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Abstract 

Nonclassical stochastic continuum models incorporating long-range spatial 
dependence are evaluated as models for fractured crystalline rock. Open 
fractures and fracture zones are not modeled explicitly in this approach. 
The fracture zones and intact rock are modeled as a single stochastic contin­
uum. The large contrasts between the fracture zones and unfractured rock 
are accounted for by making use of random field models specifically designed 
for highly variable systems. Hydraulic conductivity data derived from packer 
tests in the vicinity of the Aspo Hard Rock Laboratory form the basis for the 
evaluation. The Aspo log K data were found to be consistent with a fractal 
scaling model based on bounded fractional Levy motion (bfLm), a model that 
has been used previously to model highly variable sedimentary formations. 
However, the data are not sufficient to choose between this model, a frac­
tional Brownian motion model for the normal-score transform of log K, and a 
~_onventional geostatistical model. Stochastic simulations conditioned by the 
Aspo data coupled with flow and tracer transport calculations demonstrate 
that the models with long--range dependence predict earlier arrival times for 
contaminantso This demonstrates the need to evaluate this class of models 
when assessing the performance of proposed waste repositories, The rela­
tionship between intermediate-scale and large-scale transport properties in 
media with long-range dependence is also addressed" A new Monte Carlo 
method for stochastic upscaling of intermediate-scale field data is proposed. 
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1 Introduction 

The large contrast in hydraulic conductivity between fractures and intact 
rock is one of the key challenges in modeling fractured geological media. An 
equally important issue is the long-range spatial correlation in hydraulic con­
ductivity implied by spatially extensive fracture zones. While these issues 
present no problem for deterministic continuum-level descriptions, they do 
present problems for the stochastic continuum models that form an impor­
tant part of the strategy for dealing systematically with unobserved geological 
heterogeneities. Specifically, large contrasts in conductivity and long-range 
spatial correlations are inconsistent with the classical random field models 
underlying many stochastic continuum descriptions. These limitations have 
created significant interest in Monte Carlo methods based on discrete frac­
tures as opposed to more traditional continuum-level descriptions. While 
these methods are clearly useful for many applications, they can be compu­
tationally intensive and are difficult to extend to treat mass exchange between 
the fractures and rock matrix. 

However, models for complex subsurface heterogeneities have advanced 
considerably beyond the classical models of subsurface hydrology and are 
now able to treat long-range dependence and high spatial variability more 
effectively. Given the well known advantages of stochastic continuum mod­
els over discrete fracture models (most notably their smaller computational 
requirements and the ease at which they can be extended to treat mass ex­
change with the rock matrix) there is considerable motivation for revisiting 
stochastic continuum models of fractured rock while making use of recent 
theoretical models incorporating long-range dependence. 

In this report, stochastic continuum representations incorporating long­
range spatial dependence are evaluated as models for fractured crystalline 
roe~. The discussion is based on hydraulic conductivity data from the area 
of Aspi::i Island in southern Sweden, the site of the SKB Hard Rock Labo­
ratory. The data are first analyzed for fractal structure (long-range depen­
dence). Stochastic simulations based on two fractal models and conditional 
on the hydraulic conductivity data are then combined with flow and parti­
cle tracking calculations to explore the consequences for non--reacting tracer 
transport. The two fractal models employed include fractional Brownian 
motion (ffim) (Mandelbrot & Ness, 1968; Feder, 1988) and fractional Levy 
motion (fLm) (Mandelbrot & Ness, 1968; Taqqu, 1987; Kumar & Foufoula­
Georgiou, 1993), a generalization of fBm which has been used successfully in 
the past to model subsurface formations with high spatial variability (Painter 
& Paterson, 1994; Painter, 1995; Painter, 1996). For comparison purposes, a 
conventional multiGaussian model with short-range correlation structure is 
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also considered. 
The issues addressed here are related to geostatistical model selection 

and its impact on uncertainty in performance assessment of high-level waste 
repositories. Geostatistical methods such as conditional stochastic simula­
tion are often advocated as general approaches for quantifying uncertainties 
created by incomplete sampling of subsurface heterogeneities. However, the 
uncertainty calculated in the geostatistical approach is not the true uncer­
tainty, but the uncertainty internal to the particular choice of random field 
modeL More difficult to deal with is the modelization uncertainty, the uncer­
tainty associated with the choice of geostatistical model. Because data from 
potential repository sites are rarely sufficient to distinguish between com­
peting geostatistical models, it is important to have a broad understanding 
of how the choice of geostatistical models affects the predicted performance 
of the repository geosphere. Although similar issues have been addressed in 
a recent publication (Tsang et al., 1996), the focus there was on a single 
non-parametric geostatistical methodology (indicator simulation ( Journel & 
Huijbregts, 1978) ). Here the focus is on a class oflong-range dependent (frac­
tal scaling) models that have been used vvith considerable success in other 
subsurface applications (Molz et al., 1997). The aim is not to advocate one 
methodology over another but to illustrate how the choice of geostatistical 
model can have a profound effect on the predicted geosphere performance. 

