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Preface 

This report concerns the issue of assigning probability distributions to input parameters 
of performance assessment models. It has been written by Dr Srikanta Mishra, INTERA 
Inc, Austin, Texas, USA. Dr Mishra has coordinated the probabilistic uncertainty/ 
sensitivity analysis task for the Yucca Mountain performance assessment team. He  
is also an Adjunct Professor at University of Texas, where he teaches a post-graduate 
course on modeling under uncertainty. 

Several of the calculation examples in the report were delivered as Excel worksheets 
along with the report and these are available through SKB. 

 

Allan Hedin 
Manager, Safety Assessments, SKB 
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Summary 

This study presents an overview of various approaches for assigning probability 
distributions to input parameters and/or future states of performance assessment models. 
Specifically, three broad approaches are discussed for developing input distributions:  
(a) fitting continuous distributions to data, (b) subjective assessment of probabilities, 
and (c) Bayesian updating of prior knowledge based on new information. 

The report begins with a summary of the nature of data and distributions, followed  
by a discussion of several common theoretical parametric models for characterizing 
distributions. Next, various techniques are presented for fitting continuous distributions 
to data. These include probability plotting, method of moments, maximum likelihood 
estimation and nonlinear least squares analysis. The techniques are demonstrated using 
data from a recent performance assessment study for the Yucca Mountain project. 
Goodness of fit techniques are also discussed, followed by an overview of how 
distribution fitting is accomplished in commercial software packages.  

The issue of subjective assessment of probabilities is dealt with in terms of the 
maximum entropy distribution selection approach, as well as some common rules for 
codifying informal expert judgment. Formal expert elicitation protocols are discussed 
next, and are based primarily on the guidance provided by the US NRC.  

The Bayesian framework for updating prior distributions (beliefs) when new 
information becomes available is discussed. A simple numerical approach is  
presented for facilitating practical applications of the Bayes theorem. 

Finally, a systematic framework for assigning distributions is presented: (a) for the 
situation where enough data are available to define an empirical CDF or fit a parametric 
model to the data, and (b) to deal with the situation where only a limited amount of 
information is available. 
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1 Introduction 

1.1 Background 
One of the common approaches used for the treatment of uncertainty in the long-term 
performance assessment of geologic disposal systems is the probabilistic approach 
/Helton and Anderson, 1999/. In this methodology, uncertainties in model inputs 
(parameters) are propagated using statistical methods to produce corresponding 
uncertainties in model output (predictions). Uncertain future events and parameter 
values are described in a probabilistic framework, from which multiple realizations  
of future states and model inputs are sampled, and model outputs are computed. The 
spread in these model outcomes quantifies the uncertainty in the predicted behavior of 
the system. Benefits of such probabilistic modeling include obtaining the full range of 
possible outcomes (and their likelihoods) and analyzing the relationship between the 
uncertain inputs and outputs to provide insight into the most important parameters. 

The probabilistic framework is typically implemented using the Monte Carlo simulation 
technique /Morgan and Henrion, 1990/, which involves the following steps: 

• Select imprecisely known model input parameters and future states to be sampled. 

• Construct probability distribution functions for each of these parameters or states. 

• Generate a sample set by selecting a value from each distribution. 

• Calculate the model outcome for each sample set and aggregate results for all 
samples (equally likely parameter sets). 

• Analyze the relationship between the computed outcomes and the sampled inputs. 

This white paper focuses on the second step outlined above, namely construction of 
probability distribution functions for each of the uncertain parameters and/or future 
states to be sampled as part of the probabilistic calculations.  

 

 

1.2 Scope of study 
In the most recent performance assessment studies carried out by SKB, a simple 
approach was taken for the characterization of uncertain inputs /Lindgren and 
Lindstrom, 1999/. Probability distributions were only available for the near-field  
water fluxes and groundwater travel times. Most of the other required inputs were 
estimated with a reasonable and a pessimistic value and used as such in the 
deterministic calculations. For the probabilistic analyses, a probability of 0.9 was 
assigned to reasonable data and 0.1 to pessimistic data. Such a binary characterization 
of uncertainty was deemed to be commensurate with the level of available information. 
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As more and more information becomes available based on laboratory, field and/or 
modeling studies, it should be possible to develop more realistic characterizations of  
the various uncertain inputs to be used in subsequent probabilistic analyses. To this end, 
this study presents a systematic framework for assigning probability distributions to 
input parameters and/or future states of performance assessment models. Specifically, 
three broad approaches will be discussed for developing input distributions: (a) fitting 
continuous distributions to data, (b) subjective assessment of probabilities, and  
(c) Bayesian updating of prior knowledge based on new information. 

 

 

1.3 Organization of report 
The rest of the report is organized as follows.  

In section 2, the nature of data and distributions is discussed, and several theoretical 
parametric models for characterizing distributions are presented.  

Section 3 deals with various techniques for fitting continuous distributions to data and 
evaluating the goodness of fit.  

Subjective assessment of probabilities is the topic of section 4, where informal and 
formal procedures for codifying expert knowledge are discussed.  

Section 5 presents a Bayesian framework for updating prior distributions (beliefs) when 
new information becomes available.  

Finally, some guidance for distribution assignment is provided in section 6.  
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2 Data and distributions 

2.1 Data quality considerations 
For the purposes of this study, we define data as any information that helps quantify the 
range of values an uncertain parameter can take as well as the likelihood associated with 
each value. As such, several sources of data can be identified: 

• Site-specific measurements and/or project specific laboratory experiments that 
yield the parameter of interest (e.g. surface infiltration rate at a repository site).  

• Literature-derived measurements and/or experimental data for related natural 
and/or engineered systems (e.g. corrosion rates for stainless steel).  

• Results of numerical experiments used to simulate site-specific flow and transport 
conditions (e.g. groundwater travel time). 

Prior to accepting a data set for performance assessment studies, it should be thoroughly 
evaluated to ensure its accuracy, adequacy, appropriateness and representativeness 
/Thompson, 1999/. Some important considerations in this regard are discussed below. 

• Spatial sampling: Data should be collected over the appropriate spatial scales in a 
uniform manner. Care should also be taken to ensure that clustering of high and/or 
low values does not bias spatial averages or statistics.  

• Temporal sampling: Data should be collected to cover the appropriate temporal 
scales. Care should be taken to ensure that short-term samples are not used to infer 
long-term averages and vice versa. 

• Population characteristics: Data should be collected to cover the appropriate 
population-at-risk. For example, data from arid climates should not be used to 
model conditions in semi-tropical regions. 

• Parameter inter-dependency: Data should be collected to ensure that 
information about correlated variables is properly obtained. For example, 
reporting concentration data without spatial coordinates would reduce the  
worth of data. 

• Censoring: Often values below a detection limit are reported as less than that 
value, or are presented as interval data. Such truncation or averaging may detract 
from usefulness of the data. 

• Measurement and interpretation error: Although measurements errors  
are unavoidable, an attempt should be made to quantify them to evaluate the 
precision associated with observed values. Also, many parameters are inferred 
from observations via predictive models and could be subject to multiple errors.  

The main conclusions from this discussion are that data should not automatically  
be assumed to be fully representative and free from error. In many cases, detailed 
calculations yield results that do not make physical sense because of fundamental 
problems in the underlying data. It is therefore incumbent on the analyst to evaluate the 
appropriateness of the data prior to undertaking a statistical analysis for the purposes of 
distribution fitting. 
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2.2 Empirical distributions 
Distributions are a means of expressing uncertainty in data in terms of the range of 
possible values and their likelihood. Sampled data are generally represented empirically 
in terms of frequency plots (histograms) and/or cumulative probability (quantile) plots. 

Histogram 
The histogram is an empirical (sampled) form of the probability density function (PDF), 
which characterizes the theoretical frequency of occurrence corresponding to a given 
interval. It is constructed by first dividing the observed range into several intervals 
(bins) and plotting the frequency of occurrence in each interval.  

The number of bins used in histograms is usually a matter of trial-and-error. Common 
rules-of-thumb that have been proposed include:  

• For a sample size of N, the number of intervals k should be the smallest integer 
such that 2k ≥ N /Iman and Conover, 1983/.  

