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Abstract 
 
 
 
 
 
A particle tracking algorithm, PARTRACK, that simulates 
transport and dispersion of solutes in a sparsely fractured rock 
is described. The main novel feature of the algorithm is the 
introduction of multiple particle states. It is demonstrated that 
the introduction of this feature allows for the simultaneous 
simulation of Taylor dispersion, sorption and matrix diffusion. 
 
A number of test cases are used to verify and demonstrate the 
features of PARTRACK. It is shown that PARTRACK can 
simulate the following processes, believed to be important for 
the problem addressed: the split up of a tracer cloud at a fracture 
intersection, channelling in a fracture plane, Taylor dispersion 
and matrix diffusion and sorption. 
 
From the results of the test cases, it is concluded that 
PARTRACK is an adequate framework for simulation of 
transport and dispersion of a solute in a sparsely fractured rock. 
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Abstract (Swedish) 
 
 
 
 
 
PARTRACK är en algoritm för simulering av ett ämnes 
transport och spridning i sprickigt berg. PARTRACK utgår ifrån 
att en partikels rörelse kan beskrivas med hjälp av ett antal 
tillstånd, som partikeln kan befinna sig i. Det visas i rapporten 
att denna metodik gör det möjligt att behandla flera 
dispersionsmekanismer som verkar parallellt. 
 
Genom en serie testfall visas att PARTRACK ger korrekta 
resultat. Följande dispersionsmekanismer behandlas i testfallen: 
Uppdelning i sprickkorsningar, kanalbildning i sprickplanet, 
Taylor dispersion, matrisdiffusion och sorption. 
 
Från de erhållna resultaten framgår att PARTRACK är ett 
lämpligt och kraftfullt beräkningsprogram för simulering av 
transport och dispersion i sprickigt berg. 
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1 Introduction 
 
 
 
 
 

1.1 Background 
 
Transport of matter from expected repository depth to ground level 
is for obvious reasons a key issue in performance assessment 
studies. One presently investigated alternative is to place the 
repository at a depth of about 500 metres in a crystalline rock 
without major fracture zones. Radionuclides from field canisters 
thus have to be transported through a low permeability volume, 
without major fracture zones, and after that through a system of 
larger fracture zones.  
 
In this report a computer code, called PARTRACK, which is 
intended to solve the transport problem described above is 
presented. No real world applications will however be performed, 
instead the report focuses on basic verification and demonstration 
cases. 
 
The model to be described is based on earlier studies within the 
Äspö Hard Rock Laboratory (HRL) project, see Svensson (1992, 
1994). It is a particle tracking algorithm specifically designed for 
transport and dispersion of solutes in a fractured media. It considers 
the splitting up of a tracer cloud in fracture crossings and simulates 
mass transfer and dispersion by postulating that a particle can be in 
different states. The transition from one state to the other is 
governed by frequencies, which give the likelihood that a particle 
will change state during a specified time interval. It is clear that this 
formalism fits the description of sorption on the surfaces of a flow 
channel, but it has also been demonstrated, see Svensson (1994), 
that Taylor dispersion can be described with two states. 
Simultaneous processes, for example Taylor dispersion and 
sorption, can however not be described by only two states. The 
present study aims to eliminating this limitation by introducing an 
arbitrary number of particle states. 
 
An interesting line of development, that fits in well with the model 
to be presented, is the multi-rate mass transfer model described in 
Haggerty and Gorelick (1995). This model allows for small-scale 
variation in rates and types of mass transfer by using a series of 
first-order equations to represent each of the mass transfer 
processes. In the present study we will try to represent the multi-
rate mass transfer by the particle states discussed above. 
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The transport and dispersion processes are strongly linked to the 
flow field; a good characterisation of the flow paths and pore-
velocities is a prerequisite for transport simulations. The particle 
tracking algorithm to be presented builds upon the flow model 
presented in Svensson (1999a, b). This is a stochastic continuum 
model with a conductivity field generated from a fracture network. 
It is believed that the novel method for generating the conductivity 
field will prove valuable also when transport simulations are 
attempted.  
 
A brief review of transport models can be found in Cvetkovic et al. 
(1999) and the multi-rate transfer model is described in Haggerty 
and Gorelick (1995, 1998) and McKenna (1999). A general 
account of flow and transport of solutes in a fractured rock is 
given by Bear et al. (1993), see also Sahimi (1995). 
 
 

1.2 Objective 
 
The main objective of this study can be stated as follows: 
 
– Demonstrate that the particle tracking algorithm PARTRACK 

is an adequate framework for simulating transport and 
dispersion of a solute in a sparsely fractured rock. 

 
In particular we want to verify and demonstrate the following 
aspects of PARTRACK. 
 
• Show that the introduction of  multiple particle states allows for 

simulation of several processes working in parallel. 
 
• Demonstrate that diffusion into microfissures and pores can be 

represented by the multi-rate mass transfer model, as 
introduced in PARTRACK. 

 
• Show that PARTRACK can be coupled with the flow model. 
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2 Basic conceptual assumptions 
 
 
 
 
 

2.1 Introduction 
 
Dispersion can in a general sense be defined as (Abelin et al., 1991) 
“the broadening of the residence time distribution of a species 
transported by a fluid as the fluid moves in a medium”. There are 
several possible causes of dispersion like velocity variations, 
interaction with the rock, etc. These processes will now be 
discussed, first from a physical point of view and then their 
representation in a numerical model. 
 
 

2.2 The situation considered 
 
Transport of a tracer travelling through a fracture network leads to 
dispersion for (at least) the following reasons (see Figure 2-1): 
 
• Intersections. At a fracture intersection a tracer cloud may split 

up and enter pathways with different lengths and fluid 
velocities. This type of dispersion is often called macro-
dispersion. 

 
• Channelling. Spreading occurs within each fracture plane as 

the different streamlines have different path lengths and 
velocities. The flow channels may also merge or split up. 

 
• Taylor dispersion. A velocity profile exists between the two 

bounding walls of the fracture. The resulting dispersion effect is 
called shear- or Taylor dispersion. 

