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ABSTRACT 

This study evaluates the parameter sensitivity and the conservativeness of the 
methodology outlined in TR 99-03 (La Pointe and others, 1999). Sensitivity analysis 
focuses on understanding how variability in input parameter values impacts the 
calculated fracture displacements. These studies clarify what parameters play the 
greatest role in fracture movements, and help define critical values of these parameters 
in terms of canister failures. The thresholds or intervals of values that lead to a certain 
level of canister failure calculated in this study could be useful for evaluating future 
candidate sites. Key parameters include: 

1. magnitude/frequency of earthquakes; 

2. the distance of the earthquake from the canisters; 

3. the size and aspect ratio of fractures intersecting canisters; and 

4. the orientation of the fractures. 

The results of this study show that distance and earthquake magnitude are the most 
important factors, followed by fracture size. Fracture orientation is much less important. 
Regression relations were developed to predict induced fracture slip as a function of 
distance and either earthquake magnitude or slip on the earthquake fault. These 
regression relations were validated by using them to estimate the number of canister 
failures due to single damaging earthquakes at Aberg, and comparing these estimates 
with those presented in TR 99-03. 

The methodology described in TR 99-03 employs several conservative simplifications 
in order to devise a numerically feasible method to estimate fracture movements due to 
earthquakes outside of the repository over the next 100,000 years. These simplifications 
include: 

1. fractures are assumed to be frictionless and cohesionless; 

2. all energy transmitted to the fracture by the earthquake is assumed to produce 
elastic deformation of the fracture; no energy is diverted into fracture propagation; 
and 

3. shielding effects of other fractures between the earthquake and the fracture are 
neglected. The numerical modeling effectively assumes that the rock is 
completely intact between the fault on which the earthquake occurs and the 
fracture that intersects the canister. 

As detailed in TR 99-03, these assumptions are conservative in that the calculated 
displacements are larger than they would be if the simplifications had not been made. 
Conservativeness was quantified by using an advanced three-dimensional fracture 
mechanics code, FRANC3D (Cornell University Fracture Group, 1998) together with 
POLY3D (Thomas, 1993). The results show that the probability of-fracture movements 
exceeding a displacement threshold of 0.1 m is considerably less than that reported in 
TR 99-03. 



SAMMANFATTNING 

Foreliggande studie utvarderar parameterkanslighet och graden av konservatism i den 
metodik som anvands i SKB TR 99-03 (La Pointe m fl, 1999). Kanslighetsanalysen 
fokuseras pa att forsta hur variabiliteten i indata paverkar de beraknade spricknatverks­
forskjutningama. Studiema tydliggor vilka parametrar som har storst betydelse vid 
sprickrorelser och hjalper till att definiera kritiska varden for dessa parametrar med 
hansyn till risken for kapselbrott. De gransvarden eller intervall av varden som leder till 
given grad av kapselbrott i foreliggande studie skulle kunna anvandas for att utvardera 
framtida kandidatomraden. Viktiga parametrar inkluderar: 

1. magnitud och frekvens hos jordbavningar, 

2. avstandet mellan jordbavningen och kapslama, 

3. storlek och langd-bredd forhallande hos sprickor som skar kapselhalen, och 

4. orienteringen hos sprickoma. 

Resultaten i denna studie visar att avstand och jordbavningsmagnitud ar de viktigaste 
faktorema foljt av sprickstorlek. Sprickorientering spelar mycket mindre roll. 
Regressionssamband har tagits fram for att prediktera inducerade sprickforskjutningar 
som funktion av avstand och, endera, jordbavningsmagnitud eller jordbavningsfor­
skjutning. Regressionssambanden validerades genom att anvanda dem for att skatta 
antalet kapselbrott for enskilda, skadande, j ordbavningar i Aberg och jamfora dessa 
skattningar med de skattningar som presenterades i TR 99-03. 

Metodiken, som beskrivs i TR 99-03, bygger pa ett flertal konservativa forenklingar for 
att kunna ta fram en numeriskt andamalsenlig metod att skatta sprickrorelser pa grund 
av jordbavningar vid sidan av djupforvaret under de kommande 100 000 aren. Dessa 
forenklingar inkluderar: 

1. sprickoma antas sakna friktion och kohesion, 

2. all energi som 6verfors till sprickan franjordbavningen antas orsaka elastisk 
deformation av sprickan; ingen energi tas upp som sprickpropagering; och 

3. skyddande effekter hos andra sprickor, som finns mellanjordbavningen och 
sprickan, forsummas. Den numeriska modelleringen bygger helt och hallet pa 
antagandet att berget ar fullstandigt intakt mellan forkastningen, dar jordbav­
ningen sker, och sprickan vid kapselhalet. 

Som beskrivits i TR 99-03 ar ovanstaende antaganden konservativa i den mening att 
beraknade forskjutningar ar storre an de skulle vara om forenklingama inte hade gjorts. 
Graden av konservatism har kvantifierats med hjalp av en avancerad tredimensionell 
sprickmekanisk programkod FRANC3D (Cornell University Fracture Group, 1998) 
tillsammans med POLY3D (Thomas, 1993). Resultaten visar att sannolikheten for 
sprickrorelser storre an troskelvardet 0,1 mar betydligt mindre an vad som rapporterats 
i TR 99-03. 
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1 INTRODUCTION 

A methodology to estimate the movements of fractures intersecting canisters due to 
earthquakes was devised in TR 97-07 (La Pointe and others, 1997). It was subsequently 
further developed and applied to the three generic sites, Aberg, Beberg and Ceberg in 
TR 99-03 (La Pointe and others, 1999). The estimates of movements and potential 
canister failures resulting from these movements were for a 100,000 year time period, 
and were based on the earthquake magnitude-frequency relations established for the 
geographic regions in which these three site lie and the site structural geology. Canister 
failure risk was expressed by several different measures: 

the number of damaging earthquakes at each site over the 100,000 period; 

the percentage of canister failures expected for each damaging earthquake; 

the probability of canister failures due to the cumulative slip of multiple, 
non-damaging earthquakes; 

the probability of canister failure due to damaging earthquakes; and 

the probability of canister failure due to both damaging earthquakes and 
cumulative effects. 

The term damaging earthquake is used in TR 99-03 to refer to a single earthquake that 
induces 0.1 m or more displacement on any fracture intersecting a canister. 

In addition, the horizontal distance between the center of the earthquake rupture and the 
fractures whose slip exceed the threshold 0.lm displacement was studied for Ceberg. 
The results showed that most damaging earthquakes (>95%) occurred within a 
kilometer. 

Although the probability of induced slips exceeding 0.1 m was very low, and many 
credible sets of parameter assumptions produced no canister failures, a few sets of 
parameter value assumptions led to one or two canisters over the 100,000-year 
performance period. The question arises as to whether these one or two failures are 
mostly a result of the underlying conservativeness of the method or not. 

The methodology described in TR 99-03 employs several conservative simplifications 
to make the numerical calculations feasible. These simplifications include (Figure 1-1 ): 
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Boundary Conditions 

Dynamic Cyclical 
Loading 

Static Instantaneous 
Displacement 

Dynamic weakening 
effects bounded by 
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All energy goes into 

elastic deformation of 
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through non-brittle rock 

deformation 

Fracture Geology 
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many scales with 
frictional surfaces 

3D Fractures at many 
scales with 

frictionless surfaces 

Calculate 
displacements at 

fracture centers using 
LEFM, which maximizes 
slip for applied stress 

Figure 1-1 Conservative simplications used in TR 99-03 for estimating the slip on 
fractures induced by earthquakes 

fractures are assumed to be frictionless and cohesionless; 

all energy transmitted to the fracture by the earthquake is assumed to produce 
elastic deformation of the fracture; no energy is diverted into fracture propagation; 
and 

shielding effects of other fractures between the earthquake and the fracture are 
neglected. The numerical modeling effectively assumes that the rock is 
completely intact between the fault on which the earthquake occurs and the 
fracture that intersects the canister. 

TR 99-03 describes how these assumptions simplify the numerical modeling process 
and also lead to conservative estimates of displacement. Since these conservative 
calculations predicted some canister failures, it would be useful to quantify how 
conservative, in practice, these estimates might actually be. 

The work reported in TR 97-07 and TR 99-03 illustrated how induced fracture slip 
related, in a general sense, to such parameters as earthquake magnitude, distance 
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between the earthquake and the fracture, and fracture size. These general tendencies 
suggested that a more systematic analysis of parameter sensitivity could enhance the 
methodology's usefulness. For example, a better understanding of sensitivity could 
make it possible to derive criteria for ranking sites in terms of easily measurable 
parameter values like regional earthquake source parameters, the size of nearby 
lineaments, or the size distribution of fractures within the repository block. 
Establishment of threshold values for these parameters from the sensitivity analyses 
might also provide tools for preliminary site screening or risk evaluation. 

For these reasons, the current study focuses on evaluating the parameter sensitivity and 
the conservativeness of the methodology outlined in TR 99-03. Because some of the 
conclusions from the sensitivity analysis are relevant to conclusions drawn from the 
analysis of the conservativeness of the modeling assumptions, the sensitivity analysis is 
presented first. The strategy for evaluating sensitivity and conservativeness is described 
in the next two sections. 

1.1 Sensitivity Analysis 

1.1.1 Background 

Sensitivity analysis focuses on understanding how variability in input parameter values 
impacts the calculated fracture displacements. The numerical modeling approach 
described in TR 99-03 relies upon the assignment of values for several parameters. The 
first series of parameters have to do with the magnitude and frequency of future 
earthquakes, which is described by two parameters, a and b, according to the equation: 

Log( N) = -bm + Log( a) 

where N is the number of earthquakes in a specified length of time, 

m is the magnitude, and 

a and b are parameters that are estimated from measured earthquakes. 

The parameter, b, describes the ratio of the number oflarge magnitude earthquakes to 
small magnitude earthquakes. As b decreases, the proportion of large earthquakes 
increases. The parameter, a, describes the areal density of all earthquakes. 

(1) 

Values of a and b have been calculated for various regions of Sweden, as well as for 
many other surrounding areas. TR 99-03 utilized four different sets of a and b values to 
assess risk at the generic sites. The results indicated that lower b values or higher a 
values lead to higher canister failures. 

The numerical code Poly3D (Thomas, 1993) is used to estimate the induced slips on 
fractures intersecting canisters for each future earthquake in TR 99-03. Poly3D requires 
specification of several parameter values having to do both with the fractures 
intersecting canisters, and also the earthquake rupture itself. 
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Each earthquake is represented as an instantaneous displacement on a plane represented 
by a rectangle (Figure 1-2). The rectangle has a horizontal extent and a down-dip extent, 
an orientation and a location. The instantaneous displacement is assumed to be uniform 
over the entire rectangle. 

Wells and Coppersmith (1994) showed that the horizontal extent, the down-dip extent 
( often termed the width), and the instantaneous displacement are strongly correlated 
with the moment magnitude and slip type. Thus, specification of the earthquake 
magnitude makes it possible to specify parameter values for the rupture surface size and 
instantaneous displacement, and this approach was adopted in TR 99-03. The relations 
between these parameters and earthquake moment magnitude sometimes differ by fault 
type. Only the regressions derived for strike-slip faults are used in this report. This is 
because the strike-slip regressions predict the largest slip for earthquakes of a particular 
magnitude (see Figure 2-5, TR 97-07) except at the largest magnitudes. At the largest 
magnitudes, reverse faults have slightly larger slips but these predictions are not 
significant at the 95% probability level, and thus are not used. 

The regression relations for strike-slip faults are (Wells and Coppersmith 1994): 

log(AD) = 0.90 * M - 6.32 

log(MD) = 1.03 * M - 7 .03 

4 
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Key Parameters: Use: 

SRL vs. M Estimate M from SRL 
Displacement vs. M Estimate Displacement from M 
RW vs. M J [ Determine fault length and width 
RLD vs. M t-------, as a function of M 

Where: 

M = 2/3 log Mo - 10.7 (Hanks and Kanamori, 1970) 
Mo=µ x D x RA 
µ = shear modulus 
D = average displacement 
RA= rupture area 

Figure 1-2 Parmeters used to describe an earthquake rupture 

log(RW) = 0.27 * M -0.76 

log(RLD) = 0.62 * M - 2.57 

where M is the moment magnitude, AD is average displacement, MD is maximum 
displacement, R W is downdip rupture width, and RLD is subsurface rupture length. 

An additional regression was carried out in TR 97-07 (Table 2-4, pg. 24) to relate 
magnitude and subsurface displacement (SD). For strike-slip faults, the relation was 
found to be: 

log(SD) = 0.47 * M - 2.95 

5 

(4) 

(5) 

(6) 



Table 1-1 shows the predicted parameters for earthquakes between Magnitude 2 and 8. 
The regression relations are based on medium to large earthquakes, and so their 
extrapolation of smaller magnitude earthquakes is uncertain. 

Table 1-1 Rupture parameters of strike-slip faults (from Wells and Coppersmith, 
1994, and TR-97-07, Table 2-3b & Table 2-4) 

Maximum Surface Subsurface 
Average Surface Slip Slip (m) Slip Width Length 

Magnitude (m) (m) (km) (km) 
2 3.02E-05 Maximum Surface 0.010 0.60 0.05 
2.5 8.51 E-05 Slip regression not 0.017 0.82 0.10 
3 2.40E-04 significant for these 0.029 1.12 0.19 
3.5 6.76E-04 magnitudes 0.050 1.53 0.40 
4 1.91E-03 0.085 2.09 0.81 
4.5 5.37E-03 0.146 2.85 1.66 
5 1.51E-02 0.251 3.89 3.39 
5.5 0.04 0.04 0.43 5.31 6.92 
6 0.12 0.14 0.74 7.24 14.13 
6.5 0.34 0.46 1.27 9.89 28.84 
7 0.95 1.51 2.19 13.49 58.88 
7.5 2.69 4.95 3.76 18.41 120.23 
8 7.59 16.22 6.46 25.12 245.47 

In TR 99-03, large magnitude earthquakes were situated on existing lineaments, while 
smaller earthquakes were assigned random spatial locations and orientations. 

The relation between earthquake magnitude and slip may be somewhat more complex 
than the power law functions shown in Equations 2, 3, and 6. For eample, some 
researchers (e.g. Davison and Scholz, 1985; Scholz and Aviles, 1986) have found that 
small earthquakes may have magnitude/frequency parameter values that differ from 
those of large earthquakes in the same fault zone. They explain this difference on the 
basis of the seismogenic thickness and factors that may influence stress drop differently 
for large ruptures vs. small ruptures. As a result, the displacement/magnitude relations 
might be different between earthquakes that rupture the entire seismogenic thickness of 
the lithosphere from those that do not. 

However, the data compiled and analyzed by Wells and Coppersmith (1994) suggest 
that the magnitude/slip relations do not have a discontinuity at or near magnitude 7 .0 
earthquakes. The regressions between magnitude and displacement reported by Wells 
and Coppersmith (1994) are significant at the 95% level. Their database includes 
earthquakes with moment magnitudes from 5.2 to 8.1. There is no obvious break in the 
data or bad fit in the regression lines corresponding to magnitude 7 .0 or thereabouts. For 
this reason, Wells and Coppersmith's regressions are applied to earthquakes greater than 
magnitude 7 .0 

An earthquake is rarely a single rupture event. It is often accompanied by foreshocks 
and aftershocks that may be of magnitudes significant for considerations of fracture 
movements. It is common practice when analyzing the main earthquake event and its 
aftershocks to try to de-convolve the record into separate events if at all possible. Thus, 
the magnitude of the main shock and significant aftershocks are often identified and are 
given calculated magnitudes ( e.g. Slunga, 1985). The a and b parameter values thus take 
into account measurable foreshocks and aftershocks. 
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The major difference between foreshocks or aftershocks and other earthquakes is that 
aftershocks and foreshocks are correlated in time with the main shock, but were 
assumed to be uncorrelated in the modeling reported in TR 99-03. However, the net 
displacement is not a function of the time interval between events, only the number and 
magnitude of events over the 100 000 year time-period, and the orientation of the fault 
and fractures. The Poissonian temporal assumption is not strictly correct when talking 
about the temporal relation between a main shock and after shocks, but (1) the time 
intervals have no impact on the final calculations, and (2) the Poissonian assumption is 
the one commonly used in earthquake engineering to estimate seismic risk. For these 
reasons, the results obtained using the methodology described in TR 99-03 should not 
be greatly affected by treating foreshocks and aftershocks as temporally-independent 
events. 

