**P-07-07** 

## **Forsmark site investigation**

## Mapping of borehole breakouts

Processing of acoustical televiewerdata from KFM01A, KFM01B, KFM02A, KFM03A, KFM03B, KFM04A, KFM05A, KFM06A and KFM07C

Jørgen Ringgaard, Rambøll A/S

April 2007

#### Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19



ISSN 1651-4416 SKB P-07-07

## Forsmark site investigation

## Mapping of borehole breakouts

## Processing of acoustical televiewerdata from KFM01A, KFM01B, KFM02A, KFM03A, KFM03B, KFM04A, KFM05A, KFM06A and KFM07C

Jørgen Ringgaard, Rambøll A/S

April 2007

Keywords: Borehole breakouts, Televiewer, Deformations, Micro fallouts.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client.

Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se

## Abstract

This report presents a detection and mapping of borehole breakouts and other borehole deformations by means of processing of data from an acoustical televiewer probe. Special attention is paid to very small breakouts and micro fallouts.

The registration is done in Excel-sheets in a table and a chart, which show the main azimuth of the breakouts. The charts show an obvious tendency, that the main azimuth of the breakouts and micro fallouts is found to be at 40 to 60° from magnetic north.

Due to the inclination of the boreholes, the televiewer is slightly decentralized during logging, which causes reduced data quality. But despite this, breakouts, keyseats and washouts with a certain magnitude (more than 0.1 mm), can still be mapped and classified after centralization of data by special processing routines.

Also micro fallouts (fallouts smaller than 0.1 mm) can be registered, but the mapping of these is more uncertain, as is it not possible to make specific criteria for this phenomenon. The detection has been done as a visual inspection and it is often hard to determine the area of distribution of these small structures. In some cases the micro fallouts are found to be in the entire perimeter of the borehole, but in most cases they have a main azimuth in the same direction as the breakouts.

With a perfect alignment of the BIPS-image in KFM01B the images complete each other, enabling an enhanced mapping of observed fractures and deformations.

## Sammanfattning

Denne rapport redovisar förekomsten och kartering av borrhålsspjälkning och andra borrhålsdeformationer, baserat på data från en akustisk televiewersond. Särskild vikt har lagts vid mycket små borrhålsspjälkningar och mikroutfall.

Dataregistreringen är utförd i Excel-blad i tabeller och diagram, vilka illustrerar huvudazimuth för spjälkningarna. Diagrammen visar en tydlig tendens, att huvudazimuth för spjälkning och mikroutfall finns i intervallet 40–60° från magnetisk norr.

På grund av borrhålens lutning är televiewersonden svagt decentraliserad under loggningen, vilket leder till sämre datakvalitet. Trots detta är det möjligt att urskilja spjälkning, keaseats och washouts med bestämd magnitud (mer än 0,1 mm). Detta kan åstadkommas genom att centralisering kan göras genom en speciell dataprocessrutin.

Även mikroutfall (utfall mindre än 0,1 mm) kan urskiljas, men karteringen av dessa är mer osäker, då det inte är möjligt att precisera kriterium för detta. Urskiljning har kunnat göras genom visuell bedömning och ofta är det svårt att avgöra utbredningen av dessa. I några fall har mikroutfall förekommit i hela borrhålets perimeter, men i de flesta fall har de haft huvudazimuth i samma riktning som spjälkningen.

Med en perfekt inställning mellan loggen för televiewern och BIPS-bilder i KFM01B, så kompletterar dessa varandra och möjliggör en förståelse/tolkning av observerade sprickor och deformationer.

## Contents

| 1                                                         | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                               |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 2                                                         | Objective and scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                              |
| 3                                                         | Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                              |
| <b>4</b><br>4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7 | Processing of data<br>Import and orientation<br>Alignment of images<br>Filtering and calculation of decentralization<br>Centralization of images<br>Calculation of calipers and ovality<br>Registration of breakouts and other deformations<br>Nonconformities                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15<br>15<br>15<br>16<br>17<br>17<br>22<br>22                                    |
| <b>5</b><br>5.1                                           | Description of logpanelExplanation of logs5.1.1Amplitude5.1.2BIPS5.1.3Caliper max position5.1.4Caliper min position5.1.5Caliper – max – Centralized – Median filtered5.1.6Caliper – mean – Centralized – Median filtered5.1.7Caliper – mean – Centralized – Median filtered5.1.8Class5.1.9Cross-section – Radius – Centralized5.1.10Decentralization5.1.11Radius – Centralized – Median filtered5.1.12Radius – Centralized – Median filtered5.1.13Radius – Centralized – Median filtered5.1.14Radius – Median filtered – max5.1.15Radius – Median filtered – median5.1.16Radius – Median filtered – mean5.1.17Radius – Median filtered – mean5.1.17Radius – Median filtered – mean5.1.18Tool rotation | 23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>2 |
| <b>6</b><br>6.1<br>6.2<br>6.3                             | <ul> <li>Analysis and registration of observed deformations</li> <li>Classification of observed deformations</li> <li>Explanation of columns in the excel-sheet</li> <li>Examples of borehole deformations</li> <li>6.3.1 Example of borehole breakout (BB)</li> <li>6.3.2 Example of washout (WO)</li> <li>6.3.3 Example of keyseat (KS)</li> <li>6.3.4 Example of micro fallout (MF)</li> <li>Explanation of special features in the borehole</li> <li>6.4.1 Tracks from decentralization</li> <li>6.4.2 Drill cuttings from bottom of borehole</li> <li>6.4.3 Wobbles from drilling process</li> </ul>                                                                                             | 25<br>25<br>25<br>26<br>26<br>26<br>26<br>28<br>28<br>29<br>29<br>30<br>30      |
| 7                                                         | Summary and discussions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                              |
| References                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |

#### Appendices on CD

- Appendix A List of acquisition reports
- Appendix B Tables and charts of depth errors
- Appendix C Tables and charts of registered deformations
- Appendix D Plot of logpanels

## 1 Introduction

Boreholes and tunnels in sedimentary formations as well as in bedrock may, during certain conditions governed by the relation between the compressive strength of the rock material and the state of stress, be exposed to spalling, often referred to as borehole breakouts, entailing that the originally circular borehole perimeter is deformed and changes its geometry to a more or less oval shape. (More exact definitions and a classification of borehole deformations of different types are given in Section 6.1.) The orientation of breakouts is governed by the stress field, such that the breakouts (ideally) occur on opposite sides of the borehole in the same bearing as that of the minor horizontal stress.

Width, length and depth of breakouts may vary within broad ranges, reflecting variations in the rock strength-/rock stress relation /Zoback et al. 1985/ and possibly also mirroring the impact of the drilling process /Ask et al. 2006/. The study of breakouts is primarily aiming at shedding light on the orientation of the stress field and its continuity. Secondarily, breakouts may be used also for determination of stress magnitudes, however mainly as a supporting method.

It has previously been shown that spalling phenomena may well be identified and characterized by the analysis of acoustic televiewer images /e.g. Deltombe and Schepers 2000, Siddans and Worthington 2003/. Due to the high accuracy of the acoustic televiewer method for determination of geometrical properties of the borehole, it is especially advantageous when addressing minor deformations, which may be very difficult to detect with other methods.

A pilot study aiming at investigating the potential of the acoustic televiewer method of identifying and characterizing major as well as minor borehole deformations in the rock types prevailing at Forsmark was performed during 2005 /Ask and Ask 2007, Ask et al. 2006/. Two subvertical core drilled boreholes, KFM01A (1,000 m long) and KFM01B (500 m) were investigated. The applicability of the method was clearly demonstrated and a range of borehole deformations of different dimensions was revealed in both boreholes. A pilot study was also performed by /Ringgaard 2006/.

This document reports the results gained by processing and interpretation of acoustic televiewer data from nine boreholes at Forsmark, which is one of the activities performed within the site investigation at Forsmark. The work was carried out in accordance with activity plan AP PF 400-06-062, see Table 1-1. Activity plans and method descriptions are SKB's internal controlling documents. However, for the activity presented in this report, there exists no SKB method description.

A map of the Forsmark investigation area is presented in Figure 1-1, whereas details of the different drill sites are shown in Figure 1-2.

Original data from the reported activity are stored in the primary database Sicada. Data are traceable in Sicada by the Activity Plan number (AP PF 400-06-062). Only data in databases are accepted for further interpretation and modelling. The data presented in this report are regarded as copies of the original data. Data in the databases may be revised, if needed. Such revisions will not necessarily result in a revision of the P-report, although the normal procedure is that major revisions entail a revision of the P-report. Minor revisions are normally presented as supplements, available at www.skb.se.

#### Table 1-1. Controlling document for performance of the activity.

| Activity plan                                                                                                                           | Number           | Version |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|
| Detection of potential borehole breakouts in boreholes<br>KFM01A, KFM01B, KFM02A, KFM03A, KFM03B,<br>KFM04A, KFM05A, KFM06A and KFM07C. | AP PF 400-06-062 | 1.0     |



Figure 1-1. Map of borehole locations at the Forsmark investigation area.



Figure 1-2. Detailed maps of the different drill sites.

## 2 Objective and scope

Efforts to map the effects of the stress in the Forsmark region have been done with a suite of methods. This report describes a special processing of televiewer data with attention to the effect of stress: deformations of the borehole. The mapping is done according to the SKB-document AP PF 400-04-062. An overview of the processed boreholes can be found in Table 2-1.

| Borehole | Length<br>[m] | Inclination [° from hor.] | Orientation [° from GN] |
|----------|---------------|---------------------------|-------------------------|
| KFM01A   | 1,001         | -84.73                    | 318.35                  |
| KFM01B   | 500.52        | -79.04                    | 267.59                  |
| KFM02A   | 1,002.44      | -85.38                    | 275.76                  |
| KFM03A   | 1,001.19      | -85.75                    | 271.52                  |
| KFM03B   | 101.54        | -85.30                    | 264.49                  |
| KFM04A   | 1,001.42      | -60.08                    | 45.25                   |
| KFM05A   | 1,002.71      | -59.80                    | 80.90                   |
| KFM06A   | 1,000.64      | -60.25                    | 300.92                  |
| KFM07C   | 500.34        | -85.40                    | 98.39                   |

| Table 2-1. Overview of boreholes ( | (from SICADA). |
|------------------------------------|----------------|
|------------------------------------|----------------|

## 3 Equipment

The probe used for acquisition of data is a High Resolution Acoustical Televiewer (HiRAT) from Robertson Geologging Ltd. http://www.geologging.com/

The transducer is a 1.5 MHz head, which transmits the acoustic signal via a rotating acoustic mirror to the borehole wall. The strength of the reflected signal is recorded as an Amplitude log, while the first arrivals are picked and stored in a Traveltime log. Both logs are stored as images with selectable horizontal resolution from 90 to 360 pixels/revolution and a vertical resolution depending on the logging speed. The radial resolution in the recorded Traveltime is 100 nS, which equals 0.075 mm. The boreholes were logged with different selections of resolution; an overview of this is shown in Table 3-1.

The images are oriented by means of a built-in orientation unit containing a 3-axis fluxgate magnetometer as well a 3-axis accelerometer. The output from this device can also be used to calculate a deviation log for the borehole.

The probe is centralized in the borehole with two bow spring centralizers, see the picture in Figure 3-1. The applied centralizers are designated to boreholes with diameters in the range 67–100 mm.

For detailed information regarding the data acquisition with the HiRAT probe, please refer to SKB reports listed in Appendix A.

The BIPS-image (only in KFM01B) is recorded with the BIPS-system. For information regarding this probe and the acquisition of data; please refer to the SKB report P-05-74: RAMAC and BIPS logging in borehole KFM01B and RAMAC directional re-logging in borehole KFM01A.

| Borehole | Pixels/rev. | Horisontal res.<br>[mm] | Logging speed<br>[m/min] | Vertical res.<br>[mm] |
|----------|-------------|-------------------------|--------------------------|-----------------------|
| KFM01A   | 120         | 2.0                     | 2                        | 2                     |
| KFM01B   | 180         | 1.3                     | 2                        | 2                     |
| KFM02A   | 120         | 2.0                     | 2.4                      | 2                     |
| KFM03A   | 120         | 2.0                     | 2.4                      | 2                     |
| KFM03B   | 120         | 2.0                     | 2.5                      | 2                     |
| KFM04A   | 120         | 2.0                     | 2.4                      | 2                     |
| KFM05A   | 120         | 2.0                     | 2.4                      | 2                     |
| KFM06A   | 90          | 2.7                     | 10                       | 8                     |
| KFM07C   | 180         | 1.3                     | 2                        | 2                     |
|          |             |                         |                          |                       |

#### Table 3-1. Overview of resolutions.



Figure 3-1. Picture of HiRAT probe.

