P-07-49

Oskarshamn site investigation

Hydraulic injection tests in Borehole KLX20A, 2006

Subarea Laxemar

Cristian Enachescu, Stephan Rohs Golder Associates GmbH

January 2007

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-07-49

Oskarshamn site investigation

Hydraulic injection tests in Borehole KLX20A, 2006

Subarea Laxemar

Cristian Enachescu, Stephan Rohs Golder Associates GmbH

January 2007

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic injection tests have been performed in Borehole KLX20A at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar subarea. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX20A performed between 07th and 12th of November 2006.

The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m and 20 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 102.20–448.00 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

Sammanfattning

Injektionstester har utförts i borrhål KLX20A i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX20A. Testerna utfördes mellan den 07 november till den 12 november 2006.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m och 20 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 102,20–448,00 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (fresh-water head).

Contents

1	Introduction	7
2	Objective and scope	9
2.1	Borehole	9
2.2	Injection tests	11
2.3	Control of equipment	12
3	Equipment	13
3.1	Description of equipment	13
3.2	Sensors	17
3.3	Data acquisition system	18
4	Execution	19
4.1	Preparations	19
4.2	Length correction	19
4.3	A 2 1 Test principle	19
	4.3.1 Test principle	19
11	4.5.2 Test procedure Data handling/post processing	20
4.4 15	Analyses and interpretations	21
4.5	4.5.1 Analysis software	22
	4.5.2 Analysis approach	22
	4.5.3 Analysis methodology	22
	4.5.4 Correlation between storativity and skin factor	23
	4.5.5 Determination of the ri-index and calculation of the radius	
	of influence (ri)	24
	4.5.6 Steady state analysis	25
	4.5.7 Flow models used for analysis	25
	4.5.8 Calculation of the static formation pressure and equivalent	
	freshwater head	26
	4.5.9 Derivation of the recommended transmissivity and	
	the confidence range	27
4.6	Nonconformities	27
5	Results	29
5.1	100 m single-hole injection tests	29
	5.1.1 Section 107.50–207.50 m, test no. 1, injection	29
	5.1.2 Section 207.50–307.50 m, test no. 1, injection	30
	5.1.3 Section 307.50–407.50 m, test no. 1 and 2, pulse injection	30
	5.1.4 Section 348.00–448.00 m, test no. 1, injection	31
5.2	20 m single-hole injection tests	32
	5.2.1 Section 102.20–122.20 m, test no. 1, injection	32
	5.2.2 Section $107.50-127.50$ m, test no. 1, injection	32
	5.2.3 Section $127.50 - 147.50$ m, test no. 1, injection	33
	5.2.4 Section $147.50 - 167.50$ m, test no. 1, injection	34 24
	5.2.5 Section $107.50-187.50$ m, test no. 1, injection	25
	5.2.0 Section $187.50-207.50$ m, test no. 1, injection	33
	5.2.7 Section 195.50–205.50 III, test no. 1, injection	26
	5.2.0 Section 233.00–253.00 m, test no. 1, nijection $5.2.9$ Section 233.00–253.00 m test no. 1, nulse injection	30 27
	5.2.9 Section 253.00–253.00 m, test no. 1, pulse injection	37
	5.2.11 Section 273.00–293.00 m test no. 1 injection	38
	5.2.12 Section 287.50–307.50 m. test no. 1, injection	39
	, , , ,	-

6	Summary of results		41				
6.1	General test data and results						
6.2	Correlation analysis						
	6.2.1 Comparison of	of steady state and transient analysis results	50				
	6.2.2 Comparison b	between the matched and theoretical wellbore					
	storage coeffi	cient	50				
7	Conclusions		53				
7.1	Transmissivity		53				
7.2	Equivalent freshwate	r head	53				
7.3	Flow regimes encoun	tered	53				
8	References		55				

Appendices attatched on CD

- Appendix 1 File description table
- Appendix 2 Test analyses diagrams
- Appendix 3 Test summary sheets
- Appendix 4 Nomenclature
- Appendix 5 SICADA data tables

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001/, as well as a site-specific program for the investigations in the Simpevarp area /SKB 2006/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out in borehole KLX20A between 07th and 12th of November 2006 following the methodology described in SKB MD 323.001 and in the activity plan AP PS 400-06-112 (SKB controlling documents). Data and results were delivered to the SKB site characterization database SICADA and are traceable by the activity plan number.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX20A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX20A is situated in the Laxemar area approximately 4 km west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from February 2006 to April 2006 at 457.92 m length with an inner diameter of 76 mm and an inclination of -49.813°. The upper 99.50 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208 mm-323 mm.

The work was carried out in accordance with activity plan AP PS 400-06-112. In Table 1-1 controlling documents for performing this activity are listed. Activity plan and method descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Activity plan	Number	Version
Hydraulic pumping and injection tests in borehole KLX20A	AP PS 400-06-112	1.0
Method descriptions	Number	Version
Hydraulic injection tests	SKB MD 323.001	1.0
Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning	SKB MD 600.004	1.0
Instruktion för längdkalibrering vid undersökningar I kärnborrhål	SKB MD 620.010	1.0
Allmäna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn	SKB SDPO-003	1.0
Miljökontrollprogram Platsundersökningar	SKB SDP-301	1.0
Hantering av primärdata vid platsundersökningar	SKB SDP-508	1.0

Table 1-1. Controlling documents for the performance of the activity.

Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX20A.

2 Objective and scope

The objective of the hydrotests in borehole KLX20A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m and 20 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m and 20 m test sections, analyses and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following hydraulic injection tests were performed between 07th and 12th November 2006.

Between 307.5 m and 407.5 m no 20 m tests were performed because the appropriate 100 m section shows a flow below measurement limit (1 ml/min). The remaining 40 m (407.5 m–448.0 m) were not tested, too. These tests were skipped because of a very tight bottom zone which causes a strong pressure decrease in the borehole while moving the 100 m section tool upwards. To minimize the risk for the tool and the borehole it was decided not to run to this depth again (approved by SKB).

2.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 2-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 2-2 refers to the final diameter of the drill bit after drilling to full depth.