 
• Matrix diffusion and sorption. Interaction with the rock, 

stagnant pools and microfissures causes a number of processes 
that in effect lead to a delay and dispersion of a tracer pulse. 
These include: sorption on the fracture walls, diffusion into the 
rock matrix with sorption on inner surfaces and interaction with 
gauge. 

 
A fairly complete account of contaminant transport in a fractured 
rock can be found in Bear et al. (1993). 
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Figure 2-1. Illustration of processes leading to dispersion of a tracer 
pulse. Two intersecting fracture planes (top) and micro-scale processes. 
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2.3 Representation in a numerical model 
 
Before we discuss transport and dispersion a few features of the 
flow model need to be introduced, as PARTRACK is closely 
integrated with the flow model. The computational domain is 
subdivided into control volumes, or cells, which each has a 
pressure value representing the cell (and other scalars like salinity) 
and a flow vector associated to each cell wall, see Figure 2-2. The 
flow is determined from Darcy's law, using the cell pressures and 
the conductivity representing the velocity control volume. The 
conductivity fields are calculated from a fracture network, see 
Svensson (1999a, b). Also the kinematic porosity for the scalar cell 
is determined from the fracture network as each fracture has a 
porosity value associated with it. A detailed account of how the 
fracture porosity is represented as open, or free, volumes in scalar 
cells is given in Svensson (2001). 
 
The basic idea of PARTRACK can now be described, see also 
Figure 2-2, as follows: 
 
• A particle entering a scalar cell will, if no dispersion effects are 

activated, travel through the cell in a time which is equal to the 
free volume of the cell divided by the flow rate through the cell 
(a so called plug-flow). If dispersion effects are active the travel 
time will however be different and will also be different for 
different particles. 

 
• When the particle is ready to leave the cell, it will leave through 

one of the cell walls that has an outgoing flow direction. The 
choice between cell walls with an outgoing flow is made with a 
likelihood that is proportional to the outflows. If several 
particles are traced the cloud will thus split up in proportion to 
the flow rates. Complete mixing in a cell is hence assumed. 

 
It should be noted that no time is spent when moving from one cell 
to the neighbour. Next we will discuss some details about the two 
points above. 
 
When the particles are travelling through the cell, the retardation 
due to matrix diffusion, sorption and Taylor dispersion need to be 
accounted for. The concept of particle states is used to simulate 
these processes. As an illustration let's outline how Taylor 
dispersion can be simulated. If the velocity profile is described as a 
number of layers, each with a certain velocity, we identify these 
layers as the different states a particle can be in. If correct 
frequencies can be ascribed for moving to a neighbouring layer, it 
is realised that particles will experience different velocities when 
travelling through the cell and a Taylor dispersion effect will result.  
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Figure 2-2. Illustration of concepts in the flow model (top) and subgrid 
processes affecting a particle’s travel time. 
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If we further should like to account for sorption on the fracture 
walls a particle state is also needed for this process. We also need 
to find out the frequency by which a particle will leave the velocity 
layer close to the wall and enter the “sorbed state” and also the 
frequency by which  it will go back. Matrix diffusion is 
conceptualised as diffusion in a number of channels with one end 
in contact with the fracture. These channels can also be simulated 
by particle states and frequencies (details in next section). 
 
Dispersion due to fracture intersections is simulated by the “cell- 
jump technique” outlined above. This method is used for each cell, 
but the net effect on a simulated fracture intersection is harder to 
estimate; a few examples are given in Figure 2-3. In the simplest 
possible case (thin fractures along coordinate directions) the 
particles will split up in proportion to the outflows. However, if the 
fracture intersection is at a cell-wall and the fractures make an 
angle to the coordinate direction it is not clear how the particle 
cloud will split up; it will depend on the local pressure distribution. 
When the fracture thickness is of the same magnitude as the grid 
size the situation is even more complex, as can be seen in Figure  
2-3. In this case, the local flow field in the intersection is resolved 
and the particles will be transported accordingly. It is however not 
possible to say a' priori how a particle cloud will be partitioned. 
 
It may seem discouraging that the split up of a tracer cloud in a 
fracture intersection is not know or controlled, even for the simple 
cases shown in Figure 2-3. However, as will be discussed in the test 
cases to be presented, it is argued that the two dimensional 
situations shown in Figure 2-3 are not relevant for realistic 
fractures. Fractures have variable aperture and it can be expected 
that flow channels always form. Mixing at fracture intersections is 
therefore related to how flow channels interact at the intersection, 
and hence requires a three dimensional analysis. 
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Figure 2-3. Illustration of how the flow in a fracture intersection. 
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3 Mathematical model 
 
 
 
 
 

3.1 Basic assumptions 
 
It will be relevant to assume that the fluid is incompressible and the 
flow is steady for all cases to be discussed. We will further assume 
that the Darcy law applies and that no forces due to density 
gradients are present. 
 
 

3.2 Flow model 
 
Under the assumptions made the following equations apply: 
 
Momentum: 
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where u, v and w are Darcy velocities, Kx, Ky and Kz conductivities, 
p pressure, g acceleration due to gravity and ( )3

0 kg/m 1000=ρ  

density. The coordinate directions are denoted x, y and z. 
 
 

3.3 Particle tracking 
 
Some basic concepts about PARTRACK with multiple particle 
states were introduced in the previous section; now some further 
details will be given. 
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Consider the laminar velocity profile shown in Figure 3-1. In the 
flow model we do not simulate the velocity profile but we do get an 
average pore-velocity as a result of the flow calculation. The 
dispersion effect of the velocity profile can now be simulated by 
imaging a number of states a particle can be in and ascribe different 
velocities to each state; we may think of the states as different 
layers in the velocity profile, see Figure 3-1. We may also like to 
simulate that a particle can get sorbed on the fracture wall, which 
then introduces one more state a particle can be in. Let us assume 
that we define five states for the simulation of Taylor dispersion 
and one state for sorption on the fracture wall. We then need to 
define how a particle may move between the different states; this is 
done by the intensity matrix, shown in Figure 3-1. The first column 
gives the conditions for state one (the sorbed state). As can be seen, 
it only has a certain probability to move to state two, which is the 
first layer in the fracture. The second column gives the conditions 
for layer one ( state two) and so on. It can be shown, that the 
frequency value for change between two layers in the fracture is 

   where,/ 2
molmol DD ∆ is the molecular diffusivity of the substance 

and ∆  the layer thickness. 