## 4 Processing of data

The final processing of the televiewer-data contains the steps described below. A lot of effort has been spent to investigate different possibilities in the processing. Only the final processing done to the delivered data is described. All processing is done in WellCAD, which is made by Advanced Logic Technology. A free reader for WellCAD documents can be downloaded on www.alt.lu.

#### 4.1 Import and orientation

The televiewer data are recorded in the dedicated logging-program HiRAT from Robertson Geologging Ltd. The data are stored in time domain, with a table which links the data to depth.

Image-data as well as orientation-data are imported and resampled to depth-domain. Orientation-data are filtered with a 200 samples moving average filter. Images are resampled to 360 pixels/rev. before orientation. This is done to prevent fractures from being edged during orientation.

Images are then oriented to Magnetic North (MN).

#### 4.2 Alignment of images

In order to provide a system for length calibration of different logging systems used at the site investigation, reference tracks (grooves) have been milled into the borehole wall with a specially designed tool at regular levels in all cored drilled boreholes. Regarding televiewer logging, the length calibration is conducted as follows.

First all HiRAT logs are shifted, so that the upper edge of the top-most track is aligned to the milled reference track. Then all tracks in the borehole are identified and a table is made. An example of this is shown in Table 4-1.

| True depth [m] | HiRAT [m] | Difference [m] |
|----------------|-----------|----------------|
| 110            | 110       | 0              |
| 150            | 150.041   | -0.041         |
| 200            | 200.063   | -0.063         |
| 250            | 250.109   | -0.109         |
| 300            | 300.136   | -0.136         |
| 350            | 350.149   | -0.149         |
| 400            | 400.209   | -0.209         |
| 450            | 450.202   | -0.202         |
| 500            | 500.257   | -0.257         |
| 550            | 550.258   | -0.258         |
| 600            | 600.3     | -0.3           |
| 650            | 650.327   | -0.327         |
| 700            | 700.322   | -0.322         |
| 750            | 750.359   | -0.359         |
| 800            | 800.352   | -0.352         |
| 1,000.5        | 1,000.96  | -0.46          |

Table 4-1. Example of depth table. KFM01A.

Also a plot of the differences is made. This is done to check the linearity of the depth fault, an example of a plot is shown in Figure 4-1. The depth tables and plots of all boreholes can be found in Appendix B.

All logs are then stretched to fit the milled tracks in the borehole, which results in a perfect alignment to the tracks.

#### 4.3 Filtering and calculation of decentralization

To calculate the decentralization, the Traveltime image needs to be filtered with a  $15 \times 15$  pixels weighted average filter. This is done to prevent small fractures from disturbing the decentralization calculation. Then the image is converted from Traveltime (the unit is 100 nS) to radius with the formula:

 $Radius(mm) = \frac{(Traveltime - Internal \ Traveltime \times 10) \times VEL(FL)}{10 \times 1000} + tool \ radius$ 

where "VEL(FL)" is the sound velocity in the borehole fluid.

"Internal Traveltime" is the internal traveltime in the oil from the transducer to the acoustic window of the HiRAT tool. As the sound velocity in the oil has a small temperature coefficient, it is calculated as:

Internal Traveltime = 
$$\frac{(-2.24 \times TEMP(FL) + 1031) \times 120}{1000}$$

"TEMP(FL)" is the temperature of the water in the borehole, which was measured with a 9042 FluidRes and FluidTemp probe from Century Geophysical (see overview of acquisition reports in Appendix A). Also VEL(FL) is calculated in the reports, from the measured resistivity of the fluid.

Next step is to extract statistics from the new radius image log, which returns logs for minimum, maximum, average and median values of the radius image. From these the decentralization of the probe is calculated as:

Decentralization = "Radius – mean" – "Radius – min"



Figure 4-1. Example of plot of depth error. KFM01A.

## 4.4 Centralization of images

Due to the inclination of the boreholes, the acoustic televiewer-probe is slightly decentralized during logging; the size of this decentralization is roughly 0.1 mm/deg. from vertical. Therefore a centralization routine is applied to compensate the images for this. This is done by means of a sine-fitting routine in WellCAD. It can be done only to the Traveltime (Radius) image, not to the Amplitude image. In Figure 4-2, an example of an unrolled Radius curve at 121.32 m in KFM01B is shown, where the decentralization reaches a local peak, i.e. 0.96 mm.

In Figure 4-3 the same section as in Figure 4-2 is shown, but after the centralization routine has been applied. The images have been centralized, but also some distortion has been added to the image. The distortion is at worst, where larger breakouts are present. The centralization routine is applied both to the Traveltime image as well as the median filtered Radius image. In Figure 4-4 and Figure 4-5 examples of the effect of the centralization routine are shown at a depth, where the decentralization is at a local minimum, i.e. 0.11 mm.

**Please note**, that the scales of the un-rolled radius are different, i.e. 37 to 40 mm in the examples before centralization vs. 38 to 38.5 mm on the two examples after.

There are two types of overlaying decentralizations; the first type is as expected against the low side of the borehole. But a second type of decentralization is also present, which follows the rotation of the tool during logging.

## 4.5 Calculation of calipers and ovality

The Centralized Traveltime is then also converted to a radius image as described is 4.3 and the previous image is deleted.

Now mean, minimum and maximum calipers as well as angles (eg. Cal Max Position) for these can be extracted from the median filtered image log. Then the extracted angles (position logs) are filtered again with a 100 pts. (2 metres) moving average filter; this is done to smoothen the logs as only main angles are of interest.

An ovality log can now be calculated as twice the median radius minus the minimum caliper.

 $\textit{OVALITY}-\textit{MIN} = \textit{``Radius}-\textit{Centralized}-\textit{Median filtered}-\textit{median''} \times 2 - \textit{``Caliper}-\textit{min}-\textit{Centralized}-\textit{Median filtered''}$ 

This ovality log will only be reliable where some ovality is present, as it will be smeared by the fractures in the borehole as well as method introduced artefacts. It also needs to be compared with the angle logs, which should be stable in one direction, before a eventual ovality can be considered reliable.

As a manual check of the ovality, cross-section logs are generated every 20 metres, as well as right above and below breakouts (the latter are deleted again). These cross-sections have grid-circles every 0.1 mm, allowing the ovality to be visually checked, see example in Figure 4-6 below.

The same process is applied to the downrun and imported to the uprun logpanel. It is used in case of doubt to help separating real deformations from artefacts. The Radius image from the downrun is part of the delivered logpanel, but not shown.



Figure 4-2. Example of maximum decentralization – at 121.32 m in KFM01B.



*Figure 4-3. Example of maximum decentralization – at 121.32 m in KFM01B – after application of the centralization routine.* 



Figure 4-4. Example of minimum decentralization – at 115.16 m in KFM01B.



*Figure 4-5. Example of minimum decentralization – at 115.16 m in KFM01B – after application of the centralization routine.* 

#### 4.6 Registration of breakouts and other deformations

To register and describe deformations the log panel is manually inspected. When necessary a cross-section is generated and the deformation is classified, measured and registered in an Excel-table. In Figure 4-6 below is shown a example of a cross-section. The spacing between the radial grid is 0.1 mm. The spikes on the cross-section, which have a maximum size of 0.3 mm, show some roughness on the borehole wall – micro fallout.

### 4.7 Nonconformities

The activity was performed in compliance with activity plan AP PF 400-06-062, although with one exception. Analysis of borehole KFM07C was not included in the activity plan. However, a decision was made after approval of the activity plan, that the activity should encompass also KFM07C.



Figure 4-6. Example of cross-section with micro fallout.

## 5 Description of logpanel

## 5.1 Explanation of logs

Here follows – in alphabetic order – a description of all the logs in the panel

#### 5.1.1 Amplitude

Amplitude of the returned acoustic signal from the borehole wall. Darker (more blue) colours represent low amplitude – softer surface, while lighter (more yellow) colours represent high amplitude – harder surface of wall. The log is (as all other images) shown as an un-rolled 360° image of the borehole, where 0° is the reference, which is aligned against magnetic north (MN). The image is has no unit.

#### 5.1.2 BIPS

Image RGB-log from BIPS optical televiewer, (only in KFM01B).

#### 5.1.3 Caliper max position

Orientation of the calculated maximum caliper in degrees from MN of the borehole. The log is derived from the filtered and centralized radius image. Contains values from 0–180 degrees.

#### 5.1.4 Caliper min position

Orientation of the calculated minimum caliper in degrees from MN of the borehole. The log is derived from the filtered and centralized radius image. Contains values from 0–180 degrees.

#### 5.1.5 Caliper – max – Centralized – Median filtered

Maximum caliper measured in the median filtered and centralized radius image. Unit: mm.

#### 5.1.6 Caliper – mean – Centralized – Median filtered

Mean caliper measured in the median filtered and centralized radius image. Unit: mm.

#### 5.1.7 Caliper – min – Centralized – Median filtered

Minimum caliper measured in the median filtered and centralized radius image. Unit: mm.

#### 5.1.8 Class

Symbol log, which shows the classification of registered deformations. This log is pasted from the column in the registration excel-sheet.

| BB |                                               | Borehole Breakout |
|----|-----------------------------------------------|-------------------|
| KS | •                                             | Key Seat          |
| MF |                                               | Micro Fallout     |
| WO | -4-4-4-4-4-<br>-4-4-4-4-4-4-4<br>-4-4-4-4-4-4 | Washout           |

#### 5.1.9 Cross-section – Radius – Centralized

Cross-sections are generated every 20 metres in the borehole. The cross-section is average over 10 cm. Radii below the actual nominal radius are shaded green, and radii above are shaded orange.

#### 5.1.10 Decentralization

Calculated decentralization as the difference between the mean and min radius of the radius image. Unit: mm.

#### 5.1.11 Radius – Centralized

Radius image log, which is centralized as described to compensate for decentralization of the probe. Light colours represent smaller radii, while darker colours represent larger radii. Unit: mm.

#### 5.1.12 Radius – Centralized – Median filtered

Radius image log, which is centralized as described earlier and median filtered over an area of  $15 \times 15$  pixels (app.  $20 \times 30$  mm) to shade for small deformations, when calculating calipers. Light colours represent smaller radii, while darker colours represent larger radii. Unit: mm.

#### 5.1.13 Radius – Centralized – Median filtered – median

This log is not shown; it is used to calculate the ovality as described in Section 4.5.

#### 5.1.14 Radius – Median filtered – max

Maximum radius of the median filtered, but not centralized radius image, unit: mm.

#### 5.1.15 Radius – Median filtered – median

Median radius of the median filtered, but not centralized radius image, unit: mm.

#### 5.1.16 Radius – Median filtered – mean

Mean radius of the median filtered, but not centralized radius image, unit: mm.

#### 5.1.17 Radius – Median filtered – min

Minimum radius of the median filtered, but not centralized radius image, unit: mm.

#### 5.1.18 Tool rotation

Shows the rotation of the probe, as the borehole was logged, unit: degrees.

## 6 Analysis and registration of observed deformations

#### 6.1 Classification of observed deformations

In Appendix C is found tables with classification of all interpreted deformations in the boreholes.

The classification is illustrated in Figure 6-1.

#### 6.2 Explanation of columns in the excel-sheet

The columns in the Excel-sheet are explained as follows:

Top Depth: Top of the deformation.

Bot. Depth: Bottom of the deformation.

**Max. R:** Maximum radius of the deformation, read from "Radius – max – Median Filtered"-log and/or "Radius" image.

Median R: Nominal radius at the depth, read from "Radius – median – Median Filtered"-log.

dRmax: Delta radius, i.e. the depth of the deformation into the borehole wall.

**Structure:** Classification of the deformation. Examples and further explanation are shown in Section 6.3

- BB: Borehole breakout
- WO: Washout
- KS: Key seat
- MF: Micro fallout



Figure 6-1. Classification of deformations. From /Ask and Ask 2007/, after /Plumb and Hickman 1985/.

**Uncertainty:** The uncertainty of the observed deformation: 3 = certain, 2 = probable, 1 = possible, 0 = not estimated. The uncertainty is primary related to the type of deformation.

**Cross. struct.:** The deformation is related to a fracture crossing the borehole. Example of this isshown in Section 6.3.

**Main azimuth:** Main azimuth of the deformation in degrees from Magnetic North. The angle is calculated from the next column "Azimuth". If the angle is between 0 and 180°, the main azimuth is the same, but if the azimuth is between 180 and 360°, 180° are subtracted from the angle. Example of this is shown and explained in Section 6.3.

Azimuth: Angle from MN to the dominating point of the deformation.

