical and 
horizontal displacements, and vertical stresses were monitored during loading and used 
for the interpretation of deformation and strength properties (section 3.2). Different 
boundary conditions were applied on the model for simulating stress conditions (I) in 
the undisturbed rock mass, and (II) at the proximity of a tunnel (Figure 3-5). 

The reliability of the numerical modelling is grounded by the way the model is built up 
in the code. The validity of the model was checked by running some benchmark tests. 
Moreover, sensitivity analyses have been conducted on some rock block models for 
studying the dependency of mechanical properties to in situ stresses, the influence of 
boundary conditions, rock material and joint constitutive models used to simulate the 
behaviour of intact rock and fractures, domain size and anisotropy (section 3.3). 2D  
and 3D numerical simulations were also carried out on a simplified model for 
determining the influence of evaluating the mechanical properties of the rock mass  
in 2D (Figure 3-26).  

Some modifications to the model were required for the modelling of deformation zones, 
which are mainly related to the modification of the fracture network, and the alteration 
of mechanical properties of intact rock and fractures in and at the proximity of these 
zones (section 3.4).  

The data uncertainty and spatial variability of the material parameters for intact rock 
and fractures are expressed by the measured mean value and standard deviation, 
assuming a normal distribution. To deal with spatial variability and data uncertainties  
of the modelling results, and in order to minimise the number of numerical simulations, 
Monte Carlo simulations are used (section 3.5).  

The methodology was tested on a limited set of data coming from the Äspö Hard Rock 
Laboratory. The mechanical properties of the rock mass were determined in two scales, 
(I) in a 550 m block in which “ordinary rock units” and “deformation zone units” are 
identified, and (II) in a box located at depth from –380 to –500 m, and divided in 
30⋅⋅⋅⋅30⋅⋅⋅⋅30 m cubes (section 4).  

Input data for the fracture network were mainly provided by tunnel mapping, input data 
for mechanical properties of intact rock and fractures were coming from results of 
laboratory tests conducted on core samples from 3 boreholes (section 5). 

First, one model was run on one defined rock type to assess the influence of variation  
of input parameters on the outcome of the model, and refine the input parameters as 
interpreted from laboratory tests (section 6). The mechanical properties of the rock  
mass were evaluated for rock block models constituted of a homogeneous rock type. 
However, the cubes in the detailed model and “rock type” units in the large volume 
present a geology composed of a combination of these different rock types. The 
determination of the mechanical properties of such mixture of rocks was achieved  
by means of Monte Carlo simulations from results obtained on homogeneous models. 
Special models were run for the determination of mechanical properties in deformation 
zones (section 7). 

The outcome of the Test Case are discussed and analysed in /Hudson (ed.), 2002/, as 
part of the Rock Mechanical Site Descriptive Model. 
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Sammanfattning 

För att studera möjligheterna att bygga ett djupförlagt lager för använt kärnbränsle 
planerar Svensk Kärnbränslehantering AB för närvarande platsundersökningar. Dessa 
platsundersökningar utformas för att ge den breda kunskap som är nödvändig för 
utvärdering av säkerheten hos ett lager för använt kärnbränsle på aktuell plats 
/Andersson et al, 2002/. 

Insamlad data från dessa platsundersökningar tolkas och analyseras för att ge en  
samlad platsbeskrivning. Denna beskrivning är uppbyggd av modeller från de olika 
ämnesområden som har betydelse för beskrivning av platsen. Dessa modeller behandlar 
geologi, bergmekanik, termiska egenskaper, hydrogeologi, hydrogeokemi, 
transportegenskaper och ytnära ekosystem.  

En av dessa modeller är den beskrivande bergmekaniska modellen som kommer att tas 
fram för aktuella platser i hårt kristallint berg. Bergmassans mekaniska egenskaper kan 
inte direkt mätas vid platsundersökningen utan måste uppskattas. Karaktäriseringen av 
bergmassans mekaniska egenskaper på en plats är basen för analys av bergmassans  
kort- respektive långtidsstabilitet kring de tunnlar och bergrum som måste byggas. Den 
beskrivande bergmekaniska modellen skall beskriva initialspänningarna i bergmassan, 
fördelningen av mekaniska egenskaper såsom deformations- och hållfasthetsegenskaper 
hos det intakta berget, sprickor, sprickzoner och bergmassan sedd som en enhet 
bestående av intakt berg och sprickor. Utvärderingen av dessa egenskaper kan ske 
genom att använda empiriska samband eller genom ett teoretiskt angreppssätt byggt på 
numerisk modellering. Båda angreppssätten innefattar antaganden och osäkerheter som 
måste beaktas. Den slutgiltiga beskrivande bergmekaniska modellen är en kombination 
och värdering av båda angreppssätten (figur 1-2). 

Utgångspunkten för det teoretiska angreppssättet är att bestämma de mekaniska 
egenskaperna genom numerisk modellering utgående från kända parametrar hos berget 
så som sprickgeometri, mekaniska egenskaper hos det intakta berget och hos sprickorna. 
I föreliggande projekt var första uppgiften att utveckla den metodik som skall användas 
för modellering av bergmassans uppförande enligt det teoretiska angreppssättet. 
Därefter skall metodiken användas på ett ”Test fall” bestående av en begränsad 
uppsättning av verkliga indata från undersökningarna vid Äspölaboratoriet. 

Metodiken utvecklades med syftet att kunna karaktärisera de mekaniska egenskaperna 
hos en bergmassa. Tillförlitligheten hos modelleringen beror på typ och kvalité hos 
indata, den använda koden för numerisk simulering och utvärderingen av resultatet 
(avsnitt 2). Indata måste beakta sprickgeometrin såväl som de mekaniska egenskaperna 
hos intakt berg som hos sprickor. Den utvecklade icke platsspecifika metodiken för 
karaktärisering av en bergmassa presenteras i ett flödesschema (figur 2-1). 

Sprickgeometrin är ofta mycket komplex och uppvisar icke linjär rumslig variation. 
Dessa fakta hanteras genom stokastisk numerisk modellering. Statistiska data på 
sprickor används som indata till en tre-dimensionell diskret spricknätsmodell (DFN) 
som genereras med programvaran FracMan. Den numeriska modelleringen genomförs 
med den två-dimensionella koden UDEC där bergblocken genereras utgående från två-
dimensionella sprickspår som extraheras från den tre-dimensionella DFN-modellen. 
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Den numeriska modellen utformades för att simulera ett belastningsförsök under  
plant töjningstillstånd (plain strain). Vertikala och horisontala deformationer samt 
vertikalspänningar avlästes under belastningens påförande. De avlästa värdena används 
för att utvärdera deformations- och hållfasthetsegenskaper (avsnitt 3.2). Olika 
randvillkor påförs modellen för att simulera spänningsförhållandena (I) i den  
ostörda bergmassan och (II) i närheten av en tunnel (figur 3-5). 

Tillförlitligheten hos den numeriska modellen beror på hur modellen har 
implementerats i den numeriska koden. Modellerna validerades genom att analysera  
ett antal kända belastningsfall (benchmark tests). Dessutom genomfördes ett antal 
sensitivitets tester där utfallet av mekaniska egenskaper hos några blockmodeller 
studerades beroendet på in situ spänningarna, randvillkor, använda materialmodeller  
för intakt berg och sprickor, modellstorlek samt anisotropi (avsnitt 3.3). Jämförande 
simuleringar utfördes på en förenklad modell i 2D respektive 3D för att bestämma 
inverkan av att utvärdera de mekaniska egenskaperna för bergmassan enbart genom  
2D simuleringar (figur 3-26). 

För modellering av deformationszoner krävdes en del modifieringar av metodiken. 
Modifieringarna var i huvudsak knutna till utseendet hos spricknätverket och förändring 
av de mekaniska egenskaperna hos det intakta berget och sprickorna i och i närheten av 
zoner (avsnitt 3.4). 

Osäkerheten i data och den rumsliga variationen hos materialparametrarna för  
intakt berg och hos sprickorna uttrycktes med hjälp av uppmätt medelvärde och 
standardavvikelse samt genom att anta att datan är normalfördelad. För att hantera den 
rumsliga variationen och osäkerheten i modelleringsresultatet samt för att minimera 
antalet numeriska simuleringar utfördes Monte Carlo simuleringar (avsnitt 3.5). 

Den framtagna metodiken testades på en begränsad del av data från undersökningarna 
vid Äspölaboratoriet. De mekaniska egenskaperna hos bergmassan bestämdes i två 
skalor, (I) i en 550 m blockskala där vanliga bergenheter och deformationszoner har 
identifierats och (II) i ett block på djupet –380 till –500 m som delats in i kuber med 
sidorna 30⋅30⋅30 m (avsnitt 4). 

Indata till spricknätverksmodellen erhölls i huvudsak från tunnelkartering och indata  
till de mekaniska egenskaperna hos det intakta berget och sprickorna kom från 
laboratorieundersökningar på kärnor från tre borrhål (avsnitt 5). 

Till att börja med analyserades en modell av den dominerande bergartstypen för att 
studera inverkan av variation hos indataparametrar på resultatet från modellen samt 
förfining av utvärdering av laboratorieförsöken (avsnitt 6). De mekaniska egenskaperna 
för bergmassan utvärderades för bergblock bestående av en enda bergart. Blocken i den 
detaljerade modellen och bergenheterna i den storskaliga modellen består dock av flera 
olika bergarter. De mekaniska egenskaperna hos block uppbyggda av en blandning av 
olika bergarter bestämdes genom Monte Carlo simulering utgående från resultaten 
erhållna på homogena block bestående av en enda bergart. Speciella modelleringar 
utfördes för att bestämma egenskaperna hos deformationszoner (avsnitt 7). 

Resultatet från ”Test fallet” diskuteras och analyseras i /Hudson (ed.), 2002/ som en  
del i utveckling av den beskrivande bergmekaniska modellen. 
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Symbols and abbreviations 

a  material constant (H-B failure criterion) 

ajn joint aperture at zero normal stress [m] 

an initial value of joint normal stiffness [MPa/m] 

as initial value of joint shear stiffness [MPa/m] 

Ai  C-Y model constant parameter 

B B-B model material parameter 

Bi C-Y model constant parameter 

B-B Barton-Bandis joint model 

cm cohesion of the rock mass [MPa] 

cpl cohesion of rock fracture at low normal stresses /Patton, 1966/  

 [MPa] 

cph cohesion of rock fracture at high normal stresses /Patton, 1966/ 

 [MPa] 

c cohesion of intact rock [MPa] 

cp peak cohesion of rock fracture [MPa] 

cr residual cohesion of rock fracture [MPa] 

Ci C-Y model constant parameter 

C1 empirical constants associated to a load cycle 

C2 empirical constants associated to a load cycle 

C10 constant of proportionality 

C21 constant of proportionality 

C-Y Continuously Yielding joint model 

d diameter of the intact rock sample [m] 

D density [kg/m3] 

Di constant parameter, rock fractures 

en joint normal stiffness exponent 

es joint shear stiffness exponent 

E  Young’s modulus of the intact rock [GPa] 

E%50  tangent Young’s modulus of the intact rock [GPa] 

Eini initial Young’s modulus of the intact rock [GPa] 

Em Young’s modulus of the rock mass [GPa] 

F stress factor 

G shear modulus of the intact rock 
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GSI Geological Strength Index  

H-B Hoek-Brown failure criterion 

i effective dilatancy angle of rock fractures [°] 

jr material parameter for joint roughness [m] 

JCS joint Compression Strength [MPa] 

JCSn joint Compression Strength, natural scale [MPa] 

JCS0 joint Compression Strength, laboratory scale [MPa] 

JCS100 joint Compression Strength, 100 mm sample [MPa] 

JRC joint Roughness Coefficient 

JRCmob mobilised Joint Roughness Coefficient 

JRCn joint Roughness Coefficient, natural scale 

JRCpeak peak Joint Roughness Coefficient 

JRC0 joint Roughness Coefficient, laboratory scale 

JRC100 joint Roughness Coefficient, 100 mm sample 

k material constant, intact rock 

K bulk modulus [GPa] 

Kn joint normal stiffness at expected normal stress [MPa/m] 

Kni initial joint normal stiffness for each loading cycle [MPa/m] 

Ks joint shear stiffness at expected normal stress [MPa/m] 

Ln joint length, natural scale [m] 

Lx length of monitoring profile along x-axis [m] 

Ly length of monitoring profile along y-axis [m] 

L0 joint length, laboratory scale [m] 

mb material constant 

mi material constant 

M-C Mohr-Coulomb failure criterion 

Max Kn maximum value of joint normal stiffness [MPa/m] 

Max Ks maximum value of joint shear stiffness [MPa/m] 

N number of fractures [m–1] 

P10 linear fracture intensity [m–1] 

P21 fracture intensity per unit area [m/m2] 

P32 volumetric fracture intensity [m2/m3] 

Q rock mass quality index 

re factor to restore elastic stiffness 

r Schmidt hammer rebound number on wet fracture surfaces 

R Schmidt hammer rebound number on sawn unweathered fracture 
surfaces 
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RMR Rock Mass Rating 

RMR89  Rock Mass Rating, updated in 1989 

s material constant 

S-S Strain-softening rock material model 

un normal displacement [mm] 

unc  current normal displacement [mm] 

unl maximum closure for a completed load cycle [mm] 

unpc accumulated irrecoverable closure [mm] 

us shear displacement [mm] 

us, peak peak shear displacement [mm] 
p
su  plastic shear displacement [mm] 

ux displacement along x-axis [mm] 

uy displacement along y-axis [mm] 

 

α tilt angle [°] 

∆σn incremental normal stress due to the stiffness [MPa] 

∆σv increment in vertical stress [MPa] 

∆σy increment in stress along y-axis [MPa] 

∆τ shear stress increment [MPa] 

∆un  normal displacement increment [mm] 

∆us shear displacement increment [mm] 
p
su∆  plastic shear displacement increment [mm] 

φ friction angle [°] 

φb  fracture basic friction angle [°] 

φbp fracture peak friction angle, Barton-Choubey failure criterion [°] 

φbr fracture residual friction angle, Barton-Choubey failure criterion [°] 

φi fracture intrinsic friction angle [°] 

φm fracture effective friction angle [°] 
(i)
mφ   fracture initial friction angle [°] 

φp fracture peak friction angle [°] 

φpl fracture friction angle at low normal stresses, Patton criterion [°] 

φph  fracture friction angle at high normal stresses, Patton criterion [°] 

φr fracture residual friction angle [°] 

φrm friction angle of the rock mass [°] 

γ unit weigth of the rock [kN/m3] 
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ν  Poisson’s ratio of the intact rock 

ν%50 tangent Poisson’s ratio of the intact rock 

νini initial Poisson’s ratio of the intact rock 

νm Poisson’s ratio of the rock mass 

σc  uniaxial compressive strength of the intact rock [MPa] 

σcd uniaxial compressive strength of a sample of diameter d [MPa] 

σcm uniaxial compressive strength of the rock mass [MPa] 

σh intermediate horizontal in situ stress [MPa] 

σH maximum horizontal in situ stress [MPa] 

σn normal stress [MPa] 

σn0 effective normal stress generated by gravitational force [MPa] 

σtj tensile strength of fracture [MPa] 

σti  tensile strength of intact rock [MPa] 

σv vertical stress [MPa] 

σy stress along y-axis [MPa] 

σ1 maximum stress [MPa] 

σ1C compressive strength of intact rock from triaxial test [MPa] 

σ1F maximum stress at failure [MPa] 

σ2 intermediate stress [MPa] 

σ3 minimum stress [MPa] 

τ shear strength [MPa] 

τl limiting shear stress [MPa] 

τm bounding strength [MPa] 

τp peak shear strength [MPa] 

τr residual shear strength [MPa] 

υirr irrecoverable closure [mm] 

υm current maximum allowable closure [mm] 

υmi maximum allowable closure for load cycle i [mm] 

ψ  dilation angle of the intact rock [°] 
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1 Introduction 

The Swedish Nuclear and Fuel Waste Management Company (SKB) is responsible  
for managing Sweden’s nuclear waste and site for its final disposal. SKB is currently 
planning to carry out Site Investigations for the Deep Repository for spent fuel. Site 
investigations are comprehensive investigations of the bedrock and the surface 
ecosystem from the ground surface and in boreholes. In this phase, detailed studies are 
also made on how the available generic design of a KBS-3 Deep Repository could be 
sited, how transports can take place, as well as what the environmental consequences 
will be during construction and operation and following closure of the repository. The 
investigations are planned to be carried out at three Sites with granitic rock in Sweden. 
As one of the tasks in the planning process a study has been carried out on how to 
develop a Rock Mechanical Descriptive Model for any Site in hard crystalline rock 
/Andersson et al, 2002/.  

 

1.1 The Site Descriptive Model 
1.1.1 Background 

The Site Description is the major product from the Site Investigation. Based on the Site 
Description a design will be carried out. Finally a Safety Assessment will be carried out 
for the actual design at the actual Site. 

The parameters that are of importance for the Site Description were first identified by a 
study on siting factors for a deep repository for spent fuel /Andersson et al, 1997/. The 
importance of these parameters were described more in detail in the study on “What 
requirements does the repository have on the host rock” /Andersson et al, 2000/. The 
investigation methods to collect these parameters, and how a Site Investigation 
programme is planned to be outlined in principle is described in /SKB, 2001b/. 

 

1.1.2 Components of the Site Model 

The full Site Description is built up of models from all the disciplines that SKB consider 
of importance for the Site Description. These models are: 

• Geology 

• Rock mechanics 

• Thermal properties (of the rock) 

• Hydrogeology 

• Hydrogeochemistry 

• Transport properties 

• Surface ecosystems 
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The Geological Model forms a base for the other models, and it is a general ambition 
that the models should be mutually consistent. This also implies that developing the Site 
Descriptive Models will rest on substantial interaction between the different disciplines 
above. 

 

1.2 Purpose of the Rock Mechanical Descriptive Model 
The mechanical stability in the crust is normally good, especially in old geological 
formations such as for example the Baltic shield. The crystalline rock is built of 
minerals, forming the rock type, for example granite. The rock is intersected by 
fractures in various scales, from microcracks of the size less than a mineral grain up to 
large fractured zones. The total system of rock types and fractures is referred to as the 
Rock Mass. The properties of the rock mass control the strength. 

The rock mass is subjected to a state of stress. Stress is defined as a second-order tensor 
quantity requiring six independent values for its specification at a point in a solid. The 
stress field can be described with vertical and horizontal components. The vertical stress 
is mainly gravitational and can to a large extent be explained as the product of the depth 
and the unit weight of the overlying rock mass. The horizontal stress is both a result of 
the unit weight of the overlying rock mass and the tectonic forces acting at the actual 
site, and is therefore more difficult to predict than the vertical stress. In addition, 
discontinuities in various scales can have a local influence on the in situ state of stress 
/Martin et al, 2001/. 

The rock mass is a mechanical system that is normally in static equilibrium under the 
prevailing loads. Disturbances of this equilibrium may be caused by load changes, for 
example due to excavation of cavities in the rock, or to changes in mechanical 
properties by alteration. If the loading exceeds the strength, the rock mass will fail. 
Failure may lead to instability if the deformations are large enough. However, failure as 
such does not necessary entail instability as small deformations, without consequences 
for performance and safety, may restore equilibrium to the system. In the SKB report 
“What requirements does the repository have on the host rock” /Andersson et al, 2000/ 
it is identified that the major rock mechanical aspect to consider for the Deep 
Repository is the risk for spalling during construction. Even if extensive spalling  
may not have an effect on the long time safety, it has a significant influence on the 
constructability mainly because of the possible hazard for workers, and thus for time 
and costs for the construction. 

 

1.2.1 Model requirements 

The purpose of the Rock Mechanical Descriptive Model is described in /SKB, 2001a/. 
The parameters included in this model shall serve as a basis for design and safety 
assessment, and for the analyses performed during these steps. The model shall describe 
the initial stresses and the distribution of rock mechanical properties such as 
deformation and strength properties for the intact rock, for fractures and for zones of 
weakness in the rock volume, these three being taken separately, and of the rock mass 
viewed as a unit consisting of intact rock and fractures. The model shall also describe 
the rock quality with regard to constructability. The investigated volume shall for this 
reason cover at least the possible location for the repository, which may be a surface of 
2–4 km2. The disposal area is the largest part, but there are many other openings to be 
built as well. 
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The Rock Mechanical Descriptive Model must meet the following requirements 
/Andersson et al, 2002/: 

• Ensure that the necessary variables and parameters have been included. 

• Allow full transparency of data gathering, management, interpretations, analysis and 
the presentation of results. 

• Provide interpreted rock mechanics data (properties and stresses) for the entire model. 

• Have the capability to illustrate a spatial variation of the parameters in the model. 

• Handle uncertainty due to sparse data, irregular distribution of data and interpretative 
issues. 

1.2.2 Relevant scales 

Rock mechanical considerations for a deep KBS-3 repository are looked up at three 
different scales, see Figure 1-1. 

1. The repository scale, including the entire rock mass around the repository and up to 
the surface. 

2. The tunnel scale, in practice capturing the mechanical processes that may be 
expected around any underground opening. These processes are normally limited 
within 1.5–2 times the diameter of the opening. Of special concern for a KBS-3 
repository are the volume closest to the deposition tunnels and the deposition holes 
for vertical placement in the floor. 

3. The local scale, the volume closest to any opening where the mechanical effects are 
as largest. Of special concern for a KBS-3 repository is the volume within less than 
one diameter from the deposition holes (D = 1.75 m). 

 

Figure 1-1. Illustration of the various scales of importance for the rock mechanical 
considerations for siting and constructing of a KBS-3 repository /Andersson et al, 2002/. 
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Some of the caverns that are planned for auxiliary systems may have dimensions up to 
15–18 m in span or height. It is however estimated that “the tunnel scale” as defined in 
this section captures the key questions for constructability for the bulk of the tunnels 
(the deposition tunnels) with a minimum resolution of 30 by 30 m in the model. This 
scale is most likely also sufficient to cover rock mechanical aspects in “the repository 
scale” as well. For detailed scale analyses, a higher resolution is required. 

The density of measurement points during the site investigations would not allow a very 
accurate description of the variability in the detailed scale, such a characterisation can 
only be done underground. However, typical data are measured in a small scale (like 
bore cores), whereas the main modelling focus during site investigation is properties in 
tunnel scale. This means that methods need to be developed to handle the upscaling of a 
few detailed measurements into rock mass properties at tunnel scale. 

 

1.3 Overview of the modelling approach 
The Site Descriptive Model is in essence a prediction, in this case of rock mechanical 
conditions. The model should address the needs as specified in the previous section.  

Furthermore, a guiding principle in developing the model strategy is that the opinion on 
“what are the relevant questions for rock mechanical modelling” may vary by time.  

 

1.3.1 What shall be described? 

Determination of what to describe in the model may be obtained by answering the 
following questions: 

• What are the properties and their attributes to be predicted? 

• What principles shall be applied to deal with uncertainties? 

• What are the possible property ranges for the prediction? 

 

Listing of parameters 

The SKB selection of parameters to be explored during the site investigation rests  
on several assessments of what is required to be determined for the use of safety 
assessment and design. The general objectives of the rock mechanical analysis support 
of the design activity during the site investigation phase are outlined in /SKB, 2000/. 
When the site investigations are finished, the activity design shall have: 

• presented one site-adapted deep repository facility among several analysed  
and proven its feasibility, 

• identified facility-specific technical risks, and 

• developed detailed design premises for the detailed investigation phase. 

The site-specific properties in the Site Descriptive Model need to make such analyses 
possible. The general site investigation programme /SKB, 2001a/ lists relevant rock 
mechanics parameters /Table 5-2 in SKB, 2001a/. Out of these general tables, a more 
specific table, Table 1-1, is set up. 
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Table 1-1 provides the identified first order parameters that shall be considered during 
rock mechanical modelling. An initial estimation of the acceptable range for values is 
also given in this table. However, these estimates may need re-evaluation when applied 
as a general methodology during the site investigations. 

Table 1-1 also indicates which scale is needed for describing the parameter. This scale 
should be consistent with the intended use of the parameter. Accordingly, the scale in 
focus is “the tunnel scale”, i.e. around 30 m. 

During the investigation programme, the main focus of the parameters is on the rock 
mass properties, whereas the intact rock and fracture properties are rather used as input 
for determining the rock mass properties. 

Table 1-1. Listing of first order mechanical rock parameters to be predicted by 
the Rock Mechanical Model, with initial suggestion on acceptable uncertainty 
values (builds on table 5.2 in /SKB, 2001a/). 

Rock mass    
Parameter (generally a function 
of space) 

Scale Units Acceptable estimation1 

Orientation of in situ principal 
stresses 

tunnel scale 
(30 m) 

degrees, 
azimuth/dip 

± 20º (if anisotropic otherwise less 
strict) 

    
Magnitude of in situ principal 
stresses 

tunnel scale 
(30 m) 

MPa ± 20% but high precision is required 
for judging whether σ1 < 60 MPa 

    
Rock mass modulus, Em tunnel scale 

(30 m) 
GPa ± 15% if 15 MPa< Em< 45 MPa  

less than 10% if Em> 45 MPa 
    
Rock mass strength (H-B, M-C 
failure criteria) 

tunnel scale 
(30 m) 

various Conclusions whether there is risk 
for substantial rock failure (e.g. 
spalling) should be accurate. Such 
evaluations may e.g. be made using 
the diagram 5-1 in /Andersson et al, 
2000/ 

    
Rock Quality Designation (RQD) tunnel scale 

(30 m) 
% ± 20% 

 

1.3.2 Modelling components 

The components of the Rock Mechanical Descriptive Model as well as the proposed 
flow chart to achieve a complete model are illustrated in Figure 1-2. The two important 
components are the Mechanical Characterisation Model and the in situ Rock Stress 
Model. 

To set up the Mechanical Characterisation Model two approaches are used: 
 
• A theoretical approach — which is a description and characterisation based on 

measured data (usually on the small scale) from the field (boreholes) or laboratory 
(analyses of borehole cores) and the properties typically used in analyses. The 
development of the methodology is based on numerical simulations that apply the 
theoretical relationships.  

• An empirical approach — which includes evaluation based on the geological 
description, using existing rock mass classification system schemes, empirical 
links and experiences from similar areas.  
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The ground data for both approaches is the Geometrical Model of the target area. The 
development of this model is mostly influenced by the interpretation of regional and 
local structure geology, as well as rock types. The combination of these structural 
features and different rock types design geometrical blocks and units in the Site 
Investigation volume. Hence, the Geometrical Model presents a visualisation of the 
“deformation zone units2 and “ordinary rock units”. 

These two approaches are at the end combined to a final Mechanical Characterisation 
model. Together with the in situ rock stress model the complete Descriptive Rock 
Mechanics Model is formed. 

The theoretical approach is presented in this document, the empirical approach in 
/Röshoff et al, 2002/ and the in situ Rock Stress Model in /Hakami et al, 2002/.  

As a subset of this development project, a Test Case has been carried out in which the 
different modelling techniques have been applied to a limited set of real field data, and 
where the modelling results have been compared with the full presently existing 
understanding/description of the site, see /Hudson ed. 2002/.  

The first part of this document reports the set-up of the theoretical approach as defined 
for the purpose of the project, and the sensitivity analysis performed on parameters 
(sections 2 and 3). The methodology as described in those sections of the report is non 
site-dependent. 

Then, the theoretical approach is applied on a specific area on Äspö, Sweden (sections 4 
to 7). The study is based on a specific and controlled amount of data. 

At last, discussions on parameters, results and conclusions on the relevance of the 
methodology for the Site Investigation are presented in sections 8 and 9. 
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Figure 1-2. Input data and flowchart for the Descriptive Rock mechanics Model (modified from 
/Andersson et al, 2002/). 
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2 Overview of the methodology 

Deformation properties and rock mass strength are not only dependent on the intact 
rock, but also on the fracture network (number and orientation of fracture sets, intensity, 
mineralisation,…) and the presence of deformation zones. Therefore, characterisation of 
both the intact rock and of the fractures is required to define the mechanical behaviour 
of the rock mass. Therefore, the intact rock and the rock fractures were apprehended 
separately.  

 

2.1 Introduction 
A general mechanical model for rock masses must consider the following items: 

• mechanical behaviour of intact rock, 

• mechanical behaviour of fractures, and 

• geometry of fractures. 

The theoretical approach includes these three items. 

The mechanical behaviour of the intact rock can be identified from conventional 
laboratory tests on small samples. Constitutive laws for intact rock are presented in 
section 3.1.2. Estimation of the mechanical behaviour of fractures can be achieved in 
the laboratory through direct shear tests on fractures under various loading conditions. 
Constitutive laws for fractures are presented in section 3.1.3.  

The geometry of the rock fractures can be described in statistical terms and generated by 
simulations. A literature review concerning statistical representation of the fracture 
geometry and models to generate fracture geometry is presented in Appendix A.  

In order to consider the three items (mechanical behaviour of intact rock and fractures, 
and fracture geometry) an analytical or numerical model is needed. The model will give 
the rock mass response under different loading conditions. A literature review 
concerning models for fractured rock masses is presented in Appendix B. 

 

2.2 Methodology 
Based on the literature reviews presented in Appendix A and B a methodology was 
chosen for the theoretical approach. The methodology is presented as a flow chart in 
Figure 2-1 and described in the following paragraphs of this section. The description of 
the methodology in the flow chart is non-site related and can be applied in any site for 
this type of characterisation. 

The methodology is based on Discrete Element Method for the modelling of behaviour 
of rock masses. The rock mass is modelled as a discontinuous geometry in which 
contacts between blocks are fractures. The input parameters required for the model are 
the fracture geometry, and the mechanical properties of fractures and intact rock. The 
theory behind this methodology is presented in appendix B. 



 24 

A Discrete Fracture Network (DFN) model was chosen to simulate the fracture network. 
For a given fracture density, the number of fractures generated in a 3D DFN model is 
highly variable depending on the size distribution of the fractures, and of the truncation 
value for the minimum fracture size. The parameter of size considered in this context is 
related to length of fractures, and expressed as the equivalent radius of a circular 
fracture. Nevertheless, a DFN model based on real fracture data for a 30⋅⋅⋅⋅30⋅⋅⋅⋅30 m cube 
can contain from 1000 to more than 15000 fractures. It is at the moment technically 
difficult to do 3D simulations with a realistic network of discrete disc-shaped fractures. 
However it was determined fully possible to realise the modelling of the mechanical 
behaviour of a fractured rock mass in two dimensions considering rock sections of 
different directions. For this purpose, the 2D numerical code UDEC was selected as 
calculation tool.  

The computations of the mechanical properties of the rock mass are based on multiple 
stochastic realisations. Multiple realisations reflect the variability and possible 
distribution of input parameters to the model and permit a statistical analysis of the 
results. Each simulation is treated independently in UDEC. The influence of variability 
of one parameter is obtained by running UDEC several times and scanning the values 
this parameter can reasonably take, all other parameters being constant.  

 

2.2.1  DFN model 

A Discrete Fracture Network model is developed from specific relationships between 
characteristics such as fracture shape, size (expressed as the equivalent radius of a 
circular fracture), orientation of fracture sets, and termination. The values and statistical 
law distribution of these characteristics are evaluated from analysis of core logging and 
outcrops mapping. Each model consists of a particular combination of the parameters 
(see Appendix A). 

The DFN model provides the ground data for the simulation of fractures in the UDEC 
model.  

 

2.2.2 FracMan  DFN modelling 

FracMan  is the software used to generate fractures in three dimensions (3D) within a 
given rock volume. The definition of input parameters and the theoretical background of 
DFN models as developed in FracMan  are presented in /Dershowitz et al, 1998/.  

The size of the modelling volume can be modified according to the size of the required 
DFN model.  

To take into account the variability of the input parameters, the DFN model is generated 
several times by means of Monte Carlo simulations, and the fracture population 
statistics analysed for each simulated model.  
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2.2.3 Generation of 2D fracture trace sections 

The three-dimensional Discrete Fracture Network (DFN) generated by FracMan  must 
be transferred to two-dimensional fracture trace sections to fit UDEC. Since the 
boundary conditions of the UDEC model are preferably set to normal loading only (no 
shear conditions), fracture traces are obtained in planes aligned with the in situ principal 
stresses at the investigated site.  

Three different fracture trace planes of size 30⋅⋅⋅⋅30 metres aligned with the in situ 
principal stress field are identified. These planes cut the DFN model in its centre. The 
DFN model size must be set large enough to avoid any truncation of the fracture traces 
at the boundaries of the trace planes: the edges of the trace planes are always located 
within the volume of the 3D DFN models. 

 

2.2.4 Rock material mechanical properties from laboratory tests 

The mechanical properties of the different types of rock material are obtained from 
laboratory tests, such as uniaxial and triaxial compression tests, and Brazil tests, see 
section 3.1.2. 

 

2.2.5 Fracture mechanical properties from laboratory tests 

The mechanical properties of the different fracture sets considered are obtained from 
laboratory tests, such as normal load tests, shear tests and tilt tests, see section 3.1.3. 
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Figure 2-1. Flowchart for the theoretical approach. 
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2.2.6 UDEC model generation 

A model size of 30⋅⋅⋅⋅30 m was considered the most suitable in accordance to design and 
characterisation purposes, see section 1.2.2. 

The UDEC block model is built in different steps that are the following. First, the intact 
rock is modelled as a single rock block of the size of the model. Then, the fracture 
traces are integrated in the model. Due to numerical coding in UDEC, parts of fractures 
that terminate in the rock after intersection with another fracture, and fractures that are 
isolated in the rock mass, are removed from the model during the meshing and the 
generation of the blocks.  

When the block model is generated, mechanical properties as previously determined 
from laboratory tests (sections 2.2.4 and 2.2.5) are assigned to the intact rock and 
fractures. Then, suitable constitutive models that will simulate the behaviour of the 
material must be chosen. 

 

2.2.7 Constitutive models for intact rock and fractures 

Different constitutive models are available in UDEC that are used to model the 
behaviour of the intact rock and of the fractures.  

The models that have been chosen for this project are: 

• The Mohr-Coulomb plasticity model for the intact rock, 

•  The Barton-Bandis model for rock fractures (and occasionally for numerical reasons 
the Continuously Yielding model). 

The influence of the constitutive models used in this project was also studied, see 
sections 3.3.1 and 3.3.6. 

 

2.2.8 In situ stresses 

The in situ stress conditions are reproduced in the UDEC model by means of the IN 
SITU command, with consideration to the actual intensity of stresses. The State of 
Stress is considered in 3D in the model, as in situ stresses in the out-of-plane direction 
must be taken into account to avoid failure in this plane. Orientations of in situ stresses 
are also considered by means of the 2D trace sections extracted from the DFN model in 
the directions of the 3 initial principal stresses (see section 2.2.3). The stress magnitude 
and orientation are provided by the in situ Rock Stress Model /Hakami et al, 2002/. 

 

2.2.9 Boundary conditions 

Stress and velocity boundary conditions are applied to the block model. 
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Stress boundary conditions 

Stress boundary conditions are applied first during consolidation under in situ stresses, 
and confining stresses are applied during the computation of the plain strain test. The 
vertical boundaries of the model are free to move during consolidation under in situ 
stresses. 

The prescribed consolidating stresses are in equilibrium with the in situ stresses in the 
section plane (x and y direction).  

Since the block model tested in UDEC is similar to a plain strain-loading test, confining 
stresses are applied on the vertical boundaries of the model.  

The state of equilibrium of the model is checked after applying the stress boundary 
conditions, and before to start loading.  

 

Velocity boundary conditions 

The boundary conditions as previously described are modified after consolidation, in 
order to begin the computations of the plain strain-loading test. Two types of velocity 
boundary conditions are applied to the model: zero velocity and constant velocity 
boundary. 

Zero velocity boundaries are applied to disable displacements in one or two directions. 
A constant velocity boundary simulates the loading on the rock block model under 
testing. 

Two different set-ups for stress and velocity conditions were used.  

• Zero velocity on the left vertical side (simulating that horizontal deformation is set 
to zero on this side), and on the bottom side (simulating that vertical deformation is 
set to zero on this boundary). Confining stresses are applied on the right vertical 
side, and constant boundary velocity on the top boundary. 

• Zero velocity on the bottom boundary (simulating that vertical deformation is set to 
zero on this boundary), confining stresses are applied on both vertical sides, and 
constant boundary velocity is applied on the top boundary. 

Argumentation for the validity of the boundary conditions is presented in section 3.2.1 
and 3.3.2. 

 

2.2.10 UDEC computations 

The mechanical testing is simulated by a vertical loading applied on top of the model by 
means of a constant velocity displacement obtained by a constant boundary velocity 
applied during a specified number of computational cycles (see section 2.2.9). Even if 
the stress boundary conditions are such that the model is in an initial force-equilibrium 
state before alteration, the equilibrium state is checked before performing vertical 
loading.  

The vertical loading is applied to the model beyond the elastic behaviour of the 
components of the model (rock material and fractures) so that the estimation of the rock 
mass strength can be assessed. 
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The following parameters are monitored during the plain strain-loading test  
(see Figure 3-7): 

• Vertical displacement along a horizontal profile located within the top loading block, 

• Vertical stress along a horizontal profile located within the top loading block, and 

• Horizontal displacements along one vertical profile at the right boundary of the 
model, or along two vertical profiles, depending of the model set-up. 

The monitoring profiles consist of 25 monitoring points that are equally distributed 
along a reference line. The value at a computing node is attributed to the nearest 
monitoring point on the reference lines. The mean value of the monitored variable on 
the 25 points is then calculated at each loading step. 

 

2.2.11 Rock mass deformation properties and strength 

The deformation properties of the rock mass are evaluated from two curves drawn by 
respectively plotting of: (1) horizontal displacement, ux, vs. vertical displacement, uy, 
and (2) vertical stress, σy, vs. vertical displacement, uy.  

The first curve is used to evaluate the Poisson’s ratio of the rock mass. The deformation 
modulus and the rock strength are determined from the second curve (see sections 3.2.2 
and 3.2.3). 
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3 Description of the methodology 

This chapter focuses on the methodology developed in the theoretical approach, and 
also tackles the sensitivity and statistical analyses that have been conducted in order to 
determine the validity of the model.  

The methodology as described hereunder can then be applied on any site. 

 

3.1 Input data to the theoretical approach 
3.1.1 Geometry of fractures 

The term “fractures” is used to refer to any mechanical breaks in a rock mass, which 
implies any kind of discontinuity such as joints, fissures, faults and cracks. Then, 
specific attention is paid to deformation zones as defined by SKB /Andersson et al, 
2000/. 

The main issue is to characterise features that are three-dimensional but present limited, 
often two-dimensional, exposure on outcrops, in boreholes and tunnels.  

Three different approaches have been developed to simulate fracture networks that are 
Stochastic Continuum (SC), Channel Network (CN) and Discrete Fracture Network 
(DFN). The choice of model depends on the purpose of the study, namely the modelling 
of transport or the visualisation of the geology. In the frame of this project, realistic 
simulation of the fracture network in the area of investigation represents the main 
interest, and as regard to this, DFN models have been used. 

Different conceptual models are applied to build DFN models, and each is developed  
on specific relationships between characteristics such as location of fracture sets, 
termination, and fracture shape. Each model consists of a particular combination of  
the fracture system characteristics. The choice of the conceptual model is dependent  
on the general pattern of the natural fracture network and the aim of the modelling: 
characterisation and visualisation of the fracture network in a rock mass, definition  
of a specific pattern along deformation zone, reconstruction of a pattern based on 
fracturing history, etc. 

The fracture pattern for each developed DFN model is characterised by the following 
parameters: orientation of the fracture sets, volumetric intensity of each fracture set, 
expressed as the area of fractures/volume, size distribution of fractures in each set.  
The size distribution of fractures, as defined for a DFN model, is evaluated from trace 
lengths obtained from outcrop and lineament mapping, and is expressed as the 
equivalent radius of a circular fracture. The validity of the radius size distribution 
obtained is checked by simulating a DFN model and extracting sampling planes with 
orientation consistent to the “sampling windows” in the field. The distribution of trace 
lengths on these planes is compared to the distribution of trace lengths mapped on site. 
The radius size distribution is adjusted if necessary until it fits the measured data. 

The relation between “raw” fracture data and input data for a DFN model is illustrated 
in Table 3-1. 
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Table 3-1. “Raw” fracture data and derived input fracture data for a DFN model. 

“raw” fracture data Source DFN input data 
Fracture orientation (strike, dip) Boreholes, outcrops, tunnels Fracture sets 

Orientation of fractures in each 
set 

Trace length Tunnels, outcrops, lineaments Size distribution  
Termination Tunnels, outcrops, lineaments Choice of the model, hierarchy of 

the sets 
Fracture intensity(*) Boreholes, scanlines (P10), 

outcrops (P21). 
Fracture intensity (P32) 

(*) The expressions of P10, P21 and P32 are explained in section 5.2.1. 

As the DFN model is developed for rock mechanical purposes, all fractures, conductive 
and non-conductive, over the truncation size are included in the analysis. 

The background of the DFN approach, the definition of the conceptual models and their 
field of applicability are presented in appendix A. 

 

3.1.2 Mechanical properties of intact rock 

The mechanical properties of the different types of rock materials considered are 
obtained from laboratory tests. The evaluation of these properties from laboratory test 
results is done according to theoretical constitutive laws describing the behaviour of the 
material.  

This section is a short description of the theoretical expressions of use for determining 
the mechanical properties required for the modelling. Complementary data are 
presented in appendix C. 

 

Deformation properties 

The deformation properties of the intact rock can be expressed by two parameters, the 
Young's modulus, E, and Poisson’s ratio, ν . These parameters are determined from 
uniaxial compression tests /ISRM, 1999/. UDEC uses the elastic constants K (bulk 
modulus) and G (shear modulus) as input parameters. These are related to E and ν by 
the following equations: 

( )
E

K
3 1 2

=
− ν

    (3.1) 

( )
E

G
2 1

=
+ ν

    (3.2) 

 
Strength properties 

Based on the results of uniaxial, triaxial and Brazil tests the strength of the intact rock 
/ISRM, 1983/ can be plotted in a σ1-σ3 diagram as shown in Figure 3-1, where σ1 and 
σ3 represent the maximum and minimum stresses at failure. The strength envelope can 
be either fitted by the Hoek-Brown (H-B) failure criterion, expressed as: 

a

3
1 3 c b

c
m sσ σ = σ + σ ⋅ ⋅ + σ 

  (3.3) 
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or by the Mohr-Coulomb (M-C) failure criterion /Hoek and Brown, 1997/ expressed as: 

( )
( ) ( )1 3

1 sin cos2 c
1 sin 1 sin

+ φ φσ = σ ⋅ + ⋅ ⋅− φ − φ  (3.4) 

where c and φ represent the cohesion and friction angle of the material. The parameters 
mb, s and a are material constants and σc is the uniaxial strength of the intact rock. For 
intact rock, the material constant s is set to 1.0 and a to 0.5. 

Using the H-B criterion, we can obtain a curve fitted to the experimental data by 
selecting an appropriate value for the parameter mb in equation (3.3), see Figure 3-1. 

Similarly using the M-C criterion, c and φ can be obtained by linear regression of the 
test results, see Figure 3-1. 

The greatest difference between the two failure criteria is at low compression stresses 
and tensile stresses. The influence of the strength failure criterion on strength properties 
has been studied and the results are presented in section 3.3.1. 
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Figure 3-1. Strength envelopes for the intact rock, using M-C and H-B failure criteria. 

 

3.1.3 Mechanical properties of fractures 

Numerical modelling of practical problems with fractures may take fractures through 
rather complex load paths. In UDEC two constitutive joint models are available for 
modelling rather complex load paths. The models are the Continuously Yielding joint 
model and the Barton-Bandis joint model. The theoretical background of these models 
is described in the following sections as they are implemented in UDEC. 

