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Summary

This report summarizes an investigation into heterogeneous diffusivity and associated
parameters within granitic rocks at the Äspö Hard Rock Laboratory (HRL). “Ano-
malous diffusion” /Havlin and Ben-Avraham, 1987; Bouchaud and Georges, 1990/
refers to diffusion that is non-Fickian, and for our purposes, sub-diffusive. Such sub-
diffusive behavior typically results from strong geometric disorder within the pore
structure of the rock. “Multirate diffusion” /Haggerty and Gorelick, 1995, 1998/ is a
more general concept that may include anomalous diffusion; in general multirate
diffusion refers to multiple diffusion rate coefficients (i.e., a distribution of Da/a

2)
present within a volume of rock that is small with respect to advection distances. A
distribution of Da/a

2 results from variability in any of (1) matrix block size; (2) pore
geometry (tortuosity, cross-sectional area, and connectivity); and (3) sorption capacity
and strength.

Our tasks for this investigation were: (1) to assess the potential for either anomalous or
multirate diffusion within Äspö rocks; (2) to evaluate existing data relating to ano-
malous and multirate diffusion within Äspö rocks; (3) to perform scoping calculations
in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin
developing a mathematical and computer model for solute advection in the presence of
anomalous matrix diffusion. In addition to carrying out these tasks, we also report on
(5) the late-time behavior of breakthrough curves. Key points follow.

First, in regard to the potential for anomalous and multirate diffusion and analyses of
existing data, we find that (1) in a literature review of 100 column experiments (Section
3.1) in various types of rock and sediment, rate coefficients decrease with experimental
observation time. This is precisely what would be expected of both multirate and ano-
malous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian
granitic rock found decreasing effective diffusivity, De, with sample length, while one
set did not. Decreasing De with sample length is evidence for anomalous diffusion. (3)
Based on diffusivity and sorption data, and speculation on matrix block size variability,
the total variability of Da/a

2 may reasonably be expected to exceed 4 orders of magni-
tude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect
to multirate diffusion. Analyses of TRUE data are currently underway and may support
multirate diffusion.

Second, in regard to the potential consequences of multirate and anomalous diffusion on
nuclear waste disposal, we found the following key points (true only if either anomalous
or multirate diffusion occur). (1) No single value of diffusivity can represent the diffu-
sion process at all time- or length-scales if diffusion is truly anomalous, while a single
value of diffusivity will represent diffusion adequately for some cases of multirate
diffusion. (2) For both multirate and anomalous diffusion the diffusivity may decrease
with time- and length-scale of measurement, making the parameter value dependent
upon the experimental design. (3) A transport model using a single diffusion rate
coefficient and that assumes the total matrix porosity is accessible by diffusion will
over-estimate the late-time retardation of the solute plume. Performance Assessment
transport calculations would therefore be non-conservative.



Third, with respect to our scoping calculations for the LTDE, we make the following
points. (1) Maximum information regarding heterogeneity in diffusivity will be obtained
with monitoring back-diffusion data from either an injected (long-term) or natural
tracer. Both must be measured over several decades of concentration and time. (2) Care
must be taken not to misinterpret heterogeneity in diffusivity as a single diffusivity but
with higher value. Several concentration histories in the scoping calculations indicate
that a model allowing only a single diffusivity may yield an estimate of diffusivity that
is too large. (3) The radial nature of the geometry used in the scoping calculations inter-
eres to some extent with current methods of identifying multirate diffusion.

Fourth, in regard to incorporation of anomalous matrix diffusion into a solute transport
model, we report the following. (1) We are in the process of developing a renormali-
zation methodology that allows diffusion on a fractal matrix while allowing advection
and dispersion. Preliminary results indicate that this is feasible and extremely efficient.
(2) Resulting late-time breakthrough curves behave as a power-law.

Fifth, in regard to the late-time behavior of breakthrough curves, we investigated the
late-time behavior of tracer test breakthrough curves with rate-limited mass transfer and
found that the late-time concentration is given by the simple expression:

c = tad c0g – m0
∂g
∂t , t >> tad and tα >> tad

where tad is the advection time, c0 is the initial concentration in the medium, m0 is the 0th

moment of the injection pulse; and t• is the mean residence time in the immobile zone.
The function g is proportional to the residence time distribution in the immobile zone;
g is well-known for many geometries and we give it for several distributed (multirate)
models of mass transfer. Using this expression we examine the behavior of late-time
concentration for a number of mass transfer models. The following are some of the key
points. (1) If rate-limited mass transfer causes late-time concentration to go as t-k, then
the underlying distribution of rate coefficients must be αk-3 as α→0. This is true for both
distributions of first-order and diffusion rate coefficients. (2) Breakthrough curves with
k < 3 persisting to the end of the experiment indicate a mean matrix residence time
longer than the experiment and possibly infinite, and indicate an effective rate coeffi-
cient that is either undefined or changes as a function of observation time. (3) Break-
through curves with k < 3 persisting to the end of the experiment indicate that it is not
possible to estimate a characteristic mass transfer time based on the experimental data
(i.e., that the characteristic mass transfer time-scale is at least as long as the experi-
ment).



Recommendations:

Based on the findings of our investigation, we make the following recommendations.

1. Current efforts with the LTDE give high priority to investigation of heterogeneity in
diffusivity at Äspö. This should include an attempt to optimize the experiment in
terms of its capability to extract information about the distribution of diffusion rate
coefficients within the rock. It should also include modeling the data with a code
capable of multirate diffusion. The latter is needed because an a priori assumption of
a single (homogeneous) diffusivity may result in an overestimation of the diffu-
sivity.

2. A theoretical/mathematical study be undertaken to determine the consequences on
Performance Assessment of both (a) multirate diffusion with various distributions of
rate coefficients, including lognormal with large α and power-law; and (b) ano-
malous diffusion with sub-diffusive behavior.

3. Laboratory work should be undertaken to examine multirate and anomalous diffu-
sion within Äspö rocks. At a minimum this would include (a) a detailed examination
of the pore structure of the rock, with attention to fractal geometry and fractal
dimension; and (2) laboratory experiments optimized to identify either or both
multirate and anomalous diffusion.
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1 Introduction

The Äspö Hard Rock Laboratory (HRL) has been constructed as part of the preparations
for a deep geologic repository for spent nuclear fuel in Sweden. One of the defined
stage goals of Äspö HRL is to test methods for description of the barrier function of the
host rock. The ongoing Tracer Retention Understanding Experiment (TRUE) is aimed
at developing an understanding of radionuclide migration and retention in fractured rock
and to evaluate to what extent concepts used in models are based on realistic descrip-
tions of the rock. One of the most important retention processes from a Performance
Assessment (PA) perspective is matrix diffusion, i.e., diffusion into the stagnant water
of the low permeability rock matrix surrounding the more conductive fractures.
However, sorption on fracture surfaces (and possibly gauge material) may be a more
dominant retention process than matrix diffusion for the experimental conditions of
TRUE. A complimentary field experiment, the Long Term Diffusion Experiment
(LTDE) is thus planned to specifically address diffusion issues in low permeability
rock. The combined information from TRUE (advective transport in fractures combined
with general retention processes) and LTDE (diffusive transport in low permeability
rock) is believed to provide relevant knowledge for formulating realistic radionuclide
transport models for performance assessment of the barrier function of the host rock.

A number of studies have shown that the diffusivities of crystalline geologic media are
heterogeneous /e.g., Valkiainen, 1992; Ohlsson and Neretnieks, 1995, 1997; Xu and
Worman, 1997; and others/. This heterogeneity appears over a wide range of scales: for
example, a single rock from one borehole may have a highly variable diffusivity over
distances of mm to cm /e.g., Ittner et al, 1990; Tsukamoto and Ohe, 1993; Johansson et
al, 1998; and others/. Pore-scale and micro-pore-scale variability certainly extend the
variability in diffusivities to scales approaching molecular /e.g., Lovera et al, 1989,
1993; Hollewand and Gladden, 1995; Werth et al, 1997/, while variability in rock-type,
structure, and geologic history extend this variability to much larger distances /e.g.,
Wadden and Katsube, 1982/.

Heterogeneity in diffusivities is due to a number of factors. In addition to those already
mentioned, diffusivities vary due to (1) the types of minerals and their spatial distribu-
tions; (2) geometry, chemistry, and mineralogy of coatings on the surfaces of fractures
or grains; (3) the volume, size, geometry, connectivity and distribution of all pore space
in the rock /after Haggerty and Gorelick, 1998/. In addition to these sources of hetero-
geneity, the size of matrix blocks in a fractured rock may vary considerably, thus modi-
fying the time-scales for diffusion into and out of the rock.

Diffusive heterogeneity leads to a number of difficulties if a model that assumes a
homogeneous effective diffusivity (or matrix block size) is used to describe field-scale
transport of radionuclides. First, it is unclear what effective diffusivity should be used.
As we know from the literature on effective hydraulic conductivities, it can be an
extremely challenging matter to determine an effective parameter for a heterogeneous
medium e.g., Gelhar, 1993/. Second, the diffusivity may become a function of the
observation time-scale or spatial-scale. A number of experimental results now suggest
that diffusivities (or diffusion rate coefficients, which are diffusion rate coefficients
divided by a length-scale squared) may be dependent upon the time-scale or spatial-
scale of observation /Valkiainen et al, 1996; Haggerty and Harvey, 1997; Johansson et
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al, 1997; Haggerty and Gorelick, 1998/. Third, if diffusivities measured at the labora-
tory time- and spatial-scale are different than those that would be effective at the PA-
scale, then a conventional model assuming homogeneous diffusivities could over-
predict transport time for radionuclides or under-predict mass release.

Four main tasks were proposed for this project: five tasks were completed. These tasks
are as follows:

1. Assessment of potential for anomalous or multirate diffusion (Section 3);

2. Evaluation of existing data (Section 3);

3. Scoping calculations for LTDE (Section 4);

4. Development of an advection-anomalous diffusion model (Section 5); and

5. Examination of information available on matrix diffusion from the late-time slope of
a breakthrough curve (Section 6).

Tasks 1 through 4 were proposed as part of the project. Tasks 1 and 2 were completed
more-or-less as envisioned in the Testplan. Task 3 was modified to concentrate on
scoping calculations that were to be used in assisting a Testplan development for the
LTDE /e.g., Byegård et al, 1999/. Although the design for the LTDE is being modified
from that which we conducted our scoping calculations on, we hope that the calcula-
tions we have completed are of value to the LTDE project.

Due to the complex nature of Task 4, it was expected that this would be only started
during this project. As it stands, we have developed a theoretical foundation for advec-
tion with anomalous matrix diffusion (something we were uncertain if we would be able
to do), but we have not yet fully investigated the implications and consequences of this.

Task 5 was added at our discretion. Examination of the late-time behavior of break-
through curves is clearly relevant to tracer tests conducted at Äspö (e.g., TRUE). At the
same time, we have been working with a theoretical foundation for extracting matrix
diffusion information from the late-time behavior of breakthrough curves. Section 6
lays out this foundation. We hope that this information will be of assistance to the
ongoing work at Äspö.
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2 Overview of anomalous and multirate
diffusion

2.1 Anomalous diffusion
Models that employ diffusive mass transfer between matrix blocks and fractures
describe the concentration within the block with Fick’s Law and mass conservation.
Matrix blocks are typically assumed to be an idealized Euclidian geometry, such as a
sphere or slab with a homogeneous diffusivity. In the case of a spherical matrix block
(for example), concentration (cm) is given by the solution of the diffusion equation
/Crank, 1975/:

∂cm

∂t
=

Da

r2
∂
∂z

r2∂cm

∂r
, 0 ≤ r ≤ a (2-1)

where all variables are defined in the Appendix (Section 9).

The primary concern with such a Euclidian formulation is not the assumed spherical
shape of the matrix block or the magnitude of the apparent diffusivity, but that the pore-
space within the immobile zone is assumed to be both Euclidian and homogeneous (or
at least homogenizable). In cases where the matrix is not Euclidian (such as a fractal
pore geometry), however, diffusion may not be described by the diffusion equation.
Although the apparent diffusivity can be scaled to include tortuosity or the effects of
other phenomena such as sorption, constrictivity, or steric hindrance /e.g., Satterfield et
al, 1973; Farrell and Reinhard, 1994; Ohlsson and Neretnieks, 1997/, the diffusion
process may be mathematically non-Fickian, and therefore Eqn. (2-1) will not apply.
Such diffusion has been termed “anomalous” /e.g., Havlin and Ben-Avraham, 1987;
Bouchaud and Georges, 1990/.