 
Figure 3-1. Illustration of particle states in PARTRACK. 
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If matrix diffusion in microfissures, or pores, of varying sizes and 
subsequent sorption on inner surfaces are to be simulated more 
concepts need to be introduced, see Figure 3-1. A particle that 
enters one of the pores, with one end in contact with the fracture, 
will be transported by diffusion and may get sorbed on an inner 
surface. To describe the one dimensional transport in the pore, we 
need to solve the 1D diffusion equation. It is however possible to 
simulate the pore by a series of boxes, see Figure 3-1. A particle 
that enters one of the big boxes simulates transport deep into the 
pore while a small box simulates a fast return to the fracture. Each 
box has its own “volume” or capacity and mass transfer rate 
coefficient. If all pores, of varying length and width, are simulated 
by series of boxes, continuos distributions of capacities and mass 
transfer rate coefficients will result. In the present model a 
lognormal distribution (following McKenna, 1999) of rate 
coefficients is used. In PARTRACK we now let each box represent 
one state and from the capacity and mass transfer rate coefficients 
we can calculate the probability that a particle will enter or leave 
one of the boxes. In the intensity matrix, we will only allow 
exchange between the boxes and the layer close to the wall in the 
fracture. 
 
 

3.4 Boundary conditions 
 
Two types of boundary condition will be used; prescribed pressure 
and zero mass flux. In many of the test cases a pressure difference 
is prescribed for two opposite faces of the computational domain 
and a zero flux condition is used for all other boundaries. 
 
 

3.5 Numerical tool and output parameters 
 
The system of flow equations is solved by the general equation 
solver PHOENICS (Spalding, 1981). PHOENICS is based on a 
finite-volume formulation of the basic equations and embodies 
a wide range of coordinate systems (cartesian, body-fitted, 
cylindrical, etc) and numerical techniques (higher order schemes, 
solvers etc). 
 
The basic output parameters from the model are pressure and Darcy 
velocities. It is however simple to generate additional output 
parameters like hydraulic head. 
 
The software for the particle tracking with multiple particle states, 
PARTRACK, has been developed within this project. 
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4 Results 
 
 
 
 
 

4.1 Introduction 
 
Altogether eight test cases will be presented in this section. The test 
cases are intended to verify and demonstrate various aspects and 
features of PARTRACK. The presentation of the test cases will 
follow a common format indicated by the subtitles: Description, 
Objective, Results/Discussion and Conclusion. In the Objective it 
will be stated if the test case is a verification or demonstration case. 
 
The order of presentation is from simple to complex; we hence start 
with “transport without dispersion” continue with “hydrodynamic 
dispersion” followed by “multi-rate mass transport”. In the final 
test case all processes are considered simultaneously. 
 
 

4.2 Advection with no dispersion 
 
Even if we idealise the fracture flow as a flow between two parallel 
walls, dispersion due to the velocity profile will be present (Taylor 
dispersion). For the test cases in this group, Taylor dispersion will 
however be ignored and all particles thus move with the average 
pore velocity. 
 

4.2.1 One-dimensional advection 
 
Description. The situation is outlined in Figure 4-1. All particles 
will be transported by advection from 0=x  to 0.10=x  metres. 
This is of course a trivial problem for a particle tracking routine. 
The reasons for including it are that, firstly, we want to ensure that 
the simplest possible test case works and, secondly, it introduces 
the typical geometry and parameters that will be used for all test 
cases. We will hence use the simple geometry shown for more 
complex test cases. For this case we do not need to use the flow 
model; the velocity is simply given as an input parameter. A value 
of 410−  m/s was used. 
 
Objective. Verify that the simplest possible test case works and 
introduce the typical geometry and parameters to be used in more 
complex cases. 
 
Results/Discussion. The calculated breakthrough curve is shown 
in Figure 4-1. All particles arrive after 27.8 hours, which is in 
agreement with the expected time. As mentioned, PARTRACK  
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Figure 4-1. One-dimensional advection. Situation considered (top) 
and breakthrough curve. 
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uses a grid system; in the present case a cell size, ∆ , of 0.025 metre 
was used. 
 
Conclusion. The arrival time for particles in a single fracture, 
transported by the mean velocity, is in agreement with the 
analytical solution. 
 

4.2.2 A fracture network 
 
Description. The two dimensional fracture network considered 
next is shown in Figure 4-2. A pressure gradient is applied, to give 
a flow from left to right with a pore velocity of about 410−  m/s. 
 
This case is of interest for the following reasons: 
 
• It is possible to determine the flow in each part of the fracture 

network analytically. 
 
• The transport time for a particle is known, whatever path it 

takes. 
 
• If we assume complete mixing in fracture intersections, one can 

determine analytically how a cloud of particles, injected at the 
upstream side, will leave through the outlets. 

 
• As we solve for the flow and calculate the kinematic porosity 

field (assuming a certain fracture kinematic porosity) we get an 
opportunity to test the integration between PARTRACK and 
the flow solver. 

 
The analytical solution gives the flow-rates in each of the fracture 
sections. If we inject a cloud of particles in fracture B-B, it will 
split up in fracture intersections in proportion to the flow rates 
(assuming complete mixing in fracture intersections). These 
fractions are given in Figure 4-2, assuming that all fractures have 
the same transmissivity. From the analytical solution we can thus 
get both the arrival time and size of each breakthrough pulse. In the 
numerical solution of the flow field we assume that the kinematic 
porosity of the fractures is equal to 0.05. The fracture thickness, b, 
will be varied in order to test a range of ratios ∆/b , where ∆  is the 
grid size (equal to 0.1 metre). In all simulations 510  particles were 
injected in fracture B-B. 
 