The term “joints” is used when referring to the constitutive models and input 
parameters, as it is the term used in the UDEC manual. 
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Continuously Yielding joint model 

The Continuously Yielding joint model proposed by /Cundall and Hart, 1984/ is 
intended to simulate the internal mechanism of progressive damage of fractures under 
shear. The essential features of the Continuously Yielding model include the following: 

• The curve of shear stress/shear displacement is always tending toward a target, shear 
strength of the rock fracture. 

• The target shear strength decreases continuously as a function of accumulated 
plastic displacement. 

• The dilation angle is the difference between the apparent friction angle and the 
residual friction angle. 

The model is described as follows. The response to normal loading is expressed 
incrementally as: 

n n nK u∆σ = ⋅∆   (3.5) 

where ∆σn is the increment in normal stress, ∆un the increment in normal displacement, 
and the normal stiffness, Kn, is given by: 

ne

n n nK a= ⋅σ   (3.6) 

representing the observed increase of stiffness with normal stress. an, initial joint normal 
stiffness, and en, exponent of joint normal stiffness, are model parameters. In general, 
zero tensile strength is assumed. 

For shear loading, the model displays irreversible, non-linear behaviour. The shear 
stress increment, ∆τ, is calculated as: 

s sF K u∆τ = ⋅ ⋅∆   (3.7) 

where ∆us is the increment in shear displacement, and the shear stiffness, Ks, can also be 
taken as a function of normal stress as: 

se

s s nK a= ⋅σ   (3.8) 

where as, initial joint shear stiffness, and es, exponent of joint shear stiffness, are model 
parameters. The tangent modulus, ∆τ, is governed in equation (3.7) by the factor F, 
which depends on the distance from the actual stress curve to the “target” or bounding 
strength curve, τm, as: 

( )
m

e

1
F

1 r

τ− τ
=

−
  (3.9) 

The factor re, which is initially zero, is intended to restore the elastic stiffness 
immediately after a load reversal – that is, re is set to τ/τm and therefore F is equal to 1. 
The bounding strength is given by: 

m n m stan( ) sgn( u )τ = σ ⋅ φ ⋅ ∆   (3.10) 
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The parameter φm can be understood as the friction angle that would apply if the joint 
were to dilate at the maximum dilation angle. As damage accumulates, this angle is 
continuously reduced according to the following equation: 

( ) p
m m b s

1 ujr∆φ = − φ −φ ⋅∆   (3.11) 

where the plastic displacement increment, p
su∆ , is defined as: 

( )p
s su 1 F u∆ = − ⋅ ∆ ,  (3.12) 

φb is the basic friction angle of the rock surface, and jr is a material parameter (with 
dimension of length) which expresses the joint roughness. 

The parameter jr controls the rate at which φm decreases with plastic shear displacement. 
A small value of jr causes φm to decrease rapidly; a large value of jr leads to a slower 
reduction of φm and therefore to a larger peak stress. The peak is reached when the 
bounding strength equals the shear stress. The incremental relation for φm is equivalent 
to: 

( )( ) p
i s

m m b b
uexp jr

 −φ = φ −φ ⋅ +φ  
  (3.13) 

where ( )i
mφ  is the initial value of φm and represents the in situ state of the joint. The 

plastic displacement, p
su , always increases. 

The effective dilatancy angle is calculated as: 

( )1
n bi tan−= τ σ −φ   (3.14) 

i.e. dilation takes place whenever the stress is above the residual strength level, and is 
obtained from the actual friction angle. 

The model parameters associated with the Continuously Yielding model are 
summarised in Table 3-2. 

 

Table 3-2. Parameters associated with the Continuously Yielding joint model 
/from UDEC, 2000a/. 

Parameter Description 
an Joint normal stiffness, initial value, MPa/m 
en Joint normal stiffness exponent 
as Joint shear stiffness, initial value, MPa/m 
es Joint shear stiffness exponent 
jr Joint roughness parameter, m 

( )i
mφ  Joint initial friction angle, º 

bφ  
Basic joint friction angle, º 

 

Barton-Bandis joint model 

Series of empirical relations have been developed by N. Barton and S. Bandis to 
describe the effects of surface roughness on discontinuity deformation and strength. 
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These relations are known collectively as the Barton-Bandis joint model. A complete 
explanation of these relations can be obtained from /Barton, 1982; Bandis et al, 1985/. 
In summary, the Barton-Bandis joint model encompasses the following features 
/UDEC, 2000b/. 

 

Joint normal behaviour 

The joint normal behaviour for the Barton-Bandis model encompasses: 

• hyperbolic stress-displacement path, 

• hysteresis due to successive load/unload cycles, 

• normal stiffness increase due to successive load/unload cycles, 

• normal stiffness change due to surface mismatch caused by shear displacement. 

The equation that controls the normal stress-displacement path for the Barton-Bandis 
model is (see Figure 3-2): 

nc ni
n

nc

mi

u K
u1

⋅σ = −
− υ

 (3.15) 

where  unc is the current normal displacement (mm), 

 Kni is the initial normal stiffness, dependent to loading cycle (MPa/mm), 
and 

 υmi is the maximum allowable closure (mm) for load cycle i. 

 

σ

unc
closure, un

ajn

υmi

 
Figure 3-2. Normal stress-displacement curve /UDEC, 2000b/. 
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The initial joint normal stiffness (Kni), which changes with load cycle number, is 
calculated by: 

0
ni 0

jn

JCSK 0.0178 1.748 JRC 7.155a= ⋅ + ⋅ −  (3.16) 

where JCS0 is the laboratory-scale joint wall compression strength, 

 ajn is the joint aperture at zero normal stress, and 

 JRC0 is the laboratory-scale roughness coefficient. 

The maximum allowable closure (υmi) for load cycle i is given by: 

iD

0
mi i i 0 i

jn

JSCA B JRC C a
 υ = + ⋅ + ⋅  

 (3.17) 

where Ai, Bi, Ci and Di are constants associated with the load cycle number. 

To calculate the path for an unload cycle following a load cycle, a new υmi and Kni are 
calculated. Kni is calculated from equation (3.16) using a new aperture value, ajn, which 
is reduced by the irrecoverable closure, υirr. The current maximum allowable closure, 
υm, is recalculated from equation (3.17), also using ajn reduced by υirr. The irrecoverable 
closure, υirr, is calculated from equation (3.18): 

nl0
irr 1 2

jn

uJCSC C a 100
  υ = − ⋅ ⋅    

 (3.18) 

where  unl is the maximum closure for a completed load cycle, and 

 C1, C2 are empirical constants for the current cycle. 

To maintain displacement continuity, υirr is added to the sum of the previous 
irrecoverable closures and subtracted from the current closure. For the next load cycle, 
Kni remains constant, and a new υm is calculated using equation (3.17) and the constants 
for the next load cycle. If a partial unload was done, the hyperbolic curve is shifted on 
the deformation axis, and υmi is modified to provide load continuity. 

Successive load/unload cycles will continue to stiffen the joint normal behaviour, see 
Figure 3-3. The empirical constants derived by Barton and Bandis do not change after 
cycle 4, but the aperture will continue to decrease. The load cycle number will not 
increase beyond 10, and the load and unload curves will become identical. To maintain 
numerical stability, the stiffness of the model is limited to the joint normal stiffness at 
expected normal loads, Kn, which is specified as input to UDEC. A linear stiffness 
function is substituted into the stress displacement calculations when the stiffness of the 
Barton-Bandis model exceeds Kn. 

To represent an undisturbed joint in a rock mass, all joints are numerically cycled three 
times from zero normal stress to 60% of the joint wall compressive strength. Therefore, 
each joint starts at normal load cycle 4 and shear cycle 1. 



 38 

0.6000.4000.2000.000

0

5

10

1 2

15

20

25

30

35

40

3 4

closure (mm)

unpc υ

 

Figure 3-3. Joints numerically cycled to load cycle 4 at start of execution /UDEC, 2000b/.  

 

Joint shear behaviour 

The joint shear behaviour for the Barton-Bandis model encompasses the following 
features: 

• dilation as a function of normal stress and shear displacement, 

• joint damage due to post-peak shear, and 

• reduced secondary peak shear upon post-peak shear reversal. 

The shear resistance of a joint is calculated using the concept of mobilised roughness 
/Barton, 1982/. The mobilised roughness coefficient, JRCmob, is a function of the joint 
properties: length, normal load, current shear displacement, and shear displacement 
history. The relation between normalised shear displacement (us/us, peak) and the 
normalised mobilised roughness coefficient (JRCmob/JRCpeak) is shown in Figure 3-4. 
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Figure 3-4. Model for simulating the effects of displacement on shear strength of joints /Barton, 
1982/. 

 

To implement the shear stress model, a limiting shear stress, τl, is calculated from the 
full-scale roughness coefficient, JRCn, the joint wall compressive strength, JCSn, and 
the peak shear displacement, us, peak: 

00.02 JRC
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n 0
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 
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 
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 
   (3.21) 

where  L0 is the laboratory-scale joint length,  

 Ln is the field-scale joint length, 

 JCS0 is the laboratory-scale joint wall compression strength, and 

 JRC0 is the laboratory-scale roughness coefficient.   

The mobilised joint roughness coefficient, JRCmob, is calculated according to: 

JRCmob = B ⋅ JRCn  (3.22)  

where B is a function of shear displacement, us/ us, peak. 
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The limiting shear stress, τl, is calculated by: 

( )n
l n mob 10 r

n

JCStan JRC log τ = σ ⋅ ⋅ +φ σ 
   (3.23) 

where  φr is the residual friction angle, and  

σn the current normal stress. 

The shear stress approaches the limiting shear stress incrementally by multiplying the 
shear displacement increment, ∆us, by the shear stiffness, Ks. The stiffness is defined as 
one of two initial linear segments of the load path, depending on shear displacement. 
The incremental shear stress, ∆τ, is calculated from the following expression: 

s su K∆τ = ∆ ⋅    (3.24) 

where 

r
s n n

s,peak

0.75
K tan L

0.2 u

 ⋅φ= σ ⋅ ⋅  ⋅ 
 for (us/ us, peak) < 0.20  (3.25) 

or 

r
s n n

s,peak

0.25
K tan L

0.1 u

 ⋅φ= σ ⋅ ⋅  ⋅ 
 for (us/ us, peak) > 0.20  (3.26) 

 

The mobilised dilation is also calculated from the mobilised roughness. The formulation 
calculates a normal dilation increment, ∆un, based on the shear displacement increment, 
∆us, and the current normal stress, σn: 

( )n
n s mob 10

n

JCSu u tan 0.5 JRC log ∆ = ∆ ⋅ ⋅ ⋅ σ 
  (3.27) 

When successive shear cycles of forward and reverse shear occur, the mobilised 
roughness is reduced by 50% each time the peak shear displacement is passed. 

The model parameters associated with the Barton-Bandis model are summarised in 
Table 3-3. 

Table 3-3. Parameters associated with the Barton-Bandis model  
/from UDEC, 2000b/. 

Parameter Description 
JRC0 Lab-scale roughness coefficient 
JCS0 Lab-scale joint wall compressive strength, MPa 
L0 Lab-scale joint length, m 
φr Residual angle of friction, º 
σc Intact rock uniaxial compressive strength, MPa 
Kn Normal stiffness of joint at expected normal loads, 

MPa/m 
Ks Initial shear stiffness of joint at expected normal loads, 

MPa/m  
ajn Joint aperture at zero normal stress, mm 
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The mechanical properties of fractures that are used as input in these models are 
evaluated from laboratory tests, see appendix C. 

The influence of the constitutive model on the mechanical properties of rock fractures is 
handled in this project and the results are presented in section 3.3.6. 

 
3.2 Set-up of the numerical model 
3.2.1 Description of the model 

The numerical model simulates a plain strain-loading test of the rock mass with constant 
confining stress. Different values of confining stresses were applied for the same set-up 
of parameters, simulating: 

• the variation of in situ stresses with depth, 

• at the same depth, the stress conditions (I) in the undisturbed rock mass, and (II) at 
the proximity of the tunnel, see Figure 3-5. 

 

 

Figure 3-5. Stress state in the rock mass in relation to an excavation.  

 

The rock mass is loaded by means of a top loading block that is pushed down with a 
constant velocity. Applying the vertical loading by means of a top block generated a 
better distribution of stresses and deformation for measurements in the model under 
testing. If not using a top block, several monitoring profiles in the 30 m rock blocks had 
been required. High mechanical properties are assigned to the loading block to make it 
stiff and non deformable (the deformation modulus is set about 1000 times higher than 
the deformation modulus of the intact rock). The interface between the loading block 
and the rock mass block is assumed to have no friction.  

Actual in situ and confining stresses are applied to the model, see Figure 3-6a. The 
model is anisotropic in respect to the in situ stresses, and the values of stresses are 
assigned to the model in accordance to the orientation of the 2D trace sections towards 
the 3D stress field, and the depth of the simulated block. Two different models are then 
tested depending on the Stress State of the rock mass: 
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• (I) Plain strain loading test on the undisturbed rock mass, Figure 3-6c-I, 

• (II) Unloading to reach a confining stress of 75% of the in situ horizontal stress,  
see Figure 3-6b. This is to simulate the conditions at the proximity of a tunnel. 
When the equilibrium of the model is reached, the plain strain-loading test starts 
(Figure 3-6c-II).  

 

 

Figure 3-6. Simulations of the Stress State (I) in the in situ rock mass, and (II) at the proximity 
of an excavation. 

In both cases, the loading is applied gradually to the model by alternation of 
loading/equilibrium cycles. The loading block is pushed down at constant velocity for a 
finite number of computational cycles resulting in a specific vertical deformation. Then 
the boundary velocity at the top is set to zero and state equilibrium is reached by cycling 
until the unbalance force is insignificant. The state of stress and vertical and horizontal 
deformations are then recorded before the next loading cycle starts. By applying this 
procedure, the deformation velocity has very little influence on the results. 
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The size chosen for the rock block model for characterisation purposes is 30⋅⋅⋅⋅30 m, see 
section 1.2.2. As described in section 2.2.9, two different set-ups are used for applying 
confining stresses: 

• Confining stresses are applied on both vertical sides, and one point is fixed on the 
bottom boundary, Figure 3-7a. This set-up simulates conditions valid for the 
characterisation of the undisturbed rock mass in in situ conditions. 

• Confining stresses are applied on one vertical side, the other vertical side is fixed in 
the horizontal direction, and the bottom boundary is fixed in the vertical direction, 
Figure 3-7b. This set-up represents conditions around a tunnel. In this case, the rock 
mass will give some constraints on one side and the rock blocks are free to move on 
the free face towards the tunnel. As described in the previous paragraph, the 
confining stress is reduced to 75% of the horizontal in situ stress. Ideally it would be 
required to have zero confining stress on the free vertical side but this would lead to 
instability in the model and to numerical problems. 

 

 

Figure 3-7. The numerical UDEC models: (a) Confining stresses applied on both sides, and (b) 
Confining stresses applied on one vertical side. 

 

The influences of the boundary conditions and of the model size are investigated in 
more detail in sections 3.3.2 and 3.3.3. 

 

3.2.2 Evaluation of the rock mass deformation properties from  
the model 

During the numerical loading test the vertical stress, σv, and horizontal deformation, ux, 
are recorded as a function of the vertical deformation, uy. The recording process is 
described in section 2.2.10. The Poisson's ratio, νm, and the deformation modulus, Em, 
of the rock mass are calculated according to the following equations: 
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where Lx and Ly are the length over which ux and uy are monitored. Equations (3.28) 
and (3.29) are derived from Hooke´s law for plain strain loading. When evaluating the 
Poisson’s ratio and the deformation modulus of the rock mass, ux, uy and σy are taken 
from the initial linear part of the recorded curves, see Figure 3-8. 

 

 
Figure 3-8. Evaluation of deformation properties. 

 
 
3.2.3 Evaluation of the rock mass strength from the model 

In geotechnical software a failure criterion is used to describe the rock mass strength. 
Two well-known failure criteria are the Hoek-Brown and Mohr-Coulomb criteria. 

The generalised Hoek-Brown failure criterion for jointed rock masses is defined by 
equation (3.3). The values of the model constants should be determined by statistical 
analysis of sets of stresses (σ1 and σ3) at failure. The range of minor principal stress 
values, σ3, over which these combination of stresses are given is critical in determining 
reliable values for the constants. 

Most geotechnical softwares use the Mohr-Coulomb’s failure criterion, in which the 
rock mass strength is defined by the cohesive strength, cm, and the angle of friction, φrm. 
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The linear relationship between the major and minor principal stresses, respectively σ1 
and σ3, for Mohr-Coulomb criterion is given by equation (3.4). 

There is no direct correlation between equation (3.4) and the non-linear Hoek-Brown 
criterion defined by equation (3.3). Equation (3.4), describing the Mohr-Coulomb mode, 
can also be fitted to pairs of principal stresses at failure. 

In order to keep down the number of numerical simulations the Mohr-Coulomb failure 
criterion has been used to evaluate the strength of the rock mass. A sensitivity analysis 
on the failure criterion used is presented in section 3.3.1.  

The evaluated rock mass properties shall be valid for a 30⋅⋅⋅⋅30 m rock volume around the 
deposition tunnels, see section 1.2.2. The confining stress around the tunnels will range 
from zero at the tunnel wall, to the horizontal initial stress at a distance of about five 
times the radius of the tunnel (about 15 m). To get an average it was decided to run two 
loading tests in the numerical model. The first test is first consolidated to the initial 
stresses and then loaded in vertical compression to failure. The second test is first 
consolidated to the initial stresses, then unloaded to a horizontal stress that is one 
quarter of the initial value (valid for a distance of about 0.2 times the radius of the 
tunnel from the tunnel wall) and then loaded in vertical compression to failure, see 
section 3.2.1. From these numerical loading tests two sets of principal stresses at failure, 
σ1a, σ3a and σ1b, σ3b, are obtained. σ1 at failure is evaluated at the crossing point of two 
straight lines. These are regression lines (least square methods) of the two sections of 
the recorded curve, before and after breakpoint, see Figure 3-9. 

 
Figure 3-9. Evaluation of the major principal stress at failure. 

 

With respect to the Mohr-Coulomb failure criterion, the cohesion, cm, the friction angle, 
φrm, and the uniaxial strength, σcm, of the rock mass are calculated according to the 
following equations /Hoek and Brown, 1997/:  
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( )rm
k 1arcsin k 1

−φ = +  (3.30) 

cm 1b 3bkσ = σ − σ  (3.31) 

( )rm
m cm

rm

1 sin
c 2cos

− φ= σ ⋅ φ   (3.32) 

where ( )
( )

1a 1b

3a 3b

k
σ − σ= σ − σ   (3.33) 

 

3.3 Sensitivity analysis on the model 
3.3.1 Influence of the material model for the intact rock 

Intact rock models 

Three different failure criteria models for the intact rock have been tested, first the 
Mohr-Coulomb (M-C) failure criterion, second the Hoek-Brown (H-B) failure criterion, 
and third a Strain–Softening model (S-S) based on M-C. The mechanical properties of 
the intact rock, here a diorite, are determined from the uniaxial, triaxial and Brazil tests, 
see also appendix C, and are the input parameters to the different models. They are 
shown in Table 3-4 to Table 3-6. 

The input parameters used for the Strain–Softening model are given according to Figure 
3-10 to Figure 3-11. The variations of cohesion, friction angle and tensile strength with 
plastic strain are established in order to give a reduction of about 60% of the strength 
after the peak value. 

Table 3-4. Input parameters to the M-C model. 

E, GPa ν c, MPa φ, o ψ, o σti, MPa 
73.0 0.27 31 49 0 –14.8 

 

Table 3-5. Input parameters to the H-B model. 

E, GPa ν σc, MPa mb 
73.0 0.27 212 14.71 

 

Table 3-6. Input parameters to the S-S model. 

E, GPa ν c, MPa φ, o ψ, o σti, MPa 
73.0 0.27 See Figure 3-10 See Figure 3-11 0 See Figure 3-12 

 

With E Deformation modulus of the intact rock 
 c Cohesion of the intact rock 
 ν Poisson’s ratio of the intact rock 
 φ Friction angle of the intact rock 
 ψ Dilation angle of the intact rock 
 σti Tensile strength of the intact rock 
 σc Uniaxial compressive strength of the intact rock 
 mb Parameter constant, dependent onto the intact rock 
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Figure 3-10. Variation of cohesion with plastic strain. 
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Figure 3-11. Variation of friction angle with plastic strain.  
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Figure 3-12. Variation of tensile strength with plastic strain.  
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In Figure 3-13 the simulated stress-deformation curves obtained by applying different 
material models are presented for a 30⋅30 meters block of intact rock, confined at 22.4 
MPa. The mechanical properties are given in Table 3-7. 
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Figure 3-13. Stress-deformation curves for intact rock, obtained for M-C, H-B and S-S models, 
confined at 22.4 MPa.  

 

Table 3-7. Evaluation of the deformation properties and stress at failure on the 
intact rock, for the different rock models. 

Rock model σ3 [MPa] νm Em [GPa] σ1F [MPa]
H-B 22.4 0.23 72.7 341.1
M-C 22.4 0.23 72.7 339.8
S-S 22.4 0.23 72.7 329.0  

 

Fracture mechanical properties 

For the tests on different material models for the intact rock, the Barton-Bandis joint 
model as implemented in UDEC is used. The fracture properties are set according to 
Table 3-8.  
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Table 3-8. Fracture properties applied when testing intact rock models. 

Kn 
(1) 

(MPa/m) 
Ks 

(1) 

(MPa/m) 
φr 

(°) 

σc 
(MPa) 

JRC0 JCS0 
(MPa) 

L0  

(m) 

ajn  

(mm) 

44e3 29.9e3 30.0 
 

212 9.3 170 5.51e–2 0.58 

(1) Values expected at σn=23 MPa 

with Kn Joint normal stiffness at expected normal loads 
 Ks Joint shear stiffness at expected normal loads 
 φr Joint residual angle of friction 
 σc Uniaxial compressive strength of the intact rock 
 JRC0 Joint Roughness Coefficient 
 JCS0 Joint Wall Compressive Strength 
 L0 Laboratory-scale joint length 
 ajn Joint aperture at zero normal stress 
  
 
Rock mass behaviour 

In Figure 3-14 the calculated stress-deformation curves for a fractured rock mass are 
shown for different confining stresses. The rock mass block is 30⋅⋅⋅⋅30 meters and loaded 
with confining stresses on both vertical sides. The block is loaded with constant 
deformation velocity in the vertical direction. For each confining stress three curves  
are shown that represent the three different material models applied to simulate the 
behaviour of the intact rock. The differences between the models are quite insignificant 
up to the peak value. The S-S model shows a pronounced peak at all confining stress 
levels. At the highest confining stress the H-B and M-C models provide a higher stress 
at failure than the S-S model. The deformation properties and stresses at failure are 
presented in Table 3-9. 
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Figure 3-14. Calculated stress-deformation curves for material model H-B, M-C and S-S at 
different confining stresses. 

 

Table 3-9. Evaluation of the deformation properties and stress at failure for the 
different rock models at different stress levels. 

Rock model σ3 [MPa] νm Em [GPa] σ1F [MPa]
22.4 0.20 45.0 170.6

H-B 11.2 0.23 36.7 112.7
5.6 0.26 30.0 73.3

22.4 0.27 41.7 179.2
M-C 11.2 0.29 38.2 103.4

5.6 0.39 27.2 66.8

22.4 0.21 43.0 171.0
S-S 11.2 0.20 40.0 115.0

5.6 0.26 30.3 82.6  

 

Hoek and Brown envelopes for a fractured rock mass are fitted to the stresses at failure 
for each model. For the S-S model, the peak values are used and for the H-B and M-C 
model the stresses at failure are evaluated according to the procedure outlined in section 
3.2.3. The H-B envelopes and the data points are shown in Figure 3-15. The same data 
points can be fitted to the Mohr-Coulomb envelopes, see Figure 3-16. The three models 
give almost the same results except at low stresses where the M-C model gives the 
lowest stress at failure and the S-S model the highest.  
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Figure 3-15. Hoek and Brown failure envelopes. 
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Figure 3-16. Mohr-Coulomb envelopes. 

 

Considering the fair discrepancy of the results obtained on stresses at failure and 
envelopes on the tested diorite using the different intact rock models, and considering 
that the M-C model is much simpler to use than the H-B and S-S models in UDEC, the 
M-C model will be used further on to simulate the behaviour of the intact rock. 
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3.3.2 Influence of boundary conditions  

The influence of both set-ups for boundary conditions, presented in section 3.2.1, on the 
mechanical properties of the rock mass is analysed in this section. 

Two different set-ups were simulated, one run with confining stresses applied on the 
right vertical side only, the other one with confining stresses applied on both vertical 
sides, all other parameters remaining constant, see Figure 3-17. 

 

 

Figure 3-17. Set-up of the boundary conditions for the same model size; a) loading on one 
vertical side and b) loading on both vertical sides. 

 

The modifications made on the model as illustrated in Figure 3-17a are presented in 
Figure 3-17b, and are the following: 

• No assumptions of zero deformation on the left vertical boundary. Instead, this side 
is under confining stress as is the right vertical side. 

• The same assumptions are applied on the bottom boundary (see section 3.2.1), but a 
grid point has been fixed to avoid free side sliding of the model when loading. 

The models were run on granodiorite as intact rock, confining stresses at 22.4 MPa, 
Continuously Yielding model for the fractures, and M-C model for the intact rock. 

 

Simulations with fracture traces extracted from the same trace section 

The influence of the boundary conditions has been tested on two model sizes, 20⋅⋅⋅⋅20 and 
30⋅⋅⋅⋅30 m. First, the fracture traces used as input in the different UDEC models were 
extracted from the same 2D fracture trace section, see Figure 3-18. This was meant to 
decrease sources of variation in relation to the geometry of the model. 
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The model loaded on both vertical sides is subjected to little more deformation than the 
model loaded on one vertical side, and provides a lower value of stress at failure, see 
Table 3-10. However, the variations are not so important, and almost insignificant in the 
case of the 30⋅⋅⋅⋅30m model. Anyhow, the results are built on only one computation. 

Table 3-10. Rock mass deformation properties and stresses at failure for 
different boundary conditions, same fracture section. 

Model Em (GPa) νm σ1F(MPa) for 
σ3=22.4 MPa 

20⋅⋅⋅⋅20 – 1 side 45.5 0.28 202.6 
20⋅⋅⋅⋅20 – 2 sides 43.0 0.28 193.5 
30⋅⋅⋅⋅30 – 1 side 47.3 0.27 191.2 
30⋅⋅⋅⋅30 – 2 sides 47.3 0.27 189.4 

 

 

Simulations based on sampled fracture networks 

In order to assess the variability of the influence of boundary conditions, the input data 
for fracture traces have been taken randomly from different realisations of the DFN 
model on a vertical section of a given orientation, see section 2.2.3. The same model 
set-up as described above has been used, except for the generation of the rock blocks in 
UDEC. Ten 2D trace sections extracted from 10 simulations of the DFN model were 
used for both models, and both boundary conditions’ set-up, leading to a total of 40 
UDEC model runs. The results of the simulations are presented in Table 3-11. 

Table 3-11. Rock mass deformation properties and stresses at failure for 
different boundary conditions, for sample fracture simulations. 

Model Em (GPa) νm σ1F(MPa) for 
σ3=22.4 MPa 

 Mean Std dev. Mean Std dev. Mean Std dev. 
20⋅⋅⋅⋅20 – 1 side 47.2 7.8 0.29 0.03 193.3 24.1 
20⋅⋅⋅⋅20 – 2 sides 45.8 8.6 0.29 0.03 185.3 26.2 
30⋅⋅⋅⋅30 – 1 side 41.3 5.6 0.29 0.02 166 26.2 
30⋅⋅⋅⋅30 – 2 sides 41.7 6.3 0.29 0.03 166.5 27.6 

 

The 20⋅⋅⋅⋅20 m model that is confined on both vertical sides is subjected to more 
deformation than the 20⋅⋅⋅⋅20 m confined on one side, and provide lower values for stress 
at failure. Meanwhile, the values obtained on the 30⋅⋅⋅⋅30 m model are almost the same in 
both cases, but fairly higher when confining stresses are applied on both vertical sides, 
see Table 3-11. 

 

Conclusions 

The boundary conditions seem to have very little influence on the rock mass 
deformation properties and stress at failure, especially when running the 30⋅⋅⋅⋅30 m model. 

More than the boundary conditions, the fracture pattern, which controls the generation 
of rock blocks in UDEC, seems to have a strong influence on the deformation properties 
of the simulated rock mass. 
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3.3.3 Influence of domain size  

Simulations with fracture traces extracted from the same trace section 

In order to determine the influence of the domain size on mechanical properties, models 
of different sizes were built. The chosen sizes were 20⋅⋅⋅⋅20, 30⋅⋅⋅⋅30, 40⋅⋅⋅⋅40 and 60⋅⋅⋅⋅60 m.  

To enable comparisons in the best possible way, the fracture network in each model was 
built from the same fracture traces’ file by increasing the simulation window from the 
centre of the section, see Figure 3-18.  

 
Figure 3-18. Construction of the fracture pattern for the different models. 

 

The same set-up of parameters (initial stresses, confining stresses applied on both 
vertical sides, rock type: granodiorite) was applied for the intact rock and the fractures. 
The intact rock and rock fracture models used in UDEC were respectively a Mohr-
Coulomb model and a Continuously Yielding model with constant normal and shear 
stiffness, and constant friction angle. Only confining stresses of 22.4 MPa were 
simulated. The set-up of the model is illustrated in Figure 3-17b. Four different models 
were run, and one simulation was run for each model size. The results are presented and 
compared in Table 3-12. 

 

Table 3-12. Rock mass deformation properties and principal stresses at failure 
for different model sizes, confined on both vertical sides. 

Model Em (GPa) νm σ1 F(MPa) for 
σ3=22.4 MPa 

20⋅⋅⋅⋅20 43 0.28 193.5 
30⋅⋅⋅⋅30 47.3 0.27 189.4 
40⋅⋅⋅⋅40 47.2 0.26 168.7 
60⋅⋅⋅⋅60 44.3 0.26 167.3 
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The results of the simulations do not define any trend in the variation of mechanical 
properties in relation to the size of the model, see Table 3-12. Anyhow, these results are 
based on only one simulation for each model size. 

 

Simulations based on sampled fracture networks 

In order to get more results more simulations were run on the different model sizes. Ten 
two-dimensional fracture trace sections were extracted for each model size from ten 
realisations of the DFN model, according to the procedure described in section 2.2.3.  

The three model sizes, 20⋅⋅⋅⋅20, 30⋅⋅⋅⋅30 and 40⋅⋅⋅⋅40 meters, were then run ten times, for each 
fracture trace sections, all other parameters being constant. The statistical interpretation 
of the results of these simulations is presented in Table 3-13. No trend for the evaluation 
of mechanical properties for different model sizes can be established from these 
simulations. 

 

Table 3-13. Rock mass deformation properties and principal stresses at failure 
for different model sizes, confining stresses applied on both vertical sides. 

Model Em (GPa)    ννννm    σσσσ1F (MPa) 
for σσσσ3333=22.4=22.4=22.4=22.4 MPa    

 Mean Std dev. Mean Std dev. Mean Std dev. 

20⋅⋅⋅⋅20 45.8 8.6 0.29 0.03 185.3 26.2 
30⋅⋅⋅⋅30 41.7 6.3 0.29 0.03 166.5 27.6 
40⋅⋅⋅⋅40 51.1 4.5 0.25 0.01 176.9 12.9 

 

The values presented in Table 3-12 are in the range of values expected according to the 
statistical distributions shown in Table 3-13. 

 

Conclusions 

It is not possible to define a trend of the rock mass mechanical properties in relation to 
the size of the model. For a specific geometry, the 30⋅⋅⋅⋅30 m model provides the highest 
deformation modulus, but values for the stress at failure that can be considered as mean 
values compared to the other models (Table 3-12). Nevertheless, when looking at the 
sample simulations, the 30⋅⋅⋅⋅30 m model generates the lowest mean values for the 
deformation modulus and stress at failure (Table 3-13). 

As mentioned in the previous section, the fracture pattern in the model seems to have a 
strong influence on the deformation properties of the simulated rock mass. Even when 
using the same fracture trace section, different rock blocks are created that are related  
to the different window sampling size, and the geometry of the rock blocks will be of 
prime influence on the rock mass mechanical properties. Hence, the variation of 
deformation and strength properties as presented in Table 3-12 would be related to the 
fracture pattern built in relation to the domain size, and not directly to the model size. 
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3.3.4 Influence of the discarded joints 

The fracture traces that terminate in the intact rock and do not intersect with any other 
fracture traces are discarded when “meshing” and generating the rock blocks in UDEC.  

In the following, fracture traces defined as input from the DFN model are called actual 
fractures. The artificial segments designed to retain in the model actual fractures that are 
discarded by UDEC are called fictitious joints. 

In order to determine the influence of discarded joints on the mechanical properties of 
the rock mass, a manual procedure has been applied that enables to artificially maintain 
actual fractures that are otherwise discarded by UDEC. The plots of actual fracture 
traces before meshing, and of the rock blocks as generated by UDEC were compared. 
The fracture traces that are discarded by UDEC when processing were identified and 
linearly extended until their intersections with actual fractures that remain in the model 
after “meshing” or until their intersections with the boundary of the model, see Figure 
3-19. This procedure was applied on two different 2D fracture trace sections that had 
also been tested with the “usual” described set-up for modelling.  
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  (a) (b) 

Figure 3-19. (a) Geometry of the model when some fracture traces are discarded by UDEC;  
(b) Modified model geometry: actual fractures are in purple, fictitious joints in blue. 

 

The rock joint model chosen is a Barton-Bandis model for actual fractures and a 
Coulomb slip model for the fictitious joints. The mechanical properties of the fictitious 
joints had been defined as to avoid their impact on the rock mass behaviour, see Table 
3-14. To determine these properties, a test was run on the intact rock, then on the rock 
block where all fractures (actual and fictitious) were assumed to possess fictitious 
mechanical properties. Parameters of the model that influence on the behaviour of the 
rock model (normal, Kn, and shear, Ks, stiffness) were adjusted until the fractures did 
not have any impact on the deformation of the rock.  

The mechanical properties assigned to the actual fractures are in accordance to 
properties used in the Test Case, see section 5.2.2, and are presented in Table 3-14.  
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Table 3-14. Mechanical properties assigned to the “real” and  
“artificial” fractures. 

 Kn 
(1) 

(MPa/m) 
Ks 

(1) 

(MPa/m) 
cp 

(MPa) 
φp 
(°) 

φr 
(°) 

σtj 
(MPa) 

σc 
(MPa) 

JRC0 JCS0 

(MPa) 
L0 

(m) 
ajn 

(mm
) 

Actual fractures 44e3 29.9e3 – – 30 – 218 9.3 170 5.5e–2 0.58 
Fictitious joints 3e6 5e6 1e06 38 – 1e6 – – – – – 

(1) Values expected at σn=23 MPa 

with Kn Joint normal stiffness at the expected normal stress 
 Ks Joint shear stiffness at the expected normal stress 
 cp Joint cohesion 
 φp Joint angle of friction 
 φr Joint residual angle of friction 
 σtj Joint tensile strength  
 σc Intact rock uniaxial compressive strength 
 JRC0 Lab-scale joint roughness coefficient 
 JCS0 Lab-scale joint compressive strength 
 L0 Lab-scale joint length 
 ajn Initial aperture at zero stress 
 

The set-up used is a 30⋅⋅⋅⋅30 m model, with confining stress applied on both vertical sides; 
the M-C model is used to simulate the intact rock. 

Two different models were run: (1) actual fractures and fictitious joints are assigned 
their respective mechanical properties, as defined in Table 3-14; (2) both actual 
fractures and fictitious joints are assigned mechanical properties of actual fractures. 

 

Models with actual fractures and fictitious joints  

Only one rock block model was run with this set-up. The stress-deformation curves 
obtained by simulations of this model are illustrated in Figure 3-20 and the interpreted 
mechanical properties are presented in Table 3-15. The results obtained for the “usual” 
run are presented for comparison.  

The modified rock model built on actual fractures and fictitious joints appear to be 
slightly stiffer than the model with discarded fractures (“usual” run), but the difference 
is fairly insignificant. 
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Figure 3-20. Stress-deformation curves for one fracture network, section 01. The red lines 
correspond to simulations with discarded fractures (“usual” runs), the green lines to 
simulations where actual fractures and fictitious joints are used. 

 

Table 3-15. Rock mass mechanical properties, section 01, actual fractures and 
fictitious joints. 

Joint model σ3 [MPa] νm Em [GPa] σ1F [MPa]
"usual" run B-B 22.4 0.24 53.3 215.2

actual fract. and fictitious
joints B-B / M-C 22.4 0.23 53.5 215.8

 

 

Fictitious joints as actual fractures 

In this case, mechanical properties of actual fractures (Table 3-14) were assigned to 
both actual fractures and fictitious joints. Two models were run for two different 
fracture traces’ section and the stress-deformation curves are shown in Figure 3-21.  
The curves obtained for the “usual” run are also shown for comparison. 
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 (a)  (b) 

Figure 3-21. Stress-deformation curves for two geometrical models. (a) fracture section 01; (b) 
fracture section 19. The red lines correspond to simulations with discarded fractures (“usual” 
runs), the black lines to simulations where actual fractures and fictitious joints are assigned 
mechanical properties of actual fractures. 

 

The interpreted mechanical properties for both models are presented in Table 3-16. 

The influence of the fictitious joints, modelled as actual fractures, on the mechanical 
properties of the rock mass is limited, but not of the same range for both models. The 
model built from trace section 01 becomes more deformable when run with actual 
fractures and fictitious joints modelled as actual fractures. Results from trace section 19 
show that the model run with actual fractures and fictitious joints as actual fractures is 
slightly stiffer than the same model in “usual” run, see Table 3-16. 

Table 3-16. Mechanical properties of the rock mass, for two different  
trace sections. 

section Joint model σ3 [MPa] νm Em [GPa] σ1F [MPa]
"usual" run B-B 22.4 0.24 53.3 215.2

fictitious joints as actual B-B 22.4 0.21 46.7 193.8
"usual" run B-B 22.4 0.31 36.1 157.6

fictitious joints as actual B-B 22.4 0.30 38.8 164.3

01

19

 

It seems that the geometry of the fracture network and of the rock blocks generated in 
UDEC is the main factor to influence on the mechanical properties when extending 
fractures and creating fictitious joints. 

The influence of in situ stresses on the behaviour of the modified rock models was 
simulated by running the model built on trace section 19, assuming two different levels 
of confining stress, 22.4 MPa and 5.6 MPa, see Figure 3-22. The influence of the 
fictitious joints (modelled as actual fractures on this model) on the mechanical 
properties of the rock mass is almost insignificant when testing at 22.4 MPa confining 
stress, see Table 3-17. At the same stress level and for the same set-up, the model built 
on trace section 01 (see Table 3-16) showed a slight increase in the deformation 
modulus and decrease in stress at failure. At lower confining stresses, the modified 
network shows a lower Young’s modulus but higher stress at failure than the “usual” 
run, see Table 3-17. 
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Table 3-17. Deformation properties and stress at failure, trace section 19, for the 
“usual” run and for fictitious joints modelled as actual fractures. 

Joint model σ3 [MPa] νm Em [GPa] σ1F [MPa]
"usual" run B-B 22.4 0.31 36.1 157.6

5.6 0.41 25.9 61.4

fictitious joints as actual B-B 22.4 0.30 38.8 164.3
5.6 0.46 22.1 71.4  

 

 

Figure 3-22. Stress-deformation curves for one fracture network (trace section 19). The red 
lines correspond to simulations with discarded fractures (“usual” runs), the black lines to 
simulations where actual fractures and fictitious joints are assigned mechanical properties of 
actual fractures. 

 

Conclusions 

As regard to the simulations that have been run, the impact of the discarded fractures on 
the deformation properties of the rock mass seems to be almost insignificant. The rock 
mass even appears to be slightly stiffer when running with actual fractures and fictitious 
joints. This could be due to numerical problems at contacts on the fractures, and 
particularly at the contact nodes between fictitious joints and actual fractures. Problems 
might be due to high stiffness contrast between actual fractures and fictitious joints. 
Moreover, assigning different properties to different parts of the same fracture is 
difficult to achieve in UDEC, as some fracture sections might be assigned wrong 
properties, and some segments seem not to possess any properties at all. This is due to 
the fact that “UDEC” can slightly translate fracture traces when meshing. The problems 
are particularly pronounced when using the B-B joint model. Hence, the rock model 
must be checked and modified until the mechanical properties have been properly 
assigned to all segments. 

Assigning mechanical properties of actual fractures even to the fictitious joints did not 
reveal important modifications on the deformation properties. The variation of the 
deformation properties and rock mass strength might mostly depend on the fracture 
pattern and the way “artificially” extended fractures change the generation of rock 
blocks in UDEC. 
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Nevertheless, keeping the parts of fractures that terminate in the rock or isolated 
fractures would be required if studying and simulating fracture propagation. 

The procedure of extending and keeping isolated fractures is highly time-consuming. 
Since the deformation properties and stress at failure were not significantly affected by 
the fact that fractures are discarded when processing, the models have all been run by 
applying “usual” UDEC procedure with discarded fractures. 

 

3.3.5 2D simplification from the 3D model  

The transfer of a three-dimensional fracture network into a two-dimensional trace 
network with the same overall mechanical properties is not trivial. For example, even  
if there are no block formed by the fractures in a three-dimensional fracture network, 
fracture traces in a two-dimensional cross-section may form blocks. The difference 
between the 3D and 2D model is likely to depend on the nature of the fracture network.  

The number of fractures generated in a 3D DFN model is highly variable depending on 
the radius size distribution of the fractures, and of the truncation value for the minimum 
fracture radius size. Nevertheless, a real fracture network model for a 30⋅⋅⋅⋅30⋅⋅⋅⋅30 m cube 
can contain from 1000 to more than 10000 fractures. Applying the parameters defined 
for the DFN model in the Test Case, and only representing fractures with a radius larger 
than 0.5 m, leads to 15000 to 17000 fractures in a 30⋅⋅⋅⋅30⋅⋅⋅⋅30 m cube. It is at the moment 
unrealistic to do 3D simulations with real fracture networks, but some tests on simple 
fracture networks have been performed. In this part of the study, a simplified fracture 
network consisting of six fractures has been used, see Figure 3-23.  

 

 
Figure 3-23. The simplified fracture network used. 
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This fracture network has been modelled in three-dimension with 3DEC, see Figure 
3-24. The model block is 30⋅30⋅30 m. In order to construct the models (3D and 2D) the 
fractures need to be extended to the boundary of the block. This limits the number of 
fractures that can be handled in the three-dimensional model. In order to improve the 
quality of the comparison between 3D and 2D simulations, the two-dimensional 
sections were extracted from the 3DEC cube model, with the six fractures being 
extended to the limits of the cube. 19 two-dimensional vertical sections, taken by 
stepwise rotation of 10° of the vertical plane in the interval 0–180°, were extracted,  
the geometry of the perpendicular “reference” sections xz and yz is illustrated in  
Figure 3-25. 

 
Figure 3-24. The 3DEC model. 

  

 (a)  (b) 

Figure 3-25. The two-dimensional UDEC models: (a) section xz, (b) section yz.  
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The fracture planes, even the extended parts, were assigned properties of actual 
fractures, in UDEC as in 3DEC. The fractures have been modelled with a Coulomb 
model with constant shear and normal stiffness and the intact block with an elasto-
plastic Mohr-Coulomb model. The input parameters for intact rock and fractures are 
given in Table 3-18. The model block has been loaded by compression in the vertical 
direction at constant velocity (10 mm/s) and the confining stresses have been constant 
and isotropic, at a value of 20 MPa.  

The 3D tests have been performed by Itasca Geomekanik AB. 

 

Table 3-18. Input parameters for intact rock and fractures. 