• A default value for the number of bins is {3.3log10(N)+1}, which is only a 
suggestion and is often exceeded /Venables and Ripley, 1997/.  

Because the shape of the histogram is strongly dependent on the number of intervals 
chosen, it is not a very robust graphical tool. As an example, consider the wind speed 
data used in the recent total system performance assessment for site recommendation  
for the Yucca Mountain project /Mattie and Miller, 2000/.  

Figure 2-1 shows the histograms corresponding to 5, 10, 25 and 50 bins generated from 
a sample size of 300. The bimodal character of the data (i.e. a high proportion of very 
low values) is only evident in histograms with 25 bins or higher. Both of the rules cited 
above suggest using 10 bins or lower. Thus, it is always useful for the analyst to 
experiment with multiple bin sizes until a robust indication of PDF shape is obtained.  
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Figure 2-1. Histograms showing sensitivity to bin size. 

 
 
Quantile plot 
The quantile plot is an empirical (sampled) form of the cumulative distribution function 
(CDF), which characterizes the probability that a random variable is smaller than some 
specified value.  

To construct a quantile plot, the data are first ranked in ascending order from the 
smallest (x1) to the largest (xN), where N is the number of samples. For each sorted 
value, xi, the quantile (cumulative frequency) is determined as qi = i/(N+1), and the 
quantile plot is generated by plotting qi versus xi. Percentiles are obtained by 
multiplying the quantile values by 100. The quantile plot is also referred to as  
an empirical CDF. 

Unlike the histogram, the quantile plot is a much more robust tool for visualizing the 
fraction of samples which fall below a given value. It is also useful for determining if a 
distribution is symmetric or skewed.  
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/D’Agostino and Stephens, 1986/ provide the following diagnostic rules for evaluating 
the symmetrical characteristics of a distribution: 

• A symmetric distribution is characterized by an S-shaped quantile plot, where the 
distance on the horizontal axis between the median (50th percentile) and any 
percentile P below the median is equal to the distance from the median to the 
(100-Pth percentile).  

• If the distribution has positive skewness, that portion of the quantile plot 
corresponding to q > 0.9 will usually be longer and flatter than the rest of the plot. 

• Conversely, distributions with negative skewness have a long flat portion on the 
quantile plot corresponding to q < 0.1. 

Examples of these characteristics are presented in Figure 2-2 using sampled data from 
the recent Yucca Mountain performance assessment study /Mattie and Miller, 2000/. 
The top panel shows the empirical CDF and histogram corresponding to a symmetric 
distribution, the middle panel shows a distribution with negative skewness, and the 
bottom panel shows a distribution with positive skewness. 

The generation of an empirical CDF, with the data presented “as is”, is often a first step 
taken to gain some insights about the appropriateness of fitting a parametric distribution 
to the data. Empirical CDFs can be directly used in most sampling-based uncertainty 
propagation codes which implement the Monte Carlo simulation methodology. In fact, 
many risk practitioners prefer the use of empirical CDFs because of the limited number 
of assumptions needed to ensure representativeness.  

However, a major limitation with this approach stems from the fact that the empirical 
CDF is restricted to the observed upper and lower bounds of the data. If the number of 
empirical observations is small to begin with, then the likelihood of inadequate 
sampling from the tails can be unacceptably high. 
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Figure 2-2. Characteristic shapes of quantile plots and the corresponding histograms. 
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2.3 Parametric models 
Parametric models of probability distributions are useful for several reasons:  

• They provide a compact mathematical construct for summarizing empirical data.  

• They allow extrapolation of data beyond the observed minimum and maximum 
values, as well as interpolation between sampled data points. 

• They enable the statistical representation of uncertain quantities based on purely 
mechanistic considerations.  

• They facilitate the Bayesian updating of distributions based on prior information. 

Some of the common parametric models useful for performance assessment applications 
are described below. Here f(x) denotes the PDF, F(x) denotes the CDF, µ denotes the 
mean and σ denotes the standard deviation for the theoretical distribution assigned to  
the random variable of interest, x.  

This discussion is based on standard references dealing with statistical applications in 
engineering and science /e.g. Ang and Tang, 1975; Benjamin and Cornell, 1970; Cullen 
and Frey, 1999; Hahn and Shapiro, 1967; Harr, 1987; Morgan and Henrion, 1990/. 
Also, topical examples are drawn from the recent total system performance assessment 
for site recommendation for the Yucca Mountain project /Mattie and Miller, 2000/. 

Uniform distribution 
The uniform distribution is useful as a rough model for representing low states of 
knowledge when only the upper and lower bounds are known. All possible values 
within the specified maximum and minimum values are equally likely. 

PDF: bxa
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xf ≤≤
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)( 2
2 abba −=σ+=µ  (3) 

Examples: number of farms in biosphere, log of flow focusing factor. 

The log-uniform distribution is a variation of the uniform, where the inputs cover a 
large range (e.g. multiple orders of magnitude) but nothing else is known about the 
shape of the underlying distribution. If x is such an uncertain quantity of interest, then 
log(x) is taken to be uniformly distributed. 

In general, uniform (and log-uniform) distributions are appropriate for uncertain 
quantities where the range can be established based on physical arguments, expert 
knowledge or historical data – but not much else is known about the relative likelihood 
of values within this range (e.g. solubilities).  

 



 17 

Triangular distribution 
The triangular distribution can be used as an improvement over the uniform distribution 
for modeling situations where non-extremal (central) values are more likely than the 
upper or lower bounds. It is useful as a rough model when minimum, maximum and 
most likely values are known – typically on the basis of subjective judgment. 
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 where c = maximum, a = minimum and b = mode (most likely value). 
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Examples: initial cladding failure %, log of mean ash particle diameter. 

Depending on the location of the modal value, triangular distributions can be symmetric 
or asymmetric. When uncertainties are large and asymmetric, and/or the range between 
the minimum and maximum spans several orders of magnitude, a log-triangular 
distribution may be more appropriate.  

In general, triangular (and log-triangular) distributions are appropriate for uncertain 
quantities where a most likely value can be established in addition to the range of 
possible values – but not much is known about the shape of the distribution.  

Normal distribution 
The normal distribution is the commonly used “bell curve” for modeling unbiased 
uncertainties and random errors of the additive kind. It is useful for modeling symmetric 
distributions of many natural processes and phenomena. A commonly cited rationale for 
assuming a normal distribution is the central limit theorem, which states that the sum of 
independent observations asymptotically approaches a normal distribution regardless of 
the shape of the underlying distribution(s). 
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 where µ = mean and σ = standard deviation. 

CDF: F(x) has no closed form solution, but it can be expressed in terms 
 of the standard normal CDF, G(·), tabulated in many statistics texts and 
 available as the intrinsic function NORMSINV in Microsoft Excel: 
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Moments: Same as parameters of the distribution. 

Examples: effective porosity of valley-fill aquifer. 

In general, the normal distribution is appropriate for uncertain quantities that represent 
storage-type parameters (e.g. porosity) or physiological characteristics (e.g. height of 
human beings). It is also useful for characterizing random measurement errors 
associated physical quantities. 

The normal distribution is often used as a “default” distribution for representing 
uncertainties. Because the distribution is theoretically unbounded, care should be  
taken to ensure that the standard deviation is not so large as to result in negative  
(non-physical) sampled values at the lower tail. 

Log-normal distribution 
The log-normal distribution is widely used for representing skewed, non-negative, 
physical quantities. It is useful as an asymmetrical model for multiplicative independent 
uncertainties. As with the normal distribution, the often-used rationale for assuming a 
log-normal distribution is based on the central limit theorem, which states that the 
product of independent observations asymptotically approaches a log-normal 
distribution – regardless of the shape of the underlying distribution(s). 
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 where α = mean of ln(x) and β = standard deviation of ln(x). 

CDF: F(x) has no closed form solution, but it can be expressed in terms 
of the standard normal CDF, G(·), tabulated in many statistics texts and 
available as the intrinsic function NORMSDIST in Microsoft Excel: 
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Examples: Neptunium-237 biosphere dose conversion factor (BDCF). 

Note that the geometric mean, or median, is given by eα, while the quantity eβ is 
referred to as the geometric standard deviation. 