Recent work, primarily in applied physics and chemical engineering has shown that
Eqn. (2-1) does not apply in cases where diffusion takes place in a geometrically
complex, or disordered space, such as a fractal /e.g., Havlin and Ben-Avraham, 1987;
Sheintuch and Brandon, 1989; Bouchaud and Georges, 1990; Schirmacher, 1991;
Sahimi, 1995; Giona et al, 1996b/. This work has shown that effective macroscopic
diffusivities are a function of time and space. Within a geometrically complex or
disordered pore-space, the apparent diffusivity can be shown to change in the following
manner

Da ~ Dt1 – 2/d w (2-2)

/Muralidhar and Ramkrishna, 1993/ where Da is the apparent diffusivity for the time-
scale of observation; D is the diffusivity in water; dw is the random walk dimension of
the porous medium, which is related to the fractal dimension; and a constant of propor-
tionality scales the relationship for units of time and for physical quantities such as
porosity and sorptivity (although these properties may also be distributed hetero-
geneously). In a Euclidian geometry, dw = 2, and Da would be constant. However, in a
three-dimensional percolation network (for example) near the percolation threshold
(percolation networks are fractals near the percolation threshold), dw ∼ 3.8 /Sahimi,
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1993/. It can then be seen from Eqn. (2-2) that Da would change approximately as t-1/2.
Also see Figure 3-1 and associated discussion in Section 3-1.

Similar relationships show that the apparent diffusivity also scales with inverse
distance. In general, the diffusivity can be shown to decrease over any length scale less
than the correlation length. In fractal media, the correlation length is infinite and
therefore the diffusivity is inherently scale-dependent over any range of scales. For
example, it can be shown that the diffusivity scales as L-1.8 in a 3-D percolation network
at the percolation threshold /e.g., Sahimi, 1995/ where the diffusivity is measured across
distance L. However, disordered media that are non-fractal will also have scale-
dependent diffusivity over any range of scales smaller than the correlation length.

Other work /Avnir et al, 1984; Turcotte, 1986; Thompson et al, 1987; Krohn, 1988;
National Research Council, 1996; Aharonov et al, 1997; Delascuevas, 1997/ suggests
that the pore-space of many natural materials (both fractured and porous) is well-
described as fractal. Katz and Thompson /1985/ found that a particular sandstone had a
fractal dimension of 2.57-2.87 that extended down to 10 Å. Delascuevas /1997/ found
that the pore-surface structure of both the macro- and micro-pores within natural rock
salt were fractal. If the pore space is a fractal, then Eqn. (2-2) holds over all times,
whereas if the pore space is “fractal-like” over some finite volume range, then Eqn.
(2-2) holds up to some tmax, after which Da becomes a constant. However, well-test and
rock mechanics literature suggests that the pore-space of many fractured media are well-
described as fractals to very large volumes of rock /e.g., Ghosh and Daemen, 1993
Acuna and Yortsos, 1995/.

In many natural materials, therefore, the apparent diffusivity must decrease as a function
of observation (experimental) time or distance. Consequently, it is possible that ap-
parent diffusion or mass transfer coefficients decrease by several orders of magnitude
from short-duration experiments (hours to weeks) to long-duration field-scale transport
(weeks to decades or longer). In media with very large immobile zones (such as frac-
tured media with large matrix blocks), it is possible (but unknown) that diffusivities
could continue to change for much longer time periods (i.e., centuries or more).

2.1.1 A physical explanation for anomalous diffusion

A physical explanation for apparent diffusivities that change as a function of time
within geometrically complex pore spaces is as follows. If molecules are placed at a
given point within a three-dimensional, geometrically simple (i.e., Euclidian) pore space
such as a sphere, it is well-known /e.g., Hughes, 1994; Sahimi, 1995/ that Fick’s law
holds and the mean-square displacement of those molecules is given by (in 3D):

R2 t = 6Dt (2-3)

where R(t) is the displacement of a molecule from its origin over time t. Within a
Euclidian geometry, the molecules are free to diffuse any distance in any direction
allowed by the dimensionality of the geometry (i.e., 1, 2, or 3).

Within a geometrically complex pore-space, such as a fractal porous medium, diffusion
also begins in a similar manner. However, as diffusion progresses, the molecules begin
to run into “dead ends”. Once a molecule is within a dead-end, and before R(t) can
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increase again, the molecule must diffuse back to the branch-point1 where the dead-end
path began. Then the molecule must diffuse down another pathway, which may or may
not lead to another dead-end. From a macroscopic perspective, this results in diffusion
that appears to slow through time. Dead ends may be in the form of molecular-sized,
individual pores, or may be in the form of large numbers of interconnected pores that as
a group comprise a dead end. A true fractal will contain dead ends at all spatial scales.
Therefore, Fick’s law does not hold, diffusion is anomalous, and the mean-square
displacement grows sub-linearly:

R2 t ~ t2/d w (2-4)

/e.g., Havlin and Ben-Avraham, 1987/. Consequently, the apparent diffusivity appears
to decrease through time. For this type of system, Bouchaud and Georges /1990, p. 131/
make two important statements,

“Since the usual laws of Brownian motion result from the central limit
theorem... the usual form of these laws (i.e., the diffusion equation) has to
fail whenever anomalous diffusion occurs.”

and

“All... effective-medium approximations which attempt to replace the
disordered system by an equivalent ordered one following some averaging
technique can only fail when anomalous diffusion takes place.”

Therefore, it is imperative for solute transport in fractured media to determine when
anomalous (non-Fickian) diffusion is important, and to determine how best to predict its
effects.

The primary consequences of anomalous diffusion, from the perspective of nuclear
waste disposal, is a decrease in the apparent diffusivity through time. In other words, the
apparent diffusivity is no longer only a function of the solute and the rock, but also of
observation time. If anomalous diffusion applies over large ranges of time and space,
then the measured apparent diffusivity is only applicable over the same space- and time-
scale that the diffusivity was measured. Application of the diffusivity over a longer
time-scale will result in over-prediction of diffusion into the rock and consequent under-
prediction of the transport velocity.

An alternative, but equivalent, viewpoint is that the apparent diffusivity is a function of
the connectivity of the pore-space. Lower connectivity leads to a lower apparent diffu-
sivity. If the rock is less connected with distance at the matrix scale (i.e., between frac-
tures), then the diffusivity decreases with distance (sample size). The danger is that the
relatively high connectivity of the small laboratory sample is applied (de facto) to the
much larger field-scale problem; however, the connectivity of the matrix at the field-
scale may be unknown.

                                                          

1 Statistically, this increases the probability that the molecule will be released back to the fracture and then
advected further down-gradient. If the medium were “well-connected” and Euclidian, the molecule would
have a lower probability of being released back to the fracture.
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2.1.2 Consequences of anomalous diffusion for nuclear waste disposal

If anomalous diffusion occurs within rock, the most important physical and modeling
consequences for nuclear waste disposal are summarized as below.

1. No single value of diffusivity can represent the diffusion process at all time- or
length-scales. Expressed in another manner, any single diffusivity is representative
of diffusion only at one time- or length-scale.

2. The diffusivity decreases with both time- and length-scale of measurement. The
mean diffusivity for true anomalous diffusion approaches zero at very large time- or
length-scales (i.e., the pore space at very large distances is very poorly connected).

3. The porosity of the matrix may not be entirely accessed by a solute diffusing
through the pores. Some fraction of the porosity may remain inaccessible via
aqueous diffusion for all time.

4. Given a model of diffusion using a single diffusivity, some fraction of the porosity
will be accessed less quickly than a Fickian model of diffusion would predict.

5. Laboratory measurements using the through-diffusion approach (e.g., Skagius and
Neretnieks, 1986) will yield diffusivities that decrease with sample length.

6. Laboratory measurements that allow diffusion in and out of the same surface and
that depend on the tail concentration for an estimate of diffusivity (e.g., column
experiments, purge experiments, batch “desorption” experiments) will yield
diffusivities that decrease with experimental time (assuming a single diffusivity is
estimated).

7. A transport model incorporating advection and matrix diffusion and that assumes
the total matrix porosity is accessible by diffusion will over-estimate the late-time
retardation of the solute plume. Performance Assessment transport calculations
would therefore be non-conservative.

2.2 Multirate diffusion
Multirate diffusion refers to the idea that within a small volume of rock (relative to the
transport scale) there exist multiple time-scales of diffusion (or, alternatively, the
inverse of time-scales, which are diffusion rate coefficients) that operate simul-
taneously. These varying time-scales may be due to variability within (1) matrix block
size; (2) pore geometry (tortuosity, cross-sectional area, and connectivity); and (3)
sorption capacity and strength /Haggerty and Gorelick, 1995, 1998/. As such, the
concept includes anomalous diffusion, but is not restricted only to anomalous diffusion.

As applied in the literature to date, multirate diffusion typically invokes diffusion
between an advection-dominated (“mobile”) zone and a diffusion-dominated rock
matrix (“immobile zone”) that is heterogeneous at the pore-scale. The multirate
diffusion model /Haggerty and Gorelick, 1995, 1998/ is essentially a modified double-
porosity model /e.g., Neretnieks, 1980, 1993/ consisting of advective porosity and
diffusive porosity, with diffusion of mass from one to the other described by a range of
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rate coefficients2. There is now a growing body of literature documenting the existence,
observability, and effects of multiple rates of mass transfer on solute transport in the
subsurface. Multiple rates of diffusive or sorptive mass transfer are theoretically and
intuitively reasonable /e.g., Ruthven and Loughlin, 1971; Villermaux, 1981; Rao et al,
1982; Cooney et al, 1983; Neretnieks and Rasmuson, 1984; Rasmuson, 1985, 1986;
Fong and Mulkey, 1990; Valocchi, 1990; Lafolie and Hayot, 1993; Haggerty and
Gorelick, 1995; Cunningham et al, 1997/, and have now been observed and modeled in
a number of laboratory experiments /e.g., Ball and Roberts, 1991; Rate et al, 1992;
Connaughton et al, 1993; Backes et al, 1995; Pedit and Miller, 1994, 1995; Chen and
Wagenet, 1995, 1997; Culver et al, 1997; Werth et al, 1997; Haggerty and Gorelick,
1998; Lorden et al, 1998; and others3/. Haggerty et al, 1998 /in revision/ and McKenna
et al /in review/ apply the concept to field-scale transport at the WIPP Site.

As with anomalous diffusion, the primary consequences of multirate diffusion, from the
perspective of nuclear waste disposal, is a decrease in the apparent diffusivity through
time. Again, the apparent diffusivity becomes a function of the experimental obser-
vation time as well as the properties of the solute and the rock. If multirate diffusion
applies over many different time-scales, then the measured apparent diffusivity is only
applicable over the same time-scale that the diffusivity was measured. Also see Figure
3-1 and associated discussion in Section 3.1.

Unlike anomalous diffusion due to a fractal pore-geometry, however, it is possible in
many cases to calculate an effective or average apparent diffusion rate coefficient for
some multirate diffusion cases. Whether or not such an average rate coefficient can be
calculated depends on the nature of the distribution of diffusion time-scales. Any
distribution of diffusion time-scales with a non-infinite arithmetic mean will allow an
effective rate coefficient to be used. However, for that effective rate coefficient to be
known requires an experiment of at least the mean diffusion time. Any experiment
conducted over a shorter duration will result in a rate coefficient that is a function of
experimental observation time. See Section 6 for further discussion, and particularly
Section 6.3.

2.2.1 Consequences of multirate diffusion for nuclear waste disposal

The consequences of multirate diffusion are identical to those of anomalous diffusion
(since the concept of multirate diffusion can include anomalous diffusion), but with the
following exceptions.

1. Through-diffusion measurements may not yield diffusivities that decrease with
sample length. This is because pores and pore networks with different diffusivities

                                                          

2 Note that by “rate coefficient” we mean either a first-order rate coefficient (α) used in a linear driving
force model or a diffusion rate coefficient (Da/a

2) used in a model that explicitly defines the geometry into
which diffusion occurs. Any transport model with diffusion into an assumed non-infinite matrix block
size ultimately uses a rate coefficient as a fundamental parameter. Although Da and a2 may be defined
separately, changing Da is precisely equivalent to changing a-2 by the same factor.

3 Note that a large number of papers in physical chemistry have been devoted to the concept of “dispersed
kinetics”, or distributed rates of reaction and evidence for such distributed rates /e.g., Alberty et al, 1985;
Sworakowski and Nespurek /1998/. It is reasonable to assume that surface sorption is subject to such
distributed rates /e.g., Rate et al, 1992; Hu and Do, 1994; Backes et al, 1995, Wang and Do, 1999, and
many others/.
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may each span the length of all samples. In this case, the estimated diffusivity will
tend to be dominated by the largest values of diffusivity4.

2. Multirate diffusion would not necessarily prevent diffusion from accessing all pore
space. However, it is still true that given a model of diffusion using a single diffu-
sivity, some fraction of the porosity will be accessed less quickly than a single-rate
model of diffusion would predict.

3. Over some range of times, no single value of diffusivity can represent the diffusion
process. However, provided that the distribution of Da/a2 has a non-zero harmonic
mean, then a single value of diffusivity can represent the diffusion process at long
enough time (see Section 6.3.1).

                                                          

4 By analogy with pressure diffusion parallel to layers of varying permeability (or thermal conduction
parallel to layers of varying thermal conductivity), the diffusivity estimated in through-diffusion experi-
ments in media with non-intersecting pore-networks will be approximately the arithmetic mean. A similar
analogy for a lognormal distribution of diffusivities that are spatially random and connected together will
yield an estimate close to the geometric mean. However, it can be shown that the correct mean diffusivity
or diffusion rate coefficient to use in transport is the harmonic mean (see, for example, Cunningham and
Roberts /1998/ or Section 6.1.4). Since the arithmetic and geometric means are always greater than (or
equal to) the harmonic mean, through-diffusion experiments will generally yield estimates of diffusivity
that are larger than should be used for transport calculations.
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3 Evaluation of existing data and assessment
of potential for anomalous or multirate
diffusion

In this section we provide an overview of our analysis of evidence for multirate and
anomalous diffusion. We focus on Fenno-Scandian granitic rocks, with the exception of
Section 3.1, in which other data were also considered.