Intact rock E, GPa νννν c, MPa φφφφ, o ψψψψ, o σσσσti, MPa 
Granodiorite 73.0 0.27 31 49 0 –14.8 

 

with E Deformation modulus of the intact rock 
 c Cohesion of the intact rock 
 ν Poisson’s ratio of the intact rock 
 φ Friction angle of the intact rock 
 ψ Dilation angle of the intact rock 
 σti Tensile strength of the intact rock 

 

Fractures Kn (1) 
(GPa/m) 

Ks 
(1) 

(GPa/m) 
cp 

(MPa) 
φφφφp (°°°°) σσσσtj (MPa) 

actual fractures 44 29.9 – 30 – 
(1) Values expected at σn=23 MPa 

with Kn Joint normal stiffness at expected normal loads 
 Ks Joint shear stiffness at expected normal loads 
 cp Joint cohesion 
 φp Joint angle of friction 
 σtj Joint tensile strength  

 

 

In Figure 3-26 the calculated stress-deformation curves obtained for the 3D and the 19 
two-dimensional models are compared. Evaluated deformation modulus, Em, Poisson’s 
ratio, νm, and maximum principal stress at failure, σ1F, are sum up in Table 3-19. The 
deformation modulus has been evaluated in the stress interval 20–60 MPa for all cases. 
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Figure 3-26. Calculated vertical stress – vertical deformation curves. The 3DEC curve is for a 
triaxial loading situation and the UDEC curves for plain strain loading. 

 

Table 3-19. Evaluation of the deformation properties and stress at failure for the 
different rock models. 

trace-file σ3 [MPa]
mean std dev. mean std dev. mean std dev.

3DEC - - 68.0 - 155* -
2D-all 0.23 0.01 65.18 1.29 177.58 29.70

2D-all-MAX 20 0.24 - 67.3 - 231.05 -
2D-all-MIN 0.22 - 62.7 - 134.20 -

2D-xz 0.23 - 64.51 - 175.06 -
2D-yz 0.22 - 64.79 - 210.39 -

νm Em [GPa] σ1F  [MPa]

* σ1F for the 3DEC model is the vertical stress value reached when the simulation was stopped  

 

The three-dimensional model in 3DEC and the two-dimensional models in UDEC give 
a deformation modulus in the same order round 66–68 GPa. The UDEC models give on 
average slightly lower values. As can be seen on Figure 3-26, the principal stress at 
failure of the 3DEC model might not be reached, and the evaluation of the principal 
stress at failure require that the model would be run at higher vertical strains. However, 
the 3D model, in the actual conditions, could not be compress at higher vertical strains 
and the 3DEC simulations had to be stopped when the vertical displacement was up to 
0.12 m. The principal stress at failure is on average higher for the two-dimensional 
models. Nevertheless, the range of principal stress at failure is extended for the two-
dimensional models. The ratio of σ1F for the 3D to σ1F for the 2D models is in the range 
of 1 to 1.5. 

Figure 3-26 shows that the results of the 3DEC model are similar to the softest two-
dimensional models, both in deformation modulus and principal stress at failure, see 
Table 3-20. These 2D sections are in the axis of the most unfavourable stability 
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situation in 3D and the direction of most important deformation. Figure 3-27 illustrates 
the geometry for the softest sections in two-dimensions. The fact that the principal 
stress at failure of the 3D model is similar to the principal stress at failure of the weakest 
2D sections is conforming to expectations. 

 

Table 3-20. Deformation properties and stress at failure for the 3DEC model and 
the softest 2D models. 

trace-file σ3 [MPa] νm Em [GPa] σ1F [MPa]
3DEC - 68.0 155*

2D-sec9 20 0.23 65.04 144.96
2D-sec13 0.23 63.80 134.22  

* σ1F  for the 3DEC model is the vertical stress value reached when the simulation was stopped  

 

  
 (a) (b) 

Figure 3-27. Geometry of the 2 softest two-dimensional models: (a) section 9, (b) section 13. 

 

Further studies must be performed to study the behaviour of the 3DEC model close to 
failure. With very few fracture planes in the model the differences between 3D and 2D 
simulations are probably large and ought to decrease with the number of fracture planes. 
Nevertheless, the simulations show that the discrepancy of results decrease when the 
two-dimensional sections are in the axis of the most unfavourable stability situation in 
the 3D model. 

 

Conclusions 

A 3D model based on a simplified fracture network presents a deformation modulus that 
is somewhat higher than for the 2D sections extracted from this model, and based on the 
same fracture system.  

The rock mass strength of the 3D model is in the range of the one obtained for the 2D 
sections taken in the weakest directions. This illustrates that it is important to extract the 
2D vertical sections in different directions in relation to the fracture system when 
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simulating with a 2D programme. The aim is to find out the weakest orientations that 
will better match the results of a 3D simulation. 

 

3.3.6 Influence of the constitutive model for rock fractures 

Different constitutive models for rock fractures have been tested: linear (Coulomb- 
slip model) and non linear (Continuously Yielding and Barton-Bandis models). The 
application of non-linear models enables the simulation of more complex fracture 
behaviour. The Continuously Yielding model is developed to simulate the internal 
mechanism of progressive damage of joints under shear. The Barton-Bandis integrates 
the surface roughness of fractures, and accounts also for damage of fractures under 
normal loading and shear displacement, see also section 3.1.3. 

Both non-linear constitutive joint models were tested with the same model set-up. The 
input parameters for the constitutive models are presented in Table 3-21, and their 
evaluation is provided in appendix C. 

Table 3-21. Input parameters for the constitutive joint models. 

 an 

(MPa/m) 

en Max Kn 

(MPa/m) 

as 

(MPa/m) 

es Max Ks 

(MPa/m) 

(i)
mφ

(º) 

φi 

(º) 

jr 

(m) 

C-Y model 10.4e3 0.46 44e3 5.7e3 0.53 30e3 35 40 0.002 

 

with an Initial joint normal stiffness 
 en Exponent of joint normal stiffness 
 Max Kn Maximum value of joint normal stiffness 
 as Initial joint shear stiffness 
 es Exponent of joint shear stiffness 
 Max Ks Maximum value of joint shear stiffness 
 φi Joint intrinsic friction angle 
 (i)

mφ  Joint initial friction angle 

 jr Joint roughness parameter 
 

 Kn 
(1) 

(MPa/m) 

Ks 
(1) 

(MPa/m) 

φr 

(º) 

σc 

(MPa) 

JRC0 

 

JCS0 

(MPa) 

L0 

(m) 

ajn 

(mm) 

B-B model 44e3 30e3 30 214 9.3 170 5.51e–2 0.58 
(1) Values expected at σn=23 MPa 

with Kn Joint normal stiffness at expected normal loads 
 Ks Joint shear stiffness at expected normal loads 
 φr Joint residual friction angle 
 σc Uniaxial compressive strength of the intact rock 
 JRC0 Laboratory-scale Joint Roughness Coefficient 
 JCS0 Laboratory-scale Joint Wall Compressive Strength 
 L0 Laboratory-scale joint length 
 ajn Joint aperture at zero normal stress 
 

Tests were run to visualise the influence of the non-linear constitutive joint models. 
Two 2D sections extracted from the DFN model were run applying respectively the 
Continuously Yielding and the Barton-Bandis models, all other parameters being 
constant. Confining stresses were applied on both sides, the intact rock was 
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granodiorite, the constitutive model for the intact rock Mohr-Coulomb, the in situ stress 
level is 22.4 MPa. The stress-deformation curves are presented in Figure 3-28 and the 
interpreted mechanical properties in Table 3-22. The curves show some discrepancy in 
the deformation of the rock mass when applying one or the other constitutive joint 
models on the same model (Figure 3-28). In both cases, the deformation under loading 
of the rock mass appears to be slightly greater when using the Continuously Yielding 
model, see Table 3-22.  

 
Figure 3-28. Stress-deformation curves for 2 different joint models, tested on two different  
2D sections. 

 

Table 3-22. Mechanical properties of the rock mass, for the Barton-Bandis and 
Continuously-Yielding constitutive joint models. 

trace-file Joint model νm Em [GPa] σ1F [MPa]
A01 C-Y 0.21 56.3 236.5
A01 B-B 0.23 55.1 215.2
A19 C-Y 0.20 49.4 197.3
A19 B-B 0.23 47.5 178.4  

 

Using the B-B joint model leads to lower deformation moduli and stress at failure for 
both fracture network models, but the differences in deformation properties are almost 
insignificant. 

As the Barton-Bandis joint model is the only model to account for properties of the 
intact rock by integrating the uniaxial compressive strength, this is the one used along 
this work.  
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3.3.7 Influence of anisotropy 

The anisotropy of the rock mass and its mechanical properties has been studied as 
regard to the in situ State of Stress. Anisotropy was accounted for by extracting three 
2D fracture trace sections from the 3D DFN model. The orientations of these 3 planes 
were consistent to the directions of the principal in situ stresses, σ1, σ2 and σ3. 

The model set-up applied is the same for each section, but the values of confining 
stresses on the vertical boundaries are set according to the values of in situ stresses on 
the faces of the planes. 

This study was carried out in the Test Case, and the results are presented in section 6.2. 

 

3.4 Special set-up for the deformation zones 
Intact rock and fracture networks are often altered in deformation zones and in their 
zone of influence. Mechanical properties of the intact rock are often diminished because 
of weathering and crushing. Fracture networks might differ from the background 
fracturing by means of different orientation of fracture sets and fracture intensity related 
to tectonic constraints.  

The set-up as described in the previous sections is developed for the characterisation of 
the rock mass, but does not account for deformation zones. However, evaluation of the 
mechanical properties in deformation zones is an issue to be handled in the Rock 
Mechanical Descriptive Model. Hence, the model set-up should be modified for the 
modelling of deformation zones. 

This section presents the assumptions related to the modelling of deformation zones, 
and the main modifications from the numerical model as previously described, see 
sections 3.1 to 3.3. Applications of this set-up for the determination of input data are 
illustrated in section 5.4 and results from simulations on deformation zones are 
presented in section 7.2. 

 

3.4.1 List of assumptions related to the modelling of deformation zones 

The methodology for modelling of deformation zones is based on the same principles as 
described in section 2, and so are assumptions regarding numerical and modelling 
issues, and quality of input data. The evaluation of mechanical properties of the rock 
mass in deformation zones is the same as presented in section 3.2. Nevertheless, some 
few more assumptions and modifications to the model were required in order to 
properly model and characterise the deformation zones, which are:  

• The model size has been taken 10 times smaller than for the modelling of the rock 
mass, that means 3⋅⋅⋅⋅3 meters. This set-up is adjusted to running models with higher 
fracture densities. 

• The modelling plane is a section that is perpendicular to the deformation zones, so 
that the Young’s modulus can be calculated. This implies that shear displacements 
can occur as the 2D model is not oriented along the 3 principal stress directions. 
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3.4.2 Geometry of fractures in the deformation zones 

The fracture pattern in deformation zones and influence areas of these deformation 
zones is affected by the stresses and the deformation associated to these features. The 
parameters used in a DFN model for defining the rock mass fracturing characteristics, 
such as fracture orientation, fracture radius size distribution and intensity, must be 
modified in accordance to the actual pattern. 

Specific input data are required to model the fracture pattern in the deformation zones. 
A DFN model focused on the characterisation of the fracturing in the deformation zones 
should be provided.  

 

3.4.3 Mechanical properties assigned to the rock mass in the zones 

Mechanical properties of intact rock and fractures can be altered in deformation zones, 
and the degree of alteration will depend on the localisation from the “core” of the zone. 
A detailed study and mapping of intact rock and fracture surfaces in the deformation 
zones enable the determination of the appropriate properties. 

 

3.5 Distribution of the parameters – Monte Carlo simulations 
The uncertainty of a model can be separated in conceptual uncertainty, data uncertainty 
and spatial variability. 

The conceptual uncertainty originates from an incomplete understanding of the principal 
structure of the analysed systems and its interacting processes. This uncertainty is not 
discussed further in this section. 

Data uncertainty concern uncertainty in the values of the parameters in a model. Data 
uncertainties may be caused by measuring errors, interpretation errors, or the 
uncertainty involved in extrapolation when the parameter varies in space. 

Spatial variability concerns the variation in space of a parameter value. Spatial 
variability is not an uncertainty but is of course often a cause for data uncertainty. 

The data uncertainty and spatial variability are often expressed in statistical terms as 
mean value, standard deviation and type of distribution. In our case the spatial 
variability can be separated into the spatial variability of the geometry of the fractures, 
the spatial variability of the rock type, and into the data uncertainty and spatial 
variability of the parameters describing the properties of the intact rock and the 
fractures.  

The spatial variability of the fracture system is described by the DFN model. 

The spatial variability of the rock type is described by the percentage of different rock 
types in a rock block. 

The data uncertainty and the spatial variability of the material parameters for a specific 
rock type are expressed by the measured mean value and the standard deviation. A 
normal distribution is assumed. 

A common way to get the statistical parameters for a model with many input parameters 
that can be expressed in statistical terms is to run Monte Carlo simulations. One set of 
parameters is randomly chosen according to the statistical distributions of the 
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parameters and the response of the model with these parameters is calculated. By 
running a lot of simulations and by treating the outcome in a statistical way the mean 
and the standard deviation of the outcome from the model can be estimated.  

In order to minimise the number of numerical calculations with UDEC a simplified way 
of doing the Monte Carlo simulations has been used according to the following: 

• The influence of the geometry of the fracture system is estimated by running 
UDEC calculations with 20 realisations of the fracture system with values of all 
other parameters equal to the mean value. The result is statistically treated.  

• The influence of one specific parameter on the outcome from the model is 
calculated by keeping all other parameters constant. Using the calculated 
influence of the parameter on the outcome of the model in a simple Monte Carlo 
simulation in Excel, the influence of the specific parameter distribution can be 
added to the influence of all other parameters. 

• By using the calculated distributions of the properties for each rock type and then 
combining the different rock types with respect to their measured percentage, the 
statistical parameters for the ”combination” can be estimated. 

 

Monte Carlo simulations for φφφφrm, cm and σσσσcm 

The influence of the residual friction angle of fractures, φr, is calculated in UDEC, 
keeping all other parameters constant. If a linear influence of φr on the friction angle φrm 
and on the cohesion cm of the rock mass is assumed the influence can be expressed by 
an equation of the form: 

( ) ( )o
rm rm r rrm

30 const 30φφ = φ φ = − ⋅ −φ    (3.34) 

( ) ( )o
m m r c rmc c 30 const 30= φ = − ⋅ −φ    (3.35) 

The rock mass uniaxial compressive strength σcm can then be calculated according to 
the following equation: 

m rm
cm

rm

2 c cos
1 sin
⋅ ⋅ φσ =

− φ
   (3.36) 

The distributions of φrm(30°) and cm(30°), are obtained from the different UDEC 
simulations run for the 20 realisations with mean values of all parameters. The 
distribution of φr is known from the tilt tests.  

The Monte Carlo simulation is straightforward where a sample of each of the three 
parameters’ distributions, φrm(30°), cm(30°) and φr, is generated and then each of the 
formulas above, see equations (3.34) to (3.36), is used to generate a sample of φrm, cm 
and σcm. This is repeated a number of times. The outcomes are then analysed and the 
statistical parameters for the distribution are calculated. The error between the input 
mean and the mean of the generated sample is less than 0.1% for each parameter. 
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Monte Carlo simulations for Em for each rock type 

The behaviour of the rock mass is a combination of the behaviour of the intact rock and 
the behaviour of the fractures. The principle relationship for the deformation modulus of 
a fractured rock mass can be written as: 

m n

1 1 N
E E K

= +    (3.37) 

where  

Em is the deformation modulus for rock mass [Pa]  
E is the Young’s modulus for intact rock [Pa]  
N is the number of fractures [1/m] 
Kn is the normal stiffness at expected normal stress [Pa/m]  

The mean and standard deviation for E is known from laboratory tests and the UDEC 
simulations provide the distribution of Em. During the UDEC simulations the 
deformation modulus, E, is kept at the average and therefore the influence of the 
fractures can be back calculated for all the UDEC simulations using the rewritten form 
of the equation (3.37) above: 

n m

N 1 1

K E E
= −    (3.38) 

The mean and standard deviation is calculated for the fracture influence, N/Kn. 

Monte Carlo simulations are then performed using the known E distribution and the 
calculated Ν/Kn distribution. The deformation modulus of the rock mass, Em, is 
calculated using equation (3.37). The outcomes are then analysed and the statistical 
parameters for the distribution of the deformation modulus are calculated. 

 

Monte Carlo simulations for a whole rock block 

Above is explained how the distributions of the properties for a single rock type are 
calculated. A combination of statistical distributions of mechanical parameters is used 
to combine the properties of single rock types to obtain the properties of rock blocks 
composed of different rock types. 

The four different rock types that compose the rock block in the target area are 
characterised by their mechanical properties. The probability of occurrence for each 
property follows a normal distribution defined by its mean and standard deviation. 

The probability of occurrence of a given value of a given parameter is combined with 
the probability to find this rock type. This process is done for the four different rock 
types. Thus the probability is calculated as the mean of the probability density functions 
(PDF) of mechanical parameters weighted with the probability of the existence of the 
four rock types. 

In our case it can be assumed that the probability of finding a rock type within a rock 
block of the target area is independent of the rock block size. This can be discussed 
since the greenstone, for example, is found within large lenses in rock units and its 
proportion has been determined on the basis of a rock unit volume that is large 
compared to the blocks of the target area. 



 72 

Figure 3-29 shows an example of the outcome from a generic Monte Carlo simulation 
using a combination of PDFs. f1(x) to f4(x) are the distributions for four different rock 
types, x being the mechanical parameter (Em, cm, φrm, σm) to be evaluated for the 
combination. Into brackets are the designed proportions of each rock type in a designed 
block, in this example the proportions are respectively 8%, 54%, 3% and 35%.  

 

 

Figure 3-29. Example of combination of distributions. 
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4 The Test Case area 

4.1 Presentation of the Test Case area 
The area that has been chosen for the application of the methodology is situated on the 
Southeast corner of the Äspö island (Figure 4-1). Two models were designed: 

• a large model, which is a cube of 550 m sides, going from the surface down to 1000 
m depth. The geometrical model for the Test Case was developed from this model 

• a detailed model, defined by a box located at depth from –380 to –500 m. This box 
is included in the large model (Figure 4-2).  

 

  
Figure 4-1. Localisation of the large and detailed models on the Äspö island; visualisation of 
the boreholes and of the access tunnel (X: East, Y: North). 

 

 
Figure 4-2. 3D view of the 2 models; visualisation of the access tunnel and of the shaft (X: East, 
Y: North). 
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4.1.1 The large model 

Structural geology in general, and the dimensions, geometry and geological 
characteristics of the deformation zones in particular, make up the framework for rock 
mechanics models, and are of influence for construction and design of underground 
facilities.  

A model that covers the volume defined by the 550 m box has been developed for the 
purpose of this study in RVS (Rock Visualisation System tool, developed by SKB). 
This model gives an overview of the position and orientation of local deformation zones 
in the area (Figure 4-3). In order to take into account variations of width, local 
orientation and undulations, the zones were assigned some thickness. The width of the 
modelled zones is a function of the actual observed widths and interpreted undulations 
of the zone. 

 

  
Figure 4-3. Two 3D views of the 550 m model, with localisation of the deformation zones, the 
boreholes and the access tunnel (X: East, Y: North). NB: the deformation zones are represented 
as planes without width on this figure. 

 

Two different types of “rock units” were defined: (1) the “ordinary rock units” 
identifying the fractured rock mass, and (2) the “deformation zone units” identifying the 
deformation zones. According to this definition, the model is composed of 14 “rock 
units” blocks, of which six are “ordinary rock units” and eight are “deformation zone 
units” (Figure 4-4). 
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Figure 4-4. Presentation of the different blocks or “rock units” in the RVS 550 m model. 
Deformation zones are here visualised with their actual width. 

 

4.1.2 The detailed model, or target area 

The box is composed of 4 layers, and the cubes are numbered from 1 to 420 from the 
Northwest corner at the upper depth layer (Figure 4-5). In the following, the denotations 
refer to the cube numbers and the centre point co-ordinates of the cubes. A general view 
of the model illustrates that two of the three boreholes are on the side of the model 
(Figure 4-6), and data will mostly be provided by the subvertical borehole going 
through the middle of the model. 

 

 

Figure 4-5. Numbering of the detailed model (X: East, Y: North). 
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Figure 4-6. Two 3D views of the detailed model, with localisation of the deformation zones and 
localisation of the boreholes (X: East, Y: North). 

 

In relation to the way width is assigned to deformation zones, see section 4.1.1, some 
cubes may contain more than one “rock unit” type. Indeed, the location and width of the 
actual deformation zone can vary in the area defined by the “deformation zone unit”, 
see Figure 4-7. All cubes defined as “deformation zone unit” in the RVS model can be 
“ordinary rock unit” or “deformation zone”.  

 

Deformation zone rock
unit in RVS

Actual deformation zone
(location uncertain)

x x

xxxx

x

x

xxxxx

xx

 

Figure 4-7. Definition of “rock unit” types on a deformation zone. 

  

The predictions are made in each cube of the model and in case a cube contains more 
than one “rock unit” type, predictions are provided for each “rock unit” type.  

 

4.2 Review of the input data 
The sets of data used for the Test Case are taken out from SICADA, and are mainly 
coming from three boreholes, one subvertical, KAS02, that is almost 1000 m long, and 
two inclined boreholes, KA2598A and KA2511A, that are located on the western part 
of the model (Figure 4-6). One can notice that the subvertical borehole is almost at the 
middle point of both models, and that no borehole data at all are available on the eastern 
side of the models. 
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Data are also provided by geological surface mapping, laboratory tests and geophysical 
measurements. Table 4-1 presents the type of data that have been used for the 
development of the model and for the computations, and their sources. 

 

Table 4-1. Review of the available and used input data, and their sources. 

Input data Origin
Geometrical model Hudson (2002)
DFN model Hermansson et al.  (1998)
Greenstones model Hudson (2002)
Rocktype borehole core mapping, Sicada
Density of intact rock Sundberg and Gabrielsson (1999), Nisca (1988)
RQD borehole core mapping, Sicada
Fracture density borehole core mapping, Sicada
E-modulus Stille and Olsson (1989), Nordlund et al.  (1999)
Poisson's ratio Stille and Olsson (1989), Nordlund et al.  (1999)
Triaxial compression tests Nordlund et al.  (1999)
Aperture Lanaro (2001)
Normal load tests on fractures Stille and Olsson (1989), Lanaro (2001)
Shear tests on fractures Stille and Olsson (1989), Lanaro (2001)
Tilt tests Makurat et al.  (2002)
Joint wall strength Makurat et al.  (2002)
Shaft mapping (fracture orientation and rock type) Sicada
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5 Input data for the Test Case 

5.1 Input data for intact rock  
5.1.1 Rock type identification and distribution over the model volume 

Mainly four rock types are identified in the area that are granodiorite, fine-grained 
granite (or aplite), Småland granite and greenstones.  

According to the geometrical model /Hudson (ed.), 2002/, all “ordinary rock units” are 
considered to be of the same nature. Moreover, a rock unit is a volume that is assumed 
to possess the same properties within the whole volume, which means that the geology 
and the fracture network are assumed to be the same through the whole “ordinary rock 
unit”. 

The geology of the “ordinary rock units” must be defined. Data on rock type 
distribution in the rock mass with depth are provided by core mapping of the 3 
boreholes KAS02, KA2511 and KA2598. The granite and granodiorite are the most 
dominant rock types and the rock mass consists of more than 80% of any of these two 
types. Figure 5-1 shows that the amount of the two rock types changes abruptly and that 
there might be a depth dependency of more granodiorite towards depth. The continuous 
length of the four rock types range between a couple of centimetres to more than 180 m. 
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Figure 5-1. Rock type distribution in KAS02. 

Nevertheless, the spatial variability is very difficult to assess, particularly when dealing 
with plutonic rocks that can occur as local lenses and dykes. As a consequence, a 
statistic analysis of the rock type distribution along the borehole inside the 550 m model 
has been performed to estimate the general rock type distribution in the “ordinary rock 
units”. 

To investigate if there are major differences between the rock type distribution in the 
different rock cubes, i.e. A to N, the boreholes are divided in sections that correspond to 
which rock block they intersect, see Table 5-1. The major difference is the amount of 
granite and granodiorite, but these two rock types always sum up to more than 80% of 
all rock types identified. 
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Since there are no strong evidence to reject this hypothesis, the distribution of rock 
types in all “ordinary rock units” is considered as the average distribution obtained in 
the three blocks and in the boreholes, that is corrected by weighting of the length of the 
boreholes, see Table 5-1. 

Table 5-1. Distribution of rock types in boreholes in different rock blocks. 

Block Block I Block G
Bore hole KA2511 KAS02 KA2598 KAS02 KA2598 Total

Length [m] 178.3 152.1 298.4 350.3 22.0 1001.1
aplite 6.3% 3.4% 12.0% 8.6% 0.0% 8.2%
granite 0.0% 26.9% 72.5% 74.3% 100.0% 53.9%
granodiorite 93.7% 68.3% 15.2% 9.4% 0.0% 34.9%
greenstone 0.0% 1.3% 0.3% 7.7% 0.0% 3.0%

Block H

 
Note: Total is the average rock type distribution corrected by weighting of the borehole lengths 

The discussion above is based on the assumption that the three boreholes are 
representative for the rock unit and that the extension of the rock type volumes is equal 
in space.  

 

5.1.2 Mechanical properties 

The mechanical properties of each rock type have been evaluated from data provided by 
laboratory tests (Table 5-2) and the detailed process of evaluation and results are 
presented in appendix C. 

Table 5-2. Test results available for the evaluation of the intact rock  
mechanical properties. 

 /Stille and Olsson, 1989/ /Nordlund et al, 1999/ 
 Greenstone Fine-grained 

Granite 

Diorite Granite Diorite 

Uniaxial compression test X X X X X 

Triaxial test     X 

Brazilian test     X 

Three-point bending test     X 

 

Table 5-3, Table 5-4, Table 5-5 and Table 5-6 summarise the input parameters that have 
been calculated from the tests and that are required for the modelling task. To estimate 
cohesion, c, and friction angle, φ, of granite, greenstones and aplite, the friction angle 
has been set to 45° according to results obtained on granodiorite /Nordlund et al, 1999/, 
and the cohesion back-calculated according to the following equation: 

( )c 1 sin
c

2cos

σ − φ
=

φ
 (5.1) 

where σc is the uniaxial compression strength of the intact rock (see also appendix C). 

The dilation angle has been assumed to be equal to zero for all rock types. 
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Table 5-3. Intact rock mechanical properties applied to the greenstones. 

Intact rock: Greenstones 
 Mean value Std Dev. 

E, GPa 52.5 17.4 
ν 0.22 – 

c , MPa 23.8 – 
σc, MPa 115 – 

φ, o 45 – 
σti, MPa 8 – 

D (g/cm3) 2.96 – 
 

Table 5-4. Intact rock mechanical properties applied to the granodiorite. 

Intact rock: Granodiorite 
 Mean value Std Dev. 

E, GPa 73.0 2.9 
ν 0.27 – 

c , MPa 31.0 – 
σc, MPa 214 – 

φ, o 49 – 
σti, MPa 14.8 – 

D (g/cm3) 2.75 – 
 

Table 5-5. Intact rock mechanical properties applied to the aplite. 

Intact rock: aplite 
 Mean value Std Dev. 

E, GPa 65 4.3 
ν 0.22 – 

c , MPa 47.2 – 
σc, MPa 228 – 

φ, o 45 – 
σti, MPa 15 – 

D (g/cm3) 2.67 – 
 

Table 5-6. Intact rock mechanical properties applied to the granite. 

Intact rock: granite 
 Mean value Std Dev. 

E, GPa 62 0.5 
ν 0.24 – 

C, MPa 37.7 – 
σc, MPa 182 – 

φ, o 45 – 
σti, MPa 12.8 – 

D (g/cm3) 2.64 – 
 

With: E Young’s modulus of the intact rock 
 ν Poisson’s ratio of the intact rock 
 c Cohesion of the intact rock 
 σc Uniaxial compressive strength of the intact rock (normalised to 50 mm samples) 
 φ Friction angle of the intact rock 
 σti Tensile strength of the intact rock 
 D Density of the intact rock 
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Regarding the granodiorite, significant discrepancies on mechanical properties were 
revealed when looking at the results from both studies (Table 5-7). As most of the test 
results, and especially triaxial tests, are provided by /Nordlund et al, 1999/ and in order 
to be consistent in the input data, the values that have been used are those provided by 
/Nordlund et al, 1999/. 

Table 5-7. Discrepancy of data on the granodiorite. 

Diorite /Stille and Olsson, 1989/ /Nordlund et al, 1999/ Ratio 

σc, MPa 169 214 1.27 

E, GPa 60 73 1.22 

 

 

5.2 Input data for fractures  
5.2.1 Geometry of the fracture network 

The fracture pattern in the “ordinary rock units” and in the “deformation zones units”, 
see section 4.1.1, is considered separately, as the general configuration observed in the 
rock mass might be disturbed in the zone of influence of these major deformation zones. 

According to the assumptions made by the geologists and presented in the geometrical 
model /Hudson (ed.), 2002/, the influence of deformation zones on the fracture pattern 
in “ordinary rock units” is included in the uncertainty thickness of the zone.  

As a consequence, the same fracture pattern is assigned to all “ordinary rock units”, and 
specific fracture patterns were built for each deformation zone, on the basis of 
lithological and structural information, see section 5.4.2. 

The fracture pattern of the rock mass was simulated by a Discrete Fracture Network 
(DFN) model that is developed on the data from the Äspö ZEDEX tunnel section 
/Hermansson et al, 1998/. The study of fracture network in the prolonged part of the 
ZEDEX tunnel has been checked against previous DFN models developed in the Äspö 
area.  

The data that are prevalent for the development of a DFN model for the rock 
mechanical model are the mean fracture orientation, the identification of different 
fracture sets that can mobilise different properties, the fracture density, fracture size 
distribution and terminations of fractures against others. The results of the analysis that 
have been used for this project are reported shortly in this report. For detailed 
explanations the reader is referred to /Hermansson et al, 1998/. 

The analysis of fracture orientation enhanced three fracture sets, two subvertical (sets 1 
and 2) and one subhorizontal (set 3), see Table 5-8. Studies based on fracture 
terminations reveal that they might be a geological explanation for the segmentation of 
the bedrock in the Äspö area, the set 1 being the oldest; then set 2 was formed thereafter 
and finally set 3. Nevertheless, other parameters such as mineral fillings and age fillings 
should be investigated.  
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Table 5-8. Orientation and termination of fracture sets  
/from Hermansson et al, 1998/. 

  Set 1 Set 2 Set 3 
Orientation Trend (°) 348.2 46.4 142.8 

 Plunge (°) 4.2 7.4 63.7 
Terminations  – 25% 37% 

Note: the orientation is given as dip direction and dip angle of the mean pole to the fracture plane. 

The cumulative frequency curve of trace lengths shows that about 90% of fracture 
traces are shorter than 2 m, and about 10% are from 2 up to 20 m. These two 
populations of fractures were analysed separately for size distribution and fracture 
intensity. The analysis of size distribution, as defined in section 3.1.1, has been 
conducted on trace lengths of fractures, for each set separately. According to previous 
studies in Äspö, the fracture size distribution follows a lognormal distribution /see 
Hermansson et al, 1998/. The results of the analysis are presented in Table 5-9. 

The fracture intensity in a FracMan DFN model is defined as the amount of fracture 
area per unit volume of rock, P32 (m

2/m3). This parameter can not be assessed in the 
field but can be estimated on the basis of a linearly correlation with P21 (m/m2), which is 
defined as the amount of fractures intersecting an outcrop surface, or with the P10 (m

–1), 
which is the fracture frequency along a scanline or a borehole. The correlation between 
the fracture intensity parameters is defined as /Dershowitz and Herda, 1992/: 

32 21 21P C P= ⋅   (5.2) 

32 10 10P C P= ⋅   (5.3) 

C10 and C21 are constants of proportionality that depend on the orientation and radius 
size distribution of the fractures, and the orientation of outcrops (P21) or scan 
lines/boreholes (P10). 

P21 and P10 are parameters that are dependent on orientation and shape of fractures as 
well as orientation and shape of the outcrop/scanline. P32 has here the advantage to be 
independent to the orientation and radius size distribution of fractures. 

The determination of P32 for a given DFN model is determined as followed: a DFN 
model is generated on a “guessed” P32. Sampling lines and/or surfaces are simulated in 
the model, and the P10 and /or P21 of the simulations are checked against the values of 
the actual data. The ratio of simulated/actual parameters leads to the definition of the 
constant of proportionality C10/C21, and to the determination of the actual P32. The 
fracture intensity, P32, determined for each fracture set is presented in Table 5-9. 

Table 5-9. P32 and radius fracture size distribution  
/from Hermansson et al, 1998/. 

  Set 1 Set 2 Set 3 
P32 (m

2/m3) Small fractures 0.4 0.87 0.44 
 Large fractures 0.23 0.7 0.11 

Fracture size Small fractures 0.25 / 0.25 0.5 / 0.25 0.25 / 0.25 
radius (m) Large fractures 4 / 2 5 / 1 4 / 2 

Note: for fracture size, the first number represents the mean value, the second the standard variation. 
Small fractures: trace shorter than 2m; large fractures: trace longer than 2m. 
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The stochastic fracture network in the rock mass was then simulated by a DFN model 
based on the combination of the previous distributions for fracture orientation, size, 
intensity. For the purpose of this project, the DFN model was generated in rock volumes 
of 50⋅⋅⋅⋅50⋅⋅⋅⋅50 m, in order to avoid truncations of fracture traces at the edges of the 30⋅⋅⋅⋅30 
m section planes (see section 2.2.3). As illustrated in Figure 7-2a numerous small 
fracture traces are generated by this model, which is consistent to the relative high 
frequency of small fracture traces.  

 

 

 (a)  (b) 

Figure 5-2. 2D trace section from a DFN model (a) with all fractures, (b) with fractures larger 
than 2 m.  

 

Most of those small fracture traces are in the rock mass, and do not terminate against 
any other fracture traces. They would be discarded when “meshing” and generating rock 
blocks in UDEC, see section 3.3.4. For comparison the DFN model was simulated by 
discarding all fractures with a radius smaller than 1 m (Figure 5-2b), and the rock 
blocks models generated in UDEC compared. This analysis confirmed that most of the 
fractures smaller than 2 m are discarded when generating the model in UDEC. As a 
consequence and to reduce computation time, a censoring radius of 1 m was set for 
generating the DFN models used for extracting the 2D fracture trace sections. The 
fracture pattern obtained for a censored 2D section, and the rock block model created in 
UDEC from the same fracture trace file are illustrated in Figure 5-3.  
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  (a)  (b) 

Figure 5-3. (a) Fracture traces for a 2D section, and (b) the resulting rock block model in 
UDEC. 

 

5.2.2 Fracture mechanical properties 

The fracture mechanical properties have been evaluated from different laboratory tests, 
which data are provided in /Stille and Olsson, 1989/, in /Lanaro, 2001/, and by core 
logging /Makurat et al, 2002/, see Table 5-10. The evaluation of properties is presented 
in appendix C.  

Table 5-10. Test results available for the evaluation of rock fractures  
mechanical properties. 

 /Stille and Olsson, 
1989/ 

/Lanaro, 2001/ /Makurat et al, 
2002/ 

Normal load test X X  

Shear load test X X  

Aperture  X  

Tilt test   X 

Schmidt hammer test   X 

 

On basis of the results provided, two sets of parameters have been identified, one for the 
sub-vertical fracture sets and one for the sub-horizontal fracture set.  

The mechanical properties and behaviour of the fractures evaluated from /Stille and 
Olsson, 1989; Lanaro, 2001/ show important discrepancy for both subhorizontal and 
subvertical sets of fractures, which is expressed by much higher values for shear and 
normal stiffness from Lanaro’s data (Figure 5-4). The normal stiffness calculated from 
/Lanaro, 2001/ is really high compared to reference values for fractures. As a 
consequence, the mechanical properties used as input for modelling are those evaluated 
from /Stille and Olsson, 1989/. 
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Figure 5-4. Discrepancy of data from normal loading test on rock fractures. 

 

The mechanical properties evaluated for rock fractures are presented in Table 5-11.  
As explained in appendix C, there is no unique solution for the determination of values 
for JRC0, JCS0 and φr. The sensitivity analysis on these parameters is presented in 
section 6.3. 

 

Table 5-11. Input parameters for the sets of fractures, assuming a fractured rock 
mass in the granodiorite, and the Barton-Bandis joint constitutive model. 

 Kn 
(1) 

(MPa/m) 
Ks 

(1) 

(MPa/m) 
φr (°) σc 

(MPa) 
JRC0 JCS0 

(MPa) 
L0 (m) ajn (mm) 

Subvertical 
sets 

61.5e3 35.5e3 25/30/35 214 4/9.3/ 

12/16 

40/110/
170 

5.51e–2 0.56 

Subhorizontal 
set 

21.9e3 15.7e3 25/30/35 214 4/9.3/ 

12/16 

40/110/
170 

6.1e–2 0.2 

(1) Values expected at σn=23 MPa 

with Kn Joint normal stiffness at expected normal loads 
 Ks Joint shear stiffness at expected normal loads 
 φr Residual joint angle of friction 
 σc Intact rock uniaxial compressive strength (back calculated for 50 mm 

diameter samples) 
 JRC0 Lab-scale roughness coefficient 
 JCS0 Lab-scale joint wall compressive strength 
 L0 Lab-scale joint lengths 
 ajn Joint aperture at zero normal stress 
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5.3 Initial stresses 
The values for initial principal stresses were provided by Itasca Geomekanik AB and 
are reported in /Hakami et al, 2002/. The values used for the modelling correspond to 
predictions made on the target area. According to the principal stress orientations and 
magnitude predictions, σ1 is identified as the maximum horizontal stress or σH, and σ3 
as the minimum vertical stress or σv. σ2 is referred as the intermediary horizontal stress 
or σh. The mean values for σ1, σ2 and σ3 presented in Table 5-12, have been used to 
simulate the in situ stress state at each depth in the detailed model. 

 

Table 5-12. Principal stress magnitudes /from Hakami et al, 2002/. 

 σσσσH (MPa) σσσσh (MPa) σσσσv (MPa) 

Level 1 (–380/–410m) 19 10.7 10.2 
Level 2 (–410/–440m) 20.2 11.5 10.7 
Level 3 (–440/–470m) 21.3 12.3 11.2 
Level 4 (–470/–500m) 22.4 13.1 11.7 

Note: detailed description about data evaluation is provided in the aforementioned report  

The mean principal stress orientations are considered consistent with depth and taken as 
follows: 

Table 5-13. Principal stress orientation /from Hakami et al, 2002/. 

 Strike (°°°°) Dip (°°°°) 

σH 136 0 
σh 226 0 
σv 0 90 

 

 

5.4 Deformation zones 
The information related to deformation zones is provided in the geometrical model’s 
report /Hudson (ed.), 2002/. Some complementary data were obtained from surface 
mapping presented in /Munier, 1995; Tirén and Beckholmen, 1987/. 

The application of the methodology on the deformation zones is considered to be an 
exercise, and the outcome of the modelling in term of values must be considered very 
carefully. Indeed, the models have been built mostly from interpolation on qualitative 
data, and guesswork based on engineering expertise.  

Nevertheless, the outcome of the modelling are hereunder presented as a basis for 
discussion on the validity of the approach developed for the deformation zones. 

 

5.4.1 List of assumptions related to the modelling of deformation zones 

Specific assumptions and modifications from the “usual” set-up are required for the 
modelling of deformation zones. The list of assumptions, as presented in section 3.4, is 
completed for the Test Case by site-specific assumptions that are related to the type and 
quality of data provided for the Test Case.  
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The assumptions made for the modelling of deformation zones and in the frame of the 
Test Case are the following: 

• The model size has been taken 10 times smaller than for the modelling of the rock 
mass, that means 3⋅⋅⋅⋅3 meters. This set-up is necessary to run models with higher 
fracture densities. 

• The fractures in the zones are considered of “infinite length” at the model size, for 
mainly two reasons. No quantitative data were available regarding the equivalent 
radius of the fracture sets in the zones. Then, if assuming that the mean equivalent 
radius is the same as the one determined for large fractures (larger than 2 m) in the 
rock mass (Table 5-9), there is very high probability that the fractures will go 
through the 3⋅⋅⋅⋅3 m blocks.  

• The modelling plane is a section that is perpendicular to the deformation zones, so 
that the Young’s modulus can be calculated.  

• Confining stresses were applied on both vertical sides. 

• According to the quantity and quality of data used, the confidence level of all blocks 
identified as deformation zones is very low, and set to 3 (“guesswork”). 

 

5.4.2 Geometry 

(for general information, see section 3.1.1) 

The fracture network in each fracture zone has been modelled from qualitative 
information published in /Munier, 1995; Tirén and Beckholmen, 1987/, in the 
geometrical report /Hudson (ed.), 2002/, and from core logging. Statistical analysis of 
surficial fracture mapping are presented as stereoplots of fracture sets in the main 
deformation zones in Äspö /Munier, 1995/. The strike and dip of the fracture sets are 
not precisely quantified, but range of values can be determined from the plots. Only the 
orientation of fracture sets defined as parallel to the deformation zones could be defined 
with higher confidence. 

Suitable density data related to each fracture set in each fracture zone were not 
available. Therefore, the density of fractures was estimated from the density observed in 
the boreholes KAS02 and KA2598A when going through the zone. The fracture density 
was not averaged on the all length of boreholes reported to cross the “RVS deformation 
zone units”, but on parts of boreholes inside these “deformation zone units” in which 
fracture density was sensibly higher. This is valid for both deformation zones NE2 and 
EW1b. For the other deformation zones, some descriptive information was sometimes 
available in the aforementioned reports, such as “fracture density is high in the all 
zone”. Fracture density values were estimated according to these descriptions. Even if it 
might be considered as a rough assumption, the properties assigned to EW-1a are the 
same as those defined for EW-1b, which means that we studied a “EW-1” zone. 

Due to the lack of data, the same fracture density was set to all fracture sets in a fracture 
zone, but some standard deviation was given in the model when building the fracture 
network in UDEC. This is reflected as a range of fracture density’s mean values 
presented in Table 5-14. The uncertainty in fracture orientation was handled in the same 
way. 
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Table 5-14. Fracture strike and dip, and fracture density for deformation zones. 

Fracture zone Strike Dip P10 
(1) 

NE-1 N230 
N140 
N0 

30 
90 
0 

 
2–10 

NE-2 N130 
N35 

0–10 
0–15 

3–6 

EW-1(2) N90 
N0 

N300 

0 
85–90 
20–30 

 

2.5–8 

EW-3 N70 
N145 

N40–60 

80–90 
0–10 
0–30 

 

3–8 

(1) The range given is a range observed on the mean value. 
(2) Include EW-1a and EW-1b 

 

The modelling of a section perpendicular to NE-2 was not valid on the basis on the 
information available. Indeed, only two fracture sets are identified, one parallel to the 
zone and the other perpendicular to it. Taking a perpendicular section to the zone 
implies that only traces from the fractures parallel to the zones contribute to the model.  

Due to lack of any other information, the DFN model developed for “ordinary rock 
units” (section 3.1.1) was then used to build the fracture geometry of NE-2, but the 
mechanical properties assigned to intact rock and fractures are those presented in 
section 5.4.4. 
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Figure 5-5. Geometrical modelling of the deformation zones’: a) EW-1; b) NE-1; c) EW-3. 

 

As shown in Figure 5-5 the geometry of the rock blocks in the UDEC model is highly 
related to the relative orientation of the fracture sets to the orientation of the section 
towards the zone. This is a factor that will strongly influence the behaviour of the 
model, and therefore the mechanical parameters of the rock mass in the deformation 
zones.  
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5.4.3 Rock type distribution 

The geometrical model /Hudson (ed.), 2002/ provides qualitative and general 
description of the main rock types identified in the deformation zones. The rock type 
distribution for deformation zones NE2 and EW1b can also be checked against the core 
logging of the boreholes KAS02 and KA2598A. On basis of these data, the rock type 
distribution is provided as a percentage of the different rock type, see Table 5-15. 