**Aperturea1:** Angle from MN to first edge of the deformation. If the deformation is located around 0° MN, this angle is noted as a negative angle from MN, e.g.  $-5^{\circ}$ . This angle equals  $355^{\circ}$ .

**Apertureα2:** Angle from MN to last edge of the deformation.

#### 6.3 Examples of borehole deformations

#### 6.3.1 Example of borehole breakout (BB)

In Figure 6-3 an example of borehole breakout from KFM07C is shown. As there are obvious diametrically opposite deep fallouts, this deformation is Classified as BB with the uncertainty as "3" – most certain. As the breakout is seen to be in connection with a fracture crossing the borehole, a "Y" (Yes) is placed in the "Crossing structure" column. Here the deepest and most dominating fallout is seen at 50° and the aperture of the fallout is read to be from 0 to 100°.

The centralization routine is only perfect in a truly circular borehole. Elsewhere it adds some distortion to the centralized images, which can be seen as white (closer) areas around the fallouts. Therefore the most true picture of fallouts is seen on the "Radius"-image and the "Amplitude"-image, as these are not centralized.

#### 6.3.2 Example of washout (WO)

In Figure 6-4 an example of washout (WO) from KFM07C is shown. Washouts are separated from breakouts, as there is fallout in the entire perimeter of the borehole, thus the minimum diameter is enlarged. Also here (if possible) a dominating azimuth and aperture angles are read and registered in the Excel sheet.



Figure 6-2. Illustration of angles.



Figure 6-3. Example of borehole breakout from KFM07C.



Figure 6-4. Example of washout from KFM07C.

#### 6.3.3 Example of keyseat (KS)

In Figure 6-5 an example of a keyseat (KS) from KFM07C is displayed. The keyseat recognised as a fallout in only one direction at the relevant depth. Also here azimuth and aperture angles are read and registered in the Excel sheet.

#### 6.3.4 Example of micro fallout (MF)

In Figure 6-6 an example of micro fallout is presented. In this example the micro fallout is recognized as two vertical bands in the borehole (which here ends in 205m). In these cases azimuth and aperture angles are registered. In other cases the fallout is found in the entire circumference of the borehole (with or without a dominating azimuth). In these cases the aperture angles are registered as 0 to 360°.

The micro fallout is mainly recognised on the Amplitude-image. It is sometimes hard to separate from breakouts, but a condition has been set up, that breakouts should be found also on the Radius-images as darker areas – holes. The registration of micro fallout is generally the most uncertain.



Figure 6-5. Example of keyseat from KFM07C.



Figure 6-6. Example of micro fallout from KFM07C.

#### 6.4 Explanation of special features in the borehole

#### 6.4.1 Tracks from decentralization

In Figure 6-7 a section from KFM01B with different kinds of tracks and shadows found in the boreholes is shown.

- On the Amplitude image dark tracks are seen which follow the rotation of the tool. These tracks have an internal spacing of 90° and come from the centralizers on the acoustic televiewer probe. This is confirmed by the downrun log, on which they not are present.
- The rotation introduces a slight decentralization of the tool, which also follows the rotation. The remedy of the decentralization is explained in the sections regarding processing, but it still leaves some darker bands on the images. These darker bands, which follow the tool rotation, are artificial.
- Furthermore some vertical tracks are observed on both the amplitude- and radius-images. They are anticipated to have been made by centralizers from other probes, e.g. the BIPS-probe. In parts of the borehole, they are also recognised on the BIPS-image. /Gustafson and Gustafson 2004/.



Figure 6-7. Tracks and shadows in KFM01B, 58.5 to 83 m.

#### 6.4.2 Drill cuttings from bottom of borehole

In Figure 6-8 an example from the bottom of KFM01B is presented. Here drilling debris from the bottom of the hole has partly covered the acoustic window, but is slowly washed off.

#### 6.4.3 Wobbles from drilling process

In Figure 6-9 an example of "wobbles" made by the drilling process is displayed. These wobbles are frequently seen in the boreholes and in some cases they make it hard to register deformations in these areas. In KFM03A they are registered in a separate table.



Figure 6-8. Example of drill cuttings on the acoustic window.

| E      | Borehole no. KFM01B                                |       | Comments: Bor                                      | ehole Brea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kout. 294 to 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6m                        | RAMBOLL<br>Rented, Brokey 2, Dr-ORIS WINE<br>Hora + 43 4598 (2000, Fec. +45 4598 (200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|----------------------------------------------------|-------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depli  | n Radius                                           |       | Radius - Cenhallaed                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radius - Centralized - Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | edian filered             | Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1m:10n | m 0* 90* 180* 270*<br>BIPS                         | 0. 0. | 90° 180° 2<br>Caliper - min - Centralized - Mediar | 70° 0° 0°<br>n filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90° 180°<br>Ovality - min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270" 0" 0"                | 90" 180" 270" 0"<br>Tool rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 0* 90* 180* 270*<br>Badius - min - Median filtered | 0' 76 | mm<br>Caliber - max - Centralized - Media          | 80 <sup>°</sup> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 0<br>alloer min Positon | deg 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 35 mm                                              | 44 76 | mm                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | deg 180                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Radius - max - Median filtered                     | 44 76 | Caliper - mean - Centralized - Media               | oc ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | deg 100                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Radius - median - Median filtered                  | 44 37 | Cross-section - Radius - Centra                    | lized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Radius - mean - Median filtered                    |       | Tool rotation                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 36 mm<br>Decentralization                          | 44 0  | deg                                                | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | D mm                                               | 2     |                                                    | Stellar 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | A DESCRIPTION AND ADDRESS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                    | 4     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Call and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | P Hat the                                          |       |                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | Real Property and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                    | 4     |                                                    | · 1.1/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | A.M. Anna Million and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                    |       |                                                    | 1. Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                    |       |                                                    | and a second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 294.5  |                                                    |       |                                                    | - Salie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                    |       |                                                    | - William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | the state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 11 Marcas                                          |       |                                                    | - Leine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                    | H     | -                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | and it is not a second se                                                                                                                                                                                                                                             |
|        |                                                    | 1     | Service Sections                                   | - ALLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Caller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | a starting of the starting of  |
|        |                                                    | 1     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 295.0  |                                                    |       |                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | and a state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        |                                                    |       |                                                    | 1 ilinte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | A Real Property of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                                                    |       |                                                    | hunth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | and the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | - Factor                                           |       | <b>F</b> erenning                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Contraction of the local division of the loc |
|        |                                                    | -5    |                                                    | I AND IN THE REAL OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 martin                  | The state of the s |
|        |                                                    |       | SHUTH                                              | - Han                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Strength and strength and strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 295.5  |                                                    |       | 2 Reput                                            | PRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                    |       | VALUE RELEASE                                      | 1 milita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. of Concession, Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                    | 1     |                                                    | - Collinson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | - table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                    |       |                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                    |       | A Martine .                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14. 2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | Participation in the local distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 1151                                               | 5     | and the second                                     | Hullin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 - mail                  | THE ALL STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1      | The second second                                  |       | 2 m 107                                            | The state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | State of the second sec |                           | Constant Property in the local data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Figure 6-9. Example of wobbles.

## 7 Summary and discussions

- It is relatively fast to locate larger deformations, simply by means of scrolling through a calculated high resolution caliper.
- Orientation and size of the deformations can be precisely mapped.
- There an obvious tendency that the main azimuth of breakouts and micro fallouts in all the boreholes is found to be at 40 to 60° from magnetic north.
- In KFM07C deformations covering about 2/3 of the borehole length were registered.
- The cross-sections are often too disturbed of noise from decentralization to be used.
- It is strongly recommended, that the logpanels are evaluated in WellCAD or the free WellCAD-reader, as a print-out or PDF does not provide the necessary flexibility to zoom and focus on relevant deformations.
- No ovality in the boreholes exceeding 0.1 mm has been found, unless it is related to fallouts or breakouts.
- In KFM01B there are lots of fractures, which can be recognised on the acoustic televiewer images, but not found on the BIPS-image. If these fractures are of interest, they could be picked on televiewer images. Examples from KFM01B: 353.85 m, 354.23 m, 356.12 m, 356.21 m, 356.88 m, 357.18 m, 357.71 m, etc. This tendency is anticipated to be valid for all boreholes
- One or more of the boreholes could be logged and processed again. As the first boreholes were logged more than 3 years ago, it would be relevant to see if there has been a time dependent development in the deformations.
- When smaller breakouts or micro fallout are found in connection with fractures, it can be difficult to clarify, whether the fallout was caused by the drilling process or by stress.

## References

Ask M V S, Ask D, Christiansson R, 2006. Detection of borehole breakouts at the Forsmark site, Sweden. Proc. Int. Symp. on In-Situ Rock Stress (Eds. Lu M, Li CC, Kjørholt H, Dahle H), June 19–21, 2006, Trondheim, Norway, pp. 79–86.

Ask D, Ask M V S, 2007. Detection of potential borehole breakouts in boreholes KFM01A and KFM01B. SKB P-report in prep. Svensk Kärnbränslehantering AB.

**Deltombe J-L, Schepers R, 2000.** Combined Processing of BHTV Traveltime and Amplitude Images. In Proc. Int. Symp. Borehole Geophysics for Minerals, Geotechnical, and Groundwater applications, Golden, CO, United States, Vol. 7 pp. 29–42.

**Gustafsson J, Gustafsson C, 2004.** RAMAC- and BIPS-logging in borehole KFM01B and RAMAC directional re-logging in borehole KFM01A. SKB P-04-79. Svensk Kärnbränslehantering AB.

**Plumb R A, Hickman SH, 1985.** Stress-induced borehole elongation: A comparison between four-arm dipmeter and the borehole televiewer in the Auburn geothermal well. J. Geohys. Res., 90, pp. 5513–21.

**Siddans A W B, Worthington P, 2003.** Structural geology using borehole wall imagery. Case studies of 3 HiRAT logs. Not published, can be found on Robertson Geologgings homepage.

**Zoback M D, Moos D, Martin L, Andersson R N, 1985.** Borehole breakouts and in situ stress. J. Geophys. Res., 90, pp. 5523–30.

## List of acquisition reports

List of acquisition reports from logging with acoustic televiewer, fluid temperature and resistivity – and calculation of fluid velocity.

| KFM01A:                 | SKB P-03-103. Geophysical borehole logging in borehole<br>KFM01A, HFM01 and HFM02. Forsmark site investigation.<br>Nielsen, Uffe Torben; Ringgaard, Jørgen. 2004.                                                           |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KFM01B:                 | SKB P-04-145. Geophysical borehole logging in borehole<br>KFM01B, HFM14, HFM15, HFM16, HFM17 and HFM18.<br>Forsmark site investigation. Nielsen, Uffe Torben; Ringgaard,<br>Jørgen. 2004.                                   |
| KFM02A, KFM03A, KFM03B: | SKB P-04-97. Geophysical borehole logging in borehole KFM02A, KFM03A and KFM03B. Forsmark site investigation. Nielsen, Uffe Torben; Ringgaard, Jørgen. 2004.                                                                |
| KFM04A:                 | SKB P-04-144. Geophysical borehole logging in borehole<br>KFM04A, KFM06A, HFM10, HFM11, HFM12 and HFM13.<br>Forsmark site investigation. Nielsen, Uffe Torben; Ringgaard,<br>Jørgen. 2004.                                  |
| KFM05A:                 | SKB P-04-153. Geophysical borehole logging in borehole<br>KFM05A and HFM19. Forsmark site investigation. Nielsen,<br>Uffe Torben; Ringgaard, Jørgen. 2004.                                                                  |
| KFM06A:                 | SKB P-05-17. Geophysical borehole logging in borehole<br>KFM06A, HFM20, HFM21, HFM22 and SP-logging in<br>KFM01A and KFM04A. Forsmark site investigation. Nielsen,<br>Uffe Torben; Ringgaard, Jørgen; Horn, Frederik. 2005. |
| KFM07C:                 | SKB P-07-04. Geophysical borehole logging in boreholes KFM07C, HFM36 and HFM37. Forsmark site investigation. Nielsen, Uffe Torben; Ringgaard, Jørgen, 2007.                                                                 |