No. of injection tests	Interval	Positions	Time/test	Total test time
4	100 m	107.50–448.00 m	125 min	8.3 hrs
12	20 m	102.20–307.50 m	90 min	18.0 hrs
Total:		26.3 h	nrs	

Table 2-1. Performed injection tests at borehole KLX20A.

* Excluding repeated tests.

Title	Value					
Old idcode name(s):	KLX20A					
Comment:	No comment exists					
Borehole length (m):	457.920					
Reference level:	TOC					
Drilling period(s):	From date 2006-02-22 2006-03-25	To date 2006-03-08 2006-04-24	Secup (m) 0.300 99.910	Seclow (m) 100.000 457.920	Drilling type Percussion drilling Core drilling	
Starting point coordinate:	Length (m)	Northing (m)	Easting (m)	Elevation (m.a.s.l.)	Coord system	
(centerpoint of TOC)	0.000	6366334.571	1546604.889	27.242	RT90-RHB70	
Angles:	Length (m) 0.000	Bearing 270.605	Inclination (– = down) –49.813 RT90-RHB70			
Borehole diameter:	Secup (m) 0.300 6.000 99.900 99.910 100.900	Seclow (m) 6.000 99.900 99.910 100.900 457.920	Hole diam (m) 0.340 0.253 0.162 0.086 0.076			
Core diameter:	Secup (m) 99.910 100.400	Seclow (m) 100.400 457.920	Core diam (m) 0.072 0.050			
Casing diameter:	Secup (m) 0.000 0.300 99.470	Seclow (m) 99.470 6.000 99.500	Case in (m) 0.200 0.310 0.170	Case out (m) 0.208 0.323 0.208		
Cone dimensions:	Secup (m) 96.080 99.090	Seclow (m) 99.090 100.900	Cone in (m) 0.100 0.080	Cone out (m) 0.104 0.084		
Grove milling:	Length (m) 110.000 150.000 200.000 250.000 300.000 350.000 400.000 430.000	Trace detectabl YES YES YES YES YES YES YES	e			

Table 2-2. Information about KLX20A (from SICADA (2006-09-15)).

2.2 Injection tests

Injection tests were conducted according to the Activity Plan AP PS 400-06-112 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m test sections between 107.50–448.00 m below ToC and in 20 m test sections between 102.20–307.50 m below ToC (see Table 2-3). The initial criteria for performing injection tests in 20 m sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m tests covering the smaller test sections (see Figure 2-1). The measurements were performed with SKBs custom made equipment for hydraulic testing called PSS2.

Bh ID	Test section (m bToC)	Test type¹	Test no	Test start Date, time	Test stop Date, time
KLX20A	107.50-207.50	3	1	061108 20:26:00	061108 23:06:00
KLX20A	207.50-307.50	3	1	061109 07:43:00	061109 09:37:00
KLX20A	307.50-407.50	4B	1	061109 11:20:00	061109 13:55:00
KLX20A	307.50-407.50	3	2	061109 23:16:00	061110 00:16:00
KLX20A	348.00-448.00	3	1	061109 14:54:00	061109 17:40:00
KLX20A	102.20–122.20	3	1	061110 19:13:00	061110 21:06:00
KLX20A	107.50–127.50	3	1	061110 21:58:00	061110 23:27:00
KLX20A	127.50–147.50	3	1	061111 00:09:00	061111 02:17:00
KLX20A	147.50–167.50	3	1	061111 06:37:00	061111 08:17:00
KLX20A	167.50–187.50	3	1	061111 08:50:00	061111 09:20:00
KLX20A	187.50–207.50	3	1	061111 11:05:00	061111 13:27:00
KLX20A	193.50–203.50	3	1	061111 13:59:00	061111 16:02:00
KLX20A	213.00–233.00	3	1	061111 16:40:00	061111 18:20:00
KLX20A	233.00–253.00	4B	1	061111 19:04:00	061111 20:30:00
KLX20A	253.00–273.00	3	1	061111 21:21:00	061111 22:46:00
KLX20A	273.00–293.00	3	1	061111 23:23:00	061112 00:49:00
KLX20A	287.50-307.50	3	1	061112 01:25:00	061112 03:43:00

Table 2-3. Tests performed.

1) 3: Injection test; 4B Pulse injection test.

* eventually tests performed after specific discussion with SKB

Figure 2-1. Flow chart for test sections.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX20A were conducted.

2.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101-123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in respectively prior to every test performance.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

3 Equipment

3.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc. shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-6.

Figure 3-1. A view of the layout and equipment of PSS2.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 5. Positioner, bottom end of down-in-hole string.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1,5 m with OD 72 mm, stiff ends, tightening length 1,0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Contact carrier SS 1,0 m carrying connections for sensors below and
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 3-2.

Figure 3-2. Schematic drawing of the down-hole equipment in the PSS2 system.

3.2 Sensors

Keyword	Sensor	Name	Value/range	Unit	Comments
P _{sec,a,b}	Pressure	Druck PTX 162–1464abs	9–30 4–20 0–13,5 <u>+</u> 0,1	VDC mA MPa % of FS	
T _{sec,surf,air}	Temperature	BGI	18–24 4–20 0–32 <u>+</u> 0,1	VDC mA °C °C	
Q _{big}	Flow	Micro motion Elite sensor	0–100 <u>+</u> 0,1	kg/min %	Massflow
Q_{small}	Flow	Micro motion Elite sensor	0–1,8 <u>+</u> 0,1	kg/min %	Massflow
P _{air}	Pressure	Druck PTX 630	9–30 4–20 0–120 <u>+</u> 0,1	VDC mA KPa % of FS	
p _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 <u>+</u> 0,1	VDC mA MPa % of FS	
p _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2,5 <u>+</u> 0,15	VDC mA MPa % of FS	
L	Level indicator				Length correction

Table 3-1. Technical specifications of sensors.

	Table 3-2. Sensor	positions and	wellbore storage	(WBS)) controlling factors.
--	-------------------	---------------	------------------	-------	------------------------

Borehole	information	Sensors		Equipment a	Equipment affecting WBS coefficient		
ID	Test section (m)	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)	Volume in test section (m ³)
KLX20A	107.50–207.50	pa	102.11	Test section	Signal cable	9.1	
		р т	203.37		Pump string	33	0.454
		p⊳ L	203.20 206.01 206.25		Packer line	6	
KLX20A	102.20-122.20	pa	102.11	Test section	Signal cable	9.1	
		р т	123.37		Pump string	33	0.091
		p⊳ L	126.01 126.25		Packer line	6	

3.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 3-3.