The fractures intersecting canisters are described as polygons. The polygons have 
orientations, sizes and locations. These polygons were created by creating a three­
dimensional Discrete Fracture network (DFN) model from measurements of fracture 
geometric parameters appropriate for each site, and combining it with a canister 
emplacement hole model for each site to determine which of the fractures intersected 
canisters. Not all canisters had fractures intersecting them. Moreover, bigger fractures 
and those with certain orientations were more likely to intersect the canisters, and as a 
result, the size and orientation statistics that characterize the canister fractures are a 
biased subset of the overall fracture population. 

The displacement on fractures is often classified according to one of three modes (see 
inset, Figure 1-3). Mode I displacement is normal to the fracture surface and results in a 
change of fracture pore volume. Mode II displacement consists of shear displacement in 
the direction perpendicular to the leading edge of the fracture. Mode II displacements 
are the type of displacements that are of concern for the fractures intersecting canisters 
in this study, and represent the displacements expected on a fault rupturing due to an 
earthquake. Mode III displacements consist of shear in the plane of the fracture in the 
direction parallel to the leading edge of the fracture. 

Analysis of the modeling results in TR 99-03 and the numerical simulations performed 
in TR 97-07 indicated that the distance between the earthquake and the canister was an 
important factor in the induced displacement. Earthquake impact diminishes with 
increasing distance. For the Ceberg example, earthquakes more than a few kilometers 
produced very little induced slip, even for very large magnitude earthquakes. TR 99-03 
also showed that the overall percentage of canister failures is a complex function of at 
least two competing factors: while the impact of an earthquake varies inversely with 
distance, the number of earthquakes (assuming random spatial locations) increases with 
the square of the distance. These two competing considerations tend to define a zone 
where most of the damaging earthquakes occur. For a particular set of earthquake 
parameters and fracture parameters at Ceberg, this zone ranged from about 400 m to 
about 1500 m. 

In both TR-97-07 and TR-99-03 the distance from the center of the fault responsible for 
the earthquake (the epicenter) to the canister was measured. In this report, the distance 
from the earthquake tip is considered to be more fundamental for two reasons. First, as 
shown in Figure 1-3, the tip is the locus of the maximum elastic strain produced by 
earthquake slip (Pollard and Segall, 1987). In fact, the minimum elastic strain in the 
rock adjacent to the earthquake rupture occurs at the earthquake rupture center. Second, 
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depending on the orientation of the earthquake fault, the shortest distance to the 
earthquake will be overestimated by the distance to the center, especially for large 
events. For example, a magnitude 7.5 earthquake which would occur on a 120 km long 
fault (Table 1-1) with a center at a distance of 70 km would have a tip just 10 km from 
the repository. To avoid this problem, the distance to the tip of the earthquake is 
specified in the new simulations, and the rupture geometry is set such that this is also 
the closest point to the canister. Simulations are also run specifying the earthquake 
centroid to demonstrate a possible difference between the method used in this report and 
the previous two reports. 

The size of the fracture intersecting the canister also plays a role. Small fractures with 
the same properties and applied stresses deform less than larger fractures. Thus, larger 
fractures present a greater potential risk than smaller fractures. 

The final parameter for calculating induced slip is the orientation of the target fracture. 
Some fractures may be oriented such that the loads applied to them by an earthquake are 
applied primarily normal to the fracture plane, producing little if any slip. Other 
fractures may be oriented so that the shear stresses are maximized on the fracture, 
producing much greater slip. In the sensitivity analysis below, the orientation of the 
target fracture is specified by the trend and plunge of its pole. 

These considerations and general relations suggest the following strategy to 
systematically evaluate parameter sensitivity in the modeling approach undertaken in 
TR 99-03. 

1.1.2 Strategy 

The sensitivity analyses are separated into two tasks. Task 1.1 describes the results of 
the sensitivity analyses for the input parameters. Task 1.2 describes the comparison of 
canister failure predictions made by using the relations established in Task 1.1 with 
results published in TR 97-07 and TR 99-03, in order to determine the usefulness of the 
sensitivity analyses for site screening or site comparison purposes. 

Task 1.1 consisted of two series of investigations concerning the parameters described 
in Section 1.1.1. First, earthquake magnitude, distance and azimuthal angle between the 
nearest earthquake rupture tip and the fracture centroid, fracture orientation, and fracture 
size were varied simultaneously to roughly determine the relationships between the five 
variables and induced slip. These simulations required 10,780 runs of Poly3D for both 
strike-slip movement and reverse movement. Second, simulations were made in which 
three variables were held constant and just two varied. In the end, the rough simulations 
proved to be detailed enough to calculate useful empirical relations. Table 1-2 
summarizes the parameters varied for the detailed simulations, the range of values used 
for each variable, and the number of steps for both the initial simulations and the 
detailed simulations. 
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Figure 1-3 Contour of maximum shear stress in the (x1, x2) plane for mode II crack 
subjected to unit driving stress (Pollard and Segall, 1987). "a" is the fracture radius, 
"x1" is the vertical distance perpendicular to the fracture, and "x2" is the distance from 
the fracture centroid in the direction of fracture propagation 

In all simulations, the earthquake rupture is a north/south-striking, vertical plane, since 
simultaneously varying both fracture and rupture orientation is redundant. The azimuth 
parameter refers to the horizontal angle relative to North of a vector beginning at the 
rupture tip and ending at the fracture centroid. 

The results can also be easily applied to a vertical plane with any orientation. The top of 
the rupture is assumed to be at the ground surface, 500 m above the repository fracture. 
The length (parallel to the earth's surface) and width (perpendicular to the earth's 
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surface) and instantaneous displacement are determined by the magnitude, using the 
regression relations as described in the previous section (Table 1-1 ). 

Table 1-2 Ranges of parameters for sensitivity analysis 

Parameter 
Earthquake Magnitude 
Distance 
Fracture Size 
Azimuth 

Range 
4 to 8 
10 m to 100 km 
1 m to 1000 km 
0° to 90° 

Fracture Orientation both 0° to 90° 
(Pole trend and plunge) 

# Steps # Steps 
Initial Detailed 

7 
11 
4 
5 

7 

21 

7 

49 

Parameter varied in 
detailed runs 

Azimuth 

Distance & Fracture 
Orientation 
Azimuth 

Task 1.2 focuses on the usefulness of the relations and thresholds deduced from Task 
1.1 for purposes of site screening or site comparison. This Task uses the relations to 
estimate some of the performance measures calculated in TR 99-03, and compares them 
to the results shown in TR 99-03. Task 1.1 results can be used to predict certain 
performance measures in two different ways. The first might be most appropriate for 
relative ranking of sites with little actual site reconnaissance data; the second more 
appropriate for providing a coarse estimate of canister failures. 

The first method, for ranking alternative sites, is as follows: 

1. Calculate the maximum induced slip as a function of both earthquake magnitude 
and distance between the rupture tip and the fracture intersecting the canister for a 
fracture of constant size. The result of these series of calculations is a lookup 
table, which gives a maximum induced slip for any combination of earthquake 
magnitude and distance. 

2. Next, calculate the number of earthquakes expected to occur for a given region 
(100 km circle) around the repository over a given time frame (100,000 years). If 
the spatial pattern of earthquakes is assumed to be spatially random, then the 
probability of an earthquake occurring at a distance r from the repository varies 
as r2• The number of earthquakes is determined from the a and b parameters, and 
the ratio of the area of interest (a circle of 100 km radius) to the area over which 
the a and b parameters were calculated. The results can be put into a table that 
describes the number of expected earthquakes as a function of both distance and 
magnitude. 

3. These two tables can be multiplied. The result is the total slip for each class of 
earthquake magnitude and distance for the reference fracture. 

4. Sum the slips for each magnitude-distance class to estimate the total induced slip 
for all of the future earthquakes. This represents the total possible induced slip on 
a single target fracture of a given reference size. 

5. This total induced slip could be adjusted for other fracture sizes by multiplying the 
slip by the ratio of desired fracture radius divided by the reference fracture radius. 

6. In order to rank alternative sites, the induced slip might be adjusted to reflect the 
mean fracture size and the mean fracture multiplied by the fracture intensity, if 
either of these quantities is known. This measure would provide an index of 
earthquake risk, but not an actual calculation of canister failure. 
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More elaborate calculations could be undertaken to estimate canister failure potential. 
These could be carried out as follows: 

1. From knowledge of a and b values, it is possible to compute the number of 
earthquakes of a given magnitude for a 100,000 year time period and a circular 
area of radius 100 km around the repository site. The locations of the earthquake 
are assumed to be random. The fracture sizes and the relative orientation between 
fault and fractures are not yet specified. 

2. Determine a target fracture size distribution. Assume that the probability of a 
fracture intersecting a canister is proportional to its radius, which is true for 
circular fractures. Using the size distribution reported in TR 99-03, calculate the 
target size fracture distribution. 

3. Use the results reported in TR 99-03 to estimate what percentages of these 
fractures actually intersect canisters. 

4. Use the relation developed in the sensitivity analyses to estimate the 
displacements on these fractures for worst case and best case orientation models. 

5. Modify these results using results from the orientation sensitivity analysis to 
weight the true relative orientations properly. 

6. Calculate the mean percentage of failed canisters, the mean displacements, and the 
number of damaging earthquakes. Compare results to those reported in TR 99-03. 

If the comparison is successful, then this six-step methodology can be used to quickly 
estimate earthquake risk from reconnaissance data without using the numerical models 
or having to undertake extensive site investigations. 

In order to apply this method, it is necessary to specify the magnitude/frequency of 
earthquakes. 

Table 1-3 shows the number of earthquakes predicted for magnitudes between 3 .5 and 
8 .0 within a 100 km radius of a generic repository using the same a and b parameters as 
in TR 99-03. In this table, A2.4 represents the number of earthquakes with magnitudes 
greater than or equal to magnitude 2.4 expected to occur in one year within the area of 
the earthquake catalog. The magnitude/frequency parameter values used in this and 
previous studies were taken from work by Kijko and others (1993), who used a 
reference magnitude of 2.4 for their calculations.bis the Gutenberg-Richter parameter 
(Equation 1) that essentially describes the proportion of large magnitude earthquakes to 
small magnitude earthquakes. As b decreases, there are proportionally more large 
earthquakes. The value of a shown in Equation 1 can be calculated from A2.4, b and the 
reference magnitude. Not all of the a and b parameter values evaluated in TR 99-03 
were selected. The two sets of earthquake parameters that were selected constitute the 
two sets that both pertain to at least one of the generic sites, and are also likely to cause 
the greatest number of large earthquakes. The parameters for Northern Sweden produce 
fewer large earthquakes, and those related to Lake Viinern do not apply to any of the 
three generic sites. 

The numbers listed in the columns for the Gulf of Bothnia and for Southern Sweden are 
the probability that an earthquake with a magnitude in the range indicated will occur in 
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100,000 years (from Table 4-3, TR-99-03). The values in this Table form the basis of 
the calculations reported in Chapter 2.2. 

Table 1-3 Number of earthquakes expected within a 100 km radius over 100,000 
years (from Table 4-3 in TR-99-03). Values less than 1.0 imply that the recurrence interval 
is greater than the 100,000-year time period, suggesting that there may not be an 
earthquake in that magnitude within the prescribed area and time period. 

Magnitude 
3.5-4.0 
4.0-4.5 
4.5-5.0 
5.0-5.5 
5.5-6.0 
6.0-6.5 
6.5-7.0 
7.0-7.5 
7.5-8.0 

Gulf of Bothnia Southern Sweden 
b = 1.26, A2.4 = 2.4 b = 1.04, A2.4 = 1.8 
1272 1955 
298 591 
70 178 
16 
3.84 
0.8 
0.21 
0.05 
0.012 

54 
16 
5 
1.48 
0.45 
0.14 

1.2 Conservativeness 

1.2.1 Background 

In TR 97-07 and TR 99-03, the methodology for computation of fracture slip simplified 
the mechanical processes that occur in order to facilitate the intensive numerical 
computations required. These simplifications are conservative in the sense that 
computed induced slips on the fractures intersecting canisters are greater than would be 
expected had the simplifications not been made. These simplifications include: 

1. All energy transmitted to the fracture by the earthquake is assumed to produce 
elastic deformation of the fracture; no energy is diverted into fracture propagation; 

2. Shielding effects of other fractures between the earthquake and the fracture are 
neglected. The numerical modeling effectively assumes that the rock is 
completely intact between the fault on which the earthquake occurs and the 
fracture that intersects the canister; and 

3. Fractures are assumed to be frictionless and cohesionless. 

Each of these conservative assumptions is treated as a separate Task, and the 
methodologies for estimating the conservativeness of each is described in the remainder 
of this section. 

1.2.2 Fracture Propagation 

Fracture propagation effects are evaluated in Task 2.1. Mechanical analysis of rock 
fracture indicates that for a low state of stress, a fracture will deform. However, at a 
higher state of stress, the rock surrounding the fracture will collapse and the fracture 
will propagate. Since the previous work assumed that all energy applied to fractures 

12 



intersecting canisters was expended as slip without propagation, it is worthwhile to 
estimate the conservativeness of this approach. 

This can be accomplished by calculating the maximum shear displacement possible 
before any fracture propagation. In this way it is possible to better understand how 
conservative the assumption of all energy being dissipated into slip might be. In order to 
assess this conservativeness, it is not necessary to carry out simulations of the 
complexity of those in TR 99-03, in which there were thousands of fractures. Rather, the 
current study focuses on the simple case of a penny shaped-fracture subjected to a 
loading stress (Figure 1-4 ). The angle between the fracture plane and the loading stress 
is 45°, an angle that maximizes shear stress on the plane. Since displacement is a 
function of fracture size, a sensitivity analysis of the maximum shear displacement as a 
function of the fracture radius was carried out to determine the maximum shear 
displacement that is likely to take place prior to propagation as a function of fracture 
size. 

The methodology of the evaluation of the maximum shear displacement in a fracture 
plane before any propagation is based on the comparison of two distinct cases: the pure 
propagation and the pure shear displacements in a similar fracture. 

The energy required to propagate an existing fracture can be used to estimate the 
amount of fracture slippage that might occur prior to fracture propagation. First, the 
minimum amount of energy required to initiate fracture propagation is determined. This 
energy is a function of the crack geometry, the stress applied to the rock, and the 
material properties of the rock. It is calculated through a numerical simulation in which 
the stress applied to the fractured rock is increased until the fracture begins to propagate. 
Propagation initiation is determined by a failure criterion that is a function of the stress 
intensity factor around the fracture, as described later in this section. The energy 
necessary to initiate fracture propagation is denoted as Ep. It is assumed that all of the 
energy up to Ep is dissipated as fracture slip. 

A second numerical calculation is carried out to estimate the maximum fracture slip 
prior to propagation. This is accomplished by applying the same critical stresses that 
produced Ep to an identical fracture, but in this case, there is no propagation. All of the 
crack energy goes into normal and shear displacement of the fracture walls. This 
displacement represents the maximum shear displacement possible prior to fracture 
propagation. 
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Figure 1-4 Numerical simulation setup for fracture propagation studies. The arrows 
represent the direction of displacement, and their lengths the magnitude of 
displacement. Shaded contours of the displacement magnitudes are also shown to make 
it easier to distinguish magnitude from direction, as the pattern of arrow lengths is 
much more difficult to visually separate into regions of similar magnitude. 