2 Stochastic models with long-range spatial 
dependence 

The standard approach in stochastic subsurface hydrology is to model the 
log conductivity field ( Y = log K, where K is the hydraulic conductivity) 
as a multivariate Normal (multiGaussian) random field with exponentially 
decaying correlation. There is, however, increasing evidence suggesting that 
several of the assumptions inherent in this choice of random field may be 
violated by subsurface data. It has been suggested by direct analysis of 
subsurface data (Hewett, 1986; Todoeschuck et al., 1990; Molz & Boman, 
1993; Molz & Boman, 1995; Painter & Paterson, 1994; Painter et al., 1995; 
Painter, 1996; Crane & Tubman, 1995) and indirectly by observed scale­
dependence in dispersivities (Neuman, 1990) that the assumption of a finite 
correlation range (integral scale) may not be met. This implies that fluc­
tuations in subsurface properties exist over a wide spatial range. Further, 
the assumption of stationarity and Gaussianity in the Y field have also been 
questioned (Painter, 1995), suggesting a higher degree of spatial variability. 
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Random field models with long-range spatial dependence provide alterna­
tives that may better mimic the complex non-classical fluctuations observed 
in subsurface datasets. 

2.1 Fractal noises 

The fractal noises are the simplest class of long-range dependent (LRD) mod­
els. The signature for this class is a power-law decay in the correlation func­
tion 

(Y(u)Y(u + l)) ex lll-,y 
for large lag Ill (see e.g. (Feder, 1988) ). Here u is the spatial coordinate and 
( •) denotes an ensemble average. The most famous of these models, fractional 
Gaussian noise (fGn), results from a particular choice of the correlation near 
the origin. Although the fractal noises have long-range correlation, the degree 
of spatial variability is not much different from standard model. This class 
of LRD models in not considered here for this reason. Instead, the focus is 
on LRD models with more spatial variability. 

2.2 Fractional Brownian motion 

Fractional Brownian motion (fBm) is perhaps the best known LRD modeL 
The signature for this model is a power-law variogram 

([Y(u + l) - Y(u)]2) oc jlj 2H (2) 

or, equivalently a power-law Fourier spectrum. 
FBm is a non-stationary model. In the absence of conditioning data 

or other constraints it makes no prediction about the univariate statistics. 
Instead the focus is on the stationary increments, which in the case of fBm 
have a Gaussian distribution 

(3) 

here G(· ; µ, a 2) is the univariate Gaussian cumulative distribution function 
(CDF) with mean µ and variance a 2 . The two parameters appearing in 
Eq. 3 are 0-5, which is the variogram at unit lag, and the Hurst parameter 
HE (0, 1), which quantifies the degree of spatial dependence in the random 
field. The situation H = 1/2 corresponds to classical Brownian motion, while 
H > 1/2 implies positive correlation in increments referred to as persistence. 
For subsurface data H is typically less than 1/2 implying antipersistence 
(positive increments tend to be followed, on average, by negative increments). 
Example traces of two fBm processes are shown in Figure 1. 

3 



Z(u) 1 

0.8 
H=0.25 

0.6 

0.4 

0.2 .fi 0 

-0.2 

-0.4 

0 100 200 300 400 

1.5--------~----------~ 
Z(u) 

1 

0.5 

0 1 300 500 

LI 

Figure 1: Realizations of a fractional Brownian motion ( fBm) process for two 
values of the Hurst parameter H. These were generated using the LevySim 
fractal random field generator. The fBm process is the simplest model with 
long-range dependence and been used extensively to model geophysical 
time series and spatial fields. 
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Although ffim is a considerable improvement over the standard model for 
many applications, the fact that it is Gaussian-based means that it also has 
a limited degree of spatial variability. This can be an important limitation 
for subsurface formations that have large contrasts in hydraulic conductivity. 
In this case it is necessary to turn to generalizations with more flexibility to 
describe large contrasts in hydraulic conductivity. 

2.3 Fractional Levy motion 

Fractional Levy motion (fLm) is a class of models that generalize ffim. This 
class of random field models is based on the Levy-stable family of probability 
distributions (Levy, 1937; Zolotarev, 1986; Feller, 1971). These distributions 
have a central role in mathematical statistics similar to the Gaussian dis­
tribution in that they result from sums of large numbers of independent 
random variables. When the individual components in the sum have a dis­
tribution with finite variance the distribution of the sum tends to a Gaussian 
distribution according to the central limit theorem. When the individual 
components in the sum have a power-law distribution, the variance is not 
defined and the sum tends to a Levy-stable distribution (generalized central 
limit theorem). Levy-stable distributions have slowly decaying power-law 
tails, which makes them useful for modeling systems with a high degree of 
spatial variability. Densities are shown in Figure 2. Levy-stable distributions 
are parameterized by the width parameter C the Levy index a and the lo­
cation parameter d. The location parameter simply centers the distribution, 
similar to the mean in the Gaussian distribution, C measures the spread in 
the distribution about its center, similar to the standard deviation in the 
Gaussian distribution. The Levy index quantifies the decay in the tails of 
the distribution. It runs between O (exclusive) and 2 (inclusive) with the 
singular case a = 2 corresponding to the Gaussian distribution. 