3.1 Observation-time-dependence of rate coefficients
To examine the issue of time-dependent rate coefficients, we compiled a number of
studies where rate coefficients were estimated from batch, column, and field tracer tests.
The results from our literature search are displayed in Figure 3-1. The estimated rate
coefficient is plotted on the vertical axis, and the duration of the experiment on the
horizontal axis. Data from 100 experiments are shown. We see that, in general, large
rate coefficients, which represent fast mass transfer, are estimated from short experi-
ments. Similarly, small rate coefficients, which represent slow mass transfer, are
estimated from long experiments. As a general trend, the longer the duration of the
experiment, the slower is the estimated rate of mass transfer. In a fashion similar to the
well-known Figure 3-2 of Gelhar et al /1992, p. 1968/, showing dispersivity vs. spatial
scale of measurement, we see that the parameter of interest appears to be a function of
the experimental design from which the parameter is estimated. In our case, however,
the scale is time rather than space.

A longer-duration experiment in the same porous medium is likely to experience
apparently slower mass transfer, while a shorter-duration experiment is likely to
experience apparently faster mass transfer. Thus, we hypothesize that a model using a
single rate coefficient (either first-order or diffusion) to represent mass transfer will only
be valid at the same time-scale as the experiment from which the rate coefficient is
estimated. To produce an accurate prediction of solute transport for any time-scale other
than that of the original experiment, we must know what rate coefficient will dominate
at the time-scale of our prediction.

When interpreting Figure 3-1, it should be remembered that we have not considered
changes in experimental design factors such as pore-water velocity, injection time, and
so forth, that will result in changes in the estimated rate coefficient. Young and Ball
/1995/ have shown that rate coefficients change through time if the mass transfer model
is mis-specified. Pore-water velocity has been experimentally confirmed as having an
important effect on the estimated rate coefficient /Brusseau, 1992; Li et al, 1994;
Griffioen et al, 1997, 1998/.
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Figure 3-1.  Rate coefficients for 100 laboratory and field from the literature, graphed versus
the time-scale of the experiment where they were measured. The rate coefficient is either a first-
order rate coefficient (i.e., α) or a diffusion rate coefficient (i.e., Da/a

2). Where a diffusion rate
coefficient is shown, it is multiplied by 15 if the assumed geometry is a spheres and by 3 if the
assumed geometry is a layer. The multiplication factor makes the rate coefficients approxi-
mately equivalent in that the mean residence times are the same /after Glueckauf, 1955 or Goltz
and Roberts, 1986; also see Section 6.1.4/.

· Unconsolidated: Sorbing solute: First-order rate coefficient

· Unconsolidated: Non-sorbing solute: First-order rate coefficient

o Unconsolidated: Sorbing solute: Diffusion rate coefficient

o Unconsolidated: Non-sorbing solute: Diffusion rate coefficient

o Unconsolidated: Non-sorbing solute: First-order rate coefficient

3.2 Through-diffusion experiments
Two of the signatures of anomalous diffusion are time- and scale-dependent diffusivi-
ties (depending on the type of measurements taken). In particular, in fractal media, it
can be shown that the diffusivity will scale as L2 – dw, where L is the dimension of the
sample across which diffusivity is measured and dw is the random walk dimension of the
rock. The value of the random walk dimension changes as a function of the pore geo-
metry in the rock. However, if the pore-space has the characteristics of a fractal, the
value will always be greater than 2. It can be shown analytically that in a 3-D perco-
lation network at the percolation threshold (i.e., a porous medium just at the threshold of
being “self-connected”), that the random walk dimension is approximately 3.8 /Sahimi,
1995/. In media that are not true fractals, but that have significant disorder over several
length-scales, it can be expected that diffusivity will also decrease with sample length;
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Figure 3-2.  Effective diffusivities in three Finnish and Swedish granitic rocks.

however, the exact nature of the decrease cannot be predicted without a more detailed
knowledge of the pore-scale geometry of the rock.

A review of diffusion in Fenno-Scandian granitic rocks turned up three experiments
conducted over different length-scales in similar granitic materials that show the type of
apparent anomalous behavior discussed above. Figure 3-2 shows effective diffusivities
vs. sample length for these three experiments, all conducted in Swedish and Finnish
granitic rocks /Johansson et al, 1997; Hartikainen et al, 1996; and Valkiainen et al,
1996/. Two of the sets of experiments were conducted with tritiated water (HTO), and
one set was conducted with helium gas (the values of De have been converted to
equivalent HTO diffusivities).

Other work by Skagius and Neretnieks /1986, p. 19/ showed that the formation factor
decreased as a function of length of the rock sample. However, in their work it was
found the decrease ceased after approximately 30 mm. This is evidence against ano-
malous diffusion, though diffusivity would still appear to be time-varying as long as the
depth-of-penetration were less than 30 mm.

3.3 Laboratory sorption and diffusion experiments
From the perspective of transport of a sorbing solute, and within the multirate diffusion
framework, the function of interest is the distribution of the diffusion rate coefficient
(i.e., its density function). In detail, this parameter is:

Da

a2 =
Dp

1 +
ρKd

φ a2

=
DδD

τ 2 1 +
ρKd

φ a2

(3-1)
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where Dp [L
2/T] is the pore diffusivity; D [L2/T] is the aqueous diffusivity; δD [-] is the

constrictivity; τ2 [-] is the tortuosity; ρ [M/L3] is the bulk density; Kd [L
3/M] is the

distribution coefficient, φ [-] is porosity; and a [L] is the distance into the rock to which
the pore or pore network is connected. Within the diffusion rate coefficient there are
three parameter groups that may vary significantly: pore diffusivity, the retardation
factor, and the length scale (a). If each of these vary by one order of magnitude and if
they are somewhat independent of each other, then the diffusion rate coefficient varies
by approximately four orders of magnitude (remembering that a is squared). Addi-
tionally, since the variations are multiplicative, we would expect that (or at least not be
surprised if) the resulting distribution is lognormal.

Ideally, we would like to know the density function b(Da/a
2) from each of the compo-

nents of Da/a
2. At present, this is not possible due to lack of data (it is unlikely ever to be

possible, in fact). However, it may be possible to place some boundaries on the distri-
bution given current knowledge.

Laboratory diffusion experiments in granitic rocks have been reviewed in detail by
Ohlsson and Neretnieks /1995, 1997/. In their review of diffusion in Fenno-Scandian
granitic rock, they found that the apparent diffusivity of tritiated water (HTO)5 Dp,
varies over approximately 2 orders of magnitude, from approximately 5.5 x 10-10 m2/s to
7.8 x 10-12 m2/s. It may be that the variability within a repository is less than this entire
range, but such a range would likely form a maximum estimate of the total range of
variability over the length-scales measured (currently up to several cm). As a conser-
vative estimate, let us assume the variability ranges over a factor of 10.

A number of laboratory sorption experiments were conducted by Byegård et al /1998/.
Experiments were conducted with Na, Ca, Rb, Sr, Cs, and Ba on nine different Äspö
rock samples (as well as other individual mineral samples, etc.) Minimum and maxi-
mum values of Kd are as follows, where values are taken from the longer-term experi-
ments (e.g., 7–36 days) and larger grain sizes (e.g., 1–2 mm):

Table 3-1.  Table showing minimum and maximum Kd values measured by
Byegård et al /1998/.
________________________________________________________________________________

Min Kd (m
3/kg) Max Kd (m

3/kg) Max Kd/ Min Kd

________________________________________________________________________

Na 1.1 x 10-6 8.0 x 10-6 7.3

Ca 1.2 x 10-5 8.3 x 10-5 6.9

Rb 1.2 x 10-4 2.8 x 10-3 23

Sr 1.4 x 10-5 1.1 x 10-4 7.9

Cs 3.5 x 10-4 5.3 x 10-2 150

Ba 1.9 x 10-4 1.8 x 10-3 9.5
________________________________________________________________________

                                                          

5 Note that Da, given by Ohlsson and Neretnieks /1995, 1997/ is approximately equivalent to Dp for HTO
if surface diffusion and differences between transport and total porosity are neglected.
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The average variability in Kd for individual species, excluding Cs, is approximately 10.
It is reasonable to assume that based on a limited number of samples, Byegård et al
/1998/ did not exhaust the variability in Kd within Äspö rock. Therefore, we take a
factor of 10 to be a conservative estimate of typical variability in Kd. Given the values of
Kd, this also results in a factor of 10 variability in the retardation factor for larger Kd.

The variability in a (the distance into the rock to which the pore or pore network is
connected) is difficult to estimate. Its maximum value is bounded by approximately
one-half the maximum fracture spacing (i.e., the maximum matrix half-block size), and
its minimum is, of course, zero. This variability depends not only on the matrix block
size, but also the pore-connectivity. As such, this is a difficult parameter to estimate. As
a minimum, the variability is certainly greater than an order of magnitude, although it
could be many orders of magnitude.

Examining the cumulative variability in Da/a
2, we see that both Dp and retardation factor

range over at least a factor of 10 (at least for larger Kd). Similarly, the value of a likely
ranges over at least a factor of 10 (at least for larger Kd). Similarly, the value of a likely
ranges over at least a factor of 10, and possibly much more. A conservative estimate of
the variability in Da/a

2 is therefore 104, or four orders of magnitude. If the distribution
were lognormal, such variability would be represented by a standard deviation in
ln(Da/a

2) in the range of 4 to 5 (i.e., 4σ, covering 95% of the distribution and where σ =
4.6, would represent a spread of 104). Such a range is certain to have a significant
impact on solute transport6.

3.4 Field tracer experiments
Without constructing a flow and transport model for each tracer experiment that
includes multirate diffusion as a hypothesis, it is difficult to rule out or demonstrate
multirate diffusion. However, in some cases the signature of multirate diffusion may be
apparent. In particular, the following provide clues that multirate diffusion may be a
factor in the proper interpretation of tracer data:

1. Tracer tests conducted over different time-scales (either by changing the fluid velo-
city or transport distance) yield different estimates of mass transfer parameters
(diffusivity, block size, and capacity coefficient);

2. Following a pulse injection of tracer, the late-time slope of the breakthrough curve
(BTC) has power-law behavior (see Section 6);

3. Following a pulse injection of tracer, the tail of the BTC is particularly “fat” but not
necessarily power-law.

An examination of tracer data available to us revealed none of the above phenomena
that could unambiguously be attributed to multirate diffusion. One set of tracer data
from Stripa /Byegård et al, 1992, Figs. 6, 7/ exhibits power-law behavior at intermediate
times. However, these tests are recirculating tests and therefore late-time behavior is
masked by the recirculation.
                                                          

6 Note that most simulations of solute transport with a lognormal distribution that have been published in
the literature /e.g., Rasmuson, 1986; Valocchi, 1990/ considered much smaller σ.
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Tracer data from the TRUE-1 experiments is currently being analyzed using the multi-
rate approach by Henrik Johansson [Dept. of Nuclear Chemistry, Chalmers University
of Technology, Göteborg] in collaboration with Oregon State University. We expect a
report and paper to come from this analysis that will outline the utility or non-utility of
the multirate approach in dealing with these experiments. Consequently, at this time we
are unable to comment directly on the multirate concept as it reflects on the TRUE-1
data set.
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4 Design of LTDE: Scoping calculations

Matrix diffusion studies of radionuclides in Swedish granitic rocks have been performed
in several laboratory experiments (reviewed by Ohlsson and Neretnieks /1995/; Ohlsson
and Neretnieks /1997/) and field experiments at the Stripa mine /e.g., Birgersson and
Neretnieks, 1982, 1984, 1990/. A Long-Term Diffusion Experiment (LTDE) is now
planned for the Äspö HRL. The preliminary test plan for the LTDE /Byegård et al,
1999/ considered both injected and natural tracers measured in a set of boreholes. The
goals of the LTDE are /Byegård et al, 1999/ are as follows.

•  To investigate diffusion into matrix rock in situ under natural rock stress conditions
and hydraulic pressure and groundwater chemical conditions.

•  To obtain data on sorption properties and processes of some radionuclides on
undisturbed matrix rock and on fresh granitic rock surfaces.

•  To compare laboratory derived diffusion constants and sorption coefficients for the
investigated host rock with the sorption behaviour observed in situ at natural con-
ditions, and to evaluate if laboratory scale sorption results are representative also for
larger scales.

•  To evaluate the impact of heterogeneous diffusion (i.e., both anomalous and
multirate).

For the purpose of assisting with this preliminary design, a series of scoping calcula-
tions were undertaken. The results of these scoping calculations are reported here.

Following the completion of our scoping calculations, two additional LTDE designs
were considered /Winberg, 1999/, for which no scoping calculations are reported here.