These calculations can be carried out through the use of a specialized fracture 
mechanics code. When the load applied to a fracture in rock mass increases beyond the 
limits of the fracture to deform, the fracture may propagate. Fracture propagation is a 
complex process. In most cases, the analysis of the initiation and the propagation of 
fractures require numerical methods or sophisticated laboratory experiments. Two 
numerical methods are commonly used to study fracturing: the finite element method 
(FEM); and the boundary element method (BEM). Finite elements are very useful in 
that their numerical discretization is such that they can accurately approximate irregular 
geometry, such as the surface of a crack. However, the solid material away from the 
crack must also be discretized, which may lead to numerical complications and 
unnecessary computational effort. Boundary elements, on the other hand, discretize only 
the boundaries of objects, essentially reducing the dimensionality of the numerical 
computation by one dimension and avoid the numerical effort of discretizing the solid 
material in which the fracture occurs. A drawback of boundary elements is that they are 
not well suited to modeling inhomogeneous materials, which, fortunately, is not an issue 
for this investigation. Moreover, boundary elements are particularly useful for studying 
fracture in rock, since only the fracture surface needs to be discretized. Thus, in order to 
study fracture propagation in three dimensions, it is only necessary to solve the 
governing equations of stress and strain on the locally two- dimensional fracture 
surface. For this reason, the boundary element formulation was chosen for this study. 

The fracture propagation code Franc3D (Cornell University Fracture Group, 1998) used 
in this study uses a boundary element discretization for fracture mechanics. Franc3D is 
a three-dimensional fracture mechanics code developed by the Cornell Fracture Group 
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at Cornell University. Franc3D computes the stress intensity factors Kin mode I, II and 
III at the fracture tip in three dimensions, and derives the new geometry of the 
propagated fracture. The Franc3D code has been validated against experiments ofthree­
dimensional fatigue crack growth (Ridell and others, 1997). Fracture propagation will 
not be modeled in this Task since it is only necessary to calculate the stress intensity 
factors at the fracture tip. 

The propagation criterion used in this study has been proposed by Shen (1993). Its 
calculation is based on the strain energy release rate in fracture propagation in mode I 
(pure traction) and mode II (pure shearing). Mode III fracture propagation is not 
considered in this task. 

The criterion has the expression: 

where 

Fis the factor that controls the propagation of the fracture tip. Propagation 
initiates when F?:. l . 

Gw are the strain energy release rates in mode I and II. 

G1c,1Ic are the critical strain energy release rates in mode I and II for which the 
fracture propagate purely in mode I and II respectively. 

The G-value can be obtained by using the relation: 

G = (1-v2) K2 
I,11 £ I,11 

where 
K1,II are the stress intensity factor at the crack tip in mode I and II respectively. 

E and v and the Young's modulus and the Poisson's ratio of the material 
respectively. 

Replacing Equation (8) in Equation (7) gives: 

(7) 

(8) 

(9) 

It has been recognized that GIIc is normally much higher than G1c due to the difference 
of failure mechanism (Li, 1991 ). For example, GIIc> 102 G 1c for rocks. 

After the critical stress that initiates the fracture propagation is calculated, it is applied 
to a similar system where only deformations are considered. Deformation calculations 
are computed using the code Poly3D (Thomas, 1993). In this way, the maximum 
possible shear displacements are evaluated. 
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This process is repeated for different loading scenarios and for different fracture sizes, 
since propagation depends upon both of these factors. It is then possible to express the 
propagation initiation loading stress as a function of the fracture radius. 

1.2.3 Fracture Interactions or "Shielding" 

A discrete fracture network consists of fractures distributed within a volume of rock. 
Their size, orientation, frequency and mechanical characteristics influence the overall 
mechanical characteristics of the rock mass. Since fractures may deform and propagate 
when subjected to an earthquake, it is reasonable to assume that the mechanical 
behavior of the fractures affects each other. In the particular case of the fractures located 
between an earthquake source and a fracture intersecting a deposition hole, it is relevant 
to evaluate how much of the elastic strain energy these fractures will consume and 
reduce the slippage or propagation of the canister fracture. Since the mechanical 
behavior of a complete fracture network is complicated, the problem is reduced to the 
case of two penny-shaped fractures with the same orientation. The study will only 
handle propagation issues. The influence of one fracture over the other is studied. This 
influence is expressed as an increase or a reduction of the risk for propagation. The risk 
for propagation is related to the propagation criterion F presented in Equation (9). 

The calculation of the F factor is based on the computation of the maximum stress 
intensity factors at the tip of the two fractures in modes I and II. These factors are 
computed by the code Franc3D. The two fractures are designed as the reference fracture 
and the perturbation fracture. The influence of perturbation fracture on the reference 
fracture is studied in two cases. In the first case, the variation of the F factor of the 
reference fracture is studied when the distance between the two fractures varies. In the 
second case, the effect of the change of the size of the perturbation fracture on the F 
factor of the reference fracture is studied. 

The external boundaries of the Franc3D model form a cubic block which size is chosen 
so that the boundary effects are negligible. Two penny-shaped fractures are located in 
the block. The fracture surfaces constitute internal boundaries. The fractures are dipping 
45°. The reference fracture has a radius of 1 m and is located in the center of the model. 

The disturbance fracture radius is also set to 1 m. Several distances between the 
fractures are considered. The distance between the fractures is defined as the distance 
between the fracture centroids along the normal of the reference fracture, see Figure 
1-5a. Variation of the distance between the reference and the disturbance fractures. The 
distances considered are 1, 2, 4, and 1 Orn. 

In the previous case, the minimum distance of influence Drmn of the perturbation 
between the two fractures is estimated. If the distance is larger than Drmn then the 
influence is assumed negligible. The perturbation fracture is located at a distance Drmn 
from the reference fracture. The effect of the radius change of the disturbance fracture 
on the propagation criterion F of the reference fracture is studied. The different radii are 
1, 2 and 4m. The geometry of the system is presented in Figure 1-5b. 

The material properties are the same as for Task 2.1, see section 3 .1.1. 

16 



The displacements of the base of the model are set to 0 in the x, y, and z directions. A 
vertical normal compressive load is applied to the top of the model. The magnitude of 
the load, crn=2 MPa, was chosen so the reaction of the model was noticeable. 

s n 

Disturbance Fracture 

Reference fracture 
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Disturbance 

~Fracture 

\ 
Reference Fracture 

Figure 1-5 Numerical setup for fracture propagation simulations: a) distance 
variations and b) radius variations 

1.2.4 Cohesion and Friction 

The methodology employed in TR 97-07 and TR 99-03 assumed that fractures are 
frictionless and cohesionless. As detailed in Appendix C of TR 97-07, fractures often 
have cohesion and friction properties that relate to fracture size. For example, Pusch 
(1996) reports that fractures in the size range of 10 m to 100 m in crystalline rocks 
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typically have friction angles in the range of 20° to 30°, and cohesion values from 
0.0 I MPa to 1.0 MPa. This implies that the tractions produced on the fracture by an 
earthquake may not lead to slip unless the shear tractions overcome the surface friction 
and cohesion. In the numerical simulations reported in TR 99-03 and TR 97-07, all 
tractions produced slip, making the resulting estimates conservative. 

A commonly used criterion to evaluate whether a fracture will slip is the Mohr­
Coulomb criterion (Coulomb, 1773; Mohr, 1900): 

where 

'r = the shear stress on a plane 

a= the normal stress on a plane 

S0 = the cohesion and 

<j) = the friction angle. 

(10) 

According to this criterion, slip can occur if the shear stress on a fracture plane exceeds 
the stresses related to cohesion and friction that resist shear movement. 

While it is not possible to directly include friction and cohesion in the Poly3D 
calculations, Poly3D can calculate displacements and the tractions parallel and 
perpendicular to fractures, but not both at the same time. The simulations reported in 
TR 99-03 assumed a shear stress boundary condition parallel to the fracture surfaces in 
order to compute the shear displacements parallel to the fracture plane. Thus the shear 
stresses that would have developed if sliding had been prohibited were not calculated. 
These stresses can be calculated by assigning 0.0 displacement boundary conditions in 
the plane of the fracture. 

In order to calculate the shear and normal tractions on the fractures, 650 realizations for 
the Aberg site were re-run with boundary conditions on the fractures set to 0.0 shear 
displacement. These 650 realizations represent the entire range in earthquake 
magnitudes and distances used in the calculations reported in TR 99-03. Earthquake 
magnitudes varied from ML 2.0 to ML 8.5, and distances from the repository from a few 
meters up to 100 km. 

Once the tractions were computed for these realizations, they were evaluated using the 
Mohr-Coulomb criterion. Three sets of cohesion and friction parameters were used to 
represent the range of possible values for fractures in the size range of 10 m to 100 m. 
These three sets were: 

Table 1-4. Mohr-Coulomb parameters for friction and cohesion simulations 
Parameter Set Cohesion (MPa) Friction Angle 

1 0.01 20° 

2 

3 

0.1 

1.0 

18 

25° 

30° 



Parameter Set # 1 corresponds to the weakest and lowest friction case, while Parameter 
Set #3 corresponds to the strongest and highest friction case. Failures should be lowest 
for Parameter Set #3, intermediate with Parameter Set #2 and highest with Parameter 
Set #1. 

If the tractions on a fracture are such that they exceed the Mohr-Coulomb criterion, then 
the fracture is allowed to slip the entire amount that was predicted in TR 99-03. If the 
Mohr-Coulomb criterion was not exceeded, the fracture was given 0.0 m slip, regardless 
of the amount predicted in TR 99-03. Of particular interest are the fractures whose 
calculated slip in TR 99-03 exceeded the displacement threshold of 0.1 m. A key 
question is whether the inclusion of fracture cohesion and friction would have 
significantly reduced the number of failed canisters. 

Fracture size, earthquake magnitude and the distance of the earthquake from the 
fractures intersecting the canisters can also impact induced fracture displacements. 
Since induced displacement and tractions on a fracture are a function of fracture radius, 
it is conceivable that large fractures may be more affected by including slip and 
cohesion than small fractures, or perhaps small fractures would be differentially 
impacted. Also, large, close earthquakes produce greater tractions and displacements. 
The inclusion of friction and cohesion might reduce the impact of earthquakes that are 
far away or are of smaller magnitudes. On the other hand, large nearby earthquakes may 
produce such large tractions that they always exceed the Mohr-Coulomb criterion. For 
these reasons, the effects of earthquake magnitude, separation distance between the 
earthquake rupture centroid and the fractures, and fracture radius were also studied. 
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2 SENSITIVITY ANALYSIS RESULTS 

2.1 Task 1.1 - Modeling Results 

The result of a single run of Poly3D is the induced slip on a target fracture due to the 
elastic field generated by a dislocation (earthquake). Over 50,000 runs were performed 
in order to quantify the sensitivity of the induced slip on the parameters in Table 1-2. 
Induced slips greater than 10 cm (0.1 m) are the most critical, as these would cause 
canister failure. Induced slips greater than 1 cm are also noted. Because induced slips 
vary over approximately 12 orders of magnitude, all figures show the logarithmic (Base 
10) values of induced slip. 

Results are shown as two types of line diagrams and three types of contour plots. The 
contour plots require some further explanation: 

1. Contour plots of induced slip (Figure 2-3 through 2-6) against the variables of log 
distance and earthquake magnitude are used to derive empirical relations between 
these parameters and induced slip. 

2. A geographic map view (Figures 2-7 through 2-11) shows log contours of the 
induced slip caused by earthquakes of a certain magnitude with the near tip at grid 
points on the map. Each map is valid only for a certain combination of target 
fracture orientation and size, and earthquake magnitude and rupture orientation. 
The irregular shapes of the contours confirm the difficulty of fitting simple 
equations to predict induced slip as a function of magnitude, orientation and size. 

3. In order to assess the importance of target fracture orientation for a constant 
earthquake, the trend and plunge of the fracture pole are plotted and the induced 
slip contoured (Figure 2-14). This diagram was created for five different azimuths. 

Section 2.1.1 presents the results from the initial numerical simulations in which all of 
the parameters were varied according to the values in Table 1-2. Section 2.1.2 focuses 
on the relation between fracture radius and induced slip for the situation when all other 
parameters are held constant. This relation is required for the calculations carried out in 
Task 1.2 (Section 2.2). Section 2.1.3 provides a more detailed analysis of the impact of 
the relative orientation of the fault and the target fracture using the parameter ranges 
shown in Table 1.2 for the detailed simulations. The results from these more 
comprehensive simulations are used to identify the worst-case scenario of relative 
orientation, which is also used to carry out the calculations in Task 1.2. 

2.1.1 Preliminary simulations 

Preliminary simulations were run by simultaneously varying all five parameters. Seven 
magnitudes, eleven radial distances, four target fracture sizes, five azimuths in the first 
quadrant, and seven target fracture orientations resulted in 10,780 runs. This scenario 
was run for both strike-slip and reverse movement. Of the 10,780 strike-slip 
simulations, 25 86 had slips greater than 1 cm, and 1279 greater than 10 cm. 
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Figure 2-1 shows the primary importance of earthquake magnitude and radial distance 
to the tip. In the upper left half of the figure, no combination of azimuth to the 
earthquake, target fracture size, or orientation caused induced slips greater than 10 cm. 
However, below and to the right of the line in the diagram, 31 % of the simulated 
earthquakes caused 10-cm slips. The equation of the line separating damaging slips 
from non-damaging slips can be used to make the following statement: 

J.f 0.85 M - 2.6 < log(distance) then there is a chance of a damaging earthquake 

The position of the target fracture centroid relative to the fault tip on which the 
earthquake occurs impacts the induced slip, as shown in Figure 1-3. This figure shows 
that the maximum shear stress varies with relative location about a fracture displacing in 
Mode II shear. The magnitude of shear depends upon the distance from the fracture 
centroid to the earthquake rupture tip, and the angle or azimuth between them. At a 
radius of 40% of the rupture length, shear stress goes from less than 1.0 perpendicular to 
the fracture at the fracture centerline (up, or an azimuth of O°) to a value near 1.75 
parallel to the fracture centerline (right, or an azimuth of 90°). 

Figure 2-2 summarizes the importance of the other parameters on induced slip. 

Figure 2-2a shows the large and direct effect that fracture size has on induced slips. 
Very large (1000 m radius) target fractures are much more likely to have large slips. 
Figure 2-2b shows that although the effect is small, target fractures offset from the strike 
of the earthquake rupture (azimuth=67.5°) will be more likely (12.4%) to experience the 
large induced slips, while target fractures at an azimuth parallel (0°) to the rupture will 
be least likely (9.0%). For comparison, overall 12% (1279 out of 10780) of the 
simulations caused 10 cm or greater induced slip. Another parameter with a small effect 
is the orientation of the target fracture (Figure 2-2c). Horizontal fractures are the least 
likely to experience induced slip greater than 10 cm and west dipping fractures (pole = 
090/45) are most likely. However, the overall difference between the worst (15% with 
> 1 cm slip) and best ( 4% with> I cm slip) is less than a factor of four. 