The most easily observable feature of fLm is a Levy-stable distribution 
for the incremental values 

(4) 

Here 'lj;(·; d, C, a) is the univariate Levy-stable CDF with location parameter 
d, width parameter C, and Levy index 0:. The situation a = 2 corresponds 
to the Gaussian distribution with variance C0 /2. In this situation the model 
reduces to the fBm model, 

(5) 
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Figure 2: Probability densities for four members of the Levy-stable family of 
probability distributions. They have a central role in mathematical statistics 
and have been observed to model accurately subsurface data. The Levy­
stable distributions are parameterized by the Levy index a E (0, 2], with 
a = 2 corresponding to the Gaussian distribution. The other members in 
this family have slowly decaying tails which makes them useful for modeling 
systems with enhanced variability. 
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Figure 3: Example trace produced by the LevySim random field generator 
using the bounded fractional Levy motion (bfLm) model. This model is 
similar to fBm but is based on the non-Gaussian Levy-stable distributions 
and has enhanced spatial variability. 

In the particular construction of fLm used here, the Hurst parameter H has 
a similar meaning as in the ffim situation. 

As a final modification to the fLm model, explicit bounds (bu and bi) are 
imposed on the simulated variables. This is necessary as an unbounded fLm 
model would imply non-zero probability density for non-physical values. This 
bounded fLm (bfLm) model better reproduces features observed in hydraulic 
conductivity data. For example, the bounds force a return to Gaussianity 
at large separation distances, a feature which Liu and Molz (1997) have ob­
served in the MADE dataset (Boggs et al., 1992). They also eliminate the 
diverging theoretical moments characteristic of Levy models. In the bfLm 
model, the distribution of incremental values depends on the lag separation, 
which is consistent with multifractal rather than monofractal properties. By 
multifractal, we mean that the media is characterized by a generalized vari­
ogram of the form 

(6) 

with multifractal spectrum p(q) that deviates from the monofractal result 
p(q) = qH. 

An example trace of the bfLm model is shown in Figure 3. This trace 
was generated using the sequential simulation algorithm described by Painter 
(1998). 
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3 LRD stochastic continuum representation .. 
of the Aspo region 

.. 
3.1 Hydraulic conductivity data from the Aspo site 

The data forming the basis of this study are 1300 measurements of hydraulic 
conductivity inferred from injection tests in 3-m packered-off sections (Rhen 
et al., 1997). These measurements come from 8 boreholes in the vicinity of 
A.spo island ranging in depth from 600 m to 900 m. A top view and side view 
of the trajectories for the 8 boreholes are shown in Figure 4. Four of these 
boreholes have dip angles near 60 degrees while the other four are close to 
vertical. 

Although the packer intervals are roughly the same for these measure­
ments, the scale of support may vary somewhat because the range of influence 
for each packer test is related to the local hydraulic conductivity. This possi­
ble variation in the scale of support is neglected here. Hydraulic anisotropy 
is also neglected, although it is recognized that fractured rock often has sig­
nificantly different conductivity in the horizontal and vertical directions. In 
situations where sufficient data on vertical and horizontal conductivites are 
available, both could be included in analyses similar to those described be­
low. This would involve treating the vertical and horizontal conductivites as 
distinct but highly correlated random fields. 

A histogram of log K is shown in Figure 5, where J( is hydraulic conduc­
tivity in m/s and log refers to the base 10 logarithm. The K distribution 
spans more than 8 orders of magnitude. The log K distribution has a mean 
of -9.08 and a standard deviation of 2.99. Further, it is highly skewed to 
the right, suggesting that the K distribution is not well approximated by a 
log-normal distribution. 

One geostatistical simulation recipe for dealing with a univariate distri­
bution that is not Gaussian or log--normal is to simply transform the data 
so that the resulting empirical distribution is Gaussian. A sequential Gaus­
sian simulation (SGS) (.Journel & Huijbregts, 1978) is then be employed and 
the resulting realization back-transformed to obtain a realization of the con­
ductivity field. While this undoubtedly improves the performance of the 
SGS method, the normal-score transform does not correct the multipoint 
joint distribution, which is presumed to be multivariate Gaussian in the SGS 
method. The consequence of this is that aburbt changes in conductivity fields 
over short distances, an undeniable feature of many geological data sets, is 
not necessarily preserved in the geostatistical simulations. Abrupt changes 
in hydraulic conductivity such as those associated with the boundaries of 
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Figure 4: Locations of the boreholes that provide the hydraulic conductivity 
data for this study. Four of the eight boreholes were oriented at dip angles 
near 90 degrees. The other four have dip angles near 60 degrees. The smaller 
rectangle is the boundary of the simulation domain used in the stochastic 
simulations and tracer transport calculations. 
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fracture zones may have a profound influence on the flow properties of the 
region of interest. ·when large permeability contrasts are present alternative 
stochastic models that are able to mimic them should be considered. 

Hydraulic conductivity values in the boreholes are shown in 3-D space 
in Figure 6. Each measurement is rendered as a disc centered at the mea­
surement location. The radius of each disc is proportional to the value of 
logarithm of the hydraulic conductivity at that location. The color scale is 
inverted with warm colors representing low Log K. 