Objective. The main objective is to verify that the numerical 
solution is in agreement with the analytical one. It is a part of this 
objective to test the integration between the flow solver and 
PARTRACK and to evaluate the sensitivity to the ratio ∆/b . 
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Results/Discussion. We first calculate the flow and porosity fields 
by the flow model. A cloud of particles, injected in fracture B-B, is 
then tracked by PARTRACK. The result can be studied in Figure 
4-3. In order to understand the result one may first note that the 
transport time in fracture B-B is 27.8 hours and that all other 
pathways have longer transport times. The size of the pulses is 
explained by noting that 100% enters in fracture B-B, about 50% 
go each way in each crossing. The first pulse that leaves fracture  
B-B will thus contain about 25% of the injected pulse. It will 
however not be exactly 25% as the flow rates in the fracture 
sections are not exactly the  same. As seen in Figure 4-3, the 
numerical solution is in good agreement with the analytical 
solution. One may question why we do not get an exact agreement. 
The answer is probably that we do not get the assumed split up of 
the particle cloud in fracture intersections. In the analytical solution 
we assumed that the cloud will split up in proportion to the 
outflows. In the numerical solution, see Figure 2-3, we solve for the 
flow and transport in the intersection. The effect can be noted in the 
intersection between fractures A-A and C-C. The particles arrive in 
fracture A-A and should split up in about equal fractions in the two 
outlets. From Figure 4-3 it is seen that the numerical solution gives 
fewer particles in fracture A-A, as compared to the analytical 
solution. This is probably due to the local flow pattern in the 
fracture intersection. In the literature, see for example Park and Lee 
(1999), two concepts for solute transport in a fracture intersection 
are used; “complete mixing” and “streamline routing”. The effect 
described is due to streamline routing in the fracture intersection. It 
should however be noted that these concepts are adequate only for 
fractures of constant aperture. Fractures with varying aperture, to 
be discussed below, may require a different description. 
 
The results given in Figure 4-3 are based on a fracture thickness, b, 
of 0.05 m ( )5.0/ =∆b . The sensitivity to the fracture width is 
presented in Table 4-1, where results for 1.0  ,5.0  ,1.0/ =∆b  and 
2.0 are given. It is seen that the transport time does not vary 
strongly with ∆/b , while the size of the breakthrough pulse 
depends strongly on ∆/b  (see for example fracture A-A). As 
discussed above, this is due to the two dimensional representation 
of the fracture intersection, see also Figure 2-3. 
 
Conclusion. The transport times for a simple two dimensional 
fracture network are in agreement with the analytical solution. The 
simulated partitioning of a particle cloud in a fracture intersection 
is close to complete mixing for small fracture thicknesses, while 
the streamline routing effect is important when ∆>b . 
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Figure 4-2. A fracture network. Outline of situation studied. The 
%-figures give the proportions for the split-up of a tracer cloud at 
the three fracture intersections (assuming complete mixing). 
 
 
 
 

 
 
Figure 4-3. A fracture network. Breakthrough curve in fracture A-A. 
Solid bar gives the analytical solution. 
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Figure 4-3. Cont. Breakthrough curves in fractures B-B (top) and C-C. 
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Table 4-1. A fracture network. Breakthrough curves (time, t, 
and fraction, f) in various fracture outlets as a function of 
normalised fracture thickness (b/∆). 
 

Fracture thickness normalised with ∆ (b/∆). Analytical 
solution 0.1 0.5 1.0 2.0 

Breakthrough 
curve in 
fracture ta(h) fa(%) t/ta f/fa t/ta f/fa t/ta f/fa t/ta f/fa 

A-A 29.2 24.7 1.02 0.94 1.02 0.95 1.00 0.75 1.00 0.50 
B-B 27.7 25.8 1.00 1.02 1.00 1.02 1.00 1.01 0.99 0.90 
B-B 28.8 12.5 1.01 1.06 1.01 1.05 0.98 1.20 0.95 1.87 
C-C 28.3 24.9 1.01 1.00 1.00 1.00 1.00 1.09 1.00 1.00 
C-C 29.4 12.1 1.02 0.99 1.02 0.99 1.01 1.09 1.00 1.31 

 
 
 
 

4.2.3 A single fracture in a 3D domain 
 
Description. This test case is the same as used in Svensson 
(1999a), to evaluate how the flow rate through a single fracture 
varied with the orientation and thickness of the fracture. The 
situation studied is outlined in Figure 4-4. The pressure is held 
constant on two opposite faces (y = 0.0 m and y = 10.0 m) and a 
zero flux condition is used on all other boundaries. At the inflow 
boundary the position of the fracture is fixed, with centreline 
coordinates (1.0, 0.0, 1.0). The fracture position at the downstream 
boundary is varied in order to test a wide range of angles to the 
coordinate directions. Also a range of thicknesses were tested, but 
the height of the fracture was kept constant at 0.5 metres.  
 
For each of the situations studied, a steady state flow calculation is 
first performed. PARTRACK is then used to calculate the transport 
time from the inlet to the outlet. 
 
Objective. Verify that PARTRACK gives correct transport times 
for fractures of different thicknesses and orientations. As the flow 
and porosity is calculated in the flow model, the test case also 
evaluates the integrated performance of the flow and transport 
model. 
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Figure 4-4. A single fracture in a 3D domain. Outline of situation 
studied. All distances in metres. 
 
 
Results/Discussion. Results are presented in Table 4-2. Five 
downstream fracture positions and four fracture thicknesses were 
tested. The five downstream fracture positions will give a fracture 
that, for the first position, is parallel to the y- coordinate while the 
last position gives a fracture that almost follows a diagonal in the 
box. Note also that the x and z coordinates for the downstream 
positions are different; this ensures that the fracture will have 
different angles to all three coordinate directions (except for the 
first position). The transport times are normalised with the 
analytically determined transport time, at , which is easily obtained 

from the specified pressure gradient, kinematic porosity and 
fracture length. 
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Table 4-2. A single fracture in a 3D domain. Transport time as 
represented in the grid, t , normalised with the true transport 
time, at , for various fracture thicknesses and orientations. 