Figure 3-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

4 Execution

4.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and disinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Filling injection tank with water out of the borehole HLX14.
- Filling buffer tank with water and tracer it with Uranin; take water sample.
- Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

4.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of these groves are given by SKB in the activity plan (s. Table 2-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the test sections to avoid wrong placements and minimize elongation effects of the test string.

4.3 Execution of field work

4.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Regularly the CHi and CHir phases were analysed quantitatively, in cases of very low section transmissivity, the PI phase was analysed.

Figure 4-1. Flow chart for test performance.

4.3.2 Test procedure

A typical test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Preliminary Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation.

The preliminary pulse injection (Step 4) derives the first estimations of the formation transmissivity. It is conducted by applying a pressure difference of approx. 200 kPa to the static formation pressure. If the pulse recovery indicates a very low transmissivity (flow probably below 1 ml/min) the pulse recovery is prolonged and no constant head injection test is performed. The decision to continue the pulse or to conduct an injection tests is based on the pressure response of the pulse recovery. A pressure recovery less than 50 % during the first ten minutes of the pulse indicates a low transmissivity. In such a case no injection test will be conducted.

The pressure static recovery (PSR) after packer inflation and before the pulse gives a direct measure of the magnitude of the packer compliance. A steep PSR indicates extremely low test section transmissivity. In such a case the packer compliance would influence the subsequent pulse test too much and introduce very large uncertainties. Therfore tests with this behaviour would be stopped after PSR phase.

If the preliminary pulse injection test indicates a formation transmissivity with a flow above 1 ml/min a constant head injection test (Step 5 and 6) is carried out. It is applied with a constant injection pressure of approx. 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section is measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually (determined by the preliminary pulse injection). In those cases, the constant difference pressure was usually unequal to 200 kPa.

In cases when the derived transmissivity of a test section influences the subsequent test program the constant head injection was conducted even if the preliminary pulse indicates a very tight section (e.g. flow below 1 ml/min). The injection phase is then performed to verify the results of the pulse.

The duration for each phase is presented in Table 4-1.

4.4 Data handling/post processing

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent analysis (field and final) of the injection phase (CHi). The synthesised data of the recovery phase (CHir) was used for the field analysis and to receive preliminary results for concistency reviews.

Step	Phase	Time
1	Position test tool to new test section (correct position using the borehole markers)	Approx. 30 min.
2	 Inflate packers with appr. 1900 kPa 	25 min.
3	Close test valve	10 min.
	Check tubing integrity with appr. 800 kPa	5 min.
	• De-air system	2 min.
4	Pretest, pulse injection (duration depends on the formation transmissivity)	
5*	 Set automatic flow control parameters or setting for manual test 	5 min.
	Start injection	20 to 45 min.
6*	Close test valve, start recovery	20 min. or more
	Open test valve	10 min.
7	Deflate packers	25 min.
	Move to next test depth	

 Table 4-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation.

* Step 5 and 6 conducted if the preliminary pulse indicates a formation transmissivity with a sufficient flow.

4.5 Analyses and interpretations

4.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

4.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

Pulse tests are analysed by using the pressure deconvolution method described by /Peres et al. 1989/ with improvements introduced by /Chakabarty and Enachescu 1997/.

4.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

- Injection Tests.
 - Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
 - Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
 - Non-linear regression in semi-log coordinates (superposition HORNER plot; /Horner 1951/). In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne 1990/.

• Pre-test for the Injection Tests.

The test cycle always starts with a pulse injection phase with the aim of deriving a first estimation of the formation transmissivity. In cases when the pulse recovery is low (indicating low transmissivity) the pulse phase is extended and analysed as the main phase for the test.

The transmissivity derived from a pulse test is strongly influenced by the wellbore storage coefficient used as an input in the analysis. The wellbore storage coefficient is calculated as C = dV/dP where dV is the volume difference injected during the brief flow period of the pulse and dP is the initial pressure difference of the pulse. dV is directly measured either by using the flowmeter readings or water level measurements in the injection vessel.

It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 4-2 below show an example of a typical pressure versus time evolution for such a tight section.

• Flow model identification and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989, Chakrabarty and Enachescu 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the later stages. An example of type curves is presented in Figure 4-3.

Figure 4-2. Typical pressure versus time plot of a Pulse injection test.

Figure 4-3. Deconvolution type curve set for pulse test analysis.

4.5.4 Correlation between storativity and skin factor

For the analysis of the conducted hydraulic tests below 100 m depth a storativity of $1 \cdot 10^{-6}$ is assumed (SKB MD 320.004e). Based on this assumption the skin will be calculated. In the following the correlation between storativity and skin for the relevant test phases will be explained in greater detail.

• Injection phase (CHi)/Pulse tests (Pi)

Due to the fact that the early time data of the CHi and Pi phases, respectively, is not available or too noisy (attributed to the automatic regulation system) the storativity and the skin factor become correlated. Consequently they cannot be solved independently any more. In this case as a result of the analysis one determines the correlation group e^{2s}/S . This means that in such cases the skin factor can only be calculated when assuming the storativity as known.

• Recovery phase (CHir)

The wellbore storage coefficient (C) is determined by matching the early time data with the corresponding type curve. The derived C-value is introduced in the equation of the type curve parameter:

$$(C_D e^{2s})_M = \frac{C \rho g}{2\pi r_w^2 S} e^{2s}$$

The equation above has two unknowns, the storativity (*S*) and the skin factor (*s*) which expresses the fact that for the case of constant rate and pressure recovery tests the storativity and the skin factor are 100% correlated. Therefore, the equation can only be either solved for skin by assuming that the storativity is known or solved for storativity by assuming the skin as known.

4.5.5 Determination of the ri-index and calculation of the radius of influence (ri)

The analysis provides also the radius of influence and the ri-index, which describes the late time behaviour of the derivative.