Another way to plot the results of the preliminary runs is to contour the log values of 
induced slip as a function of distance and magnitude as shown in Figures 2-3 through 
2-6. In Figure 2-3 the results for a single combination of orientation (fracture pole= 
000/00), azimuth (0°), and size (r=lO00 m) are shown. However, this plot is not as 
useful as contouring the maximum induced slip for all combinations of orientation and 
azimuth (Figure 2-4). For any each magnitude and distance combination, the largest 
induced slips may occur at a different azimuth, and target fracture orientation (Table 
2-1). For example, at a magnitude distance combination of7.5 and 3.2 km the maximum 
induced slip (17 cm) occurs on a fracture with a pole trend of 045/45 at an azimuth of 
45°. Meanwhile at a magnitude distance combination of 7 .0 and I km the maximum 
induced slip (21 cm) occurs on a fracture with a pole trend of000/00 at an azimuth of 
90°. This phenomenon is due to the irregular shape of the shear stress contours (Figure 
1-3) and 3D effects caused by the target fracture depth (500 m) which is offset from the 
earthquake rupture center depth (1 to 12 km, for magnitude 4.0 to 8.0, respectively, 
Table 2-1). 
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Table 2-1. Characteristics of earthquake producing the maximum slip for each 
distance/magnitude combination 

Maximum Pole Pole 
Run# Induced Slip Trend Plunge Azimuth Distance log(Distance) Mag 
T 1804 1.45E-09 90 or0 0 45 100000 5 4 
T 8292 8.12E-09 90 or0 0 45 56234 4.75 4 
T_8264 4.50E-08 90 or0 0 45 31623 4.5 4 
T_1808 8.72E-08 90 or0 0 45 100000 5 5 
T 8296 4.75E-07 90 0 45 56234 4.75 5 
T_1784 1.31 E-06 90 0 45 10000 4 4 
T 9948 2.52E-06 90 45 45 31623 4.5 5 
T_3912 4.74E-06 90 45 45 100000 5 6 
T_9916 6.80E-06 90 45 45 5623 3.75 4 
T 9980 2.43E-05 90 45 45 56234 4.75 6 
T_9888 3.10E-05 90 45 45 3162 3.5 4 
T 5848 3.28E-05 0 45 22.5 100000 5 6.5 
T 3888 6.17E-05 90 45 45 10000 4 5 
T_9952 1.13E-04 90 45 45 31623 4.5 6 
T 8752 1.53E-04 0 45 22.5 56234 4.75 6.5 
T 2376 2.07E-04 0 45 22.5 100000 5 7 
T_9920 2.36E-04 90 45 45 5623 3.75 5 
T 224 3.02E-04 0 0 22.5 1000 3 4 
T 9956 5.89E-04 90 45 45 31623 4.5 6.5 
T_9780 7.41E-04 90 45 22.5 3162 3.5 5 
T 8648 7.72E-04 0 45 0 56234 4.75 7 
T_5796 1.03E-03 0 45 0 100000 5 7.5 
T_624 1.37E-03 0 0 90 316 2.5 4 
T 3752 1.55E-03 90 45 22.5 10000 4 6 
T_9852 2.72E-03 90 45 22.5 31623 4.5 7 
T_3728 3.39E-03 90 45 22.5 1000 3 5 
T 9876 3.45E-03 90 45 22.5 56234 4.75 7.5 
T_9812 3.92E-03 90 45 22.5 5623 3.75 6 
T_3780 4.27E-03 90 45 22.5 100000 5 8 
T 6400 5.64E-03 90 45 22.5 10000 4 6.5 
T_604 5.90E-03 0 0 90 100 2 4 
T 9784 7.66E-03 90 45 22.5 3162 3.5 6 
T 9848 0.0104 90 45 22.5 31623 4.5 7.5 
T_9816 0.0115 90 45 22.5 5623 3.75 6.5 
T 628 0.0132 0 0 90 316 2.5 5 
T 9884 0.0133 90 45 22.5 56234 4.75 8 
T_3756 0.0173 90 45 22.5 10000 4 7 
T 1984 0.0208 90 or0 0 90 32 1.5 4 
T 9340 0.0208 45 45 45 3162 3.5 6.5 
T 652 0.0257 0 0 90 1000 3 6 
T_9824 0.0318 90 45 22.5 5623 3.75 7 
T 9856 0.0356 90 45 22.5 31623 4.5 8 
T 6404 0.0493 90 45 22.5 10000 4 7.5 
T_9348 0.0600 45 45 45 3162 3.5 7 
T 1964 0.0680 90 or0 0 90 10 1 4 
T 5160 0.0750 0 0 90 1000 3 6.5 
T_9372 0.0919 45 45 45 5623 3.75 7.5 
T 632 0.1095 0 0 90 316 2.5 6 
T 4320 0.1398 0 90 0 10000 4 8 
T_1988 0.1687 90 or0 0 90 32 1.5 5 
T 9344 0.1709 45 45 45 3162 3.5 7.5 
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Maximum Pole Pole 
Run# Induced Slip Trend Plunge Azimuth Distance log(Distance) Mag 
T_656 0.2160 0 0 90 1000 3 7 
T 9380 0.2634 45 45 45 5623 3.75 8 
T_5152 0.3114 0 0 90 316 2.5 6.5 
T 612 0.4028 0 0 90 100 2 6 
T 9352 0.4834 45 45 45 3162 3.5 8 
T_1968 0.5441 90 or0 0 90 10 1 5 
T 5164 0.6175 0 0 90 1000 3 7.5 
T 636 0.8824 0 0 90 316 2.5 7 
T_5704 1.138 90 or0 0 90 100 2 6.5 
T 1992 1.345 90 or0 0 90 32 1.5 6 
T 660 1.757 0 0 90 1000 3 8 
T_5156 2.496 0 0 90 316 2.5 7.5 
T 616 3.213 0 0 90 100 2 7 
T_5696 3.794 90 or0 0 90 32 1.5 6.5 
T_1972 4.325 90 or0 0 90 10 1 6 
T 640 7.050 0 0 90 316 2.5 8 
T_5148 9.065 0 0 90 100 2 7.5 
T_1996 10.700 90 or0 0 90 32 1.5 7 
T 5688 12.190 90 or0 0 90 10 1 6.5 
T_620 25.560 0 0 90 100 2 8 
T_5700 30.170 90 or0 0 90 32 1.5 7.5 
T 1976 34.380 90 or0 0 90 10 1 7 
T_2000 85.030 90 or0 0 90 32 1.5 8 
T 5692 96.920 90 or0 0 90 10 1 7.5 
T 1980 273.100 90 or0 0 90 10 1 8 

Fitting a plane to the contours above an induced slip of 10-2 m in Figure 2-4 gives; 

Log(max. slip)= 0.9*M-1.1 *Log(distance)-3.6 (11) 

This equation can be recast in terms of earthquake slip rather than magnitude by 
substituting in Equation (2): 

Log(max. slip)= Log(earthquake slip)-1.1 *Log(distance)+2.7 (12) 

Figure 2-4 is plotted for strike-slip movement; Figure 2-5 is for reverse (vertical) 
earthquake slip. The fit to the plane in Figure 2-5 is nearly the same as Equation (11): 

Log(induced slip)= 0.9*M-1.1 *Log(distance)-3.8 (13) 
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Figure 2-3 Induced slip as a function of magnitude and distance for single geometry 
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Figure 2-4 Maximum induced slip as a function of magnitude and distance for strike 
slip 
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Figure 2-5 Maximum induced slip as a function of magnitude and distance for dip 
slip 
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Figure 2-6 Maximum induced slip as a function of magnitude and measured to 
earthquake center 

These three equations are for a target fracture radius of 1000 m. The following sections 
show the effect of fracture size on induced slip. 

Distance in these simulations is measured to the tip of the earthquake rupture, not to the 
epicenter. Measuring distance to the earthquake center might make results more difficult 
to interpret because the tip is the locus of stress and it could be much closer than the 
center to the target fracture. Figure 2-6 shows a similar diagram derived when 
measuring to the earthquake center. Notice that unlike Figures 2-4 and 2-5, the contours 
cannot be fit to a plane nor can simple relations like those in Equations (11) and (13) be 
developed. 

The preliminary simulations show that: 

1. The primary controls on induced slip are earthquake magnitude and distance. 
Maximum induced slip is a well-behaved function of earthquake magnitude and 
distance to the tip of the earthquake rupture.  



2. Although numerical modeling is necessary to find the induced slip on a particular 
orientations and azimuth combination (Table 2-1 ), the maximum induced slip for 
a given combination of magnitude and distance can be determined by Equations 
(11 ), (12), and (13). 

3. The distance to the earthquake rupture tip rather than center makes for a simpler 
relationship. 

In order to further determine the sensitivity of induced slip predictions to earthquake 
location ( distance and azimuth), further Poly3D simulations were run varying 
earthquake distance and azimuth while holding magnitude, and earthquake and target 
fracture orientation constant (Table 1-2). These simulations are summarized as maps 
with the target fracture at the center (0,0) and contours of induced slip caused by 
earthquakes with tips at the geographic map positions. The crosses on Figures 2-7 
through 2-11 show the location of the simulation results that fored the basis for the 
contour plots. The graphs were created for magnitude 7 .0 earthquake for strike-slip 
movement on parallel earthquake rupture and target fracture (Figure 2-7), strike-slip 
movement perpendicular earthquake rupture and target fracture (Figure 2-8), and 
vertical movement on parallel earthquake rupture and target fracture (Figure 2-9). 

As the stress field near a Mode II fracture (Figure 1-3) suggests, the induced slip 
contours show some dependence upon the azimuth or relative position between the 
target fracture and the fault. Figures 2-7 through 2-9 illustrate the impact of location, the 
relative angular orientation between the fault and the target fracture, and the type of slip. 
For example, Figure 2-7 shows the results of varying the azimuth for the case where the 
fault and the target fracture are parallel. The two plots in this figure show the magnitude 
of induced slip as a function of distance and azimuth. This figure shows that for a given 
distance, fractures that are located with azimuths of 45°, 90°, 135°, 225°, 270°, and 315° 
relative to the fault have the greatest displacements. Figures 2-8 and 2-9 are similar in 
that they show results for the case where the fault and the target fracture are 
perpendicular. Figure 2-8 shows results for strike-slip motion, while Figure 2-9 shows 
results for a reverse fault type of displacement. 

Figures 2-7 through 2-9 are for a particular earthquake magnitude. However, these maps 
are still useful for estimating the slips caused by larger or smaller earthquakes, because 
changing the earthquake magnitude linearly changes the induced slip but the overall 
shape of the contours do not significantly change (i.e. Figure 2-10). 

In previous reports (TR-99-03 ), distance was measured to the epicenter of the 
earthquake. For earthquake ruptures located on specific lineaments, as was performed in 
TR-99-03, this is a logical measurement. However, if the earthquake rupture is allowed 
to trend towards the repository from its center, significant irregularities can occur. This 
is shown in Figure 2-11. In this set of simulations, a NS earthquake rupture has a very 
long influence in the north and south of the repository simply because the tip of the 
rupture can be within the repository even though the center is far away. 

2.1.2 Target Fracture Size 

The relation between fracture radius and induced slip, while other parameters are held 
constant is necessary for the estimation of canister failure in Task 1.2. Pollard and 
Segall (1987) have shown that induced slip should increase linearly with fracture radius, 
and is also a function of the elastic moduli of the rock and the applied stresses. This 
suggests that the induced slip, as a function of fracture radius, should have the form: 
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Slip= Size/k (14) 

where the constant k is a function of the target fracture and rupture geometry. 

Figure 2-12 illustrates the results from the initial simulations in which fracture radius 
varied from 1 m to 1000 m for strike-slip and reverse fault motions. The three curves on 
the two inset graphs correspond to the relative orientations between the fault and the 
target fracture also used in Figures 2-7 through 2-9. The values ofk range from 20,000 
to 250,000 depending on orientation and azimuth, for the elastic moduli assumed in the 
simulations. In order to derive the induced slip on a new fracture with a different radius, 
the induced slip is multiplied by the ratio of the radius divided by 1000 m for the 1000 
m fracture of the same azimuth, orientation, magnitude, and distance. Table 2-1 gives 
values for the 1000 m reference fracture. 

2.1.3 More Detailed Investigations on Induced Slip as a Function of the 
Relative Orientation and Location Between Faults and Target 
Fractures 

One strategy for qualitatively comparing alternative sites, or for making preliminary 
estimates of canister failure risk, would be to develop a comprehensive look-up table or 
functional relation between the relative orientation between the fault and the target 
fracture, and the induced displacements. However, the preliminary results shown in 
Figures 2-7 through 2-9 suggest that there is no simple functional relation. A look-up 
table could be created from the data underlying these plots, but its utility in site 
comparison or canister failure estimation is limited. The limitations arise from the fact 
that it is only useful if the orientations of the earthquake fault and the fractures at the 
candidate site are well known. Since the orientation of the fault on which a future 
earthquake might take place is poorly constrained, and the orientation of fractures at 
future candidate sites may not be well-known during early site selection phases, it is 
more useful to determine the order of magnitude impact of relative orientation, and to 
identify the worst-case orientation for possible use in site comparison and failure 
estimation. 

In this set of simulations, magnitude was set to 7.0 for a NS strike-slip rupture, and the 
target fracture size was set to 1000 m. First, simulations were made for a complete range 
of relative orientation between the target fracture and the earthquake rupture. In these 
simulations, seven different target fracture orientations and five azimuths between the 
target fracture and earthquake rupture were simulated. Figure 2-13 shows the results of 
the preliminary runs and the complex relationship between these two parameters. 

For example, at an azimuth of 22.5°, the greatest amount of induced slip occurs on a 
west dipping fracture, whereas at an azimuth of 67.5°, the greatest amount of induced 
slip occurs on a NS, vertical fracture. 

In order to further investigate the role of target fracture orientation and azimuth, and 
additional 245 simulations were made (49 target fracture orientations and 5 azimuths). 
Figure 2-14 shows contours of induced slip as a function of target fracture trend and 
plunge at each azimuth. Overall, the worst orientation for a target fracture to have is to 
make a solid angle of 45° with the rupture (Figure 2-14f). This is not surprising, since 
linear elasticity predicts that the maximum shear stress magnitude will occur at 
locations along the two planes perpendicular to the cr1,cr3 plane and making a solid angle 
of ±45° to the cr1,cr2 plane (Pollard and Segall, 1987). 
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Figure 2-7 Map view of effect of magnitude 7.0 strike-slip earthquake on parallel 
target fracture 
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Figure 2-8 Map view of effect of magnitude 7.0 strike-slip earthquake on 
perpendicular target fracture 
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Figure 2-9 Map view of effect of magnitude 7.0 reverse-slip earthquake on parallel 
target fracture 
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Figure 2-10 Map view of effect of magnitude 8.0 strike-slip earthquake on 
perpendicular target fracture 

1 
g, 
:c 
t::: 
0 z 

:g 
'" C 

1! 
0 z 

8000 

6000 

4000 

-4000 

-6000 

-8000 

-10000,v-t---~--~--~--~--~--~--~--~--~------t-
-100000 -80000 -60000 -40000 -20000 20000 40000 60000 80000 100000 

Easting (m) 

JOO 

80 

60 

40 

20 

-20 

-40 

-60 

-80 

-JOO 
- 1000 -800 - 400 - 200 200 400 600 800 1000 

Easting (m) 

-0.60 

-0.80 

-1.00 

-1.20 

-1.60 

-1.80 

-2.00 

-2.20 

-Z.40 

-2.60 

-2.80 

1.70 

1.60 

I.SO 

1.40 

1.30 

1.20 

1.10 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

o.oo 
-0.10 

-0.20 



 

37 

���������	
���
�


���������	
���
�


��������

����	
����
��
����

�����
����������

��������

����	
����
��
����

�����
���������

 
Figure 2-11 Map view when distance measured to earthquake epicenter 
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assume that a combination of rupture orientation, slip direction (i.e. strike-slip, reverse, 
or some combination), azimuth, and target fracture orientation may exist to produce the 
maximum induced slip possible. In this case the induced slip graphed in Figure 2-4 and 
derived in equations (11) and (13) can be used to calculate the worst case scenario for 
any combination of magnitude and distance. 

The numerical relations provided by these simulations could be used for relative site 
ranking when very little actual fracture data is available. As an example of how these 
relations could be used to make such estimates, total induced slip is calculated for a 
single reference fracture. These results are also used to make some simple estimates of 
damaging earthquakes. 

In addition, more elaborate calculations are carried out to evaluate whether these simple 
relations might also provide order-of-magnitude estimates of canister failure when 
greater knowledge about the rock mass fracture geometry is available. 