## Tables and charts of depth errors KFM01A

#### KFM01A. Uprun

| True depth                                       | Hirat   | Difference |  |  |
|--------------------------------------------------|---------|------------|--|--|
| 110                                              | 110     | 0          |  |  |
| 150                                              | 150.041 | -0.041     |  |  |
| 200                                              | 200.063 | -0.063     |  |  |
| 250                                              | 250.109 | -0.109     |  |  |
| 300                                              | 300.136 | -0.136     |  |  |
| 350                                              | 350.149 | -0.149     |  |  |
| 400                                              | 400.209 | -0.209     |  |  |
| 450                                              | 450.202 | -0.202     |  |  |
| 500                                              | 500.257 | -0.257     |  |  |
| 550                                              | 550.258 | -0.258     |  |  |
| 600                                              | 600.3   | -0.3       |  |  |
| 650                                              | 650.327 | -0.327     |  |  |
| 700                                              | 700.322 | -0.322     |  |  |
| 750                                              | 750.359 | -0.359     |  |  |
| 800                                              | 800.352 | -0.352     |  |  |
| 1000.5                                           | 1000.96 | -0.46      |  |  |
| The bottom is derived - linearity<br>anticipated |         |            |  |  |



#### KFM01A. Downrun

| True depth                                    | HiRAT   | Difference |  |
|-----------------------------------------------|---------|------------|--|
| 150                                           | 149.74  | 0.26       |  |
| 200                                           | 199.66  | 0.34       |  |
| 250                                           | 249.61  | 0.39       |  |
| 300                                           | 299.547 | 0.453      |  |
| 350                                           | 349.48  | 0.52       |  |
| 400                                           | 399.46  | 0.54       |  |
| 450                                           | 449.38  | 0.62       |  |
| 500                                           | 499.356 | 0.644      |  |
| 550                                           | 549.278 | 0.722      |  |
| 600                                           | 599.246 | 0.754      |  |
| 650                                           | 649.206 | 0.794      |  |
| 700                                           | 699.138 | 0.862      |  |
| 750                                           | 749.132 | 0.868      |  |
| 800                                           | 799.067 | 0.933      |  |
| 1000.5                                        | 999.35  | 1.15       |  |
| The bottom is derived - linearity anticipated |         |            |  |



#### KFM01B



KFM01B. Downrun

| True depth | Hirat   | Difference |
|------------|---------|------------|
| 54.00      | 54      | 0          |
| 100.00     | 99.776  | 0.224      |
| 150.00     | 149.59  | 0.41       |
| 197.00     | 196.481 | 0.519      |
| 250.00     | 249.4   | 0.6        |
| 300.00     | 299.36  | 0.64       |
| 350.00     | 349.323 | 0.677      |
| 400.00     | 399.28  | 0.72       |
| 450.00     | 449.29  | 0.71       |
|            |         |            |



#### KFM02A

#### KFM02A. Uprun

| True depth | Hirat   | Difference |
|------------|---------|------------|
| 110        | 110     | 0          |
| 150        | 149.958 | 0.042      |
| 200        | 199.997 | 0.003      |
| 250        | 249.974 | 0.026      |
| 304.5      | 304.5   | 0          |
| 350        | 349.975 | 0.025      |
| 400        | 399.992 | 0.008      |
| 450        | 449.976 | 0.024      |
| 506        | 505.982 | 0.018      |
| 550        | 549.953 | 0.047      |
| 600        | 599.955 | 0.045      |
| 650        | 649.971 | 0.029      |
| 700        | 699.963 | 0.037      |
| 750        | 749.962 | 0.038      |
| 800        | 799.976 | 0.024      |
| 850        | 849.975 | 0.025      |
| 900        | 899.959 | 0.041      |
| 950        | 949.975 | 0.025      |



#### KFM02A. Downrun

|            | ••••••  |            |                        |
|------------|---------|------------|------------------------|
| True depth | Hirat   | Difference |                        |
| 110        | 110     | 0          |                        |
| 150        | 149.89  | 0.11       |                        |
| 200        | 199.849 | 0.151      |                        |
| 250        | 249.729 | 0.271      | Double (m)             |
| 304.5      | 304.201 | 0.299      | Deptn (m)              |
| 350        | 349.618 | 0.382      |                        |
| 400        | 399.577 | 0.423      |                        |
| 450        | 449.521 | 0.479      | 0.6                    |
| 506        | 505.487 | 0.513      |                        |
| 550        | 549.439 | 0.561      | <b>5</b> 0.5           |
| 600        | 599.423 | 0.577      | <b>9</b> 0.4           |
| 650        | 649.409 | 0.591      |                        |
| 700        | 699.367 | 0.633      |                        |
| 750        | 749.345 | 0.655      | 0.2                    |
| 800        | 799.344 | 0.656      | 0.1                    |
| 850        | 849.333 | 0.667      |                        |
| 900        | 899.279 | 0.721      | 0 200 400 600 800 1000 |
| 950        | 949.27  | 0.73       |                        |
|            |         |            | •                      |

#### KFM03A

#### KFM03A. Uprun



#### KFM03A. Downrun

| True depth | Hirat   | Difference |                |                        |
|------------|---------|------------|----------------|------------------------|
| 110        | 110     | 0          | 1 2            |                        |
| 150        | 149.93  | 0.07       | 1.2            |                        |
| 200        | 199.81  | 0.19       |                | KFM03A Downrun         |
| 250        | 249.729 | 0.271      | 1 -            |                        |
| 300        | 299.645 | 0.355      |                |                        |
| 350        | 349.625 | 0.375      | <b>2</b> 0.8 - |                        |
| 403        | 402.496 | 0.504      | Ē              |                        |
| 453        | 452.482 | 0.518      | <b>8</b> 0.6 - |                        |
| 500        | 499.427 | 0.573      | - C            |                        |
| 550        | 549.33  | 0.67       | 0 4 -          |                        |
| 600        | 599.323 | 0.677      | ji ji          |                        |
| 650        | 649.319 | 0.681      |                |                        |
| 700        | 699.248 | 0.752      | 0.2            |                        |
| 750        | 749.199 | 0.801      |                |                        |
| 800        | 799.168 | 0.832      | 0 -            |                        |
| 850        | 849.107 | 0.893      | (              | D 200 400 600 800 1000 |
| 900        | 899.083 | 0.917      |                | Depth (m)              |
| 950        | 949.005 | 0.995      |                |                        |
|            |         |            |                |                        |

#### KFM04A

There was an error in the file from 730 to 900 m. A manual stretch has been performed with a reasonable result. The plot is made before the manuel stretch was applied.

| KFM04A. Up | orun    |            |      |      |   |
|------------|---------|------------|------|------|---|
| True depth | Hirat   | Difference |      |      |   |
| 108.61     | 108.6   | 0.01       |      |      |   |
| 119.00     | 119     | 0          |      |      |   |
| 150.00     | 150.033 | -0.033     |      |      |   |
| 200.00     | 200.075 | -0.075     |      |      |   |
| 250.00     | 250.137 | -0.137     |      |      | _ |
| 300.00     | 300.117 | -0.117     |      | 0    |   |
| 350.00     | 350.177 | -0.177     |      | -0.2 | q |
| 400.00     | 400.245 | -0.245     |      | 0.2  |   |
| 450.00     | 450.26  | -0.26      |      | -04  | 1 |
| 500.00     | 500.316 | -0.316     | E    | 0.4  |   |
| 550.00     | 550.41  | -0.41      | e    | -0.6 | 4 |
| 600.00     | 600.437 | -0.437     | ence | 0.0  |   |
| 650.00     | 650.467 | -0.467     | fer  | -0.8 | + |
| 700.00     | 700.583 | -0.583     | Dif  |      |   |
| 750.00     | 750.617 | -0.617     |      | -1   | + |
| 800.00     | 800.764 | -0.764     |      |      |   |
| 850.00     | 850.851 | -0.851     |      | -1.2 | 1 |
| 900.00     | 900.789 | -0.789     |      |      |   |
| 950.00     | 950.961 | -0.961     |      |      |   |
|            |         |            |      |      |   |



| KFM04A. De | ownrun  |            |
|------------|---------|------------|
| True depth | Hirat   | Difference |
| 119.00     | 119     | 0          |
| 150.00     | 149.983 | 0.017      |
| 200.00     | 199.941 | 0.059      |
| 250.00     | 249.91  | 0.09       |
| 300.00     | 299.84  | 0.16       |
| 350.00     | 349.85  | 0.15       |
| 400.00     | 399.88  | 0.12       |
| 450.00     | 449.87  | 0.13       |
| 500.00     | 499.87  | 0.13       |
| 550.00     | 549.94  | 0.06       |
| 600.00     | 599.92  | 0.08       |
| 650.00     | 649.94  | 0.06       |
| 700.00     | 700.022 | -0.022     |
| 750.00     | 755.1   | -5.1       |
| 800.00     | 800.13  | -0.13      |
| 850.00     | 854.03  | -4.03      |
| 900.00     | 900.34  | -0.34      |
| 950.00     | 949.84  | 0.16       |



#### KFM05A

#### KFM05A. Uprun

| True depth | Hirat   | Difference |
|------------|---------|------------|
| 120.00     | 120     | 0          |
| 152.00     | 152.032 | -0.032     |
| 199.00     | 199.044 | -0.044     |
| 252.00     | 252.148 | -0.148     |
| 300.00     | 300.194 | -0.194     |
| 352.00     | 352.251 | -0.251     |
| 402.00     | 402.366 | -0.366     |
| 450.00     | 450.382 | -0.382     |
| 501.00     | 501.463 | -0.463     |
| 550.00     | 550.495 | -0.495     |
| 606.00     | 606.63  | -0.63      |
| 650.00     | 650.702 | -0.702     |
| 700.00     | 700.689 | -0.689     |
| 750.00     | 750.877 | -0.877     |
| 800.00     | 800.887 | -0.887     |
| 850.00     | 850.942 | -0.942     |
| 900.00     | 900.988 | -0.988     |



#### KFM05A. Downrun Difference True depth Hirat 450.00 450 0 500.97 501.00 0.03 0.112 550.00 549.888 605.905 0.095 606.00 649.891 650.00 0.109 699.799 0.201 700.00 749.921 0.079 750.00 800.00 799.824 0.176 850.00 849.742 0.258 900.00 899.764 0.236



#### KFM06A

#### KFM06A. Uprun

|                   |          | Difference | Hirat  | True depth |
|-------------------|----------|------------|--------|------------|
|                   |          | 0          | 152    | 152.00     |
|                   |          | -0.06      | 200.06 | 200.00     |
|                   | 0 -      | -0.1       | 250.1  | 250.00     |
|                   | 0        | -0.19      | 301.19 | 301.00     |
| 0 200 400 600 800 | (        | -0.22      | 350.22 | 350.00     |
|                   | -0.2 -   | -0.29      | 400.29 | 400.00     |
|                   |          | -0.34      | 450.34 | 450.00     |
|                   | E -0.4 - | -0.39      | 500.39 | 500.00     |
|                   | 8        | -0.44      | 550.44 | 550.00     |
|                   |          | -0.49      | 600.49 | 600.00     |
|                   | le -0.0  | -0.53      | 648.53 | 648.00     |
|                   | Dif      | -0.56      | 700.56 | 700.00     |
|                   | -0.8     | -0.64      | 750.64 | 750.00     |
| KFM06A. Uprun     |          | -0.69      | 800.69 | 800.00     |
|                   | -1 -     | -0.74      | 850.74 | 850.00     |
| Depth (m)         |          | -0.89      | 950.89 | 950.00     |
|                   |          | -0.87      | 980.87 | 980        |

## **KFM06A. Downrun** True depth HiRAT

| True depth | Hirat   | Difference |
|------------|---------|------------|
| 152.00     | 152     | 0          |
| 200.00     | 199.87  | 0.13       |
| 250.00     | 249.71  | 0.29       |
| 301.00     | 300.64  | 0.36       |
| 350.00     | 349.55  | 0.45       |
| 400.00     | 399.49  | 0.51       |
| 450.00     | 449.41  | 0.59       |
| 500.00     | 499.39  | 0.61       |
| 550.00     | 549.35  | 0.65       |
| 600.00     | 599.344 | 0.656      |
| 648.00     | 647.33  | 0.67       |
| 750.00     | 749.28  | 0.72       |
| 850.00     | 849.28  | 0.72       |
| 950.00     | 949.4   | 0.6        |



1000

#### KFM07C

| KFM07C. Uprun               |         |        |  |  |  |  |  |  |  |  |  |
|-----------------------------|---------|--------|--|--|--|--|--|--|--|--|--|
| True depth HiRAT Difference |         |        |  |  |  |  |  |  |  |  |  |
| 98.39                       | 98.39   | 0      |  |  |  |  |  |  |  |  |  |
| 150.00                      | 150.245 | -0.245 |  |  |  |  |  |  |  |  |  |
| 200.00                      | 200.392 | -0.392 |  |  |  |  |  |  |  |  |  |
| 250.00                      | 250.559 | -0.559 |  |  |  |  |  |  |  |  |  |
| 300.00                      | 300.718 | -0.718 |  |  |  |  |  |  |  |  |  |
| 350.00                      | 350.873 | -0.873 |  |  |  |  |  |  |  |  |  |
| 400.00                      | 401.024 | -1.024 |  |  |  |  |  |  |  |  |  |
| 450.00                      | 451.189 | -1.189 |  |  |  |  |  |  |  |  |  |
|                             |         |        |  |  |  |  |  |  |  |  |  |