Even a quick glance at the data suggests that they might not be ade­
quately described by standard stochastic models. Each borehole shows large 
regions of relatively small log K, punctuated by sharp transitions to high val­
ues of log K. These regions of high K are presumably associated with fracture 
zones. This sort of behavior is problematic for Gaussian-based models, which 
tend to spread the disorder uniformly throughout the region. One method 
for dealing with this sort of heterogeneity is to manually place the fracture 
zones and then use a stochastic simulation for the residuals. This may be an 
effective strategy if geophysical or other data are available to unambiguously 
locate all fracture zones. Here it is presumed that this type of data is not 
available and the ability of fractal models to capture this sort of heterogeneity 
is evaluated. 

3.2 Fractal analysis of the Aspo data 

3.2.1 Variogram analysis 

A conventional variograrn analysis is considered as a starting point in the frac­
tal analysis. A normal-score transform is first applied to the log K data. The 
transformed data thus have a standard normal distribution, which lessens 
the influence of extreme values and makes the variogram more robust. 

Because data are available for only a limited number of boreholes, hor­
izontal correlations are not expected to be detectable in this dataset. This 
has been confirmed by numerical experiments performed by Tsang et al. 
(Tsang et al.; 1996) using a dataset related to the present dataset. However, 
the fact that the boreholes are roughly divided into two sets according to 
their dip lends some hope that some understanding on vertical-to-horizontal 
anisotropy in the variogram can be obtained. 

Two directional variograms are shown in Figure 7. In these plots, the 
increments have been divided into two direction classes, with dip angles of 
75-90 and 60±15. Both variograms show a consistent rise over a wide range, 
consistent with fractal structure or long-range dependence. Beyond :::::::: 200 
m, the lag is approaching the limited range of the borehole data, and should 
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Figure 5: Histogram of logarithm (base 10) of hydraulic conductivity (m/s). 
The log K distribution has a mean of -9.08 and a standard deviation of 2.99. 
It is highly skewed to the right, suggesting that the K distribution is not 
well approximated by a log-normal distribution. 
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Figure 6: Hydraulic conductivity measurements in six of the eight boreholes 
used in this study. The radius of each disc is proportional to the value of Log 
K at that location. The color scale is inverted with warm colors representing 
low Log K. 
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be considered unreliable. Although it may be possible to fit a variogram 
model with limited range to this data with similarly good fit, the fractal 
model cannot be ruled out solely on this variogram. Indeed, the power-law 
fits to the two variogram, shown as the two solid lines on the log-log plot, 
are of good quality over a range of 6 m to more than 200 meters. There is a 

deviation from power-law behavior at lags of 3 m. However, this is near the 
scale-of-support for the 3 m packer tests which is expected to cause this sort 
of smoothing. 

The main point to be observed from the data in Figure 7 is that the fractal 
power-law variogram fits the data at least as well as a more conventional 
model with finite range. This inability to distinguish between competing 
models is characteristic of many field investigations. If these variograms are 
to be input into performance assessment studies that require a conservative 
stance, it is thus necessary to evaluate both competing models or at least 
have an understanding of which leads to the more pessimistic prediction of 
repository performance. 

A second point to be made from Figure 7 is that the directional variogram 
with dip of 60 degrees is consistently and unambiguously greater than the 
directional variogram with dip of 90 degrees. This implies stronger correla­
tion in the vertical compared with the 30 degrees off-vertical. In other words, 
measurements at two points with a given separation distance differ less, on 

average, than those of two points separated horizontally by the same dis­
tance. This is consistent with open fractures or fracture zones being oriented 

primarily in the vertical direction. 
The Hurst parameter H obtained from the slope of the fitted line on the 

log-log plot is 0.075 in Figure 7a and 0.13 in Figure 7b. Both of these values 
are much less than 0.5, indicating antipersistence. The different H values 
in the two directions is referred to as scaling anisotropy. Although models 
for scaling anisotropy are available (Lovejoy & Schertzer, 1985), conditional 
simulation codes are not currently available. For this reason, the two vari­

ograms are also fitted by power-laws with the same Hurst exponent (H=0.1), 
but different pre-factors (Figure 7c). 

By comparing these two fitted model variograms, it is possible to ar­

rive at an geometric anisotropy factor for use in the subsequent stochastic 
simulations. This does, however, require an assumption about the prin­

cipal direction for the anisotropy ellipse. If the principal direction ( di­

rection of greatest correlation) is assumed to be vertical, then a geomet­
ric anisotropy factor of S=0.014 is calculated. In other words, the verti­
cal axis is rescaled by a factor of 0.014 and an isotropic stochastic sim­

ulation is performed in the rescaled space. The value 0.014 was arrived 
at by calculating the degree of rescaling necessary for the vertical axis to 
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make two directional variograms coincide. Specifically, the vertical vari­
ogram is fitted by a5(Sl) 2H, and the variogram for the 60 degree boreholes 
by al0 [l~ + (Slv)2]H = al0 [sin2 (30 deg) + S2 cos2 (30 deg)]Hz2H where lv and 
lh are true separation distances in the vertical and horizontal directions and 
al0 and a5 are fitting parameters. The geometric anisotropy factor was then 
calculated by equating the two and solving for S. 

3.2.2 Levy analysis 

Levy analysis of the log K data is similar to the variogram analysis except 
for three important differences. First, the data are analyzed "as is" instead 
of after a normal-score transform. Second, the histogram of increments at 
short-lag are examined to see if they are fitted by a Levy probability density 
function. Third, the variogram is replaced by an analogous but more robust 
quantity. 