The log-normal distribution has been found to be appropriate for representing the 
uncertainty in macroscopic transport coefficients (e.g. permeability, diffusivity). It is 
also useful for characterizing the uncertainty in BDCFs, which represent the combined 
effects of such quantities as intake rates, exposure duration, and body weight in 
converting concentration to dose. 

Poisson distribution 
When events occur as a purely random (Poisson) process, the number of independent 
events occurring within a fixed time interval follows a Poisson distribution. The number 
of events is discrete and constrained to non-negative integers. 
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Examples: Number of early failed waste packages. 

If N is the total number of waste packages, and p the frequency of early failure, then the 
package failure rate is α = Np. In practice, the event is called a rare event if N > 50 and 
Np < 5. The probability associated with the failure of 0, 1, 2, … packages can be readily 
evaluated if α is known (given the total number of packages and some analysis to 
estimate the frequency of early failure). 

Weibull distribution 
The Weibull distribution is commonly used to represent indicators of how a process  
is performing such as completion time or time-to-failure. Because of its flexibility to 
assume negatively skewed, symmetric or positively skewed shapes, it can also be used 
to represent many non-negative physical quantities. 
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 where β = scale parameter and α = shape parameter. 
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Examples: Alloy-22 corrosion rate. 

In this case, the Weibull distribution provides a flexible framework for fitting the 
corrosion rate data which is then input to a more detailed mechanistic model of package 
failure. Equation (16) can also be used to represent the cumulative number of packages 
that have failed up to a given time, with β being the mean container life time and α 
being the failure rate at the mean life time.  

Beta distribution 
The beta distribution is a very flexible model for describing random proportions, as  
well as for characterizing uncertainty over a fixed range (i.e. with finite upper and lower 
bounds). It can take both symmetric and skewed shapes within the prescribed interval. 
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CDF: F(x) has no closed form solution, but can be expressed using the 
 intrinsic function BETADIST in Microsoft Excel. 
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Examples: Neptunium Kd in the saturated zone. 

In this case, the beta distribution provides a flexible framework for characterizing the 
Neptunium Kd data. From mechanistic considerations, the beta distribution has also 
been recommended for fractional uncertain quantities (random proportions) such as the 
fraction of time individuals spend in various activities, partitioning of hazardous air 
pollutants in a power plant, etc /Cullen and Frey, 1999/. 

Equation (18) characterizes a beta distribution with 0 and 1 as its lower and upper 
limits. It can be generalized for the case of arbitrary lower and upper bounds, denoted 
by a and b, as follows. Let X be a beta variable between 0 and 1, and Y be a beta 
variable between a and b. Then, the CDF and PDF of Y can be expressed in terms  
of the CDF and PDF of X by noting that: 

Y = a + (b-a) X (20) 
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These are the most commonly used distributions in probabilistic performance 
assessment studies. For a discussion of other theoretical parametric models, the  
reader is referred to any of the statistical texts cited at the beginning of this section.  
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2.4 Uncertainty and variability 

Two important concepts are commonly encountered in the context of probabilistic 
modeling, i.e. uncertainty and variability. Uncertainty, also referred to as epistemic or 
subjective uncertainty, arises from lack of knowledge. Variability, also referred to as 
aleatory or stochastic uncertainty, arises due to natural randomness or heterogeneity. 

Both uncertainty and variability may be quantified using probability distributions. 
However, the interpretation of the distributions differs in the two cases. The 
International Atomic Energy Agency /IAEA, 1989/ interprets distributions of  
variable quantities as representing the relative frequency of values from a specified 
interval – and distributions of uncertain quantities as representing the degree of belief 
that a known value is within a specified interval. Note that uncertainty can arise due to 
expert judgment for a quantity for which little data exists, as well as due to random 
sampling and measurement error. 

/Morgan and Henrion, 1990/ suggest that variability is described by frequency 
distributions, and that uncertainty is described by probability distributions. The 
implication is that variability can be characterized via empirical distributions on the 
basis of data (and may subsequently be fitted to theoretical probability distributions). 
On the other hand, uncertainty is to be characterized on the basis of limited data and 
subjective judgment using theoretical probability distributions. 

Uncertainty assessments in which input distributions commingle both variability and 
uncertainty yield a distribution of exposures applicable to a randomly selected 
individual. In this case, the assessment end point is the true but unknown distribution  
of doses among individuals in a population in which the individuals are selected from 
the population at random. This is also the approach to be taken if the mean dose for the 
population is to be evaluated for compliance demonstration. 

If the primary objective of the analysis is an assessment of exposure to specific 
subpopulations (e.g. those in the upper percentiles of exposure), it may be necessary  
to separate uncertainty and variability. The model output in this case would be two-
dimensional in nature (i.e. a family of dose versus exceedance probability curves),  
with the result being an uncertain estimate of the frequency distribution for variability  
in exposures to different members of the population. Thus, for any percentile of the 
population, there is some uncertainty about the actual exposure level. Conversely, at  
any selected exposure level, there is uncertainty about what fraction of the population  
is at or below this level.  

/Frey and Burmaster, 1999/ describe a framework for characterizing uncertainty  
and variability on the basis of limited data. /Cullen and Frey, 1999/ discuss the use of 
multidimensional probabilistic analyses for propagating the effects of uncertainty and 
variability in order to produce uncertainty distributions for specific subpopulations. 
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3 Fitting continuous distributions 

3.1 Issues in selecting a distribution 
Although an infinite number of theoretical distributions can be used to fit an empirical 
data set, only a handful of distributions are considered in practice. The key features of 
these distributions are described in the following table. 

Distribution Useful for representing 

Uniform (log-uniform) 
Triangular (log-triangular) 

Low state of knowledge and/or 
subjective judgment 

Normal Errors due to additive processes 

Log-normal Errors due to multiplicative processes 

Weibull Component failure rates 

Poisson Frequency of rare events 

Beta Bounded, unimodal, random variables 

The rationale for choosing a particular parametric model is often hard to find in 
performance assessment studies. In many cases, the choice is simply based on the 
subjective judgment of the analyst. In other cases, the distribution that provides the 
“best fit” to the data is chosen from a handful of candidate distributions – typically 
without any consideration of the mechanistic bases. Flexible distributions such as  
the Weibull and beta distributions have also been popular choices to “fit” the data. 
Unfortunately, a framework for distribution selection does not appear to have been 
described and/or utilized in the performance assessment literature. 

To that end, this section seeks to provide a systematic approach for the distribution 
selection problem. As a starting point, consider the following list of questions developed 
by the /US EPA, 1997/ in the context of probabilistic health risk assessment:  

• Is there any mechanistic basis for choosing a distribution family? 

• Is the shape of the distribution likely to be dictated by physical or biological 
properties or other mechanisms? 

• Is the variable discrete or continuous? 

• What are the bounds of the variable? 

• Is the distribution skewed or symmetric? 

• If the distribution is thought to be skewed, in which direction? 

• What other aspects of the shape of the distribution are known? 

• How well do the tails of the distribution represent the observations? 

Whenever possible, the choice of a distribution should be dictated by mechanistic 
considerations. However, many variables used in performance assessment models  
are derived quantities (i.e. results of intermediate calculations). As such, inferring  
an underlying parametric distribution from first principles becomes a difficult task.  
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In these situations, a graphical analysis of the data using special probability plots can 
help identify candidate distributions (or at least eliminate inappropriate parametric 
models). Once a distribution has been selected, its parameters can then be estimated 
using one of several techniques discussed below. Also, statistical goodness-of-fit tests 
can be applied to further refine and/or validate the choice of distributions.  

This sequence of: (a) hypothesizing a family of distributions, (b) estimating distribution 
parameters, and (c) assessing quality of fit of parameters is described in detail in the 
following sections. Illustrative examples are also provided for some of the more 
commonly used distributions.  

 

 

3.2 Probability plots 
Probability plots are useful for comparing the data to postulated distributions. The 
observations are plotted, generally after some transformation, so that they would  
fall approximately on a straight line if the assumed parametric model was the “true” 
distribution from which the observations were sampled. Given that deviations from a 
straight line can be readily identified, probability plotting provides a straightforward 
visual screening tool for distribution selection /D’Agostino and Stephens, 1986/. 