# Tables and charts of registered deformations. KFM01A

| KFM01A           | (FM01A - Observed BB, WO, KS and MF |       |          |       |       |               |             |              |             |             |             |                |
|------------------|-------------------------------------|-------|----------|-------|-------|---------------|-------------|--------------|-------------|-------------|-------------|----------------|
| Top Dept         | Bot. dept                           | Max R | Median R | dRmax | Class | cross. struct | Uncertainty | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments       |
| [m]              | [m]                                 | [mm]  | [mm]     | [mm]  |       | [0-3]         | [Yes/No]    | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |                |
| 136.3            | 149.6                               | 38.7  | 38.6     | 0.1   | MF    | N             | 1           | 150          | 150         | 0           | 360         |                |
| 143.3            | 145.1                               | 44.0  | 38.6     | 5.5   | BB    | N             | 1           | 159          | 159         | 108         | 213         |                |
| 153.5            | 153.69                              | 38.8  | 38.3     | 0.5   | BB    | Ý             | 2           | 48           | 48          | 39          | 63          |                |
| 188.23           | 188.36                              | 30.7  | 38.6     | 0.1   | BB    | v             | 3           | 63           | 63          | 51          | 76          |                |
| 190.23           | 100.50                              | 40.6  | 38.4     | 2.2   | WO    | N             | 1           | 03           | 03          | 51          | /0          |                |
| 219.1            | 219.6                               | 40.5  | 38.4     | 2.1   | KS    | N             | 2           | 95           | 95          | 84          | 210         |                |
| 246.5            | 247.4                               | 39.1  | 38.7     | 0.4   | BB    | Y             | 2           | 75           | 255         | 225         | 219         |                |
| 262              | 292                                 | 38.4  | 38.3     | 0.1   | MF    |               | 1           |              |             |             |             |                |
| 368              | 383                                 | 38.4  | 38.3     | 0.1   | MF    |               | 1           |              |             |             |             |                |
| 390              | 396                                 | 38.4  | 38.3     | 0.1   | MF    | Y             | 1           | 45           | 45          |             |             |                |
| 392.1            | 392.28                              | 41.7  | 38.2     | 3.4   | KS    | N             | 2           | 49           | 49          | 49          | -5          |                |
| 393.35           | 393.44                              | 39.3  | 38.2     | 1.0   | KS    | N             | 2           | 7            | 187         | 7           | 331         |                |
| 396.73           | 397.1                               | 67.0  | 38.2     | 28.8  | WO    | Y             | 2           | 57           | 237         | 237         | 69          |                |
| 397.5            | 409.5                               | 38.4  | 38.3     | 0.1   | MF    |               | 2           |              |             |             |             |                |
| 428.5            | 491                                 | 38.4  | 38.3     | 0.1   | MF    |               | 1           |              |             |             |             |                |
| 510              | 540.8                               | 38.4  | 38.3     | 0.1   |       |               | 1           |              |             |             |             |                |
| 603 35           | 603 58                              | 38.4  | 30.3     | 0.1   |       | v             | 1           | 54           | 234         | 201         | 261         |                |
| 612.06           | 612.85                              | 39.0  | 38.5     | 0.5   | BB    | N             | 3           | 50           | 234         | 15          | 201         |                |
| 657.84           | 658.25                              | 40.5  | 38.4     | 2.1   | BB    | Y             | 3           | 50           | 230         | 200         | 270         |                |
| 662.95           | 669.8                               | 40.5  | 38.5     | 2.0   | BB    | Ý             | 2           | 45           | 45          | 21          | 66          | A few small BB |
| 670.9            | 674.73                              | 41.0  | 38.5     | 2.5   | WO    | Y             | 2           |              |             |             |             |                |
| 716.7            | 717                                 | 39.5  | 38.4     | 1.1   | WO    | N             | 1           |              |             |             |             |                |
| 828              | 828.79                              | 39.0  | 38.5     | 0.5   | BB    | Y             | 2           | 56           | 56          | 40          | 75          |                |
| 831              | 832.7                               | 39.0  | 38.5     | 0.5   | BB    | N             | 3           | 55           | 55          | 30          | 90          |                |
| 839.75           | 843.65                              | 38.8  | 38.5     | 0.3   | BB    | Y             | 3           | 51           | 231         | 204         | 270         |                |
| 864.7            | 864.95                              | 38.7  | 38.5     | 0.2   | BB    | Y             | 3           | 87           | 87          | 57          | 11          |                |
| 888              | 945.5                               | 38.6  | 38.5     | 0.1   | MF    | N             | 1           | 75           |             |             | 100         |                |
| 928.2            | 928.5                               | 44.0  | 38.5     | 5.5   | BB    | N             | 3           | 75<br>96     | 75          | 27          | 138         |                |
|                  | 501.25                              | 15.0  | 50.5     | 1.5   | 00    |               |             | 50           |             | 10          | 150         | l              |
| 180 -            |                                     |       |          |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          |       |       | KF            | M01A - Mair | n azimuth    |             |             |             |                |
| 160              |                                     |       | •        |       |       |               |             |              |             |             |             |                |
| 100              |                                     |       | •        |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          |       |       |               |             |              |             |             |             |                |
| 140 -            |                                     |       |          |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          |       |       |               |             |              |             |             |             |                |
| <sup>120 ·</sup> |                                     |       |          |       |       |               |             |              |             |             |             |                |
| de               |                                     |       |          |       |       |               |             |              |             |             |             |                |
| I <u>≤</u> 100 . |                                     |       |          |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          | •     |       |               |             |              |             |             |             | •              |
| Lo               |                                     |       |          |       |       |               |             |              |             |             | •           |                |
| ب<br>80 -        | -                                   |       |          |       |       |               |             |              |             |             |             |                |
| L L              |                                     |       |          | •     |       |               |             |              |             |             |             | •              |
| Azir             |                                     |       |          |       |       |               |             |              |             |             |             |                |
| 60               |                                     |       | •        |       |       | •             |             |              | -           |             | •           |                |
|                  |                                     |       | •        |       |       | •             |             |              | •••         |             | •           |                |
| 10               |                                     |       | •        |       |       | ě             |             |              | •           |             |             |                |
| 40 ·             |                                     |       |          |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          |       |       |               |             |              |             |             |             |                |
| 20 -             |                                     |       |          |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          |       |       |               |             |              |             |             |             |                |
|                  |                                     |       |          |       |       | ٠             |             |              |             |             |             |                |
| 0 -              |                                     |       |          |       |       |               |             |              |             |             | · · · · · · |                |
|                  | 0                                   | 100   | 20       | 00    | 300   | 400           | 0 50        | 00 60        | 00 70       | 00 80       | 00 90       | 00 1000        |
|                  |                                     |       |          |       |       |               | Dept        | h[m]         |             |             |             |                |

#### KFM01B

| KFM01B -  | Observed   | BB, WC | ), KS and | MF    |       |             |                |              |             |             |             |            |
|-----------|------------|--------|-----------|-------|-------|-------------|----------------|--------------|-------------|-------------|-------------|------------|
| Top Depth | Bot. depth | Max R  | Median R  | dRmax | Class | Uncertainty | Cross. struct. | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments   |
| [m]       | [m]        | [mm]   | [mm]      | [mm]  |       | [0-3]       | [Yes/No]       | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |            |
| 15.50     | 65.00      | 39.0   | 38.6      | 0.4   | KS    | 3           | N              | 92           | 272         | 260         | 284         |            |
| 39.75     | 41.85      | 38.8   | 38.7      | 0.1   | MF    | 2           | Y              |              |             | 0           | 360         |            |
| 46.80     | 48.40      | 40.7   | 38.5      | 2.2   | BB    | 2           | Y              | 84           | 264         | 217         | 287         |            |
| 48.96     | 50.64      | 38.7   | 38.6      | 0.1   | MF    | 2           | Y              |              |             | 0           | 360         |            |
| 90.44     | 90.84      | 39.2   | 38.5      | 0.7   | BB    | 2           | Y              | 83           | 83          | 57          | 109         |            |
| 116.40    | 117.26     | 38.5   | 38.4      | 0.1   | MF    | 3           | Y              | 51           | 51          | 0           | 100         |            |
| 128.40    | 129.73     | 38.4   | 38.3      | 0.1   | MF    | 3           | Y              | 48           | 48          | 0           | 100         |            |
| 131.25    | 132.44     | 41.9   | 38.2      | 3.8   | KS    | 2           | N              | 49           | 229         | 192         | 262         |            |
| 170.00    | 188.43     | 38.3   | 38.2      | 0.1   | MF    | 3           | Y              | 50           | 230         | 180         | 280         |            |
| 190.50    | 200.00     | 38.3   | 38.2      | 0.1   | MF    | 3           | Y              | 46           | 226         | 190         | 270         |            |
| 195.00    | 203.00     | 39.0   | 38.2      | 0.8   | BB    | 2           | Y              | 50           | 50          | 30          | 70          | 3 small BB |
| 217.47    | 217.60     | 41.1   | 38.2      | 2.9   | BB    | 3           | N              | 30           | 210         | 198         | 228         |            |
| 224.72    | 224.81     | 39.2   | 38.2      | 1.0   | BB    | 2           | Y              | 80           | 80          | 0           | 154         |            |
| 225.00    | 234.70     | 38.3   | 38.2      | 0.1   | MF    | 2           | Y              | 46           | 226         | 192         | 265         |            |
| 260.00    | 262.40     | 38.3   | 38.2      | 0.1   | MF    | 2           | Y              | 41           | 41          | 0           | 85          |            |
| 415.00    | 470.06     | 38.3   | 38.2      | 0.1   | MF    | 3           | Y              | 42           | 42          | 0           | 360         |            |
| 418.50    | 419.30     | 50.0   | 38.2      | 11.8  | WO    | 2           | Y              | 64           | 244         |             |             |            |
| 432.50    | 444.90     | 50.0   | 38.2      | 11.8  | BB    | 3           | Y              | 45           | 45          | -10         | 96          | Several BB |
| 456.90    | 457.20     | 43.0   | 38.3      | 4.7   | BB    | 2           | Y              | 24           | 24          | -30         | 60          |            |
| 462.95    | 463.39     | 42.1   | 38.3      | 3.8   | BB    | 3           | N              | 42           | 42          | 0           | 85          |            |
| 464.75    | 464.90     | 43.2   | 38.3      | 4.9   | BB    | 3           | N              | 42           | 42          | 0           | 85          |            |
| 460.00    | 480.00     | 39.5   | 38.3      | 1.3   | KS    | 2           | N              | 10           | 190         | 180         | 200         |            |
| 480.60    | 498.00     | 38.4   | 38.3      | 0.1   | MF    | 3           | Y              | 42           | 42          | 0           | 100         |            |