4.1 Solute transport code
We wrote a series of four solute transport codes to model advection, dispersion, and
diffusion radially away from a well. The codes are modifications of STAMMT-L
/Haggerty and Reeves, 1999/, which models 1-D solute transport in the presence of rate-
limited mass transfer. The modified versions of this code perform the functions listed
below. The name in brackets refers to the version of the code performing the function.
Note that STAMMT-L SKB4 is capable of all 4 functions.

1. Homogeneous, radial diffusion into a finite cylindrical matrix. Calculates con-
centration histories at an injection well only. Rock matrix may initially contain
tracer or be tracer-free. (STAMMT-L SKB1).

2. Homogeneous, radial diffusion into a finite cylindrical matrix. Calculates con-
centration histories obtained at both the injection well and an observation well. The
observation well is located at the edge of the finite matrix. Rock matrix may initially
contain tracer or be tracer-free. (STAMMT-L SKB2).
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Figure 4-1. Conceptual model for LTDE scoping calculations.

3. Homogeneous, radial diffusion into a finite cylindrical matrix. In addition to the
concentration histories of SKB2, this code calculates a concentration profile
between the injection and observation wells. Rock matrix may initially contain
tracer or be tracer-free. (STAMMT-L SKB3).

4. Heterogeneous, radial diffusion into a finite cylindrical matrix. Assumes a log-
normal distribution of Da (see Section 4.1.1 Code verification). Calculates con-
centration histories in the injection well. Rock matrix may initially contain tracer or
be tracer-free. (STAMMT-L SKB4).

A drawing of the conceptual model for the scoping calculations is shown in Figure 4-1.

4.1.1 Mathematical model, homogeneous rock
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The transport equations for advection, dispersion, and radial diffusion are

∂c
∂t

=
DL

Ra

∂2c
∂z2 –

vz

Ra

∂c
∂z

– β tot

∂cm

∂t
(4-1)

∂cm

∂t
=

Da
r

∂
∂z

r
∂cm

∂r
(4-2)
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where all variables are defined in the Appendix (Section 9). The transport equations are
coupled by

cm = 2
Ro

2 – Ri
2 rcmdr

Ri

Ro

(4-3)

The boundary and initial conditions on the advection-dispersion equation are

πRi
2DL

∂c z = 0 , t

∂z
– Qc z = 0 , t = Qcb (4-4)

∂c z = L , t

∂z
= 0 (4-5)

c z , t = 0 = c0 (4-6)

The boundary and initial conditions on the diffusion equation are

cm r = Ri , t = c (4-7)

∂cm r = Ro , t

∂r
= 0 (4-8)

cm r, t = 0 = c0 (4-9)

For all equations, see Section 9 for variable definitions. The equations may be
nondimensionalized using the following transforms /following van Genuchten
et al, 1984/:

τ =
vzt

RaL
(4-10)

Z = z
L

(4-11)

P =
vzL
DL

(4-12)

ξ = r
Ri

(4-13)
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ξ o =
Ro

Ri
(4-14)

λ =
DaRaL
Ri

2vz

(4-15)

Using these variable transforms, we “nondimensionalize” the transport equations and
then take the Laplace transform of all equations. We then solve the diffusion equation
and substitute that solution back into the advection-dispersion equation. The advection-
dispersion equation becomes

sc – c0 1 +
2β totM ω

ω ξo
2 – 1 N ω

= 1
P

∂2c
∂Z 2 – ∂c

∂Z
(4-16)

where

ω= s
λ

1 21 2 (4-17)

M ω = I 1 ωξ o K 1 ω – I 1 ω K 1 ωξ o (4-18)

N ω = I 0 ω K 1 ωξ o + I 1 ωξ o K 0 ω (4-19)

Noting that the rational term on the left-hand-side of (4-16) is a constant for the
purposes of solution in the Laplace domain, this equation is straightforward to
solve, and has been solved by various authors, including Haggerty and Gorelick
/1998/.

The concentration in the matrix away from the injection well is /after van
Genuchten et al, 1984/

cm = c
I 0 ωξ K 1 ωξ 0 + I 1 ωξ 0 K 0 ωξ

I 0 ω K 1 ωξ0 + I 1 ωξ0 K 0 ω
(4-20)

The concentration in an observation well is given by the solution of

∂cobs

∂t
=

well area ⊥ to diffusion
well volume

J ≅ –
2φDa
πrobs

∂cm

∂x
(4-21)
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In the Laplace domain and in dimensionless notation, (4-21) becomes

cobs =
2φRi

πrobsω c
I 1 ωξ 0 K 1 ωξ – I 1 ωξ K 1 ωξ 0

I 0 ω K 1 ωξ0 + I 1 ωξ0 K 0 ω
(4-22)
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The STAMMT-L-SKB4 code (containing all options) was first checked for consistency
in terms of mass balances, breakthrough times, penetration depths for diffusion away
from the well, and tailing due to diffusion in the breakthrough curves.

The code then was quantitatively verified against van Genuchten et al’s /1984/ solution.
The verification was informal in that STAMMT-L-SKB4 was visually compared the
van Genuchten et al solution as given in Figures 3-2 and 4-1 of their paper (p. 344),
which was scanned into a data extraction program. The parameters used in the veri-
fication simulation were DL = 4.9 x 10-5 m2/s; Da = 3.7 x 10-2 m2/s; L = 0.404 m; vz = 4.9
x 10-3 m/s; Ri = 7.3 x 10-4 m; Ro = 1.18 x 10-2 m; and φ = 0.6819. Both the breakthrough
curves and the concentration profiles (3, 10, and 100 min) were compared. The detailed
parameter set is given in the accompanying annotated Excel spreadsheet (encldisc.xls)
with the run-names vgck-btc, vgck-3m, vgck-10m, and vgck-100m. Comparisons are
shown below in Figure 4-2 and Figure 4-3. It should be emphasized that comparisons
are against a scanned and data-extracted image, and therefore the van Genuchten et al
data points are not precise.
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Figure 4-2. STAMMT-L-SKB4 code breakthrough curve comparison against Figure 3-2 of van
Genuchten et al /1984, p. 344/ (scanned and data-extracted).
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Figure 4-3.  STAMMT-L-SKB4 code concentration profiles comparison against Figure 4-1 of
van Genuchten et al /1984, p. 344/ (scanned and data-extracted).

4.1.2 Mathematical model, heterogeneous rock

To implement diffusion into heterogeneous rock we make use of the following assump-
tions:

1. Diffusion takes place away from the well through a distribution of non-intersecting
pore-networks;

2. The geometry of any individual pore-network is radial (i.e., its cross-sectional area
increases as r2);

3. Each pore-network is characterized by a single value of Da;

4. Da is lognormally distributed.

5. The entire distribution of diffusivities is present at every point along the well.

We note that each of these assumptions is at best only an approximation. The 4th

assumption in particular is not strictly possible because the maximum diffusivity is
equal to the aqueous diffusivity (ignoring surface diffusion and other such effects).
However, since diffusion in this problem scales approximately as Da/Re

2, where Re is the
radial distance to the end of the pore-network, the distribution is approximately
equivalent to a lognormal distribution of this entire parameter group Da/Re

2 (similar to
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the diffusion rate coefficient Da/a
2 discussed in Section 3.3). The equivalency is not

exact because diffusion in this problem depends on two length-scales, Ri and Re;
however, the dependency on the first of these is weak.

Together, the group of assumptions are not likely to be met in nature. However, the goal
of the simulations, as with all simulations, is to provide a model from which to build our
understanding of the influence of heterogeneous diffusivity on a radial diffusion
problem. For this goal, these assumptions are reasonable.

With these assumptions, Eqn. (4-16) becomes

sc – c0 1 + f Da

2β totM ω

ω ξo
2 – 1 N ω

dDa

0

∞

= 1
P

∂2c
∂Z 2 – ∂c

∂Z
(4-23)

where f(Da) is the lognormal distribution:

f Da = 1
2πσDa

exp –
ln Da – µ

2

2σ2 (4-24)

Other definitions follow as in (4-17) – (4-19) and the ODE in (4-23) may be solved in a
fashion similar to that given by Haggerty and Gorelick /1998/.

4.2 Scoping calculations
We undertook a large number of scoping calculations to help with the design of the
LTDE. At the time of the work, the planned experimental design was an injection well
surrounded by one or more observation wells. Both natural and injected tracers were to
be used. The design allowed for one or more observation wells at various distances.

Scoping calculations were undertaken for the following scenarios:

1. Natural tracer experiments in homogeneous rock (concentration history obtained at
central well only).

2. Injected tracer experiments in homogeneous rock (concentration profile obtained
and concentration histories obtained at central well and observation well).

3. Natural tracer experiments in heterogeneous rock (concentration history obtained at
central well only).

4. Injected tracer experiments in heterogeneous rock (concentration histories obtained
at central well only).
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The natural tracer is a tracer that is produced or exists in the rock naturally. An example
is He, although Ar and H2 are also possibilities. The idea with the natural tracer experi-
ments is to flush a central well with water (ideally natural groundwater) that has had the
natural tracer removed. This water is injected into the borehole, circulated there, and
then pumped out at a prescribed rate. Upon exit from the borehole, either the natural
tracer concentration is measured on-line or samples are taken in which the natural tracer
concentrations are measured.

The injected tracer experiments are conventional experiments in that a suite of tracers is
injected into the borehole and the tracers are allowed to diffuse out into the rock. In our
scoping calculations it was assumed that the injection of tracer was stopped after some
time. Some of the tracer diffuses out to an observation well, while some of the tracer
diffuses back to the central well.

Homogeneous rock refers to rock that is homogeneous with respect to the transport
parameters. In the LTDE we are dealing with transport parameters of porosity (φ),
apparent diffusivity (Da), and distribution coefficient (Kd). In the first sets of scoping
calculations we assumed that all parameters are homogeneous. For the homogeneous
scoping calculations it was assumed that the outer radius of the diffusion system was at
5.0 m, farther than the solute can reach in the time available to the LTDE.

In the second sets of scoping calculations we assumed that the apparent diffusivity is
characterized by a lognormal distribution (µ, σ). Any particular diffusion “pathway”
(i.e., pathway into the rock) is assumed be characterized by a single diffusivity.
However, it is assumed that over the length of the borehole and around its circum-
ference that there exists a distribution of diffusivities defined by the variables µ (log of
the geometric mean apparent diffusivity) and σ (standard deviation of the log of
apparent diffusivity). For the heterogeneous scoping calculations it was assumed that
the outer radius of the diffusion system was 0.5 m. This assumption was made for two
reason: (1) if there is heterogeneity in diffusivity but there are no dead-end pathways
away from the rock, then this will yield no different effect on the concentration history
at the central well (i.e., a solute diffusing out and back along a “fast” pathway looks
identical to a solute diffusing out and back along a “slow” pathway if the pathways are
both infinite); and (2) it is recognized that we do not know the distance to the outer
radius of the diffusion system but this uncertainty is lumped into the variability assigned
to the apparent diffusivity.

Scoping calculations were undertaken with a code written by Roy Haggerty for this
study in October, 1998. The code is capable of simulating radial diffusion away from a
well. The rock may be characterized by a single apparent diffusivity or a lognormal
distribution of apparent diffusivities. Concentration histories may be obtained in the
injection well or in observation wells at arbitrary distances. Concentration profiles
between the injection well and arbitrary points may also be obtained. The code can deal
with linearly sorbing solutes, and the solute may have different distribution coefficients
along the well and in the rock. The code was tested against the solution of van
Genuchten et al, 1984. Note that not all capabilities listed above may be used simul-
taneously – for example, it is not currently possible with the code to obtain concen-
tration profiles for a rock with a distribution of apparent diffusivities.
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All simulations to date have been conducted for non-sorbing tracers (e.g., HTO or He).

In all cases we conducted a scoping calculation for a Base Case – a set of parameters we
perceive as realistic for the Äspö rocks. The parameters used in the Base Case along
with the source of the parameter is shown in Table 4-1. Following a scoping calculation
for the Base Case, parameters were varied for the purpose of understanding the sensiti-
vity of the calculations to uncertainty in the parameter values.

Table 4-1. Parameters used in Base Case.
_____________________________________________________________________________________

Parameter Value Source
____________________________________________________________________________

Apparent diffusivity, Da 2.0 x 10-11 m2/s /Ohlsson and  Neretnieks,
1997/

Kinematic porosity, φ 0.005 /Ohlsson and Neretnieks,
1997/

Radius of well 0.038 m Typical well radius at Äspö

Flushing rate of well, Q* 0.1/day Choice

Distance to observation 0.20 m Choice based on feasibility
well (where used), Robs

Concentration profile time 5 yr Max. feasible time
(where used)

Std. dev. of ln(Da) (where 3.0 /Haggerty et al, 1998 (in
used), σ revision)/

Dispersivity along well, αL 0.01 m and 0.1 m Arbitrary choice – unimportant
parameter

_____________________________________________________________________________________

The parameters listed above as well as all other parameters used in the simulations are
given in an annotated Excel spreadsheet (encldisc.xls).