 
Transport time (t/ta) 

Fracture thickness (b/∆) 
Fracture 

coordinates at 
downstream 

boundary [m] 

Analytically 
determined 

transport time, ta 
[h] 0.1 0.5 1.0 2.0 

X = 1.0, Z = 1.0 27.50 1.00 1.00 1.00 1.00 
X = 3.0, Z = 2.5 29.02 1.06 1.02 1.01 1.00 
X = 5.0, Z = 4.0 34.37 1.08 1.03 1.01 1.00 
X = 7.0, Z = 5.5 42.97 1.04 1.02 1.01 1.00 
X = 9.0, Z = 7.0 54.98 1.02 1.01 1.00 1.00 

                                                Average   1.04 1.02 1.01 1.00 
 
 
 
From Table 4-2, one may conclude that accurate transport times are 
calculated provided ∆/b  is not too small; if ∆/b  is larger than 0.5 
the error is less than 3%. In Svensson (1999a) it was found that the 
flow rate through a single fracture in a 3D domain was 
underpredicted with a few percent. The error in the transport times 
is thus mainly due to the error in the flow rates, which can be 
concluded from a comparison with Table 4-2 in Svensson (1999a). 
 
It is also of interest to note that the spread of the breakthrough 
curve in all simulations was small. Ideally all particles should 
arrive at the same time, but some numerical dispersion is present as 
particles will have different flow paths. The standard deviation of 
the breakthrough curve was however always less than 2% of the 
transport time and the numerical dispersion effect is hence small 
(as compared to other effects to be discussed). 
 
Conclusion. Accurate transport times are calculated for a single 
fracture of varying thickness and orientation in a 3D domain, 
provided the fracture thickness in relation to the grid size is not too 
small. If 5.0/ >∆b , the maximum error in the calculated transport 
time is found to be less than 3%. 
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4.3 Hydrodynamic dispersion 
 
In Section 2, a number of processes causing a broadening of the 
breakthrough curve are discussed. One reason for this broadening is 
that particles may take different flow paths and hence get different 
transport times. We call this spreading of the particle cloud 
hydrodynamic dispersion. A closer examination, see Section 2, 
shows that hydrodynamic dispersion is due to, at least, the  
following processes: at fracture intersections a split up of a particle 
cloud may occur, in a fracture plane channelling gives different 
transport times and the velocity profile between two fracture walls 
cause a longitudinal spread of a particle cloud. These processes will 
now be studied one by one. 
 

4.3.1 Taylor dispersion 
 
Description. The basic idea of Taylor dispersion has already been 
introduced, see Figures 2-1 and 3-1. If a cloud of particles is 
introduced in a fully developed flow between two parallel walls, 
the particles will be dispersed longitudinally at a rate given by 
(Sahimi, 1995): 
 

 
m

L D
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2=  (4-1) 

 
where LD  is the longitudinal dispersion coefficient, h half the 

aperture, u the mean velocity and mD  the molecular diffusion 

coefficient of the solute the particles represent. When we use 
PARTRACK to simulate Taylor dispersion we subdivide the space 
between the two walls into five layers and each layer is considered 
as a state a particle can be in, see Figure 3-1. The simple geometry 
given in Figure 4-1 is used for this test case. 
 
Objective. Verify that PARTRACK predicts Taylor dispersion 
correctly. As this test case uses the multiple particle state feature of 
PARTRACK, it is an important test as it evaluates if this feature is 
correctly implemented. 
 
Results/Discussion. Three runs, with mD  equal to 10-9, 10-10 and  

10-11 m2/s respectively, were carried out in order to compare the 
simulated dispersion with Equation 4-1. The result can be studied 
in Figure 4-5. From the breakthrough curves the mean arrival time 
and the standard deviation, σ , was calculated. The standard 
deviation is then related to the longitudinal dispersion coefficient, 

LD  ( tDs L2= , where t is the mean transport time). As can be 

seen a perfect agreement between the analytically determined and  
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Figure 4-5. Taylor dispersion in a single fracture. Comparison 
with Equation 4-1 (top) and breakthrough curves. 
 



 24 

simulated dispersion is obtained. This result is important as it 
shows both that PARTRACK with multiple particle states works 
and that Taylor dispersion can be simulated correctly. The 
breakthrough curves, also shown in Figure 4-5, show that the 
Taylor dispersion effect is small for 910−=mD  m2/s, while a 

significant spread is obtained for 1110−=mD  m2/s. This result is of 

course related to the parameters and geometry used in this test case. 
 
Conclusion. The results presented show that PARTRACK, with 
multiple particle states, works correctly and that the predicted 
Taylor dispersion is in perfect agreement with the analytical 
solution. 
 

4.3.2 Channelling 
 
Description. Next we will investigate the dispersion properties of a 
fracture with variable aperture, and hence also transmissivity. The 
situation studied is outlined in Figure 4-6. The algorithm used for 
generating a fracture plane with a certain correlation structure in 
the aperture field is described in Kuylenstierna  and Svensson 
(1994). In that report the mathematical background, the computer 
code as well as applications can be found. Applications were 
however strictly two dimensional, i.e. only one plane was studied at 
the time. As part of the present project a method to “plant” the 
fracture plane into a three dimensional grid has been developed. 
This will allow for several fractures, with individual properties, to 
interact (i.e. fracture intersections). In the present test case only a 
single fracture will be studied, but the grid is three dimensional. 
The only reason for using a three dimensional grid is however that 
we want to test the method developed. A uniform grid with grid 
size 0.05 metre was used in this case. 
 
A series of simulations, where the properties of the aperture field 
are varied, will be presented. First a flow simulation is performed, 
then PARTRACK is used to simulate the transport of a cloud of 
particles injected at the middle of the inlet section, see Figure 4-6. 
 