Table 5-15. Rock type distribution in the deformation zones, as a percentage. 

 Granite Granodiorite Aplite Greenstones 

EW-3 0 100 0 0 
NE-2 0 90 10 0 

EW-1(1) 100 0 0 0 
NE-1 0 90 10 0 

 (1) Includes EW-1a and EW-1b 

 

5.4.4 Mechanical properties assigned to intact rock and fractures in  
the zones 

According to /Gupta and Rao, 2001/, some relationships can be established between the 
weathering degree of a given rock type and the decrease in Young’s modulus and 
strength of the same intact rock. With the assumption of a slight degree of alteration, the 
mechanical properties of intact rock in the zones have been reduced to 80% of the intact 
rock Young’s modulus and strength in the deformation zones. With regards to the lack 
of information, the same reduction factor has been used for the simulations of all 
deformation zones. Table 5-16 and Table 5-17 list the parameters used in the 
deformation zones, for the granite and granodiorite. 

 

Table 5-16. Mechanical properties applied to the granite in the  
deformation zones. 

Intact rock: granite 

 Mean value Std Dev. 
E, GPa 49.6 0.4 

ν 0.24 – 
c , MPa 30.2 – 

φ, o 45 – 
σc, MPa 145.6 – 
σti, MPa 12.8 – 

D (g/cm3) 2.64 – 

 

Table 5-17. Mechanical properties applied to the granodiorite in the  
deformation zones. 

Intact rock: Granodiorite 

 Mean value Std Dev. 
E, GPa 58.4 2.32 

ν 0.27 – 
c , MPa 24.8 – 

φ, o 49 – 
σc, MPa 171.2 – 
σti, MPa 14.8 – 

D (g/cm3) 2.75 – 
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With: E Young’s modulus of the intact rock 
 ν Poisson’s ratio of the intact rock 
 c Cohesion of the intact rock 
 φ Friction angle of the intact rock 
 σc Uniaxial compressive strength of the intact rock (normalised for 50 mm samples) 
 σti Tensile strength of the intact rock 
 D Density of the intact rock 

 

The same mechanical properties were assigned for all fracture sets in all deformation 
zones, see Table 5-18. To overcome numerical problems arising when using the Barton-
Bandis joint model for modelling the deformation zones, a Continuously Yielding 
model with constant normal, Kn, and shear, Ks, stiffness, and constant joint friction 
angle, φr, has been applied for modelling the behaviour of fractures. The definition of 
the residual friction angle is calibrated against tilt tests on fractures in the deformation 
zones crossed by boreholes KAS02 and KA2598A. 

 

Table 5-18. Mechanical properties assigned to the fracture sets in the 
deformation zones. 

 Kn 
(1) 

(MPa/m) 
Ks 

(1) 

(MPa/m) 
φr (°) jr (m) 

Fracture sets 44e3 29.9e3 20 0.002 
(1) Values expected at σn=23 MPa 

with Kn Joint normal stiffness at expected normal loads 
 Ks Joint shear stiffness at expected normal loads 
 φr Residual joint friction angle  
 jr Joint roughness parameter 
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6 Modelling methodology applied to the  
Test Case 

The modelling tests have been carried out according to the procedure described in 
section 3. Before to proceed with modelling, the assumptions done need to be listed. 

Then, some complementary benchmark tests were carried out to test the input 
parameters against the material and joint constitutive models that have been chosen to 
perform the modelling task applied to the Test Case. For instance, a simple loading test 
was conducted on an intact rock block, with a Mohr-Coulomb model, in order to check 
the Young’s modulus obtained by simulation and the value determined from laboratory 
tests. 

Simple shear tests have been conducted to check the input parameters on fracture 
properties, using the Continuously Yielding and the Barton-Bandis joint models. 

 

6.1 List of assumptions for the model 
Introduction 

When applying the theoretical model to the Test Case, a number of assumptions of 
different origins are required. Assumptions were made on the proposed geometrical 
model, on the mechanical properties of the rock material and fractures, on the numerical 
model used in UDEC and on the interpretation of the calculated rock mass properties. 
On one hand, assumptions can be required for the validity of a theory. This concerns a 
large spectrum of assumptions from the estimation of parameters by laboratory tests to 
the applicability of numerical modelling. On the other hand, assumptions are sometimes 
required due to the shortcoming of input data. The later type of uncertainty can be 
reduced when more data are made available. 

 

Assumptions on the geometrical model 

The following assumptions on the geometrical model have been made. 

DFN model 

• The orientations of the fractures follow the same distribution in the whole 550 m 
model and in the detailed model. 

• The same radius size distribution is applied for fractures in the whole 550 m 
model and in the detailed model. 

• The fracture location in space follows a Poisson' s distribution. 

• The density of fracture is constant over a given 30⋅30⋅30 m cube, or within an 
“ordinary rock unit”. 

• The density of fracture in the 30 m cubes can be changed for area characterised by 
boreholes according to the local fracture frequency. 
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Rock units 

• Assumptions have been made concerning the definition of “rock unit” types (see 
definition of the geometrical model, section 4.1). 

• Assumptions have been made concerning the definition of deformation zones (see 
definition of the geometrical model, section 4.1). 

 

Rock material mechanical properties 

• The intact rock material mechanical properties are constant for a given rock type 
over a given 30 m cube volume. 

• The mean value is used as input data. 

 

Fracture mechanical properties 

• Both vertical fracture sets are assigned the same mechanical properties. 

• Mechanical properties are constant on the whole fracture plane. 

• The same fracture mechanical properties have been assigned for all fractures in a 
set, in the different rock types. 

• The mean value is used as input data. 

 

Deformation zones 

Most of the assumptions considered in this project are related to the lack of relevant 
fracture data in deformation zones, and should then be considered as particularly 
relevant for this application of the methodology.  

• The fracture density can be estimated from core logging from boreholes. The 
section of borehole going through a deformation zone is isolated, and the fracture 
frequency (P10) is calculated in this section.  

• The fracture frequency is considered to be constant over the entire deformation 
zone.  

• Normal and shear stiffness, and aperture assigned to fractures in “ordinary rock 
units” have been assigned to the fracture sets in the “deformation zone units”. As 
the model on deformation zones could not be run with the B-B model, the fracture 
mechanical properties have been fitted in a C-Y model.  

• The residual friction angle of fractures was arbitrarily reduced to 20°, taking into 
account the clayey filling. 

• The mechanical properties for intact rock were modified on the basis of literature 
review (see section 5.4.4) and alteration data on the rock in the deformation zones 
provided by core logging. 
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Numerical model (UDEC) 

• Simulations in 2D are made under plain strain loading conditions. 

• A 2D section of rock mass is assumed to behave mechanically like in 3D. The 
systematic error induced by this assumption can be compensated by a scaling 
function still to be determined, see section 3.3.5. 

• Since fracture traces that terminate in the rock or that are entirely located in the 
rock are deleted when blocks are generated in UDEC, their effect on deformation 
properties and rock strength is neglected (see section 3.3.4 for the validity of this 
assumption). 

• There is no fracture propagation taking place in the rock blocks under extreme 
loading. 

• Coupled hydro-mechanical effects on the fractures are neglected. 

• The orientation of the principal stress is orthogonal to the sides of the model. 

• The Barton – Bandis joint constitutive model is used to model the mechanical 
behaviour of the fractures. 

• The Barton – Bandis model handle load reversal. 

• The Continuously-Yielding joint constitutive model is used to model the 
mechanical behaviour of fractures in deformation zones. 

• Scaling of fracture properties according to fracture length is automatically done by 
UDEC. 

• The Mohr-Coulomb failure criterion is applied to blocks. 

• Effective stress parameters. No pore pressure assumed. 

• Assumptions on in situ stresses are consistent with Itasca’s work /Hakami et al, 
2002/: the orientation of in situ stress is kept constant with depth. The magnitude 
is kept constant at a specified depth level in the 30⋅⋅⋅⋅30 m model. 

 

Assumptions due to the shortcoming of input data 

• Triaxial test data are available only for one rock type (diorite). The parameters for 
the other rock types are assumed on engineering experience basis. 

• Orientation and density of fracture sets in the deformation zones have been 
defined from general stereoplots of the zones. Detailed surface mapping over the 
areas is required. 

 

6.2 Influence of the variation of the input parameters 
Before running the calculations for the different rock types, a sensitivity analysis of the 
input parameters has been conducted on a fractured rock mass in 100% of granodiorite.  
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The following variation of parameters was defined (Note: the parameters were changed 
one at a time): 

• Influence of anisotropy: as mentioned in the section 2.2.3 of this report, three 2D 
sections of perpendicular orientation were extracted from the 3D fracture model. 
With all other parameters constant, simulations were run on those 2D sections, and 
the deformation properties of the rock mass were evaluated. 

• Influence of the fracture sets: with respect to the mechanical properties evaluated 
from laboratory tests, 2 sets of fracture properties could be identified, one for the 
sub-vertical fractures, one for the sub-horizontal fractures. The influence of the 
differentiation of the fracture sets by their mechanical properties was determined by 
(1) running the model with different mechanical properties for each set, and (2) 
running the same model but assigning the same mechanical properties to all fracture 
sets. 

• Influence of the mechanical properties of fractures: due to shortcoming of data, see 
appendix C, some of the model parameters can take a wide range of values. In order 
to determine the influence of these values on the deformation properties of the rock 
mass, different combinations of the parameters were simulated. The values used on 
the granodiorite rock mass block are the following: 

JCS0: 40, 110, 170 
JRC0: 4, 9.3, 12, 16 
φr: 25, 30, 35 

Values for the other input parameters of the model are set according to Table 5-11. 

Note: when varying one parameter, for example JCS0, the “standard values”, marked in 
red, were set to the other parameters. This leads to 10 different combinations. 

• Influence of the initial stresses: four different in situ stresses set-ups have been 
defined (see section 5.3), that simulate the increase of principal stresses with depth. 
While other parameters are constant, 4 simulations were run at the 4 stress values 
predicted for each depth level in the target area. 

The same set of parameters for mechanical properties of the intact rock was used for all 
simulations, see Table 5-4. 

The following conclusions can be drawn from these analyses: 

• Influence of the anisotropy: the Young’s modulus and Poisson’s ratio were slightly 
affected by changes of section orientation. Some differences of 2.5% were obtained, 
which is an indication of the anisotropy of the rock mass. However, in accordance to 
the low discrepancy of obtained values, it was decided at first to run all the 
simulations on the same section. The section used in the following is a vertical 
section parallel to the major principal horizontal stress. 

• Influence of the fracture sets: no significant influence of the set of parameters 
assigned to the horizontal set of fracture has been showed. This can be correlated to 
the relatively low frequency of fractures from this set, see Table 5-9 and Figure 5-2. 
Assigning different mechanical properties to different fracture sets is feasible but is 
heavy in programming. Therefore, all fracture sets were assigned the mechanical 
properties that had been defined for the sub-vertical sets of fractures.  
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• Influence of the mechanical properties of fractures: no significant influence of JRC0 
and JCS0 could be found from these tests. However, the input value of the residual 
friction angle, φr, influences the deformation parameters of the rock mass. As a 
consequence, the standard parameters were used as input data for JCS0 and JRC0, 
respectively 170 and 9.3, and the influence of φr was investigated by running 3 
different simulations for each model, all other parameters being unchanged, on the 
values 25, 30 and 35°.  

• Influence of the initial stresses: the Young’s modulus and compressive strength at 
failure increase with depth and as a function of the in situ stresses while the 
Poisson’s ratio decrease. A variation in the range of 7 to 9% was calculated from the 
shallowest to the deepest level of the target area for these different parameters. 
Therefore, sensitivity analyses were run at the highest initial stress level, 
corresponding to the deepest level, and only standard cases were run at different 
depth levels.  

 

6.3 Refined set-up of parameters for modelling 
According to the information provided by the sensitivity analysis presented in the 
previous section, the mechanical properties for intact rock and fractures as defined 
previously in sections 5.1.2 and 5.2.2, were refined. The input parameters required in 
UDEC are presented in Table 6-1 for the intact rock and in Table 6-2 for the rock 
fractures. The set-up for the initial stresses is the same as presented in section 5.3. 

 

Table 6-1. Input parameters for the intact rock, according to the Mohr-Coulomb 
material model 

 D 
(kg/m3) 

K  
(MPa) 

G  
(MPa) 

c  
(MPa) 

φ  
(°) 

ψ 
(°) 

σti 

(MPa) 

Småland granite 
 

2.64 39e3 25e3 37.7 45 0 12.8 

Aplite 
 

2.67 38e3 26e3 47.2 45 0 15 

Greenstones 
 

2.96 31e3 21e3 23.8 45 0 8 

Granodiorite  2.75 52e3 28e3 31 49 0 14.8 
 
With D Density of the intact rock 
 K Bulk modulus of the intact rock 
 G Shear modulus of the intact rock 
 c Cohesion of the intact rock 
 φ Friction angle of the intact rock 
 ψ Dilation angle of the intact rock 
 σti Tensile strength of the intact rock 

 

 



 98 

Table 6-2. Input parameters used for modelling the behaviour of rock fractures, 
according to the Barton-Bandis joint constitutive model. 

 Kn 
(1) 

(MPa/m) 
Ks 

(1) 

(MPa/m) 
φr 
(°) 

σc 

(MPa) 
JRC0 

 
JCS0 

(MPa) 
L0 

(m) 
ajn 

(mm) 
   25      

Greenstones 44e3 29.9e3 30 115 12 92 5.51e–2 0.58 
   35      
   25      

Granodiorite 44e3 29.9e3 30 214 9.3 170 5.51e–2 0.58 
   35      
   25      

Småland granite 44e3 29.9e3 30 182 8.2 146 5.51e–2 0.58 
   35      
   25      

Aplite 44e3 29.9e3 30 228 9.1 180 5.51e–2 0.58 
   35      

Note: the same mechanical properties are assigned to all sets of fractures 
(1) Values expected at σn=23 MPa 
 
with Kn Joint normal stiffness at expected normal loads 
 Ks Joint shear stiffness at expected normal loads 
 φr Residual angle of friction 
 σc Intact rock uniaxial compressive strength (back calculated for 50 mm 

diameter samples) 
 JRC0 Lab-scale roughness coefficient 
 JCS0 Lab-scale joint wall compressive strength 
 L0 Lab-scale joint lengths 
 ajn Joint aperture at zero normal stress 
 

 

6.4 Comparison of modelling results with empirical relations 
for rock masses 

One of the most widely used empirical failure criteria is the Hoek-Brown (H-B) 
criterion. The generalised form of the criterion for jointed rock masses is defined by: 

a

3
1 3 c b

c
m sσ σ = σ + σ ⋅ ⋅ + σ 

  (6.1) 

Hoek et al, 1995, introduced the Geological Strength Index, GSI, to provide a system 
for estimating the rock mass strength for different geological conditions. Once the GSI 
has been estimated the strength parameters in the H-B failure criterion for hard rocks are 
calculated as follows: 

b i

GSI 100
m m exp

28

− = ⋅   
 (6.2) 

GSI 100
s exp

9

− =   
  (6.3) 

a 0.5=   (6.4) 

The deformation modulus of the rock mass can be estimated by: 

GSI 10
40

mE 10
−

=   (6.5) 
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For a blocky well interlocked undisturbed rock mass consisting of cubical blocks 
formed by three intersecting fracture sets and with joint surfaces that are very rough, 
fresh unweathered, the Geological Strength Index, GSI is from 65 to 85 /Marinos and 
Hoek, 2000/. GSI can also be related to the commonly used rock mass classification 
systems, the rock mass quality index Q /Barton et al, 1974/ or the rock mass rating, 
RMR /Bieniawski, 1989/. Figure 6-1 shows the rock mass rating, RMR89, along the 
three boreholes in the Test Case area. The ground water rating is set to 15 and the 
adjustment for joint orientation is set to zero. The GSI value can be estimated according 
to the following expression:  

89GSI RMR 5= −   (6.6) 

In this case GSI is in the interval 70–75. 
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Figure 6-1. Rock Mass Rating, RMR89, along boreholes in the Test Case area.  

 
The triaxial tests on intact diorite samples have given the following results: 

σc = 218 MPa, mi = 15. 

GSI = 65 gives: 

mb = 4.3 s = 0.020 a = 0.5 Em = 23.7 GPa 

GSI = 75 gives: 

mb = 6.14 s = 0.062 a = 0.5 Em = 42.2 GPa 

GSI = 85 gives: 

mb = 8.78 s = 0.189 a = 0.5 Em = 75.0 GPa 
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The theoretical modelling results used for comparison are obtained on the diorite. The 
model was run for twenty realisations of the 2D fracture trace sections. The input 
parameters for the intact rock are presented in Table 6-1, and the mechanical properties 
of fractures in Table 6-2, assuming a residual friction angle of 30°. Each rock block 
model was run at three levels of confining stresses. 

In Figure 6-2 the H-B envelopes are compared with the results from the theoretical 
approach for different fracture geometry at three levels of confining stresses. The Mohr-
Coulomb envelope is obtained by linear regression of the theoretical modelling results. 
The calculated rock mass strength is in the same order as given by the empirical H-B 
relationships. 
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Figure 6-2. H-B envelopes compared with results of the theoretical approach. 

 

In Figure 6-3 the deformation modulus, Em, of the rock mass is compared to calculated 
results from the theoretical approach for different fracture geometry at three levels of 
confining stresses. The theoretical calculated values are in the same order as given by 
the empirical relationship /Hoek et al, 1995/. The calculated deformation modulus 
increases with the confining stress. 
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Figure 6-3. The empirical estimated in situ deformation modulus compared with the results of 
the theoretical approach. 

 

 

6.5 Data uncertainty 
With respect to these data, the simulations were first carried out on rock block models 
constituted of homogeneous rock types. For each rock type, at one depth level, 
simulations were run to check the influence of the rock fracture friction angle: 20 
simulations were run on φr=30°, and then 1 simulation for respectively φr 25 and 35°. 
Then, for the same depth level, the same set-up of variation of parameters and number 
of simulations have been applied to conduct loading tests at a reduced horizontal stress 
(for a description of this test, see section 3.2.1).  

Note: the 20 simulations run on the same set-up of parameters are related to 20 
different simulations of the fracture pattern. The twenty 2D trace sections are obtained 
from 20 realisations of the 3D DFN model (see section 2.1.4). It should be noted that up 
to 30% of the simulations failed because of complex fracture patterns. 

Data uncertainty resulting from all these simulations has been handled in different ways 
depending on the type of data. 

The data uncertainty of the input parameters for the DFN model is managed through 
means and standard deviations of statistical functions. The influence of the spatial 
variability in the 3D model is estimated by running Monte Carlo simulations on the 
input parameters for the model. 20 different 3D models are then created, and the 2D 
trace sections files are extracted for each of these models. Then, 20 different rock block 
models are generated in UDEC and run, all other parameters remaining unchanged. The 
variability is then statistically determined from the results of the computations. 

The data uncertainty related to input mechanical properties of intact rock and fractures 
is handled in two steps. First, all simulations are run by using the mean value for the 
parameters. The influence of one specific parameter, for example the friction angle of 
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fractures, is estimated by changing the value of this parameter, all other parameters 
being the same. Then, using the calculated influence of the parameter on the outcome of 
the mode in simplified Monte Carlo simulation, the influence of all parameters on the 
output data can be combined, see section 3.5. 

The rock models in UDEC were always run assuming 100% of the same rock type. In 
order to estimate the discrepancies between the different rock types identified in the 
Test Case area, the simulations were realised 4 times, representing the four different 
rock types. However, the 30⋅30⋅30 m cubes are lithologically heterogeneous. The 
percentage of occurrence of each rock type in a cube can be estimated from borehole 
core mapping, see section 5.1.1. This distribution is used in a simplified Monte Carlo 
simulation to combine the output from the lithologically homogeneous models in a way 
to represent the probability of occurrence of the different rock types in the cubes, see 
section 3.5. 

In addition to data uncertainty, it is necessary to describe the confidence in the model 
predictions. The confidence in a descriptive model is the total assembly of indications, 
motives and argument in support of the model. To have high confidence on the 
predictions does not imply that there is low uncertainty. However, if the uncertainty is 
poorly defined and founded, the confidence in the model will be low. 

Three confidence levels were defined in the methodology that can be defined as 
followed: 

• Confidence level 1 when predictions are supported by local data,  

• Confidence level 2 when predictions are the result of interpolation and reasoning, 

• Confidence level 3 when predictions are the result of guesswork. 

According to the data made available for the Test Case, only two levels can be applied 
to this work. The confidence level is set to 1 for a rock block when a borehole or 
boreholes goes through it. The confidence level for all other blocks is set to 3.  
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7 Output data from the Test Case modelling  

The outcome of the modelling is presented for each rock type in section 7.1 and for the 
deformation zones in section 7.2. In sections 7.3 and 7.4 these data are used and 
combined to evaluate the properties of the different blocks and cubes in the large and 
detailed geometrical models (see sections 4.1.1 and 4.1.2), taking into account the 
probability of occurrence of different rock types in the blocks and cubes, data 
uncertainty and spatial variability (see sections 6.5 and 3.5). 

  

7.1 Rock mass properties for different rock types 
The results of the calculations are summarised in Table 7-1 to Table 7-4. The 
mechanical properties of the fractured rock mass are presented for each rock type, 
assuming that the entire volume is constituted by the same rock. The results correspond 
to in situ stresses of depth level 4 (the deepest level in the target area), i.e. σH=22.4 
MPa. 

The rock mass deformation parameters and strength were evaluated according to the 
procedure described in sections 3.2.2 and 3.2.3. The value of the rock mass strength is 
valid for a specific interval of confining stress [5.6 MPa–22.4 MPa] and using the M-C 
failure criterion. 

 

Table 7-1. Mechanical properties of a fractured rock mass in greenstones – depth 
level 4. 

GREENSTONES Mean value Std Dev. 

Em, σH, GPa 34.3 9.3 
νm, σH 0.24 0.02 

Em, σH/4, GPa 24.9 8.8 
νm, σH/4 0.36 0.06 

σcm , MPa 61.0 13.3 
cm, MPa 14.8 2.9 

φrm, o 38.0 2.7 

 

Table 7-2. Mechanical properties of a fractured rock mass in granodiorite – depth 
level 4. 

GRANODIORITE Mean value Std Dev. 

Em, σH, GPa 46.6 4.3 
νm, σH 0.26 0.01 

Em, σH/4, GPa 36.0 5.9 
νm, σH/4 0.37 0.04 

σcm , MPa 73.3 16.4 
cm, MPa 16.4 3.3 

φrm, o 41.4 3.8 
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Table 7-3. Mechanical properties of a fractured rock mass in aplite –  
depth level 4. 

APLITE Mean value Std Dev. 

Em, σH, GPa 41.1 4.1 
νm, σH 0.23 0.02 

Em, σH/4, GPa 34.1 5.4 
νm, σH/4 0.31 0.03 

σcm , MPa 97.5 27.8 
cm, MPa 22.3 5.9 

φrm, o 40.4 5.5 

 

Table 7-4. Mechanical properties of a fractured rock mass in granite –  
depth level 4. 

GRANITE Mean value Std Dev. 

Em, σH, GPa 40.3 3.0 
νm, σH 0.24 0.02 

Em, σH/4, GPa 28.9 5.3 
νm σH/4 0.39 0.04 

σcm , MPa 95.0 37.4 
cm, MPa 22.5 8.2 

φrm, o 38.6 4.5 

 

with Em Young’s modulus of the rock mass 
 νm Poisson’s ratio of the rock mass 
 σH Major horizontal stress 
 σcm Compressive strength of the rock mass 
 cm Cohesion of the rock mass 
 φrm Friction angle of the rock mass 
 

The same type of tables are available for each rock type at the other depth levels, in this 
way taking into account the influence of stress dependency with depth on the 
mechanical properties of the rock mass. The comparison of properties for the same rock 
type but at different depth levels show an increase of the Young’s modulus and of the 
rock mass strength with depth, see Table 7-5. 

The same comparisons in the same range of values are made on the other rock types for 
the same depth levels.  

 

Table 7-5. Young’s modulus and rock mass strength at different depth levels, in 
the granodiorite. 

GRANODIORITE Em, σσσσH, GPa σσσσcm , MPa 

 Mean value Std Dev. Mean value Std Dev. 
Level 1 (–380/–410m) 43.3 4 50.3 11.2 
Level 2 (–410/–440m) 44.4 4.1 57.6 12.9 
Level 3 (–440/–470m) 45.5 4.2 64.8 14.5 
Level 4 (–470/–500m) 46.6 4.3 73.3 16.4 
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7.2 Mechanical properties for deformation zones 
The modelling results on deformation zones are presented in Table 7-6 to Table 7-9. 
The results are presented by deformation zone, assuming that the rock type distribution 
is the same in the entire zone (Table 5-15). The results correspond to in situ stresses of 
depth level 4 (the deepest level in the target area), i.e. σH=22.4 MPa. 

The rock mass deformation parameters and strength were evaluated according to the 
procedure described in sections 3.2.2 and 3.2.3. The value of the rock mass strength is 
valid for a specific interval of confining stress [5.6 MPa–22.4 MPa] and using the M-C 
failure criterion. 

Table 7-6. Mechanical properties for deformation zone EW-3, depth level 4. 

EW-3 Mean value Std Dev. 

Em, σH, GPa 15.54 1.86 
νm, σH 0.08 0.007 

Em, σH/4, GPa 0.85 0.1 
νm σH/4 0.45 0.05 

σcm , MPa 0* – 
cm, MPa 0 0 

φrm, o 26.8 3.21 

 

Table 7-7. Mechanical properties for deformation zone NE-2, depth level 4. 

NE-2 Mean value Std Dev. 

Em, σH, GPa 35.43 4.35 
νm, σH 0.31 0.026 

Em, σH/4, GPa 24.47 3 
νm σH/4 0.42 0.04 

σcm , MPa 56.1 20.44 
cm, MPa 13.41 4.7 

φrm, o 38.9 4.37 

 

Table 7-8. Mechanical properties for deformation zone EW-1, depth level 4. 

EW-1(1) Mean value Std Dev. 

Em, σH, GPa 13 1.56 
νm, σH 0.35 0.03 

Em, σH/4, GPa 6.8 0.8 
νm σH/4 0.58 0.063 

σcm , MPa 47.4 17.31 
cm, MPa 11.8 4.14 

φrm, o 36.8 4.42 
(1) Includes deformation zone EW-1a and EW-1b 

Table 7-9. Mechanical properties for deformation zone NE-1, depth level 4. 

NE-1 Mean value Std Dev. 

Em, σH, GPa 4.5 0.4 
νm, σH 0.11 0.009 

Em, σH/4, GPa 2.4 0.2 
νm σH/4 0.34 0.037 

σcm , MPa 0.5 0.2 
cm, MPa 0.2 0.07 

φrm, o 24.5 3 
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with Em Young’s modulus of the rock mass 
 νm Poisson’s ratio of the rock mass 
 σH Major horizontal stress 
 σcm Compressive strength of the rock mass 
 cm Cohesion of the rock mass 
 φrm Friction angle of the rock mass 
 

 

7.3 Mechanical properties of the rock units in the 550 m 
model 

According to the geometrical model /Hudson (ed.), 2002/, all “ordinary rock units” in 
the rock mass (rock unit type 1) have been assigned the same lithology, fracture 
network and mechanical properties for intact rock and fractures. Therefore, the same 
rock type distribution was applied to these blocks – A, G, H, I, L, and N, see Table 
7-10. The values used were obtained by statistical analysis along the boreholes, and the 
procedure is described in section 5.1.1. 

 

Table 7-10. Rock type distribution for the “ordinary rock units” (rock unit type 1). 

 Granite Granodiorite Aplite Greenstones 

Distribution (%) 53.9 34.9 8.2 3 

 

The rock type distribution in the “deformation zone units” was based on the information 
provided by the geologists, see section 5.4.3. A rough quantitative interpretation of the 
qualitative descriptions has been made in order to be able to assign mechanical 
properties to the material in the deformation zones (Table 7-11). 

 

Table 7-11. Rock type distribution for “deformation zone units” (rock unit type 2). 

 Granite Granodiorite Aplite Greenstones Block ID 

EW-3 0 100 0 0 K 
NE-2 0 90 10 0 J 
EW-1 100 0 0 0 B, C, D, E, F 
NE-1 0 90 10 0 M 

 

The visualisation and localisation of the different “rock unit” types in the model are 
presented in Figure 4-4. The identification of the deformation zones in the models is 
presented in Figure 7-1. 
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Figure 7-1. Identification of the local deformation zones (X:East, Y: North). The grey box is the 
detailed model area. 

 

The estimated deformation properties of the different blocks are presented in Table 7-12 
and the results of the strength properties in Table 7-13. The confidence levels have been 
assigned according to the definitions presented in section 6.5.  

As illustrated in Figure 4-4, most of the blocks go from the surface to –550 m. This 
implies that the mechanical properties of the rock mass might change with depth and in 
relation to the increase in in situ stresses. The influence of depth and in situ stresses has 
been handled at the detailed model’s scale, between –380 and –500 m, see section 7.1 
and Table 7-5.  

The mechanical properties of the blocks in the 550 m model were evaluated from 
properties presented in sections 7.1 and 7.2 by means of Monte Carlo simulations, see 
section 3.5. These mechanical properties are obtained for simulations run at a stress 
level corresponding to depth level 4, that means between –470 and –500 m. Hence, the 
interpretation of properties on the entire blocks, presented in Table 7-12 and Table 7-13, 
are based on properties established at depth of –470 to –500 m.  

Using only these values for evaluating mechanical properties of the “rock units” might 
be a shortcoming of this methodology. An expectation might be to provide a 
relationship between variation of mechanical properties from the surface to –550 m 
depth. However the depth dependency of the deformation modulus is not a well-known 
relationship and its study was out of scope of this work, and would have required much 
more time and simulations.  
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Table 7-12. Deformation properties of the different blocks in the large model. 

Em (GPa) ννννm Block  
ID 

Rock unit 
Type(1) 

Mean Std Dev. Mean Std Dev. 
Confidence 

A 1 42.46 5.08 0.25 0.02 3 
B 2 13.01 1.56 0.35 0.03 3 
C 2 13.01 1.56 0.35 0.03 3 
D 2 13.01 1.56 0.35 0.03 3 
E 2 13.01 1.56 0.35 0.03 3 
F 2 13.01 1.56 0.35 0.03 3 
G 1 42.46 5.08 0.25 0.02 1 
H 1 42.46 5.08 0.25 0.02 1 
I 1 42.46 5.08 0.25 0.02 1 
J 2 35.43 4.35 0.31 0.026 3 
K 2 15.54 1.86 0.08 0.007 3 
L 1 42.46 5.08 0.25 0.02 3 
M 2 4.5 0.4 0.11 0.009 3 
N 1 42.46 5.08 0.25 0.02 3 

(1) Rock unit type 1: “ordinary rock unit”; rock unit type 2: “deformation zone unit” 

Table 7-13. Strength properties of the different rock units. 

σσσσcm (MPa) cm (MPa) φφφφrm (o) Block 
ID 

Rock unit 

Type(1) 
Mean Std Dev. Mean Std Dev. Mean Std Dev. 

Confidence 

A 1 86.9 32.57 20.2 7.30 39.7 4.50 3 
B 2 47.4 17.31 11.8 4.14 36.8 4.42 3 
C 2 47.4 17.31 11.8 4.14 36.8 4.42 3 
D 2 47.4 17.31 11.8 4.14 36.8 4.42 3 
E 2 47.4 17.31 11.8 4.14 36.8 4.42 3 
F 2 47.4 17.31 11.8 4.14 36.8 4.42 3 
G 1 86.9 32.57 20.2 7.30 39.7 4.50 1 
H 1 86.9 32.57 20.2 7.30 39.7 4.50 1 
I 1 86.9 32.57 20.2 7.30 39.7 4.50 1 
J 2 56.1 20.44 13.41 4.7 38.9 4.37 3 
K 2 0 – 0 0 26.8 3.21 3 
L 1 86.9 32.57 20.2 7.30 39.7 4.50 3 
M 2 0.5 0.2 0.2 0.07 24.5 3 3 
N 1 86.9 32.57 20.2 7.30 39.7 4.50 3 

(1) Rock unit type 1: “ordinary rock unit”; rock unit type 2: “deformation zone unit” 
 

 

7.4 Mechanical properties of the rock units in the target area 
The target area has been divided in 30⋅⋅⋅⋅30⋅⋅⋅⋅30 m cubes, distributed on four horizontal 
depth levels, see section 4.1.2. The localisation of the cubes is referred to by the 
centroid co-ordinates. A “rock unit” type is assigned to each cube and can be identified 
as rock mass or “ordinary rock unit” (rock unit type 1) or “deformation zone unit” (rock 
unit type 2). According to the geometrical model, some cubes can be identified as either 
“ordinary rock unit” or “deformation zone unit”. In this case, predictions are presented 
for both “rock unit” types in the same cube, see section 4.1.2. 

Cubes of type “deformation zone units” are those totally included or just crossed in the 
corner by the “deformation zone” representative volume, see Figure 7-2. All these cubes 
can also contain “ordinary rock units” and are assigned double predictions. 
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Figure 7-2. 3D views of the determination of the cubes intersected by deformation zones. A) 
Detail of the RVS model. B) Overview of the models with only "deformation zone unit” cubes 
enlighten. NB: deformation zones are then represented as planes with zero width.  

 

For the “ordinary rock unit”, the nature of the intact rock has been defined from 
borehole core logging. When a borehole goes through a cube, the rock type distribution 
given by the core mapping inside the cube has been used, and given as a percentage of 
each rock type, see Table 7-14. For the other cubes, the statistical distribution as 
presented in section 3.1.1 is used for calculations, see Table 7-10.  

For the “deformation zone unit”, the rock type has been assigned on the basis of the 
geometrical model’s report /Hudson (ed.), 2002/, and expressed as a percentage of each 
rock type (Table 7-14). The rock type distribution for “deformation zone units” is 
related to EW-1b for cubes 4 and 5, and to NE-2 for cubes 50, 170 and 290. 

The predictions are presented in two sections depending on the degree of confidence on 
the data. Results for cubes of confidence level 1 are presented in section 7.4.1 and 
results for cubes of confidence level 3 in section 7.4.2. 

The confidence levels were assigned according to the definitions in section 6.5. Figure 
7-3 illustrates the 30 m cubes that will be assigned confidence 1, i.e. nine of the 420 
cubes contained in the detailed model. 
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Figure 7-3. 3D perspective, top and profile views of the cubes of confidence 1 (X: East,  
Y: North). 

 

Figure 7-4 represents the spatial localisation of the 9 cubes of confidence level 1 on the 
four depth layers. All the other cubes are of confidence level 3. 

 

 

Confidence 1

Confidence 3  

Figure 7-4. Confidence levels for the cubes in the detailed model. 

  

7.4.1 Predictions for cubes of confidence level 1 

Table 7-14 presents the rock type distribution in the different rock unit types for each 
cube of confidence 1. 
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Table 7-14. Rock type distribution in the cubes with confidence level 1. 

Cube 

ID 

Centrum co-ordinates (m) Rock type distribution (%) 

Rock unit type 1(1) 

Rock type distribution (%) 

Rock unit type 2(1) 

Nr X Y Z granite diorite aplite greenstone granite diorite aplite 

4 1933.811 7333.952 –395 80.3 0 19.7 0 100 0 0 
5 1963.755 7335.784 –395 80.3 0 19.7 0 100 0 0 
50 2117.138 7285.053 –395 39.4 28.2 12.5 19.9 0 90 10 
105 1972.912 7186.063 –395 0 88.3 11.7 0 – – – 
170 2117.138 7285.053 –425 100 0 0 0 0 90 10 
270 2115.307 7314.997 –455 22.5 75.9 1.7 0 0 90 10 
290 2117.138 7285.053 –455 22.5 75.9 1.7 0 0 90 10 
390 2115.307 7314.997 –485 0 100 0 0 – – – 
410 2117.138 7285.053 –485 0 100 0 0 – – – 

(1) 1: “ordinary rock unit”; 2: “deformation zone unit” 

 

The localisation of the cubes in space is illustrated in Figure 7-5. Only the cubes with 
confidence 1 are numbered. 

 

 
Figure 7-5. Rock type distribution in the cubes of the detailed model. 

 

The simulations have been conducted according to the methodology presented in 
section 3 and with the parameters defined in sections 5 and 6. The mechanical 
properties of the cubes are the results of the combination of properties obtained for each 
rock type with respect to their probability of occurrence, see section 3.5. The results of 
the deformation properties of the different cubes with confidence level 1 are presented 
in Table 7-15 and Table 7-16, and the results of the strength properties in Table 7-17.  
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Table 7-15. Young’s modulus for the cubes with confidence level 1. 

  Em (GPa) 
  

Centrum co-ordinates (m) 
σH 

(2) σH/4 
Cube ID Rock unit 

Type(1) X Y Z Mean Std Dev. Mean Std Dev. 

1  38.8 3.61 15.95 3.37 
4 

2 
1933.811 7333.952 –395 

13.01 1.56 6.81 1.31 
1 38.8 3.61 15.95 3.37 

5 
2 

1963.755 7335.784 –395 
13.01 1.56 6.81 1.31 

1  39.22 6.13 18.15 6.15 
50 

2 
2117.138 7285.053 –395 

35.43 4.35 24.47 5.15 
105 1 1972.912 7186.063 –395 42.57 4.38 24.13 4.26 

1  39.51 3.51 19.7 3.6 
170 

2 
2117.138 7285.053 –425 

35.43 4.35 24.47 5.15 
1 44.2 4.7 30.51 6.1 

270 
2 

2115.307 7314.997 –455 
35.43 4.35 24.47 5.15 

1 44.2 4.7 30.51 6.1 
290 

2 
2117.138 7285.053 –455 

35.43 4.35 24.47 5.15 
390 1 2115.307 7314.997 –485 46.6 4.3 36 5.9 
410 1 2117.138 7285.053 –485 46.6 4.3 36 5.9 
(1) 1: “ordinary rock unit”; 2: “deformation zone unit” 
(2) The values of σH are related to the depth level of each cube 

 

Table 7-16. Poisson’s ratio for the cubes with confidence level 1. 

   νm 
   

Centrum co-ordinates (m) 
σH 

(2) σH/4 
 Cube ID Rock unit 

Type(1) X Y Z Mean Std Dev. Mean Std Dev. 

 1  0.26 0.02 0.6 0.06 
 

4 
2 

1933.811 7333.952 –395 
0.35 0.03 0.58 0.08 

 1 0.26 0.02 0.6 0.06 
 

5 
2 

1963.755 7335.784 –395 
0.35 0.03 0.58 0.08 

 1 0.27 0.02 0.57 0.07 
 

50 
2 

2117.138 7285.053 –395 
0.31 0.02 0.42 0.06 

 105 1 1972.912 7186.063 –395 0.28 0.01 0.52 0.06 
 1 0.25 0.02 0.54 0.06 
 

170 
2 

2117.138 7285.053 –425 
0.31 0.02 0.42 0.06 

 1 0.26 0.02 0.43 0.05 
 

270 
2 

2115.307 7314.997 –455 
0.31 0.02 0.42 0.06 

 1 0.26 0.02 0.43 0.05 
 

290 
2 

2117.138 7285.053 –455 
0.31 0.02 0.42 0.06 

 390 1 2115.307 7314.997 –485 0.26 0.01 0.37 0.04 
 410 1 2117.138 7285.053 –485 0.26 0.01 0.37 0.04 

(1) 1: “ordinary rock unit”; 2: “deformation zone unit” 
(2) The values of σH are related to the depth level of each cube 
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Table 7-17. Rock mass strength for the cubes with confidence level 1. 

  Centrum co-ordinates (m) σcm (MPa) cm (MPa) φrm (o) 
Cube 

ID 
Rock unit 

type(1) X Y Z Mean Std 
Dev. Mean Std 

Dev. Mean Std 
Dev. 

1  78.4 29.5 19 6.5 38.9 4.7 
4 

2 
1933.811 7333.952 –395 

47.4 17.6 11.8 4.1 36.8 4.4 
1 78.4 29.5 19 6.5 38.9 4.7 

5 
2 

1963.755 7335.784 –395 
47.4 17.6 11.8 4.1 36.8 4.4 

1 63.9 27.8 14.9 6.5 40.3 4.5 
50 

2 
2117.138 7285.053 –395 

56.1 20.4 13.4 4.7 38.9 4.4 
105 1 1972.912 7186.063 –395 54.7 18.4 12.1 4.2 42.4 4.3 

1 82.9 32.6 19.8 7.2 38.9 4.5 
170 

2 
2117.138 7285.053 –425 

56.1 20.4 13.4 4.7 38.9 4.4 
1 70.7 22.9 15.9 5.3 41.5 4.3 

270 
2 

2115.307 7314.997 –455 
56.1 20.4 13.4 4.7 38.9 4.4 

1 70.7 22.9 15.9 5.3 41.5 4.3 
290 

2 
2117.138 7285.053 –455 

56.1 20.4 13.4 4.7 38.9 4.4 
390 1 2115.307 7314.997 –485 73.3 16.4 16.4 3.3 41.4 3.8 
410 1 2117.138 7285.053 –485 73.3 16.4 16.4 3.3 41.4 3.8 

(1) 1: “ordinary rock unit”; 2: “deformation zone unit” 

 

7.4.2 Predictions for cubes of confidence level 3 

All the other cubes have been assigned confidence level 3. The rock type distribution is 
then considered the same in all “ordinary rock units”, see Table 7-10 and Figure 7-5, 
and the rock type distribution in “deformation zone units” is the same as presented in 
Table 7-11. As a consequence, the properties are the same for all blocks of the same 
“rock unit” type on a same depth level (influence on in situ and confining stresses). 

The results of the deformation properties of the different cubes with confidence level 3 
are presented in Table 7-18 and Table 7-19. The results of the strength properties are 
shown in Table 7-20.  

 

Table 7-18. Young’s modulus for the cubes with confidence level 3. 

  Em (GPa) 
  σH 

(2) σH/4 

Cube ID Rock unit 
Type(1) Mean Std Dev. Mean Std Dev. 

Cubes without zones 1     

Depth level 1 (–395 m) 1 40.3 4.57 18.8 5.7 
Depth level 2 (–425 m) 1 41 4.82 23.3 5.9 
Depth level 3 (–455 m) 1 41.7 5 27.6 6.3 

Depth level 4 (–485 m) 1 42.5 5.08 31.6 6.66 

Cubes with zone EW-1 2 13 1.56 6.8 1.43 
Cubes with zone NE-1 2 4.5 0.4 2.4 0.5 
Cubes with zone NE-2 2 35.4 4.35 24.5 5.15 

(1) 1: “ordinary rock unit”; 2: “deformation zone unit” 
(2) The values of σH are related to the depth level of each cube 
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Table 7-19. Poisson’s ratio for the cubes with confidence level 3. 

  νm 
  σH 

(2) σH/4 

Cube ID Rock unit 
Type(1) Mean Std Dev. Mean Std Dev. 

Cubes without zones 1     

Depth level 1 (–395 m) 1 0.27 0.02 0.57 0.08 

Depth level 2 (–425 m) 1 0.26 0.02 0.51 0.07 

Depth level 3 (–455 m) 1 0.06 0.02 0.44 0.06 

Depth level 4 (–485 m) 1 0.25 0.02 0.38 0.05 

Cubes with zone EW-1 2 0.35 0.03 0.58 0.08 

Cubes with zone 
NE-1 

2 0.1 0.01 0.3 0.03 

Cubes with zone NE-2 2  0.31 0.02 0.42 0.06 

(1) 1: “ordinary rock unit”; 2: “deformation zone unit” 
(2) The values of σH are related to the depth level of each cube 

 

Table 7-20. Rock mass strength for the cubes with confidence level 3. 