4.2.1 Natural tracer experiments, homogeneous rock

Several scoping calculations were conducted to investigate the potential concentration
history at a well being flushed by tracer-free water, but experiencing diffusion of natural
tracer from surrounding rock. In addition to the parameters listed in Table 4-1, we
assumed that the outer radius of the system was at 5.0 m (beyond that region seen with-
in 5 years) and that the well contained no dummy.
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Figure 4-4.  Concentration histories at central well for natural tracer experiments in rock with
homogeneous diffusivity.

Key results for the scoping calculations for the natural tracer experiments in homo-
geneous rock are given in Figure 4-4. From this figure we see the type of breakthrough
curves (BTCs) that we expect for the natural tracer experiments. Looking at the Base
Case, we see that we can expect an initially steep decline in concentrations in the well,
followed by a very long period of slow declines in concentrations. The initial steep
decline occurs once the well is flushed of its initial pore-volume of water. Conse-
quently, depending on drilling techniques, this initial phase may not occur. Following
this, the rate of decrease in concentration is determined by diffusion in the rock.

From Figure 4-4 we see that the Base Case would require a dynamic range of 4 orders
of magnitude if no dummy is used. If a dummy displacing 90% of the well-bore is used,
and pumping is reduced to maintain a flushing rate of 0.1/day, then the curve given by φ
= 0.05 shows the result for the Base Case of φ = 0.005. In other words, if a dummy is
used, the dynamic range in concentration needed for the natural tracer is less
(approximately 3 orders of magnitude in this case).
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4.2.2 Injected tracer experiments, homogeneous rock

Scoping calculations were performed to investigate concentration histories in a central
injection well and in an observation well for an injected tracer experiment in homo-
geneous rock. Concentration profiles (away from the central well) were also calculated.
We again assumed that the radius of the system was at 5.0 m (beyond the region seen
within 5 years) It was assumed that tracer was injected for a period of 0.5 yr. Both the
observation well and the injection well are assumed to have dummies occupying 90% of
the well volumes.

Figure 4-5 shows concentrations at the injection well, while Figure 4-6 shows concen-
trations at the observation well (Rwobs = 0.20 m distance, Base Case).
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Figure 4-5.  Concentration histories at the central well for a 0.5-year injection followed by
flushing with tracer-free water. Diffusivity is homogeneous.
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From these figures, several important design considerations appear in regard to
concentrations. In the observation well it is apparent that 6 decades of concentration
should be sufficient to obtain data over the entire duration of the experiment. However,
in the observation well the needed dynamic range for tracer concentration will largely
be a function of the distance to the observation well and how much the tracer is re-
tarded. From Figure 4-6 it is clear that a distance to the observation well of 0.40 m will
result in relative concentrations of less than 1 x 10-6 at the observation well after more
than 6 years.
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Figure 4-6. Concentration histories for injected tracer at observation well in rock with
homogeneous diffusivity.
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Concentration profiles at 5 years are shown in Figure 4-7. Note that the concentrations
shown in the profiles are concentration in the pore space – these concentrations pre-
sumably must be diluted either by rock or water in order to be measured. Again, we can
see that for the Base Case the relative concentration drops to a very small fraction by a
radial distance of 0.4 m.

4.2.3 Natural tracer experiments, heterogeneous rock

Scoping calculations were conducted to investigate the influence of heterogeneity in
apparent diffusivity on the experiment with a natural tracer. The model used to describe
this heterogeneity is similar to that of Haggerty and Gorelick /1998/ and Haggerty et al,
1998  /in revision/, where the apparent diffusivity is characterized by a lognormal
distribution. The rock is assumed comprised of a network of diffusion pathways, each of
which has a different value of Da. Although in this work we assume mathematically that
the
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Figure 4-8.  Concentration histories for a natural tracer in rock with heterogeneous diffusivity.

pathways are of the same lengths (0.50 m), for the situation we are modeling the
variability in Da is equivalent to variability in 1/l2, and therefore such variability is
implicitly accounted for. The parameters of the lognormal distribution are the geometric
mean of the diffusivity, which we assume equal to 2.0 x 10-11m2/s, and the standard
deviation of the logarithm of Da, σ. Keeping in mind that we are implicitly accounting
for both variability in Da and variability in the length of the diffusion pathway, we set σ
equal to 3 for the Base Case. Similar and larger values for σ have been found by Pedit
and Miller /1994/, Werth et al /1997/, Haggerty and Gorelick /1998/, and others. Also
note that, based on the discussion in Section 3.3, larger values may be justifiable at
Äspö and elsewhere in Fenno-Scandian granitic rocks.

Key results for the scoping calculations on the natural tracer in heterogeneous rock are
shown in Figure 4-8. The primary effect of heterogeneity in Da is in the late-time slope
of the concentration histories. Comparing the late-time behavior for σ = 0, 3 (Base
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Case), and 5, we see progressively lower slopes. This is similar to the effects of
heterogeneity in diffusivities that we see in other types of tests (i.e., column tests,
Haggerty and Gorelick /1998/, and single-well injection-withdrawal tests, Haggerty et
al, 1998 /in revision/). For this reason, it appears that it may be possible to distinguish
homogeneous and heterogeneous diffusion in a LTDE with a natural tracer.

At this point it is important to raise a concern over the possibility of misinterpreting the
results of heterogeneous diffusion as homogeneous diffusion with a larger apparent
diffusivity. From Figure 4-8 we can see that the late-time behavior of the heterogeneous
Da concentration histories could lead to very poor estimates of diffusivity if the wrong
model of diffusion (i.e., homogeneous diffusion) were applied. Application of a homo-
geneous model of diffusion to the Base Case (σ = 3, i.e., significantly heterogeneous
diffusion) would lead to a serious overestimation of diffusivity. The reason for this is
that larger values of σ lead to late-time concentrations that are larger. The only way to
get such larger late-time concentrations with a homogeneous model is to either (a)
assume larger-than-correct porosity or (b) assume larger-than-correct diffusivity. Since
porosity is relatively well-known, the error would almost certainly be to assume diffu-
sivity is larger. Such an overestimate applied to the Performance Assessment would
ultimately lead to underestimates of radionuclide transport velocity away from a
repository.

4.2.4 Injected tracer experiments, heterogeneous rock

Lastly, scoping calculations were performed assuming heterogeneous diffusion with the
injected tracer experiments. The Base Case simulation was identical to that for the
natural tracer except that the tracer was injected into the central well for 0.5 yr, then the
well was flushed with tracer-free water for another 4.5 yr.

Key results from these scoping calculations are shown in Figure 4-9. The main in-
fluence of heterogeneous diffusivity is to raise the late-time concentrations above what
they would be if diffusivity were homogeneous. Larger values of σ (i.e., σ = 3 or 5)
result in late-time concentrations that are significantly larger than for homogeneous
diffusivity. There is also a subtle late-time effect on the slope of the concentration
history. Overall, the injected tracer test experiments are not expected to be as helpful as
the natural tracer experiments in evaluating heterogeneity in diffusivity. Ultimately the
reason for this lies in the fact that the injected tracers are only injected for 0.5 years –
the tracer test would be better at distinguishing heterogeneity if they could be injected
for a significantly longer time.

Note, however, that other than the magnitude of the concentrations, the concentration
history of the injected tracer test is insensitive to heterogeneity in diffusivity. The late-
time slope, the key signature of heterogeneous diffusivity in the work of Haggerty and
Gorelick /1998/ and Haggerty et al, 1998 /in revision/, is not noticeably different from
the case of homogeneous diffusivity. As a result it is apparent that the injected tracer
tests may not be useful in characterizing heterogeneity in diffusivity.

The same concern raised in the discussion of the natural tracer test must be raised for
the injected tracer – the risk of misinterpretation of LTDE data. The fundamental
problem of heterogeneous diffusivity occurs when the data are interpreted using a
homogeneous model. In the scoping calculations shown in Figure 4-9, heterogeneous
diffusivity increases the observed late-time concentration. If interpreted with a model
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Figure 4-9.  Concentration histories for injected tracer in rock with heterogeneous diffusivities.

assuming homogeneous diffusivity, the resulting estimate of apparent diffusivity will be
larger than the true mean apparent diffusivity. Presumably, this larger apparent diffu-
sivity would be applied to the entire volume of rock in the context of Performance
Assessment calculations. The result would be that the entire volume of rock is assigned
an apparent diffusivity that is larger than the true mean diffusivity. As a consequence, a
radionuclide would be modeled as having a much larger apparent retardation factor than
is, in fact, the case. The ultimate result could be a non-conservative model of radio-
nuclide release to the environment.
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5 Development of advection-anomalous
diffusion model

One of the goals of the project was to work toward development of an advection-
dispersion model coupled to anomalous diffusion. As stated in the testplan, we expected
that we would only be able to make some small steps toward development of such a
model. This turned out to be an accurate prediction, although we made more progress
than we had originally thought we might. This small section describes a mathematical
technique that should prove adequate for building such a model and some results from
our first attempt at its construction.

We modeled transport with anomalous diffusion using a modified form of Giona et al’s
/1996a/ input/output renormalization method for diffusion on fractals. We very briefly
outline the major steps of this analysis. First, the diffusion equation is written in finite
difference form so as to be usable on a discrete fractal lattice:

∂ci

∂t
=

Da

∆x2 H ijc j – pci + δi1 cb – c1Σ
j = 1

N

(5-1)

where c is concentration and the subscript indicates the location in the lattice; ∆x is the
lattice spacing; Hij is the adjacency matrix (nodes i and j are adjacent and connected if
Hij is 1, and unconnected if Hij is 0); p is the coordination number sites; and δi1 is a
Kronecker delta which is only nonzero if i = 1. Note that cb is the boundary concen-
tration, and will generally be an unknown function of time; it will be determined by
coupling this system of equations with the advective-dispersive PDE. Also note that
(5-1) is easily modified to allow variable Da , if desired.

Equation (5-1) is simplified by temporarily neglecting one of the boundary terms (the
term is added back later by a second renormalization). The equation is then converted to
the Laplace domain and rearranged, resulting in the following solution:

c =
Da

∆x2 s + p
Da

∆x2 I – H

– 1

c0e1

 (5-2)

where bold-face indicates a vector or matrix; the overbar indicates a Laplace-domain
function; s is the Laplace parameter; I is the identity matrix; H is the adjacency matrix;
and e1 is (1,0,....,0)t. Equation (5-2) could be used to solve a number of fractal diffusion
problems directly, except that the matrix inversion makes the solution infeasible as
written (a typical matrix could be 109 x 109 or larger for a 3-D problem). Giona et al
/1996a/ follow the work of Schwalm and Schwalm /1988/ and resort to Green function
analysis, where the Green function in (5-2) is

G z = s + p
Da

∆x2 I – H

– 1

= zI – H
– 1

 (5-3)
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Note that only the first column of G z  is needed since only the first element of the
column vector e1 is non-zero. The entire Green function can be found using the implicit
recursive relationship:

G n + 1 = G* n + G* n V n G n + 1 (5-4)

where all matrices but V n  are a function of z;    G * n  is the block-diagonal matrix whose

blocks are equal to   G n ; and   V n  is a sparse matrix that contains the edges connecting
the copies of the previous generation fractal together. Since only the first column of

  G z is required, the recursion relationship can be simplified further, and can usually be
reduced to a small number of algebraic equations. The particular algebraic equations
depend on the fractal geometry. After these renormalization equations are found, it is
necessary to do one further renormalization to include the boundary condition that was
temporarily neglected prior to equation (5-2). Once this is completed, equation (5-2)
may be solved for the desired boundary concentrations without the need for a large
matrix inversion.

Preliminary Simulations: At this point we have solved the problem of advection and
dispersion along a column in the presence of diffusion into and out of fractal grains for
only one particular case. The fractal geometry we chose, for the purpose of an example,
is a 50th-generation, 3-D Sierpinski gasket. The algebraic recursion equations resulting
from (5-4) are solved simultaneously with the advective-dispersive equation in the
Laplace domain. Using the renormalization technique the problem runs in 10-20
seconds on a 200 MHz Pentium II (solution of an equivalent problem using finite
differences/elements would require a 1030 x 1030 matrix and would be infeasible even on
a supercomputer).

Figure 5-1 shows breakthrough curves (BTC) for a Dirac injection into a column 30 cm
long with a pore-fluid velocity of 0.1 cm/s and a dispersivity of 0.3 cm. The grain size is
0.5 cm. BTCs are shown for the scale invariant matrix (anomalous diffusion), a multi-
rate matrix (lognormal distribution of diffusion rate coefficients, with a log standard
deviation of 3) and conventional diffusion into spherical grains (diffusion in a homo-
geneous matrix). The slowest long-term recovery is from the scale invariant matrix,
while the scale invariant matrix also has the earliest breakthrough and highest peak
concentration in the breakthrough curve.