Objective. There are two main purposes of this test case. First, we 
want to demonstrate that a fracture with varying properties can be 
planted into a three dimensional grid. Second, it is the intention 
to show how the dispersion properties, i.e. the effect on the 
breakthrough curve, may vary with the fracture properties. It 
should be noted that this is the first test case presented as a 
demonstration case. We will hence not attempt any verification, 
but instead emphasise that the flow and transport codes have the 
capacity to simulate the processes addressed. 
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Figure 4-6. Channelling in a fracture due to an aperture field with 
a certain correlation structure. The ellipses in the figure indicate a 
variable aperture. 
 
 
Results/Discussion. Altogether four simulations will be presented. 
First a reference case is defined and then variations of this case are 
studied. The four cases can be described as follows: 
 
– Reference case. The mean transmissivity, T, is equal to 10-6 

m2/s and its 10log  standard deviation 1.5. The mean aperture, 

Te , is calculate from 523.0428.1 TeT ×=  (Rhén et al., 1997), 

giving a mean aperture of 10-3 m . The 10log  standard deviation 

of Te  will be 0.78, due to the variation in T. The correlation 
length is set to 0.30 m and the distribution is isotropic. 

 
– Case A. The 10log  standard deviations for T and Te  are 

increased by a factor of 2.0. 
 
– Case B. The correlation length is reduced with a factor of 2.0. 
 
– Case C. The correlation structure is anisotropic, with the two 

correlation lengths 0.15 and 0.45 metres and with a tilt of 45º 
degrees to the main flow direction. 
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The conductivity distributions for these four cases are given in 
Figure 4-7. The distributions represent the cell layer that the 
fracture cuts through. Note that the reference case and Case A will 
have a similar appearance, but a different span in the conductivity 
values. The steady state flow field is then calculated for the four 
cases and PARTRACK is used to simulate the transport of a cloud 
of particles injected at the inlet boundary. The breakthrough curves 
at the outlet side can be studied in Figure 4-8. A striking feature of 
this figure is that the breakthrough curve for Case A is significantly 
delayed and more dispersed than the other curves. The explanation 
for this is probably that the injection point is located in an area with 
a smaller than average aperture. When the standard deviation is 
increased the injection point gets more isolated. The delay is hence 
due to the transport from the injection point to the first flow 
channel. Another realisation of the conductivity field could have 
placed a flow channel at the injection point. For such a situation, it 
is expected that case A should get a much shorter mean arrival 
time. It is thus not possible to draw any general conclusions about 
dispersion in a fracture with varying aperture, from a single 
realisation of the conductivity field. 
 
Conclusion. It has been demonstrated that a fracture with varying 
properties in the fracture plane can be represented in a three 
dimensional grid. It has further been shown how the breakthrough 
curve can be modified due to these varying properties. 
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 Figure 4-7. Channelling. Conductivity distributions for the reference case  
 (top) and Case A. 
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 Figure 4-7. Cont. Case B (top) and Case C.
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Figure 4-8. Channelling. Breakthrough curves for the four cases 
studied. 
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4.3.3 A fracture intersection 
 
Description. Above it was mentioned that two concepts are used to 
describe transport in a fracture intersection “complete mixing” and 
“streamline routing” (Park and Lee, 1999). It was also questioned if 
these concepts are adequate, as they seem to regard the problem as 
being two dimensional.  
 
In the previous test case, it was demonstrated that a fracture with an 
aperture distribution can be represented in a three dimensional grid. 
By specifying two crossing fractures with variable aperture, it 
should be possible to get a more accurate description of the mixing 
properties of the fracture intersection. It is easy to imagine that a 
channel in one fracture may continue in the crossing fracture. One 
channel may also continue through the crossing fracture unaffected, 
if it crosses an area of low transmissivity. It may hence be the case 
that mixing in a fracture intersection is more related to how flow 
channels interact, than to the two concepts mentioned above. 
 
In Figure 4-9, a situation with two crossing fractures is outlined. A 
pressure gradient will be applied in the x and y directions giving an 
equal flow in the two fractures. First the flow field is calculated 
then a cloud of particles is injected in one of the fractures. For a 
number of realisations of the aperture field, we study the number of 
particles that depart into the crossing channel. 
 
 

 
 
Figure 4-9. A fracture intersection. Outline of situation studied. 
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Objective. Demonstrate and discuss a method to analyse the 
transport properties of a fracture intersection. 
 
Results/Discussion. The two fractures are generated as two 
realisations, using the following specification: 
Mean transmissivity = 10-6 m2/s, standard deviation of 

0.1log10 =T , mean aperture = 10-3 m, standard deviation of 

5.0log10 =Te  and isotropic correlation structure with correlation 

length 0.3 metre. When the two fractures are represented in the 
grid, conductivities are added in the cells where both fractures are 
present. This can be seen in the two cutting planes shown in Figure 
4-10. At the fracture intersection a line of somewhat higher 
conductivities are found and there is also a tendency for a flow 
along the intersection. A closer examination of the flow field also 
shows that some flow channels start in one fracture and continues 
in the crossing one. 
 
In order to study the transport properties of the intersection, 
particles were injected at the inlet of one of the fractures and 
tracked through the domain. It was noted if a particle left the 
domain through the same fracture as it was injected in, or if it left 
through the crossing one. Using 105 particles and 20 realisations of 
the fracture geometries it was found that 48% of the particles 
departed to the crossing fracture at the intersection. Large 
variations between different realisations were however found and 
the result should therefore be interpreted as “about 50% departed to 
the crossing fracture”. 
 
The results presented are only intended to point to a way to analyse 
how a fracture intersection may cause a dispersion effect. It is 
suggested that the interaction between flow channels in the two 
fractures is the key to understanding the mechanism. The flow and 
transport codes used here have the capability to simulate many 
interesting variations of the present test case (anisotropy, different 
fracture orientations, etc).  
 