  σcm (MPa) cm (MPa) φrm (o) 

Cube ID Rock unit 
Type(1) Mean Std Dev. Mean Std Dev. Mean Std Dev. 

Cubes without zones 1       

Depth level 1 (–395 m) 1 67.17 28.21 15.81 6.62 40.11 4.78 
Depth level 2 (–425 m) 1 73.65 29.43 17.1 6.6 40.2 6.5 
Depth level 3 (–455 m) 1 80.36 31.3 18.6 7.11 40.4 4.6 

Depth level 4 (–485 m) 1 86.9 32.57 20.2 7.3 39.7 4.5 

Cubes with zone EW-1 2 47.4 17.31 11.8 4.14 36.8 4.42 
Cubes with zone 

NE-1 
2 0.5 0.2 0.2 0.07 24.5 3 

Cubes with zone NE-2 2 56.1 20.44 13.41 4.7 38.9 4.37 

(1) 1: “ordinary rock unit”; 2: “deformation zone unit” 

 

The results of the theoretical approach are discussed and compared to two empirical 
approaches, one developed on the same restricted set of input data, and one using all 
available data in the model volume /Hudson (ed.), 2002/.  
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8 Discussion 

8.1 Input parameters 
8.1.1  Deformation zones and fracture pattern  

The DFN model provided for the Test Case was developed for other applications, and 
might not be the best suited for the Test Case. Fracture data for this model were 
collected on the Zedex tunnel, and defines the local fracturing in the surrounding of the 
tunnel. 

In this model no special attention was paid to deformation zones. However, five major 
deformation zones are going through the models, and the “deformation zone units” they 
define must be considered separately. Indeed, fracture frequency and fracture 
orientation might be different in the core of the deformation zones, and in the volume 
surrounding these zones. Therefore the provided DFN model can not be used to 
simulate the fracturing in the deformation zones. 

In order to simulate the fracture pattern in the deformation zones for the Test Case, 
some assumptions based on qualitative descriptions were made to define simplified 
fracture networks in the zones. 

 

8.1.2 Mechanical properties for intact rock and fractures 

The characterisation of the properties of the intact rock is not complete because tests 
were not provided for all rock types. Moreover, the samples were located in a relatively 
confined volume compared to the model volume. The spatial variability might then be 
underestimated.  

Different results were provided in two different reports for the same laboratory test on 
the same rock type. In order to define input parameters for the simulations, the 
appropriate values were chosen on the basis of engineering expertise on rock mass 
properties. 

 

8.2 Methodology 
The numerical code used is not optimal for the methodology. The automatic block 
generation in UDEC removes fractures ending in the rock mass, and a lot of manual 
work needed to be done on the input data in order to create the appropriate rock block 
model. Special work was particularly required for the assignment of different 
mechanical properties to different sets of fractures.  

 

8.3 Results 
The validity of the estimations of the rock mass mechanical properties produced by the 
theoretical model is discussed in Hudson ed. 2002, where both theoretical and empirical 
models are analysed. 
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9 Conclusions and further recommendations 

For future modelling work the following conclusions can be drawn from the tests 
presented in this report: 

Regarding input data 

• All laboratory and field-testing must be done according to standards or methods 
recommended by SKB and done by laboratories accepted by SKB. 

• The samples for testing must be spread over the volume to get an estimation of the 
spatial variability of the parameters. 

• Special DFN models must be set up for the deformation zones. 

• The spatial variability (especially versus depth) must be studied for each parameter 
to see if it is necessary to divide the rock units from the geometrical model. 

Regarding developing of the methodology 

• In order to assure the quality and reliability of the developed methodology and of 
the modelling output comparisons should be made with other modelling codes that 
can simulate the behaviour of fractured rock masses. 

• The automatic block generation procedure in UDEC must be developed further to 
include all fracture traces even fractures ending inside blocks. 

• The procedure for assigning material properties to specific fractures or fracture sets 
must be further developed in UDEC. 

• Further comparisons with 3D modelling are recommended.  

• The stress dependency with depth of the mechanical properties, especially the 
deformation modulus for the rock mass, could be further studied. 

• Complementary methods, such as kriging, could be studied to evaluate data 
uncertainty and spatial variability. 

• The methodology has been applied on one specific type of rock mass. In order to 
test the domain of applicability of the methodology, other combinations of DFN 
models, rock types and mechanical properties should be studied and compared to 
empirical experiences. 
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1 Introduction 

Two terms are mainly used in the reviewed literature: fractures and joints. According to 
the technical terminology, the English term “fracture” is a general word used to define 
mechanical breaks in a rock mass, which implies any kind of discontinuity such as 
joints, fissures, faults and cracks. Nevertheless, the term does not refer in any way to the 
mode of rupture. On the other hand, the term “joints” is used to describe a discontinuity 
in the rock mass along which there had been no visible movement parallel to the plane. 

According to the aforementioned definitions, the term “fracture(s)” would be the most 
appropriate as all natural fractures must be considered to build a model of the fractured 
rock mass. Anyhow, the term “joints” has been kept in some specific cases when 
quoting authors that used the same term. 

Moreover, using the term fractures is in accordance to the SKB’s classification that has 
been developed in order to get unambiguous terminology during site investigation. This 
specific classification and naming of fractures has been based on the length and width of 
the fractures /Andersson et al, 2000/. One might then talk of regional fracture zone, 
local major fracture zone, local minor fracture zones or fractures. 

The term “fracture” as used in this report and in the SKB’s classification is a general 
description of a structural feature. Further information on fracture zones and fractures 
are needed to understand the structural context and build the model.  

 

1.1 Background 
Geometric and mechanical characteristics of rock fractures are the basis for most of the 
work of engineering geologists. However, the complete description of fractures is 
difficult because of their 3-D nature and their limited, most often 2D, exposure in 
outcrops, boreholes and tunnels. An ideal characterization of the fracturation network 
would involve the specific description of each fracture in the rock mass, exactly 
defining its geometric and mechanic properties /Dershowitz and Einstein, 1988/. This is 
not possible for a number of reasons: 1) the visible part of fractures are limited, for 
instance to fracture traces only; 2) fractures at a distance from the exposed rock surfaces 
cannot be observed directly; 3) direct and indirect measurements have local accuracy. 
For that reasons fractures in a rock mass are usually described as an assemblage rather 
than individually. 

 

1.2 Properties of fractures – a short review 
The geometric characteristic of fractures that are necessary to describe the rock mass 
can be divided into primary and secondary characteristics /Dershowitz, 1984/:  

Primary Geometric Fracture Characteristics 

• Fracture shape and planarity 

• Fracture size 

• Fracture location and spacing 

• Fracture orientation (attitude) 

• Aperture 
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Secondary Geometric Fracture Characteristics 

• Fracture termination 

• Autocorrelation and correlation 

The primary characteristics completely define the fracture system. The secondary 
characteristics are not necessary for the system identification but provide a better idea of 
correlation between the primary characteristics. 

 

1.3 Characterisation of the fractures in the rock mass 
Two major approaches have been tried in order to describe the assemblage of geometric 
fracture characteristics in a rock mass: the traditional disaggregate characterisation and 
the more recent aggregate characterisation /Dershowitz and Einstein, 1988/. In the 
former, each fracture characteristic is described separately, for instance through 
orientation distributions, spacing distributions and others. In the latter the 
interdependence of fracture characteristics is captured through the formulation of 
fracture system models. A particular fracture system model represents a typical 
geometry. The individual characteristics are still stochastic but their interdependence is 
specified.  

 

1.3.1 Disaggregate characterisation 

This is the traditional procedure developed by structural and engineering geologists and 
involves the application of statistical procedures to characterise fracture orientations. 
This approach is meant to define distribution forms of the geometric parameters, as 
listed above, in order to fit them with the observation and measurement data. In this 
way, it constitutes a basis for the further development of rock fracture system models.  
A short review of the distribution forms for use is presented.  

 

Fracture shape 

This parameter is most often assumed to be constant within a model. Anyhow, 
/Veneziano, 1978/ presented a model with stochastic distribution of fracture shape (the 
form of the distribution is not known, only the moments are).  

 

Fracture size 

The determination of fracture size is the result of an interpolation of 2D observation 
data to 3D data. Three main distribution forms have been identified and developed 
/Dershowitz, 1984/:  

• Exponential form for trace length distribution (insert equations) 

• Lognormal distribution 

• Hyperbolically shaped distributional form 
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Fracture location 

Results in 3D are extrapolated from 2D data. Three stochastic processes have been 
proposed: 

• The most commonly accepted is the Poisson process, in which the fracture network 
is simulated by a uniform distribution. This process will produce an exponential 
distribution of fractures along a sampling line in any direction. 

• The second process is based on a distribution of fracture centers such that fracture 
spacings along a sampling line follow a lognormal distribution. 

• The third process is a stationary correlated stochastic process; the location of 
fractures is correlated to the location of other fractures, but the distribution in space 
is homogeneous and the process is considered independent along x, y and z. 

 

Fracture orientation 

This parameter is represented by the dip and dip angle. According to studies carried  
out by /Dershowitz, 1979/, no distribution form fit the data at a confidence of 95%. 
Nevertheless, distributions such as Fisher, Bingham, bivariate Fisher and bivariate 
Bingham can be used to represent fracture orientation. 

The most commom for use is the Fisher distribution because it is the analog of the 
normal distribution for fracture data, and because of the ease to derive parameters from 
field data. 

This approach, which “disaggregates” the rock mass and studies each geometric 
characteristic apart of the other, can not account for a good determination of 
autocorrelation and correlation for the different characteristics. However, the 
distributional forms provided can be used in conjunction with assumption on fracture 
geometry and spatial structure to develop rock fracture systems. 

 

1.3.2 Aggregate characterization / Fracture system models 

The aggregate characterization of rock fracture geometry through fracture system 
models is an attempt to describe primary and secondary fracture characteristics as an 
entity. The use of this approach is more a complement to the previous one than a 
substitute /Dershowitz, 1984/.  

Since there are so many geometric fracture characteristics and thus a seemingly infinite 
number of combinations, one could produce a corresponding number of fracture system 
models. On the other hand, reality shows a relatively limited number of predominant 
rock mass geometries /Pollard and Aydin, 1988/. 

Mainly three ”classes” are developed to compare the geometry of fracture systems, 
which are persistence, connectivity and block size /Dershowitz, 1984/. 

• Persistence: it specifies the intensity of fracturing, i.e. the quantity of fractures 
within a given rock mass. This parameter is interesting to compare the amount of 
fracturing in different rock masses. 
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• Connectivity: it quantifies intersection between fractures within a given rock 
mass, and identifies the resulting networks. This is specifically of importance for 
hydrogeological applications. 

• Block size: it defines the size of the blocks of intact rock defined by the fracture 
system. This parameter is preferred than fracture intensity for slope stability 
assessments.  

The differences between conceptual models is accounted for the different models and/or 
combination of models chosen for parameters: model for fracture shape, model for 
location of sets, termination mode (does it exist, and what type of mode), model for 
fracture size (bounded or unbounded).  

The aggregate measures can be developed and implemented for every rock fracture 
system model, and so, for different combinations of fracture system geometric 
characteristics. 
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2 Discrete Fracture Network (DFN) models 

2.1 Fracture network models 
Mainly three approaches have been developed to simulate fracture network geometry 
and transport. These are the Discrete Fracture Network (DFN) Model, the Stochastic 
Continuum (SC) Model and the Channel Network (CN) Model. The choice of an 
appropriate conceptual model depends on the phenomena of interest. Amongst the 
different approaches developed to characterize fracture networks, studies show that the 
discrete fracture network (DFN) model is the most appropriate to simulate realistic 
geological representation than other models /Dershowitz et al, 1996/. The SC and CN 
models are more suited for the modelling of groundwater flow and transport in fractured 
rocks. Therefore this review focused on the different conceptual models developed for 
simulation of Discrete Fracture Network. 

 

2.2 Development of the DFN models 
Various conceptual models have been used to provide the geometry of discrete fracture 
networks. The first comment is that the different models have first been developed to 
simulate a specified fracture network and hence their utilization might be restricted to 
rock masses showing the same pattern. However, some generalizations of the primary 
models have been performed in order to simulate different pattern schemes. 

The classification of the conceptual models that have been developed is not so trivial. 
Indeed, few models are well recognized and identified in the literature, and the 
consistency of the data is sometimes difficult to assess. This review is an attempt to 
make a synoptic chart flow of the conceptual models that might be of use for the 
development of a rock mechanic model for the repository. 
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3 Presentation of the main used DFN models  

/Dershowitz and Einstein, 1988/ reviewed the main used and known conceptual DFN 
models (Table 3-1). The development of each model is based on specific relationships 
between characteristics such as location of fracture sets, termination, and fracture shape. 
Each model consists of a particular combination of the rock system characteristics. By 
capturing the relationships of fracture characteristics, “joint system models” can 
represent rock mass geometry as an entity. 

 

Table 3-1. “Joint system models” /Dershowitz and Einstein, 1988/. 

Model Joint characteristics considered in model 

 Joint Shape Joint Size Termination at 
intersection 

Co-planarity Orientation of 
sets 

Orthogonal Rectangle Bounded 

Unbounded 

Unbounded 

No 

yes 

no 

– 

yes 

yes 

Parallel 

Parallel 

Parallel 

Baecher Circle 

Ellipse 

Bounded no no Stochastic 

Veneziano Polygon Bounded In joint planes 
only 

yes Stochastic 

Dershowitz Polygon Bounded yes yes Stochastic 

Mosaic 
Tessellation 

Polygon Bounded yes yes Regular 
Stochastic 

Note: For all models, fractures are planar, and any location or autocorrelation process is possible. Joint 
locations are usually stochastic. Bounding of fractures implies that fractures smaller than the region under 
consideration can be represented. –Joint sizes are usually stochastic either specified directly or indirectly 
through stochastic location or orientation. Any component characteristic specified as being stochastic may 
also be deterministic. 
 

Beside these, some other interesting conceptual models can be accounted for the 
modelling of fractures’ geometry, such as geostatistical models and fractal models. A 
short review of the main assumptions, statistical approaches and applicability of these 
models is presented in the following. The joint system model’s table (Table 3-1) has 
been implemented by adding these conceptual models and reviewing the main fracture 
characteristics considered in the models (Table 3-2). 



Table 3-2. Main features of the fracture system models. 

Model Stationarity

Fracture Shape Fracture Size
Termination at 

intersection Co-planarity Orientation of sets Location of sets

Rectangle Bounded no - Parallel

Orthogonal Stationary Rectangle Unbounded yes yes Parallel

Rectangle Unbounded no yes Parallel

Veneziano Stationary Polygon Bounded In joint planes only yes Stochastic Uniform distribution (Poisson 
planes and lines)

Dershowitz Stationary Polygon Bounded yes yes
Stochastic (specified 

distribution)
Uniform distribution (Poisson 
planes)

Regular 

Stochastic

Enhanced Baecher Stationary Polygon Bounded yes no  Stochastic Uniform distribution

BART Non-stationary Polygon Bounded yes no  Stochastic
p p

model

Poisson Rectangle Stationary Rectangle Bounded yes no  Stochastic Uniform distribution

Box Fractal model Non-stationary Polygon Bounded yes no Stochastic (random) Fractal location model

Geostatistical Non-stationary Polygon Bounded yes no Stochastic Geostatistic (variogram)

War Zone Non-stationary Polygon Bounded yes no Stochastic Binary models

Non-Planar Zone Non-stationary Polygon Bounded yes yes Binary Binary models

Levy-Lee Fractal Non-stationary Polygon Bounded yes no Stochastic Fractal location model

Nearest-neighbor Non-stationary Polygon Bounded yes no Stochastic Probabilistic

Fractal POCS model Non-stationary Polygon Bounded yes no Stochastic Fractal location model

yes yes Tessellation models (based on 
Poisson models)

Mosaic Tessellation Stationary Polygon Bounded

Fracture characteristics considered in model

Regular / Stochastic Deterministic / Stochastic 
(Poisson location model)

Disk Baecher Stationary Circle Bounded no no

Deterministic / Stochastic 
(Poisson location model)
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3.1 Orthogonal model 
The earliest model developed to represent fracture systems were based upon the 
assumption that all fractures can be defined by three sets of unbounded orthogonal 
fractures /Dershowitz and Einstein, 1988/. The distinguishing feature is the assumption 
that the fractures are contained in two or three mutually orthogonal set of parallel 
fractures (Figure 3-1). 

 

 
Figure 3-1. Three-dimensional orthogonal model /Dershowitz and Einstein, 1988/. 

 

The basic model defined by /Snow, 1965/ consists of orthogonal sets of parallel 
unbounded fractures, with a constant spacing between the fractures within each set. In 
that way, the model is completely defined by only one parameter, the mean spacing 
between fractures in each set. The assumption of constant fracture spacing Sj can be 
relaxed, and replaced by an assumption for fracture location. The most common 
assumption is that fractures in each set are located by a Poisson process. In this case, the 
location of fractures can still be described by the distance between fractures in each set, 
defined by spacing Sj, with Sj now a random variable. For a Poisson process with 
intensity parameter λ, the spacing between fractures is exponential: 

( ) jS
jf S e−λ= λ    (3.1) 

Orthogonal fracture models may also be defined by bounded fractures (Figure 3-2). 
/Müller, 1963/ introduced a version of the orthogonal fracture model for rock mechanics 
applications in which fractures are defined as coplanar on fracture planes.When 
fractures are bounded, it is necessary to define fracture shapes, sizes and termination 
processes.  
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Figure 3-2. “Definition of bounded fractures in orthogonal system models. (a) Joint defined by 
joint plane intersections; (b) Joints defined without respect to joint plane intersections” 
/Dershowitz and Einstein, 1988/. 

 

Applicability: The most fundamental assumption of the orthogonal model is that it 
consists of three mutually perpendicular sets of parallel fractures. As a consequence of 
this assumption, rock blocks are all rectangular prisms. Natural fracture network 
patterns involve substantial scatter in fracture orientation, and the orthogonal model 
does not seem to be the best suited to model them. However, simulations performed by 
/Weiss, 1972/ provided a reasonable approximation for many fracture networks in 
which most blocks can be approximated by rectangular prisms. 

By definition of the orthogonal fracture system model, only very minor variations in 
fracture orientation are permissible. As a result, this model is only appropriate where 
fracture formation processes are sufficiently regular as to produce subparallel jointing. 
Complicated mechanisms such as complex folding, subsequent shearing, or super-
position of other fracture sets could introduce sufficient dispersion so as to make the 
orthogonal fracture system model inappropriate. The planar fracture assumption is also 
a significant limitation of the model. 

 

3.2 Baecher disk model 
This model has been developed by /Baecher et al, 1978/ and simultaneously by  
/Barton, 1978/, and was one of the first well-characterised discrete fracture models.  
The appropriate geometric parameters used to describe the fracture network are 
therefore the density of the fractures (number of fractures per unit volume), the 
orientation distribution of these fractures, the size and shape of the fractures, and the 
equivalent hydraulic apertures /Long and Billaux, 1987/. 

Any combination of fracture size, location, and orientation assumptions are possible. 

The fundamental feature of the ordinary model is the assumption of circular fracture 
shapes.  

In the ordinary Baecher model, the fracture centres are located uniformly in space, using 
a Poisson process and the fractures are generated as disks with a given radius and 
orientation. 
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Figure 3-3. Comparison of (a) the general Baecher model with (b) the Enhanced Baecher 
model /Geier et al, 1989/. 

 

The size of circular fractures are defined completely by one parameter, the fracture 
radius Rj. Fracture radius may be defined deterministically, as a constant for all 
fractures, or stochastically by a distribution of radii fr(Rj). Since fracture radii 
distributions have not been distributed in situ, the selection of a distribution form is 
primarily a matter of convenience. Appropriate distribution forms include the 
exponential and lognormal distributions of fracture trace length. 

Fracture location may be defined by a regular (deterministic) pattern or a stochastic 
process. The simplest stochastic assumption is a Poisson process, in which fracture 
centres are located by a uniform distribution in space. Fracture orientations may also be 
defined by any orientation distribution, or by a constant orientation /Dershowitz and 
Einstein, 1988/. As a result of the fracture location, shape and size process of the model, 
fractures terminate in intact rock and intersect each other as shown on the Figure 3-3a. 

Applicability: Such circular fracture shapes have been observed and many documented 
cases exist and can be explained from a fracture mechanics’ point of view. Anyhow, 
disk shaped fractures can only form blocks if they are large compared to the region 
under consideration. Thus the often observed blocky appearance of rock masses implies 
either that the fractures are not disk shaped or, if they are disks, that they are greater 
than the visible part of the rock mass. Another restriction is the fact that fractures have 
to be planar.  

 

3.3 Enhanced Baecher model 
The ordinary Baecher model has been further on developed to account for fracture 
terminations at intersections with pre-existing fractures and for more general fracture 
shapes /Geier et al, 1989/. The fracture shapes are generally initiated as polygons with 
three to six sides. The requirements for orientation’ and size statistics are the same as 
for the ordinary Baecher model. Termination is specified, as termination probability 
accounted for a fracture set is the probability that a fracture of that set will terminate 
when it intersects a fracture of an earlier set. Figure 3-3b depicts the features obtained 
using this model, showing termination of polygonal fractures at intersections with  
pre-existing fractures. 

Applicability: the Enhanced Baecher model is more appropriate to simulate the 
connectivity of natural fracture populations. Indeed, results of simulations /Geier et al, 
1989/ indicate that for fracture systems in which fractures terminate at intersections, the 

(a) (b) 
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ordinary Baecher model will produce networks with erroneously low connectivity 
measures, if the parameters of the Baecher model are adjusted to match trace length. 
Anyhow, a limitation of this model is that in case of termination at intersection, the 
algorithm may cause distorsion in the size distribution for that fracture set. 

 

3.4 BART (Baecher Algorithm, Revised Terminations) 
This model is a generalisation of the Enhanced Baecher model, which result in non-
uniform fracture locations. These models differ primarily from the precedent in the 
algorithm used for fracture termination modes /Dershowitz et al, 1998b/. Termination is 
assigned by termination percentage. This implementation provides a better correlation 
to field data. Indeed, the percentage of fractures that terminate at intersections with 
other fractures matches the termination percentage calculated from field data. Because 
in this model the locations of secondary fractures are controlled by the locations of the 
primary fractures, the resulting fracture populations exhibit spatial correlation and tend 
to occur in clusters or chains /Axelsson et al, 1990/. The 3D geometrical model 
produced using this algorithm is presented in Figure 3-4. 

 

 

Figure 3-4. 3D BART geometric model /Dershowitz et al, 1998b/. 

 

Applicability: The termination mode assigned speed up the model because there is no 
need to calculate fracture intersections. It is also significantly more heterogeneous, 
because fracture locations of terminating fractures are correlated to the location of  
pre-existing fractures /Dershowitz et al, 1998b/. This characteristic can be expected to 
produce simulated fracture populations that are more well-connected than fractures 
simulated with the ordinary Baecher model. 

 

3.5 Veneziano model 
/Priest and Hudson, 1976/ illustrated that model of fractures simulated by Poisson 
planes and lines show a good similarity with geometry of fractures observed in the field. 
However, the simple Poisson plane fracture model is based on the assumption of infinite 
extent of fractures, which is not so appropriate to represent rock geometry. Therefore 
/Veneziano, 1978/ introduced a method for adaptation of the concept of Poisson plane 
fractures to bounded fractures. 
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Figure 3-5. “Generation of Veneziano joint system model” /Einstein, 1993/. 

 

The model requires three consecutive stochastic processes /Dershowitz and Einstein, 
1988/. First, fracture planes are generated as Poisson planes (Figure 3-5). These fracture 
planes are located in space by a uniform distribution, but may have any desired 
distribution of orientation. Second, a Poisson line process on each fracture plane divides 
fracture planes into polygonal regions. Finally, a portion of these polygons is randomly 
marked as jointed, while the remainder is defined as intact rock. With this model, 
fracture shapes are polygonal, and fracture sizes are defined by the intensity of the 
Poisson line process and the proportion of polygons marked as fractures. In a 2D trace 
plane, this models resembles the Baecher model, except that fractures are represented by 
coplanar line segments or fibres rather than independent fibres. In addition, Veneziano 
demonstrated that his model leads to an exponential distribution of fracture trace lengths 
rather than lognormal distribution found with the Baecher model /Dershowitz, 1984/.  

“With regard to fracture termination, in the Veneziano model, fractures in each joint 
plane are defined by an independent Poisson line process. Therefore, the definition of 
fractures on each joint plane is independent of plane intersections” /Dershowitz et al, 
1988/. 

Applicability: polygonal shapes as defined by this model can often be observed in 
nature. This model is more appropriate than the orthogonal model for most cases, 
particularly if the fractures are coplanar.  

Despite the adaptation of the Poisson plane model to represent bounded fractures, the 
model usually fails to construct rock blocks unless they are 100% persistent and 
unbounded.  

This model has been applied to slope stability problems by /Einstein et al, 1983/, and to 
the hydrology of fractured rock masses by /Rouleau, 1984/. Both of these applications 
utilized the Veneziano model in a 2D trace plane only, since the geometry of this model 
is quite complex in 3D. 

 

3.6 Dershowitz model 
/Dershowitz, 1984/ remedied the disadvantage of the Veneziano model that fracture 
intersections and fracture edges do not coincide.  

Like the Veneziano model this model is based upon a system of Poisson planes 
representing fracture planes, but two stochastic processes (instead of three) are required 
to generate the model. The first process is the definition of fracture planes by a Poisson 
plane process of uniformly distributed locations, and by orientations following a 
specified distribution (Figure 3-6). The intersections between these planes define a 
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process of lines on each fracture plane, which divides each plane into polygons. The 
second process is the marking of a persistent portion of polygons on each plane as 
fractures, and the remainder as intact rock. As in the Veneziano model, this is done by a 
stochastic process in which each potential fracture has an equal probability of being 
marked as an open fracture. Thus fracture edges are defined by fracture plane 
intersections, and as a result all fracture intersections occur at fracture edges. Also, 
fractures correspond directly to the faces of the polyhedra defined by fracture planes. As 
a result, polyhedra faces are either completely intact or completely jointed and rock 
blocks can be modelled relatively easily. 

 

   

Figure 3-6. “Generation of Dershowitz joint system model” /Einstein, 1993/. 

 

Applicability: since fracture edges correspond to fracture intersections, distinct rock 
blocks can be defined at any scale, regardless of the proportion of each fracture plane 
which is defined as jointed. This model has the advantages of the orthogonal model for 
definition of distinct rock blocks, but has the additional advantage of flexible orientation 
distributions, such that a variety of polygonal fracture shapes and polyhedral block 
shapes can be modelled. This model is a more accurate representation of a system that 
exhibits distinct rock blocks, bounded polygonal fractures, and orientation dispersion 
/Dershowitz and Einstein, 1988/. 

Difficulties are caused by the fact that polygon (block face) sizes are controlled by the 
intensity of intersecting fracture plane processes. If fractures are defined as a constant 
percentage of each plane, the increases in plane process intensity results in a larger 
number of smaller polygons.  

The model is not accurate for models with bounded, non co-planar fractures. However, 
by a reduction in the proportion of each fracture, which is defined as jointed, the effect 
of co-planarity can be reduced, and the model can be used as an approximation. But the 
model has then the same weaknesses as the ordinary Baecher model. 

 

3.7 3D Hierarchical Fracture Model (Ivanova) 
/Ivanova, 1995, 1998/ developed a 3D model specially aimed for reproducing geologic 
fracture systems. The construction of the fracture system geometry is based on Poisson 
plane and line processes, and is therefore related to the Veneziano’s and Dershowitz’s 
models developed earlier (see sections 3.5 and 3.6). 
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Based on field data and geological history, fracture sets are identified. Primary fractures 
that originate in the intact rock or do not have any relation with other sets in previously 
fractured rocks are set as independent. Secondary, tertiary,…, fracture identify 
dependent sets.  

Fractures are modelled as convex polygons that are randomly oriented and randomly 
located in space. Three major stochastic processes are required to develop the model. 
First, a Poisson plane process models the stress field that creates fractures along  
planes of maximum shear and tension in rocks. The second process is a Poisson line 
tessellation and polygon marking, which will divide fracture planes into intact and 
fractured regions. The tertiary process is a random polygon translation and rotation, 
which is accounted for the representation of the local stress field variations. This 
process controls the co-planarity of fractures and deviations of fracture orientations 
from the regional directions due to local geologic structures. 

These processes are used to model the independent fracture sets, as well as the 
dependent ones. Anyhow, dependence relations, based for example on a termination 
function, must be implemented. /Ivanova, 1998/ describes several algorithms that can  
be accounted for the representation of rock fracture systems in the major geologic 
environments, such as folds, faults, remote tension, thermal contraction and central 
structures. 

Applicability: the stochastic processes of the model enable the representation of 
relationship between fracture geometry and underlying mechanisms. Such processes 
generate fracture clusters that reflect the natural development of smaller fracture along 
specific geologic structures. This model has been applied by /Ivanova, 1998/ for 
representation of the fracture system in the oil-producing sedimentary rocks, Yates 
field, Texas. Other potential engineering applications include risk assessment during 
undergroung construction, study of flow and transport. 

Some limitations of the model are related to the data acquisition in the field (1D or 2D 
data are used to infer the 3D geometrical characteristics). Moreover, implementations in 
the tool to model relationships between underlying mechanisms and fracture system 
geometry are needed. 

 

3.8 Nearest Neighbour model 
The Nearest Neighbour model is identical to the Enhanced Baecher model as described 
above except for its assumptions about the spatial distribution of fractures /Geier et al, 
1989/.  

This is a semi-stochastic, pattern-based model which simulates the tendency of fractures 
to be clustered around major points and faults by preferentially producing new fractures 
in the vicinity of earlier fractures /Dershowitz et al, 1998b/. In order to reproduce this 
feature, the fractures are organised into primary, secondary and tertiary groups, and are 
generated in this sequence, with fractures in the primary groups dominating the 
generation of fractures in succeeding groups (Figure 3-7). The probability of a fracture 
at a point x in three-dimensional space is given by: 

( ) b
xP x CL−=    (3.2) 

where L is the distance from point x to the nearest fracture of a previous, dominant 
group, and b and C are empirical constants /Geier et al, 1989/. 
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The model requires the same data as the Enhanced Baecher model, plus information on 
the spatial interrelationship of the fractures, and accounts for fracture terminations in 
terms of the termination probability.  

 

 

Figure 3-7. 3D geometric nearest-neighbor model /Dershowitz et al, 1998b/. 

 

Applicability: According to the simulation algorithm (fractures clustered around the  
first group of fractures), this model tends to provide more well-connected fracture 
populations than the ones produced by the ordinary Baecher model. The definition of 
the fracture groups allows more explicit representation of geological observations than 
is allowed in the Levy-Lee model, for cases in which the fractures can be classified into 
different groups in correspondence with a theory of fracture genesis.  

 

3.9 “War Zone” model 
The War Zone model is based upon the internal geometry of shear zones, such as those 
described by /Segal and Pollard, 1983/, which have high fracture intensities due to the 
formation of conjugate shear fractures between subparallel faults. In the War Zone 
model, the regions lying between pairs of neighbouring, subparallel pairs of primary 
fractures, are identified (Figure 3-8a). These regions, referred to as “war zones”, are 
assigned a higher probability density function /Geier et al, 1989/: 

( ) ( )x w w x 0P x k P x= ,      kw>1   (3.3) 

where Px(xw) is the probability of a fracture occurring at any point xw inside of a war 
zone, Px(x0) is the probability of a fracture occurring at any point x0 outside of all war 
zones, and kw is the empirically determined war zone intensity factor, which is the ratio 
of fracture intensity inside war zones to the fracture intensity outside war zones. 
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 (a) (b) 

Figure 3-8. (a) War-Zone geologic conceptual model, and (b) 3-D geometric conceptual model 
/Dershowitz et al, 1998b/. 

 

Pairs of fractures forming “war zones” are identified from among the primary set of 
fractures on the basis of three dimensionless qualities “parallelness”, “largeness” and 
“closeness” (definitions of these parameters are found in /Geier et al, 1989; Dershowitz 
et al, 1998b/), and higher fracture densities are assigned in these “war zones” (Figure  
3-8b). 

This model is identical to the Enhanced Baecher model except for its assumptions about 
the spatial distribution of fractures, and requires the same data, plus the war zone 
intensity factor and the war zone selection parameters. These are determined statistically 
from field data, but in some cases the locations of major fracture zones can even be 
defined deterministically, by means of remote sensing, hydraulic testing and fracture 
mapping. 

Applicability: the validity of this model is supported by observations of major fracture 
zones made at the Stripa site and elsewhere. Moreover the probabilistic War Zone 
model has been validated with sets of fractures identified in the TSE drift /Geier et al, 
1989/. This simulation demonstrates that the combination of the three war zones 
parameters as defined above can be used to define fracture zones. However, more 
accurate results would likely be obtained by putting an effort in the optimisation of  
war zone selection parameters. 

 

3.10 Non-Planar Zone model 
This is a semi-stochastic model which generates fractures with location and orientation 
varying according to a user defined non-planar surface /Dershowitz et al, 1998b/. 
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Figure 3-9. 3D geometric non-planar model /Dershowitz et al, 1998b/. 

 

 

3.11 Geostatistical “models” 
The geostatistical approach was developed to describe the spatial behaviour of 
regionalised variables of the fracture network, and thus of the underlying random 
process /Gervais et al, 1995/.  

It is based on the assumption that the location on fractures and their other geometrical 
and hydromechanical attributes have spatial correlation /La Pointe, 1993/. Spatial 
correlation implies that the properties of a specific fracture and group of fractures are 
similar to neighbouring fractures and less similar to distant ones, and that this similarity 
decreases as the relative distance between fracture increases. 

The variogram function is the basic tool for geostatistics, but in practice the theoretical 
variogram function is estimated using the following approximation /La Pointe, 1993/: 

( ) ( ) ( ) ( )( )
n(h)

2

i i
i 1

1
h n h X z X z h

2 =

γ = − +∑    (3.4) 

where n(h) is the number of pairs separated by a relative distance h, and zi is the ith 
fracture. 

It describes the spatial behaviour of a regionalised variable and, hence, of the 
underlying random process. Different tools such as the variogram of cumulated length 
of fracture traces per m2, the variogram of number of fracture trace centres per m2 and 
the variogram of fracture direction can be calculated to determine spatial correlation 
between different geometrical fracture properties. 



 143 

 

Figure 3-10. 3D geometric geostatistical model /Dershowitz et al, 1998b/. 

 

There are in practice several options for incorporating spatial correlation properties into 
the simulation, such as Turning Band methods and Indicator Kriging. The Turning 
Bands algorithm, which is the one developed in FracMan, can generate simulations with 
non-fractal correlation properties (Figure 3-10), which makes it a useful complement to 
the 3D Box Fractal and Fractal POCS algorithms /Dershowitz et al, 1998b/.  

Applicability: Geostatistical models are rarely used in engineering design, but may be 
fruitful for portrayal of rock mass fracture networks. One limitation of this model is that 
a wide sampling area is required to collect confident geostatistical data. A limitation of 
the model developed in FracMan is that the algorithm will work only if the population 
values distribution approximate a Gaussian distribution /Dershowitz et al, 1998a/. 
However, this distribution law is badly suited for phenomena that do not have a high 
degree of continuity /La Pointe, 1993/. 

 

3.12 Fractal models 
Fractal geometry is a useful mathematical model when the histogram of the quantity is 
declining power law and when the spatial relation between objects of different size 
exhibit regularities that transcend the scale of observation /La Pointe, 1993/. The 
attractiveness of fractal geometry is mainly that this approach is independent of the 
scale of observation. The fractal description combines heterogeneity and connectivity at 
all scales, such that the observation at one scale can be interpreted at a different scale of 
interest /Dershowitz et al, 1992/. 

Applicability: the application of the fractal models to the engineering design is largely 
untested, and there is no verification to prove that fractals produce model input that 
predict behaviour better than other method /La Pointe, 1993/. 

 

3.12.1 Levy-Lee model 

The key feature of the Levy-Lee conceptual model is that fracture centres are created 
sequentially by a Levy flight process in 3D, and that the size of a fracture is related to 
its distance from previous fracture /Geier et al, 1989/, see Figure 3-11. 
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The Levy Flight process is a type of random walk, for which the length L’ of each step 
is given by the probability function: 

( ) D
LP L ' L L−> =    (3.5) 

where D is the fractal dimension of the point field formed by the fracture centres. Only 
the centres of fractures are fractal –the networks themselves may not be fractal. 

The effect of the correlation of fracture size to step length is to produce clusters of 
smaller fractures around more widely scattered, larger fractures /Geier et al, 1989/. 

 

 

Figure 3-11. 3D geometric Levy-Lee fractal model /Dershowitz et al, 1998b/. 

 
Applicability: One very attractive feature of that model is its ability to generate a non-
stationary fracture system, using a set of parameters that remain constant throughout the 
generation region /Geier et al, 1989/. 

This model requires the same data as the Enhanced Baecher model, plus data describing 
the spatial structure of fracture population, such as correlation between fracture spacing 
and size, correlation between fracture spacing and orientation, fractal dimension of the 
point field defined by fracture centres. Field validation of the determination of the 
fractal dimension has been carried out and the fit to the data for all clusters gave a 
coefficient correlation of 0.9969, indicating that the clusters are well characterised. 
Nevertheless, further work is needed to validate the other features of the Levy-Lee 
model, namely the correlation between fracture size and spacing, and the correlation 
between fracture orientation and spacing /Geier et al, 1989/. 

Numerical simulations have been carried out on the basis of this model /Dershowitz  
et al, 1992/, and the results showed that fractal dimension can be a useful index for 
fracture connectivity and block formation, and an index for site comparison. However, 
further study will be required to determine which values of fractal dimension are 
preferable for repository location in particular geologic environments. 

This model has been combined with geostatistical analysis of data to develop a 
Hierarchical Fracture Trace Model that have been used to describe fracture trace 
patterns on outcrops /Gervais et al, 1995/. This accounts for the chronology of fracture 
formation. The sequential generation and correlation of fracture sets is intended to 
correspond to what happens in nature. A major limitation of this model as presented in 
/Gervais et al, 1995/, is to be two-dimensional. 
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3.12.2 Box Fractal Model 

This model is used to simulate a self-similar three-dimensional discrete fracture 
network. The generation region is divided into an assemblage of grid cells, with each 
grid cell assumed to be a cube with an edge length equal to 1/64 of the generation 
region edge length /Dershowitz et al, 1998b/. From the user specified “Box fractal 
dimension” Db, the number of boxes that contain one or more fractures is computed 
from the relation: 

( ) bDN −δ = δ    (3.6) 

where δ is the edge length, Db is the box fractal dimension and N(δ) is the number of 
boxes of edge length d that contain one or more fractures. 

 

    
  (a)   (b) 

Figure 3-12. (a) 3-D fractal Box algorithm, and (b) 3-D geometric model /Dershowitz et al, 
1998b/. 

 

As the size of grid cells become smaller, the number of filled boxes increases (Figure  
3-12a). Because of the recursive nature of the algorithm, the location of filled boxes is 
not random, and the number of filled boxes at any level of aggregation conforms to 
equation and is fractal. An illustration of the 3-D geometric model generated is provided 
in Figure 3-12b. 

 

3.12.3 Fractal POCS Model 

The POCS algorithm (Projection on Convex Sets) is a general procedure of generation 
of stochastic fields according to constraints such as spatial correlation which can be 
represented mathematically as convex sets /Malinverno and Rossi, 1994/. In FracMan 
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for example, five constraints are imposed in the generation of POCS stochastic fields of 
fracture centres or surface points /Dershowitz et al, 1998b/. These are shortly resumed: 
1) Known data is honoured; 2) Self-affine spatial correlation is honoured; 3) The mean 
data of the value is preserved; 4) The values of the data set are bounded; 5) The energy 
of the data is preserved. 

 

 

Figure 3-13. 3D geometric fractal POCS model /Dershowitz et al, 1998b/. 

 

This model will then generate a random field of fracture initiation points (a) consistent 
with a user specified fractal dimension, (b) consistent with a user specified variogram, 
and (c) conditioned to intensities at specified locations /Dershowitz et al, 1998b/. The  
3-D geometric conceptual model is illustrated in Figure 3-13. 

 

3.13 Poisson Rectangle model 
This is a simple version of the Enhanced Baecher model, in which fractures are 
represented by rectangles with prescribed length and width, rather than as polygonal 
disks with an “effective radius”. Location and termination are treated in the same way 
as in the Enhanced Baecher model. 

 

 
Figure 3-14. 3D geometric Poisson rectangle model /Dershowitz et al, 1998b/. 
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3.14 Mosaic Block Tessellation Models 
“Mosaic Block Tessellation” refers to a tessellation process that is based upon the 
definition of blocks containing the space rather than upon the definition of fractures 
which incidentally divide space into blocks. Space may be divided into regions by 
regular or stochastic grids of interlocking polyhedra where the polyhedra faces do not 
have to be on fracture planes /Dershowitz and Einstein, 1988/.  

 

 

Figure 3-15. Three-dimensional mosaic tessellations /Dershowitz and Einstein, 1988/. 

 

These models can be deterministic (regular geometry) or stochastic (fracture and block 
shapes may vary according to a distribution), see Figure 3-15. Stochastic tessellations 
are generally based upon a process of defining block centres or vertices, the “seeds”. 
There are a wide variety of combinations of stochastic and deterministic seed points and 
block processes, which can be used to define a stochastic tessellation in 2-D.  

In rock fracture system model based upon the mosaic block tessellation, not all block 
faces need be defined as fractures.  

Applicability: This model offers the capability to model fractures, which are not 
coplanar. This is a new level of flexibility in fracture system modelling. Another 
interesting but somewhat problematic feature is the generation of block first, followed 
by rock fractures derived from the faces of the blocks. Fracture sizes, shapes, locations 
and orientations are modelled indirectly, and it is therefore not possible to directly use 
sampled distributions of fracture characteristics to construct a particular block 
tessellation model. To obtain a specific distribution of fracture shapes, an appropriate 
combination of processes for location of the seeds and for block growth must be 
determined. 
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This model is appropriate for fracture systems which are actually the result of a process 
of block formation in a rock mass (for ex, jointing in columnar basalts). 

This may not be appropriate for cases, which do not display polyhedral blocks, and 
polygonal fractures. 
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4 What model(s) to use?  

As the project is aimed to develop a Descriptive Rock Mechanic Model, and for the 
reasons mentioned in the introduction, focus has been made on Discrete Fracture 
Network (DFN) models, and no valuable information regarding continuum models have 
been introduced.  

 

4.1 Sum-up and discussion about the described models 
Several DFN conceptual models have been reviewed, that differ mainly by the way 
fracture characteristics are handled (see Table 3-2, section 3). Some general comments 
can be made: 

• Some fracture characteristics are defined in the same way in most of the models 
presented. These are the fracture shape, most often considered as polygon, the 
fracture size (generally bounded) and the termination at intersection (yes). This 
implies that the specifications of the models mostly rely on the distribution laws 
utilised to simulate fracture orientation and fracture location. 

• A differentiation can be made between quite generic conceptual models, such as 
mosaic block tessellation models, geostatistical models, polygonal models, and 
more specific and restrictive models like War Zone models and orthogonal 
models. 

• Considering the relation between different fracture sets, two groups of models can 
be identified: stationary models and non-stationary models. Those provide tools to 
simulate spatial correlation between fracture sets. The non-stationarity can be 
determined by stochastic distribution laws (e.g. nearest neighbour) and/or they 
might be user-defined (binary models, e.g. War Zone model). 

• Specific models have generally been developed from generic models to simulate 
specific fracture networks in rock masses. Therefore, the examination of field data 
is a key to determine what models is the most appropriate according to their 
applicability, advantages and limitations. Table 4-1 is a synthesis other these 
considerations for the DFN conceptual models that have been reviewed in this 
study. 