A visual examination of the probability plot will often help in determining whether  
the postulated distribution is appropriate or not. The analyst should also apply his or  
her knowledge of the process/parameter to verify that the agreement between the 
observations and the theoretical distribution is acceptable in key data regimes (e.g. 
high/low values). In mentally weighting different portions of the data differently, the 
analyst should be aware of deviations from the straight line which commonly occur at 
the tails due to the finite size of samples. Finally, the conclusions from a subjective 
assessment of the visualization of fit should be either: (a) the postulated model is 
adequate, (b) the model is questionable, or (c) the model is inadequate.  

The starting point in probability plotting is an empirical CDF or quantile plot, where  
the quantiles (cumulative frequency) of the empirical distribution are plotted against the 
corresponding observations. Two common choices for defining the quantile, q, are the 
Weibull plotting position: 
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and the Hazen plotting position: 
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where i is the rank of the observation (sorted from smallest to largest) and N is the 
number of observations. Both of these approaches ensure that the minimum and 
maximum values of the sample are not assigned cumulative probabilities of 0 and 1, 
respectively. Other plotting positions may be derived from the general expression: 
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with 0 ≤ a ≤ 1 /D’Agostino and Stephens, 1986/. Although specific values of a have 
been recommended as optimal for different distributions, the most commonly used 
values correspond to a = 0 (Equation 22) and a = 0.5 (Equation 23). 

A probability plot is a graph of the ranked observation, xi, versus an approximation of 
the expected value of the inverse CDF, F–1(qi). The relationships needed to construct 
probability plots for some of the common distributions are discussed below. 

Normal distribution 
For the normal distribution, recall that the CDF, F(x), has no closed form solution, and 
is expressed in terms of the standard normal CDF, G(·): 
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where z = (x – µ) / σ is the standard normal variate (also known as the z-score). This 
equation can be re-written as: 
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where the quantile, q, is used as an approximation of the cumulative probability, F. 
Rearranging, we obtain the following expression for a normal probability plot:  

 ( )qGx 1−σ+µ=  (27) 

which suggests that a graph of x versus G–1(q), or z, should yield a straight line if the 
observed data follow a normal distribution. The straight line is characterized by a slope 
equal to the standard deviation, σ, and intercept equal to the mean, µ. Note that the 
inverse normal CDF, or the z-score, can be readily calculated using the intrinsic 
Microsoft Excel function, NORMSINV. Also, the quantile can be estimated from  
the ranks of the data using Equation (22) or Equation (23).  

Log-normal distribution 
For a log-normal distribution, we define the standard normal variate as: 

 { } ( )qGxFG
x

z 11 )(
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where α = mean and β = standard deviation of ln(x). Re-arranging, we get: 

 ( )qGx 1)ln( −β+α=  (29) 

Thus, a graph of ln(x) versus G–1(q), or z, should yield a straight line if the observed 
data follow a log-normal distribution. The straight line is characterized by a slope equal 
to the standard deviation, β, and an intercept equal to the mean, α, of the transformed 
variable ln(x). Note that the arithmetic mean and the arithmetic standard deviation can 
be readily obtained using Equation (11). 

Weibull distribution 
For the Weibull distribution, re-arrangement of the CDF given in Equation (16) leads to: 

 ( ){ } )ln()ln()1/(1lnln βα−α=− xq  (30) 
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where the quantile, q, has been used to approximate the cumulative probability, F. Thus, 
a graph of ln(ln(1/(1–q))) versus ln(x) will produce a straight line if the observations are 
drawn from a Weibull distribution. The slope of the straight line is equal to the shape 
parameter, α. The scale parameter can be calculated from the slope and intercept as  
β = exp(-intercept/slope). 

 

 

3.3 Parameter estimation techniques 
Once a candidate distribution has been selected for a data set, the parameters of the 
postulated theoretical distribution can be obtained in a variety of ways. The easiest 
approach (whenever possible) is to use linear regression in conjunction with probability 
plots. Additional techniques include the method of moments, maximum likelihood 
estimation or nonlinear least-squares analysis – as described below. In the next section, 
these techniques are demonstrated for various common probability distribution models 
using data from recent performance assessment studies carried out in the Yucca 
Mountain project. 

Linear regression analysis 
In the previous section, transformations were described for linearizing the relationship 
between observed (sampled) values and the corresponding quantiles of the postulated 
distribution. The slope and intercept of the resulting straight line in a probability plot 
was seen to be related to the parameters of the underlying distribution. These 
relationships are summarized in the following table. 

Distribution Y-axis X-axis Slope Intercept 

Normal (µ, σ) ln(x) G–1(q) σ µ 

Log-normal (α, β) ln(x) G–1(q) β α 

Weibull (α, β) Ln(ln(1/(1–q))) ln(x) α –α  ln(β) 

 

Note that in this approach, the estimated parameters are derived from an analysis  
based on a transformation of the parametric distribution to a linear form. Therefore, 
these parameters may not produce the most optimal fit to the distribution when 
transformed back to the original scale. Although more advanced techniques such as 
maximum likelihood estimation and nonlinear least squares analysis can be used to 
improve such estimates, they should provide a good first approximation, especially  
if the probability plot produces a good fit. 

Method of moments 
In the method of moments approach, the parameters of a probability distribution model 
are estimated by matching the moments of the data set with that of the candidate model. 
The number of moments required corresponds to the number of unknown model 
parameters. Application of this method is straightforward, as closed form expressions 
for the moments can be readily derived for most common distributions. However, the 
raw moments may be biased due to the presence of outliers, and/or lack of perfect 
agreement between the data and the model. 
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Equations relating the theoretical first two moments (i.e. mean and variance) to 
distributional parameters are presented in Section 2.3. These provide the basis for 
estimating the parameters of the distribution from the sample moments (identified by 
the “hat” symbol) which are computed as follows: 
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Method of moment estimators for some of the common distributions are: 

Poisson: µ=α ˆ  (32) 

Normal: σ=σµ=µ ˆ;ˆ  (33) 

Log-normal: 
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Maximum likelihood estimation 
In the maximum likelihood estimation approach, a likelihood function is defined and the 
model parameters adjusted such that the corresponding likelihood of obtaining the 
observed data set is maximized.  

As an example, consider the case of the normal distribution. The PDF for a normally 
distributed variable was given earlier in Equation (7), from which the likelihood 
function for a single, randomly drawn sample, xi, is inferred as: 
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The likelihood function for drawing N-independent random samples is: 
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It is often more convenient to work with the log-likelihood, J, which can be expressed 
as a function of the two model parameters, µ and σ, as follows: 
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The values of µ and σ which maximize the log-likelihood, J, are called the maximum 
likelihood estimates of the model parameters. This requires a nonlinear optimization 
algorithm, such as the SOLVER routine in Microsoft Excel. 
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/Frey and Burmaster, 1999/ provide examples of maximum likelihood parameter 
estimation for log-normal and beta distributions. In general, they note that maximum 
likelihood estimates do not always preserve the moments of the sample data. 

Nonlinear least-squares analysis 
A more flexible approach involves the use of nonlinear least-squares analysis, where the 
goal is to estimate model parameters such that the mean squared difference between the 
observed and predicted CDF is minimized. This process can be readily implemented 
using the nonlinear optimization package SOLVER in Microsoft Excel. 

1. Setup the data in a 2-column format, with the dependent variable being the 
observed quantile, qi, and the independent variable, being the observed value, xi.  

2. Compute the sample moments, µ̂  and σ) . 

3. Estimate the parameters of the postulated model from the sample moments using 
Equation 32–35. These will be used as initial guesses for the nonlinear regression. 

4. Calculate the theoretical cumulative probability, Fi, using the appropriate form of 
the postulated parametric model as given in Section 2.3 and estimates of model 
parameters obtained from step 3. 

5. Compute the difference between Fi and qi. 

6. Setup SOLVER to minimize the sum of the squares of the differences in step 5, by 
adjusting the parameters estimated in step 3. 