Histograms of the increments in log K are shown in Figure 8. In Figure 
8a the lag distance is 9 m, while in Figure 8b it is 30 m. Also shown in each 
is the best fit Levy pdf and a Gaussian pdf. The probability density is shown 
on a logarithm scale, so the Gaussian pdf has a downward parabolic shape. 
In both situations, the histogram of increments has slowly decaying tails. 
These are associated with abrupt changes in log K and are not rnodeled by 
the Gaussian distribution. The Levy PDF, in contrast, models this general 
shape of the histogram quite accurately. This sort of behavior has been 
identified previously in sedimentary rock, but this result is, to my knowledge, 
the first evidence for similar behavior in fractured crystalline rock. 

The histogram of increments in Figure 8b is broader than the one shown 
in Sa. The fitted Levy distribution has C = 0. 77 in Figure 8a as opposed to 
C = 0.85 in Figure Sb. Recall that the Levy width parameter measures the 
spread in the distribution about its center similar to the variance in a Gaus­
sian distribution. The next step in the Levy fractal analysis is to examine 
the systematic change in this parameter with lag, similar to variogram anal­
ysis. The estimation of this C from data is based on a very robust quantile 
estimation procedure. The variation of C with lag, referred to here as the 
Levy structure function, is related to the generalized variogram of order l 
(referred to as the first order structure function in turbulence theory and as 
the madogram in geostatistics). 

Two Levy structure functions and fitted power laws are shown in Figure 
9. Here as in the variogram analysis the increments have been partitioned 
into two direction classes. The conclusions to be drawn from this analysis 
are similar to those in the variogram analysis: there is evidence for a power­
law (fractal) structure over a wide range, the fitted Hurst parameters are 
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consistent with antipersistence, and there is evidence for anisotropy with 
stronger correlation in the vertical direction. 

Different Hurst parameters are found in the two directions, but in this 
case the differences are small. Fitting both Levy structure functions with 
the same power law with H=0.135 results in the following set of model pa­
rameters: H = 0.135, a = 1.2, C0 = 0.88 and S = 0.028, where S is the 
geometrical anisotropy factor. This fitted model is compared to the two 
directional structure functions in Figure 9c. 

3.3 Conditional stochastic simulations 

Having fitted an ffirn and bfLm model to the log conductivity data, the next 
step is to perform stochastic simulations using the hydraulic conductivity 
data as conditioning data. The assumption is that the fractal characertistics 
observed in the conditioning data apply to the entire simulation domain. 

A CSIRO internal simulation code (Levy Sim) was used for the conditional 
simulations. This code does conditional stochastic simulation of bfLm or 
ffim in 3D using regular or unstructured grids. The algorithms employed 
and validation studies have been published (Painter, 1998). 

The simulation domain and the positions of the borehole conditioning 
data are shown in Figure 10. The domain was discretized into a 50 x 70 x 60 
grid with each grid block being 10 x x 10 m3 . Conditioning data were 
relocated to the nearest gridblock center. When multiple data fell in the same 
gridblock, harmonic averaging was used. This is appropriate in the present 
situation because the boreholes and the flow direction the subsequent 
simulations are oriented primarily in the same direction. attempt to was 
made to correct for the differing scale-of-support between the conditioning 
data and the gridblock. Although it is expected that hydraulic conductivity 
in fractured rock will vary with scale-of-support, this is probably a minor 
correction the present situation because the two scales do not differ by a 
large amount. 

Sixteen stochastic simulations were performed for each of the bfLm and 
ffim models. For comparison purposes, sixteen simulations were also per­
formed using a conventional multiGaussian model with an isotropic expo­
nential covariance with 20 rn range. The multiGaussian simulations used the 
normal-score transform of log-conductivity Thus a unit variance 
and a zero mean were specified. The inverse-normal-score transform 
was applied to each realization to obtain a log K realization with the same 
univariate distribution as the original log K data. The bfLrn simulations 
required approximately 45 minutes each on a Pentium II running 
the LINUX operating 
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Figure 9: structure functions for Log K fitted by a power-law model. 

These are analogous to the variograms shown Figure 5, but are more robust 

against extreme variations in Log The power-law behavior over a wide­

range is additional evidence for long-range spatial dependence. The bottom 

plot shows two empirical variograms compared the final fitted model 

(H=O.l). 
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One limitation of the ffim and bfLm formalisms is that, being non­

stationary models, they offer no control over the univariate distribution. 

Further research is needed to address this limitation. For the purposes of 

the present study, a variant of the post-processing method originally pro­

posed by Journel and Xu (1994) was used to correct the histogram of each 

stochastic simulation. The histogram correction method improves the repro­

duction of the univariate distribution while still honoring the conditioning 

data and without significant alterations to the spatial correlation pattern 

of the origin realization. The main modification to their original histogram 

correction method was to apply it recursively to improve the reproduction of 

the target univariate distribution. 
One realization from the bfLm simulations after post-processing is shown 

in Figure 11. The combination of long-range dependence and high spatial 

variability associated with the Levy distributions results in significant high 

conductivity streaks like those associated with fracture zones. These high 

conductivity streaks can act as conduits for contaminant migration and it is 

particularly important for the stochastic model to capture these when they 

are present the formation. These are missing from the multiGaussian 

simulation shown for comparison purposes in Figure 12. In this case the 

disorder is distributed more uniformly throughout the simulation domain. 