RI-Index

The determination of the ri-Index is based on the shape of the derivative plotted in log-log coordinates and describes the behaviour of the derivative after the time t_2 , representing the end of the near wellbore response. The ri-index also describes the flow regime at the end of the test. Following ri-indices can be assigned:

- ri-index = 0: The middle and late time derivative shows a horizontal stabilization. This pressure response indicates that the size of the hydraulic feature is greater than the radius of influence. The calculated radius of influence is based on the entire test time t_P .
- ri-index = 1: The derivative shows an upward trend at late times, indicating a decrease of transmissivity or a barrier boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t_2 .
- ri-index = -1: The derivative shows a downward trend at late times, indicating an increase of transmissivity or a constant head boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t₂.

Figure 4-4 presents the relationship between the shape of derivative and the ri-index.

If no radial flow stabilization can be observed the ri-index is based on the flow regime at the end of the test: i.e. ri-index = 1 for tests with a derivative showing an upward trend at the end and a ri-index=-1 for tests with a derivative showing a downward trend. In such cases the calculated radius of influence is based on the entire test time t_{p} .

The assignment of the ri-index is based on /Rhen 2005/.

Figure 4-4. Schematic plot of the assignments for the ri-indices.

Calculation of the radius of influence

The radius of influence (ri) is calculated as follows:

$$ri = 1.89 * \sqrt{\frac{T_T}{S_T} * t_2}$$
 [m]

- T_T recommended inner zone transmissivity $[m^2/s]$
- t₂ time when hydraulic formation properties changes (see previous chapter) [s]
- $S_{\rm T}$ for the calculation of the ri the storage coefficient (S) is estimated from the transmissivity /Rhen 2005/:

 $S_T = 0.007 * T_T^{0.5} [-]$

4.5.6 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

4.5.7 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. At tests where a flow regime could not clearly identified from the test data, we assume in general a radial flow regime as the most simple flow model available. The value of p* was then calculated according to this assumption.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

4.5.8 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using:

(1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred,

(2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the extrapolated static formation pressure (p*), corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drill hole, by assuming a water density of 1000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 4-5 shows the methodology schematically.

Figure 4-5. Schematic methodologies for calculation of the freshwater head.

The freshwater head in meters above sea level is calculated as following:

$$head = \frac{(p*-p_{atm})}{\rho \cdot g}$$

which is the p* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head h_{iwf} is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p^* - p_{atm})}{\rho \cdot g}.$$

4.5.9 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmissivity with distance from the borehole (composite model) was diagnosted, the transmissivity of the zone, which was showing the better derivative quality, was recommended.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

4.6 Nonconformities

According to the inclination of the borehole of -49.8° and a designated operation range of the PSS tool of 55° to 90° borehole inclination, specific confirmation was given by SKB to perform the required tests in KLX20A. However, due to the PSS container geometry it was necessary to replace the container after lifting the hydraulic rig prior to start with injection tests to adjust the position above the borehole.

After finishing the 100 m section tests, a strong pressure decrease was observed while moving the tool upwards. To minimize the risk for the tool and the borehole it was decided not to run to the bottom end of the borehole with the 20 m sections again. Therefore, SKB approved to skip 20 m section tests for the depth range of 407.5 m–448 m.

5 Results

In the following, results of all tests are presented and analysed. Section 5.1 presents the 100 m tests, 5.2 the 20 m tests. The results are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 6-1 and 6-2 of the Summary chapter. In addition, the results are presented in Appendices 3 and 5.

The results are stored in the primary data base (SICADA). The SICADA data base contains data that will be used for further interpretation (modelling). The data are traceable in SICADA by the Activity plan number (AP PS 400-06-112; SKB controlling document).

5.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX20A are presented and analysed.

5.1.1 Section 107.50-207.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 16 L/min at start of the CHi phase to 8 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, indicating radial flow. A homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-1.

Selected representative parameters

The recommended transmissivity of $1.3 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-6}$ m²/s to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,508.0 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.1.2 Section 207.50-307.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 197 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 6 L/min at start of the CHi phase to 4 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal stabilization at early times, followed by an upward trend at middle times and a kind of stabilization at late times. This behaviour is typical for a decrease of transmissivity at some distance from the borehole. The response of the CHir phase is consistent to the CHi phase. A two shell composite flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-2.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows the clearest flow stabilization. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ m²/s to $8.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,264.2 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.1.3 Section 307.50-407.50 m, test no. 1 and 2, pulse injection

Comments to test

The first test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. To verify the results of the pulse injection test, a second test was conducted in this section consisting of a constant head injection phase only. During this injection the flow rate dropped below the measurement limit (1 mL/min). Based on this result the constant head injection was skipped and only the pulse injection was analysed.

During the brief injection phase of the pulse injection a total volume of about 28 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 167 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.7 \cdot 10^{-10}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows a continuing upward trend at middle times, which can be interpreted as a change of transmissivity away from the test section. The PI phase was analysed using a two shell composite flow model with decreasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 2-3.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-11}$ m²/s was derived from the analysis of the Pi phase (outer zone). The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-11}$ to $9.0 \cdot 10^{-11}$ m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

5.1.4 Section 348.00–448.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 177 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, the pressure stayed stable during the injection phase. The injection rate decreased from 30 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows an upward trend at middle times and a stabilization at late times, indicating a change of transmissivity at some distance from the borehole. A two shell composite flow model with decreasing transmissivity was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows an upward trend at late times and a two shell composite flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $9.0 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-10}$ m²/s to $5.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX20A are presented and analysed.

5.2.1 Section 102.20–122.20 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 221 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 8 L/min at start of the CHi phase to 5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phases show a downward trend at middle times followed by a horizontal stabilization at late times. This is typical for a change of transmissivity at some distance from the borehole and radial flow. A two shell composite flow model with increasing transmissivity was chosen for the analysis of both phases. The analysis is presented in Appendix 2-5.

Selected representative parameters

The recommended transmissivity of $4.2 \cdot 10^{-06} \text{ m}^2/\text{s}$ was derived from the analysis of the CHir phase (outer zone), which shows the clearest flow stabilization. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-06} \text{ m}^2/\text{s}$ to $8.0 \cdot 10^{-6} \text{ m}^2/\text{s}$. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 880.9 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.2 Section 107.50–127.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5 L/min at start of the CHi phase to 3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward trend at middle times followed by a horizontal stabilization at late times. This is typical for a change of transmissivity at some distance from the borehole and radial flow. A two shell composite flow model with increasing transmissivity was used for the analysis of the CHi phase. The response of the CHi phase is similar to the response of the CHi phase and a two shell composite flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-6.