#### KFM02A

| KFM02A - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observed E | BB, WO | , MF and | KS    |           |             |                                           |              |             |             |             |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|----------|-------|-----------|-------------|-------------------------------------------|--------------|-------------|-------------|-------------|--------------|
| Top Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bot. depth | Max R  | Median R | dRmax | Structure | Uncertainty | Cross. struct.                            | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments     |
| [m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [m]        | [mm]   | [mm]     | [mm]  |           | [0-3]       | [Yes/No]                                  | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |              |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106.39     | 38.5   | 38.4     | 0.1   | MF        | 2           | N                                         | 78           | 258         | 0           | 360         |              |
| 117.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.00     | 65.0   | 38.8     | 26.2  | WO        | 2           | Y                                         | 19           | 19          | 69          | 69          |              |
| 136.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 137.12     | 39.5   | 38.8     | 0.7   | BB        | 2           | N                                         | 24           | 204         | 159         | 249         |              |
| 166.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 166.57     | 41.0   | 38.9     | 2.1   | BB        | 1           | N                                         | 159          | 159         | 93          | 209         |              |
| 171.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 172.03     | 95.0   | 38.9     | 56.1  | BB        | 1           | N                                         | 91           | 271         | 189         | 321         |              |
| 174.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 174.63     | 41.4   | 38.8     | 2.6   | BB        | 1           | Y                                         | 17           | 197         | 171         | 249         |              |
| 179.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180.04     | 39.0   | 38.9     | 0.1   | MF        | 3           | N                                         | 130          | 130         | 0           | 360         |              |
| 183.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 183.27     | 48.9   | 38.8     | 10.1  | KS        | 1           | N                                         | 31           | 211         | 203         | 247         |              |
| 219.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 219.65     | 39.7   | 38.8     | 0.9   | BB        | 2           | Y                                         | 52           | 52          | 20          | 82          |              |
| 248.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 297.00     | 39.9   | 38.8     | 1.1   | MF        | 3           | N                                         |              |             | 0           | 360         |              |
| 266.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 267.23     | 108.7  | 38.8     | 69.9  | WO        | 2           | Y                                         | 147          | 147         | 95          | 197         |              |
| 298.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 299.51     | 40.4   | 38.9     | 1.5   | MF        | 3           | N                                         |              |             | 0           | 360         |              |
| 420.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 421.36     | 39.0   | 38.9     | 0.1   | MF        | 3           | N                                         | 85           | 85          | 56          | 106         |              |
| 421.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 422.94     | 46.8   | 38.9     | 7.9   | BB        | 2           | Y                                         | 49           | 49          | -21         | 93          |              |
| 424.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 424.19     | 42.1   | 38.9     | 3.2   | BB        | 2           | Y                                         | 17           | 17          | 355         | 39          |              |
| 427.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 427.71     | 43.1   | 38.9     | 4.2   | BB        | 3           | N                                         | 25           | 205         | 143         | 255         |              |
| 438.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 440.38     | 40.5   | 39.9     | 0.6   | BB        | 2           | Y                                         | 29           | 209         | 197         | 223         | -            |
| 459.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 459.54     | 46.1   | 39.9     | 6.2   | BB        | 3           | N                                         | 177          | 177         | 145         | 205         |              |
| 476.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 477.23     | 45.2   | 38.9     | 6.3   | BB        | 1           | Ý                                         | 179          | 179         | 117         | 237         |              |
| 483.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 483.60     | 45.9   | 39.0     | /.0   | BB        | 3           | Ý                                         | 179          | 1/9         | 141         | 217         |              |
| 494.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 498.35     | 68.3   | 38.9     | 29.4  | BB        | 3           | Y                                         | 109          | 109         | 69          | 133         |              |
| 507.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 507.32     | 45.0   | 39.0     | 6.1   | BB        | 3           | N                                         | 105          | 285         | 255         | 313         |              |
| 512.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 228.20     | 20.0   | 20.9     | 0.1   | DD<br>ME  | 2           | Ť N                                       | 62           | 191         | 127         | 201         |              |
| 520.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 539.29     | 30.9   | 30.0     | 0.1   | ME        | 2           | N                                         | 76           | 76          | 18          | 90          |              |
| 612.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 612.91     | 41.7   | 39.6     | 3.1   | BB        | 2           | N                                         | 70           | 263         | 227         | 301         |              |
| 635.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 638.00     | 40.0   | 38.8     | 1.2   | BB        | 1           | N V                                       | 73           | 203         | 237         | 279         |              |
| 710.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 747 15     | 42.0   | 38.6     | 3.4   | BB        | 1           | Y                                         | 69           | 235         | 229         | 259         | Six small BB |
| 795.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 795.79     | 43.0   | 38.7     | 4.3   | BB        | 3           | N                                         | 85           | 265         | 213         | 301         | Six Sindi DD |
| 809.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 817.66     | 39.0   | 38.6     | 0.4   | MF        | 2           | N                                         | 74           | 74          | 0           | 360         |              |
| 861.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 872.90     | 39.0   | 38.8     | 0.2   | MF        | 2           | N                                         | 60           | 60          | 0           | 100         |              |
| 902.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 903.33     | 46.4   | 39.0     | 7.4   | BB        | 3           | Y                                         | 71           | 251         | 231         | 295         |              |
| 923.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 925.08     | 41.7   | 38.9     | 2.8   | BB        | 3           | Y                                         | 33           | 213         | 159         | 245         |              |
| 976.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 979.00     | 42.7   | 38.9     | 3.8   | KS        | 2           | N                                         | 173          | 173         | 169         | 181         |              |
| 978.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 979.30     | 47.4   | 39.0     | 8.3   | WO        | 2           | Y                                         | 179          | 179         | 69          | 69          |              |
| 180 -<br>160 -<br>140 -<br>0 120 -<br>0 120 -<br>120 -<br>0 120 -<br>120 - |            | •      | •        |       |           | • • •       | KFM02A -                                  | Main Azimuth | •           | •           | •           | •            |
| 0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00         | 200    |          | 300   | 400       | • 5         | ◆<br><sup>00</sup> Depth [m] <sup>€</sup> | 500          | 700         | 800         | 900         | 1000         |

#### KFM03A

| KFM03A - Observed BB, WO, KS and MF |            |       |          |       |           |             |                |              |             |             |             |          |
|-------------------------------------|------------|-------|----------|-------|-----------|-------------|----------------|--------------|-------------|-------------|-------------|----------|
| Top Depth                           | Bot. depth | Max R | Median R | dRmax | Structure | Uncertainty | Cross. struct. | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments |
| [m]                                 | [m]        | [mm]  | [mm]     | [mm]  |           | [0-3]       | [Yes/No]       | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |          |
| 127.16                              | 127.50     | 40.2  | 38.6     | 1.6   | BB        | 2           | N              | 39           | 219         | 165         | 249         |          |
| 137.95                              | 139.20     | 38.7  | 38.6     | 0.1   | MF        | 3           | Y              | 45           | 45          | 0           | 90          |          |
| 217.85                              | 218.58     | 39.8  | 38.7     | 1.1   | BB        | 2           | Y              | 59           | 239         | 223         | 257         |          |
| 314.60                              | 314.70     | 41.0  | 38.8     | 2.2   | BB        | 2           | Y              | 74           | 74          | 89          | 54          |          |
| 316.72                              | 317.00     | 40.7  | 38.7     | 2.0   | BB        | 2           | Y              | 34           | 214         | 184         | 224         |          |
| 334.60                              | 334.95     | 40.6  | 38.8     | 1.8   | BB        | 1           | Y              | 69           | 69          | 39          | 119         |          |
| 362.63                              | 363.25     | 39.7  | 38.8     | 0.9   | MF        | 2           | Y              | 157          | 157         | 101         | 239         |          |
| 365.06                              | 365.20     | 41.7  | 38.9     | 2.8   | BB        | 3           | Y              | 66           | 246         | 226         | 264         |          |
| 371.26                              | 372.40     | 42.3  | 38.9     | 3.4   | BB        | 3           | Y              | 41           | 221         | 209         | 247         |          |
| 372.80                              | 376.71     | 38.9  | 38.8     | 0.1   | MF        | 3           | N              | 48           | 48          | 32          | 78          |          |
| 386.44                              | 386.64     | 40.0  | 38.8     | 1.2   | BB        | 3           | Y              | 34           | 214         | 209         | 224         |          |
| 388.57                              | 389.52     | 46.8  | 38.7     | 8.1   | WO        | 3           | Y              | 61           | 241         | 215         | 267         |          |
| 398.00                              | 398.91     | 39.2  | 38.9     | 0.3   | BB        | 2           | Y              | 27           | 207         | 159         | 249         |          |
| 643.74                              | 643.96     | 39.5  | 38.8     | 0.7   | KS        | 2           | Y              | 32           | 32          | 14          | 48          |          |
| 650.98                              | 651.09     | 39.5  | 38.9     | 0.6   | BB        | 3           | N              | 51           | 231         | 191         | 271         |          |
| 659.85                              | 660.54     | 42.0  | 38.7     | 3.3   | BB        | 2           | N              | 5            | 5           | -5          | 95          |          |
| 682.82                              | 690.07     | 38.8  | 38.7     | 0.1   | MF        | 3           | N              | 74           | 74          | 45          | 90          |          |
| 716.43                              | 717.50     | 43.1  | 39.3     | 3.8   | BB        | 2           | Y              | 59           | 239         | 211         | 269         |          |
| 721.15                              | 728.90     | 38.9  | 38.8     | 0.1   | MF        | 2           | N              | 50           | 50          | 10          | 100         |          |
| 752.59                              | 767.77     | 38.9  | 38.8     | 0.1   | MF        | 2           | Y              | 45           | 45          | 0           | 90          |          |
| 777.34                              | 779.70     | 38.9  | 38.8     | 0.1   | MF        | 2           | Y              | 58           | 58          | 10          | 90          |          |
| 790.40                              | 793.58     | 38.9  | 38.8     | 0.1   | MF        | 2           | Y              | 64           | 64          | 0           | 110         |          |
| 793.62                              | 793.81     | 40.0  | 38.8     | 1.2   | BB        | 2           | Y              | 55           | 235         | 189         | 289         |          |
| 803.74                              | 803.87     | 39.3  | 38.8     | 0.5   | BB        | 3           | Y              | 29           | 209         | 187         | 219         |          |
| 813.73                              | 813.85     | 39.5  | 38.9     | 0.6   | BB        | 1           | Y              | 11           | 11          | 344         | 34          |          |
| 878.98                              | 909.70     | 39.0  | 38.9     | 0.1   | MF        | 1           | N              |              | 69          | 0           | 360         |          |
| 883.00                              | 885.20     | 39.3  | 38.9     | 0.4   | BB        | 3           | N              | 44           | 224         | 129         | 241         |          |
| 888.80                              | 892.80     | 39.1  | 38.9     | 0.2   | BB        | 3           | N              | 39           | 219         | 189         | 229         |          |
| 896.26                              | 896.49     | 39.3  | 38.9     | 0.4   | BB        | 3           | Y              | 63           | 243         | 213         | 267         |          |
| 923.18                              | 923.54     | 39.3  | 39.1     | 0.3   | BB        | 2           | N              | 15           | 15          | 321         | 69          |          |
| 944.09                              | 946.90     | 40.7  | 39.1     | 1.7   | BB        | 2           | Y              | 171          | 171         | 115         | 231         |          |
| 970.00                              | 979.37     | 39.1  | 39.0     | 0.1   | MF        | 3           | N              | 52           | 52          | 0           | 360         |          |
| 970.70                              | 974.90     | 42.4  | 39.0     | 3.5   | BB        | 3           | N              | 11           | 11          | 343         | 47          |          |
| 978.23                              | 978.87     | 40.2  | 39.1     | 1.1   | BB        | 2           | N              | 39           | 219         | 183         | 244         |          |
| 989.00                              | 989.30     | 47.1  | 39.1     | 8.0   | BB        | 3           | Y              | 51           | 231         | 197         | 257         |          |



#### KFM03B

| KFM03B ·    | FM03B - Observed BB, WO, KS and MF |       |          |       |       |             |                 |              |             |             |             |          |
|-------------|------------------------------------|-------|----------|-------|-------|-------------|-----------------|--------------|-------------|-------------|-------------|----------|
| Top Depth   | Bot. depth                         | Max R | Median R | dRmax | Class | Uncertainty | Cross. struct.  | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments |
| [m]         | [m]                                | [mm]  | [mm]     | [mm]  |       | [0-3]       | [Yes/No]        | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |          |
| 8.8         | 27                                 | 38.7  | 38.6     | 0.1   | MF    | 2           | N               | 34           | 214         | 0           | 360         |          |
| 27.86       | 28.09                              | 39.2  | 38.6     | 0.6   | BB    | 2           | Y               | 77           | 257         | 217         | 301         |          |
| 28.10       | 28.60                              | 38.7  | 38.6     | 0.1   | MF    | 3           | N               |              |             | 0           | 360         |          |
| 39.90       | 41.40                              | 38.6  | 38.5     | 0.1   | MF    | 3           | N               | 10           | 190         | 0           | 360         |          |
| 64.95       | 66.15                              | 45.0  | 38.5     | 6.5   | WO    | 3           | Y               |              |             |             |             |          |
| 66.10       | 39.98                              | 38.6  | 38.5     | 0.1   | MF    | 2           | N               |              |             | 0           | 360         |          |
| /6.02       | 82.65                              | 38.6  | 38.5     | 0.1   | MF    | 3           | N               |              |             | 0           | 360         |          |
| 180<br>160  |                                    |       |          |       |       | KFM         | 03B - Main Azir | nuth         |             |             |             |          |
| 140         |                                    |       |          |       |       |             |                 |              |             |             |             |          |
| ອີ 120<br>  |                                    |       |          |       |       |             |                 |              |             |             |             |          |
| ₩ 100<br>E  |                                    |       |          |       |       |             |                 |              |             |             |             |          |
| 08 Ith fro  |                                    |       |          |       | •     |             |                 |              |             |             |             |          |
| Azimu<br>09 |                                    |       |          |       |       |             |                 |              |             |             |             |          |
| 40          |                                    | •     |          |       |       |             |                 |              |             |             |             |          |
| 20          |                                    |       |          |       |       | •           |                 |              |             |             |             |          |
| 0           | ļ                                  | 10    |          |       |       | •           |                 |              |             |             |             |          |
|             | U                                  | 10    | 20       |       | 30    | 40          | 50<br>Depth [n  | 60<br>1]     | 70          | 80          | 90          | 100      |