 

4.2 Recommendations 
4.2.1 Choice of the model 

The choice of the DFN model is mostly related to the assumptions that can reasonably 
be made from field data and geological observations. As discussed in section 4.1, some 
models are specific in the way fractures are generated.  

In a general case, the Enhanced Baecher model (and in some extent the BART model as 
well) provide an appropriate model. Any combination of the different fracture 
characteristics can be used. 

As a support for the decision, Table 4-1 highlights the DFN conceptual models, as 
regards to their applicability, advantages and limitations.



Table 4-1. Main review of the DFN model, as regard to their applicability, advantages and limitations. 

Model Concept Applicability Advantages Limitations 
Orthogonal Fracture network simulated from 3 

sets of unbounded orthogonal joints 
rock masses with completely 
defined rectangular rock 
blocks / mostly to hydrology 

Simple geometry and treatment of 
data 

Planar assumption, limitation in 
the variation of fracture 
orientation 

Baecher disk  Generate fracture network from 
fracture centres that are distributed 
uniformly in space 

Homogeneous rocks Few field data available / Accurate 
in rock mechanics and hydraulics 
when a little is known  

Do not simulate terminations of 
fractures, fractures must be 
planar / Do not account for 
complex features of fracture 
populations 

Enhanced Baecher Generate fractures from fracture 
centres located at random points in 
space. Intersections are calculated 
with pre-existing fractures 

Fractured rock masses in 
which joint terminations are 
observed 

Suited for simulation of connectivity 
of natural fracture population / 
Multiple intersections per fracture 
are possible  

Fracture size distribution is not 
preserved; joints must be planar 

BART Same principle as for the Enhanced 
Baecher model, except that the centre 
of fracture terminating at intersections 
is generated from point on fracture 
intersection  

Fractured rock masses in 
which fracture terminations 
are observed 

Quick simulation / Fracture size 
distribution is preserved; spatial 
correlation in the simulated fracture 
population 

fractures must be planar 

Veneziano Fracture network generated in 3 
stochastic processes based on 
Poisson plane and Poisson lines  

Suited for 100% persistent 
and unbounded fractures 

Polygonal shapes are often 
observed in nature. More 
appropriate than orthogonal model 
for most cases, specially in case of 
coplanarity 

Often fail to construct blocks / 
Intersections of fractures do not 
often match joint edges / 
Complex 3-D model 

Dershowitz Fracture network generated from 2 
stochastic processes based on 
Poisson plane 

Accurate for systems which 
exhibit distinct rock blocks, 
bounded polygonal fractures, 
and orientation dispersion 

Model distinct rock blocks of 
various shape, flexibility in the 
distribution of fracture orientations / 
Joint intersection at joint edges 

Can generate a large number of 
smaller polygons / Not so well 
fitted for coplanar fractures 
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Mosaic Tessellation Deterministic and/or stochastic 
generation of the blocks, then 
definition of the fracture planes 

Fracture systems resulting 
from a process of block 
formation (jointing in 
columnar basalts) 

Manage non co-planarity, creation 
of the blocks first 

Not so accurate in cases that do 
not display polyhedral blocks and 
polygonal fractures; blocks 
created first; indirect modelling of 
location, orientation and shape of 
fractures 

Poisson Rectangle  Same concept as Enhanced Baecher 
except that fractures are rectangular 

Same as Enhanced Baecher Same as Enhanced Baecher Specific conceptual model / 
Require a good knowledge of the 
rock mass geometry 

Geostatistical Generate fractures according to a 
specified variogram 

Describe the spatial 
behaviour of regionalised 
variables of the fracture 
network 

Account for a good spatial 
correlation 

The size of the sampling area 
must be consequent compared to 
the study area 

War Zone Simulate higher densities of fractures 
between two major subparallel 
fractures 

Simulation of fracture network 
in shear zones and in the 
surrounding rock mass 

Binary model / identify "fracture 
zone" and "non-fracture zone" 

Specific conceptual model / 
Require a good knowledge of the 
rock mass geometry 

Non-Planar Zone Generate fractures along a non-planar
user defined surface 

Simulation of fracture network 
along specific features 
(deformation zones,...)  

Enhance rock zones with specific 
geometrical properties / binary 
model 

Require a good knowledge of the 
rock mass geometry 

Levy-Lee Fractal Generate clusters of smaller fractures 
around wider fractures 

In combination with 
geostatistical analysis: 
Hierarchical Fracture Trace 
Model 

Accounts for the chronology of 
fracture formation / Ability to 
generate a non-stationary fracture 
system with a set of parameters 
that remain constant throughout the
generation system 

Do not consider the size and 
shape of the blocks delimited by 
the simulated fractures / 
Definition of the most appropriate 
fractal dimension 

Nearest-neighbour Fractures are organised into primary, 
secondary and tertiary groups, and 
are generated in this sequence 

Can account for the 
generation of fracture network
according to the theory of 
fracture genesis 

Generate clusters of fractures 
around the primary group / More 
explicit than Levy-Lee model if 
fractures can be classified 

Must have enough data to assess 
the different groups and 
chronology 
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4.2.2 Input parameters required 

Despite some variations between the different models, the basic input data are related to 
the distributional form of the primary characteristics of the fractures, and include 
fracture shape, fracture size distribution, fracture orientation, and fracture density for 
each set of fractures. As an example, Table 4-2 is an illustration of the typical input data 
used for the generation of a BART model. The raw data collected in the field have been 
analysed to characterise statistically 3 fracture sets.  

 

Table 4-2. Presentation of parameters used to define a DFN model. 

Parameter Used data Data from Reference 

Set Strike(*
) 

Dip(*) 

1 212.8 83.7 

2 126.9 86.8 

Orientation 

K1=3.96 

K2=10.53 

K3=9.32 
3 17.9 7.5 

Pilot and Exploratory 
holes. 

Prototype 
Repository DFN 
Model 2 

Set Mean Std dev 

1 2 2 

2 8 2 

FracMan: 

Size 

 

 3 5 4 

TBM tunnel. LaPointe TR95-15 

  

Spatial model BART model (fracture 
termination probability of 
37%). 

TBM tunnel. SKB R-99-43, p. 32 

SKB ICR-96-05 

Set P32c 

1 0.26 

2 0.85 

FracMan: 

Natural 
Fracture 
intensity P32n 

3 0.18 

From 1m and 3m 
section pump tests in 
exploratory holes. 

Prototype 
Repository DFN 
model 2 
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5 Conclusions 

Discrete Fracture Network approach is used to generate 3D models of the geometry of 
fractures in rock masses. Different conceptual models are available that are developed 
upon combinations of the geometrical characteristics of the fractures. The fracture 
characteristics that constitute the fundaments of these models are: fracture shape, 
fracture size dsitribution, termination at intersection, co-planarity, location and 
orientation of fracture sets. 

 Most of the conceptual models are stochastic, and several assume a uniform 
distribution of the location of fracture sets. The distributional forms are derived from 
the processing of raw data. Most of the models generate bounded fractures, for which 
termination at intersections is accounted for.  

As for the set to consider the relation between different fracture sets, the conceptual 
models can be divided in two groups: stationary and non-stationary models. The 
specificity of the non-stationary models is the consideration of spatial and temporal 
relation between different set of fractures; the generation of the secondary, tertiary,… 
sets are subjected to the primary set. This is often useful to simulate fracture clusters 
that develop in the vicinity and in relation to fracture and deformation zones. 
Nevertheless, these models require a good knowledge of the geological and 
geomechanical history at place.  

The stationary models are also accounted for relation between the different fracture sets 
through the estimation and representation of termination. The Enhanced Baecher model 
is one current used stationary model for different applications. 
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1 Introduction 

The mechanical properties of fractured rock masses are strongly dependent on the 
properties and geometry of fractures. Fractured rock masses are usually weaker and 
more deformable and are highly anisotropic when compared with intact rocks. 
Constitutive modelling of fractured rock masses has long been a subject of interest  
and numerous models have been developed in attempt to simulate their mechanical 
responses. This report constitutes an attempt to review the main constitutive models  
for use to simulate mechanical behaviour of fractured rock masses. 

Two different approaches for the numerical modelling of fractured rock masses are used 
today /Jing, 1990/, that are the Continuum Analysis Techniques and the Discontinuum 
Analysis techniques. As the designation of these approaches implies, the main feature 
lies in the way of considering and modelling the fractured rock mass, and the 
deformation that can take place in it. We have reviewed the different models developed 
under each analysis technique and highlighted their applicability, advantages and 
limitations. 

Even if some mathematical formulations are presented in this report, this general review 
does not focus or account for the presentation of mathematical/physical laws or equation 
resolutions, which are embedded in the different methods. It focuses on the concepts 
that have been undertaken to tackle the problematic of modelling fractured rock masses. 
Special attention has been given to the assumptions made to develop the different 
methods, their applicability and their main advantages/limitations. 

Along this report both terms “fractures” and “joints” are used. The term “fractures” is 
the used in the meaning of the definition given in section 1, appendix A. The terms 
“joints” is used when referring to the model equations and developments, as it is the 
term generally employed by the authors. 
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2 Continuum analysis techniques  

2.1 Introduction 
The Rock Mass is taken as a continuum and infinitesimal deformation is usually 
assumed. A matrix equation is written for the entire body considered as homogeneous, 
including the constraints at the boundaries. The unknowns of the system are then 
obtained by solving the matrix equation. Rigid motion of the body is usually not 
included in the formulation.  

Mainly two different approaches account for solving problems at the contacts or 
boundaries. These include basically the Finite Element Method (FEM) and the 
Boundary Element Method (BEM).  

Regarding FEM, the whole region is discretised and approximations are made 
throughout the whole region. 

Following the BEM, only the boundary is divided in elements, and approximations 
occur only on the boundary.  

The fractures are modelled either by using specially formulated joint elements in FEM 
/Goodman, 1976/, or displacement discontinuity in BEM /Crouch and Starfield, 1983/, 
or other equivalent models of the fractured rock mass. 

 

2.2 Review of the continuum methods 
2.2.1 The Finite Element Method (FEM) 

The basis of the finite element method is the definition of a problem domain 
surrounding an excavation, and division of the domain into an assembly of discrete, 
interacting elements /Brady and Brown, 1999/. The domain is divided into a set of 
triangular or curvilinear quadrilateral elements (Figure 2-1b). A representative element 
of the set is presented in Figure 2-1c, with the points i, j and k defining the nodes of the 
element. The problem is to determine the state of total stresses, and the excavation-
induced displacements, throughout the assembly of finite elements.  
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Figure 2-1. Development of a finite element model of a continuum problem /from Brady and 
Brown, 1999/. 

 

Basic concept of the method 

The method is an application of the direct stiffness method of structural analysis.  
The main steps are to divide the structure into nodal points and elements, define the 
structural stiffness matrix of the structure, which will connect nodal displacements and 
forces at nodal points, then introduce forces and write equations of equilibrium 
/Goodman, 1974/. 

The first step is then to divide the structure in finite elements. The simplest element is  
a triangle defined by 3 nodal points (Figure 2-1c) and derived assuming a constant state 
of strain throughout the element. 

Then, a set of functions, which define the displacement components at any point within 
a finite element, must be written in terms of the nodal displacements. By defining the 
displacement field in an element in terms of the nodal displacements –uxi, uyi (Figure  
2-1c), the interpolation procedure ensures continuity of the displacements both across 
an element interface with an adjacent element, and within the element itself /Brady and 
Brown, 1999/.  

The assumption in the finite element method is that transmission of internal forces 
between the edges of adjacent elements can be represented by interactions at the node of 
the elements, and the strains are related to nodal displacements.  

According to these assumptions, the stiffness matrix, [K], of an element is expressed as 
followed /Goodman, 1974/: 

[ ] [ ] [ ]T

0 0K a L C L=   (2.1) 

where a is the area of the triangle, [L0]
T is the matrix accounting for the relationship 

between strains and nodal displacements, and [C] is the matrix derived from the stress 
strain relationship. The general expression of [L0] is: 

{ } [ ] { }0L uε =   (2.2) 

where { }ε represents the strains, and { }u the nodal displacements. 
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The general expression of [C] is the following: 

{ } [ ]{ }Cσ = ε   (2.3) 

Expressions of [C] are dependent of the behaviour of the rock masses, and are related to 
the values of the Young’s modulus and the Poisson’s ratio.  

Since strains are constant throughout a triangle and are related to nodal displacements, 
and according to equation (2.2), stresses are related to nodal displacements by the 
following expression: 

{ } [ ][ ] { }0C L uσ =   (2.4) 

Hence, these induced strains and the elastic properties of the medium together 
determine the induced stresses in an element.  

 

Representation of the joint system 

However, isotropic rock masses are quite uncommon and joints must be input in the 
models. Joints are inserted in the previous discretised model as described above by 
special elements consisting of 2 lines of nodal points that link the “rock” structural 
elements, or triangles (Figure 2-2). As for the intact isotropic rock mass, strains are 
related to nodal displacements in terms of the relative displacements and rotation of the 
2 walls as measured at the joint centre. The strain displacement matrix can be expressed 
as followed /Goodman, 1976/: 

{ } [ ]{ }j 0 s,n
L uε =   (2.5) 

where { }jε is the strain quantity along joints, and { } s,nu  represents the nodal 

displacements at points I, J, K and L in the local directions s, n. 

Joint “stresses” and “strains” can then be expressed as followed: 

{ } { }j j jC ∆σ = ε    (2.6) 

where [Cj] is the joint stiffness matrix in local co-ordinates. 

An expression of the stiffness matrix of the joint element is then derived with regard to 
the global co-ordinates, and a possible expression is the following /Goodman, 1976/: 

{ } { }x,yx,y x,y
F K u ∆ =     (2.7) 

where { } x,y
F∆ represents the increment of external forces, [Kx,y] the joint stiffness 

matrix, and { } x,y
u  the nodal displacements matrix, all expressed in global co-ordinates. 
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Figure 2-2. Representation of a “joint” element /after Goodman, 1976/. 

 

The next step is to introduce applied forces and write the equations of equilibrium. 
Different equations of the residual stress forces are then provided according to the 
origin of the applied forces. The solving of these equations provide the solution. 

 

2.2.2 Other continuum models, derived from FEM 

Different approaches have been conducted to attempt modelling, with the continuous 
analysis technique, the influence of joints in a rock mass.  

 

Anisotropic continuum model /Singh, 1973/ 

/Singh, 1973/ developed an anisotropic continuum model in which the average 
influence of joints, bedding planes and similar planar features are considered. 
Discontinuous, but parallel, system of joints may be considered, each having the same 
normal and shear stiffness. The intact rock is homogeneous but may be anisotropic. 
Knowing the average fracture frequency n1 and the average compliance of the joints, the 
compliance matrix of the rock mass [M] can be expressed as: 

[ ] [ ] 1

r 1 j1 j1M M n K B
−

   = +       (2.8) 

where [Mr] is the compliance of the rock, 
1

j1K
−

   is the block matrix expressing the 

stiffness of the joint set, and j1B   is the matrix expressing the stress concentration 

factors along the joint. The same formulation as equation (2.8) can be written for a 
system of joints that is orthogonal to the first one. The model can be generalised to 
account for system of joints that may express random variations of stiffness and 
spacing.  

The results of this model proved to be accurate, when compared to the finite element 
joint model, in regions of lower stress gradients. 
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Compliant joint model /Labreche, 1985/  

/Labreche, 1985/ presents a compliant joint model developed from a continuum 
approach, which is based on a distribution of the joints throughout the model and which 
monitored apertures of joints. To account for the presence of joints, the deformability of 
the rock mass is expressed in terms of equivalent elastic moduli. However, the model 
did not provide a realistic response of the rock mass when compared to the experimental 
data. 

 

Constitutive model of jointed rock masses /Cai and Horii, 1991/ 

/Cai and Horii, 1991/ developed a implementation constitutive model that accounts for 
connection and interaction effect, density and orientation of joints, as well as for the 
mechanical properties of the joints themselves. The interaction and connection terms 
refer to the impact of the presence of joints and their stiffness to the stress distribution 
in the rock mass. The key-point in this model of jointed rock masses is the fact that the 
stress acting on the joint is different from the overall stress of the Representative 
Volume Element (RVE). The stress carried by the joint depends on the stiffness of its 
surroundings, which is affected by other joints and the connection of joints. To 
represent the relation between the average incremental stresses over the joint and the 
average incremental stresses over the RVE, they introduced the joint stress 
concentration tensor (JSCT).  

In their model, /Cai and Horii, 1991/ assumed that the behaviour of the intact rock is 
elastic and the equations are derived from the formulations presented in the precedent 
paragraph. The constitutive laws describing the behaviour of the joints are based on the 
plasticity theory.  

Their estimation of the joint stress concentration tensor is based on the decomposition 
of the original problem into sub-problems (Figure 2-3). Then the equations describing 
the relationships between strains and displacements are written in terms of the system 
stiffness: 

n

s
s s

t
t t

d K d

d K du

d K du

σ = υ
τ =

τ =

  (2.9) 

The expressions of n sK , K  and tK  are dependent of the properties of the joints, as well 
as the effect of joint interaction and connection. 
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Figure 2-3. Representation of the presence of a joint /from Cai and Horii, 1993/. 

 
Applicability 

The main applications of the method are relating to civil engineering in rock masses, 
and especially large-scale underground excavations. /Cai and Horii, 1993/ have applied 
their model to a plate-loading test of a diorite with 2 sets of joints, and showed that this 
is quite appropriate. Nevertheless, some problems, such as formation of the joints, 
remain to be solved. This is an important issue, as evolution of joint aperture and 
density will influence the behaviour of the jointed rock mass along the test.  

The extent of the discretised space must be large enough to avoid that the conditions 
imposed on the outer boundary influence the solution near the cavity. The elements near 
the outer boundary may be rather large as deformation and displacement may not vary 
much at large distances from the cavity. However, the “transition mesh” between inner 
and outer boundaries must be sufficiently smooth to avoid gradients in the solutions 
/Crouch and Starfield, 1983/. Another limitation is that most of the models developed 
and implemented with the finite element method are time-independent and do not reflect 
the evolution of properties of the rock masses with time.  

 

2.2.3 The Boundary Element Method (BEM) 

This method is particularly useful where linear elastic behaviour can be assumed for a 
rock mass, or where elastic domains are separated by continuous planes of weakness.  

 

General formulation of the model 

The essence of the method is definition and solution of a problem entirely in terms  
of surface values of traction and displacement. For semi-infinite and infinite body 
problems, the application of the principle of superposition makes the solution most 
applicable to elastic media. The principle of superposition is based on the assumption 
that a specific problem can be defined as the superposition of two problems (Figure  
2-4). The impact of an excavation in an infinite, elastic medium, can be treated as  
the superposition of a) a continuous, uniformly stressed body (Figure 2-4b), and  
b) the surface subject to excavation-induced surface tractions and displacements  
(Figure 2-4c). 



 167

 
Figure 2-4. Problem definition for Boundary Element Analysis /from Brady, 1987/. 

 

Hence, solutions must be found at the boundary. The procedure is to divide the 
boundary or surface S into N elements. Adopting a physical (and more or less indirect) 
approach, a system of N singular equations is set at the midpoints of each element. 
These equations account for the conditions required for each element, and the unknowns 
are the strengths. Once solutions are defined at singularities, they are computed to 
match the rest of the boundary or surface. On the other hand, the mathematical (and 
more direct) approach is based on a system of algebraic equations that relate the 
unknown boundary parameters to specified parameters at each element of the contour 
/Crouch and Starfield, 1983/. 

The boundary can be approximated by a set of linear elements, or by different shape 
functions (Figure 2-5). In the case of linear isoparametric elements (Figure 2-5b), 
formulations of variations of tractions and displacements are as followed /Brady, 1987/: 

( ) ( ) ( ) ( )1 1 2 2 p p
i i i it t N t N t Nξ = ξ + ξ = ξ   (2.10) 

( ) ( ) ( ) ( )1 1 2 2 p p
i i i iu u N u N u Nξ = ξ + ξ = ξ   (2.11) 

where ( )it ξ  and ( )iu ξ are the variations of tractions and displacements of the intrinsic 

element ξ , and ( )pN ξ  are the linear shape functions. 
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Figure 2-5. (a) Discretisation of a boundary surface into elements defined by surface nodes,  
(b) linear boundary element, (c) element geometry and shape functions for a quadratic 
boundary element /after Brady, 1987/. 

 

In the case of quadratic isoparametric elements (Figure 2-5c), the nodal displacements 
are expressed in local co-ordinates: 

( ) ( )p p
i iu u Nξ = ξ  p=1, 2, 3, 1 1ξ− ≤ ≤  (2.12) 

In order to maintain compatibility between displacement and traction, the three-noded 
has to be considered in two sections, with local co-ordinates !, " for each section /Yeung 
and Brady, 1982/: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 p p
i i i i

2 1 3 2 p 1 p
i i i i

t t N t N t N

t t N t N t N+

α = α + α = α

β = β + β = β
 

1 0

0 1

− ≤ α <
≤ β ≤

 (2.13) 

 

BEM for a non-homogeneous medium and dominant discontinuities 

The concept has been developed to account for heterogeneous media and planes of 
weakness. In case of non-homogeneous medium and dominant discontinuities (Figure 
2-6), the conditions to be satisfied for the problem are the governing equations for 
elastostatics in each subregion, continuity of traction and displacement at the interfaces 
between subregions, and the criteria defining slip and separation on the joint surfaces 
/Brady, 1987/. Equations developed for the homogeneous system are implemented 
adding a boundary constraint between homogeneous subregions. The complete set of 
equations for interfaced subregions and excavations within them are constructed and 
then explicit boundary conditions are needed for excavation surfaces only. Stresses and 
displacements within any subregion can be calculated from the boundary element 
equation for the subregion, using the appropriate surface and interface tractions and 
displacements. 
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Figure 2-6. Problem definition for boundary element analysis of a heterogeneous medium and 
continuous planes of weakness /from Brady, 1987/. 

 

Joints are assumed to follow elastic response to applied loads, and the system is 
represented by a set of two springs accounting for the normal and tangential stiffness. 
Equations of tractions are implemented according to the conceptual models of joints. 

The equation yielding the system is dependent on blocks of the displacement and 
traction matrices, as well as blocks of the joint stiffness matrix. The formulations 
involve that direct solutions representing joint elastic and subregion behaviour can be 
provided, and then iterative procedure determine the equilibrium stresses and 
displacements at the joint nodes. 

 

Applicability 

The boundary element method can be used to solve both dynamic – such as transient 
heat flow, linear visco-elasticity or dynamic elasticity –, and static problems – such as 
equilibrium problems in linear elasticity. 

This method has mostly been used and developed to solve problems in excavation 
design, which usually involves evaluation of a range of design options or iterating to 
establish the optimum design for a structure in rock /e.g. Crotty and Wardle, 1985/. 
/Brady and Brown, 1981/ also applied the method in determining mine local stiffness, 
which is seen as a part of the broader problem of mine global stability.  

/Andersson and Dverstorp, 1987/ present an application of the boundary element 
method to the simulation of fluid flow in a 3-D discrete fracture network. The flow is 
discretised at each disk and boundary conditions are set at the boundary of the disk and 
inside the disk.  

 

2.3 Computer Programs for Modelling Continuous Systems 
Many computer programs based upon a continuum mechanics formulation (e.g. finite 
element and Lagrangian finite-difference programs) can simulate the variability in 
material types and non-linear constitutive behaviour typically associated with a rock 
mass, but the representation of discontinuities requires a discontinuum-based 
formulation. There are several finite element-, boundary element- and finite difference 
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programs available, which have interface elements, or “slide lines” that enable them to 
model a discontinuous material to some extent.  

A program called JETTY, based on the finite element method, has been developed by 
St. John (presented in /Goodman, 1976/). This program can be identified to a “basic” 
development that requires further improvements and enlargements.  

One can refer to the code BITEMJ, described by /Crotty, 1983/, that is based on the 
boundary element method and implements non-linear joint features. This code should 
be particularly useful for analysis of the stability of pillars containing planes of 
weakness /Brady, 1987/. 

/Larsson et al, 1985/ developed a theoretical model that has been implemented in a 
finite element program in order to determine the reaction of the joints and bolts (in term 
of displacement and stresses) during the excavation. The model is based on a continuum 
approach of a bolt-reinforced rock mass, i.e. intact rock, joints and bolts are assigned 
continuous properties. The equations relating to the different structural components 
have been derived from the assumed behaviour laws. The results of the numerical model 
were in good agreement with the experimental tests especially for the initial part of the 
shearing. 

However, their formulation is usually restricted in one or more of the following ways. 
First, the logic may break down when many intersecting interfaces are used; second, 
there may not be an automatic scheme for recognising new contacts; and, third, the 
formulation may be limited to small displacements and/or rotation. For these reasons, 
continuum codes with interface elements are restrictive in their applicability for analysis 
of underground excavations in fractured rock /UDEC, 2000/. 
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3 Discontinuum analysis techniques 

3.1 General definition of the approach 
A discontinuous medium is distinguished from a continuous one by the existence of 
contacts or interfaces between the discrete bodies that comprise the system. Hence, in 
the discontinuum analysis approach, the object material is taken as an assemblage of 
discrete bodies interfaced by joints in the case of fractured rock masses, or regularly-
shaped particles in the case of granular materials. The bodies act as entities and 
communicate with their neighbours via contact forces at boundaries. 

This approach is more appropriate than the continuous one to model fractured rock 
masses. The presence of joints influences the behaviour of the rock mass, and the 
properties are lower than that of the intact rock. In this case, the elasticity assumption 
made on the intact rock mass by the continuous approach may not be appropriate and  
a rigid behaviour may be assigned to the rock mass.  

The finite translational and rotational displacements of discrete bodies, including 
complete detachment, are permitted and the contacts among the discrete bodies 
considered can be identified and updated automatically during the course of calculation. 
This permits a more efficient treatment of non-linearity of the mechanical behaviour of 
the joints, such as sliding, opening or closing. Both dynamic and static problems can be 
treated using an appropriate viscous damping scheme /Jing, 1990/. 

The approaches developed upon the assumptions aforementioned are grouped under the 
expression “Discrete Element Method”. These methods can be categorised both by the 
way they represent contacts and by the way they represent the discrete bodies in the 
numerical formulation /UDEC, 2000/. Two main approaches are highlighted that are the 
Distinct Element Method (DEM) and the Discontinuous Deformation Analysis Method 
(DDA); other “minor” approaches that are the modal method and the momentum-
exchange method can also be mentioned. 

 

3.2 Concept and problematic 
The conceptual and numerical model must account for two types of mechanical 
behaviour in a discontinuous system: (1) behaviour of the discontinuities, and (2) 
behaviour of the solid material /UDEC, 2000/. 

 

3.2.1 Behaviour of the discontinuities 

First, the model must recognise the existence of contacts or interfaces between the 
discrete bodies that comprise the system. Numerical methods are divided into two 
groups by the way in which they treat behaviour in the normal direction of motion at 
contacts: 

• Soft-contact approach; a finite normal stiffness is taken to represent the 
measurable stiffness that exists at a contact or joint.  
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• Hard-contact approach; interpenetration is regarded as non-physical, and 
algorithms are used to prevent any interpenetration of the two bodies that form  
a contact.  

 

3.2.2 Behaviour of the solid material 

According to the type of structural model adopted, the solid material constitutes the 
particles or blocks in the discontinuous system. There are two main divisions in this 
representation: the material may be assumed rigid or deformable. The assumption of 
material rigidity is a good one when most of the deformation in a physical system is 
accounted for by movement on discontinuities. This condition applies, for example, in 
an unconfined assembly of rock blocks at a low stress level, such as a shallow slope in 
well-fractured rock. The movements consist mainly of sliding and rotation of blocks and 
of opening and interlocking of interfaces. If the deformation of the solid material cannot 
be neglected, two main methods can be used to include deformability. In the direct 
method of introducing deformability, the body is divided into internal elements or 
boundary elements in order to increase the number of degrees-of-freedom. The possible 
complexity of deformation depends on the number of elements into which the body is 
divided. For example, the discrete element code UDEC (Itasca) automatically 
discretises any block into triangular, constant-strain zones, which in case of elastic 
properties, have the same formulation to that of constant-strain finite elements (see 
section 2.2.1). The zones may also follow an arbitrary, non-linear constitutive law. The 
disadvantage of the method is that a body of complex shape must necessarily be divided 
into any zones, even if only a simple deformation pattern is required. 

 

3.3 Review of the main codes for Discrete Element methods 
According to /Cundall and Hart, 1985/, the name “discrete element” applies to a 
computer program only if it: 

(a) Allows finite displacements and rotations of discrete bodies, including complete  
 detachment; and 

(b)  Recognises new contacts automatically as the calculation progresses. 

A discrete element code typically will embody an efficient algorithm for detecting and 
classifying contacts. It will maintain a data structure and memory allocation scheme that 
can handle many hundreds or thousands of discontinuities. /Cundall and Hart, 1985/ 
identify the following four main classes of codes that conform to the definition of a 
discrete element method: 

• Distinct element programs. 

• Modal methods. 

• Discontinuous deformation analysis. 

• Momentum-exchange methods. 

• Alternative codes (“Limit equilibrium methods”). 
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3.3.1 The Distinct Element Method 

The distinct element method described by /Cundall, 1971/ was the first to treat 
discontinuous rock mass as an assembly of quasi-rigid blocks interacting through 
deformable joints of definable stiffness /Brady and Brown, 1999/. It has been first 
developed to model the progressive failure of slopes /Cundall, 1971/. 

The rock mass is treated as an assemblage of blocks interfaced by a joint network  
(i.e. the discontinuity is treated as a boundary condition). Movements result from the 
propagation through the block system of disturbances caused by applied loads or body 
forces. This is a dynamic process in which the speed of propagation depends on the 
physical properties of the discrete system /UDEC, 2000/. 

The essential numerical problems that must be solved are the following /Jing, 1990/: 

• Representation of the block geometry. 

• Representation of internal deformation of blocks. 

• Representation of the block contacts, both kinematically and mechanically. 

• Integration of equations of motions. 

 

Representation of the block geometry 

Blocks are presented as polyhedra in 3D with each face a planar polygon having any 
number of rectilinear edges, or, in 2D, as polygons with straight edges /Jing, 1990/. An 
example of 2D representation is illustrated in Figure 3-1a. 

 

Representation of internal deformation of blocks 

The intern deformation of distinct blocks is modelled by internal discretisation of a 
finite number of finite difference triangular elements (Figure 3-1b). The complexity of 
the resulting system depends on the number of elements created. The sum of the net 
nodal forces is 0 if the body is at equilibrium, or in steady-state (e.g. plastic flow). 
Otherwise, the nodes will be accelerated according to the finite different form of 
Newton’s second law of motion. Strains and rotations are related to nodal displacements 
at each timestep, so that strain in each zone is known after each timestep. Hence, 
stresses must be determined to proceed the next timestep from the stress-strain relations. 
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Figure 3-1. Zoning within a model containing a system of continuous and discontinuous joints: 
(a) distinct element blocks, (b) zoning within blocks /UDEC, 2000/. 

 

Rock joint representation 

As stated in section 3.1, the numerical model of discrete element must recognise the 
behaviour of discontinuities. First of all, the existence of contact surface between 
blocks, i.e. the existence of rock joints, must be recognised.  

A rock joint is defined as a contact surface, composed of individual contact points that 
form between two block edges. Contacts are identified when a pair of blocks do touch, 
or if the distance (or gap) between the blocks is minimal. In case of rigid block 
assumptions, the deformability of the assemblage is conferred by the deformability of 
the joints. Mainly two types of approaches can be used (see section 3.1). According to 
the soft approach, a linear stress-displacement relation is assumed in the normal 
direction, and is written as followed: 

n n nK u∆σ = − ∆    (3.1) 

where n∆σ is the effective normal stress increment, Kn is the joint stiffness, and nu∆ is 
the normal displacement increment. The overlap between touching blocks is a 
convenient way of measuring relative normal displacement (Figure 3-2b). 
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Figure 3-2. Normal and shear modes of interaction between distinct elements /Brady and 
Brown, 1999/. 

Note: δn, δs are respectively similar to ∆un and ∆us as presented in equation (3.1), and Fi and δι are 

related by the expression: i iF / lσ = . 

 

The normal stress is determined by the relative spatial position of the two blocks. 
However, the shear stress depends at any stage on the deformation path to which the 
contacts have been subjected. For an increment of shear displacement ∆us, the 
increment of shear stress is expressed as followed: 

s s sK u∆σ = ∆   (3.2) 

where s∆σ is the increment shear stress, sK is the shear contact stiffnesss, and su∆ the 

shear displacement increment (Figure 3-2c). 

The increment displacements of the contacts are dependent of the behaviour of the 
joints, and hence, of the constitutive models chosen (for description of the models the 
reader is referred to sections 3.1.2 and 3.1.3 in the main report). 

The deformation equations (3.1) and (3.2) account for elastic, reversible processes. 
However, when separation occurs, contacts vanish and these relations are not 
appropriate. To represent this behaviour, the total shear force must be computed at any 
stage. If the total shear force exceeds the maximum frictional resistance ( nF tan φ), slip 
will occur /Brady and Brown, 1999/.  

 

Integration of equations of motions  

The calculations performed in the distinct element method alternate between application 
of a force-displacement law at all contacts (presented in section 3.3.1) and Newton’s 
second law at all blocks. The force-displacement law is used to find contact forces from 
known (and fixed) displacements. Newton’s second law gives the motion of the blocks 
resulting from the known (and fixed) forces acting on them. If the blocks are 
deformable, motion is calculated at the gridpoints of the triangular finite-strain elements 
within the blocks. Then, the application of the block material constitutive relations gives 
new stresses within the elements.  
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The Newton’s law of motion is used to obtain velocities and displacements from 
unbalanced forces, which occur when elements are not in perfect equilibrium with their 
neighbours. The task is to find a set of displacements that will bring elements at 
equilibrium, or, if not possible, indicate the mode of failure. Different numerical 
solution schemes can be used /Cundall, 1987/: 

• Direct resolution of a system of equations by a standard matrix method. This 
approach can account for non-linearity but is not well suited for frequent changes of 
connectivity. 

• Relaxation scheme. A common form of relaxation scheme is one where 
displacements are adjusted in such a way as to reduce the unbalanced forces at 
nodes. The approach proposed by /Otter et al, 1966/ is more appropriate for taking 
into account large displacement increments, partly due to the use of velocity-
proportional damping. This allows reaching a force equilibrium state as quickly as 
possible.  

However, the use of velocity-proportional damping involves three main difficulties 
(listed by /Brady, 1987/), such as the application of a single damping constant for the 
whole model. Alternative forms of velocity-proportional damping can be used, such as 
viscous damping for quasi-static analysis or adaptative damping /Cundall, 1987/. 

The reader is referred to the UDEC user manual /UDEC, 2000/ for detailed description 
of calculations for the Distinct Element Method (regarding equations of motions, 
equations for conservation of momentum and energy in the DEM). 

 

Applicability 

The essential feature and asset of the method is to model the motion of each block  
with respect to any other. These methods have been applied to both civil and mining 
engineering problems, and are appropriate to assess stability of discontinuous rock 
slopes. The Distinct Element method has become a powerful numerical technique for 
general geomechanical problems. Specific formulations have been developed to account 
for local and spatially extensive reinforcement /Brady and Lorig, 1988/. 

/Lemos et al, 1985/ present different applications of the distinct element method as 
implemented in UDEC (numerical code described in section 3.4.1): collapse of an 
excavation roof modelled with both rigid and deformable blocks, the potential 
earthquake generation of “en echelon” faults, modelling of joint displacement during  
an earthquake. 

 

3.3.2 Modal Methods 

This code was first developed from the Distinct Element Method for improving 
solutions to calculate element deformations /Williams and Mustoe, 1987/.  

 

General concept of the modal method  

As mentioned above, this method is an implementation of the Distinct Element method. 
The representation of blocks and the identification of contacts are made following the 
same assumptions. Specially designed regularly-shaped blocks are required for this 
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method to avoid large errors. Rigid and deformable bodies are handled and modelled by 
this method. The method is similar to the DEM in the case of rigid blocks but differ for 
deformable bodies. The main characteristics of the approach are described in the 
following section. 

 

Representation of internal deformation of blocks 

Superposition of block deformation is used instead of internal discretisation of blocks 
used in DEM. The novelty of this method is in the decoupling of the rigid body and 
strain deformation equations for each element /Hocking et al, 1985/. The deformability 
of an element can be written in terms of its eigenvectors, as a superposition of its natural 
modes. The zero frequency modes yield the rigid body motion, and the non-zero modes 
provide the deformational behaviour. 

 

 

Figure 3-3. Inertial and non-inertial axes /from Hocking et al, 1985/. 

 

In theory, the motion is decomposed into a mean rigid body motion and a relative 
motion. The rigid body defines a non-inertial dynamic reference frame, whereas the 
“deformations” define an inertial frame. Transfer and transformations are done 
according to the relationships between both frames (Figure 3-3), and deformations are 
addressed with respect to that non-inertial frame /Hocking et al, 1985/. As a result, three 
equations of motion, relative to the non-inertial reference frame, are written. They 
define the translational motion of the centre of mass, the rotational motion of the body 
around the centre of mass, and the internal deformation of the body. Hence, decoupled 
equations are derived for each natural mode of vibration of the element. 

In case of a structure discretised into many finite element bodies, the equation of motion 
can be solved by defining modes for the whole structure, and a solution is achieved by 
the modal superposition method /Bathe and Wilson, 1976/. In this way, the structure, as 
described above, is resolved to a single complex element whose properties are provided 
by the modes. To reflect internal deformation, the flexibility of the structure to the 
modes must be determined. 
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Applicability 

 A typical code, CICE, has been developed by /Hocking et al, 1985/ and applied to some 
ice mechanics problems, such as ride-up and pile-up. This code provides the potential to 
analyse discontinuous media undergoing fracturing, with parts of the media undergoing 
large motion relative to the other parts. If the Stress State exceeds a specific yield limit, 
then the elements may fracture resulting in additional nodes and elements being 
automatically generated. The connectivity of the elements is also automatically updated 
regarding the amount of displacement of an element or an assemblage of elements. The 
same process is applied in case of large displacements. 

This method appears to be better suited for loosely-packed discontinua, and may not be 
well suited for geomechanical problems in which the deformation gradient inside one 
block has very ununiform distribution /Jing, 1990/.  

 
3.3.3 Discontinuous Deformation Analysis (DDA) 

This method is a “back-analysis” scheme used to solve inverse problems, that means for 
example identifying the mechanisms of displacement measured in a rock slope. This is 
especially useful when the mechanisms involved is a combination of different modes 
and the sets of data obtained by field survey are not so obvious.  

 

General concept of the method 

Blocks are a) in 2D polygons with straight edges and any number of edges, and b) in 3D 
polyhedra with faces represented as planar polygons with any number of edges. Both 
convex and concave blocks are allowed. 

As for the aforementioned discrete element methods, the bodies may be rigid or 
deformable. The main novelty is that displacements are considered in terms of 
formulations of the difference between predicted and measured displacements. This 
method is described by /Shi and Goodman, 1985/ and shortly reviewed in the following 
section. 

 

Formulation of block displacements 

The displacements (u,v) of a point (x,y) are formulated according to parallel translation, 
rotation, and the expression of normal and shear strain. The cumulative displacements 
of a point in a rigid block is expressed as followed /Shi and Goodman, 1985/: 

( ) ( )( )
( )( ) ( )

x 0 xy 0 0

xy 0 y 0 0

u x x y y u

v x x y y v

= ε − + Γ − ω − +

= Γ + ω − + ε − +
  (3.3) 

where x y,ε ε represent the strains, xyΓ defines an irrational shear strain, ω expresses the 

rotation, (u0, v0) determine the displacement of a point (x0, y0). 

Having formulated predicted displacements, the square difference between predicted 
and measured displacements Φa is expressed as: 

( )22
a 1 2(m u) m vΦ = − + −   (3.4) 

where m1 and m2 are the measured displacement components of the point (x,y). 



 179

Displacements along contacts (or between blocks) are formulated as displacements of 
two points P1 and P2 belonging two neighboring blocks, i and j (Figure 3-4a). A 
fictitious line Eb is drawn between these two points and the displacements of these 
points are projected on the line. Then, the expressions are combined to produce a 
formulation for the square of the difference between the calculated and measured 
extension along line Eb between P1 and P2: 

2i j
b m p p χ = + −     (3.5) 

where pi and pj are the projection at displacements at P1 and P2 along line Eb. 

 

 

Figure 3-4. (a) Problem definition for block displacements, and (b) for non-closing of joints. 

 

Assuming an end point of a segment on a boundary between two blocks (Figure 3-4b), 
the contacts between the blocks are considered regarding the unit vector normal to the 
boundary. The equations of normal displacements of both blocks at this end point Bc are 
written, and the relative displacement is the sum of the displacement of both blocks. 
The segment is opening when this sum is positive, and is closing is it is negative. In 
order to avoid closing and overlapping or “interpenetration” of blocks, a “punishment” 
factor is introduced /Shi and Goodman, 1985/. The square of relative deformation 
across the boundary, ψc, is expressed as: 

( )2i j
c P e eψ = +    (3.6) 

where ei and ej represent the displacement component for block i and j, P is the 
“punishment factor. 

 

Integration of equations of motions 

Relationships (3.3), (3.4) and (3.5) here presented as simplified expressions define the 
system, with the assumption that joint opening is preferred to joint closing. The solution 
is gained through a differentiation of the functions to each deformation displacement at 
each block. 

The equilibrium of the block is attained by minimisation of a potential energy functional 
and a first order approximation of the displacements are used under the assumption that 
at each time step, block displacement and deformation are small. Both static and 
dynamic analysis with large translational and rotational displacements can be handled 
easily by this method. Constant strain is calculated for each block.  



 180

Applicability 

This method has been previously developed to provide an attempt to analyse 
deformation data /Shi and Goodman, 1985/. One advantage of the method is to provide 
both forward and backward simulation capacities. The method has been extended by 
improving the contact algorithm, adding block fracturing and sub-blocking capacities 
/Lin et al, 1996/. The further development of the DDA extended its range of 
applicability to the study of rock fall, slope stability and underground excavation 
problems. The new algorithms turn the DDA to a useful tool for modelling fracture 
propagation in already fractured rock masses. 

However, the constant strain logic for the entire block, currently used in this code, may 
not be very well suited for some geomechanical problems in which the deformation and 
stresses inside one distinct block are not uniform /Jing, 1990; Lin et al, 1996/. Another 
limitation is that the formulation of the DDA is based on the minimisation of the 
potential energy of the system, and is a displacement method. 

Limitations are also related to the lack of possibilities for modelling reinforcement 
systems, and for modelling load changes as a function of time. Moreover, the joint 
constitutive model can not encompass sequential or cyclic loading. 

 

3.3.4 Momentum-exchange methods 

This method assumes both the contacts and bodies to be rigid; momentum is exchanged 
between two contacting bodies during an instantaneous collision. Friction sliding can be 
represented /UDEC, 2000/. 

This method has been mostly used in the 1980s, and developed for particle and impact 
mechanics. The range of application of this method is not under the scope of this study, 
and no further review has been done. 

 

3.3.5 Limit equilibrium methods 

Another class of codes, defined as limit equilibrium methods, can also model multiple 
intersecting discontinuities but does not satisfy the requirements for a discrete element 
code /UDEC, 2000/. These codes use vector analysis to establish whether it is 
kinematically possible for any block in a blocky system to move and become detached 
from the system. The “key-block” or block theory developed by /Goodman and Shi, 
1985/ and the vector stability analysis approach by /Warburton, 1981/ are examples of 
the Limit Equilibrium method. 

 

General concept of the “block theory” method 

Block theory may be called a geometric approach; it considers the creation of an 
excavation as the introduction of a geometric space in a rock mass, and evaluates the 
possibilities for the rock mass to invade this space /Goodman, 1995/. This method 
pertains primarily to blocky rocks. The following definition of blocky rock is given by 
/Goodman, 1995/: “blocky rock has three or more persistent joint sets clearly developed 
(…), and includes rock masses which are regularly cut by extensive joint sets in highly 
determined orientations, and rock masses which are variably and randomly cut by non-
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extensive joint sets in statistically dispersed sets of orientations, as well as all 
intermediate structural conditions”. 