2.2 Task 1.2 - Comparison to TR 99-03 Results 

The results graphically shown in Figure 2-4 can be used to roughly estimate the 
probability of damaging earthquakes. Table 2-2 shows the maximum induced slip 
values plotted in Figure 2-4; induced slips greater than 1 cm are in italics and those 
greater than 10 cm in bold. 

The next step in the estimate is to determine the probability of occurrence of a damaging 
earthquake. Table 4-3 of TR-99-03 lists the number of earthquakes to be expected for 
each magnitude range normalized to a circle with a 100-km radius. These numbers were 
calculated from the a and b values for each of the seismic zones. The number of 
earthquakes occurring within the same distance bins on Table 2-2 can easily be 
calculated based on the area of each bin. Table 2-3 shows the result of this calculation 
for the Gulf ofBothnia and Table 2-4 for Southern Sweden. 

To determine the cumulative effect of the earthquakes in Tables 2-3 and 2-4 on the 
target 1000 m fracture, the terms of the two matrices can simply be multiplied (Table 
2-5). Summing all the slips gives a total induced slip of 2.6 mm over 100,000 years. 
Thus, even in a very conservative scenario (see below), one would expect no canister 
failures. 
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Figure 2-12 Effect of fracture size on induced slip 
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Figure 2-13 

Effect of azim
uth and target fracture orientation on induced slip 
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Figure 2-14. Effect of azimuth to earthquake and target fracture orientation on 
induced slip: countour diagrams: a) azimuth = 0º; b) azimuth = 22.5º; c) azimuth =45º; 
d) azimuth = 67.5º; e) azimuth = 90º; f) azimuth = geometric average 
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Table 2-2 Maximum induced slip for distance/magnitude combinations. Target 
fracture radius =1000 m 

Distance (km) 

Magnitude 100 56.2 31.6 10 5.6 3.2 1.0 0.32 0.1 
8.0 0.004 0.013 0.036 0.14 0.263 0.483 1.757 7.05 25.56 
7.5 0.001 0.003 0.01 0.049 0.092 0.171 0.618 2.496 9.065 
7.0 2E-04 8E-04 0.003 0.017 0.032 0.06 0.216 0.882 3.213 

6.5 3E-05 2E-04 6E-04 0.006 0.012 0.021 0.075 0.311 1.138 
6.0 5E-06 2E-05 1E-04 0.002 0.004 0.008 0.026 0.11 0.403 
5.0 9E-08 5E-07 3E-06 6E-05 2E-04 7E-04 0.003 0.013 0.05 

4.0 1E-09 8E-09 5E-08 1E-06 7E-06 3E-05 3E-04 0.001 0.006 

Table 2-3 Number of earthquakes in 100,000 years, Gulf Of Bothnia, those in bold 
would be damaging earthquakes according to Table 2-2 

Distance Bin (km) 
Mag. 100- 56.2- 31.6- 10- 5.6- 3.2 - 1.0- 0.32- < 0.1 
Range 56.2 31.6 10 5.6 3.2 1.0 0.32 0.1 Sum 
7.5-8.0 8.2E-03 2.6E-03 1.1E-03 8.2E-05 2.6E-05 1.1E-05 1.1 E-06 1.1 E-07 1.1E-08 0.012 

7.0-7.5 3.4E-02 1.1 E-02 4.5E-03 3.4E-04 1.1E-04 4.5E-05 4.5E-06 4.5E-07 4.5E-08 0.05 

6.5-7.0 1.4E-01 4.5E-02 1.9E-02 1.4E-03 4.5E-04 1.9E-04 1.9E-05 1.9E-06 1.9E-07 0.21 

6.0-6.5 1.7E-01 7.2E-02 5.5E-03 1.lE-03 7.2E-04 7.2E-05 7.2E-06 7.2E-07 0.8 

5.0-6.0 14 4 2 1.E-01 4.E-02 2.E-02 2.E-03 2.E-04 2.E-05 19.841 

4.0-5.0 252 80 33 3 1 3.E-01 3.E-02 3.E-03 3.E-04 368.02 

3.5-4.0 870 275 114 9 3 1.E-01 1.E-02 1.E-03 1272.0 

Sum 1135.7 359.2 149.5 11.4 3.6 1.5 1.5E-01 1.5E-02 1.5E-03 1661.0 

Table 2-4 Number of earthquakes in 100,000 years, Southern Sweden, those in bold 
would be damaging earthquakes according to Table 2-2 

Distance (km) 
Mag. 
Range 100 56.2 

7.5-8.0 9.6E-02 3.0E-02 

7.0-7.5 3.1 E-01 9.7E-02 

6.5-7.0 1 3.2E-01 

6.0-6.5 3 
5.0-6.0 48 15 

4.0-5.0 526 166 
3.5-4.0 1337 423 
Sum 1915.2 605.7 

Sum 
31.6 10 5.6 3.2 1.0 0.32 0.1 
1.3E-02 9.6E-04 3.0E-04 1.3E-04 1.3E-05 1.3E-06 1.3E-07 0.14 

4.0E-02 3.1E-03 9.7E-04 4.0E-04 4.0E-05 4.0E-06 4.0E-07 0.44999 

1.3E-01 

4.5E-01 

6 

69 
176 
252.1 

1.0E-02 3.2E-03 1.3E-03 1.3E-04 1.3E-05 1.3E-06 
3.4E-02 1.1E-02 4.5E-03 4.5E-04 4.5E-05 4.5E-06 
4.8E-01 1.5E-01 6.3E-02 6.3E-03 6.3E-04 6.3E-05 
5 2 6.9E-01 6.9E-02 6.9E-03 6.9E-04 
13 4 2 1.8E-01 1.8E-02 1.8E-03 
19.2 6.1 2.5 2.5E-01 2.5E-02 2.5E-03 

1.47996 

4.99987 

69.9982 

768.981 
1954.95 
2801.0 

Table 2-5 Probabilistic maximum cumulative slip on single large 1000 m fracture 
exposed to seismicity with Gulf of Bothnia parameters 

Distance (km) 

Mag. 100 56.2 31.6 10 5.6 3.2 1.0 0.32 0.1 Sum 

8 3.4E-05 3.5E-05 3.8E-05 1.1 E-05 6.8E-06 5.2E-06 1.9E-06 7.6E-07 2.8E-07 1.3E-04 

7.5 3.4E-05 3.7E-05 4.6E-05 1.7E-05 9.9E-06 7.7E-06 2.8E-06 1.1 E-06 4.1 E-07 1.6E-04 

7 3.0E-05 3.5E-05 5.1E-05 2.5E-05 1.4E-05 1.1E-05 4.1 E-06 1.7E-06 6.1 E-07 1.7E-04 

6.5 1.8E-05 2.7E-05 4.2E-05 3.1 E-05 2.0E-05 1.5E-05 5.4E-06 2.2E-06 8.2E-07 1.6E-04 

6 6.4E-05 1.0E-04 2.0E-04 2.1 E-04 1. 7E-04 1.4E-04 4.6E-05 2.0E-05 7.2E-06 9.6E-04 

5 2.2E-05 3.8E-05 8.3E-05 1.6E-04 1.9E-04 2.5E-04 1.1 E-04 4.3E-05 1.7E-05 9.0E-04 
4 1.3E-06 2.2E-06 5.2E-06 1.1 E-05 1.9E-05 3.5E-05 3.5E-05 1.5E-05 6.8E-06 1.3E-04 

Sum 2.0E-04 2.8E-04 4.7E-04 4.6E-04 4.3E-04 4.6E-04 2.1 E-04 8.4E-05 3.3E-05 2.6E-03 
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The lower right-hand number (2.6E-03 m) represents the sum of all the slips in the 
matrix of magnitude and distance. 

Table 2-5 represents the average probabilistic earthquake scenario. For earthquakes with 
numbers less than 1, the values in Table 2-5 represent probabilities rather than numbers. 
Of course, there is no such thing as a fractional earthquake. For example, while a 
magnitude 7 .0 to 7 .5 at a distance of 31.6 km or closer in Table 2-3 has a probability of 
just 0.45% in 100,000 years ( or one every 22 million years) if one does occur it will 
cause canister failures. So rather than multiplying the probabilities by the induced slips, 
the cumulative probability of a damaging earthquake must be determined from Tables 
2-3 and 2-4. This is done by summing the earthquake probabilities of all the induced 
slips > 10 cm (in bold) values in Table 2-3 which gives a cumulative probability of 
0.0004 or 0.04%. The same can be done for the earthquakes which cause induced 
slips > 1 cm, and for the Southern Sweden seismicity (Table 2-6). 

To conclude, this estimate shows that the cumulative slip produced by small 
earthquakes can sum to produce canisters failures. It also illustrates how the method can 
be used to estimate the slip potential of a reference fracture for site comparison. 

Table 2-6 Summary of damaging earthquake estimates 
Parameter 

Mean Cumulative Slip 
(m) 
Probability of one 
10cm slip 
Probability of one 1 
cm slip 

Southern Gulf of Bothnia How Calculated 
Sweden 
1. 1x10-3 

0.27% 

13% 

2.6x10-3 

0.04% 

1.9% 

Sum of cumulative slips, Table 
2-5 
Sum of bold values in Tables 
2-3 and 2-4 
Sum of bold and italic values in 
Tables 2-3 and 2-4 

There are several factors that make the calculations above different from the simulations 
reported in TR-99-03: 

Table 2-2 is for a target fracture radius of 1000 m. This is significantly larger than the 
maximum fracture size in the generic site models of TR-99-03. The maximum fracture 
radius in the Aberg model was 50 m, and for Beberg and Ceberg, 160 m. As will be 
shown in Figure 2-12, the effect of fracture size is linear, so that the values in Table 2-2 
would be reduced if the size distributions for Aberg, Beberg and Ceberg were taken into 
account. 

1. The estimate uses the maximum induced slip. In the simulations performed in TR-
99-03, there may not be a canister-intersecting fracture with the correct orientation 
to achieve the maximum induced slip. 

2. In calculating the cumulative slip values (Table 2-5) all slips are assumed to sum. 
In the TR-99-03 simulations, some earthquake caused the opposite sense of 
induced slip, and most other cases the direction of slip was not collinear for two 
different earthquakes. 

3. In TR-99-03 a correction was made to account for the probability that the actual 
slip would be less than the peak induced slip which occurs only at the center of 
the target fracture. In this estimate only the peak slip is used. 
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4. The magnitudes in the induced slip tables (Tables 2-3 and 2-4) are discrete values 
(i.e. 4.0) while the number of predicted earthquakes are ranges (i.e. 3.5 -4.0). 
Therefore, for each magnitude class, the total induced slip is overestimated, since 
it is based on the maximum earthquake occurring in that class. 

In order to directly compare these numbers with the results shown in TR 99-03, it would 
be necessary to adjust the calculated slips by the fracture size distribution, and also take 
into account for the fact that there are hundreds of fractures that intersect canisters at the 
three generic sites. The fracture size adjustment would have the effect of reducing the 
predicted slip, while the adjustment for the multiple fracture-canister intersections 
would multiply the probability of canister failure. 

A more sophisticated calculation, taking these and other effects into account, is shown 
in the next section. 

One final test of the sensitivity analysis and the regressions relations developed from it 
was to reproduce the sequence of calculations employed in TR 99-03 as closely as 
possible, but to substitute the regression relations for the actual Poly3D simulations. 
This required a more complex calculation than the previous one involving a single 
1000 m fracture. 

1. First, it is necessary to forecast the number and magnitude of future earthquakes. 
This is based on the magnitude/frequency relation relevant to the site under 
investigation, the area on which the calculation of these parameters have been 
based, and the target area over which the magnitude/frequency is to be calculated. 
For Southern Sweden, the parameters used were a= 563.9914, and b = 1.04. As in 
TR 99-03, the target area was assumed to be a circle ofradius 100 km from the 
centroid of the repository. It is also necessary to define the time duration of 
interest. For this exercise, the time interval is 100,000 years. Earthquakes are 
assumed to occur at uniformly random locations throughout the 100 km circle 
surrounding the repository. 

2. Next, the size distribution of fractures intersecting canisters needs to be 
calculated. For the three generic sites in Sweden studied in TR 99-03, the fracture 
radii conform to a power law distribution. However, the parameter values that 
characterize this distribution cannot be used directly, since the subset of fractures 
that intersect canisters is a biased subset of the parent population. The bias occurs 
because fractures oriented orthogonal to the canister holes will have a higher 
probability of intersecting a hole than will a fracture that is inclined. Fractures that 
are nearly parallel to the hole axis have the lowest probability of intersecting a 
canister hole. Moreover, the probability of intersection is also a linear function of 
fracture radius; the probability for a fracture independent of the fracture's 
orientation increases linearly with fracture radius (La Pointe and Hudson, 1985). 
Thus, the fractures that intersect canister holes tend to be preferentially larger than 
the general population of fractures, and fractures that are oriented subparallel to 
the canister hole tend to be under-represented relative to the general fracture 
population. For a power law relation, the relation between fracture radius and 
sampling probability implies that the radius distribution will have an exponent 
equal to 1.0 greater than the exponent that describes the parent fracture population 
(Appendix A). 
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3. Not all canisters have fractures intersecting them. Since a large number of fracture 
model realizations were used in TR 99-03, it was possible to determine the mean 
percentage of canisters that would be intersected by fractures, and also the 
standard deviation of the intersection percentage. For Aberg, the mean percentage 
of canisters intersected was 62.7% with a standard deviation of 2.8%. The 
intersection percentage was well characterized by a Normal distribution, passing 
the Chi-Square, Kolmogorov and Anderson-Darling tests at confidence. To 
compute the number of canisters intersected by fractures, a Monte Carlo sample of 
a Normal distribution with mean equal to 0.627 and standard deviation equal to 
0.028 was taken and applied to the total number of canisters in the Aberg 
repository layout. 

4. Sizes of fractures intersecting these canisters was based upon adding 1.0 to the 
Power law characterizing the parent population. The parent population of fractures 
at Aberg reported in TR 99-03 (Table 3-3) is on the order of 1.60 for all sets. 

5. Orientations of fractures relative to the orientation of faults on which the 
earthquake was taking place were neglected, since 

Sets of at least three different orientations with considerable dispersion 
occurred at Aberg, suggesting that many orientations are present; 

Sensitivity analyses reported in Section 2.1.3 showed that relative 
orientation is of secondary importance. 

The general procedure to compute induced displacement follows from the assumptions 
and values described above: 

1. Using the earthquake magnitude/frequency relations described above, it is 
possible to forecast the future number of earthquakes of any given magnitude. The 
frequency is adjusted for the area of interest. The temporal pattern of occurrence 
of each earthquake is assumed to be a Poissonian Process, as in most earthquake 
codes and literature. 

2. For each earthquake that occurs over the next I 00,000 years, it necessary to 
compute its consequences in terms of induced fracture slip. Since orientation can 
be neglected as a minor effect, then all that matters is the distance and magnitude, 
and the fracture size. Locations are assumed to be uniformly random within the 
100-km circle. Monte Carlo sampling was used to select a location within this 
circle. Because the distance and magnitude are now defined, it is possible to use 
the regression relations to estimate the impact of the earthquake on 1000-m radius 
fractures at each of the canisters at which there is a fracture. 

3. Not all fractures intersecting the canisters are 1000 m in radius. Thus the induced 
displacement is adjusted, and almost always lowered, based upon the actual 
fracture radius. This relation is linear, as shown in Equation (14). 

4. Another consideration in TR 99-03 is that Poly3D calculates the displacement at 
the center of a fracture. There is no reason to assume that canister emplacement 
holes will intersect fracture at their center. Rather, intersection is uniformly 
random with respect to the fracture surface. Induced displacement decreases with 
increased distance from the fracture centroid, as described by Equation 14 (Pollard 
and Segall, 1987): 

47 



(15) 

where 

{ 
11uI } 
11u II represents the displacements parallel and perpendicular to the fracture, 

/1u III 

{ 
11aI} 
11a 11 represents the stresses on the fracture, 

/1(J" III 

µ and v are elastic moduli, 

R is the fracture radius, and 

X2 is the distance from the fracture center to the fracture tip. 