Anomalous diffusion (diffusion into the scale invariant matrix), multirate diffusion, and
conventional diffusion into a homogeneous matrix are distinguishable by the shapes of
the tails of the BTC. The tail of the conventional BTC is goes asymptotically to an
infinite slope, while both multirate and anomalous diffusion have near-constant late-
time slopes (this can be shown analytically). At intermediate times, the conventional
BTC goes has a power-law behavior of t-3/2 (note that in the case of an infinite block, the
conventional BTC also goes as t-3/2 at late time /e.g., Hadermann and Heer, 1996; also
see Section 6.2.1/). The late-time BTC for the scale invariant matrix goes as   t– 2 + ds /2 ,
which gives a slope of approximately -1.2 for a 3-D Sierpinski gasket. The late-time
BTC slope for the multirate matrix is approximately -2.5 for a lognormal distribution
and large standard deviation (steeper for smaller standard deviations). Note, however,
that at very late time the multirate lognormal matrix would have an infinite slope.
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Figure 5-1.  Breakthrough curves (BTC) for advective-dispersive transport in the presence of
diffusion within a scale invariant matrix, a multirate matrix, and a conventional spherical
matrix. Note the true power-law behavior of the scale-invariant matrix, and the approximate
power-law behavior of the lognormal multirate matrix.
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6 Investigation of late-time behavior of
breakthrough curves and their significance

The purpose of this section is to explore the nature of tailing in tracer test breakthrough
curves (BTCs). We will focus on understanding (1) the late-time slope of BTCs for a
range of mass transfer models; (2) what information can be provided by the late-time
behavior of the BTC; and (3) what models of mass transfer provide power-law BTCs at
late time. Expressions describing the late-time BTCs for single-rate models with both
infinite and finite immobile zones, as well as multirate models with first-order and
diffusion rate coefficients defined by lognormal, gamma and power-law distributions
are derived. Implications of the late-time slopes defined by these equations are dis-
cussed with respect to mass transfer processes.

An area of particular interest in this section is power-law behavior at late time in BTCs.
Power-law behavior in BTCs (c ~ t-k) has been noted in a number of laboratory and field
experiments. Farrell and Reinhard /1994/ and Werth et al /1997/ obtained power-law
BTC and mass recovery curves with sorbing organic solutes in unsaturated media.
Cunningham et al /1997/ were able to represent the Werth et al /1997/ data with a
gamma distribution of diffusion rate coefficients, while Haggerty and Gorelick /1998/
were able to approximate the power-law behavior with a lognormal distribution of
diffusion rate coefficients. Both Cunningham et al /1997/ and Haggerty and Gorelick
/1998/ noted the inability of conventional models of mass transfer to yield the appro-
priate power-law behavior. Power-law behavior with k = 3/2 has been observed in field
data from the Grimsel test site and has been adequately explained with conventional
(single-rate) diffusion /Eikenberg et al, 1994; Hadermann and Heer, 1996/. However,
single-rate diffusion is only able to yield a power-law of exactly t–3/2, and can only main-
tain this behavior slightly longer than the mean immobile-zone residence time (tα =
a2/15Da for spheres and a2/15Da for layers), where Da is the apparent diffusivity and a is
the half-thickness of the immobile zone. Power-law behavior such as that observed in
Farrell and Reinhard /1994/, Werth et al /1997/, or Meigs and Beauheim /in review/
cannot be explained with conventional single-rate diffusion.

As we will see in this section, power-law behavior at late time is particularly significant
for mass transfer. In particular, if the power is small (less than 3), it suggests at a mini-
mum that the mean time-scale of mass transfer is longer than the experiment and
possibly that the mean time-scale is infinite (undefined). Such a power-law behavior
may be indicative of a fractal pore geometry and anomalous diffusion, though such a
conclusion remains tentative at this point.
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6.1 Mathematical development

6.1.1 General case
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The mass balance equation for a solute advecting and dispersing in 1-D, and interacting
with rock via equilibrium sorption plus diffusion and/or linear nonequilibrium sorption
is:

∂
∂x

α Lv
Ra

∂c
∂x

– v
Ra

c = ∂c
∂t

+ Γ t (6-1)

where αL [L] is longitudinal dispersivity; v [LT-1] is pore-fluid velocity; Ra [-] is the
retardation factor in the advective (effective or kinematic) porosity; c [ML-3] is solute
concentration within the advective porosity; and Γ(t) is the source-sink term for mass
exchange with the diffusive (matrix) porosity and nonequilibrium sorption sites. We
will employ the uniform initial conditions

c x, t = 0 = cm x, z, t = 0 = c0 (6-2)

where cm [ML-3] is solute concentration within the matrix porosity (immobile domain),
which may be a function of a second spatial coordinate z. We will also employ the
boundary conditions

c x=0, t = m0δ t (6-3)

c x→∞, t = c0 (6-4)

where m0 [MTL-3] is the zeroth moment of the concentration history and δ(t) is the Dirac
delta [T-1].

If input concentration is changed (e.g., pulse or Dirac injection), then at late time:

α L
∂c
∂x

<< c , t > > tad (6-5)

where tad is the average advective residence time (equal to xRa/v if velocity is constant in
space). In other words, once the input pulse has advected far past the point of obser-
vation x, then dispersion has a negligible effect on concentration. In the same way, if the
immobile zone has an long average residence time relative to advection, then at late
time:



45

∂c
∂t

<< Γ t , t >> tad and tα >> tad (6-6)

where tα is the average residence time in the immobile zone. In other words, con-
centration change at late time is dominated by exchange between the mobile and
immobile zones if the average immobile zone residence time is longer than the
advective time. Note that from this point forward, it will be assumed that
tα >> tad and t >> tad unless otherwise stated. Therefore the equation (6-1) may be
re-written:

– ∂
∂x

v
Ra

c = Γ t (6-7)

By integration we can obtain a solution for concentration at late time:

c = –
Ra
v Γ t dx

0

L

(6-8)

This function is correct even if Γ(t) is spatially variable. As we will see shortly, Γ(t) can
be removed from the integral if the coefficients contained in Γ(t) are spatially uniform.
Therefore, this leaves us with a very simple expression for concentration at late time:

c = – tadΓ t (6-9)

�
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For any linear mass transfer problem with uniform initial conditions it is possible to
express the source-sink term as /modified from Carrera et al, 1998/:

Γ t =
∂c t –τ

∂t
g τ dτ

0

t

= ∂c
∂t

*g = c*
∂g
∂t

+ cg0 – c0g (6-10)

where g(t) is a "memory function"; * represents convolution product; g0 is the memory
function at t = 0 and c0 is the initial concentration. The last transformation in (6-10) is
most easily derived in the Laplace domain. The memory function g(t) may be physically
interpreted as βtot times residence time distribution in the immobile zone given a unit
impulse at the surface. The derivative of g(t) is proportional to what is commonly called
in statistical physics the probability of first return or distribution of first passage times
/e.g., Bouchaud and Georges, 1990, p. 271–272/. The coefficient βtot is the capacity
coefficient (see Section 6.3.1) and is the ratio of mass in the matrix to mass in the
mobile domain at equilibrium.

We recognize that the concentration is well approximated by the boundary condition
m0δ(t) for the following conditions: (1) at late time; and (2) calculation of the source-
sink term which only requires an approximation of the mobile-domain concentration for
use in calculating a concentration gradient. Therefore, (6-10) can be expressed:
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Γ t ≅ m0

∂g
∂t

– c0g , t >> tad and tα >> tad (6-11)

We see from (6-9) and (6-11) how the memory function may be interpreted physically.
The memory function is proportional to the late-time concentration from a purge experi-
ment /e.g,. Farrell and Reinhard, 1994; Werth et al, 1997/ where the medium begins the
experiment with a uniform concentration of tracer and is flushed by a tracer-free solu-
tion.

The general form of the memory function is /modified from Carrera et al, 1998/

g t = αb α e– αtdα
0

∞

(6-12)

where α is a rate coefficient and b(α) is a density function of rate coefficients. Note two
differences between our definition of the memory function and that of Carrera et al
/1998/. First, our g(t) includes the constants that are placed before the source-sink term
in Carrera et al’s mass balance equation. Secondly, although Carrera et al /1998/ express
(6-12) as a discrete function, the more general expression is as a continuous function,
allowing for density functions of diffusion rate coefficients, etc. Various distributions of
b(α) are given in Table 6-1, along with the corresponding function g(t).

We note that (6-12) is the Laplace transform of α b(α). where t is treated as the Laplace
variable. We also use the property of the Laplace transform /e.g., Roberts and Kaufman,
1966/

Lap α 2b α =
∂g
∂t

(6-13)

where Lap{*} indicates the Laplace transform.

Employing (6-9), (6-11), (6-12), and (6-13), we can now write an approximation for
concentration at late time:

c = tad c0g – m0

∂g
∂t

= tad c0 + αm0 αb α e– αtdα
0

∞

= tad Lap c0 + αm0 αb α

(6-14)

All forms of (6-14) are equivalent and are useful in different ways for understanding the
late-time behavior of BTCs. We expect that in most applications only one of c0 or m0

will be non-zero; however, (6-14) holds true regardless of the values of c0 and m0.
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6.1.2 Notes on application of equation (6-14)

Equation (6-14) presents an interesting theoretical development for two reasons. First,
the late-time behavior of the BTC is easily obtained for a wide variety of density func-
tions b(α) using any comprehensive table of Laplace transforms.

Second, (6-14) suggests that the distribution of mass transfer rate coefficients (whether
from diffusion, nonequilibrium sorption, or a general distribution of mass transfer
processes) is available directly and analytically from breakthrough data. In fact, if
(6-14) is treated as an integral equation where b(α) is an unknown, the distribution b(α)
may be directly calculated using the inverse Laplace transform. If the medium is ini-
tially free of tracer, then c0 = 0 and the density function b(α) is given analytically by:

b α = 1
tadm0α 2 2πi

c x= L, t e– αtdt
h – i∞

h +i∞

= 1
tadm0α 2Lap– 1 c x= L, t (6-15)

A similar equation may be easily constructed for the case of non-zero initial conditions
and continuous flushing of tracer-free fluid, such as in a purge experiment. Unfortu-
nately, the practical use of (6-15) is limited by the conditions that we can only use the
late-time breakthrough data, and that any errors in the data introduce numerical insta-
bilities in the inverse Laplace transform. Nonetheless, (6-15) will allow us to determine
certain important properties of the density function b(α).

6.1.3 Notes on the density function b(α)

We add two notes regarding the density function b(α) before continuing. First, a useful
definition is that of the 0th moment of the distribution of rate coefficients:

b α dα =
0

∞

β tot (6-16)

where βtot is commonly known as the capacity coefficient. The capacity coefficient is the
ratio of mass in the immobile domain to mass in the mobile domain at equilibrium; in
the absence of sorption it is the ratio of the two volumes.

Second, we note without derivation that the Laplace transform of the normalized distri-
bution of rate coefficients is a particularly useful function by itself. This function is
proportional to the mass fraction remaining in a matrix, where the initial conditions are
uniform concentration in the matrix and the boundary condition of the matrix is zero
concentration. The mass fraction remaining (M/M0) is therefore:

M
M 0

=
Lap b α

1 + β tot

=
g τ dτ

0

∞

1 + β tot

(6-17)

In other words, the mass fraction remaining is calculated simply by finding the Laplace
transform of the distribution b(α).
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6.1.4 Mean residence time

The residence time distribution in the immobile zone given a unit impulse at the surface
is g(t)/βtot. The mean residence time is therefore

tα = 1
β tot

tg t dt
0

∞

= 1
β tot

t
0

∞

αb α e– αt dα dt
0

∞

= 1
β tot

b α
α dα

0

∞

(6-18)

It can be shown /e.g., Cunningham and Roberts, 1998/ that the zeroth, first, and second
temporal moments are the same for any distribution of rate coefficients provided that
the mean residence time in the immobile zone is the same. Therefore, the best “effec-
tive” rate coefficient is the harmonic mean:

αH = 1
tα

= β tot

b α
α dα

0

∞
– 1

(6-19)

Notably, the harmonic mean may be zero for some distributions, meaning that the mean
residence time in the immobile zone is infinity. The harmonic mean for a number of
distributions b(α) is shown in Table 6-1. Note also that the harmonic mean rate coeffi-
cient for the conventional diffusion models (spheres, cylinders, and layers) is the same
as that given by Glueckauf /1955/, Goltz and Roberts /1987/ and others.

6.2 Late-time behavior of BTCs
In this section we will consider a number of examples of BTCs after a pulse injection
into a medium with zero initial concentration. Many of the functions developed in this
section are summarized in Table 6-1, as well as several others not discussed here.

6.2.1 Simple case: Finite spherical blocks

Consider the case of finite spherical blocks. Haggerty and Gorelick /1995/ showed that
a particular discrete distribution of first-order rate coefficients results in a model that is
mathematically identical, from the perspective of the mobile domain concentrations, to
that of diffusion into and out of various matrix geometries. In the case of spherical
blocks, the distribution is

b α = 6βtot

j2π2
δj α – j2π2Da

a2Σ
j = 1

∞
(6-20)

where βtot [-] is the capacity coefficient of the spherical blocks; Da [T
-1] is the apparent

diffusivity; and a [L] is the radius of the spherical blocks. This distribution is a series of
Dirac deltas with monotonically decreasing weight. The harmonic mean is the well-
known linear driving force approximation 15 Da/a

2 /e.g., Glueckauf, 1955/. The memory
function is
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g t = – 6β tot
Da

a2 exp – j2π2Da

a2 tΣ
j = 1

∞
(6-21)

Readers familiar with diffusion in spherical geometry will recognize (6-21) as propor-
tional to the mass flux out of spheres initially saturated with a uniform solute. mass
fraction and with a boundary concentration of zero. /e.g., Crank, 1975; Grathwohl et al,
1994/.