 

 

3.4 Example – log-normal distribution 
/Kuzio, 1999/ describes how observations on flowing interval spacing and fracture 
orientation were combined to correct for flowing intervals measured normal to the 
borehole. The observed distributions for flowing interval spacing, Fsm, and dip, Df, were 
discretized into 10-point CDFs, and then sampled 1000 times to obtain a distribution for 
the corrected flowing interval spacing, Fsmc, using the relationship Fsmc = Fsm cos(Df). 
These values were log-transformed and fit to a normal distribution, yielding a mean of 
2.97 and a standard deviation of 0.99 for ln(Fsmc).  

The calculation was repeated using the Monte Carlo simulation toolbox Crystal Ball  
to extract 1000 values of the corrected flowing interval spacing, Fsmc. A log-normal 
distribution was first fit to the data using the probability plotting method. This requires 
plotting the natural logarithm of Fsmc against the inverse of the standard normal CDF,  
G–1(q), where q is the quantile. As shown in Figure 3-1, a very good fit was obtained 
except at the extreme tails, with an R2 value approximately equal to 1. The log-normal 
parameters are calculated from the slope and intercept of the best-fit line on the 
probability plot as α = 2.979 and β = 0.9885.  

Next, these parameters are obtained using nonlinear least-squares analysis, which 
requires minimizing the sum of the squared differences between the observed and  
the predicted quantiles corresponding to each observed value. The Excel function 
NORMSDIST was used to generate the standard normal CDF necessary for estimating 
the cumulative probability. The corresponding best fit parameters, obtained using the 
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SOLVER toolbox in Excel, are α = 2.956 and β = 0.9881, which agree very well with 
those estimated using the probability plotting method. Figure 3-2 compares the observed 
CDF with the predictions using regression parameters. 

The method of moments can also be used to estimate the log-normal parameters as  
per Equation (34). The sample mean and standard deviation are found to be 32.52 and 
41.78 respectively, which gives α = 2.995 and β = 0.9863. These values are consistent 
with those obtained from probability plotting and nonlinear least squares analysis. 

Note that the procedure followed here for fitting a log-normal distribution can be 
applied for fitting a normal distribution with only minor modifications, as follows: 
(a) use x instead of ln(x) in constructing the probability plot and estimating the 
theoretical CDF, (b) compute the distribution parameters directly from the sample 
moments via Equation (33). 
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Figure 3-1. Example probability plot for log-normal distribution. 
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Figure 3-2. Comparison of observed and fitted CDF for example log-normal problem. 
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3.5 Example – Weibull distribution 
/Farmer et al, 2000/ describe general corrosion rate data obtained after two years of 
observation at the Long Term Corrosion Test Facility of Lawrence Livermore National 
Laboratory on Alloy-22. The data include 6-, 12- and 24-month exposures with negative 
rates excluded.  

Here, a Weibull distribution was first fit to the data using the probability plotting 
method. As shown in Figure 3-3, a very good fit is obtained (with the possible exception 
of the last data point) with an R2 value very near unity. The Weibull parameters are 
calculated from the slope and intercept of the best-fit line on the probability plot as  
α = 0.9747 and β = 40.79.  

Next, the Weibull parameters were obtained using nonlinear least squares analysis.  
The corresponding best fit parameters are obtained as α = 0.9830 and β = 38.94, which 
agree very well with those estimated using the probability plotting method. Figure 3-4 
compares the observed CDF with the predictions using regression parameters. 
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Figure 3-3. Example probability plot for Weibull distribution. 
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Figure 3-4. Comparison of observed and fitted CDF for example Weibull problem. 
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3.6 Example – beta distribution 
/Sauer, 2000/ describes the distribution used to characterize the number of waste 
packages intersected when magma enters a drift. Although this distribution was  
sampled directly as an empirical CDF in /Mattie and Miller, 2000/, it is fitted to a  
beta distribution here to demonstrate the flexibility of the beta parametric model. 

The data were first normalized to convert the number of waste packages to a fraction, 
such that the values are bounded between 0 and 1. The frequency corresponding to each 
observed value was estimated from the cumulative probability. The sample mean and 
standard deviation are computed as 0.2212 and 0.1859 respectively. Then, using the 
method of moment estimators as given in Equation (35), the beta distribution 
parameters are obtained as α = 0.9305 and β = 3.274.  

These values were then used as initial guesses for a nonlinear least squares analysis, 
which requires minimizing the sum of the squared differences between the observed  
and the predicted quantiles corresponding to each observed value. The Excel function 
BETADIST was used to generate the cumulative beta distribution necessary for 
estimating the cumulative probability. The corresponding best fit parameters,  
obtained using the SOLVER toolbox in Excel, are α = 1.110 and β = 4.358.  

Figure 3-5 compares the observed CDF with the predictions using regression 
parameters. The divergence between the two parameter sets can be ascribed to the  
lack of a perfect fit between the observed data and the theoretical CDF.  
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Figure 3-5. Comparison of observed and fitted CDF for example beta problem. 
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3.7 Goodness-of-fit tests 
Several measures of goodness-of-fit between the data and a postulated distribution have 
so far been considered. These include: (a) visual evaluation of linearity in a probability 
plot, (b) R2 value from a linear fit of the probability plot, and (c) R2 value derived from 
the objective function of a nonlinear least-squares analysis. Such measures are often 
supplemented by statistical goodness-of-fit tests, where the analyst seeks to reject (to a 
certain required level of significance) the null hypothesis that the data set is drawn from 
the postulated distribution. Note that accepting the null hypothesis only indicates that 
the data set is consistent with the proposed distribution. 

Commonly used goodness-of-fit tests include: (a) the chi-square test for binned data, 
and (b) the Kolmogorov-Smirnov test for continuous data /D’Agostino and Stephens, 
1986/. Key features of these two approaches are briefly described below. 

Chi-square test 
This is the oldest and most commonly used goodness-of-fit tests. In this test, the data 
are discretized into bins of equal probability and the number of observations within each 
bin is compared to the number of expected data points.  

Typically, the test requires at least 25 data points and these must be binned in groups of 
at least five points each. If Ni is the number of samples observed in the i-th bin, and ni is 
the number expected according to some known distribution, then the chi-square statistic 
is given by: 
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This statistic is compared with tabulated values of the chi-square distribution for a 
specified confidence level with (k–r–1) degrees of freedom, where r is the number of 
parameters estimated for the postulated distribution. As the value of χ2 increases, the 
null hypothesis becomes less likely. Specifically, if χ2 is larger than the tabulated value 
of the distribution for the chosen level of significance and the appropriate degrees of 
freedom, then the null hypothesis is rejected. 

Problems with the chi-square test stem from its sensitivity to the number of bins and the 
significance level for rejecting the null hypothesis. /Thompson, 1999/ summarizes some 
of the suggested remedies to improve the robustness of the test results. 

Kolmogorov-Smirnov test 
The Kolmogorov-Smirnov test involves a comparison between a stepwise empirical 
CDF and the theoretical CDF of the postulated distribution. The metric used for 
hypothesis testing is the maximum value of the absolute difference between the 
observed CDF, SN(x), and the postulated CDF, F(x): 

 )()(max xFxSD N
x

−=  (40) 

SN(x) is calculated as required for the quantile plot, with the difference being that the 
cumulative probability is set equal to i/N where i is the rank-order of the observations 
and N is the total number of samples. 
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The null hypothesis is tested by comparing the value of D with the tabulated value of 
the test statistic for the selected level of significance and the number of samples. For a 
significance level of 0.05, the critical D value can be estimated as 1.36/√N for a sample 
size greater than 50. 

The Kolmogorov-Smirnov test tends to be most sensitive around the median and less 
sensitive at the extreme ends of the distribution. If a better fit is desired at the tails of the 
distribution rather than at the mid-range, an alternative goodness-of-fit test is the 
Anderson-Darling test, with the following test statistic: 
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In general, all goodness-of-fit tests require some subjectivity – especially in choosing 
the level of significance. As such, it is not appropriate to use them in an automated 
manner for selecting a distribution which provides the “best” fit to the data. Rather, the 
approach should be to use goodness-of-fit tests in conjunction with probability plots and 
an understanding of the underlying mechanisms (governing the uncertain quantity of 
interest) to evaluate the adequacy of the postulated distribution(s). 