The system of joints identified in the rock mass is modelled according to the data set 
and using different statistic distribution laws. However, the simplified trace map 
simulation technique developed by /Shi et al, 1985/ proved to be more appropriate to 
generate joint systems in large volumes and determine the key-blocks. 

All blocks are assumed to be rigid. This approach does not examine subsequent 
behaviour of the system of blocks or redistribution of loads. 

The approach is based on the identification of a “key-block”, term which identifies any 
block that would become unstable when intersected by an excavation. The analysis of 
vector equations and inequalities is handled using stereographic projection. From 
graphical analysis of the projections and taking into account the friction angle of joint 
faces, safe and unsafe areas can be determined, as well as the mode of sliding. /Shi and 
Goodman, 1989/ introduced the graphical representation of loops for friction angles that 
identified what friction angle is required for equilibrium. 

The recent formulation of the block theory can handle sliding and rotational modes of 
key-blocks.  

 

Applicability  

/Goodman and Shi, 1985/ present application and development of block theory for 
surficial excavations, underground chambers, and for tunnels and shafts. /Goodman, 
1995/ focuses on the application of the method to the identification and analysis of 
blocks in foundations, and especially on the assessment of the safety of a dam. 

Rather than determining strains, stresses and displacements, this method directly 
identifies dangerous or potentially dangerous blocks in an open slope or under an 
excavation. It may be considered as a first step by identifying the blocks to analyse. 
Moreover, this is a three-dimensional, easy-to-handle method, in which solution is 
mostly found with graphical techniques. 

 

3.4 Computer Programs for Modelling  
Discontinuous Systems 

A well-known and use numerical code for Distinct element methods is the two-
dimensional program called UDEC /Cundall, 1980; Lemos et al, 1985/. This program 
was first developed in 1980 to combine, into one code, formulations to represent both 
rigid and deformable bodies (blocks) separated by discontinuities. This code can 
perform either static or dynamic analyses. Since the first developments, the code has 
been implemented to account for fluid flow, different non-elastic behaviours of the rock 
mass or the joints /Lemos et al, 1985/. 

The following section includes a short description of the computational solutions 
adopted in UDEC to model the behaviour of fractured rock masses. This section refers 
to the UDEC’s user manual /UDEC, 2000/. 
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3.4.1 UDEC 

The code is based on a dynamic (time domain) algorithm that solves the equation of 
motion of the blocks system by an explicit finite difference method. The motion laws 
and joint constitutive relations are applied at each time step. Hence, displacements, new 
contacts and new positions are updated after each time step.  

An important feature in this code is the contact detection, identification, and updating. 
In general, for each pair of blocks that touch (or is separated by a small enough gap), 
data elements are created to represent point contacts. In UDEC, adjacent blocks can 
touch along a common edge segment or at discrete points where a corner meets an edge 
or another corner. For rigid blocks, a contact is created at each corner interacting with a 
corner or edge of an opposing block. If the blocks are deformable, point contacts are 
created at all gridpoints located on the block edge in contact. Thus, the number of 
contact points can be increased as a function of the internal zoning of the adjacent 
blocks. 

A specific problem with contact schemes is the unrealistic response that can result when 
block interaction occurs close to or at two opposing block corners. In reality, crushing 
of the corners would occur as a result of a stress concentration. In UDEC, a realistic 
representation is achieved by rounding the corners. 

 

 

Figure 3-5. Contacts and domains between two deformable blocks /UDEC, 2000/. 

 

Contact points are updated automatically as block motion occurs, that means that a high 
number of contacts may be deleted and created in case of dynamic systems. The 
computational code takes advantage of a network of “domains” to determine contacts 
between blocks (Figure 3-5). New contacts can only be created within a domain. Update 
is proceeded when the fictitious displacement exceeds a certain tolerance. An alternative 
solution is the so-called “cell mapping”. The system is divided into a rectangular 
gridcell, and the mapping of the blocks (and their envelops in space) is proceeded into 
the cells. Accurate results depend on an appropriate definition of the cells’ size. The 
cells are re-mapped after each timestep to take into account motion. 

An advantage of this program is to mix rigid, simply-deformable and fully-deformable 
blocks in one simulation. Hence, a better description of the problem can be modelled. 
Moreover, linked boundary element-distinct element schemes (see section 4) are 
accounted for in this numerical code. 
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3.4.2 Implementation in 3-D: 3DEC 

The two-dimensional code has been implemented in a computer program called 3DEC, 
which also accounts for block deformability and failure of intact material /Hart et al, 
1988/. Specific care must then be paid for the generation of the joint systems. A module 
inserted in the program enables to generate a blocky structure by modelling of several 
joint sets. However, there are some limitations in the capability of the code to handle a 
high number of joint sets, as well as to compute joint that are terminating in the rock 
mass. 

The concept of the code is the same as the one applied in UDEC. 

Some applications of 3DEC are reported in the literature. /Shen and Stephansson, 1990/ 
applied the numerical code for the mechanical analysis of the effects of glaciation in 
order to assess the safety of a nuclear waste repository. The impact of thermal loading 
related to the repository of canisters has also been modelled using the implementation of 
3DEC developed by /Mack and Hart, 1989/. 
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4 Linked computational schemes 

According to /Brady, 1987/, the regions that really need to be model using the Finite 
Element Method or the Distinct Element Method are usually small and localised, so that 
only these zones require the analytical versality conferred by finite elements or distinct 
elements. He suggests linkage of algorithms to represent the key components of rock 
mass response, and provide conceptually valid and computationally efficient schemes 
for the design of excavation.  

 

4.1 Concept of the coupled models 
Some engineering problems – e.g. relatively dense fracture systems compared to the 
size of the excavation – can be solved using a boundary element-distinct element 
scheme. By representing the rock which will constitute the near-field of an excavation 
with distinct elements, and the far-field with boundary elements, the conceptual 
advantages of the distinct element are retained, and rigour in relation to far-field 
boundary conditions is preserved /Brady, 1987/. Linkage of both schemes is performed 
by satisfying the conditions of displacement continuity and force or traction equilibrium 
at the interface between the two solution domains. The components produced to solve 
the problems are presented in Figure 4-1. The adequacy of the analytical procedure has 
been demonstrated by /Lorig, 1984/ on a circular hole in a hydrostatic stress field, and 
by /Lorig and Brady, 1983/ in a design problem posed by an excavation in a stratified 
rock. 

 

 
Figure 4-1. Resolution of a distinct element-boundary element problem into component 
problem /Brady, 1987/. 

 

In the same way, a linked boundary element-finite element scheme can be developed for 
analysis of engineering works in rock masses presenting a high density of jointing. A 
finite element code modelling elastoplastic or similar constitutive behaviour may be 
needed to model the near-field randomly jointed or fracture rock round an excavation. 
The schematic representation is the one presented in Figure 4-1, but with finite elements 
replacing the distinct elements. Excavations may be bounded by boundary elements or 
finite elements, on which the specified boundary conditions must be satisfied. At the 
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interface between the finite element domain and the boundary element domain, the 
equilibrium and continuity conditions for traction and displacement must be satisfied. 

 

4.2 Applicability 
/Elsworth, 1985/ developed a coupled finite element-boundary element scheme for 
modelling non-linear potential flow. The non-linear portion of the domain is discretised 
by quadrilateral finite elements, and the linear behaviour is formulated with a direct 
boundary element method. The model developed provided adequate simulation of 
turbulent flows. 

The advantage of the linked boundary element-distinct element scheme is that it can be 
easily linked to a structural element method of analysis, which provides a method for 
detailed analysis of the interaction between rock around excavation and support 
installed within the opening. 
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5 What model(s) to use? 

5.1 Sum-up and discussion 
Different methods have been presented that are of use for modelling fractured rock 
masses and that answer for two main analysis techniques, continuum and discontinuum. 
An alternative method, the limit equilibrium, has also been reviewed. According to the 
assumptions and mathematical laws derived, two methods – one in each analysis 
technique (continuum and discontinuum) – can be considered as the basis for the 
development of the approach; these are the finite element method in continuum 
approach and the distinct element method in discontinuum approach. Other methods 
have generally been developed from these methods. 

• Block theory and other limit equilibrium methods assume that failure occurs along 
predefined failure surfaces with a perfectly plastic shear force law. Stability is 
usually considered as the comparison of forces (driving/resisting) for a particular 
failure mode. Therefore, the methods pertain good solutions for simple and 
identifiable failure mode /Lorig et al, 1991/, and is particularly useful for the 
analysis of open slopes. Hence the method could be inappropriate for problems in 
which the failure mode is not clearly identifiable, or in which displacements have to 
be known. Moreover, all blocks are assumed to be rigid, and internal deformation is 
not accounted for.  

• The continuum analysis methods account for the fractured rock mass by an 
equivalent continuum representation. Hence it cannot give an appropriate estimation 
of the displacement (such as sliding, separation and rotation) that can occur along 
discontinuities. Even if implementations to the conceptual models have been made 
/Cai and Horii, 1993/, and numerical codes developed to overcome part of these 
weaknesses, these methods are still limited by several factors such as the 
representation of the system of joints (number of joints and intersection) and the 
amount of displacement that is considered. Modelling of large displacement along 
joints or large rotations of blocks is difficult using this approach. 

• The discrete element methods account for the fractured rock mass by a 
discontinuous geometry in which contacts between blocks are joints. The main 
advantages of the different numerical models are that the system can undergo large 
displacements and rotations, interaction forces between blocks arise from changes in 
their relative geometrical configuration, and the solution is explicit in time /Lorig  
et al, 1991/. The different methods available are most often based on the theory 
developed by /Cundall, 1971/, and provide implementations to model and analyse 
specific engineering problems (impact mechanics by the momentum-exchange 
method, ice pile-up by the modal method). 

 

5.2 Recommendations 
5.2.1 Choice of the model 

There is no clear-cut that enables to define what model should be used for what 
problem. Anyhow, some reflections about the problem that is to be solved, the general 
geological and mechanical context can support the choice of a model.  
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First, the analysis technique that should be used for this study must be defined, and then 
the method or numerical code that is the most appropriate for this approach must be 
motivated.  

 

Choice of the analysis technique 

The scale of the studied area must be considered, in itself and in relation to the fracture 
network system in the rock mass, and to the excavation in case of engineering design 
problem. /Brady, 1987/ proposed four conceptual models of rock structure and their 
rock response to excavation. The suitability of the method depends on the size of the 
engineering works relative to the average spacing of joints.  

 

 

Figure 5-1. Conceptual models relating rock structure and rock response to excavation  
/Brady, 1987/. 

 

The rock mass is intended to behave as a continuum in case of intact or sparsely 
fractured rock mass with relatively large size of excavations, therefore the FEM and 
BEM methods will be more appropriate (Figure 5-1a, b). On the other side, DEM and 
DDA will be more appropriate in cases where the averages spacing of the joints is of a 
similar order of magnitude as the size of the excavation (Figure 5-1c, d). According to 
/Brady, 1987/, problems representations illustrated in Figure 5-1c, d are suitably 
modelled by linked distinct element-boundary element (Figure 5-1c), and a linked finite 
element-boundary element scheme (Figure 5-1d). 

Then, the choices of assumptions that have to be made for the analysis are guided by the 
purpose of the analysis and the type of media investigated. Assumptions are related to 
the geometry of the blocks, the type of contacts, the deformability of the blocks, and the 
equations of motions. Another important issue is the evolution of parameters in time. 
Amongst the methods reviewed, several are time-independent and do not account for 
the modification of mechanical behaviours of fractured rock masses, as a result of e.g. 
loading-unloading cycles. An overview of the concept and assessment of the different 
methods for use is provided in Table 5-1. 

According to the main purpose of the Descriptive Rock Mechanical Model that will be 
developed in this project, a continuous approach does not seem to be appropriate. 
Indeed, a realistic representation of the fracture system is required, and this is best 
provided by continuous analysis techniques.



Table 5-1. Overview of the continuum and discontinuum analysis techniques. 

   Assessment of the method   
  Concept Applicability Advantages Limitations 
Continuum Finite Element 

Method (FEM) 
Divide the structure into finite 
elements that are assigned a 
constant state of strain. Strains 
are expressed in terms of nodal 
displacements 

Civil engineering in rock 
masses, and especially large-
scale underground excavations.

Best suited for the computation 
of homogeneous material 
properties and linear material 
behaviour 

Time-independent / Not so 
accurate modelling of joint 
influence / Definition of the 
extent of the mesh 

 Boundary Element 
Method (BEM) 

Discretisation of the boundary 
(or surface) of the problem / 
Formulation in terms of surface 
values of traction and 
displacement 

Elastic rock mass or 
heterogeneous media with 
major discontinuities/ problems 
in excavation design 

Resumes the FEM approach 
by limiting the formulation at 
the surface 

The problem definition for 
heterogeneous medium does 
not enable modelling of highly 
fractured rock mass 

 Distinct Element 
Method (DEM) 

Discretisation of the deformable 
blocks in finite difference 
elements 

Static and dynamic problems: 
stability of rock slopes, study of 
stress distribution in rock 
masses, modelling of joint 
displacement  

Time-dependent / Rigid and 
deformable blocks can be 
combined 

The formulation can be highly 
complicated in case of 
discretisation of deformable 
blocks in numerous elements 

Discontinuum Modal method Deformability of blocks is 
considered through a 
superposition or decoupling 
approach 

Ice mechanic problems (ride-up 
and pile-up) 

Suitable for modelling media 
undergoing large 
displacements and fracturing, 
specially for loosely-packed 
media 

Not well suited for high 
deformation gradient inside 
block 

 Discontinuous 
Deformation Analysis 
(DDA) 

Reverse analysis for the 
displacements of blocks 

Determine the mechanism(s) 
that cause(s) displacements and 
deformations, rock falls, fracture 
propagation 

Specially appropriate when the 
mechanisms involved are a 
combination of different modes

Joint opening assumption / 
Rigid blocks 

 Momentum-
exchange 

 Particle and impact mechanics Momentum is exchanged 
between 2 contacting bodies 
during a collision 

Rigid blocks only 

Limit 
equilibrium 

Block Theory Identify the blocks that will 
become immediately unstable 
when cutting a slope, or opening 
an excavation 

Assessment of slope stability, 
safety of dam foundation 

3-D / Most appropriate when 
the failure mode is known 

Static approach: do not 
account for displacements 
between the blocks / assume 
a perfectly plastic shear force 
law for failure 

189 
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Choice of the conceptual model / numerical code 

/Cundall and Hart, 1985/ summarise the attributes of the various discrete element and 
limit equilibrium methods (Figure 5-2). This is based on the different assumptions used 
for the development of the codes and determine the type of material behaviour that can 
be model.  

The assumptions made on some methods are highly restrictive and hence, the choices of 
these methods should be made carefully. On the other hand, both the DEM and modal 
methods integrate possibilities for modelling different material behaviours. In that way, 
their range of applicability is wider. 

 

 

Figure 5-2. Attributes for the four classes of the discrete element method, and the limit 
equilibrium method /Cundall and Hart, 1985/. 

 

5.2.2 Input parameters required 

The parameters required are related to the geometrical and mechanical characteristics of 
the jointed rock mass. A typical program of input parameters used in UDEC includes: 

• the definition of the model size, 

• the definition of the fracture geometry (this can include the importation of a Discrete 
Fracture Network generated in a previous step), 

• the mesh generation, 
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• the definition of the in-situ stresses and the definition of the boundary stresses, 

• the materials properties, as considered separately for the intact rock and for the 
joints (a review of the models for use is presented in sections 3.1.2 and 3.1.3 in the 
main report), 

• the definition of the history of displacement and the definition of the deformation 
profiles, 

• the number of cycles of damping is determined, 

• the results that are presented in some result files. 
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6 Conclusions 

This report presents a review of the principal models for use for modelling fractured 
rock masses. There are basically two types of analysis techniques in use, the continuum 
and discontinuum analysis techniques. Under each approach, different conceptual 
models have been developed and implemented in order to solve static and dynamic 
problems. 

The continuum analysis techniques assume that the jointed fractured rock mass is a 
continuous medium. The Finite Element method and the Boundary Element method are 
two models developed using this approach. 

The discontinuum analysis considers the jointed rock mass as a discontinuous medium, 
accounting for the geometry and mechanical properties of fractures. The Distinct 
Element method represents the main model with this approach. Several models have 
been developed from this one to account for specific engineering or dynamic problems.  

The suitability of the model is mostly defined by the size of the engineering works in 
relation to the geometry of the fractured rock mass, and specially the fracture system. 
Highly fractured rock masses will be better represented by a discontinuum approach 
with special emphasis on how contacts are handled, whereas homogeneous media or 
media sparsely jointed can be modelled as continuous. The DEM is particularly suited 
for study of large displacements between blocks and for reproducing block movements 
(translation and rotation). 

There is no chart to define what type of approach to use, and what conceptual model or 
numerical code. Anyhow, choices may be supported by a synthetic table such as Table 
5-1. The general concept of the method as well as applications, advantages and 
limitations are summarised and shortly presented. 
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1 Introduction 

One of the most important parts of numerical modelling of fractured rock masses is the 
proper determination of mechanical properties of both intact rocks and rock fractures. 
Those properties are required as input parameters in pre-processing stage of analysis. 
The main objective of this work is to determine the mechanical properties of intact 
rocks and rock fractures at the Äspö Hard Rock Laboratory (HRL) using results 
obtained from laboratory tests. These tests were carried out on several samples of  
intact rocks and rock fractures by different groups and the obtained results of each 
experimental study are presented in different technical reports. In this report, the results 
obtained from these different groups are analysed and re-evaluated in order to obtain the 
complete parameters required in numerical modelling using UDEC code. 

The available reports concerning mechanical properties of intact rocks and rock 
fractures at the Aspö HRL are listed below: 

• /Stille and Olsson, 1989/. First evaluation of rock mechanics. SKB, Progress  
Report 25-89-07. 

• /Stille and Olsson, 1990/. Evaluation of rock mechanics. SKB, Progress  
Report 25-90-08. 

• /Nordlund et al, 1999/. Mechanical properties of the diorite in the prototype  
repository at Äspö HRL. SKB, International Progress Report IPR-99-25. 

• /Lanaro, 2001/. Determination of the normal and shear stiffness of rock joints: 
geometry, normal and shear stiffness. SKB, Technical report (under publication). 

/Nordlund et al, 1999/ present the mechanical properties of diorite samples obtained 
from boreholes KA3557G, KA3545G and KA3551G. The laboratory tests carried out 
on these samples are uniaxial and triaxial compression tests, Brazilian tests and three-
bending points tests.  

/Stille and Olsson, 1989, 1990/ summarise results from laboratory tests conducted on 
the four main rock types identified in the Äspö HRL – greenstone, fine-grained granite 
(aplite), diorite and granite-, and on rock fractures samples from two fracture sets, one 
steeply dipping and one gently dipping. All these samples are coming from borehole 
KAS02. The reports include results from: (1) uniaxial compression tests on intact rock 
samples; and (2) direct shear tests on rock fracture samples. 

/Lanaro, 2001/ presents the results of laboratory tests conducted on rock fracture 
samples obtained from different boreholes in the Äspö HRL: (1) samples from a  
sub-vertical fracture set, obtained from boreholes KA3548A01, KA3573A, KA3600F, 
KG0021A01, KG0048A01; and (2) samples from a sub-horizontal fracture set, obtained 
from borehole KA3579G. The report includes results from normal and shear tests. 

In these studies, different methods were used to evaluate mechanical properties of intact 
rocks and rock fractures, and none of these reports directly provide all the parameters 
required for the numerical modelling. As a consequence, a comprehensive analysis of 
all raw data available in these reports was carried out. The review of this analysis is 
presented in sections 2.1 and 2.2 for intact rocks, and in sections 3.2 and 3.3 for rock 
fractures. The input parameters required in numerical modelling using UDEC code are 
presented in section 2.3 for intact rocks and in section 3.4 for rock fractures. 
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2 Mechanical properties of the intact rock 

As mentioned in section 1, different laboratory tests were carried out in order to 
determine the mechanical properties of different intact rocks in the Äspö region. All 
these tests were conducted according to the ISRM requirements.  

The mechanical parameters that need to be determined for the modelling are uniaxial 
compressive strength, σc, tensile strength, σti, deformation modulus, E, Poisson’s ratio, 
ν, cohesion, c, and friction angle, φ. 

Uniaxial compressive strength, σc, deformation modulus, E, and Poisson’s ratio, ν, are 
determined from results of uniaxial and triaxial compression tests. 

Tensile strength, σti, is a parameter obtained from results of Brazilian tests. 

Based on the results of the uniaxial, triaxial and Brazilian tests, the strength of the intact 
rock samples can be plotted in a σ1-σ3 diagram, see Figure 2-1. The strength envelope 
can be fitted either by the Hoek-Brown failure criterion, expressed as follows: 

a

3
1 3 c b

c
m sσ σ = σ + σ ⋅ ⋅ + σ 

  (2.1) 

or by the Mohr-Coulomb failure criterion: 

1 3 ckσ = σ + σ  (2.2) 

where 

1 sin
k

1 sin

+ φ=
− φ

  (2.3) 

c

cos
2c

1 sin

φσ = ⋅
− φ

 (2.4) 

Using the H-B criterion, a fitting curve to the experimental results of triaxial tests can 
be obtained by selecting the appropriate value for the parameter mb. 
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Figure 2-1. The strength envelope of a rock sample. A – Brazil test; B – Uniaxial compression 
test; C, D and E – Triaxial compression test. 

 

According to the M-C criterion, the parameters k and σc are obtained by linear 
regression of the results of uniaxial and triaxial tests. The cohesion and friction angle of 
the intact rock are then calculated from equations (2.3) and (2.4). 

The results obtained in two different studies are reviewed and compared in sections 2.1 
and 2.2. Then, the input parameters required for the rock material model in UDEC are 
estimated and presented in section 2.3. 

 

2.1 Mechanical properties of intact rocks according to  
/Stille and Olsson, 1989/ 

The intact rock samples are obtained from borehole KAS02, which co-ordinates are 
presented in Table 2-1.  

 

Table 2-1. Co-ordinates* of borehole KAS02 (from Sicada, SKB). 

Easting 

(m) 

Northing 

(m) 

Depth 

(m) 

Bearing 

(°) 
Inclination 

(°) 
Length 

(m) 

2125.32 7261.54 7.652 –19.91 –85.357 923.843 

* Äspö-96 co-ordinate system 

 

The intact rocks encountered in this borehole consist of four major rock types that are: 
greenstone, fine-grained granite (aplite), diorite and Småland granite, which are located 
at specific depths. The only laboratory test conducted on samples selected from this 
borehole was uniaxial compression test for determining the uniaxial compression 
strength, σc, Young's modulus, E, and Poisson's ratio, ν, of each rock type.  

Depth of sampling, diameter of the samples, and rock type for each sample are available 
in /Stille and Olsson, 1989/. A summary of the mechanical properties of the four rock 
types determined from the laboratory tests carried out on these samples is presented in 
Table 2-2. 
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Table 2-2. Mechanical properties for the four intact rock types, estimated from 
uniaxial compression tests /from Stille and Olsson, 1989/. 

Rock Type Number of 
samples 

σc (MPa) E (GPa) ν 

Greenstone 4 118.8±39.5 52.4±17.3 0.22±0.03 
Fine-grained granite 4 235.7±82 65.0±4.3 0.22±0 

Diorite 4 175.1±8.8 59.8±5 0.22±0.03 
Småland granite 4 188.7±49.1 62.3±0.5 0.24±0 

 

As mentioned in section 1, no triaxial compression test has been carried out on those 
intact rock samples. Therefore, cohesion, c, and friction angle, φ, could not be defined 
for these samples. However, these parameters are required to estimate the shear strength 
of the rock from the failure criteria. An evaluation of these parameters is presented in 
section 2.3. 

 

2.2 Mechanical properties of the diorite according to 
/Nordlund et al, 1999/ 

In /Nordlund et al, 1999/ the mechanical properties of intact rock samples of diorite 
were determined. The samples of diorite were selected from boreholes KA3545G, 
KA3551G and KA3557G. The co-ordinates of these boreholes are given in Table 2-3. 

 

Table 2-3. Co-ordinates* of boreholes KA3545G, KA3551G and KA3557G  
(from Sicada, SKB). 

Borehole Northing 

(m) 

Easting 

(m) 

Depth 

(m) 

Bearing 

(°) 
Inclination 

(°) 
KA3545G 7269.599 1921.281 –449.103 270 –81.1972 
KA3551G 7270.39 1915.429 –448.933 269.3634 –79.6331 
KA3557G 7271.259 1909.495 –448.847 271.1612 –81.4873 

* Äspö-96 co-ordinate system 

 

The laboratory tests conducted in this study are uniaxial and triaxial compression tests, 
Brazilian test and three-point bending tests. Different mechanical parameters were 
evaluated from these tests, and those of relevance for this study are listed below:  

• From uniaxial compression tests: uniaxial compression strength, σc, deformation 
modulus, E, and Poisson’s ratio, ν. It should be noted that both deformation 
modulus and Poisson's ratio were estimated at two different stages: (1) Eini and νini 
were defined at initial stage of compression; and (2) E%50 and ν%50 were defined at a 
stress level equal to 50% of the initial uniaxial compression stress. 

• From triaxial compression tests: uniaxial triaxial compression strength σ1c under 
different confining stresses σ3. 

• From Brazilian tests: uniaxial tensile strength σti.  
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The diameter and length of the samples are defined in accordance to the requirements  
of ISRM for the different laboratory tests. The identification of the tested intact rock 
samples (location, depth of sampling and geometry) is found in /Nordlund et al, 1999/.  

A summary of the mechanical parameters evaluated from the different laboratory tests is 
presented in Table 2-4 to Table 2-6. 

 

Table 2-4. Mechanical properties of the diorite, estimated from triaxial 
compression test /from Nordlund et al, 1999/. 

σ3 (MPa) Number of 
samples 

σ1c (MPa) 

  Mean Std Dev. 

0 4 218.75 17.5 

5 3 256.33 16.6 

20 3 346.33 17.8 

40 1 434 – 

50 3 502 40.8 

 

Table 2-5. Mechanical properties of the diorite, estimated from uniaxial 
compression tests /from Nordlund et al, 1999/. 

Number of 
samples 

Eini, GPa E%50, GPa νini ν%50 

 Mean Std Dev. Mean Std Dev. Mean Std Dev. Mean Std Dev.

3 80 5.6 73.33 2.9 0.21 0.02 0.28 0.01 

 

Table 2-6. Mechanical properties of the diorite, estimated from Brazilian tests 
/from Nordlund et al, 1999/. 

Number of 
samples 

σti (MPa) 

 Mean Std Dev. 

5 14.7 1.6 

 

Based on the results of the uniaxial, triaxial and Brazilian tests, the strength of the intact 
rock samples can be plotted in a σ1-σ3 diagram, see Figure 2-1. The strength envelope 
can be fitted either by the Hoek-Brown failure criterion (equation (2.1)), or by the 
Mohr-Coulomb failure criterion (equation (2.2)). 

Fitting the results of compression and Brazilian results to the Hoek-Brown failure 
criterion leads to the determination of the constant mb. Fitting the results of compression 
tests to the Mohr-Coulomb failure criterion leads to the evaluation of cohesion, c, and 
friction angle, φ, of the intact rock, see /Nordlund et al, 1999/.  

A summary of the mechanical properties for the diorite determined in /Nordlund et al, 
1999/ is presented in Table 2-7. 
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Table 2-7. The mechanical properties of the diorite in the Äspö HRL  
/Nordlund et al, 1999/. 

Parameter Mean value Unit 
Uniaxial Compressive Strength, σc 218.7 MPa 

Tensile Strength, σti 14.7 MPa 
Initial Young's modulus, Eini 80 GPa 

Tangent Young's modulus, E%50 73 GPa 
Initial Poisson's ratio, νini 0.21 – 

Tangent Poisson's ratio, ν%50 0.28 – 
Cohesion, c 49 MPa 

Friction angle, φ 44 ° 
Hoek-Brown criterion parameter, mb 15 ° 

 

 

2.3 Preparation of input mechanical parameters of intact 
rocks for modelling 

In this project, the UDEC code (Itasca) was chosen to simulate the mechanical 
behaviour of fractured rock masses in the Äspö HRL region, see section 2.2 in the main 
report. The relevance and quality of numerical modelling is highly dependent onto the 
appropriate determination of input parameters for the material model of intact rock. 
Among the different material models available in UDEC, the Mohr-Coulomb plasticity 
model was selected for the intact rock in this project, see section 3.1.2 in the main 
report. 

For the Mohr-Coulomb plasticity model, the required properties are: density, D, bulk 
modulus, K, shear modulus, G, friction angle, φ, cohesion, c, dilation angle, ψ, and 
tensile strength, σti.  

The average density, D, of the four intact rock types is determined according to /Rhén  
et al, 1997/, and the values for each rock type are presented in Table 2-8.  

The bulk and shear moduli, as well as the dilation angle, are not provided in the reports 
analysed in sections 2.1 and 2.2. They were calculated on basis of the Elasticity theory, 
using the following equations: 

( )
E

K
3 1 2

=
− ν

   (2.5) 

( )
E

G
2 1

=
+ ν

   (2.6) 

Cohesion, friction angle and tensile strength are provided only for diorite samples  
(see section 2.2), but are missing for other intact rock types. To evaluate cohesion  
and friction angle of the three other rock types –granite, greenstone and aplite-,  
the following assumptions were made. The friction angle, φ, of all rock types was 
considered to be equal to 45 degrees, with respect to the results obtained for the diorite 
in /Nordlund et al, 1999/. Then the cohesion, c, of each intact rock was back calculated 
according to equation (2.7): 

( )c 1 sin
c

2cos

σ ⋅ − φ
=

φ
   (2.7) 
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where σc is the uniaxial compression strength of the intact rock. Since the diameter of 
the selected samples was less than 50 mm, which is the standard diameter for testing 
suggested by ISRM, the uniaxial compression strength of each intact rock was improved 
before determining the c values using equation (2.8). 

( )
cd

c 0.18
50

d

σσ =    (2.8) 

where σcd is the uniaxial compression strength of the intact rock sample having a 
diameter equal to d. 

The tensile strength of intact rocks was only evaluated for the diorite (see section 2.2), 
but is a parameter that is missing for the three other rock types.  

Usually, the tensile strength of intact rock samples is ten times smaller than their 
uniaxial compression strength, σc. Based on the values obtained on the diorite in the 
Äspö HRL /Nordlund et al, 1999/, a factor of 0.0678 was obtained for the ratio of 
tensile strength to uniaxial compression strength. Then, the tensile strength, σti, of the 
three other rock types –granite, greenstone and aplite- was estimated by multiplying 
their uniaxial compression strength by this factor. 

The dilation angle of all intact rocks was assumed to be equal to 0.  

The mechanical properties for the four intact rock types are listed in Table 2-8. As can 
be seen in this table, results from these studies show high discrepancy in the mechanical 
properties obtained on diorite samples.  

Also, the c and φ values of the diorite given in this table for /Nordlund et al, 1999/, 
differ from c and φ given in Table 2-7. The main reason is that, in /Nordlund et al, 
1999/, the c and φ values of Mohr-Coulomb failure criterion were determined on basis 
of compression tests results only (see Figure 2-2). But in this work, the results of tensile 
strength were also taken into account to find the best fitting curve to the mentioned 
criterion, which is shown in Figure 2-3. 

 

Table 2-8. Input mechanical parameters for the Mohr-Coulomb plasticity rock 
model, for the different rock types. 

Report Rock 
Type 

σc
(1) 

MPa 
D(2) 

kg/m3 
K 

GPa 
G 

GPa 
c 

MPa 
φ 
° 

ψ 
° 

σti 

MPa 
/Stille and Olsson, 1989/ Greenstone 115 2.96 31 21 23.82 45 0 8.0 

 Aplite 228 2.67 38 26 47.22 45 0 15.0 
 Diorite 169 2.75 35 24 35 45 0 12.0 
 Granite 182 2.64 39 25 37.7 45 0 12.8 

/Nordlund et al, 1999/ Diorite 214 2.75 52 28 31(3) 49(3) 0 14.8 
(1) Values calculated for 50-mm samples 
(2) /Rhén et al, 1997/ 
(3) These values have been re-evaluated from the values presented in /Nordlund et al, 
1999/ 
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Figure 2-2. The envelopes of Mohr-Coulomb failure criterion for diorite rock, obtained 
according to the compression tests only. 

 

 

Figure 2-3. The envelopes of Mohr-Coulomb failure criteria for diorite rock, obtained 
according to all tests. 

 

The data given in Table 2-8 can now directly be used as an input parameter for the 
Mohr-Coulomb plasticity model of the intact rock in UDEC.  
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3 Mechanical properties of rock fractures 

The mechanical properties of different rock fractures in the Äspö region are provided in 
two studies. The results of laboratory tests conducted on several selected samples are 
presented in /Stille and Olsson, 1989; Lanaro, 2001/, see section 1.  

The mechanical properties required for rock fractures are determined from the different 
following tests: 

• Standard chart profiles: JRC. 

• Tilt tests: JRC, basic friction angle, φb. 

• Schmidt hammer test: Joint Compressive Strength, JCS, residual friction angle, φr. 

• Direct shear tests: shear stiffness, Ks, normal stiffness, Kn, cohesion, c, and friction 
angle, φ, (Joint Roughness Coefficient, JRC). 

In section 3.1 the process of determination of rock fracture properties from different 
field and laboratory tests is shortly presented. In sections 3.2 and 3.3, the results from 
both aforementioned studies are reviewed. Finally, in section 3.4 the required input 
parameters for numerical modelling are estimated with respect to the appropriate 
constitutive joint models available in UDEC code. 

 

3.1 Determination of fracture parameters 
3.1.1 Standard profiles 

The parameter for roughness of fractures, JRC, can be determined by visual comparison 
of measured profile lines of a fracture surface to standard profiles, see Figure 3-1. This 
method is recommended by /ISRM, 1978/, with JRC values between 0 and 20 /Barton 
and Choubey, 1977/. 
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Figure 3-1. Typical roughness profiles for JRC /Barton and Choubey, 1977/. 

 

3.1.2 Tilt tests 

Simple tilt tests can be used to obtain the JRC values and basic friction angle of rock 
fracture samples. The tilt test is performed by placing a cored sample of the rock 
fracture on a flat surface and by tilting it until the top piece slide on the lower. The Joint 
Roughness Coefficient, JRC, is expressed by the following equation /Barton and 
Choubey, 1977/: 

r

10
n0

JRC
JCSlog

α − φ=
  σ 

  (3.1) 

where α is the tilt angle (°), φr is the residual friction angle (°), JCS is the Joint 
Compressive Strength (MPa), and σn0 is the effective normal stress generated by 
gravitational force acting on the lower half part of the block (MPa). 

The basic friction angle, φb, is estimated from residual tilt tests. This angle is the friction 
angle determined on dry unweathered sawn surfaces under low stress. Range of φb 
values for specific material are presented in Table 3-1.  

 

Table 3-1. Measured basic friction angle, φφφφb, for some materials /Barton, 1976/. 

Rock type Condition Basic friction angle, 
φb [

o] 
Granite Dry 31–35 
 Wet 29–31 
Gneiss Dry 26–29 
 Wet 23–26 
Sandstone Dry 26–35 
 Wet 25–33 
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3.1.3 Schmidt hammer test 

Parameters obtained from these tests are the Schmidt rebound on wet fracture surfaces, 
r, and the Schmidt rebound on dry unweathered sawn surfaces. These parameters can be 
used for calculating the Joint Compressive Strength, JCS, and the residual joint friction 
angle, φr. 

/ISRM, 1978/ points out the Schmidt hammer test for evaluating the Joint wall 
Compressive Strength of rock fractures. The JCS can be expressed as follows /Barton 
and Choubey, 1977/: 

( )10log JCS 0.00088 r 1.01= ⋅ γ ⋅ +   (3.2) 

where γ is the unit weight of the rock and r is the mean Schmidt hammer rebound 
number on wet joint surfaces. 

As stated by /Barton and Choubey, 1977/, the residual friction angle, φr, can be 
estimated from the basic friction angle, φb, according to the following empirical 
relation: 

( ) ( )r b 20 20 r Rφ = φ − +   (3.3) 

where R is the mean Schmidt hammer rebound number on dry unweathered sawn 
surfaces, φb and φr are expressed in degrees. 

 

3.1.4 Direct shear tests 

Direct shear tests can be conducted under constant normal loading (CNL) or constant 
normal stiffness (CNS). Several tests are conducted for different values of normal 
stress, and the results of the different tests are plotted in τ-σn, τ-us/un, and us-un 
diagrams, where the shear strength, τ, the normal stress, σn, the shear, us, and normal 
displacements, un, are monitored during testing. These diagrams are analysed for 
determining cohesion and friction angle of rock fractures, with help of results from 
another tests, such as tilt tests. The results from direct shear tests can also be used to 
back-calculate the Joint Roughness Coefficient, JRC. 

 

Shear strength of rock fractures 

The simplest and in practice most used theoretical peak shear strength criterion for 
fractures was proposed by Coulomb, and has the following expressions for the peak 
shear strength, τp, of the rock fractures: 

p p n pc tanτ = + σ ⋅ φ   (3.4) 

The expression can also be used for the residual shear strength, τr, of the rock fractures:  

r r n rc tanτ = + σ ⋅ φ   (3.5) 

where cp and cr are the peak and residual cohesion, φp and φr are the peak and residual 
friction angles, σn is the normal stress. 
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This linear criterion can be adapted for both peak and residual cohesion and friction 
angle. 

A more sophisticated and bilinear criterion was adapted from /Patton, 1966/ and 
proposed by /ISRM, 1981/. This criterion accounts for the curvature of the shear 
strength at low normal stress values. The graph is approximated by a line at low normal 
stresses smaller than a specific value σa, and by another line at higher normal stresses. 
Two sets of parameters are evaluated: (1) cpl and φpl at low normal stresses; (2) cph and 
φph at higher normal stresses. 

The parameters determined at low normal stresses are considered the equivalent to peak 
cohesion and peak friction angle from the Coulomb criterion. 

An empirical peak shear strength criterion has been developed by /Barton and Choubey, 
1977/, which is expressed as follows: 

p n 10 r
n

JCS
tan JRClog

  
τ = σ +φ  σ  

 (3.6) 

where JRC is evaluated from the chart profiles, see Figure 3-1, JCS is determined from 
results of Schmidt hammer tests, φr is the residual friction angle that can also be 
obtained by means of an equation proposed by /Barton and Choubey, 1977/. 

 

Back-calculation of JRC 

The Joint Roughness Coefficient, JRC, can be calculated from parameters obtained 
from direct shear tests under Constant Normal Load, CNL, according to the following 
equation:  

( )
p

r
n

10
n

arctan
JRC

JCSlog

τ  −φ σ =

σ

  (3.7) 

where τp is the peak shear strength, JCS the Joint Compression Strength, σn the normal 
stress, and φr the residual friction angle of fractures. 

These calculated JRC values can then be checked against the JRC values estimated from 
standard profiles, see section 3.1.1. 

 

3.2 Mechanical properties of rock fractures according to 
/Stille and Olsson, 1989/ 

As mentioned in section 1, the tested rock fracture samples are obtained from borehole 
KAS02, which co-ordinates are given in Table 2-1. 

Two different sets of fractures were distinguished in this borehole, which were defined 
as steeply dipping and gently dipping. Direct shear tests were conducted on each rock 
fracture sample under different normal stress levels. The mechanical parameters 
evaluated from these tests are: Joint Roughness Coefficient, JRC, shear stiffness, Ks, 
normal stiffness, Kn, cohesion, c, and friction angle, φ.  
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3.2.1 Determination of surface roughness of rock fracture samples 

In /Stille and Olsson, 1989/, the surface roughness of rock fractures is evaluated from 
the standard chart profiles, see Figure 3-1. The JRC values obtained for both fracture sets 
are the following: 

• JRC>8 (smooth undulating fractures) for steeply dipping fractures (ST1, ST2, ST3, 
ST5 and ST6) 

• For gently dipping fractures (ST8, ST9, ST10, ST11 and ST12), the rock fracture 
samples can be divided in two groups: one with JRC≈3 (smooth planar joints) and 
one with JRC>8 (smooth undulating fractures). No information is provided on 
which value to assign for the different rock fracture samples.  

 

3.2.2 Determination of strength of rock fracture samples 

A summary of the strength mechanical properties obtained on the selected samples is 
listed in Table 3-2. As can be seen from Table 3-2, two different values were defined for 
both cohesion and friction angle. The test results could not fit a linear failure criterion. 
These two values were estimated with respect to the normal stress level, according to 
Patton’s non-linear criterion, where the mechanical behaviour of rock fracture changes 
from dilation to shear. The values at low normal stress correspond to the dilation part of 
the deformation, and it can be noted that the cohesion of rock fractures is then almost 
equal to zero. The values at higher normal stress level belong to the shear part of the 
criterion.  

 

Table 3-2. Mechanical properties of the rock fracture samples selected from 
borehole KAS02 /from Stille and Olsson, 1989/. 

    Low normal stress Higher normal 
stress 

Sample(1) Level (m) Ks (MPa/mm) Kn 
(MPa/mm) 

cpl 

(MPa) 
φpl 

(°) 
cph 

(MPa) 
φph 

(°) 
ST1 –397,81 8.4 4.7–22.7 0.1 47 0.4 43 
ST2 –350,17 19.2 27.7 0.1 49 0.5 42 
ST3 –327,44 7.2 10.4 0.8 63 2.4 29 
ST5 –462,80 11.6 12.2 0.4 57 1.6 34 
ST6 –500,18 7.4 9–26 0.3 47 1 36 
ST8 –360,64 8.0 13.2 0.0 37 1.3 17 
ST9 –394,52 7.6 12.5 0.2 38 1.0 29 
ST10 –484,73 4.8 15.0 1.0 65 4.0 21 
ST11 –281,40 8.9 11.6 0.5 54 1.7 38 
ST12 –292,56 11.4 15.1 0.8 55 2.0 34 

(1) ST1-ST6 belong to the steeply dipping fracture set, and ST8-ST12 belong to the 
gently dipping fracture set. 

 

A summary of the results obtained for each fracture set is presented in Table 3-3 and 
Table 3-4. The cohesion and friction angle determined at low normal stresses can be 
considered closed to the peak cohesion and peak friction angle of the rock fractures.  
The cohesion and friction angle at high normal stresses are considered equal to residual 
cohesion and residual friction angle. 



 216

Table 3-3. Evaluated shear and normal stiffness for both fracture sets  
(from Table 3-2). 

 Number of 
samples 

Ks  
(MPa/mm) 

Kn  
(MPa/mm) 

  Mean Std Dev. Mean Std Dev. 
Steeply dipping 

fractures (1) 
5 10.8 5 12.8 

19.8 
8.8 
8 

Gently dipping 
fractures 

5 8.1 2.4 13.5 1.5 

(1) The two mean values are calculated by combining the lowest and highest values 
given for Kn for two rock samples with other mean values 

Table 3-4. Evaluated peak and residual cohesion and friction angle for both 
fracture sets (from Table 3-2). 

 Number of 
samples 

cpl 

(MPa) 
φpl 

(°) 
cph 

(MPa) 
φph 

(°) 
  Mean Std 

Dev. 
Mean Std 

Dev. 
Mean Std 

Dev. 
Mean Std 

Dev. 
Steeply dipping 

fractures 
5 0.34 0.3 52.6 7.1 1.16 0.85 36.8 5.8 

Gently dipping 
fractures 

5 0.5 0.4 49.8 12 2 1.18 27.8 8.8 

 

It should be noted that the compression of the two blocks of rock fracture samples was 
not subtracted from the total measured compression when evaluating the normal 
stiffness, Kn. 