The resulting late-time approximation for concentration in the mobile domain (with
initial concentration of zero) is given by substituting (6-21) into (6-14):

c = m0tadβ tot
Da

a2

2

6j2π2 exp – j2π2Da

a2 tΣ
j = 1

∞
(6-22)

From this expression, we can see that the late-time concentration is proportional to
exp(-π2Dat/a

2); therefore, on a double-log plot, the late-time slope will approach -∞
shortly after the mean residence time in the immobile zone (tα = a2/15Da) is reached.

Figure 6-1 shows the full solution to the advection-dispersion-mass transfer (ADMT)
equations and the late-time approximation. The ADMT equations were solved using
STAMMT-L /Haggerty and Reeves, 1999/ for m

0
 = 1 x 104 s kg m-3; tad = 1 x 104 s; D

a
/a2

= 1 x 10-8 s-1; β
tot
 = 1; and a Peclet number of 1000. All concentrations have been non-

dimensionalized by the terms in front of the infinite series in (6-22).
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Figure 6-1.  Late-time approximation and full solution to advection-dispersion-mass transfer
equations for spherical diffusion. The vertical axis is nondimensional concentration and the
horizontal axis is nondimensional time (i.e., the Fourier number).
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From Figure 6-1 we make four points. First, the approximation does not contain the
advective-dispersive peak, but does very accurately represent the late-time behavior of
the of the ADMT equation. We can see in the figure that the late-time approximation is
valid when t >> tad provided that tα >> tad. Second, the late-time behavior contains the
well-known -3/2 double-log slope for matrix diffusion, which ends when tDa/a

2 > 1. In
the case of infinitely large matrix blocks, the -3/2 behavior would continue indefinitely
because tDa/a

2 never reaches 1. Third, the location of the BTC peak in the ADMT
solution will move back and forth on the late-time approximation curve, dependent on
the relative values of tad and Da/a

2. Last, we note that it is possible to estimate both βtot

and Da/a
2 by using the late-time approximation as a type-curve. The capacity coefficient

βtot would be estimated from the vertical shift, while Da/a
2 would be estimated from the

horizontal shift.

6.2.2 Gamma distribution of first-order rate coefficients

Gamma distributions of rate coefficients have been used to represent multirate mass
transfer in several papers. Cunningham et al, /1997/ developed the mathematics of a
gamma distribution of diffusion rate coefficients, while Werth et al /1997/ applied this
model successfully to several mass fraction remaining data sets. Connaughton et al,
/1993/ used a gamma distribution of first-order rate coefficients to model release of
naphthalene from soil, while Pedit and Miller /1994/ employed a gamma distribution of
first-order rate coefficients to examine diuron sorption. The method we are using is
applicable to both distributions, and the key relationships for both are given in Table
6-1. Although the early time behavior will differ for gamma distributions of first-order
and diffusion rate coefficients, the late-time slope will be identical for the same value of
η.

The gamma distribution of first-order rate coefficients is

(6-23)

Of particular importance for applications is that the harmonic mean of (6-23) is 0 if η is
less than or equal to 1, a fact that is true for distributions of either first-order rate coeffi-
cients or diffusion rate coefficients. As a consequence, the mean residence time in the
immobile zone would be infinite.

The memory function is

g t = – β tot
∂
∂t γt + 1

–η
(6-24)

Therefore, the late-time concentration in the fracture is given by

c = m0tadβ totγ2
η η + 1

γt + 1
η + 2

(6-25)

b α =
β tot

γηΓ η
α η – 1e– α / γ
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Figure 6-2.  Late-time solution and full ADMT solution for a gamma distribution of first-order
rate coefficients.

Note that at when γt >> 1 the BTC follows a power-law:

2~ −−ηtc (6-26)

The same late-time power-law behavior is also exhibited with a distribution of diffusion
rate coefficients. Note that a power-law behavior (c ~ t-k) with k < 3 would indicate an
infinite second (and higher) temporal moment and an infinite mean residence time in the
immobile zone.

Figure 6-2 shows the late-time approximation in (6-25) nondimensionalized by the
transport terms. We have normalized time by the characteristic mass transfer rate γ.
Figure 6-2 also shows a solution to the ADMT equations with STAMMT-L (Haggerty
and Reeves, 1999) for m

0
 = 1 x 104 s kg m-3; tad = 1 x 104 s; γ = 1 x 10-4 s-1; η = 0.5; βtot =

1; and a Peclet number of 1000.

We see from (6-26) and Figure 6-14 that the late-time double-log slope of concentration
will be -(η+2). For comparison to published values, Connaughton et al /1993/ estimated
values of η in the range of 0.17 to 0.37 for a gamma distribution of first-order rate
coefficients, while Pedit and Miller /1994/ estimated η = 0.11 from their experiments.
Werth et al /1997/ found values of η equal to approximately 0.5 for a gamma distri-
bution of diffusion rate coefficients. Note that all of these estimated η will lead to an
infinite mean residence time within the immobile zone. Consequently, the variance of
the breakthrough times will be infinite with these models.
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6.2.3 Lognormal distribution of diffusion rate coefficients

Lognormal distributions of rate coefficients have also been used to represent mass
transfer in natural systems. Pedit and Miller /1994/, Haggerty /1995/, and Culver et al
/1997/, all used a lognormal distribution first-order rate coefficients to model uptake and
release of sorbing solutes in soils. Pedit and Miller /1995/ and Haggerty and Gorelick
/1998/ used a lognormal distribution of diffusion rate coefficients to model diffusion of
sorbing solutes in soils. As is true for the gamma distributions of rate coefficients, the
behavior of both lognormal models is very similar, especially at late time and large
variances. In our analysis here we will employ only a distribution of diffusion rate
coefficients:
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The equivalent distribution of first-order rate coefficients is given by Haggerty and
Gorelick /1998/:

The effective rate coefficient is 3 exp(µ-σ2/2). Consequently, the effective rate
coefficient is approximately 0.22σ2 orders of magnitude smaller than the geometric
mean. For large σ, the effective rate coefficient is approximately zero and the mean
residence time in the immobile zone approaches infinity. In the limit of very large s, the
distribution is log-uniform and is equivalent to a power-law distribution with ~α-1. As
we shall see in the following sections, this corresponds to a late-time BTC of ~ t-2.

The Laplace transform of (6-28) must be done numerically. The result may then be
inserted into (6-14). After taking the second derivative in time (numerically), the late-
time approximation for a concentration BTC is shown in Figure 6-3 for various values
of σ. The time axis of Figure 6-3 is normalized by the geometric mean of (6-23), and
concentration is normalized the same as previously. Figure 6-3 also shows the solution
to the ADMT equations in the presence of a lognormal distribution of diffusion rate
coefficients. The ADMT equations were solved using STAMMT-L /Haggerty and
Reeves, 1999/ for m

0
 = 1 x 104 s kg m-3; tad = 1 x 104 s; e-µ = 1 x 10-4 s-1; σ = 5; βtot = 1;

and a Peclet number of 1000. The discrepancy at late time is due to numerical error in
the series of numerical steps for the late-time approximation; however, the late-time
slopes are correct. Note that the late-time slopes for the lognormal distribution lie
between 2 and 3 for a large range of time, provided that σ is greater than approximately
3.

b α =
8βtot

2π5 2 j – 1
2σ α

 exp –

ln 4α
2 j – 1

2π2
– µ

2

2σ2∑
j=1

∞

(6-28)
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Figure 6-3.  Late-time solution and full ADMT solution for a lognormal distribution of diffusion
rate coefficients.

Published values of σ for lognormal distributions of rate coefficients are typically larger
than 3 /e.g., Pedit and Miller, 1994, 1995; Culver et al, 1997; Haggerty and Gorelick,
1998/, suggesting that mass transfer rate coefficients have large variability in natural
media. With such large values of σ, we would expect to see late-time slopes on double-
log BTCs after a pulse-injection between 2 and 3.

6.2.4 Power law distribution of first-order rate coefficients

An alternative distribution that has been less commonly used to describe mass transfer
in groundwater and soils is a power-law distribution. Hatano and Hatano /1998/ used a
power-law distribution of waiting times in the context of a continuous-time random
walk to model the sorption of radionuclides in a column experiment. Power-law distri-
butions of waiting times have frequently been used in statistical physics to describe
anomalous transport behavior /e.g., Bouchaud and Georges, 1990; Scher et al, 1991/.
Frequently such distributions arise from diffusion or rate-limited sorption on a fractal
geometry. As with a gamma distribution it is possible to define both a distribution of
first-order rate coefficients and an equivalent distribution of diffusion rate coefficients.
Again, although the early time behavior will differ for power-law distributions of first-
order and diffusion rate coefficients, the late-time slope will be identical for the same
value of k. For the sake of brevity, we show only the power-law distribution of first-
order rate coefficients.

A general power-law distribution may be written as follows:

b α =
β tot k – 2

αmax
k – 2 – α min

k – 2α
k – 3 , k > 0 and k ≠ 2 (6-29)
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where αmax [T
-1] is the maximum rate coefficient; αmin [T

-1] is the minimum rate coeffi-
cient; and k is the exponent. The value of αmin may be zero if k > 2. The reason for
choosing to write the power-law as k-3 will become apparent shortly. If k = 2, the
distribution may be written

b α =
β tot

ln αmax
αmin

α –1 (6-30)

The late-time concentration in the mobile zone is

( )
( ) 20,

2 min

min

1
2

min
2

max

0 ≠>
−

−= ∫ −−
−− kandkde

ktm
c tk

kk
totad

α

α

α αα
αα

β
(6-31)

For arbitrary (non-integer) values of k, (6-31) must in general be evaluated numerically.
However, the most important point about (6-26) is that

   c ~ t– k , αmax
– 1 << t << αmin

– 1
(6-32)

Expressed in words, the double-log slope of the BTC is -k for times much greater than
   αmax
– 1  and much less    αmin

– 1  for all values of k. After    αmin
– 1

 the slope goes to -∞.

It is possible to present closed form solutions for many specific cases of (6-26); we will
provide the solutions for the cases k = 1, k = 2, and k =3. First, let us define two other
variables in terms of αmax and αmin:

 τ = α t (6-33)

   λ t =
α max
αmin (6-34)

α p
2 =

αmax
2

1 – λ t
2 – k , k ≠ 2

αmax
2

ln λ t

, k = 2

(6-35)

Note that as k → 2, α p
2 → αmax

2 / ln λ t , allowing us to use (6-35) for all values of k.

Also note that αp is a function of αmax , αmin, and k, and is used for the purpose of
simplifying the following equations only.
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Using these variables, the late-time concentration for k = 1 is therefore

c = m0tadβ totα p
2 e– τ / λ t – e– τ τ – 1 (6-36)

If k = 2, then the distribution is log-uniform, and the late-time concentration is

c = m0tadβ totα p
2 e– τ / λ t τ

λ t
+ 1 – e– τ τ

λ t
+ 1 τ – 2 (6-37)

If k = 3, then the distribution is uniform, and the late-time concentration is

c = m0tadβ totα p
2 e– τ / λ t τ 2

λ t
2 + 2τ

λ t
+ 2 –e– τ τ 2 + 2τ + 2 τ – 3 (6-38)

From the above equations we see that a family of curves is required for each value of k
since both αmin and αmax appear in all equations. However, inspection of the equations
indicates that the curves for each value of k will be identical until t approaches    αmin

– 1 .

The harmonic mean of the distribution is undefined if k ≤ 3. Therefore, if a BTC has a
late-time slope of k ≤ 3, and the behavior is due to mass transfer, this indicates an
infinite mean residence time in the immobile zone. It also causes the second and higher
temporal moments of the BTC to be infinite. Note that there is nothing that physically
prevents a 2 ≤ k ≤ 3 as t → ∞. A slope of k ≤ 2, however, would require an infinitely
large immobile zone and can therefore not be maintained for infinite time (for this
reason, k = 3/2 is possible with diffusion, but only until ~ a2/Da). If k > 3 then the mean
residence time would be αmax (k-3)/(k-2), where αmax is the maximum rate coefficient in
the distribution.

The late-time behavior of concentration, as given by (6-36) – (6-38) is shown in Figure
6-4 for αmin < 10-5 αmax. Figure 6-4 also shows the solution to the ADMT equations in the
presence of a power-law distribution of rate coefficients. The ADMT equations were
solved using STAMMT-L /Haggerty and Reeves, 1999/ for m

0
 = 1 s kg m-3; tad = 1 s; αmax

= 1 s-1; αmin = 1 x 10-5 s-1; k = 1; βtot = 1; and a Peclet number of 1000.
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Figure 6-4.  Late-time solution and full ADMT solution for power-law distribution of first-order
rate coefficients.