Selected representative parameters

The recommended transmissivity of $3.6 \cdot 10^{-06}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows a horizontal flow stabilization. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-06}$ m²/s to $7.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 923.5 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.3 Section 127.50-147.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 7 L/min at start of the CHi phase to 5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, which is indicative for radial flow. A homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a slight horizontal stabilization at late times. The CHir phase was matched using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-7.

Selected representative parameters

The recommended transmissivity of $5.3 \cdot 10^{-06}$ m²/s was derived from the analysis of the CHi phase, which shows a clear horizontal flow stabilization. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-06}$ m²/s to $8.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,078.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.4 Section 147.50–167.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. Due to the low flow rate the recorded data of the injection phase is very noisy. The injection rate decreased from approx. 4 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase does not allow clear flow model identification. However, a homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at late times. This indicates a transition form wellbore storage and skin dominated flow to pure formation flow. The CHir phase was matched using a two shell radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-8.

Selected representative parameters

The recommended transmissivity of $3.2 \cdot 10^{-09}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-10}$ m²/s to $5.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show some inconsistency as far as the chosen flow models concerned. This can be attributed to the poor data quality of the CHi phase. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

5.2.5 Section 167.50–187.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 195 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 137 mL/min at start of the CHi phase to 60 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows an upward trend at middle times, followed by horizontal flow stabilization at late times. This response indicates a change in transmissivity at some distance from the borehole. The behaviour of the CHir derivative is similar. A two shell composite flow model was used for the analysis of the CHi and CHir phase. The analysis is presented in Appendix 2-9.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-08}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows the clearest flow stabilization. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-09}$ m²/s to $5.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,361.7 kPa

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.6 Section 187.50–207.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 175 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the difference pressure dropped by approx. 3 kPa during the injection phase. The injection rate decreased from 10 mL/min at start of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase was matched using a homogeneous radial flow model. The derivative of the CHir phase shows a continuous upward trend and the response is still influenced by near wellbore effects like wellbore storage and skin. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-10.

Selected representative parameters

The recommended transmissivity of $2.2 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-11}$ m²/s to $6.0 \cdot 10^{-10}$ m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.7 Section 193.50-203.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 178 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the difference pressure dropped by approx. 4 kPa during the injection phase. The injection rate decreased from 20 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase was matched using a homogeneous radial flow model. The derivative of the CHir phase shows a continuous upward trend and the response is still influenced by near wellbore effects like wellbore storage and skin. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-11.

Selected representative parameters

The recommended transmissivity of $1.1 \cdot 10^{-09}$ m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-10}$ m²/s to $5.0 \cdot 10^{-09}$ m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.8 Section 213.00-233.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 226 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 100 mL/min at start of the CHi phase to 35 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative, indicating radial flow. A homogeneous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows slight horizontal flow stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-12.

Selected representative parameters

The recommended transmissivity of $1.6 \cdot 10^{-08}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-09}$ m²/s to $4.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,705.4 kPa

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.9 Section 233.00–253.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 7 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 161 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $7.1 \cdot 10^{-12}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend and middle and late times, indicating a decrease of transmissivity at some distance from the borehole. The PI phase was analysed using a two shell composite flow model. The analysis is presented in Appendix 2-13.

Selected representative parameters

The recommended transmissivity of $1.7 \cdot 10^{-11}$ m²/s was derived from the analysis of the Pi phase (outer zone). The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-12}$ to $4.0 \cdot 10^{-11}$ m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

5.2.10 Section 253.00-273.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. The pressure in the section below increased during the injection phase by approx. 70 kPa, indicating a connection to the test section. The injection rate decreased from 8 L/min at start of the CHi phase to 4 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.
Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal stabilization at early times, followed by an upward trend at middle times and a kind of stabilization at late times. This behaviour is typical for a decrease of transmissivity at some distance from the borehole. The response of the CHir phase is consistent to the CHi phase. A two shell composite flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-14.

Selected representative parameters

The recommended transmissivity of $3.4 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows the clearest flow stabilization. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-7}$ m²/s to $7.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,015.3 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.11 Section 273.00-293.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation functioned well. However, the recorded pressure data are noisy. The injection rate decreased from 750 mL/min at start of the CHi phase to 680 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase recovered relatively fast, but is still adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but relative flat derivative. A homogeneous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a steep upward trend at middle times, which is consistent with a high positive skin, and horizontal flow stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-15.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase, which shows a flow stabilization at late times. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-7}$ m²/s to $4.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,159.9 kPa.

Apart from the high positive skin derived from the CHir phase, the analyses of both phases show consistency. No further analysis is recommended.

5.2.12 Section 287.50-307.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation functioned well. However, the recorded flow and pressure data are very noisy. The injection rate decreased from 37 mL/min at start of the CHi phase to 35 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relatively fast recovery, but is still adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase does not allow flow model identification. However, a homogeneous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a steep upward trend at middle times, which is consistent with a high positive skin, and a kind of horizontal flow stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-16.

Selected representative parameters

The recommended transmissivity of $1.0 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-8}$ m²/s to $5.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,265.0 kPa.

The analyses of the CHi and CHir phases show some inconsistency regarding the derived transmissivities. This can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