 

 

3.8 Distribution fitting with commercial software packages 
Commercial packages for Monte Carlo simulation often contain utilities for fitting 
parametric distribution models to observations. As an example, consider the spreadsheet 
add-in product Crystal Ball (www.decisioneering.com), which is a graphically oriented 
risk analysis program.  

The distribution fitting option in Crystal Ball uses the maximum likelihood method to 
fit the data against one or more distributions and estimate the resulting distribution 
parameters. The quality of each fit is described using the chi-square test, the 
Kolmogorov-Smirnov test or the Anderson-Darling test. The distribution with the 
highest ranking fit is chosen to represent the data in subsequent simulations. 

Figure 3-6 shows an output from the distribution fitting option of Crystal Ball, where a 
normal distribution has been fitted to an arbitrary data set. The fitted distribution is 
overlain on the histogram to facilitate a visual comparison of the goodness-of-fit. The 
output panel shows the maximum likelihood parameter estimates, as well as goodness 
of fit statistics using the chi-square test, the Kolmogorov-Smirnov test and the 
Anderson-Darling test.  

The program also allows multiple distributions to be fit to the data (which can be 
examined using the “Next Distribution” button). The analyst can then select the 
distribution that yields the highest value for the goodness-of-fit statistic of choice. 
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Figure 3-6. Distribution fitting output from Crystal Ball. 

 

 

3.9 Does the choice of distributions matter? 
A common concern in Monte Carlo analysis is the effect of distribution choice for 
uncertain parameters on the outcome of the analysis. /Hoffman, 1996/ presented a study 
of the sensitivity of model outcomes to distribution shape for a variety of model 
structures and distributions. His conclusions can be summarized as follows: 

• As long as the uncertainty of a given parameter is small (CV ≤ 30%), it makes 
very little difference which distribution is chosen. 

• As the coefficient of variation approaches and exceeds 30%, the use of 
distributions of log-transformed values is recommended. 

• Choice of distribution shape will be important if we are interested in extreme 
values. 

A rigorous analysis of the sensitivity of probabilistic model results to distribution shape 
requires multiple Monte Carlo runs, each carried out with a different probability 
distribution for the parameter of interest. This is often impractical. 

An alternative computational scheme without recourse to additional simulations has 
been proposed for this purpose /Iman, 1980/. The method involves a mapping of the 
original sampled values onto the space of the new distribution to compute a modified  
set of weights, which are then used for re-weighting the computed outcomes. 
/RamaRao et al, 2001/ describe an application of this procedure and note good 
agreement between the proposed re-weighting scheme and re-simulation results. 
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4 Subjective assessment of probabilities 

4.1 Maximum entropy distribution selection 
Although it is desirable to generate probability distributions for uncertain parameters on 
the basis of observed and/or simulated data, reality does not always cooperate with the 
analyst in this regard. Distributions are therefore routinely inferred on the basis of only 
a limited amount of information and are also subject to rather ad-hoc assumptions. As 
an alternative, the principle of maximum entropy offers a systematic approach to 
distribution selection under such conditions. 

It is well known that the concept of thermodynamic entropy is related to the degree of 
disorder. Similarly, the concept of “information” entropy may be used to characterize 
the uncertainty of probability states, viz: 

)ln( i
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where H is the Shannon entropy (so named after its original proponent), and pi is the 
probability associated with the i-th sample. It is easily shown that the maximum entropy 
corresponds to a uniform distribution (where all samples are equally likely). Any other 
distribution would have a concentration of probability away from the extreme values, 
leading to a reduction of uncertainty and hence a reduction of entropy. 

The principle of maximum entropy seeks to choose a PDF which maximizes the 
entropy, subject to known constraints. Uncertainty is reduced as much as possible  
by using all information (i.e. satisfying all constraints), but no further by unnecessary 
assumptions. This ensures that ignorance is preserved and one is maximally uncertain 
with respect to the unknown information. 

/Harr, 1987/ discusses how the maximum entropy principle can help assign probability 
distributions on the basis of known constraints, as per the following table. 

Constraint Assigned PDF 

Upper bound, lower bound Uniform 

Minimum, maximum, mode Triangular 

Mean, standard deviation Normal 

Range, mean, std. Dev. Beta 

Mean occurrence rate Poisson 

 

As an example, consider the situation when only the lower and upper bounds for an 
uncertain parameter are known. The principle of maximum entropy would indicate a 
uniform distribution. One could opt for a triangular distribution, where the mode is 
taken as the mid-point of the range. However, that would be tantamount to making 
assumptions not supported by the data. Thus, the entropy-based distribution selection 
framework forces the analyst to be maximally uncertain about the data.  
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4.2 Generation of subjective probability distributions 
Another common strategy employed in the absence of data is to ask subject matter 
experts to develop distributions representing their degree of belief regarding the 
uncertain quantity of interest. It is generally recommended /Ang and Tang, 1975; 
Helton, 1993/ that distributions are best developed by specifying selected percentile 
values, rather than trying to specify a particular parametric distribution model  
(e.g. normal) and its associated parameters (e.g. mean, standard deviation). 

For example, one starts by specifying the minimum, the maximum and the median 
values – which correspond to the 0th, 100th and 50th percentiles. The distribution is 
refined by adding intermediate percentiles such as the 10th and 90th, the 25th and 75th, 
etc. Plotting the empirical CDF also helps in deciding whether the selected values at 
given percentiles need to be adjusted, and/or additional percentiles need to be added. In 
general, it is easier for experts to defend the choice of values corresponding to selected 
percentiles than the choice of parameters characterizing a parametric distribution model. 

An example of such a subjective distribution is that elicited for the Neptunium Kd for 
the alluvial deposits of the saturated zone at Yucca Mountain. The expert was Dr. 
Donald Langmuir, a member of the saturated zone expert elicitation panel for the total 
system performance assessment in support of viability assessment /US DOE, 1998/. 
Taking into account available data as well as the uncertainty in the mineralogy, Dr. 
Langmuir proposed the following CDF. 

Kd (mL/g) Percentile of CDF 

1000 100% 

100 95% 

40 50% 

10 10% 

1 0% 

 
When many uncertain quantities are candidates for subjective probability distributions, 
it is not worthwhile spending limited resources to develop such distributions for each 
and every parameter. /Helton, 1993/ suggests a two-step procedure, wherein all 
variables are first crudely characterized as uniform (or log-uniform, depending on the 
range) distributions for a screening-level analysis. Model results are analyzed to identify 
the most important contributors to output uncertainty. Resources can then be focused on 
this subset of parameters for a more detailed characterization of uncertainty prior to the 
second-level analysis. Simplified performance assessment models /e.g. Hedin, 2002/ are 
ideal for such screening calculations. 
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4.3 Formal expert elicitation protocols 
In the previous section, a methodology for informally codifying expert judgment 
(without structured efforts to control biases) was presented. However, in matters 
important to the demonstration of compliance, the application of formal expert 
elicitation should be considered whenever one or more of the following conditions  
exist /Kotra et al, 1996/: 

• Empirical data are not reasonably obtainable, and/or the analyses are not practical 
to perform because of time or cost constraints. 

• Uncertainties are large and significant to the demonstration of compliance. 

• More than one conceptual model can explain, or be consistent with, available data. 

• Technical judgments are required to assess whether bounding assumptions or 
calculations are appropriately conservative. 

Formal protocols for expert elicitation have been developed in the field of decision 
analysis /Morgan and Henrion, 1990/, and have also been applied extensively to 
quantify the uncertainty in risk associated with nuclear power generation /Hora and 
Iman, 1989; NCRP, 1996/. In addition, the US DOE has recently developed guidance 
for the formal use of expert judgment by the Yucca Mountain Project /US DOE, 1995/, 
and the US NRC staff has issued a branch technical position on the use of expert 
elicitation in the high-level waste program /Kotra et al, 1996/. 

The main motivation for using a consistent and systematic procedure during formal 
elicitation of expert judgment is to ensure that the results obtained accurately reflect 
what is known (as well as what is not known) about the topic in question. The necessary 
components in an expert elicitation process can be described as follows /Kotra et al, 
1996/. 