6.2.5 Summary of late-time slopes

Figure 6-5 provides a summary of late-time slopes for several of the models presented.
Late-time slopes are given versus nondimensional time. Note that a BTC with advection
and dispersion will mask some portion of the slopes shown in this figure at earlier
times. The slopes given in Figure 6-5 will only be present when t >> tad. A power-law
slope is a constant at late-time, such as provided by the gamma and power-law distri-
butions. Note that conventional diffusion model is equivalent to the lognormal distri-
bution with σ = 0. The slope in the conventional model is –3/2 until approximately the
mean residence time in the immobile zone (a2/3Da for 1-D diffusion). Note that the
lognormal distribution with larger s cannot provide a true power-law BTC, but can hold
the slope relatively constant over a long time. All lognormal distributions will reach an
infinite slope at infinite time.
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Figure 6-5.  Slopes of late-time double-log breakthrough curves. Note that while the
breakthrough curve is dominated by advection and dispersion, the slopes will be different from
that shown here.

6.3 Discussion and implications

6.3.1 Particular considerations with power-law BTC behavior

We note again that both the gamma and power-law distributions behave as power-laws
for small α or Da/a

2, and result in predicted power-law BTCs at late time. The conven-
tional diffusion model also causes power-law BTCs prior to t ~ a2/Da. There are four
important possibilities of such power-law behavior.

CASE 1 – Power-law behavior to infinite time and k < 3: The first possibility is that
the BTC behaves as a power law over all time (i.e., the slope of the BTC would be
power-law to infinite time) and the slope is less than 3. It is important to note that this is
physically possible provided that the slope k is greater than 2. In Case 1, the mean
residence time in the immobile zone must be infinite. Consequently, there can be no
effective single-rate model that is equivalent to the multirate model in the way that a
single-rate first-order model is equivalent to a conventional single-rate diffusion model.
No single-rate (either first-order or diffusion) model can yield the same second or
higher temporal moments as the multirate model. Any single-rate model (either first-
order or diffusion) will have parameters that are a function of the experimental
observation time (i.e., the experiment length).

CASE 2 – Power-law behavior longer than experimental time-scale and k < 3: The
second possibility is that the power-law behavior ends at a particular time but beyond
the experimental observation time, and the slope is less than 3. In this case, the mean
residence time in the immobile zone cannot be ascertained from the experimental data
alone. In other words, it is not possible, based solely on the BTC data, to estimate an
effective rate coefficient: the effective rate coefficient could be non-existent (as in the
power-law behavior to infinity case) or simply longer than the inverse of the experi-
mental time. An important point is that if the slope k is less than 2, then the power-law
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behavior either must end at some time or the slope must steepen to greater than 2. Such
is the case with conventional diffusion and a slope of –3/2. Because the immobile zone
cannot be infinitely thick, the power-law behavior must end at some time. However,
without information external to the tracer test data, the time at which the power-law
behavior ends (and therefore the mean residence time in the immobile zone) cannot be
known.

CASE 3 – Power-law behavior ends within experimental time-scale: The third possi-
bility is that the power-law behavior ends within the experimental observation time.
This is the case of the conventional diffusion model with an intermediate slope of –3/2.
In this case, then an effective rate coefficient or mean residence time in the immobile
zone can be estimated, and will be approximately the inverse of the time at which the
power-law behavior ends. Note that Case 3 cannot be modeled by a gamma distribution
because a gamma distribution does not allow for an end to the power-law behavior.

CASE 4 – Power-law behavior with k > 3: The fourth possibility is that the BTC has a
slope less than 3. In this case the mean residence time can be estimated even if the
power-law behavior extends to infinite time. This is because the harmonic mean of a
power-law distribution is non-zero provided that k ≤ 3.

6.4 Late-time slope conclusions
With improvements in experimental and analytical techniques, concentrations are now
available from many laboratory and field experiments over several decades of both time
and concentration. The late-time behavior of breakthrough curves (BTCs) is critically
important to the evaluation of rate-limited mass transfer, especially if discrimination
between different models of mass transfer is desired. Double-log plots of BTCs are
particularly helpful and commonly can be used to distinguish between the effects of
dispersion and the effects of mass transfer. We have six primary conclusions.

First, we derived a simple analytical expression for late-time BTC behavior in the
presence of mass transfer. Equation (6-14) gives the late-time concentration for any
linear rate-limited mass transfer model for either zero-concentration or equilibrium
initial conditions. The expression requires that advection time-scale, the zeroth moment
of the injection pulse, the initial concentration in the system, and the memory function
g(t).

Second, the memory function g(t) is proportional to the residence time distribution in
the immobile zone given a unit impulse at the surface of the immobile zone. This
memory function is simply the derivative of the Laplace transform of the distribution of
rate coefficients describing the immobile zone. Consequently, the late-time concen-
tration is proportional to the first or second derivative of the Laplace transform of the
distribution of rate coefficients.

Third, the effective rate coefficient that yields the same zeroth, first, and second tem-
poral moments in the BTC is the harmonic mean of the distribution of rate coefficients.
However, for any distribution of rate coefficients with power-law αη−1 and where η<1,
the harmonic mean is zero. Consequently the mean residence time in the immobile zone
is infinite and there is no effective rate coefficient. This applies both to distributions of
diffusion rate coefficients and distributions of first-order rate coefficients.
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Fourth, if the a BTC (after a pulse injection) goes as ~ t-k as t → ∞, then the underlying
distribution of rate coefficients must be ~ αk-3 as α → 0. This holds for either distri-
butions of first-order and diffusion rate coefficients. For a BTC from a medium with
initially non-zero but equilibrium concentrations, then the equivalent BTC goes as t-k+1.

Fifth, if the slope of a BTC (after a pulse injection) goes as ~ t-k as t → ∞, and k ≤ 3,
then the mean residence time in the immobile zone is infinite. (This is a corollary to the
third and fourth conclusions.) Consequently there is no effective rate coefficient in this
medium. A second consequence is that any single-rate (either diffusion or first-order)
rate coefficient estimated from the BTC will be a function of experimental observation
time. Again, for a BTC from a medium with initially non-zero but equilibrium concen-
trations, then the equivalent BTC goes as t-k+1.

Sixth, if a BTC exhibits power-law behavior (c ~ t-k) to the end of the experiment, then
one of two cases must exist. If k ≤ 3 then the mean residence time (and effective rate
coefficient) cannot be estimated from the BTC. The mean residence time must be at
least the experimental observation time and could be infinite. If k > 3 then the mean
residence time (and its inverse the effective rate coefficient) can be estimated. For
example, in the case of a power-law distribution, the effective rate coefficient would be
αmax (k-3)/(k-2), where αmax is the maximum rate coefficient in the distribution.
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7 Consequences of multirate and anomalous
diffusion for nuclear waste disposal

The consequences of multirate and anomalous diffusion for nuclear waste disposal were
discussed in Section 2; however, it is worth emphasizing them. If anomalous diffusion
occurs within rock, the most important physical and modeling consequences for nuclear
waste disposal are summarized as below.

1. No single value of diffusivity can represent the diffusion process at all time- or
length-scales. Expressed in another manner, any single diffusivity is representative
of diffusion only at one time- or length-scale.

2. The diffusivity decreases with both time- and length-scale of measurement. The
mean diffusivity for true anomalous diffusion approaches zero at very large time- or
length-scales (i.e., the pore space at very large distances is very poorly connected).

3. The porosity of the matrix may not be entirely accessed by a solute diffusing
through the pores. Some fraction of the porosity may remain inaccessible via
aqueous diffusion for all time.

4. Given a model of diffusion using a single diffusivity, some fraction of the porosity
will be accessed less quickly than a Fickian model of diffusion would predict.

5. Laboratory measurements using the through-diffusion approach (e.g., Skagius and
Neretnieks, 1986) will yield diffusivities that decrease with sample length.

6. Laboratory measurements that allow diffusion in and out of the same surface and
that depend on the tail concentration for an estimate of diffusivity (e.g., column
experiments, purge experiments, batch ,“desorption” experiments) will yield
diffusivities that decrease with experimental time (assuming a single diffusivity is
estimated).

7. A transport model incorporating advection and matrix diffusion and that assumes
the total matrix porosity is accessible by diffusion will over-estimate the late-time
retardation of the solute plume. Performance Assessment transport calculations
would therefore be non-conservative.

The consequences of multirate diffusion are identical to those of anomalous diffusion
(since the concept of multirate diffusion can include anomalous diffusion), but with the
following exceptions.

1. Through-diffusion measurements may not yield diffusivities that decrease with
sample length. This is because pores and pore networks with different diffusivities
may each span the length of all samples. In this case, the estimated diffusivity will
tend to be dominated by the largest values of diffusivity (see Footnote 4, page 16,
for more detail).

2. Multirate diffusion would not necessarily prevent diffusion from accessing all pore
space. However, it is still true that given a model of diffusion using a single
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diffusivity, some fraction of the porosity will be accessed less quickly than a single-
rate model of diffusion would predict.

3. Over some range of times, no single value of diffusivity can represent the diffusion
process. However, provided that the distribution of Da/a

2 has a non-zero harmonic
mean, then a single value of diffusivity can represent the diffusion process at long
enough time (see Section 6.3.1).
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9 Appendix: Definitions of variables

a size of immobile zone; half-block size [L]

aw specific surface area of a fracture [L-1]

b(α) density function of rate coefficients; see Eqn. (6-16) and Table 6-1.

c concentration in mobile zone (pores, well, etc.) [M/L3]

cb injection concentration in immobile zone [M/L3]

cm concentration in the immobile zone (rock matrix) [M/L3]

cobs concentration in the observation well [M/L3]

c0 initial concentration [M/L3]

c1 concentration one node inside fractal lattice [M/L3]

D aqueous diffusivity [L2/T]

Da apparent diffusivity (equal to pore diffusivity divided by retardation factor for
rock matrix) [L2/T]

Dp pore diffusivity [L2/T]

DL dispersion coefficient in transport direction [L2/T]

ds spectral dimension [-]

dw walk dimension [-]

e1 vector (1,0,….,0)T where T indicates transpose

f(*) a density function

G(z) Green function; see Eqn. (5-3) and (5-4)

g(t) memory function; see discussion after Eqn. (6-10) and Table 6-1.

Hij adjacency matrix (discrete notation)

H adjacency matrix (matrix notation)

I identity matrix

I0(ω) Bessel function

I1(ω) Bessel function
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i imaginary number

Kd distribution coefficient [L3/M]

Ka surface equilibrium constant [L]

K0(ω) Bessel function

K1(ω) Bessel function

k slope of a breakthrough curve on a double-logarithmic plot

L length of system [L]

Lap{*} Laplace transform

M(ω) see Eqn. (4-18)

m0 zeroth moment of the concentration history [MT/L3]

N(ω) see Eqn. (4-19)

P Peclet number; see Eqn. (4-12) [-]

p coordination number on fractal lattice

Q pumping rate [L3/T]

Q* flushing rate [1/T]

R(t) radius of displacement of a molecule from its origin over time [L]

Ra retardation factor due to surface sorption in mobile zone [-]

Ri radius of the injection well [L]

Rim retardation factor specifically for immobile zone (matrix rock) [-]

Rm retardation factor for mobile zone (could be equivalent to Ra) [-]

Ro distance from the center of the injection well to the edge of the matrix [L]

Rw distance from the center of the injection well to the observation well [L]

r radial coordinate [L]

robs radius of the observation well [L]

s Laplace parameter [T-1]

t time [T]

tad advection time; see discussion after Eqn. (6-5)



75

tα mass transfer time [T-1]

uj root of a Bessel function equation; see Table 6-1.

V sparse matrix; see Eqn. (5-4)

v velocity in transport direction

x coordinate [L]

Z nondimensional coordinate; see Eqn. (4-11) [-]

z coordinate [L]; modified Laplace parameter in Eqn. (5-3).

α rate coefficient [T-1]

α* rate coefficient, specifically for a first-order mass transfer model [T-1]

αH harmonic mean of the rate coefficient density function b(α); see Table 6-1[T-1]

αL dispersivity [L]

αmin minimum rate coefficient in power-law distribution; see Eqn. (6-29)

αmax minimum rate coefficient in power-law distribution; see Eqn. (6-29)

αp see Eqn. (6-35)

βtot capacity coefficient [-]; equal to the ratio of mass in the mobile zone to mass
in the immobile zone at equilibrium

δ(t) Dirac impulse [T-1]

δD constrictivity [-]

δi1 Kronecker delta

∆x fractal lattice (node-node) size [L]

Γ(t) source-sink term; see Eqn. (6-1)

γ a parameter of gamma distribution [T-1]

η parameter in gamma distribution [-]

λ dimensionless diffusivity; see Eqn. (4-15) [-]

λ t ratio of rate coefficients in power-law distribution.

µ parameter in lognormal distribution; see Eqn. (6-28)

ξ dimensionless radius; see Eqn. (4-13) [-]
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ξo dimensionless radius at the edge of the system; see Eqn. (4-14) [-]

φ porosity [-]

θim porosity; specificall, the porosity of the immobile zone (matrix rock) [-]

ρ bulk density [M/L3]

σ parameter in lognormal distribution; see Eqn. (6-28)

τ dimensionless time; see Eqn. (4-10) [-]. Also can be dummy variable of
integration.

τt

2 tortuosity [-]

ω see Eqn. (4-17)