6 Summary of results

This chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

		1		ı			1			I			
Borehole secup (m)	Borehole seclow (m)	Date and time for test, start ҮҮҮҮММDD hh:mm	Date and time for test, stop YYYYMMDD hh:mm	Q _p (m**3/s)	Q _m (m**3/s)	t _p (s)	t⊧ (s)	p₀ (kPa)	p _i (kPa)	p _e (kPa)	p⊧ (kPa)	Te _w (°C)	Test phases measured Analysed test phases marked bold
107.50	207.50	20061108 20:26	20061108 23:06	1.38E–04	1.49E–04	1,800	3,600	1,511	1,509	1,709	1,511	9.3	CHi/CHir
207.50	307.50	20061109 07:43	20061109 09:37	6.17E-05	7.17E-05	1,800	1,800	2,258	2,256	2,453	2,279	10.3	CHi/CHir
307.50	407.50	20061109 11:20	20061109 13:55	NN#	NN#	10	4,860	2,973	2,988	3,155	3,108	11.3	Pi
348.00	448.00	20061109 14:54	20061109 17:40	4.17E–08	7.67E-08	1,800	1,800	3,241	3,248	3,425	3,349	11.7	CHi/CHir
102.20	122.20	20061110 19:13	20061110 21:06	8.50E-05	9.03E-05	1,200	2,400	885	884	1,105	887	8.4	CHi/CHir
107.50	127.50	20061110 21:58	20061110 23:27	4.83E-05	5.20E-05	1,200	1,200	928	928	1,127	932	8.4	CHi/CHir
127.50	147.50	20061111 00:09	20061111 02:17	8.08E-05	8.68E-05	1,200	3,600	1,080	1,080	1,290	1,080	8.7	CHi/CHir
147.50	167.50	20061111 06:37	20061111 08:17	4.50E-08	4.67E-08	1,200	1,200	1,231	1,225	1,425	1,230	8.9	CHi/CHir
167.50	187.50	20061111 08:50	20061111 09:20	1.00E-06	1.27E-06	1,200	1,800	1,380	1,377	1,572	1,397	9.1	CHi/CHir
187.50	207.50	20061111 11:05	20061111 13:27	2.67E–08	4.33E-08	1,200	2,400	1,528	1,534	1,709	1,613	9.3	CHi/CHir
193.50	213.50	20061111 13:59	20061111 16:02	6.67E-08	1.00E-07	1,200	1,200	1,570	1,574	1,752	1,638	9.3	CHi/CHir
213.00	233.00	20061111 16:40	20061111 18:20	5.83E-07	6.67E-07	1,200	1,200	1,716	1,716	1,942	1,741	9.5	CHi/CHir
233.00	253.00	20061111 19:04	20061111 20:30	NN#	NN#	10	2,400	1,865	1,902	2,063	2,007	9.7	Pi
253.00	273.00	20061111 21:21	20061111 22:46	6.20E-05	7.10E-05	1,200	1,200	2,013	2,008	2,206	2,028	9.9	CHi/CHir
273.00	293.00	20061111 23:23	20061112 00:49	1.13E–05	1.16E-05	1,200	1,200	2,164	2,161	2,362	2,161	10.1	CHi/CHir
287.50	307.50	20061112 01:25	20061112 03:43	5.83E-07	6.33E-07	1,800	3,600	2,269	2,266	2,466	2,265	10.3	CHi/CHir

Table 6-1. General test data from hydraulic tests in KLX20A (for nomenclature see Appendix 4 and below).

General test data and results

6.1

Nomenclature.

۵	Flow in test section immediately before stop of flow [m³/s]
Q	Arithmetical mean flow during perturbation phase [m ³ /s]
t _o	Duration of perturbation phase [s]
ţ	Duration of recovery phase [s]
po	Pressure in borehole before packer inflation [kPa]
pi	Pressure in test section before start of flowing [kPa]
Pp	Pressure in test section before stop of flowing [kPa]
p⊧	Pressure in test section at the end of the recovery [kPa]
Te _w	Temperature in test section
TEST PHASES	CHI: CONSTANT HEAD INJECTION PHASE
	CHir: Recovery phase following the constant head injection phase
	Pi: Pulse injection phase
NN#	not analysed/no values

Table 6-2. Results from analysis of hydraulic tests in KLX20A (for nomenclature see Appendix 4 and below).

Interval	position	Stationary	flow	Transient	analysis													
		parameter	S	Flow regin	ne	Formatior	n paramet	ers									Static co	nditions
up m htor	low m htoc	Q/s ^{m21} c	T _M ‱2/c	Perturb.	Recovery	Т ₁₁ m²/c	T ₁₂ m ^{2/} c	T _{s1} m²/e	T _{s2} m ^{2/c}	T _T 32/5	T _{TMIN}	T _{TMAX}	C 3/D2	ŝ	dt, min	dt ₂	* 4	h _{wif} mool
		S/-III	S/-III	Flidse	FIIdSe	S/-Ш	S/-III	S/-III	S/-III	S/-Ш	S/-Ш	S/-Ш	m'/ra				кга	masi
107.50	207.50	6.76E-06	8.80E-06	2	WBS2	8.8E06	NN#	1.3E-05	NN#	1.3E-05	7.0E-06	4.0E-05	9.6E-09	2.3	2.05	20.76	1508.0	12.67
207.50	307.50	3.07E-06	4.00E-06	22	WBS22	4.0E-06	2.0E06	8.7E-06	3.1E-06	4.0E-06	1.0E-06	8.0E-06	1.4E–09	6.0-	0.42	2.18	2264.2	14.88
307.50	407.50	NN#	NN#	NN#	22	NN#	NN#	3.4E-09	4.0E-11	4.0E–11	1.0E-11	9.0E-11	1.7E–10	-1.5	⊧ NN#	‡ VN‡	∕N≯	NN#
348.00	448.00	2.31E-09	3.01E-09	22	WBS22	2.6E-09	9.0E-10	2.7E-09	6.9E-10	9.0E-10	5.0E-10	5.0E-09	2.3E-10	-1.9	4.98	27.12 #	4NV	NN#
102.20	122.20	3.77E-06	3.95E-06	22	WBS22	3.7E-06	5.3E-06	3.5E-06	4.2E-06	4.2E-06	1.0E-06	8.0E-06	3.9E-09	-1.9	3.42	17.84 8	880.9	13.29
107.50	127.50	2.38E-06	2.49E-06	22	WBS22	2.8E-06	4.3E-06	1.6E-06	3.6E-06	3.6E-06	1.0E-06	7.0E-06	1.1E-09	-2.4	3.35	18.78	923.5	13.56
127.50	147.50	3.78E-06	3.95E-06	2	WBS2	5.3E-06	NN#	9.6E-06	NN#	5.3E-06	3.0E-06	8.0E-06	6.6E-09	1.3	0.64	12.42	1078.1	14.02
147.50	167.50	2.21E-09	2.31E-09	7	WBS22	2.7E–09	NN#	3.2E-09	4.01E-09	3.2E–09	9.0E-10	5.0E-09	7.7E–11	7.4	ŧ NN#	‡ VN‡	4NV	NN#
167.50	187.50	5.03E-08	5.26E-08	22	WBS22	1.2E-07	2.9E–08	3.2E-08	1.4E–08	2.9E–08	9.0E-09	5.0E-08	1.9E–10	3.4	5.83	16.44	1361.7	12.75
187.50	207.50	1.49E–09	1.56E-09	2	WBS2	2.2E-10	NN#	1.4E-10	NN#	2.2E-10	9.0E-11	6.0E-10	1.3E-10	-2.8	⊧ NN#	‡ VN‡	∕N≯	NN#
193.50	213.50	3.67E-09	3.84E-09	7	WBS2	1.1E–09	NN#	9.0E-10	NN#	1.1E–09	6.0E-10	5.0E-09	2.4E–10	-2.5	7.44	17.40 ≠	4NV	NN#
213.00	233.00	2.53E-08	2.65E-08	2	WBS2	2.0E-08	NN#	1.6E–08	NN#	1.6E–08	7.0E-09	4.0E-08	2.3E-10	-1.6	13.08	19.74	1705.4	13.67
233.00	253.00	NN#	NN#	NN#	22	NN#	NN#	1.7E–11	6.0E-13	1.7E–11	7.0E-12	4.0E–11	7.1E–12	0.3	0.20	1.22 ⊭	4NV	NN#
253.00	273.00	3.07E-06	3.21E-06	22	WBS22	3.4E-06	1.8E–06	7.8E-06	3.3E-06	3.4E–06	9.0E-07	7.0E-06	7.8E–10	-2.6	0.67	2.08	2015.3	15.19
273.00	293.00	5.53E-07	5.79E-07	7	WBS2	1.4E–06	NN#	2.5E-06	NN#	2.5E-06	5.0E-07	4.0E-06	1.8E–10	20.4	0.60	10.38	2159.9	14.99
287.50	307.50	2.86E-08	2.99E–08	2	WBS2	3.0E08	NN#	1.0E-07	NN#	1.0E07	4.0E-08	5.0E-07	5.7E-11	15.2	2.52	12.72	2265.0	14.96