Conclusion. It is questioned if the traditional concepts of transport 
in a fracture intersection are adequate. As an alternative, it is 
suggested that it is the interaction between flow channels in the two 
fractures that should be in focus. A method to analyse the transport 
properties of a fracture intersection from this point of view has 
been demonstrated. 
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Figure 4-10. A fracture intersection. Conductivity and flow distribution 
in a plane aligned with one of the two fractures.
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4.4 Matrix diffusion and sorption 
 
Mass transport processes will be simulated with the multi-rate mass 
transfer method described earlier. Within the TRUE-project, 
McKenna (1999) has applied a multi-rate model to a tracer 
experiment at Äspö. We will use the parameters estimated by 
McKenna (1999), but the objective is not to apply PARTRACK to 
field data. Instead an intercomparison between PARTRACK and 
the multi-rate model as formulated by McKenna (1999) will be in 
focus. 
 

4.4.1 Multi-rate model for a one dimensional pathway 
 
Description. Once again, we will use the simple flow geometry 
given in Figure 4-1, i.e. a single fracture of constant aperture. There 
is no need to calculate the flow field for this case; the transport 
velocity is simply specified to 10-4 m/s. In the model used by 
McKenna, a constant dispersivity ( )m 2.0=α L  was used to 
simulate longitudinal dispersion. In the present simulations we 
assume that Taylor dispersion is the cause of longitudinal 
dispersion. In order to get the same longitudinal spread UL ×α  

should equal LD , as given by Equation 4-1; 11104.2 −×=mD  m2/s 

will give this effect. 
 
Breakthrough curves for a number of tracers were calculated by 
McKenna (1999) and parameters needed in the multi-rate model 
were estimated. In the present comparison we will choose three 
tracers (HTO, Sr85, Rb86) and use the parameters estimated by 
McKenna for these. The injection is specified as a Dirac pulse, i.e. 
all the tracer is injected instantaneously.  
 
Objective. Verify that PARTRACK predicts the same 
breakthrough curves as the multi-rate model by McKenna (1999), 
for a range of tracers with strongly varying sorptivity. 
 
Results/Discussion. The tracer input parameters are given in Table 
4-3. In this table totβ  denotes the total capacity coefficient, Rm the 

retardation factor and µ  and σ  the mean and standard deviation of 
the lognormal probability density function, defining the distribution 
of mass-transfer rate coefficients; see McKenna (1999) for further 
details. 
 
Table 4-3. Input parameters for the multi-rate model (from 
McKenna, 1999). 

Tracer βtot µ σ Rm 

HTO 6.65 -16.4 0.385 1.00 
Sr85 42.7 -20.7      4.40   0.92 
Rb85 98.1 -17.7      2.15 2.10 
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In PARTRACK these distributions are discretized into a number of 
boxes, each with its own capacity and mass transfer coefficient. 
Depending on the distributions of capacities and mass transfer 
coefficients, the number of boxes can vary from tens to hundreds. 
 
Comparisons of the breakthrough curves can be found in Figure  
4-11. It should be mentioned that the breakthrough curves 
calculated by PARTRACK were scaled to have the same integrated 
mass flux as the curves given by McKenna's model. It is anyway 
clear that PARTRACK, with the multiple particle state feature, is in 
close agreement with the model by McKenna. The difference is 
limited to early arrival times, which may be caused by the different 
concepts used to handle longitudinal dispersion. In PARTRACK it 
is attributed to Taylor dispersion, while the method by McKenna 
uses a more traditional diffusion-like parameterisation. 
 
 

 
 
Figure 4-11. The multi-rate model. Comparison of breakthrough 
curves for HTO, SR85 and Rb86. Dotted lines give the results from 
the model by McKenna (1999). 
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The comparisons presented are between two numerical models 
using different techniques to solve the same problem (McKenna 
uses advection-diffusion equations, while PARTRACK uses a 
particle tracking technique). It is of course encouraging that the two 
models give similar results, but there is also a further implication of 
the agreement. As McKenna (1999) has demonstrated that it is 
possible to model breakthrough curves from field experiments at 
Äspö with the multi-rate model, it is likely that also PARTRACK 
can be used to simulate these field experiments. 
 
Conclusion. It has been verified that the implementation of the 
multi-rate model into PARTRACK is correct. Breakthrough curves 
for three tracers have been compared with the corresponding curves 
from the model by McKenna (1999). Good agreement is found 
except for early arrival times, which may be due to different 
concepts used for mechanical dispersion.  
 
 

4.5 Simultaneously acting processes 
 
Description. So far dispersion processes have been described one 
by one and, when possible, it has been verified that a process has 
been correctly implemented in PARTRACK. It is now time to 
demonstrate that all processes can act simultaneously in a three 
dimensional fracture network. 
 
The simple fracture network shown in Figure 4-2 will be used, but 
now a third dimension will be added, see Figure 4-12. The first 
case considers advection with no dispersion and is hence similar, 
except for the dimensionality, to the test case described in Section 
4.2.2. Then different dispersion processes (Taylor dispersion, 
channelling and multi-rate diffusion) will be added one by one and 
the modification of the breakthrough curve will be studied. 
 
Objective. Demonstrate that PARTRACK can handle 
simultaneously acting dispersion processes in a three dimensional 
fracture network. 
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Figure 4-12. Simultaneously acting processes. Outline of situation 
studied. 
 
 
Results/Discussion. As mentioned, the starting point is a fracture 
network in three dimensions. As no dispersion effects are 
considered, it is only the split up at fracture intersections that cause 
a broadening of the breakthrough curve. Dispersion processes, with 
the following characteristics, are then added one by one:  
 
• Taylor dispersion with 1010−=mD  m2/s. 

 
• Variable aperture field. Isotropic correlation structure with 

correlation length = 0.3 m, 610−=T  m2/s, 310−=Te  m, 
( ) 5.1log10 =Tstd , ( ) 75.0log10 =Testd . All fractures have the 

same mean statistical properties. 
 