4 Tracer Transport in the LRD Stochastic 

Continua 

1 Flow and transport simulations 

The three sets of conditional stochastic simulations based on the bfLm, ffim 

and multiGaussian models were used in particle tracking transport calcu­

lations in order to the implications of LRD behavior on repository 

performance. The flow domain used is the same as for the stochastic simu­

lations (Figure 10). 
Laplace's equation was first solved for each of the 48 realizations of hy­

draulic conductivity to obtain hydraulic head under the assumption of single­

phase steady state flow. Constant head was specified for the top and bottom 

faces of the rectangular domain a head difference of 100 m leading to 

a macroscopic hydraulic gradient of flow conditions were applied at 

the four remaining faces of the 3D domain. Standard finite-difference meth-

ods were to discretize Laplace's equation. Simultaneous over-relaxation 

(SOR) was to solve for the nodal heads. These were then differenced to 

obtain the steady-state single phase darcy velocities at each A uniform 
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Figure 11: Conditional stochastic simulation generated using the LevySim 
code and the bfLm model. The long streaks high and low conductivity are 
a consequence of the long-range dependence in the modeL The grayscale is 
inverted; dark corresponds to high conductivity. 
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Figure 12: Conditional stochastic simulation generated from an isotropic 
multiGaussian model. The regions of high and low conductivity seen 
in Figure 10 are missing. grayscale is inverted in this image. 
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porosity was assumed and set to 1 for convenience. 
The velocity field were then used in tracer transport simulations. Par­

ticles were launched from the bottom face of the domain and tracked along 
streamlines defined by the velocity field. Tri-linear interpolation was used to 
interpolate the velocities between nodes. The time required for each particle 
to travel across the domain and the x-y position at the top face were recorded 
for each particle. 

Three release scenarios were considered. In scenario A, starting positions 
were chosen randomly with uniform distribution from the entire bottom face. 
In scenario B, the particles were launched from 1/4 of the bottom face as 
shown in Figure 10, while in scenario C, they were launched from the smaller 
rectangle shown in Figure 10 which covers 1/16th of the bottom face. 1000 
particles were used in each realization. 

4.2 Flow channeling 

One characteristic of flow in fractured rock is that it tends to be highly 
channeled, i.e. the majority of the flow often occurs through relatively small 
regions of the overall domain due to heterogeneity. The ability of stochastic 
continuum models to reproduce this type of behavior is an important first 
test. 

To study the relationship between flow chaneling and the choice of stochas­
tic model, particles were distributed randomly and uniformly across the inlet 
side of the domain (release scenario A). Each particle was assigned a statis­
tical weight according to the local flow velocity at the release site. This is 
equivalent to a particle source that is proportional to the local flow velocity. 
The top (outlet) face was partitioned into 50 x 70 m2 panels and the fraction 
of the statistical weight arriving at each panel was calculated. 

Results are shown Figure 13 for one realization from each of the bfLm, 
fBm and multi Gaussian models ( counterclockwise from top). All three cases 
show some degree of flow channeling. In the multiGaussian case it is due 
to the high variance (2.99) in Log for this data set. Channeling the 
fBm and bfLm cases is much more pronounced due to the long-range spatial 
dependence. the bfLm case the vast majority of the tracer mass arrives 
a single panel. This illustrates how the important phenomenon of extreme 
flow channeling can be captured in a continuum model that combines high 
variability with long-range dependence. 
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Figure 13: Spatial distribution of mass arrival at the top face of the simula­

tion domain illustrating flow channeling in the stochastic continuum repre­
sentation. The stochastically generated log K fields utilized the bfLm, fBrn 
and multi Gaussian models ( counterclockwise from top). All three show evi­
dence for flow channeling, but it is much stronger in the bfLm case. Particles 
were released the entire bottom face of the simulation cube, with the 
particle source proportional to the local flow rate. 
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4.3 Sensitivity of predicted breakthrough curves to choice 

of heterogeneity model 

Cumulative breakthrough curves are shown in Figure 14 using the three het­

erogeneity models and realease scenario A. The particle source was constant 

across the release area, not weighted by the flow velocity. The vertical axis 

is the cumulative mass fraction recovered at the top face. The horizon­

tal axis is base-10 logarithm of time in thousands of years. The curves in 

Figure 14a were obtained using the 16 conductivity realizations generated 

using the bfLm model. Figures 14b and 14c show the same for the fBm 

and multiGaussian models, respectively. The aim is to explore how sensi­

tive probabilistic predictions of geosphere performance are to the choice of 

heterogeneity model. 
The two models with long-range dependence result in earlier arrival times 