#### KFM04A

| KFM04A -  | Observed   | BB, WO | D, KS and    | MF    |       |             |                 |              |             |             |             |                 |
|-----------|------------|--------|--------------|-------|-------|-------------|-----------------|--------------|-------------|-------------|-------------|-----------------|
| Top Depth | Bot. depth | Max R  | Median R     | dRmax | Class | Uncertainty | Cross. struct.  | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments        |
| [m]       | [m]        | [mm]   | [mm]         | [mm]  |       | [0-3]       | [Yes/No]        | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |                 |
| 148.04    | 148.47     | 41.0   | 38.8         | 2.2   | WO    | 2           | ?               | 45           | 45          |             |             |                 |
| 170.98    | 171.93     | 41.1   | 38.8         | 2.3   | KS    | 2           | Y               | 58           | 238         | 214         | 264         |                 |
| 209.60    | 209.84     | 40.0   | 39.0         | 1.0   | BB    | 2           | Y               | 45           | 45          | -44         | 124         |                 |
| 239.30    | 239.90     | 55.0   | 39.5         | 15.5  | BB    | 1           | Y               | 150          | 150         | 80          | 215         | l               |
| 240.26    | 247.62     | 44.0   | 39.4         | 4.6   | MF    | 1           | Y               |              |             | 0           | 360         | Larger fallouts |
| 255.18    | 256.00     | 60.0   | 38.8         | 21.2  | BB    | 3           | ?               | 50           | 50          | 0           | 106         | l               |
| 262.92    | 263.54     | 55.0   | 38.8         | 16.2  | KS    | 2           | Y               | 132          | 132         | 18          | 244         |                 |
| 305.00    | 311.01     | 42.0   | 38.7         | 3.3   | BB    | 3           | N               | 44           | 44          | -32         | 90          |                 |
| 328.99    | 329.34     | 42.1   | 38.6         | 3.5   | BB    | 1           | Y               | 64           | 64          | 28          | 84          |                 |
| 359.51    | 359.86     | 102.0  | 38.7         | 63.3  | WO    | 2           | Y               |              |             |             |             |                 |
| 375.85    | 376.89     | 41.2   | 38.4         | 2.8   | BB    | 2           | Y Y             | 58           | 58          | 42          | 72          |                 |
| 383.12    | 383.44     | 41.8   | 38.6         | 3.2   | BB    | 1           | Y               | 56           | 56          | 42          | 74          |                 |
| 396.11    | 400.78     | 48.7   | 38.5         | 10.2  | BB    | 2           | Ŷ               | 60           | 60          | 44          | 90          | / small BB      |
| 405.87    | 407.38     | 48.0   | 38.3         | 9.7   | BB    | 3           | N               | 46           | 46          | 10          | 104         |                 |
| 411.75    | 412.05     | 41.3   | 30.5         | 2.8   |       | 3           | ř V             | 40           | 40          | 0           | 08          |                 |
| 414.04    | 414.45     | 41.0   | 30.5<br>20 E | 21.5  |       | 3           | ř<br>V          | 02           | 02          | 30          | 104         | Larger falloute |
| 414.50    | 419.54     | 41.0   | 30.5<br>20 E | 2.5   |       | 2           | T N             | 22           | 202         | 170         | 300         | Larger failouts |
| 424.17    | 425.82     | 40.7   | 30.5<br>20 E | 2.2   |       | 2           | N N             | 22           | 202         | 1/8         | 272         | Larger falloute |
| 440.32    | 450.43     | 59.5   | 20.5<br>20 E | 11.0  |       | 1           |                 | EC           | EC          | 0           | 300         | Carger Tailouts |
| 451.55    | 455.50     | 41.0   | 30.5         | 2.5   | BB    | 2           | v v             | 54           | 234         | 208         | 256         |                 |
| 468.70    | 468.86     | 41.0   | 38.4         | 2.5   | BB    | 2           | v v             | 46           | 46          | 12          | 86          |                 |
| 523.68    | 524 48     | 41.2   | 38.4         | 2.0   | BB    | 1           | Y               | 150          | 150         | 120         | 180         |                 |
| 569.65    | 570.00     | 44.6   | 38.4         | 6.2   | BB    | 2           | v               | 66           | 66          | 20          | 100         |                 |
| 618.21    | 618.51     | 42.1   | 38.4         | 3.8   | BB    | 2           | y<br>Y          | 34           | 214         | 178         | 246         |                 |
| 645.34    | 681.40     | 38.6   | 38.5         | 0.1   | MF    | 2           | N               |              |             | 0           | 360         |                 |
| 677.29    | 678.17     | 41.0   | 38.6         | 2.4   | BB    | 2           | Y               | 44           | 224         | 208         | 244         |                 |
| 713.80    | 714.99     | 38.6   | 38.5         | 0.1   | MF    | 2           | N               | 56           | 236         | 208         | 256         |                 |
| 717.16    | 719.27     | 38.6   | 38.5         | 0.1   | MF    | 2           | N               |              |             | 0           | 360         |                 |
| 773.00    | 779.00     | 38.6   | 38.5         | 0.1   | MF    | 2           | N               |              |             | 0           | 360         |                 |
| 897.20    | 899.95     | 38.5   | 38.4         | 0.1   | MF    | 2           | N               |              |             | 0           | 360         |                 |
| 916.88    | 917.76     | 46.0   | 38.6         | 7.5   | BB    | 2           | Y               | 45           | 45          | -40         | 100         |                 |
| 954.50    | 954.75     | 48.0   | 38.6         | 9.4   | WO    | 1           | Y               | 37           | 217         |             |             |                 |
| 981.76    | 982.22     | 54.0   | 38.7         | 15.3  | BB    | 1           | Y               | 48           | 48          | -30         | 145         |                 |
| 983.32    | 984.11     | 55.0   | 38.7         | 16.3  | KS    | 1           | Y               | 104          | 284         | 180         | 145         |                 |
| 180 -     |            |        |              |       |       |             |                 |              |             |             |             |                 |
|           |            |        |              |       |       |             | KFM04A - Main A | zimuth       |             |             |             |                 |
|           |            |        |              |       |       |             |                 |              |             |             |             |                 |
| 160       |            |        |              |       |       |             |                 |              |             |             |             |                 |
|           |            |        | •            |       |       |             | •               |              |             |             |             |                 |
| 140       |            |        |              |       |       |             |                 |              |             |             |             |                 |
|           |            |        | •            |       |       |             |                 |              |             |             |             |                 |
|           |            |        |              |       |       |             |                 |              |             |             |             |                 |
| _ 120 +   |            |        |              |       |       |             |                 |              |             |             |             |                 |
| beg.      |            |        |              |       |       |             |                 |              |             |             |             |                 |
| Z 100     |            |        |              |       |       |             |                 |              |             |             |             |                 |
| E         |            |        |              |       |       |             |                 |              |             |             |             |                 |
| l g       |            |        |              |       |       |             |                 |              |             |             |             |                 |
| and and   |            |        |              |       |       |             |                 |              |             |             |             |                 |
| Azi       |            |        |              | •     |       |             |                 | •            |             |             |             |                 |
| 60        | •          |        |              | •     | -     | ••          |                 |              | •           |             |             |                 |
|           |            |        | •            |       | •     |             |                 |              | •           |             |             |                 |
| 40        | •          | •      |              | •     |       | •           |                 |              | •           |             |             | • •             |
| 40        |            |        |              |       |       |             |                 | •            |             |             |             | •               |
|           |            |        |              |       |       | -           |                 |              |             |             |             |                 |
| 20        |            |        |              |       |       | •           |                 |              |             |             |             |                 |
|           |            |        |              |       |       |             |                 |              |             |             |             |                 |
| 0         |            |        |              |       |       |             |                 |              |             |             |             |                 |
| 100       |            | 200    | 3            | 00    |       | 400         | 500             | 600          | 700         | 800         | 90          | 1000            |
|           |            |        |              |       |       |             | Depth [         | m]           |             |             |             |                 |
|           |            |        |              |       |       |             |                 |              |             |             |             |                 |

#### KFM05A

| KFM05A -  | KFM05A - Observed BB, WO, KS and MF |       |          |       |           |            |                |              |             |             |             |                    |  |  |
|-----------|-------------------------------------|-------|----------|-------|-----------|------------|----------------|--------------|-------------|-------------|-------------|--------------------|--|--|
| Top Depth | Bot. depth                          | Max R | Median R | dRmax | Structure | Uncertaint | Cross. struct. | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments           |  |  |
| [m]       | [m]                                 | [mm]  | [mm]     | [mm]  |           | [0-3]      | [Yes/No]       | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |                    |  |  |
| 139.00    | 140.30                              | 38.8  | 38.7     | 0.1   | BB        | 1          | Y              | 130          | 130         | 110         | 210         |                    |  |  |
| 179.15    | 180.40                              | 46.0  | 38.6     | 7.4   | BB        | 2          | Y              | 34           | 214         | 180         | 250         |                    |  |  |
| 186.80    | 188.40                              | 38.7  | 38.6     | 0.1   | BB        | 2          | Y              | 86           | 266         | 234         | 302         |                    |  |  |
| 206.24    | 209.00                              | 45.7  | 38.7     | 7.0   | BB        | 2          | Y              | 30           | 30          | -90         | 68          |                    |  |  |
| 248.90    | 249.00                              | 44.1  | 38.6     | 5.5   | BB        | 2          | Y              | 48           | 228         | 178         | 256         |                    |  |  |
| 396.00    | 396.80                              | 38.6  | 38.5     | 0.1   | BB        | 1          | Y              | 164          | 164         | 124         | 202         |                    |  |  |
| 404.59    | 407.14                              | 38.6  | 38.5     | 0.1   | MF        | 1          | Y              | 162          | 162         | 112         | 222         |                    |  |  |
| 441.40    | 442.25                              | 40.0  | 38.5     | 1.6   | BB        | 1          | Y              | 95           | 95          | 58          | 162         |                    |  |  |
| 542.23    | 543.22                              | 38.4  | 38.3     | 0.1   | MF        | 2          | N              | 56           | 236         | 198         | 258         |                    |  |  |
| 601.68    | 603.48                              | 38.2  | 38.1     | 0.1   | MF        | 2          | Y              | 62           | 242         | 200         | 262         |                    |  |  |
| 607.30    | 607.80                              | 42.1  | 38.7     | 3.4   | BB        | 3          | Y              | 64           | 64          | 42          | 126         |                    |  |  |
| 609.60    | 613.60                              | 50.5  | 38.5     | 12.0  | BB        | 3          | Y              | 78           | 78          | 26          | 124         |                    |  |  |
| 627.77    | 628.12                              | 40.0  | 38.4     | 1.6   | BB        | 1          | Y              | 130          | 130         | 114         | 144         |                    |  |  |
| 666.60    | 667.60                              | 42.5  | 35.5     | 7.0   | BB        | 3          | Y              | 70           | 70          | 40          | 134         |                    |  |  |
| 669.80    | 671.35                              | 41.2  | 38.7     | 2.4   | BB        | 2          | Y              | 85           | 85          | 76          | 146         |                    |  |  |
| 673.73    | 674.08                              | 40.0  | 38.7     | 1.3   | BB        | 2          | Y              | 90           | 90          | 60          | 140         |                    |  |  |
| 701.00    | 702.21                              | 43.2  | 38.4     | 4.8   | BB        | 3          | Y              | 48           | 228         | 200         | 250         |                    |  |  |
| 713.50    | 720.10                              | 103.0 | 38.5     | 64.5  | WO        | 1          | Y              |              |             |             |             |                    |  |  |
| 890.50    | 895.20                              | 42.3  | 38.8     | 3.6   | BB        | 3          | N              | 88           | 88          | 48          | 112         | Consisting of 3 BB |  |  |
| 904.25    | 904.65                              | 40.3  | 38.7     | 1.6   | BB        | 2          | Y              | 54           | 54          | 30          | 80          |                    |  |  |
| 904.66    | 916.84                              | 38.5  | 38.4     | 0.1   | MF        | 2          | N              |              |             | 0           | 360         |                    |  |  |
| 934.70    | 965.00                              | 38.6  | 38.5     | 0.1   | MF        | 2          | N              |              |             | 0           | 360         |                    |  |  |
| 938.80    | 939.50                              | 39.0  | 38.7     | 0.3   | KS        | 2          | Y              | 122          | 122         | 64          | 180         |                    |  |  |
| 946.50    | 946.80                              | 78.7  | 38.8     | 40.0  | KS        | 2          | Y              | 48           | 48          | -30         | 108         |                    |  |  |
| 957.70    | 958.00                              | 44.5  | 38.8     | 5.7   | BB        | 3          | N              | 40           | 220         | 200         | 258         |                    |  |  |
| 978.40    | 979.60                              | 76.0  | 38.8     | 37.2  | WO        | 2          | N              |              |             |             |             |                    |  |  |