• Multi-rate diffusion. Values for HTO, see Table 4-3, are used. 
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The resulting breakthrough curves can be studied in Figure 4-13. 
When no dispersion processes are activated (solid curve) it is 
possible to identify the peaks that are due to the different pathways. 
When Taylor dispersion is added these peaks are masked. A 
variable aperture field gives some additional dispersion due to the 
channelling effect. The multi-rate diffusion process adds a long tail 
to the breakthrough curve. 
 
Conclusion. It has been demonstrated that PARTRACK can 
simulate all dispersion processes discussed simultaneously in a 
three dimensional fracture network. 
 
 

 
 
Figure 4-13. Simultaneously acting processes. Breakthrough curves. 
            Advection only. 
            Taylor dispersion added. 
            Variable aperture added. 
            Multi-rate diffusion added. 
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5 Discussion and summary 
 
 
 
 
 
From the previous section it is clear that PARTRACK can simulate 
many of the processes believed to be important for transport and 
dispersion of a solute in a sparsely fractured rock. It is then relevant 
to evaluate if PARTRACK is ready for, and suitable for, large scale 
real world applications. To facilitate this evaluation the key 
features, limitations and possible further developments of 
PARTRACK will be listed. 
 
Key features. The capability and potential of PARTRACK is 
linked to a number of key features of the code: 
 
• Full integration with the flow model presented in Svensson 

(1999a, b). In particular the conductivity field in the flow model 
is expected to be valuable for macro-dispersion. The flow 
model also calculates the kinematic porosity (Svensson, 2001), 
based on the porosity given for each fracture and fracture zone. 
PARTRACK also uses the same staggered grid arrangement as 
the flow model. 

 
• PARTRACK is carefully verified by comparisons with 

analytical solutions and other codes (multi-rate diffusion 
model). 

 
• PARTRACK can simulate Taylor dispersion in a correct and 

novel way (using the multiple particle states). Note that the 
classical way, using a longitudinal dispersion coefficient, may 
give transport upstream, i.e. against the flow (see de Marsily 
(1986), p. 242-243). The present method does not have this 
shortcoming. 

 
• Dispersion due to channelling in a fracture or fracture zone 

can be simulated. An arbitrary number of fractures with their 
individual aperture correlation structure and orientation can be 
described in a three dimensional high resolution grid. 

 
• PARTRACK is probably the first particle tracking model that 

can simulate Taylor dispersion, sorption and matrix diffusion 
simultaneously in a three dimensional flow field, as represented 
in a continuum model. 
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• It is effective in terms of computer time and storage. In many 
of the test cases presented 100 000 particles were used; the 
simulation time was on the order of a few minutes on a personal 
workstation. 

 
Limitations. No major limitations have been identified so far. This 
may however change when field scale applications are attempted. 
Generally speaking, it is obvious that all uncertainties about input 
data (specification of the fracture network, porosities, boundary 
conditions, etc) will also cause an uncertainty in the transport 
simulations. This is however not related to the methods used in 
PARTRACK. Of similar nature is the necessity to introduce a grid 
and the assumptions related to the grid scale, ∆ . However, a 
genuine limitation of PARTRACK is that particles will not diffuse 
into a dead end fracture system as the particles will always “leave a 
cell with one of the outgoing flows”. A dead end fracture system 
has no flow and will hence receive no particles. On the subgrid 
scale the multi-rate diffusion model will however simulate this 
effect. 
 
Further developments. No further tests or developments are 
suggested at the present time. Instead it is suggested that 
PARTRACK should be applied to field scale situations. 
Comparisons with field experiments are of course of interest,  
but it may also be of value to make tests of a more generic nature, 
i.e. dispersion characteristics of a realistic fracture network. 
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6 Conclusion 
 
 
 
 
 
It has, in the author's view, been demonstrated and verified that 
PARTRACK is an adequate framework for simulating transport 
and dispersion of a solute in a sparsely fracture rock. This 
statement is based on the results from an extensive range of test 
cases, which consider all major processes believed to be important 
for the problem. 
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Title of SKB purchase order: PARTRACK-Testcases, NUMMOD.  
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 Operator of computer and software: US Company: CFE AB 
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 Operative system: TRUE64 UNIX 
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 Compiler: DIGITAL FORTRAN 
 Postprocessor name: Manual: 
 Postprocessor name: PHOTON Manual: 
 Subroutine: Report: 
 Subroutine: Report: 
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 Distributor: Not compiled in a single report. 
 Report/article: 
 Report/article: 
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 Report/article: See Svensson (1999a), (1999b) and Svensson (2001), as  
 referenced in this report. 
 Report/article: 
 
Input data 
 Ref: Rhén et al. (1997), see reference list. 
 Ref: 
 Ref: 
 Ref: 
 Data file name: Data of issue:  Stored at: 
 Data file name: Data of issue:  Stored at: 
 Data file name: Data of issue:  Stored at: 
 
Results 
 Report/article: All given in this report. 
 Report/article: 
 Data file name:   Stored at: 
 Data file name:   Stored at: 
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Condensed description of groundwater flow model. 
 
A particle tracking algorithm for transport and dispersion of solutes 

in a sparsely fractured rock 
 

Scope 
                             Verification and demonstration 
 

                                      Process description 
Conservation of mass, volume and momentum (Darcy´s law). 

Tracking of particles 
               Concepts                  Data 

Geometric framework and parameters 
 
Domain divided into 
computational cells to which 
conservation laws are applied.  
 

Domain size: varies 
Computational grid: variable 
number of cells 
 

                                     Material properties 
 

Transmissivities. 
Aperture. 
Porosity 

Data from Rhén et al. (1997). 
 

                                  Spatial assignment method 
 

Cell conductivities are 
calculated from a fracture 
network. 
Porosity related to transmissivity 
 

No field data is used. 

                                    Boundary conditions 
 
Zero flux or prescribed pressure. 
 

No field data is used. 

                                         Numerical tool 
                                           PHOENICS 

 
                                       Output parameters 
                                 Flux, pressure, particle tracks and positions. 
 

 
 
 
 
 
 