compared with the multi Gaussian model. If we take as a measure of the bulk 

arrival time T50 , the time at which 50% of the mass is recovered at the outlet, 

then the ensemble average bulk arrival time (Tso) is 5.4 x 104 years for the 

bfLm model, 6.0 x 104 years for the fBm model and 1.8 x 105 years for 

the multiGaussian model. More important, if the focus is on the arrival of 

the leading edge of the contaminant plume, then the differences are more 

dramatic. For example, ( Ts) = 3.0 x 102, 3.8 x 102, and 1.3 x 104 for the 

bfLm, fBm and multiGaussian models, respectively. Here (T5) is the time at 

which 5% of the initial mass is recovered at the outlet. It should be noted 

that these times are dependent on the choice of macroscopic head gradient 

and the assumed porosity; they may not represent true times but could be 

scaled to true times if desired. 
The differences in the predicted (T50 ) and (T5 ) have some potentially im­

portant implications for repository performance assessment. In this example, 

the differences due to the choice of heterogeneity model are much greater 

than the realization-to-realization variability. This result demonstrates the 

importance of exploring alternative models for heterogeneity in situations 

where the data do not provide unambiguous support for a single heterogene­

ity model. Further, the two LRD models predict much earlier arrival times 

for the leading edge of the contaminant plume. This is due to rapid transport 

pathways resulting from spatially connected regions of high conductivity. As 

these are intrinsic features of the LRD models, the result of more rapid break­

through for the LRD models is expected to be a general one. From the point 

of view of conservative assessment of repository geosphere performance, it 

is thus necessary to consider LRD model for heterogeneity unless the data 

unambiguously rule these out, 
The predicted breakthrough curves depend not only on the choice of geo-
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Figure 14: Cumulative breakthrough curves for release scenario A (particles 
randomly distributed across the bottom face the simulation domain). The 
stochastically generated log .K fields employed the bfLm, fBm, and multi­
Gaussian models (reading from the top). The two models with long-range 
dependence predict contaminant arrivaL 
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statistical model, but also on the conditioning data and release scenario. 
Breakthrough curves calculated by assuming the release scenario B (see Fig­
ure 10) are shown in Figure 15. Although the realization-to-realization vari­
ability in Figure 15 is significantly larger than in Figure 14 because of the 
reduced spatial extent of the particle source, there are still significant dif­
ferences between the three models with the LRD models again predicting 
significantly earlier arrival times. 

4.4 On the relationship between intermediate-scale and 
large-scale transport properties 

Relating geosphere transport properties to intermediate ( or block) scale field 
measurements is an important component to repository performance studies. 
If the measurement scale is several times the hetorogeneity correlation range, 
the asymptotic Fickian limit is an appropriate approximation and a disper­
sion due to heterogeneity can be described by a classical advection/dispersion 
equation with constant velocity and dispersivity. The conventional method 
for analyzing block-scale field measurements is to assume that the Fickian 
limit is reached; dispersivities and velocities obtained from block-scale mea­
surements can then be applied to the larger scales. For media with long-range 
dependence the Fickian limit is not reached regardless of the measurement 
scale. Thus care should be taken in extrapolating transport parameters ob­
tained from conventional analysis of intermediate-scale experiments to the 
larger scale. 

The relationship between large-scale and intermediate-scale transport 
properties in LRD media is explored in Figure 16. The 16 bfLm realizations 
of log K were used in tracer transport simulations as described previously. 
In this example, particles were released from the smallest rectangle labeled 
"C" in Figure 10. The bulk arrival time at 100 m 7 50 (100 m) and at 600 
rn 7 50 (600 m) were recorded. Although the number of realizations is very 
small, it is clear in the crossplot shown in Figure 16 that there is a strong 
relationship between the intermediate-scale measurements and the effect of 
interest. Transport is, however, clearly not Fickian. A simple linear extrap­
olation from the 100 m scale to the 600 m scale - as would be appropriate 
in the Fickian limit - does not give accurate results. In particular the advec­
tive velocity is clearly increasing with travel distance. Simple extrapolation 
would thus give non-conservative results in a performance assessment. 

There is also considerable scatter in the crossplot in Figure 16, indicating 
that the two quantities are related only in a statistical sense. This uncertainty 
should be considered explicitly when upscaling field measurements. Further, 
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Figure Same as Figure 14 except for the release scenario. In this case 
particles were randomly and uniformly distributed across the rectangle B 
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Figure Crossplot of bulk arrival time at 100 m and 600 m obtained 
from 16 conditional realization of log K generated using the bfLm modeL 
The Fickian limit is not reached in the bfLrn media. There is thus no unique 
relationship between transport properties measured at different scales. Monte 

Carlo calculations like those summarized here can by used to upscale the 
results of block-scale experiments to obtain effective transport properties 

the entire domain. 
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any extrapolation from the intermediate-scale experiments to the large-scale 

performance should also take into account other data such as borehole mea­

surements of hydraulic conductivity. This problem of merging different types 

of data in a stochastic framework is one of the most challenging issues in geo­

statistics. For example, no general methods exist for constraining a stochastic 

simulation to match both quasi-point measurements and large-scale dynamic 

data such as the results of tracer tests. 
Here a new statistical method for extrapolating intermediate-scale dy­

namic data to larger scales is proposed. This method accounts for constraints 

imposed by conditioning data in addition to the intermediate-scale data, and 

does not require an analytical model for the tracer spreading. The final re­

sult is the probability distribution for the effect of interest conditional on the 

intermediate-scale data and hydraulic conductivity data measured at much 

smaller scales. 
The basic idea is to simulate the intermediate-scale experiment and the 

large-scale effect of interest using the same stochastically generated K realiza­

tion. This is repeated a large number of times to build up, in a Monte Carlo 

sense, the probabilistic relationship between the proxy variable (intermediate­

scale measurement) and the target variable (large-scale transport property). 