 

3.3 Mechanical properties of rock fractures according to 
/Lanaro, 2001/ 

/Lanaro, 2001/ has comprehensively investigated the geometry (JRC and aperture), 
normal and shear stiffness as well as shear strength of two different fracture sets in the 
Äspö region. The rock fracture samples were selected from 6 different boreholes, which 
co-ordinates are given in Table 3-5. 

Table 3-5. Co-ordinates* of boreholes KA3548A01, KA3573A, KA3600F, 
KG0021A01, KG0048A01 and KA3579G /from Sicada, SKB/. 

Borehole Northing 
(m) 

Easting 
(m) 

Depth 
(m) 

Bearing 
(°) 

Inclination 
(°) 

KA3548A01 7267.473 1917.175 –446.576 188.3803 –3.0897 
KA3573A 7270.896 1893.281 –446.068 188.4457 –1.9512 
KA3600F 7275.456 1866.012 –445.583 248.2434 –1.8328 

KG0021A01 7297.915 1941.001 –445.153 220.0787 17.5945 
KG0048A01 7307.032 1915.444 –444.494 222.1866 14.1224 
KA3579G 7274.422 1886.684 –448.366 296.5651 –89.3594 

* Äspö-96 co-ordinate system 

The two fracture sets encountered in the 6 mentioned boreholes were classified as sub-
vertical fracture set (set 1) and sub-horizontal fracture set (set 2). General information 
on each rock fracture sample, including depth, type, mineral filling, roughness, surface 
and skin is provided in /Lanaro, 2001/. 
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3.3.1 Determination of JRC and aperture 

For geometrical characterisation of selected samples, two surfaces of each rock fracture 
sample were scanned in the laboratory using a 3-D laser scanning technique. After 
obtaining the digitised replicas of each sample, surface roughness of both upper and 
lower parts of each rock fracture sample was characterised on basis of Barton’s JRC 
(Joint roughness Coefficient) characterisation system, see section 3.1.1, Figure 3-1. The 
apertures of the selected sample were also determined using special technique /see 
Lanaro, 2001/. The range of values for JRC and aperture of the selected samples are 
given in Table 3-6. 

 

Table 3-6. Range of values for JRC and aperture, estimated for both fracture sets 
(from Lanaro, 2001). 

 JRC Max. aperture 
Fracture Set Upper surface Lower surface Range of values 

 Min. Max. Min. Max.   

Sub-vertical 3 15 3 15 1.17 9.61 
Sub-horizontal 5 11 5 11 1.12 2.66 

 

The JRC values for lower and upper surfaces are similar, which is reflected by a similar 
range of values, see Table 3-6. The range of JRC values obtained for a specific fracture 
set is extended, even highly heterogeneous for samples belonging to the sub-vertical 
fracture set. In the following, a unique value of JRC, determined from the values 
obtained on upper and lower surfaces, was applied to the samples. 

A summary of the Joint Coefficient Roughness, JRC, and of the aperture for both sub-
vertical and sub-horizontal fracture sets is given in Table 3-7. 

 

Table 3-7. Geometrical characteristics of both sub-vertical and sub-horizontal 
fracture sets /Lanaro, 2001/. 

Fracture Set JRC Aperture (mm) 
 Mean Std Dev. Mean max.(1) Mean Std Dev. 

Sub-vertical 6 3.2 4.05 0.56 0.61 
Sub-horizontal 8 2.3 1.76 0.18 0.14 

(1) The maximum aperture value is the average maximum value calculated from all 
samples of a fracture set 

 

3.3.2 Determination of normal and shear stiffness 

To determine the normal stiffness, Kn, of the selected rock fracture samples, the 
deformability of the samples was measured under different normal loading conditions 
which consisted of three loading steps followed by three unloading-reloading cycles 
between the maximum and minimum stress at each step /see Lanaro, 2001/. It should be 
noted that the deformation of the intact rock sample, which had been determined by 
normal loading tests conducted on different intact rock samples, was subtracted from 
the deformation of the fracture. A summary of the normal loading tests on rock fracture 
samples is given in Table 3-8. 
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The shear stiffness, Ks, of the selected rock fracture samples was also determined using 
laboratory direct shear tests at four levels of normal stress: 0.5, 1, 5 and 10 MPa. The 
tests were carried out according to ISRM’s suggested method and each sample was 
tested at three different normal stresses (0.5, 1 and 5, or 1, 5 and 10 MPa). The 
procedure of direct shear tests and method of data evaluation are given in /Lanaro, 
2001/. A summary of the results obtained for shear stiffness of the selected rock fracture 
samples is given in Table 3-9. 

The average normal and shear stiffness as well as their standard deviations are 
summarised in Table 3-10 and Table 3-11. 

 

Table 3-8. Secant normal stiffness, Kn, during the virgin loading and reloading 
cycles, for different stress intervals /from Lanaro, 2001/. 

Secant normal stiffness, Kn (MPa/mm) 

σn, during virgin normal loading cycle (MPa) σn, during reloading 
(MPa)  

B
or

eh
ol

e 

F
ra

ct
ur

e 
se

t 

D
ep

th
 (

m
)*

 

In
iti

al
 

0.
5–

5 

0.
5–

10
 

0.
5–

15
 

0.
5–

30
 

5–
10

 

5–
15

 

10
–1

5 

0.
5–

5 

0.
5–

10
 

0.
5–

15
 

KA3548A01 –446.87 40 78 151 155  312 278 218 144 200 207 
 –447.51 22 61 84 86  91 106 101 72 67 74 

KA3573A –446.30 33 55 75 85  55 121 115 101 95 192 

 –446.47            

 –446.81 300 71 124 139  92 200 184 101 101 179 

KA3600F –446.90            

 –446.90 138 106 134 117  177 93 93 142 141 189 

 –446.91 24 59 81 92  110 126 126 77 77 98 

KG0021A01 –432.84 57 83 136 138  199 141 141 137 167 139 

KG0048A01 –442.68 66 161 326 453     440 699 565 

 –437.87 41 89 143 174  105 277 299 206 146 165 

 –433.37 85 69 92 116  150 183 182 101 112 125 

 

S
ub

-v
er

tic
al

 fr
ac

tu
re

 s
et

 

–433.26 68 55 54 61  54 78 78 120 123 124 

KA3579G –457.80 118 185 279 363 535 514 853 949 280 385 681 

 –459.10 37 73 130 191 357 457 1572 2023 174 279 735 

 –459.62 31 72 132 193 352 525 1480 1669 222 424 1124 

 –463.23 124 783 322 454 798 1027 2012 2700 818 1157 2432 

 S
ub

-h
or

iz
on

ta
l 

fr
ac

tu
re

 s
et

 

–467.81 124 274 500 738 1367 1972 7187 7702 578 1399 3170 

* The depth of samples is absolute depth and has been re-calculated according to the co-
ordinates of the boreholes. 
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Table 3-9. Shear stiffness, Ks, of the selected rock fracture samples for different 
normal stresses /from Lanaro, 2001/. 

Shear Stiffness, Ks (MPa/mm) 

σn= 0.5 MPa σn=1 MPa σn=5 MPa σn=10 MPa 
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R
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P
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R
el

oa
d 

KA3548A01 –446.87 5.6 3.3 7.9    17.5 11.4 27.6 35.5 14 37.7 
 –447.51 1.9 2.1 4.4    7.9 6.2 35.1 25.1 12.8 46.6 

KA3573A –446.30 1.1 – 5.5    7.1 5.3 39.8 21.7 7.6 48.2 

 –446.47             

 –446.81 1.5 1.2 7.9    20.1 16 27.7 35.1 13.6 45.1 

KA3600F –446.90             

 –446.90 3.9 3.7 5.3    22.9 8 36.8 43.4 11.5 30 

 –446.91 4.2 0.2 3.8    1.5 1 45.3 28.1 15 52.3 

KG0021A01 –432.84 0.8 0.6 –    4.7 4 40.4 25.7 5.4 40.2 

KG0048A01 –442.68 4.6 2.2 27.1    11.8 7.5 – 27.2 8.1 – 

 –437.87 0.9 – 5.8    19.3 13.6 28.3 27.1 9.3 67.9 

 –433.37 2.3 2.1 6.1    13.1 9.2 27.9 32.2 14.9 37.9 

 

S
ub

-v
er

tic
al

 fr
ac

tu
re

 s
et

 

–433.26 15.4 4.5 6    – 13.5 17.6 32.7 6.3 45.7 

KA3579G –457.80 – – – 2.5 2.5 7.6 19.7 8.9 36.6 44.5 10.5 34.4 
 –459.10 – – – 15.9 8.4 12.7 18.4 13.9 25.6 28.5 16.6 30.3 

 –459.62 1.9 2.1 4.4 – – – 10.1 6.2 35.1 20.8 13 48.1 

 –463.23 8.3 3.4 13.8 – – – 9.6 7.8 44.9 28.3 6.3 58.6 

 S
ub

-h
or

iz
on

ta
l 

fr
ac

ut
re

 s
et

 

–467.81 4.5 4.1 12.6 – – – 16.7 7.2 30.9 32.7 9.5 45.6 

* The depth of samples is absolute depth and has been re-calculated according to the co-
ordinates of the boreholes. 

 

Table 3-10. The average and standard deviation of the Secant normal stiffness, 
Kn, during the virgin loading and reloading cycles, for different stress intervals 
/from Lanaro, 2001/. 

 Secant normal stiffness, Kn (MPa/mm) 
 σn, during virgin normal loading cycle (MPa) σn, during reloading 

(MPa) 

Fracture set 
 In

iti
al

 

0.
5–

5 

0.
5–

10
 

0.
5–

15
 

0.
5–

30
 

5–
10

 

5–
15

* 

10
–1

5¨
**

 

0.
5–

5 

0.
5–

10
 

0.
5–

15
**

* 

Sub-vertical, Mean 57 81 127 147  135 160 154 149 175 187 
Sub-vertical, Std Dev. 35 31.3 73 107  77.8 72 68 103 178 132 

Sub-horizontal, Mean 87 157 273 388 682 899 2621 3009 414 729 1628 
Sub-horizontal, Std Dev. 48 86 154 226 424 642 2586 2699 578 1399 3170 

* 10–15; ** 10–30; *** 0.5–30 for sub-horizontal fracture set. 
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Table 3-11. The average and standard deviation of the shear stiffness, Ks, of the 
selected rock fracture samples, for different normal stresses /from Lanaro, 2001/. 

Shear Stiffness, Ks (MPa/mm) 
σn= 0.5 MPa σn=1 MPa σn=5 MPa σn=10 MPa 

Fracture set 
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Sub-vertical, Mean 3.8 2.2 8    12.6 8.7 32.6 30.4 10.8 45.2 
Sub-vertical, Std Dev. 4.2 1.4 6.9    7.2 4.6 8.2 6.1 3.5 10.2 

Sub-horizontal, Mean 4.9 3.2 10.3 9.2 5.4 10.2 14.9 8.8 34.6 30.9 11.2 43.4 
Sub-horizontal, Std Dev. 3.2 1 5.1 9.5 4.2 3.6 4.7 3 7.2 8.7 3.9 11.3 

 

It should be noted that the averages and standard deviations of both secant normal and 
shear stiffness, given in tables Table 3-10 and Table 3-11, were calculated using all data 
listed in Table 3-8 and Table 3-9. As can be seen from Table 3-10 and Table 3-11, some 
of the obtained values are out of range with respect to the average values and therefore, 
should not be taken into account in determining the average and standard deviation of 
each parameter. 

 

3.3.3 Determination of shear strength 

In his work, /Lanaro, 2001/ averaged the shear strength values for each normal stress 
level, and then carried out the comparison with the theoretical and empirical curves on 
the average values. The shear strength of both fracture sets was evaluated on the basis of 
both theoretical and empirical peak shear strength criteria, see section 3.1.4.  

Shear strength fitted to theoretical shear strength criteria 

The results of the sub-vertical fracture set were fitted to the Coulomb strength envelope. 
As this criterion was not suitable for describing the strength behaviour of the sub-
horizontal fracture set at low stress level, /Lanaro, 2001/ used the bilinear failure 
criterion proposed by /Patton, 1966/ for determining the peak and residual parameters 
for normal stresses smaller and larger than 1 MPa. A summary of the results is 
presented in Table 3-12. 

Table 3-12. Peak and residual cohesion and friction angle of rock fractures, 
estimated from theoretical shear failure criteria. 

 Normal stresses < 1 MPa Normal stresses > 1 MPa 
 cp φp cr φr cp φp cr φr 

Sub-horizontal  59.1  49.6 1.2 34.6 0.65 32 
Sub-vertical 0.46 40.1 0.39 35.3 0.46 40.1 0.39 35.3 

 

Shear strength fitted to empirical shear strength criterion 

To determine the strength parameters of Barton and Choubey’s failure criterion, the 
JRC values determined in section 3.3.1 are used. By forcing the relationship in equation 
(3.6) to fit the experimental data (mean strength for each level of normal stress), JCS 
and friction angle for peak and residual conditions were evaluated and the results are 
presented in Table 3-13. 
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Table 3-13. Peak and residual friction angle of rock fractures, estimated from 
empirical peak shear strength criterion. 

 JRC JCS 
(MPa) 

φbp 
(°) 

φbr 
(°) 

Sub-horizontal 8 80–82 32 27 
Sub-vertical 6 82–85 36 32 

 

 

3.4 Preparation of input mechanical parameters of rock 
fractures for modelling 

The geometrical and mechanical parameters of the fracture sets, given in the previous 
sections, provide a great knowledge about the geometry, deformability, mechanical 
behaviour as well as shear strength of the fracture sets in the Äspö region under 
different normal and shear loading conditions. But, with respect to the fact that several 
specific fracture material properties are required in numerical modelling, further 
analyses have been conducted on the obtained data with respect to the constitutive joint 
model planned to be used. 

As mentioned in section 2.3, the mechanical behaviour of fractured rock masses in the 
Äspö region will be determined and predicted using UDEC code. Among the different 
constitutive joint models available in UDEC, the Continuously Yielding joint model and 
the Barton-Bandis joint model seem to be more suitable to simulate the behaviour of 
rock fractures. 

In the next sections of this chapter, the aforementioned joint models will be briefly 
described and the evaluation of input material properties for each model are explained 
in detail. 

 

3.4.1 Preparation of input mechanical parameters of rock fractures for 
the Continuously Yielding joint model 

Since the numerical modelling of practical problems usually take rock fractures through 
a complex load path, the empirical models, which where developed to fit laboratory 
tests by joint response to a simple loading condition are not suitable enough to model 
rock fracture behaviour under complex loading condition. One of the best models for 
the complex behaviour of rock fracture is the Continuously Yielding joint model, 
proposed by /Cundall and Hart, 1984/. The detailed description of this model is given  
in the UDEC user manual /UDEC, 2000a/ to which readers are referred for more 
information. The main structure of this model is briefly described below. 

The non-linear behaviour of rock fractures, observed in the physical tests, is accounted 
for in the Continuously Yielding joint model. The model is described as follows: 

The response to normal loading, ∆σn, is expressed incrementally as: 

n n nK u∆σ = ∆   (3.8) 

where ∆un is the normal displacement increment, and the normal stiffness, Kn, is 
expressed by: 
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ne
n n nK a= σ   (3.9) 

which represents the observed increase of stiffness with normal stress, where an and en 
are model parameters. an is a constant and defines the initial rock fracture normal 
stiffness, and en the normal stiffness exponent. In this model, the tensile strength is 
assumed to be equal to zero. 

The shear stress increment, ∆τ, is also calculated as follows: 

s sFK u∆τ = ∆   (3.10) 

where ∆us is the shear displacement increment, F is a factor depending on the distance 
from the actual stress curve to the “bounding” stress curve (see section 3.1.3 in the main 
report), and the shear stiffness, Ks, is a function of the normal stress expressed as: 

se
s s nK a= σ   (3.11) 

where as is a constant and defines the initial rock fracture shear stiffness, and es the 
shear stiffness exponent. 

The model parameters associated with the Continuously Yielding model and that are 
required for modelling the behaviour of rock fractures under plain strain-loading 
conditions are summarised in Table 3-14. Among the parameters given in Table 3-14, 
four parameters: an, en, as and es have a major role on normal and shear behaviour of 
rock fractures, and are to be determined using available test data. 

 

Table 3-14. Input parameters associated to the Continuously Yielding 
constitutive joint model. 

Parameter Description 
an initial joint normal stiffness (MPa/mm) 
en joint normal stiffness exponent  

Max Kn maximum value of joint normal stiffness (MPa/mm) 
as initial joint shear stiffness (MPa/mm) 
es joint shear stiffness exponent  

Max Ks maximum value of joint shear stiffness (MPa/mm) 
jr joint roughness parameter (m) 

φm
(i)

 joint initial friction angle (°) 
φi joint intrinsic friction angle (°) 

 

 

Analysis of data provided by /Stille and Olsson, 1989/ 

In Table 3-2, data as they are provided by /Stille and Olsson, 1989/ are presented.  
The stiffness values obtained from direct shear tests are a function of normal stress. 
Anyway, in this table, values of normal, Kn, and shear stiffness, Ks, are given without 
relationship to normal stress. Nevertheless, the values of Kn and Ks for different normal 
stress levels can be calculated by using laboratory raw data. The curves drawn from 
direct shear test results and presented in /Stille and Olsson, 1989/ can be used to 
determine the variation Kn and Ks with normal stresses. τ-σn curves were used to 
evaluate Ks for different values of σn according to equation (3.10). σn-∆un curves were  
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analysed to determine the values of Kn for range of values of σn, and according to 
equation (3.8). The calculated normal, Kn, and shear stiffness, Ks, of rock fracture 
samples ST1–ST12 are presented in Table 3-15. 

 

Table 3-15. The normal and shear stiffness of rock fracture samples selected 
from borehole KAS02. 

Ks, MPa/mm Kn, MPa/mm 

S
am

pl
e*

 

Le
ve

l 
(m

) 

σn Ks σn Ks σn Ks σn Ks Ini. Peak 

ST1 –397.81 0.87 3.5 1.75 3.9 2.62 7.9   4.7 31.25 
ST2 –350.17 1.3 11.43 2.59 26.3 3.89 29.61   16.2 36.7 
ST3 –327.44 1.21 6.52 2.41 7 3.62 6.4   8.65 11.11 
ST5 –462.80 1.42 11.38 2.84 12.34 4.26 16.14 5.5 33 8.36 24 
ST6 –500.18 1.16 7.05 2.26 6 3.47 12   6.6 29.5 
ST8 –360.64 1.83 4.525 3.66 9 5.26 13.66   12 29.59 
ST9 –394.52 1.81 5.87 3.61 9.47 5.19 11.98 7 19 10.15 45.14 
ST10 –484.73 1.7 6.94 3.4 5.51 5.1 4.48 6.59 8.25 6.53 12.96 
ST11 –281.40 1.82 7.05 3.63 10.42 5.45 9 7.04 8.54 9.94 29.88 
ST12 –292.56 1.84 7.46 3.67 6.1 5.51 22.93 7.11 13.6 13.57 17.54 

*ST1–ST6 belong to the Steeply dipping fracture set, and ST8–ST12 belong to the 
Gently dipping fracture set. 

 

When the values of normal/shear stiffness as a function of normal stress are determined, 
they can be fitted to equations (3.9) and (3.11) to calculate the C-Y model’s parameters. 
This is done by plotting normal/shear stiffness values against normal stresses, and by 
fitting a power law equation to the plotted data, see Figure 3-2 and Figure 3-3.  
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Figure 3-2. The normal stiffness as a function of the normal stress and their power law 
relationship to determine an and en, sample ST1. 
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Figure 3-3. The shear stiffness as a function of the normal stress and their power law 
relationship to determine as and es, sample ST1. 

 

The calculated parameters for normal, an and en, and shear stiffness, as and es, are 
presented in Table 3-16 for the steeply dipping set of fractures and in Table 3-17 for the 
gently dipping fracture set. 

 

Table 3-16. Parameters for normal and shear stiffness fitted for the Continuously 
Yielding joint model, for rock fracture samples from the steeply dipping fracture 
set selected from borehole KAS02. 

Sample Level 
(m) 

an 
MPa/mm 

en as 
MPa/mm 

es 

ST1 –397.81 8.2782 0.6941 3.4883 0.6739 
ST2 –350.17 16.025 0.6936 9.5425 0.9045 
ST3 –327.44 9.4939 0.2011 6.6573 –0.004 
ST5 –462.80 10.755 0.4624 7.6824 0.6742 
ST6 –500.18 6.6653 0.8068 5.8462 0.4223 

Mean values 10.24 0.57 6.64 0.53 
Standard deviation 3.57 0.24 2.24 0.34 

 

Table 3-17. Parameters for normal and shear stiffness fitted for the Continuously 
Yielding joint model, for rock fracture samples from the gently dipping fracture 
set selected from borehole KAS02. 

Sample Level 
(m) 

an 
MPa/mm 

en as 
MPa/mm 

es 

ST8 –360.64 13.632 0.2955 2.3951 1.0391 
ST9 –394.52 11.339 0.4476 3.4412 0.8232 
ST10 –484.73 8.8954 0.2978 6.2614 –0.016 
ST11 –281.40 7.9031 0.4726 7.1249 0.1417 
ST12 –292.56 11.055 0.2357 4.2493 0.6746 

Mean values 10.56 0.35 4.69 0.53 
Standard deviation 2.24 0.10 1.96 0.45 
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Analysis of data provided by /Lanaro, 2001/ 

The parameters an, en, as and es, need also to be calculated from the normal and shear 
stiffness data provided by /Lanaro, 2001/. In this case, the values of Kn and Ks were 
provided as a function of normal stresses, see Table 3-8 and Table 3-9. 

As described in the previous section, the estimated values of Kn and Ks were plotted in 
two separate diagrams against normal stresses, and the values were fitted to a power law 
regression.  

The calculated parameters are given in Table 3-18 for sub-vertical and sub-horizontal 
fracture sets. 

 

Table 3-18. The Continuously Yielding joint model’s parameters obtained for 
both sub-vertical and sub-horizontal fracture samples tested by /Lanaro, 2001/. 
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an 

MPa/mm 

 
en 

 
as 

MPa/mm 

 
es 

KA3548A01 –446.87 52.884 0.7289 8.0808 0.5859 
 –447.51 76.349 0.2201 3.0592 0.8006 

KA3573A –446.30 50.325 0.3772 1.9994 0.9488 

 –446.47     

 –446.81 167.36 –0.037 3.2289 1.0712 

KA3600F –446.90     

 –446.90 122.95 0.0218 6.6911 0.7954 

 –446.91 41.244 0.4903 3.8043 0.3628 

KG0021A01 –432.84 71.74 0.4346 1.4708 1.0605 

KG0048A01 –442.68 80.158 1.2713 6.3316 0.547 

 –437.87 64.323 0.6869 2.1803 1.1855 

 –433.37 66.302 0.3824 3.9792 0.8494 

 

S
ub

-v
er

tic
al

 fr
ac

tu
re
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et

  

–433.26 52.694 0.1002 6.4939 0.6156 

KA3579G –457.80 114.64 0.7563 2.5248 1.2561 
 –459.10 29.42 1.4612 15.126 0.2248 

 –459.62 30.16 1.4812 3.187 0.7804 

 –463.23 88.16 1.3046 9.2776 0.3225 

 S
ub

-h
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ta
l 
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re
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et

 

–467.81 130.45 1.412 6.7997 0.6388 

* The depth of samples is absolute depth and has been re-calculated according to the  
coordinates of boreholes. 

The mean values and standard deviations of the parameters obtained for sub-vertical and 
sub-horizontal fracture sets listed in Table 3-18 are given in Table 3-19 and Table 3-20. 
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Table 3-19. The mean values and standard deviations of the Continuously 
Yielding joint model’s parameters obtained for sub-vertical fracture samples 
tested by /Lanaro, 2001/. 

Sub-vertical fracture set an 
MPa/mm 

en as 
MPa/mm 

es 

Mean value 76.939 0.4252 4.3018 0.8021 
standard deviation 37.084 0.3754 2.2311 0.2549 

 

Table 3-20. The mean values and standard deviations of the Continuously 
Yielding joint model’s parameters obtained for sub-horizontal fracture samples 
tested by /Lanaro, 2001/. 

Sub-horizontal fracture set an 
MPa/mm 

en as 
MPa/mm 

es 

Mean value 78.566 1.2831 7.383 0.6445 
standard deviation 47.021 0.3023 5.1257 0.41 

 

 

Summary of values for input parameters 

The values of the parameters have been presented in the previous sections. The 
roughness parameter, jr, for the C-Y model has been calculated according to equations 
(3.11) and (3.13) presented in the main report.  

The input parameters for the Continuously Yielding model are presented in Table 3-21 
for the sub-vertical fracture set and in Table 3-22 for the sub-horizontal fracture set. 

 

Table 3-21. Summary of the values of input parameters for the Continuously 
Yielding joint model for the sub-vertical fracture set. 

Sub-vertical fracture set /Stille and Olsson, 1989/ /Lanaro, 2001/ 
Parameter Mean Std Dev. Mean Std Dev. 

an (MPa/mm) 10.24 3.57 76.9 37.1 
en 0.57 0.24 0.4 0.37 

Max Kn (MPa/mm) Function of an and en, calculated for expected σn 
as (MPa/mm) 6.64 2.24 4.3 2.2 

es 0.53 0.34 0.8 0.25 
Max Ks (MPa/mm) Function of as and es, calculated for expected σn 

jr (m) 0.002 – 0.002 – 
φm

(i) (°) 40 – 40 – 
φi (°) 35 – 35 – 
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Table 3-22. Summary of the values of input parameters for the Continuously 
Yielding joint model for the sub-horizontal fracture set. 

Sub-horizontal fracture set /Stille and Olsson, 1989/ /Lanaro, 2001/ 
Parameter Mean Std Dev. Mean Std Dev. 

an (MPa/mm) 10.56 2.24 78.6 47 
en 0.35 0.10 1.3 0.3 

Max Kn (MPa/mm) Function of an and en, calculated for expected σn 
as (MPa/mm) 4.69 1.96 7.4 5.1 

es 0.53 0.45 0.6 0.4 
Max Ks (MPa/mm) Function of as and es, calculated for expected σn 

Jr (m) 0.002 – 0.002 – 
φm

(i) (°) 35 – 35 – 
φi (°) 32 – 32 – 

 

The evaluated values for normal, Kn, and shear, Ks, stiffness are significantly smaller 
when analysing results from /Stille and Olsson, 1989/. During this study, the 
compression of the two blocks of rock fracture samples was not substracted from the 
total measured compression when evaluating the normal stiffness. This could partly 
explain that their values are smaller than those evaluated from /Lanaro, 2001/. 

Anyhow, values as evaluated from /Lanaro, 2001/ are far much higher than reference 
values found for rock fractures. 

 

3.4.2 Preparation of input mechanical parameters of rock fractures for 
the Barton-Bandis joint model 

The Barton-Bandis joint model, which has been implemented into UDEC, has been 
developed by Drs. Nick Barton and Stavros Bandis to describe the effects of surface 
roughness on discontinuity deformation and strength using series of empirical relations. 
A complete explanation of these relations can be obtained from /Barton, 1982/ and 
/Bandis et al, 1985/. The main feature of this model as well as its mathematical 
formulation is given in the UDEC user manual /UDEC, 2000b/.  

The parameters required to model the behaviour of rock fractures by the Barton-Bandis 
joint model under plain strain-loading conditions are given in Table 3-23. 

 

Table 3-23. Input parameters required by the Barton-Bandis joint model for plain 
strain loading test. 

Property Keyword Description 
Kn joint normal stiffness at expected normal loads (MPa/mm) 
Ks joint shear stiffness at expected normal loads (MPa/mm) 

JRC0 laboratory-scale joint roughness coefficient  
JCS0 laboratory-scale joint wall compressive (MPa) 

L0 laboratory-scale joint length (m) 
φr joint residual angle of friction (°) 
σc intact rock uniaxial compressive strength (MPa) 
ajn joint aperture at zero normal stress (mm) 

 

According to the Barton and Choubey’s failure criterion (see equation (3.6)) JRC0, JCS0 
and φr values will have a major effect on the shear strength of the rock mass. 
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Parameters evaluated from shear tests 

In /Stille and Olsson, 1989/ the JRC value were given without any description about the 
method of estimation. Also, in /Lanaro, 2001/, the JRC0 values of the fracture sets were 
considered constant with respect to the simple geometrical characterisation and the two 
other parameters (JCS0 and φr) were back-calculated by forcing the relationship in 
equation (3.7) to fit the experimental data, see section 3.3. 

In order to complete the study and precisely define the influence and interactivity of 
these 3 parameters, a sensitivity analysis has been carried out on the raw data obtained 
from direct shear tests under different normal stresses. 

In the following, the application of this procedure on the sub-vertical fracture set tested 
by /Lanaro, 2001/ is described in detail and the summary of the results obtained for both 
fracture sets is given in Table 3-24 and Table 3-25. The results obtained for the rock 
fractures tested in /Stille and Olsson, 1989/ are presented in Table 3-26 to Table 3-31. 

Results of direct shear tests from /Lanaro, 2001/ on both fracture sets were analysed in 
the same way. Available raw data for all samples of one fracture set were plotted in a  
τ-σn graph (see Figure 3-4). The samples represent rock fractures in diorite. The 
maximum uniaxial strength of diorite, σc, is equal to 214 MPa for 50-mm samples (see 
section 2.3). Therefore, it was assumed that the JCS0 of the rock fracture samples can 
not take a value greater than the maximum uniaxial compressive strength of the intact 
rock, and its highest value was set to 210 MPa. The influence of JCS0 was tested by 
decreasing this initial value by 10 MPa steps until a value of 100 MPa. The sensitivity 
analysis was conducted for the three different φr values of 28, 30 and 32 degrees. Then 
the JRC0 values were determined by calculating the best fitting curve to the raw data, 
see Figure 3-4, according to equation (3.6) and using the ORIGIN software. 
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Figure 3-4. An example of the best fitting curve to the raw laboratory test data of the sub-
vertical fracture set, using OIGIN software (X axis is normal stress and Y axis is shear stress). 
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The JRC0 values calculated for the sub-vertical fracture set are presented in Table 3-24, 
and those calculated for the sub-horizontal fracture set in Table 3-25. 

Table 3-24. The sensitivity analysis on the raw laboratory tests data of samples 
from sub-vertical fracture set for determining JRC0, JCS0 and φφφφr values of  
Barton-Choubey’s failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
210 10.115 8.69068 7.26163 
200 10.2699 8.82456 7.37418 
190 10.4378 8.96973 7.49626 
180 10.6207 9.12789 7.62931 
170 10.8209 9.30111 7.77509 
160 11.0414 9.49198 7.93579 
150 11.2858 9.70369 8.11416 
140 11.5589 9.94046 8.3137 
130 11.8668 10.2075 8.53896 
120 12.2175 10.512 8.79598 
110 12.6217 10.8634 9.09296 
100 13.0945 11.2751 9.44134 

 

Table 3-25. The sensitivity analysis on the raw laboratory tests data of samples 
from sub-horizontal fracture set for determining JRC0, JCS0 and φφφφr values of 
Barton-Choubey’s failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
210 8.75572 7.31466 5.86974 
200 8.89301 7.43021 5.96334 
190 9.04198 7.55564 6.06496 
180 9.20439 7.69244 6.17584 
170 9.3824 7.84244 6.29748 
160 9.5787 8.00792 6.43175 
150 9.79667 8.19178 6.58101 
140 10.0406 8.39766 6.74826 
130 10.3161 8.63037 6.93745 
120 10.6307 8.89625 7.1538 
110 10.9943 9.20394 7.40444 
100 11.421 9.56555 7.69938 

 

The data given in Table 3-24 and Table 3-25 can be used as a support for finding the 
most suitable parameters for the rock fractures in the Äspö region. 

Data from /Stille and Olsson, 1989/ were analysed following the same procedure. The 
tested fracture samples belong to different rock types. Following rock types were found 
for the steeply dipping fracture set samples: greenstone for ST1, fine-grained granite  
for ST2 and ST6, and diorite for ST3 and ST5. The rock types of the gently dipping 
fracture set samples are: granite for ST8 and ST11, fine-grained granite for ST9 and 
ST10, and granite for ST12. The highest value set for JCS0 was considered to be less or 
equal to the uniaxial compressive strength of each rock type and calculated for 50-mm 
samples, see Table 2-2. 

To determine the strength parameters of Barton and Choubey’s shear failure criterion 
for fracture samples tested in /Stille and Olsson, 1989/, the same procedure for 
sensitivity analysis was carried out using raw data obtained from laboratory direct shear 
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tests under different normal stress condition. The analysis was carried out for each 
fracture set, and separately for each rock type in a fracture set. 

The summary of results obtained for fracture samples on the different rock types are 
presented in Table 3-26 to Table 3-31. 

 

Table 3-26. The sensitivity analysis on the raw laboratory tests data of sample 
ST1 defined as greenstone and belonging to the steeply dipping fracture set, for 
determining JRC0, JCS0 and φφφφr values of Barton-Choubey’s failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
115 11.0182 9.87723 8.73417 
105 11.272 10.1055 8.9366 
95 11.565 10.3689 9.17027 
85 11.9085 10.6779 9.44448 
75 12.3199 11.048 9.77299 
65 12.8256 11.5032 10.1772 

 

Table 3-27. The sensitivity analysis on the raw laboratory tests data of sample 
ST2 and ST6 defined as fine-grained granite and belonging to the steeply dipping 
fracture set, for determining JRC0, JCS0 and φφφφr values of Barton-Choubey’s 
failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
230 9.94197 8.92908 7.91452 
210 10.1454 9.1124 8.07751 
190 10.3791 9.32274 8.26466 
170 10.6514 9.56824 8.48294 
150 10.9752 9.86004 8.74254 
130 11.3698 10.2159 9.05925 

 

Table 3-28. The sensitivity analysis on the raw laboratory tests data of sample 
ST3 and ST5 defined as diorite and belonging to the steeply dipping fracture set, 
for determining JRC0, JCS0 and φφφφr values of Barton-Choubey’s failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
170 12.7754 11.5488 10.3192 
160 12.9892 11.7433 10.494 
150 13.225 11.9577 10.687 
140 13.4864 12.1956 10.9011 
130 13.7787 12.4617 11.1406 
120 14.1086 12.762 11.4111 
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Table 3-29. The sensitivity analysis on the raw laboratory tests data of sample 
ST8 and ST11 defined as granite and belonging to the gently dipping fracture set, 
for determining JRC0, JCS0 and φφφφr values of Barton-Choubey’s failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
180 9.11712 7.84347 6.5673 
170 9.26185 7.9682 6.67186 
160 9.42037 8.10484 6.78647 
150 9.59509 8.25547 6.91282 
140 9.78904 8.42269 7.05311 
130 10.0061 8.60988 7.21018 

 

Table 3-30. The sensitivity analysis on the raw laboratory tests data of sample 
ST9 and ST10 defined as fine-frained granite and belonging to the gently dipping 
fracture set, for determining JRC0, JCS0 and φφφφr values of Barton-Choubey’s 
failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
230 9.57184 8.3381 7.10251 
210 9.81721 8.55325 7.28725 
190 10.1021 8.80312 7.50191 
170 10.43841 9.09825 7.75559 
150 10.8442 9.45458 8.06208 
130 11.3479 9.89715 8.44308 

 

Table 3-31. The sensitivity analysis on the raw laboratory tests data of sample 
ST12 defined as greenstone and belonging to the gently dipping fracture set, for 
determining JRC0, JCS0 and φφφφr values of Barton-Choubey’s failure criterion. 

JCS0 (MPa) JRC0 

 φr=28° φr=30° φr=32° 
115 14.0364 12.5277 11.0138 
105 14.4717 12.9187 11.3599 
95 14.9818 13.3773 11.7662 
85 15.591 13.9254 12.2522 
75 16.3361 14.5964 12.8479 
65 17.2759 15.4441 13.6013 

 

 

Parameters evaluated from tilt tests 

Tilt tests have been performed on rock fracture samples collected along boreholes 
KAS02, KA2511a and KA2598a. The tests were carried out by NGI during 2001 
/Makurat et al, 2002/ on rock fracture samples that had been collected at different 
depths. The results include all rock fracture samples, without distinction to fracture sets. 

The parameters evaluated from these tests are φb, φr, JRC100 and JCS100, see section 
3.1.2. Table 3-32 to  

Table 3-34 summarised the results of the tests for each borehole, and in Table 3-35 the 
statistical distribution of all tests is shown. 
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Table 3-32. Results of tilt tests in borehole KAS02. 

Depth, 
m 

Roughness 
amplitude 

a, mm 

Basic friction 
angle 
φb,°  

Rock 
Type 

Residual 
friction angle 

φr, ° 
JRC100 

JCS100, 
MPa 

178.05 3.2 32.0 Granite 26.1 6.9 86.9 
199.60 1.7 32.0 Granite 25.2 5.6 47.1 
237.12 1.4 31.0 Granite 26.9 3.8 105.8 
244.55 2.4 28.0 Granite 21.1 8.7 68.7 
268.52 2.0 33.0 Amphibolite 28.3 4.4 61.4 
305.74 2.5 32.0 Granite 29.9 6.9 89.6 
329.44 1.7 35.0 Diorite 34.0 3.7 79.8 
360.16 1.3 32.0 Granite 32.0 3.2 135.7 
361.55 1.1 32.0 Granite 32.0 4.0 134.7 
403.06 1.9 32.0 Diorite 27.0 3.9 68.0 
406.39 1.1 36.0 Granite 31.4 5.0 57.9 
414.50 2.2 35.0 Diorite 35.0 4.1 114.7 
419.95 3.5 33.0 Diorite 30.5 5.2 102.6 
455.06 3.1 33.0 Diorite 28.9 6.5 84.9 
476.42 3.9 34.0 Granite 34.0 5.3 140.3 
491.10 3.9 30.0 Diorite 30.0 6.0 151.5 
513.05 1.7 34.0 Diorite 31.1 5.7 67.6 
543.14 1.3 32.0 Diorite 25.9 6.4 67.2 
543.87 0.8 32.0 Diorite 32.0 3.6 137.5 
557.25 2.1 30.0 Diorite 27.9 4.6 89.3 
565.18 1.2 34.5 Diorite 34.5 4.4 116.7 
578.30 1.3 32.0 Diorite 31.0 5.6 134.8 
609.77 2.1 33.5 Diorite 32.2 3.6 109.1 

Mean 2.1 32.5  29.9 5.1 97.9 
Std Dev. 0.9 1.8  3.4 1.4 31.0 
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Table 3-33. Results of tilt tests in borehole KA2511a. 

Depth, 
m 

Roughness 
amplitude 

a, mm 

Basic friction 
angle 
φb, ° 

Rock 
Type 

 

Residual 
friction angle 

φr, ° 

JRC100 
 

JCS100, 
MPa 

21.85 1.2 31.0 Diorite 28.1 4.4 109.3 
42.05 0.9 34.0 Diorite 30.5 6.0 68.8 
44.40 1.9 34.0 Diorite 28.3 5.8 67.8 
49.75 1.3 32.0 Diorite 25.1 6.6 57.9 
108.07 1.3 33.0 Diorite 33.0 4.7 164.0 
111.59 2.7 32.5 Diorite 26.6 6.4 74.2 
147.25 1.5 35.0 Diorite 33.3 3.8 91.0 
150.00 1.6 33.0 Diorite 30.5 5.6 103.5 
186.12 1.3 35.0 Diorite 30.1 6.1 67.6 
186.70 1.4 31.0 Diorite 27.9 4.3 65.6 
216.33 1.0 33.0 Diorite 30.4 3.8 102.3 
242.58 0.5 30.5 Diorite 23.1 1.0 53.7 
259.10 2.0 31.0 Diorite 26.4 5.2 101.8 
268.30 1.7 28.0 Diorite 23.3 6.2 80.8 
291.14 4.8 31.0 Diorite 24.3 5.7 57.3 

Mean 1.7 32.3  28.0 5.0 84.4 
Std Dev. 1.0 1.9  3.3 1.5 28.8 

 

Table 3-34. Results of tilt tests in borehole KA2598A. 

Depth, 
m 
 

Roughness 
amplitude 

a, mm 

Basic friction 
angle 
φb, ° 

Rock 
Type 

 

Residual 
friction angle 

φr, ° 

JRC100 
 

JCS100, 
MPa 

14.45 1.9 33.0 Diorite 25.8 2.8 55.8 
25.30 2.6 35.0 Diorite 33.0 3.6 81.1 
34.08 2.3 35.5 Diorite 35.5 4.3 97.2 
42.23 2.4 33.0 Diorite 31.8 6.1 124.3 
56.30 2.2 31.0 Diorite 29.3 5.0 159.5 
59.75 1.9 30.0 Granite 28.9 5.1 97.8 
96.92 2.5 32.0 Granite 30.0 5.9 103.0 
112.80 1.8 33.0 Diorite 30.8 4.7 112.7 
124.72 1.1 34.0 Diorite 29.6 3.8 72.0 
134.10 1.0 33.5 Diorite 26.9 3.9 50.2 
145.05 1.3 34.5 Diorite 34.1 3.6 103.5 
168.45 1.0 33.5 Diorite 28.6 3.5 73.0 
172.07 1.6 33.0 Diorite 33.0 4.5 147.7 
198.82 2.7 31.5 Diorite 31.5 4.9 133.5 
212.65 2.9 33.0 Granite 31.5 5.5 106.7 
219.32 3.1 33.5 Diorite 30.0 4.6 85.7 
268.63 1.5 33.0 Diorite 25.8 6.5 54.8 
270.00 0.8 35.0 Diorite 28.7 3.8 68.4 
296.69 2.1 35.0 Diorite 26.2 7.7 47.8 
296.82 2.3 25.0 Diorite 17.8 6.4 60.2 

Mean 2.0 32.9  29.4 4.8 91.7 
Std Dev. 0.7 2.3  3.8 1.2 32.7 
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Table 3-35. Results of all tilt tests. 

 Roughness 
amplitude 

a, mm 

Basic fric- 
tion angle 

φb, ° 

Residual 
friction angle 

φr, ° 

JRC100 
 
 

JCS100, 
MPa 

Mean 1.9 32.6 29.2 5.0 92.3 

Std Dev. 0.9 2.0 3.6 1.3 31.0 

 

 

Values of input parameters for the Barton-Bandis joint model 

The values used as input in the B-B model are presented in the previous sections.  
As described in the previous paragraph, there is no unique solution for fitting the 
Barton-Choubey’s failure criterion (equation (3.6)). The choice of input parameters  
has been made on the results of the sensitivity analysis presented above.  

L0 is the size of the rock fracture sample that has been tested, and is provided in the 
technical reports /Lanaro, 2001; Stille and Olsson, 1989/. 

The values for the input parameters required for modelling the behaviour of rock 
fractures with the Barton-Bandis joint model are presented in Table 3-36 for the sub-
vertical fracture set and in Table 3-37 for the sub-horizontal fracture set. 

 

Table 3-36. Values of the input for the Barton-Bandis joint model, sub-vertical 
fracture set. 

Sub-vertical fracture set  
Parameter Mean Std Dev. 

Kn (MPa/mm)  61.5  
Ks (MPa/mm) 35.5  

JRC0 4/9.3/12/16 – 
JCS0 (MPa) 40/110/170  

L0 (m) 5.51e–2  
φr (°) 29.2 3.6 

σc See Table 2-8  
ajn (m) 0.56 – 

 

Table 3-37. Values of the input for the Barton-Bandis joint model, sub-horizontal 
fracture set. 

Sub-horizontal fracture 
set 

 

Parameter Mean Std Dev. 
Kn (MPa/mm)  21.9  
Ks (MPa/mm) 15.7  

JRC0 4/9.3/12/16 – 
JCS0 (MPa) 40/110/170  

L0 (m) 6.1e–2  
φr (°) 29.2 3.6 

σc See Table 2-8  
ajn (m) 0.2 – 
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