#### KFM06A

| KFM06A - Observed BB, WO, KS and MF |            |       |          |       |           |             |                |              |             |             |             |          |  |
|-------------------------------------|------------|-------|----------|-------|-----------|-------------|----------------|--------------|-------------|-------------|-------------|----------|--|
| Top Dept                            | Bot. depth | Max R | Median R | dRmax | Structure | Uncertainty | Cross. struct. | Main Azimuth | Azimuth     | Aperture a1 | Aperture a2 | Comments |  |
| [m]                                 | [m]        | [mm]  | [mm]     | [mm]  |           | [0-3]       | [Yes/No]       | [° from MN]  | [° from MN] | [° from MN] | [° from MN] |          |  |
| 135.00                              | 136.30     | 44.8  | 38.8     | 6.1   | BB        | 3           | N              | 68           | 68          | 40          | 92          |          |  |
| 286.64                              | 288.31     | 48.7  | 39.0     | 9.7   | BB        | 3           | N              | 60           | 60          | 16          | 84          |          |  |
| 331.00                              | 337.00     | 38.7  | 38.6     | 0.1   | MF        | 3           | N              | 40           | 40          | -10         | 80          |          |  |
| 559.02                              | 559.28     | 86.0  | 38.4     | 47.6  | BB        | 2           | Y              | 60           | 240         | 200         | 256         |          |  |
| 610.07                              | 611.10     | 38.2  | 38.1     | 0.1   | MF        | 3           | N              | 24           | 24          | -20         | 68          |          |  |
| 621.82                              | 622.94     | 38.2  | 38.1     | 0.1   | MF        | 2           | Y              | 40           | 40          | 16          | 60          |          |  |
| 770.10                              | 770.90     | 86.0  | 38.4     | 47.6  | WO        | 1           | Y              | 56           | 236         | 164         | 272         |          |  |
| 876.20                              | 876.42     | 45.8  | 38.5     | 7.3   | WO        | 2           | Y              |              |             | 0           | 360         |          |  |
| 895.80                              | 896.00     | 47.1  | 38.4     | 8.8   | KS        | 1           | N              | 60           | 240         | 192         | 296         |          |  |
| 897.20                              | 898.00     | 42.0  | 38.3     | 3.7   | BB        | 2           | Y              | 88           | 88          | 48          | 144         |          |  |
| 926.60                              | 929.30     | 45.4  | 38.4     | 7.0   | BB        | 2           | Y              | 4            | 184         | 108         | 236         |          |  |
| 931.90                              | 932.50     | 44.6  | 38.6     | 6.0   | KS        | 1           | Ý              | 140          | 320         | 288         | 348         |          |  |



#### KFM07C

0 +

Depth [m]

| KFM07C -  | Observed   | BB, WO | , MF and | KS    |       |            |             |               |            |             |             |                                   |
|-----------|------------|--------|----------|-------|-------|------------|-------------|---------------|------------|-------------|-------------|-----------------------------------|
| Top Depth | Bot. depth | Max R  | Median R | dRmax | Class | Uncertaint | ross. struc | lain Azimut   | Azimuth    | Aperture a1 | Aperture a2 | Comments                          |
| [m]       | [m]        | [mm]   | [mm]     | [mm]  |       | [0-3]      | [Yes/No]    | [° from MN]   | [° from MN | o from MN   | [° from MN] |                                   |
| 102.32    | 103.14     | 44.0   | 38.1     | 5.9   | BB    | 3          | Y           | 50            | 50         | 0           | 100         |                                   |
| 122.90    | 123.17     | 39.1   | 38.0     | 1.1   | BB    | 3          | Y           | 22            | 202        | 175         | 230         |                                   |
| 161.05    | 162.45     | 38.1   | 38.0     | 0.1   | MF    | 3          | N           | 46            | 226        | 196         | 266         |                                   |
| 163.50    | 166.50     | 38.1   | 38.0     | 0.1   | MF    | 2          | N           | 46            | 226        | 170         | 252         |                                   |
| 168.95    | 173.28     | 38.1   | 38.0     | 0.1   | MF    | 3          | N           | 46            | 46         | 0           | 360         |                                   |
| 179.25    | 188.00     | 38.1   | 38.0     | 0.1   | MF    | 3          | Y           | 50            | 230        | 186         | 268         |                                   |
| 189.92    | 192.11     | 38.1   | 38.0     | 0.1   | MF    | 3          | N           | 58            | 238        | 192         | 274         |                                   |
| 197.94    | 205.04     | 38.1   | 38.0     | 0.1   | MF    | 3          | N           | 50            | 230        | 196         | 264         |                                   |
| 209.00    | 218.00     | 38.1   | 38.0     | 0.1   | MF    | 3          | N           | 54            | 234        | 200         | 270         |                                   |
| 229.98    | 237.78     | 38.1   | 38.0     | 0.1   | MF    | 3          | N           | 54            | 234        | 200         | 270         |                                   |
| 239.19    | 254.75     | 38.1   | 38.0     | 0.1   | MF    | 3          | N           | 54            | 234        | 200         | 270         |                                   |
| 266.65    | 275.25     | 38.0   | 37.9     | 0.1   | MF    | 3          | N           | 46            | 226        | 200         | 272         |                                   |
| 275.25    | 275.75     | 39.3   | 37.8     | 1.5   | BB    | 3          | Y           | 34            | 214        | 192         | 238         |                                   |
| 275.75    | 283.12     | 38.0   | 37.9     | 0.1   | MF    | 3          | N           | 60            | 240        | 198         | 262         |                                   |
| 285.38    | 293.54     | 38.0   | 37.9     | 0.1   | MF    | 3          | N           | 52            | 232        | 208         | 260         |                                   |
| 293.54    | 296.07     | 38.8   | 37.8     | 1.0   | BB    | 3          | Y           | 42            | 42         | 12          | 70          | 2 BB                              |
| 296.07    | 302.27     | 37.9   | 37.8     | 0.1   | MF    | 3          | N           | 60            | 240        | 202         | 268         |                                   |
| 305.00    | 310.39     | 37.9   | 37.8     | 0.1   | MF    | 2          | N           |               |            | 0           | 360         |                                   |
| 310.99    | 311.51     | 40.7   | 37.9     | 2.8   | BB    | 3          | Y           | 90            | 90         | 36          | 132         |                                   |
| 318.35    | 320.27     | 37.9   | 37.8     | 0.1   | MF    | 3          | N           | 66            | 246        | 180         | 290         |                                   |
| 320.39    | 320.71     | 50.0   | 37.8     | 12.2  | BB    | 3          | N           | 30            | 210        | 148         | 254         |                                   |
| 320.71    | 325.00     | 37.9   | 37.8     | 0.1   | MF    | 2          | N           | 68            | 248        | 206         | 288         |                                   |
| 325.00    | 335.25     | 37.9   | 37.8     | 0.1   | MF    | 3          | N           | 56            | 236        | 0           | 360         |                                   |
| 335.28    | 347.30     | 38.2   | 37.8     | 0.4   | BB    | 1          | Y           | 90            | 90         | 24          | 124         | Several small BB or just MF       |
| 347.40    | 349.20     | 51.0   | 37.8     | 13.2  | WO    | 2          | Ý           | 64            | 244        | 0           | 360         |                                   |
| 348.82    | 356.74     | 38.4   | 37.6     | 0.8   | MF    | 3          | Ŷ           | 50            | 50         | 0           | 90          | Or small BB                       |
| 356.75    | 357.82     | 61.0   | 37.6     | 23.4  | WO    | 2          | Ý           | 24            | 204        | 0           | 360         |                                   |
| 357.98    | 360.04     | 37.8   | 37.7     | 0.1   | MF    | 2          | N           | 60            | 240        | 194         | 276         |                                   |
| 360.07    | 360.32     | 48.0   | 37.7     | 10.3  | KS    | 2          | N           | 0             | 180        | 130         | 214         |                                   |
| 360.32    | 364 79     | 37.8   | 37.7     | 0.1   | MF    | 3          | N           | 34            | 214        | 188         | 258         |                                   |
| 364.79    | 366.28     | 45.0   | 37.7     | 7.3   | BB    | 2          | Y           | 48            | 48         | 28          | 78          | 2 small BB                        |
| 366.75    | 367.52     | 44.0   | 37.7     | 6.3   | BB    | 3          | Ŷ           | 64            | 64         | 24          | 122         | 2 01101 00                        |
| 368.87    | 372.11     | 38.4   | 37.7     | 0.7   | BB    | 1          | T           | 62            | 242        | 0           | 286         | 3-4 small BB or just MF           |
| 372.11    | 411.63     | 37.8   | 37.7     | 0.1   | MF    | 3          | N           | 44            | 274        | 0           | 360         |                                   |
| 412.65    | 416.06     | 37.8   | 37.7     | 0.1   | MF    | 3          | N           | 50            | 230        | 194         | 272         |                                   |
| 424 59    | 427.89     | 37.8   | 37.7     | 0.1   | MF    | 3          | N           | 84            | 250        | 224         | 298         |                                   |
| 427.90    | 430.45     | 41.3   | 37.7     | 3.6   | BB    | 3          | N           | 70            | 70         | 30          | 100         | Partly covered by PLEX stabilisat |
| 431 59    | 433 31     | 37.0   | 37.8     | 0.1   | ME    | 2          | N           | 54            | 234        | 208         | 262         |                                   |
| 433.71    | 434.22     | 40.0   | 37.8     | 2.2   | BB    | 2          | v           | 72            | 257        | 200         | 282         |                                   |
| 435.00    | 482.00     | 37.8   | 37.0     | 0.1   | MF    | 3          | N           | 58            | 238        | 204         | 268         |                                   |
| 490.21    | 401.22     | 40.7   | 37.6     | 2.1   | BB    | 2          | V           | 42            | 230        | 195         | 200         |                                   |
| 490.21    | 491.25     | 27.7   | 37.0     | 0.1   | ME    | 2          | N           | 4Z<br>56      | 222        | 200         | 200         |                                   |
| 492.14    | 493.15     | 37.0   | 37.6     | 0.1   | BB    | 2          | V           | 64            | 230        | 200         | 276         |                                   |
| 452.14    | 495.15     | 57.5   | 57.0     | 0.5   | 00    | 2          |             | 07            | 277        | 217         | 270         | <u> </u>                          |
| 1         | 180        |        |          |       |       |            |             |               |            |             |             |                                   |
|           |            |        |          |       |       |            | KFM070      | C - Main Azir | nuth       |             |             |                                   |
|           | 160        |        |          |       |       |            |             |               |            |             |             |                                   |
| -         |            |        |          |       |       |            |             |               |            |             |             |                                   |
|           |            |        |          |       |       |            |             |               |            |             |             |                                   |
| 1         | 140        |        |          |       |       |            |             |               |            |             |             |                                   |
|           |            |        |          |       |       |            |             |               |            |             |             |                                   |
| eg        | 120        |        |          |       |       |            |             |               |            |             |             |                                   |
| 으         |            |        |          |       |       |            |             |               |            |             |             |                                   |
| Ę.        | 100 -      |        |          |       |       |            |             |               |            |             |             |                                   |
| 2.        |            |        |          |       |       |            |             |               | • •        |             |             |                                   |
| L LD      |            |        |          |       |       |            |             |               | • •        |             |             | •                                 |
| h fi      | 80         |        |          |       |       |            |             |               |            |             |             |                                   |
| t l       |            |        |          |       |       |            |             |               |            |             |             | ••                                |
| zin       | 60         |        |          | •     | -     |            |             | • •           | -          | •           |             |                                   |
| ×         | •          |        |          | •     | • •   | • •        | -           | •             | •          | • •         | •           | , • •                             |
|           | 40         |        |          |       |       |            | •           | •             |            |             |             | •                                 |
|           |            |        |          |       |       |            |             | •             | •          | •           |             |                                   |
| 1         |            | •      |          |       |       |            |             |               | •          | ٠           |             |                                   |
|           | 20         |        |          |       |       |            |             |               |            |             |             |                                   |