Q/s	Specific capacity
T _M	Transmissivity according to Moye (1967)
Flow regime	The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = soherical flow). If only one number is used (e.g. WBS2 or 2) a homoge-
) D	neous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.
Ļ	Transmissivity derived from the analysis of the perturbation phase (CHi). In case a homogeneous flow model was used only one T _i value is reported, in case a two zone composite flow model was used both T _{ii} (inner zone) and T _{i2} (outer zone) are given.
Ls.	Transmissivity derived from the analysis of the recovery phase (CHir or Pi). In case a homogeneous flow model was used only one T_s value is reported, in case a two zone composite flow model was used both T_s (inner zone) and T_{s2} (outer zone) are given.
T_{T}	Recommended transmissivity
T_{TMIN}	Confidence range lower limit
T_{TMAX}	Confidence range upper limit
U	Wellbore storage coefficient
w	Skin factor (calculated based on a Storativity of 1·10 ⁻⁶)
dt_1	Estimated start time of evaluation
dt,	Estimated ston time of evaluation

Nomenclature.

- Esumated stop time of evaluation
- The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHir phase using straight line or type-curve extrapolation at₂ p*
 - Fresh-water head (based on transducer depth and p^*) h_{wi}f #NV
 - Not analysed/no values

Borehole secup (m)	Borehole seclow (m)	Recommended trans- missivity T⊤ (m²/s)	Time t ₂ for radius of influence calculation (s)	ri - index (–)	Radius of Influence (m)
107.50	207.50	1.3E–05	3,600	0	254.85
207.50	307.50	4.0E-06	131	1	36.50
307.50	407.50	4.0E-11	4,860	1	12.53
348.00	448.00	9.0E-10	1,800	1	16.59
102.20	122.20	4.2E-06	2,400	-1	158.22
107.50	127.50	3.6E-06	1,200	-1	107.79
127.50	147.50	5.3E-06	1,200	0	118.56
147.50	167.50	3.2E-09	#NV	-1	#NV
167.50	187.50	2.9E-08	1,200	1	32.17
187.50	207.50	2.2E-10	1,200	0	9.56
193.50	213.50	1.1E–09	1,200	0	14.12
213.00	233.00	1.6E–08	1,200	0	27.74
233.00	253.00	1.7E–11	73	1	1.24
253.00	273.00	3.4E-06	125	1	34.23
273.00	293.00	2.5E-06	1,200	0	98.79
287.50	307.50	1.0E–07	3,600	0	76.22

Table 6-3. Results from the ri-index calculation of hydraulic tests in KLX20A (see Section 4.5.5 for details and nomenclature).

The Figures 6-1 to 6-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.

Figure 6-1. Results summary – profiles of transmissivity and equivalent freshwater head, transmissivities derived from injection tests, freshwater head extrapolated.

Figure 6-2. Results summary – profile of transmissivity.

Figure 6-3. Results summary – profile of hydraulic conductivity.

6.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

6.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M) and specific capacities (Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see Figure 6-4).

The correlation analysis shows that the transmissivities derived from the steady state analysis differ by less than one order of magnitude from the transmissivities derived from the transient analysis.

6.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to an unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval.

Figure 6-4. Correlation analysis of transmissivities derived by steady state and transient methods.

The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). The water compressibility depends on the temperature and salinity. However, for temperature and salinity values as encountered at the Oskarshamn site the water compressibility varies only slightly between $4.5 \cdot 10^{-10}$ and $5.0 \cdot 10^{-10}$ 1/Pa.

A water compressibility of $5 \cdot 10^{-10}$ 1/Pa and a rock compressibility of $1 \cdot 10^{-10}$ 1/Pa was assumed for the analysis. In addition, the test zone compressibility is influenced by the test tool (packer compliance). The test tool compressibility was calculated as follow:

$$c = \frac{\Delta V}{\Delta p} * \frac{1}{V} \quad [1/Pa]$$

- ΔV Volume change of 2 Packers (The volume change was estimated at 7.10⁻⁷ m³/100 kPa based on the results of laboratory tests conducted by GEOSIGMA) [m³]
- Δp Pressure change in test section (usually 2.10⁵ Pa) [Pa]
- *V* Volume in test section [m³]

The following table (see Table 6-4) presents the calculated compressibilities for each relevant section length. The average value for the test tool compressibility based on different section length is $5 \cdot 10^{-11}$ 1/Pa.