This equation shows that the maximum displacement occurs at the fracture center, and 
decreases to 0.0 at the fracture tip. It also shows that if the displacements are known at 
the fracture center, and the fracture radius is known, then it is possible to calculate the 
reduced displacement as a function of the distance from the fracture center. It is 
assumed that a canister could intersect a fracture anywhere on the fracture surface with 
equal probability, and displacements are adjusted based on this equation. 

Five thousand realizations of earthquakes for a 100,000-year period were simulated, 
using the parameters for Aberg. The parameters used are summarized in Table 2-7. 

One difference between this simplified calculation and the more sophisticated Poly3D 
calculations reported in TR 99-03 is that the direction of slip induced by each 
earthquake cannot be reproduced. The regression relations derived in Section 2.1.1. only 
describe the amount of slip, not the vectorial direction. As a result, it is not possible to 
calculate the cumulative slip induced by multiple earthquakes. This impacts the 
calculation of canister failure due to the cumulative effects of multiple earthquakes. 
Calculations relative to the impact of damaging earthquakes are not affected. 

The results of these calculations are shown in Table 2-8. 
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Table 2-7 Parameters used for comparison between sensitivity analysis and 
TR 99-03 results 
Quantity 
Earthquake 
Magnitude/Frequency 
Parameters 
Area over which earthquakes 
are simulated 
Time Period Considered 
Minimum Magnitude 
Simulated 
Orientation of Earthquake 
Fault with Respect to Fracture 
Earthquake Rupture 
Dimensions 

Earthquake Rupture Slip 

Tip Distance 
Fracture Sizes 

Number of realizations 
Threshold for "Damaging" 
earthquake 
Percentage of canisters 
intersected by fractures 

Correction for Non-centrality of 
fracture/canister intersection 

Value 
a= 563.9914 
b = 1.04 
Magnitudes are computed as a temporal Poisson Process. 
Circle, 100 km in radius 

100,000 years 
ML= 4.5 

Worst-Case Result from Section 2.3 

Based upon Magnitude; Uses regression relations from Wells 
& Coppersmith (1994). Rupture width and length are 
stochastically drawn via Monte Carlo sampling from regression 
results, as in TR 99-03 
Average subsurface slip, based upon regressions reported in 
TR 97-07 that were carried out on Wells & Coppersmith's 
(1994) data. Rupture slip is stochastically drawn via Monte 
Carlo sampling from regression results, as in TR 99-03 
Uniformly Random throughout entire 100 km radius circle 
Based on results for Aberg reported in TR 99-03: 
Power Law distribution 
Minimum Size = 10.0 m 
Exponent = 2.6 
5000 
0.1 m 

Normal Distribution 
Mean= 62.7% 
St. Dev. = 2.8% 
Based upon analysis of Aberg models used in TR 99-03 
As modeled in TR 99-03; Fractures are assumed to intersect a 
canister at a uniformly random location, and computed 
displacements are adjusted as in TR 99-03 

Table 2-8 Results of TR-99-03 comparison 
Failure Measure 

Probability of Canister Failure due to Single Damaging 
Earthquakes 
Probability of Canister Failure due to Cumulative Effects 
Probability of Canister Failure due to Single Damaging 
Earthquakes & Cumulative Effects 

This Study 

0.70% 

0.12% 
0.82% 

TR 99-03 
(Table 5-1) 
0.59% 

0.06% 
0.65% 

This table shows that the results using the regression relations and approximating some 
of the calculation refinements used in TR 99-03 leads to a reasonable match, although 
the failure probability is higher in the current study, particularly for the failures due to 
cumulative effects. This higher probability may be due to the inability in the current 
method to vector sum of the displacements. The results shown are for the case when all 
induced displacements are additive, which is certainly more conservative than 
calculating the vector displacement. 
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Another measure of canister failure risk is to estimate the number of damaging 
earthquakes, and the consequences given that a damaging earthquake occurs. These 
results were reported in Table 5-2 and Table 5-3 in TR 99-03. 

Table 2-9 Comparison of failures in this study and TR 99-03 
Failure Measure This Study TR 99-03 (Table 5-2 and 

Table 5-3) 
Number of Damaging 
Earthquakes in 100,000 years 

Number of canister failures 
during damaging earthquake 

Mean= 0.0004 
Median= 0.0 
Maximum= 1 
Mean= 1.80% 
Median = Not Calculated 
Maximum= 3.0% 

Mean= 0.325 
Median= 0.0 
Maximum= 5 
Mean= 1.82% 
Median 0.31 % 
25.4% 

Both the current and the previous study shows that a damaging earthquake leads to a 
small number of canister failures, and that the number of expected damaging 
earthquakes over a 100,000 year time period is very small. Part of the disagreement 
between the current and previous results in the Table is due to the extremely small 
sample size on which to calculate statistics. 
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3 EVALUATION OF CONSERVATIVENESS 

3.1 Task 2.1 - Fracture Propagation Effects 

The external boundaries of the Franc3D model form a cubic block (Figure 3-1). 
A penny-shaped fracture is located in the center of the block. The fracture surface 
constitutes an internal boundary. The fracture is dipping 45°. Ranges of different 
fracture and block size are summarized in the table below. 

Table 3-1 Size of the fracture and the block 
Fracture radius [m] 
0.01 
1 
5 
10 

3.1.1 Material properties 

Block height/width [m] 
0.1 
10 
100 
100 

The material properties are used after Shen (1993) so that the results of the analysis by 
Shen and the present analysis can be compared. The Young' s modulus of the rock is set 
to 6.2 GPa and the Poisson ratio to 0.28. This Young's modulus is typical for gypsum 
material that has been used for laboratory test by Shen. This value should be compared 
with the Young's modulus equal to 75 GPa used in TR 97-07 (La Pointe and others, 
1997) that is a representative value for typical intact rock found in Sweden (Pusch, 
1996). On the other hand, the material surrounding the fracture is a fractured rock mass. 
Its quality is lower than for an intact rock material. It is thus valid to use lowered values 
of E. Table 3-2 below summarizes the mechanical properties used in this study. 

3.1.2 Boundary conditions 

The displacements of the base of the model are set to O in the x, y, and z directions. 

Vertical normal compressive loads are applied to the top of the model. Loads are chosen 
within a range that includes the minimum normal compressive loads required for the 
propagation of the fracture of the different cases. Loads vary within the range of 
CTnE [ 1 MPa; 100 MPa]. 
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Figure 3-1 
the model 

Example of Franc3D model. The penny shape fracture is in the centre of 

Table 3-2 Mechanical properties used in the study (after Shen, 1993) 
Parameter name Value Unit 
E (Young's modulus) 6.20-109 Pa 
v (Poisson's ratio) 0.28 
G1c 50 
Gue 500 
K1c 5 .80· 105 

Kuc 1.83-106 

3.1.3 Results 

J/m2 
J/m2 

The results are found consistent with the laboratory test carried out by Shen (1993). The 
stress intensity factors in mode I and 11, K1 and K11, respectively, are computed by 
Franc3D. The stress intensity factors K1 and K11 are linear functions of the loading 
stress, O'n, of the form: 

KF]7·0'n (16a) 

(16b) 

For different fracture radii, the Y1 and Yn functions are presented in Figure 3-2. 
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Figure 3-3 Critical normal load that initiates fracture propagation as a function of 
the fracture radius. 
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Curve fitting of the plot of Y1 and Yrr functions indicates that YI and YI1 are increasing 
exponential functions of the fracture radius of the form: 

(17) 

(18) 

Replacing Eq. (17) and Eq. (18) in Eq. 16a and Eq. 16b, respectively, and then putting 
Eq. 16a and Eq. 16b in the propagation criterion F expression gives: 

(19) 

Propagation of the fracture occurs when F= 1. This gives the expression of the normal 
load that initiate propagation as a function of the fracture radius: 

1 
a=---.========= 

nc ( a 1 . rb' J2 + ( a 11 . rb" J2 

Klc KIIc 

(20) 

Equation 20 is illustrated by Figure 3-3. 

The critical normal load that initiates fracture propagation is a decreasing function of the 
fracture radius. The computation of the maximum shear displacement prior to fracture 
propagation can be calculated by Poly3D. The Poly3D models discussed in the next 
section are based on fracture radius and critical normal load presented in Figure 3-3. 

3.2 Poly3D model set-up 

3.2.1 Geometry 

The Poly3D model is a penny shaped fracture. The angle between the fracture and the 
normal compressive load is 45°. The fracture shear displacement is observed by a 
vertical observation grid normal to the strike direction of the fracture (Figure 1-4). 

3.2.2 Material properties 

The material properties are the same as in the section 3 .1.1. They are summarized in 
Table 3-3 below: 

Table 3-3 Material properties used in the Poly3D analysis 
Parameter name Value Unit 
E (Young's modulus) 6.20-109 Pa 
v (Poisson's ratio) 0.28 

Ranges of different fracture and observation grid sizes are summarized in the table 
below. 
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Table 3-4 Size of the fracture and the observation grid 
Fracture radius [m] Observation grid height/width [m] 
0.001 0.01 
0.01 0.1 
1 10 
10 100 
100 1000 

3.2.3 Boundary conditions 

The penny shape fractures of different radii are subjected to the critical normal loads 
calculated in Franc3D. The loading values are presented in the table below. 

Table 3-5 Critical loading that initiate fracture propagation 
Fracture radius [m] Critical loading [MPa] 
0.001 27.50 
0.01 15.00 
0.1 5.84 
1 1.88 
10 0.57 
100 0.17 

3.2.4 Results 

The results for displacements at the fracture centroid are presented in Figure 3-4. The 
figure shows that the maximum shear displacement in the fracture is an increasing 
function of the fracture radius. Even for large fractures, the shear displacements are still 
of the order of millimeters. 
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Figure 3-4 Maximum shear displacement in the fracture as a function of the fracture 
radius 

3.2.5 Conclusions 

The modeling results suggest the following conclusions: 

1. For constant material properties and a constant angle between the loading stress 
and the fracture plane, the maximum shear displacement can be expressed as a 
function of the fracture radius. 

2. For reasonably large fractures, e.g. radius< 100 m, the maximum shear 
displacement is far below the critical displacement of 100 mm that would 
compromise the integrity of the canister. The critical value of 100 mm that could 
lead to canister failure would involve extremely large fractures, ones that would 
most likely be identified during any site reconnaissance and avoided as canister 
locations. This implies that fractures that are sufficiently large to have slips 
exceeding 0.1 m are highly unlikely to be missed during the mapping that would 
take place during repository construction. Since canister holes could be placed a 
safe distance from these large fractures, if they are present, canister failures in a 
future repository due to induced fracture movements may be extremely unlikely. 

3. The shear displacement model of Poly3D is friction free. In reality, a part of the 
strain energy applied to the fracture is consumed overriding the initial cohesion of 
the fracture and by friction processes due to the roughness of the fracture surface. 
The resulting slip of the fracture is less than the slip computing by Poly3D. The 
same remark can be made for Franc3D. 
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4. This task only concentrated on fracture propagation initiation. Fracture slip and 
propagation were treated as two uncoupled processes. This approach is still valid 
for the modeling of fracture propagation initiation. Modeling of the same system 
beyond propagation is much more complicated. In reality, as soon as a fracture 
begins to propagate, its geometry and state of stress change, sometimes radically. 
Both models should be updated continuously in small steps. 

3.3 Task 2.2 - Fracture Interaction Effects 

3.3.1 Results of the variation of the distance case 

The stress intensity factors K1 and Kn are computed around the perimeter of the two 
fractures by the code Franc3D. The fracture propagation criterion is calculated for each 
fractures by Equation 9. Since the fractures are similar, the computed F criterions are 
almost equal. The small discrepancy between the F values is explained by a slight effect 
of the boundary of the model. Figure 3-5 shows the variation of the F factor as a 
function of angle for the two fractures when separated by Im. 

One can observe that the load applied to the system is larger than the critical load that 
initiates fracture propagation, since F> 1 at some points. The peak observed at 270° is 
due to the discretization step of 15° chosen that is too coarse to show a smooth curve at 
270°. The difference between the F factors is negligible around the perimeter of the 
fracture. 

The maximum F factor is computed for the reference fracture for different distances 
between the fractures. The results of the analysis are presented in Figure 3-6 below. 

The stress intensity factor F of the reference fracture increases as the fractures get closer 
to each other. The variation of the F factor is not linear. The F factor curve converges 
asymptotically toward a value equal to the F factor of a similar but single fracture. This 
F factor value can be assumed reached when the distance between the two fractures is 4 
times the radius of the fractures. This distance is defined as the maximum influence 
distance of the system. 

3.3.2 Results of the variation of the size of the disturbance fracture 

The stress intensity factors K1 and Kn are computed around the perimeter of the two 
fractures by the code Franc3D. The fracture propagation criterion is calculated for each 
fractures by the Equation 9. Since the fractures are different in size, the computed F 
criterions are different, as seen in Figures 3-7 and 3-8. 

The criterion of propagation initiation of the disturbance fracture increases as its radius 
increases. This could be predicted by Equations 17 through 20. The criterion of 
propagation initiation of the reference fracture Fmax decreases as the radius of the 
disturbance fracture increases. Also the risk for propagation is slightly reduced by the 
presence of a large fracture in the neighborhood. In term of fracture shearing, the 
presence of a larger fracture parallel to the reference fracture reduces the risk for large 
shear displacements, since the strain energy is distributed over the cumulated surfaces of 
the fractures. 
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3.4 Conclusions 

The following conclusions of the fracture interaction on energy dissipation can be 
drawn: 

1. For constant material properties and a constant angle between the loading stress 
and the fractures orientation, there exists a maximum distance of influence in 
terms of propagation criterion F between two identical fractures. This distance 
was found equal to four times the radius of the fractures. One can assume that the 
fractures behave as isolated when their distance is more than the maximum 
distance of influence. 

2. When the distance between the two identical fractures decreases below the 
maximum distance of influence, the propagation criterion increases. Also the risk 
for fracture propagation increases when the fractures get closer. 

3. Increasing the size of a particular fracture increases the risk for its propagation. 
On the other hand, it reduces slightly the risk for propagation of the parallel 
fractures in the neighborhood. 