Step No. 1 – Definition of objectives 
The objectives of the elicitation should be defined explicitly and in a manner that 
reflects a clear understanding of how the judgments obtained will be used. 

Step No. 2 – Selection of experts 
The elicitation team consists of a group of generalists and normative experts conducting 
and facilitating the elicitation, in addition to the subject-matter experts. Generalists are 
individuals with substantial technical background in one or more of the disciplines 
needed to solve the problem of interest. Normative experts have a sound theoretical  
and conceptual knowledge of probability and practical experience in expert elicitation. 

Subject-matter experts selected for the elicitation should be individuals who: (a) possess 
the necessary knowledge and expertise, (b) have demonstrated their ability to apply 
their knowledge and expertise, (c) represent a broad diversity of independent opinion 
and approaches for addressing the topics in question, (d) are willing to be identified 
publicly with their judgments, and (e) are willing to publicly disclose all conflicts of 
interest. 

Step No. 3 – Identification of issues and problem decomposition 
The generalists and normative experts should work with the subject-matter experts to 
decompose the broad objectives of the elicitation by clearly and precisely specifying 
more focused and simpler sub-issues. 
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Step No. 4 – Assembly and dissemination of basic information 
Assembly of background information (in a complete and unbiased manner) should be 
initially conducted by the generalists and the normative experts. As the elicitation 
process proceeds, the subject-matter experts may be able to recommend additional 
sources of information. 

Step No. 5 – Pre-elicitation training 
The expert panel should be provided training before the elicitations to: (a) familiarize 
them with the subject matter, (b) familiarize them with the elicitation process,  
(c) educate them with both uncertainty and probability encoding, (d) provide them 
practice in formally articulating their judgments and the underlying assumptions,  
(e) educate them with possible biases that could be present and influence their 
judgment. 

Step No. 6 – Elicitation of judgments 
The individual elicitation sessions should be held in private, with the generalists and 
normative experts in attendance. All subject-matter experts should be queried in a 
uniform manner and asked to provide specific answers to questions about the issues 
considered and the reasoning behind their responses. 

Step No. 7 – Post-elicitation feedback 
Each subject-matter expert should be provided feedback from the elicitation team on the 
results of his or her elicitation after the elicitation sessions are completed. Each expert 
should be queried as to the need for revision or clarification of his or her judgment. 

Step No. 8 – Aggregation of judgments 
Whatever aggregation method is employed, the individual expert’s opinions must be 
preserved and documented. Transparency in the aggregation process will render these 
judgments, including disparate views or outliers, useful for subsequent analyses. Subject 
matter experts with differing views should be asked to comment on opposing views. 
Should the disparity in views persist, then each of the significantly varying views  
should be provided as output of the elicitation. 

Step No. 9 – Documentation 
The specific issues addressed by the elicitation should be precisely defined along  
with all relevant definitions and assumptions. Results of the expert elicitation should  
be clearly described together with the reasoning supporting the judgments. The 
documentation should also distinguish between the information directly provided  
by the subject-matter experts and any subsequent processing of that information  
(e.g. smoothing, aggregation).  

 

 

4.4 Case study – expert elicitation in Yucca  
Mountain project 

A series of formal expert elicitations were carried out in support of the total system 
performance assessment for viability assessment of the Yucca Mountain project  
/US DOE, 1998/. These expert elicitations focused on the following process models:  
(a) unsaturated zone flow, (b) waste package degradation, (c) saturated zone flow and 
transport, (d) waste form degradation and radionuclide mobilization, and (e) near field 
and altered zone coupled processes. Experts from within and outside the Yucca 
Mountain project were consulted to assist in the synthesis of knowledge, identification 
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of data gaps and uncertainty quantification on those issues of greatest importance to the 
performance assessment process.  

The expert elicitations were conducted in a structured step-wise approach as follows 
/Coppersmith et al, 1998/: 

• Development of project plan: The goals and key elements of the project, timing 
and scope of significant activities such as workshops, significant milestones, etc 
were outlined by the methodology development team. 

• Selection of the expert panel: For each panel, 5–6 experts (each with significant 
professional stature and technical expertise) were selected by the methodology 
development team on the advice of highly regarded scientists and engineers. 

• Data compilation and dissemination: Pertinent data, including published 
reference materials, were compiled and sent to the experts. 

• Meetings of the expert panel: Structured, facilitated interaction among the 
members of the expert panel took place during three workshops and one field  
trip (for each of the five elicitations). The workshops were designed to identify 
significant issues, available data, alternative models and uncertainties related to 
each process model. Pertinent data sets and alternative interpretations were 
presented by project staff and stakeholders to provide multiple points of view. 

• Elicitation of experts: One-day individual elicitation interviews were held to 
obtain each expert’s assessments of the key issues, quantification of uncertainties 
and technical basis for the assessment. The interview was documented by the 
elicitation team for subsequent review and/or revision by the individual experts. 

• Feedback of preliminary results: Elicitation summaries from all members of  
the expert panel were distributed to each expert to provide them with a broader 
perspective on the range of interpretations being developed. 

• Finalization of expert assessments: After reviewing the feedback package, the 
experts developed a final draft of their elicitation summary.  

• Preparation of project report: A report was developed for each process model 
to document the process followed, the expert elicitation summaries, and the 
results. 

The outcomes of these expert elicitations were both quantitative and qualitative in 
nature. Quantitative estimates of uncertainty included PDFs for important parameters 
such as percolation flux, waste package corrosion rates, saturated zone dispersivity and 
waste form dissolution rates. Qualitative expressions of uncertainties in conceptual 
models covered such issues as explanations for fast-flow paths, fracture-matrix 
interaction, corrosion models of various waste package alloys, changes in hydraulic 
properties due to thermal effects, and dilution mechanisms in the saturated zone. 
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5 Bayesian updating 

5.1 Bayes theorem 
In classical or “frequentist” statistics, probability is defined as the frequency of 
occurrence observed over a long series of independent trials. An alternative point of 
view is provided by subjective or “Bayesian” statistics, where the concept of probability 
is treated as the degree of belief – given all information. 

Probability statements by frequentists are thus firmly rooted in data, which may not be 
available or may be inappropriate for the problem at hand. On the other hand, Bayesians 
are allowed to work with all information, which can include both subjective knowledge 
as well as “hard” measurements. A formal methodology for combining prior knowledge 
with current data to produce an updated distribution follows from Bayes theorem.  

The theorem of Bayes, normally used for expressing the conditional probability of an 
event occurring, given that another event has occurred, can be adapted for the 
probability distribution updating problem as follows: 

 
( )∫ θθ

θθ=θ
|)(

)|()(
)|(

zPP

zPP
zP  (43) 

where P(θ) is the prior distribution of the random variable θ, P(z|θ) is the probability 
model, or likelihood function, for the observed data z given θ, and P(θ|z) is the posterior 
distribution for θ given that the data z have been observed.  

This compact formula provides a powerful construct for integrating old and new 
information in a systematic manner. It facilitates the explicit use of prior test data or 
consensus engineering judgment to “adjust” new data and potentially account for 
unquantified uncertainties. 

The solution of Equation (42) for practical applications is a non-trivial task, especially 
because of the integral in the denominator. Closed-form analytical expressions can only 
be derived for a few special cases. Specifically, if P(θ|z) and P(θ) both belong to the 
same distribution family, then P(θ) and P(z|θ) are called conjugate distributions, and 
P(θ) is called the conjugate prior for P(z|θ). For certain conjugate pairs, the computation 
of the posterior distribution reduces to a simple arithmetic operation involving the 
parameters of the prior distribution and the likelihood function. Relationships for 
common conjugate pairs are discussed in detail elsewhere /DeGroot, 1970/, and are 
summarized below. 

Observations Prior Posterior 

Bernoulli Beta Beta 

Poisson Gamma Gamma 

Negative Binomial Normal Normal 

Normal Normal Normal 

Normal Gamma Gamma 
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For most other cases, a numerical integration approach based on advanced sampling 
techniques has to be used for developing the posterior distribution. However, for many 
engineering problems, a satisfactory solution can be achieved by taking an enumerative 
approach, where a continuous probability distribution is discretized into a collection of 
mutually independent outcome states prior to the application of Equation (43). This 
reduces the integral in the denominator to a simple summation. This is the approach 
adopted for the example problem discussed in the next section.  