The method is easily conditioned to borehole measurements of K by simply 

making the K generation step a conditional stochastic simulation. Given an 

actual field measurement of the proxy variable, the probability distribution 

of the target variable conditional on the proxy measurement is then extracted 

from Monte Carlo results. 
The issue then is how to take the Monte Carlo results and construct the 

conditional probability density function for the target variable. The crudest 

method would be to bin the data into classes and then construct the empirical 

distribution from the Monte Carlo results in each class. More sophisticated 

methods that are able to extract more information from the limited number 

of Monte Carlo results exist for this purpose. In particular, nonparametric 

methods for fitting conditional quantile functions (Koenker et al., 1994) are 

well developed. Doing this for several quantiles effectively approximates the 

entire conditional cumulative distribution function. The method can be made 

computationally efficient for the present application by using a local linear 

approximation to the various quantiles in the neighborhood of the given 

proxy measurement. This approximation should make it feasible to extend 

this method to the situation of multiple proxy variables. Development and 

testing of this method will be the subject of future research. 
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5 Summary 

One reason for the interest in discrete-fracture network models is that the 

alternative, the stochastic continuum models, have traditionally been based 

on the classical random field models of subsurface hydrology such as the 

multiGaussian model. These classical models have difficulty modeling abrupt 

changes in hydraulic conductivity and spatially connected regions of extreme 

values such as those associated with fracture zones. Given that high con­

ductivity regions associated with fracture zones provide flow and transport 

pathways through a given volume of rock, it is particularly important to 

have stochastic models that are capable of realistically modeling these fea­

tures. In a recent paper (Tsang et al., 1996), a class of geostatistical models 

based on nonparametric indicator methods was proposed as a framework for 

stochastic continuum level descriptions of fractured rock. The present report 

has similar goals, the evaluation of nonclassical stochastic continuum mod­

els for fractured rock. However, the focus here is on random field models 

with long-range spatial dependence. Specifically, a class of fractal scaling 

models known as bounded fractional Levy motion (bfLm) is evaluated using 

hydraulic conductivity data from packer tests from boreholes in the vicinity 

of the Hard Rock Laboratory, A..spo Island, Sweden. The bfLm class mod­

els includes the well-known fractal scaling model fractional Brownian motion 

(ffim) as a special case, but has increased flexibility to model formations 

with high spatial variability. 
Fractal analysis of the log K suggests they are consistent with a fractal 

scaling model. In particular, a bfLm model was fitted to the log K data and 

an ffim model to the normal score transform of the log K data. Both models 

provided a reasonably accurate fit to the data. However, a conventional 

variogram model with large nugget and limited spatial correlation range may 

also provide a similar good fit to the data. It is not possible to distinguish 

between the competing 3-D models with the limited amount of hydraulic 

data available. 
This inability to distinguish between competing models occurs frequently 

in practice and is likely to occur in evaluations of future waste repository 

sites. Given the need to take a conservative stance in these performance 

assessment studies, it is particularly important to evaluate alternative models 

or to at least have an understanding how the choice of random field model 

influences the predicted performance. Stochastic simulations conditioned by 

the A..spo log K data were coupled with flow and tracer transport calculations 

to address this relationship between the random field model and predicted 

properties. 
Stochastic simulations based on the two long-range dependent models 
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contain high-conductivity streaks that mimic fracture zones. Qualitatively, 
the bfLm model produced better defined high-conductivity streaks as com­

pared to the fBm model, but the differences are small compared to the dif­
ferences with the classical multiGaussian model. All three models resulted 
in significant flow channeling, with the bfLm simulations being the strongest 
followed by the fBm model and the multiGaussian model. 

Nonreacting tracer transport simulations utilizing stochastically gener­

ated K fields show different breakthrough curves depending on the choice of 
the random field model. In general the random field models with long-range 
dependence predict earlier arrival time for the mass and significantly more 

dispersion in a single-realization sense. This has some important implications 
for performance assessment. In order to be conservative in the prediction of 
geosphere performance, these LRD models need to be considered unless the 

data specifically rule them out. 
Finally, long-range dependence has some implications for the extrapola­

tion of intermediate-scale experiments to larger scales. Since the Fickian limit 
is never reached for transport in fractal media, the conventional practice of 
fitting an effective dispersivity to intermediate-scale tracer experiments may 
result in an inaccurate prediction of the larger-scale transport behavior. In 

particular, it may introduce a systematic bias and be non-conservative from 
a performance assessment perspective. It also ignores completely the issue 
of prediction uncertainty. A new Monte Carlo method for up-scaling the 
results of intermediate-scale experiments was outlined. This method incor­
porates small-scale hydraulic conductivity measurements in addition to the 
intermediate-scale dynamic data, and treats explicitly the issue of prediction 
uncertainty. Implementation and testing of the new method will be the focus 
of future research. 
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