The study was carried out on a fracture with parallel orientation and specific geometry 
to investigate qualitatively the effect of distance and size on the risk of propagation. 
A more exhaustive investigation would be to carry out a similar analysis for different 
fracture orientations and the interactions of multiple fractures. 
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3.5 Task 2.3 - Impact of Fracture Cohesion and Friction 

The inclusion of fracture cohesion and friction will prevent fracture slippage in some 
instances. The question that is of greatest interest with regards to performance of a 
repository over the next 100,000 years is whether some of the canister failures reported 
in TR 99-03 would not have been predicted had these effects been taken into account. 
The results for the three cases of cohesion and friction angle shown in Table 1-4 are 
shown in Table 3-7. The results have been sorted by distance and magnitude intervals. 
The percentage number in each cell refers to the percentage of fractures that had 0.1 m 
or more of slip predicted that did not exceed the Mohr-Coulomb threshold. For 
example, an entry of 100% means that all of the fractures in that distance-magnitude 
range whose slips had previously been predicted to be greater than 0.1 m did not exceed 
the Mohr-Coulomb criterion, and so would not have failed. Table 3-7 shows how 
conservative the assumption of no friction and no cohesion may be. As shown in this 
Table, and by the Ceberg calculations reported in TR 99-03 (Table 5-7), most of the 
damaging earthquakes tend to occur between 100 m and 1 km of the repository. Even 
for the weakest set of assumptions, Table 3-7 shows that more than half of the induced 
slips greater than 0.1 m might not have taken place, since the Mohr-Coulomb criterion 
was not exceeded. Moreover, no earthquakes less than magnitude 6.0 for this distance 
range with predicted slips exceeding 0.1 m ever exceeded the Mohr-Coulomb criterion. 
Only 5% to 10% of the damaging earthquakes in the 6.0 to 7.0 magnitude range would 
have exceed the Mohr-Coulomb criterion. Since between 90% and 95% of all damaging 
earthquakes in the Ceberg example presented in TR 99-03 occurred at distances greater 
than 100 m 

For earthquakes within 1 km, the reduction is on the order of 10% to 30%. At distances 
greater than 1 km, the impact is much greater. In fact, although the Figure extends to 
distances beyond 10 km, not a single earthquake beyond 10 km leads to induced slips 
greater than 0.1 m when the friction and cohesion cases are taken into account. This 
suggests that the radius of investigation for potential earthquakes should focus on the 
immediate region within 10 km of the repository, and can largely ignore potential 
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earthquakes outside this area. Figure 3-9 shows the reduction in canister failure 
percentage due to damaging earthquakes as a function of distance if the three scenarios 
are taken into account. A value of 50% would mean that half of the predicted canister 
failures would not take place, since the induced shear tractions would not be sufficient 
to overcome the cohesion and friction. A value of 100% would mean that taking friction 
into account would not have changed the results in TR 99-03. 
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Table 3-6 Percentage of fractures originally exceeding the 0.1 m displacement 
threshold that did not exceed the Mohr-Coulomb criterion 
Cohesion = 0.1 MPa, Friction Angle = 25° (Intermediate Case) 

Distance Range 
Earthquake 1 - 10 m 10 m - 100 m 100 m - 1 km 1 km - 10 km 10 km - 100 km 
Magnitude 
Range 
8.0-8.5 1.17% 1.60% 55.64% 100.00% 
7-5-8.0 2.03% 4.96% 75.51% 100.00% 
7.0-7.5 3.28% 11.37% 93.84% 
6.5-7.0 5.65% 32.21% 100.00% 
6.0-6.5 13.37% 46.55% 97.41% 
5.5-6.0 24.50% 33.42% 100.00% 
5.0-5.5 10.60% 26.83% 100.00% 
4.5-5.0 65.98% 59.81% 
4.0-4.5 62.60% 67.88% No Fractures Exceeded 0.1 m 

3.5-4.0 69.86% 86.61% 
3.0-3.5 91.90% 94.68% 
2.5-3.0 100.00% 98.41% 
2.0-2.5 100.00% 100.00% 

Cohesion = 0.01 MPa, Friction Angle = 20° (Weakest Case) 
Distance Range 

Earthquake 1 - 10 m 10 m - 100 m 100 m - 1 km 1 km - 10 km 10 km - 100 km 
Magnitude 
Range 
8.0-8.5 0.88% 1.04% 51.70% 100.00% 
7-5-8.0 1.26% 2.91% 70.21% 100.00% 
7.0-7.5 2.28% 8.27% 91.82% 
6.5-7.0 3.46% 28.70% 100.00% 
6.0-6.5 8.86% 43.55% 92.59% 
5.5-6.0 18.66% 30.43% 100.00% 
5.0-5.5 6.40% 20.65% 100.00% 
4.5-5.0 60.77% 54.32% 
4.0-4.5 57.20% 66.83% 
3.5-4.0 66.32% 83.48% No Fractures Exceeded 0.1 m 

3.0-3.5 88.36% 93.46% 
2.5-3.0 100.00% 98.41% 
2.0-2.5 100.00% 100.00% 
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Cohesion = 1.0 MPa, Friction Angle = 30° (Strongest Case) 
Distance Range 

Earthquake 1 -10 m 10 m - 100 m 100 m - 1 km 1km-10km 10 km - 100 km 
Magnitude 
Range 
8.0-8.5 1.95% 2.41% 65.12% 100.00% 
7-5-8.0 2.82% 8.39% 84.48% 100.00% 
7.0-7.5 6.17% 16.67% 95.79% 
6.5-7.0 9.04% 39.12% 100.00% 
6.0-6.5 19.24% 50.45% 99.63% 
5.5-6.0 33.39% 37.24% 100.00% 
5.0-5.5 17.89% 32.82% 100.00% 
4.5-5.0 71.39% 64.24% 
4.0-4.5 67.19% 73.94% No Fractures Exceeded 0.1 m 

3.5-4.0 86.15% 90.91% 
3.0-3.5 95.34% 96.44% 
2.5-3.0 100.00% 98.41% 
2.0-2.5 100.00% 100.00% 
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Figure 3-9 Reduction in canister failure percentage due to incorporation of friction 
and cohesion effects 
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4 CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conservativeness of the Methodology in TR 99-03 

This study has shown that the estimates of canister failure reported in TR 99-03 are 
conservative. Three conservative assumptions were examined in detail: fracture 
propagation, fracture interactions, and fracture cohesion and friction. The results 
summarized in Chapter 3.2.6 suggest that fractures less than 100 m radius would use up 
most of the earthquake energy to propagate the fracture rather than to slip. The 
implications for the three generic sites where maximum fracture size was not much 
greater than 100 m is that none of the estimated canister failures might have taken place, 
or if they did, they would have been on very large (radius> 100 m) fractures that 
probably could be identified during site reconnaissance and avoided as canister 
locations, effectively reducing earthquake risk to 0.0. 

Fracture interaction effects also show some reduction in slip. The analyses focused on 
the interactions of two parallel fractures. Even for this simple case, the impact could be 
measured on the fracture propagation criterion for the fracture intersecting the canister. 
The modeling results showed that even a single fracture parallel to the fracture 
intersecting the canister would require more energy for slip or propagation. Effects 
might be to increase the necessary energy by 10 percent or more. 

Incorporation of fracture friction and cohesion suggests that predicted slip magnitudes, 
not considering fracture interaction effects or propagation, could be significantly 
reduced. The simulations reported in Section 3 .5 suggest that the number of fractures 
with slips predicted to exceed 0.1 m in the case of frictionless and cohesionless fractures 
would be substantially reduced when cohesion and friction are considered. For smaller 
earthquakes and greater distances, almost 100% of the fractures that previously 
exceeded the 0.1 m threshold would not exceed the Mohr-Coulomb threshold, and 
would not slip. On the order of 10% to 50% of the fractures previously exceeding the 
0.1 m threshold for larger earthquakes would not exceed the Mohr-Coulomb threshold. 
Thus, consideration of friction and cohesion alone ought to reduce the number of 
predicted canister failures by a minimum of 10%, and more likely by 50% to 90%. 

When all three of these studies are taken into account, it seems plausible that the 
earthquake risk reported in TR 99-03 is highly conservative, and that for the three 
generic sites, the only fractures that might slip during the next 100,000 years are those 
that are so large that they would be easily detectable during site reconnaissance or 
repository construction. 

4.2 Tools for Site Comparison 

The sensitivity studies reported in Chapter 2.2 shows that knowledge of nothing more 
than the earthquake magnitude/frequency parameters for a given site can be used to 
predict risk characteristics for a single reference fracture. If fracture intensity and 
fracture size distributions are assumed to be similar for alternative sites, then a simple 
multiplication of the sensitivity matrix results with a matrix of earthquake 
magnitude/frequency can be used to rank alternative sites. 
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4.3 Tools for Estimating risk 

Additional results reported in Chapter 2.2 show that the sensitivity analysis results can 
be combined with site-specific knowledge of fracture size and intensity to approximate 
the results of more detailed numerical simulations. While these estimates have a greater 
uncertainty than the results in TR 99-03, it is encouraging that their mean estimates of 
canister failure due to damaging earthquakes are within the same order of magnitude as 
the more sophisticated calculations of TR 99-03. 

4.4 Critical Data for Estimating Earthquake Risk 

Many parameters influence predicted displacements on fracture due to earthquakes. The 
most important is earthquake magnitude. Predicted displacement has a power law 
dependence on earthquake magnitude. 

Several parameters exert a linear dependence on predicted displacements. These include 
fracture radius, distance between the earthquake and the fracture, and fracture intensity. 
For comparison of sites, fracture radius distribution and distance from earthquakes 
many not vary much; fracture intensity may be the parameter that accounts for the 
greatest differences. 

A few parameters exert less than a linear dependence, like fracture orientation. 

Since only earthquake greater than magnitude 6.0 produce slips greater than 0.1 m, the 
critical parameter for ranking sites may be the number of earthquakes with magnitudes 
greater than 6.0. This, coupled with the fracture intensity, are likely to be the two most 
critical parameters for assessing the relative risk of canister failure for alternative sites. 

4.5 Earthquake Risk Relative to Canister Failure in Swedish 
Repositories 

The conservative calculations reported in TR 99-03 suggested that canister failure due 
to movements along fractures intersecting these fractures as a result of earthquakes 
would be small. These calculations relied upon simplifications of the physical processes 
that take place during an earthquake. When the simplifications were further 
investigated, it was found that canister failure should be much less. Unless the 
repository is located in an area where magnitude 6.0 and greater earthquakes are much 
more likely to occur, and fracture intensity is much greater than the three generic sites, it 
is unlikely that canister failures will occur. 
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APPENDIX A 

DERIVATION OF PARENT FRACTURE POPULATION 
STATISTICS FROM TRACE LENGTH MEASUREMENTS 
FOR FRACTAL FRACTURE POPULATIONS 

A1 Overview 

A.1 1 Introduction 

Published methods to estimate fracture size combine Discrete Fracture Network (DFN) 
modeling with a forward modeling approach to match various statistical parameters of 
the ID or 2D data (Dershowitz and others, 199i1; La Pointe and others, 19932). While 
these methods are very general and powerful, they require sophisticated numerical 
simulations. 

Many researchers who have analyzed fracture geometry in wells, outcrop, lineament 
maps or seismic profiles have concluded that individual fracture sets often exhibit 
Power Law or fractal characteristics for many of their parameters, including fracture 
size. If a fracture set does conform to a fractal size distribution model, then it is possible 
to derive a host of useful equations that relate statistics for the observed fracture trace 
lengths to the statistics that describe the unobserved three-dimensional parent fracture 
population, making numerical simulations unnecessary. The sections that follow detail 
the derivation of these equations, and illustrate through numerical DFN simulations that 
they provide accurate estimates of the parent fracture population size statistics. 

A.1 2 Assumptions 

For the equations developed in Sections 2 and 3, fractures are assumed to be planar and 
circular. The representation of fractures as circular discs, rather than as some other 
shape, is not a required assumption, but is convenient for the mathematical development 
presented in these sections. It turns out that the derived equations apply with minor 
modifications to fractures of other shapes, as discussed in Section 3.2. 

1 Dershowitz, W. S. (1992). Interpretation and synthesis of discrete fracture orientation, size, shape, 
spatial structure and hydro logic data by forward modelling. Proceedings of the international Congress on 
fractured and Jointed Rock Masses, Lake Tahoe, 3-5 June 1992. A A Balkema, Rotterdam. pp. 579-586. 

2 La Pointe, P.R., P. C. Wallmann and W. S. Dershowitz (1993). Stochastic estimation of fracture size 
from simulated sampling. Int. Jour. Rock Mech., Min. Sci. & Geomech. Abstr. v. 30, 1611-1617. 
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It is also convenient to characterize fracture size by the effective radius of the fracture, 
since this parameter is often used in modeling simulations or engineering calculations. 
The effective radius of a fracture is defined as the radius of a circular fracture that has 
the same area as the actual fracture. Critical equations in the text are highlighted by a 
surrounding box. 
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A2 

A.21 

PARENT FRACTURE POPULATION 
STATISTICS 

Functional Forms for the Parent Fracture Radius 
Distribution 

A group of fractures that have a Power Law or fractal radius distribution implies that the 
Complementary Cumulative Density Function (CCDF) of the fracture radii conforms to 
a power law. The CCDF is defined as the probability that a fracture radius is equal to or 
greater than a particular radius. Power Law distributions require the specification of a 
minimum value for their distributional mass and moments to be finite. The probability 
that a value is equal to or greater than the minimum value is 1.0, while the probability 
that the radius is greater than or equal to infinity is 0.0. The formal representation of the 
CCDF is given by Equation 1: 

where x0 is the minimum (radius) value, 
x is any fracture radius between x0 and =, 
D is the exponent of fractal dimension, and 
G(x) is the probability that x is greater than or equal to x0• 

(1) 

The Cumulative Density Function (CDF) of the three-dimensional radius distribution, is 
defined as: 

The Probability Density Function (PDF) defined as the derivative of the cumulative 
density function: 

a DxD 
f(x) = -F(x) = - 0-

dX XD+l 

(2) 

(3) 

Note that the PDF and CCDF have a power law functional form, and so would plot as a 
straight line on doubly logarithmic axes, while the CDF does not have a power law 
functional form, and would not plot as a straight line on doubly logarithmic axes. 

A.2 2 Mean Value 

Statistical distributions can be characterized by their moments, such as their mean or 
standard deviation. Power law distributions differ from many common distributions, 
like the lognormal or the exponential, in that their moments are not always finite. For 
power law distributions, the value of D governs whether a particular moment is finite or 
not, as is shown in this section in the Section 2.3. These considerations are important for 
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using trace length data to infer the population characteristics of the parent fracture 
population. 

The mean radius(µ) is defined as the expected value (E[J) of the radius distribution, or: 

µ = E[/(x)]= ( xf(x)cJx 
(4a) 

(4b) 

D 

Dxo -D+11= =--x 
1-D xo (4c) 

(4d) 

Now the term =1-D will not vanish unless D > 1.0, which implies that the mean value is 
not finite unless D > 1.0. For D > 1.0, Equation 4d becomes: 

Dx~ i-n µ - X 
- D-l 0 

or 

~ 
~ 

(5a) 

(5b) 

Equation 5b represents the expected value, or mean radius for the distribution for the 
case where D > 1.0. 

A.2 3 Variance and Standard Deviation 

The variance of a function is defined as: 

= 

a 2 = f f(x) * (x- µ)2dX 
Xo 

where f(x) is the probability density function (pdf) for x, 

µ is the mean or expected value of x, and 

x0 is the minimum value of x and 

a2 is the variance. 

As has been shown, the PDF of x for a Power law distribution is given by: 
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D 

f(x) = Dxo 
XD+l 

and the mean or expected value of the distribution is: 

x0D 
µ= D-l 

So, inserting these two expressions into Equation 6 yields: 

2 - s= (Dxo D) ( XoD )2 a (5 - -- * X--- X 
XD+l D-l 

Xo 

(7) 

(8) 

(9) 

Expanding the terms in brackets and bringing quantities not dependent upon x outside of 
the integration brackets yields: 

Carrying out the integration produces: 

Now this quantity is finite iff D > 2.0. Thus, 

VD> 2.0, 

=-Dxn *X2-n *(-1-+ D J 
0 0 2-D (D-1) 2 

2 xi D 
(5 =---*--

(D-1)2 D-2 

Since the standard deviation, <:5, equals -V(d), the standard deviation of the radius 
distribution is: 
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(11) 

(12a) 

(12b) 

(13) 
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A3 TRACE LENGTH STATISTIC 

The traces observed on a planar surface, such as an outcrop, are biased in that larger 
fractures have a higher probability of intersecting the surface than do smaller ones. The 
solution to the problem of how the scaling properties of trace lengths relate to the 
scaling properties of the parent fracture radius distribution requires decomposition of the 
problem into two stages: 

The relation between the radius distribution of the parent fracture population and the 
radius distribution of the fracture population intersecting the trace plane; and 

The relation between the radius distribution of fractures intersecting a trace plane and 
the observed trace length distribution. 

Section 3 .1 analyzes the relation between the parent and intersecting radii distributions, 
while Section 3.2 examines the relation between the radius distribution of the 
intersecting fractures and the observed trace length distribution. The reason why the 
problem needs to be decomposed is in part to facilitate a clearer exposition of the 
mathematics, and in part due to the fact that the relation between trace lengths and the 
intersecting fracture radius distribution requires an assumption about fracture shape. 