 

 

5.2 Example of Bayesian updating 
/Wilson, 2000/ describes the development of parameters for a seepage model based  
on numerical simulations of flow to a drift. The seepage model has two parameters, 
seepage fraction, fs, and seep flow rate, Qs. The seepage fraction describes the 
proportion of drifts where seepage occurs, and the seep flow rate describes the 
corresponding seepage flux. Both of these quantities are functions of the percolation 
flux, q. Using a limited number of detailed 3-dimensional simulations of flow to a drift, 
/Wilson, 2000/ developed uncertainty distributions for fs and Qs at various discrete 
values of q. These distributions were subsequently adjusted to account for processes 
such as drift degradation, flow focusing and coupled effects. 

An application of the Bayesian updating framework is demonstrated for this problem by 
treating fs as the parameter of interest for which some prior information is available. The 
objective is to provide a posterior distribution by combining this prior distribution with 
new information as generated by the analysis reported in /Wilson, 2000/. 

Assume that in the absence of any pertinent data, and based strictly on expert judgment, 
the uncertainty in fs (at a percolation flux q = 1000 mm/yr) can be treated as a triangular 
distribution with minimum = 0.25, mode = 0.50 and maximum = 0.75. This is the 
“prior” distribution. For Bayesian computations, the range of possible values is first 
divided into 20 equally-spaced intervals. The cumulative probability corresponding  
to each of these intervals is computed using Equation (5), from which the frequency is 
calculated by taking the difference between two successive cumulative probabilities. 
The computed frequency is P(θ) in the notation of Equation (43), and is shown in 
Column 3 of the following table. 

The next step is to estimate the frequency corresponding to these probability states (i.e. 
binned intervals) from Wilson’s results. His analysis suggests a triangular distribution 
with minimum = 0.261, mode = 0.303 and maximum = 0.609 can be used to describe 
the data. As before, Equation 5 is used to compute the cumulative probability (and 
hence, the frequency) for each of the bins. The computed frequency is P(z|θ) in the 
notation of Equation (43), and is shown in Column 5 of the following table. 

For each of the binned intervals, the “posterior” probability, P(θ|z), is then computed 
using Bayes theorem by taking the product of P(θ) and P(z|θ), and normalizing it by  
the sum of all P(θ) and P(z|θ) pairs (i.e. 5.31e–2). This is shown in Column 7 of the 
following table. Figure 5-1 presents a graphical comparison of the prior and posterior 
distributions. Note how the updated distribution has resulted in a reduction in variance 
(because of the addition of new information). 
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 P R I O R O B S E R V E D P O S T E R I O R 

(1) (2) (3) (4) (5) (6) = 
(3) x (5) 

(7) = 
(6) / Σ(6) 

(8) 

Seepage 
fraction 

Cumulative 
probability 

Frequency 
P(θθθθ) 

Cumulative 
probability 

Frequency 
P(z|θθθθ) 

Product Normalized 
P(θθθθ|z) 

Cumulative 
probability 

0.275 0.005 0.005 1.34e–2 1.34e–2 6.70e–5 1.26e–3 1.26e–3 

0.30 0.02 0.015 1.04e–1 9.07e–2 1.36e–3 2.56e–2 2.69e–2 

0.325 0.045 0.025 2.43e–1 1.39e–1 3.46e–3 6.53e–2 9.22e–2 

0.35 0.08 0.035 4.70e–1 1.27e–1 4.46e–3 8.41e–2 1.76e–1 

0.375 0.125 0.045 4.86e–1 1.16e–1 5.21e–3 9.28e–2 2.74e–1 

0.40 0.18 0.055 5.90e–1 1.04e–1 5.72e–3 1.08e–1 3.82e–1 

0.425 0.245 0.065 6.82e–1 9.23e–2 6.00e–3 1.13e–1 4.95e–1 

0.45 0.32 0.075 7.63e–1 8.05e–2 6.04e–3 1.14e–1 6.09e–1 

0.475 0.405 0.085 8.31e–1 6.88e–2 5.85e–3 1.10e–1 7.19e–1 

0.50 0.5 0.095 8.88e–1 5.70e–2 5.42e–3 1.02e–1 8.22e–1 

0.525 0.595 0.095 9.34e–1 4.53e–2 4.30e–3 8.11e–2 9.03e–1 

0.55 0.68 0.085 9.67e–1 3.36e–2 2.85e–3 5.38e–2 9.56e–1 

0.575 0.755 0.075 9.89e–1 2.18e–2 1.64e–3 3.09e–2 9.87e–1 

0.60 0.82 0.065 9.99e–1 1.01e–2 6.56e–4 1.24e–2 1 

0.625 0.875 0.055 9.99e–1 1.27e–4 6.97e–6 1.31e–4 1 

0.65 0.92 0.045 9.99e–1 1.27e–4 5.70e–6 1.08e–4 1 

0.675 0.955 0.035 1 1.27e–4 4.44e–6 8.36e–5 1 

0.70 0.98 0.025 1 1.27e–4 3.17e–6 5.97e–5 1 

0.725 0.995 0.015 1 1.27e–4 1.90e–6 3.58e–5 1 

0.75 1 0.005 1 1.27e–4 6.34e–7 1.19e–5 1 
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Figure 5-1. Prior and posterior distributions for example Bayesian updating problem. 
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6 Concluding remarks 

6.1 Summary 
This white paper provides an overview of various approaches for assigning probability 
distributions to input parameters of performance assessment models. The report begins 
with a summary of the nature of data and distributions, followed by a discussion of 
several common theoretical parametric models for characterizing distributions.  

Next, various techniques are presented for fitting continuous distributions to data. These 
include probability plotting, method of moments, maximum likelihood estimation and 
nonlinear least squares analysis. The techniques are demonstrated using data from a 
recent performance assessment study for the Yucca Mountain project. Goodness of fit 
techniques are also discussed, followed by an overview of how distribution fitting is 
accomplished in commercial software packages.  

The issue of subjective assessment of probabilities is dealt with in terms of the 
maximum entropy distribution selection approach, as well as some common rules for 
codifying informal expert judgment. Formal expert elicitation protocols are discussed 
next, and are based primarily on the guidance provided by the US NRC.  

Finally, the Bayesian framework for updating prior distributions (beliefs) when new 
information becomes available is discussed.  

 

 

6.2 Recommended process for assigning distributions 
Based on the material presented thus far, a two-part strategy is recommended for 
assigning distributions. The first part of the strategy deals with the situation where 
enough data are available to define an empirical CDF or fit a parametric model to the 
data, and involves the following step-wise process. 

1. Evaluate data for adequacy, and re-sample if necessary. 

2. Determine if the data need updating, and apply Bayesian techniques as needed. 

3. Construct empirical CDF. 

4. Determine if parametric distribution is to be fitted. If not, then pass empirical 
CDF and skip steps 5–10. 

5. Perform probability plotting. 

6. Select candidate distributions for fitting. If none are identified, then pass 
empirical CDF and skip steps 7–10. 

7. Estimate distribution parameters. 

8. Compute goodness-of-fit statistics. 

9. Determine if the fit is acceptable. If not, then pass empirical CDF and stop. 

10. Pass selected distribution and fitted parameters. 
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The second part of the strategy deals with the situation where only a limited amount of 
information is available. 

1. If the conditions for a formal expert elicitation exist, then use the protocol 
described in section 4.3. 

2. If historical data and analogs are available, use the maximum entropy approach 
for selecting a distribution. If not, then develop subjective distributions based on 
informal expert judgment. 

Finally, it should be pointed out that it is not necessary for all inputs in a probabilistic 
performance model to be characterized as uncertain quantities. The selection of 
uncertain parameters should be based on observed importance in past analyses, 
perceived importance with respect to the planned analyses, and the general level of 
interest in the variable /Helton, 1993/. This facilitates an efficient utilization of 
resources for developing the uncertainty characterization, implementing the 
probabilistic calculations and interpreting their results. 
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