A.31 Relation Between the Radius Distribution of the Parent 
Fracture Population and the Radius Distribution of 
Fractures Intersecting a Plane 

A3.1.1 Probability Density Functions 

La Pointe and Hudson (1985)3 showed that, for the assumption that fractures are 
circular, planar discs, the probability of a fracture intersecting a plane is linearly 
proportional to the fracture radius. In general, if the fracture is represented by any 
convex polygonal shape, the probability of the intersection is proportional to the 
dimension of the polygon parallel to the plane. For simplicity, we consider circular 
fractures in the following derivations. 

Denoting the radius distribution of the parent fracture population by f(x) as in Equation 
7, the radius distribution for fractures intersecting a plane is given by: 

where o(x)is the radius distribution of the intersecting fractures. 

3 La Pointe, P. R. and J. A Hudson (1985). Characterization and Interpretation of Rock Mass Joint 
Patterns. Special Paper 199, Geological Society of America Book Series. 
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The above expression is not a proper probability distribution function, since it does not 
integrate to 1.0 between x0 and oo. A correction (C) must be made to insure that the total 
probability density equals 1.0: 

= 

CJ o(x) = 1.0 or 

C Dxo =1.0 
D-l 

D-1 
C=-

Dx0 

So 

D-1 
(nt (x) = -xf(x) 

Dx 0 

Or 

D-1 

hnt(x) = (D-l) XoD 
X 

Now the CDF is the integral of the PDF, or: 

D-l X 

F';nt ex) =-J f,nt cx)ax 
Dxo Xo 

D - l Dxo r 1-D 1-D] =--*--LX -Xo 
Dx0 l-D 

l 1-D 1-D J 
=-Xo X -Xo 

( J
D-1 

= ~ +1 

This implies that Gint(x), the CCDF of the trace lengths, is: 
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(16a) 

(16b) 

(16c) 

(16d) 

(16e) 

(17a) 

(17b) 

(17c) 

(17d) 

(17e) 

(18) 



Thus, if it were possible to plot the CCDF of the radii of the intersecting circular 
fractures, the slope of the line would be equal to slope for the true, three-dimensional 
radius distribution minus 1.0. 

A3.1.2 Mean Value 

It is straightforward to derive the expected value, or mean radius value for the 
intersecting fractures: 

D-l = = 

µint = E[/(x)] = --f x 2 f(x)dx = (D-l)xt1 f x 1-ndx 
Dx 

0 ~ ~ 

=((D-l)x0
2-D } 2-n1= 

2-D xo 

=((D-l)x/-D ][002-D -Xo2-D] 

2-D 

(19a) 

(19b) 

(19c) 

(19d) 

The equation above is finite if D> 2. 0. So, for D > 2. 0, the above equation becomes: 

(D-1) D--1 2-D 
--X X 
(D-2) o o 

A3.1.3 Variance and Standard Deviation 

(20a) 

(20b) 

The derivation of the variance of the radii of intersecting fractures can be simplified by 
making a simple variable transformation and considering the independence of D and x. 

Let n' = D- 1.0 

Then Equations 16e, 17 e, 18 and 20b become: 

l\o,(x) = 1-(:: r 
GmJx) = (:: r 
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(22) 

(23) 

(24) 



(25) 

These equations show that the statistical quantities associated with intersecting fracture 
radius distribution are identical in form to the three-dimensional radius distribution if 
the substitution D' = D - l is made in the three-dimensional radius formulae. 

Because n' does not depend upon X, the variance ( dtraces) and standard deviation ( atraces) 

for the intersecting fracture radius distributions will have the forms: 

x 2 D' 
(j2 _ 0 *---

int - (D' -1)2 D' - 2 
(26) 

X 0 fE' (j ---* 
int - D' -1 D' - 2 

(27) 

where n' = D - 1. 

This implies that the exponent for the radius distribution of fractures intersecting a plane 
can be used to calculate the correct three-dimensional radius distribution by simply 
adding 1.0 to the exponent, and statistics such as the mean and standard deviation of 
radius size can be calculated from the intersecting fracture distribution. Although the 
radius distribution of the intersecting fractures cannot be directly measured, it can be 
estimated from the trace length distribution as described in the next section. 

A.3 2 Relation Between Intersecting Fracture Radius 
Distribution and the Observed Trace Length 
Distribution 

Unfortunately, the radius of a fracture cannot be measured in outcrop, so it is impossible 
to compute the scaling properties of the intersecting fracture population. This is true 
whether the fracture sizes are fractal or follow any other distribution. However, it turns 
out that for the fracture shape geometry often assumed for fractures, it is possible to 
derive relatively simple relations between the observed fracture trace length population 
and the radius distribution of the intersecting fractures. It turns out that the scaling 
property of the radii of fractures intersecting a plane is identical to the scaling properties 
of the observed trace lengths! 

As an illustration, consider a single circular fracture of radius R, oriented perpendicular 
to a trace plane. If the fracture intersects the plane, then the trace can vary in length 
from 0. 0 to 2R. As shown in Figure 1, the trace length can be expressed as a function of 
distance z between the fracture center and the trace plane, and the fracture radius, 
according to the equation: 

(28) 

The mean observed trace length, Tµ is calculated as: 

(29) 
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or, carrying out the integration, 

T =nR 
µ 2 (30) 

Equation 30 is significant in that is shows that the mean observed trace length is equal 
to the radius multiplied by a constant. This means that the expected distribution of trace 
lengths is equal to the distribution of radii of the intersecting fractures multiplied by the 
constant nl2. In a log-log plot, multiplication of a power law function by a constant does 
not change its slope. This implies that the scaling exponent of trace lengths will be the 
same as the scaling exponent of the radius distribution of intersecting 

z• 
I .,,. 
I ,-

-f' R 

Figure 1. Fracture intersection with trace plane. 

fractures. Moreover, the scaling exponent of the trace lengths will be equal to one less 
than the scaling exponent of the radius distribution of the parent fracture population. 

Now consider fractures of other shapes. For rectangular fractures in which at least two 
sides are parallel to the plane, the trace of an intersecting fracture will always be equal 
to the length of the side that is parallel. This type of fracture shape would represent a 
fracture that is confined between two bedding planes or terminates on the upper and 
lower surfaces of a mechanical layer. In this situation, the relation between the observed 
trace length and the intersecting fracture is: 

T=L (31) 

Where T is the observed trace length, and L is the length of the side that intersects the 
bedding or layer boundary. Tµ = T, and so Tµ in Equation 31 is also directly proportional 
to R, as in Equation 30. The only difference is that the multiplicative constant is 1.0 
instead of nl2. Thus, the scaling exponent for the trace lengths will also be equal to the 
scaling exponent of the intersecting fracture polygon radius (or edge length) 
distribution. 

These two simple examples indicate that for any planar, anisotropic convex polygon, so 
long as one of its directions of anisotropy is parallel to the trace plane, the scaling 
exponent of the traces should be equal to the scaling exponent of the dimension of the 
intersecting fracture that parallels the trace plane. this, in tum, will be equal to the 
scaling exponent of the same dimension of the parent fracture population minus 1.0. 
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A.3 3 Verification 

Since it is not possible to verify the equations derived in Sections 3 .1 and 3 .2 from field 
data, as the three-dimensional fracture population cannot be observed directly or 
through others means, such as geophysics, numerical models of fractures were 
constructed for this purpose. 

Three DFN models were constructed to verify the equations. The models had different 
combinations of values of the exponent and minimum size, and also orientation. The 
parameter values are summarized in Table I below. 

Table 1. Parameters used in simulations 
Simulation # D Minimum Size Orientation 
1 3.5 1.0 Constant, (90., 0.) 
2 2.5 5.0 Constant, (45., 45.) 
3 1.5 0.5 Fisher, (0., 0.), 

K= 0.0 

All fractures were generated within a I 00-m cube embedded with a larger 200 m cube in 
order to minimize truncation effects on observed trace lengths of fractures terminating 
against the outer surfaces of the model. 5000 fractures were generated in each model 
simulation. Locations were selected at random throughout the 100-m cube generation 
reg10n. 

After each simulation was created, a horizontal trace plane was inserted into each of the 
three models, and the traces saved in a file for subsequent trace length analysis. The 
names of the files containing the three-dimension DFN model, the trace plane results, 
and the horizontal plane sampling file are listed in Table 2. 

Table 2. List of file names for verification tests. 
Simulation # 3D DFN file Trace Length File 
1 Sim1.fab Sim1 .f2d 
2 Sim2.fab Sim2.f2d 
3 Sim3d.fab Sim3d.f2d 
Trace Plane Htplane.sab 

The first series of verification tests are on the 3D DFN model itself. Each simulation is 
created essentially through the generation of a uniformly random field of numbers over 
the interval (0,1), and then transformation of this field into a power law distribution 
through Gaussian anamorphosis. This procedure sets the cumulative probability of the 
uniform field equal to the cumulative probability of the power law distribution, or: 

U = 1-( ~ r whereU E (0.0, 1.0) 

Solving this equation for x yields: 

Xo 
x=---1 

(l-U)D 

(32) 

(33) 
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The resulting random realization of x will have a power law distribution characterized 
by Equations 1, 2, 3, 5b and 14. 

D and x0 were estimated (denoted in Table 3 as n* and x/) through non-linear 
estimation of the CCDF function (Equation 3) for the radii of the 5000 fractures actually 
generated. In addition, the mean radius and the standard deviation of the radius 
distribution were estimated from Equations 5b and 14, respectively, from n* and x/ for 
the cases where these moments were finite. These were then compared to the values 
actually calculated from the 5000 radius values for each of the fractures. The results 
shown in Table 3 verify that the simulation method produced three-dimensional fracture 
models with the desired power law characteristics, and that the mean and standard 
deviation of the radius distribution can be reliably estimated through Equations 5b and 
14. Figure 2 shows the results of the non-linear fits for each CCDF. 

Table 3. Comparison of simulation results with predicted results 
Simulation Specified D Specified Xo Estimated D Estimated 

co·) Xo (xo•l 
1 3.5 1.0 3.47 1.00 
2 2.5 5.0 2.44 5.00 
3 1.5 0.5 1.50 0.50 
Simulation Predicted Mean Predicted cr Calculated Calculated cr 

Mean 
1 1.40 0.62 1.40 0.57 
2 8.48 8.20 8.47 6.29 
3 1.49 1.47 

In Table 3, the standard deviations for Simulation 3 were not calculated since D < 2.0, 
which violates the constraint used to derive Equation 14. 
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Figure 2. Complementary Cumulative Density Functions (CCDF) of fracture radii 
for three simulations. Dashed lines represent non-linear fit to Equation 14. 

The next stage in the verification process is to the trace length distributions using the 
files listed in Table 1. The scaling exponents of the trace length distributions are given 
in Table 4, and non-linear fits to the trace length distributions are shown in Figure 2. 

Table 4. 

Simulation 
1 
2 
3 

Table 5. 
trace plane. 

Simulation 

1 
2 
3 

Parameter values estimated for the observed trace lengths. 

D Xo Mean 
2.50 84.53 2.55 
1.52 16218.1 20.32 
0.54 31117.2 10.27 

Parameters for the radius distribution of fractures intersecting the 

D Xo Mean Mean Predicted From 
Mean Trace 

2.51 1.00 1.67 1.62 
1.48 5.02 12.85 12.94 
0.51 0.51 7.15 6.54 

In Table 5, the mean radius has been predicted from the mean trace length using 
Equation 30, which multiplies the mean trace length by 2/n. A comparison of Tables 4 
and 5 shows that the trace length exponent and the radius exponent are in excellent 
agreement, and also that the mean radius is well-predicted from the mean trace length. 
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Equation 25 shows that the parameter, x0, can be estimated from D andµ or CJ. For 
Simulation 1, the only simulation in which both first- and second-order moments are 
finite (since D > 2.0), the values of D andµ can be used to estimate x0: 

µ(D-l) 
X=---

o D 
(34a) 

or 

x = l .62 * (2.50 -1.00) = 0_972 
0 2.50 

(34b) 

This is very close to the actual simulation mean of 1.00. 

Since x0 and D are now estimated for the radius distribution of fractures intersecting the 
plane, the values for the parent fracture population radius distribution are: 

Dfi =2.50+1.0=3.50 ractures 

x0 (fractures)= x0 (intersecting fractures)= 0.972 

In tum, these values can be put into Equations 5b and 14 to compute the mean and 
standard deviation of the radius distribution of the parent fracture population: 

= 0.972 * 3.50 = l 36 
µ fractures 3_50-l.0 · 

CJ = 0.972 ✓3.50 = 0.59 
fractures 3_50-l.00 1.50 

(35a) 

(35b) 

(36a) 

(36b) 

The actual values for the simulation are 1 .40 and 0.57, respectively. This illustration 
shows that it is possible to make quite accurate predictions of the parent population 
from trace length data alone, and that the scaling exponent of trace lengths for a fractal 
fracture population is 1.0 less than the scaling exponent of the parent fracture radius 
distribution. 
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A4 

A.41 

MODIFICATION FOR ROUGH OUTCROP 
SURFACES OR OTHER NON-PLANAR 
SAMPLES 

Overview 

Natural objects, such as fractures, have been shown to have many fractal properties. 
However, these properties are typically sampled by methods that have a particular 
dimension. For example, boreholes or scanlines have a dimension of 1.0, since they are 
(if their width is neglected) line samples. Another typical sample is a surface, which 
may or may not be approximately planar. Examples include outcrops, underground 
exposures, lineament maps and two-dimensional seismic profiles. 

The equations developed in Sections 2 and 3 were for perfectly planar surfaces. Section 
4 extends the equations in those sections to any general fractal or Euclidean sampling 
object. The basis for the method relies upon a theorem in topology (Mandelbrot, 1983) 
that states that the co-dimension of the intersection of two sets is equal to the sum of the 
co-dimensions of each set. 

The theorem also extends to n sets. This theorem does not require the sets to be fractal, 
but certainly can be used for fractal sets. 

The co-dimension of a set is denoted by C. The dimension of the set is denoted by D. 
Then, the co-dimension is related to the dimension as: 

C=E-D 

where E is the Euclidean dimension of the space in which the sets exist. 

For a volume of rock, E = 3.0. 

Suppose a set of fractures has a dimension D1. Then the co-dimension is: 

where E3 is the Euclidean dimension of the embedding space, in this case, 3.0. 

A plane within a volume has a dimension of 2.0, and a line has a dimension of 1.0. 
Thus: 

C - E -2 0 plane - 3 • 

According to the theorem, the intersection of the fracture set and a plane has a co­
dimension equal to the sum of the individual co-dimensions, or: 

C traces = C fractures + C plane 
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(37) 

(38) 

(39a) 

(39b) 

(40) 



which implies that: 

C =E -D +E -D traces 3 fractures 3 plane (41) 

or 

D =E-(E-D +E-D) traces 3 3 fractures 3 plane (42) 

or 

D traces = D fractures + D plane - £3 (43) 

and, after inserting the numerical values for Dpzane and £3, 

D =D +2-3=D -1 traces fractures fractures (44) 

Thus, the dimension of the trace plane pattern is equal to the dimension of the parent 
fracture population minus 1.0. A similar line of reasoning shows that the dimension of a 
line sample will be equal to the dimension of the parent population minus 2.0. 

Note that Equation 3 5 is identical to Equation 21. In fact, Equation 34 could be 
re-written for a fractal sampling object of any dimension: 

Dtraces = D fractures + Dsamplingobject -£3 (45) 

So, for example, assume that the traces were on a rough fractal surface whose 
dimension is D = 2.5. Then by substitution in Equation 37, the dimension of the traces 
1s: 

D traces = D fractures + 2.5 - 3 .0 (46) 

or 

D -D -0 5 traces - fractures • (47) 

In this case, n' = D- 0.5, rather than D-1.0 as in the case with a perfectly planar 
surface. This value of n' would be substituted into Equations 22 through 27 to compute 
the appropriate fracture radius statistics from the observed trace lengths. 
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