The sum of the compressibilities (water, rock, test tool) leads to a test zone compressibility with a value of $7 \cdot 10^{-10}$ 1/Pa. This value is used for the calculation of the theoretical wellbore storage coefficient.

The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure (Figure 6-5) presents a cross-plot of the matched and theoretical wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients differ up to two orders of magnitude from the theoretical. This phenomenon was already observed at the previous boreholes. A two or three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by two orders of magnitude does not seem probable. This discrepancy is not fully understood, but following hypotheses may be formulated:

- increased compressibility of the packer system,
- as shown by previous work conducted at site, the phenomenon of increased wellbore storage coefficients can be explained by turbulent flow induced by the test in the vicinity of the borehole. Considering the fact that deviations concerning the wellbore storage rather occur in test sections with a higher transmissivity (which can lead to turbulent flow) seems to rest upon this hypothesis.

Length of test section [m]	Volume in test section [m³]	Compressibility [1/Pa]
20	0.091	8·10 ⁻¹¹
100	0.454	2·10 ⁻¹¹
Average compressibility:		5·10 ⁻¹¹

Table 6-4. Test tool compressibility values based on packer displacement.

Figure 6-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

7 Conclusions

7.1 Transmissivity

Figure 6-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 4.5.9.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

If the conducted preliminary pulse injection (PI) showed a slow recovery the pulse test was prolonged and no further injection test was performed. The pulse test was used for a quantitative analysis. In two cases the preliminary pulse was prolonged and the recommended transmissivity is $1.7 \cdot 10^{-11}$ m²/s and $4.0 \cdot 10^{-11}$ m²/s, respectively.

The recommended transmissivities derived from the conducted injection tests (CHi and CHir) range between $2.2 \cdot 10^{-10}$ m²/s and $1.3 \cdot 10^{-05}$ m²/s.

All of the 20 m sections show smaller transmissivities than the appropriate longer interval what is the normal expected situation. Therefore, no crossflow or connections to adjacent zones happened by performing the tests.

7.2 Equivalent freshwater head

Figure 6-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 4.5.8.

The head profile shows the freshwater head ranges from 12.7 m to 15.2 m. Between 300 m and 450 m no fresh water head was derived, because of the low transmissivity.

The uncertainty related to the derived freshwater heads is dependent on the test section transmissivity. Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities.

7.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with transmissivities as low as 1.10⁻⁸ m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. In all of the cases it was possible to get a good match quality by using radial flow geometry. In no cases an alternative analysis with a flow dimension unequal to two was performed.

8 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation. pp 293–302.

Chakrabarty C, Enachescu C, 1997. Using the Devolution Approach for Slug Test Analysis: Theory and Application. Ground Water Sept.–Oct. 1997. pp 797–806.

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc., Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. Transactions, American Geophysical Union, Volume 33, No 4, pp 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration. Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. Water Resour. Res. v. 25, no. 7, pp 1591–1602.

Rhen I, 2005. Reporting influence radius – proposal (2005-02-09).

SKB 2001. Platsundersökningar. Undersökningsmetoder och generellt genomförandeprogramm. SKB R-01-10 Svensk Kärnbränslehantering AB.

SKB 2002. Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering AB.

SKB 2006. Program för platsundersökning vid Simpevarp. SKB R-05-37, Svensk Kärnbränslehantering AB.

Borehole: KLX20A

APPENDIX 1

File Description Table

HYDRC	TES	FING V	VITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX20A						
TEST- A	AND H	FILEPI	ROTO	COL	Testorder dated : 2006-11-07						
Teststart		Interval boundari	es	Na	me of Datafiles	Testtype	Copied to	Plotted	Sign.		
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2006-11-08	20:26	107.50	207.50	KLX20A_0107.50_200611082026.ht2	KLX20A_107.50-207.50_061108_1_CHir_Q_r.csv	Chir	2006-11-14	2006-11-08			
2006-11-09	07:43	207.50	307.50	KLX20A_0207.50_200611090743.ht2	KLX20A_207.50-307.50_061109_1_CHir_Q_r.csv	Chir	2006-11-14	2006-11-09			
2006-11-09	11:20	307.50	407.50	KLX20A_0307.50_200611091120.ht2	KLX20A_307.50-407.50_061109_1_Pi_Q_r.csv	Pi	2006-11-14	2006-11-09			
2006-11-09	14:54	348.00	448.00	KLX20A_0348.00_200611091454.ht2	KLX20A_348.00-448.00_061109_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-09			
2006-11-09	23:16	307.50	407.50	KLX20A_0307.50_200611092316.ht2	KLX20A_307.50-407.50_061109_2_CHir_Q_r.csv	CHir	2006-11-14	2006-11-09			
2006-11-10	19:13	102.20	122.20	KLX20A_0102.20_200611101913.ht2	KLX20A_102.20-122.20_061110_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-10			
2006-11-10	21:58	107.50	127.50	KLX20A_0107.50_200611102158.ht2	KLX20A_107.50-127.50_061110_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-10			
2006-11-11	00:09	127.50	147.50	KLX20A_0127.50_200611110009.ht2	KLX20A_127.50-147.50_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-11			
2006-11-11	06:37	147.50	167.50	KLX20A_0147.50_200611110637.ht2	KLX20A_147.50-167.50_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-11			
2006-11-11	08:50	167.50	187.50	KLX20A_0167.50_200611110850.ht2	KLX20A_167.50-187.50_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-11			
2006-11-11	11:05	187.50	207.50	KLX20A_0187.50_200611111105.ht2	KLX20A_187.50-207.50_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-11			
2006-11-11	13:59	193.50	213.50	KLX20A_0193.50_200611111359.ht2	KLX20A_193.50-213.50_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-11			
2006-11-11	16:40	213.00	233.00	KLX20A_0213.00_200611111640.ht2	KLX20A_213.00-233.00_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-11			
2006-11-11	19:04	233.00	253.00	KLX20A_0233.00_200611111904.ht2	KLX20A_233.00-253.00_061111_1_Pi_Q_r.csv	Pi	2006-11-14	2006-11-11			
2006-11-11	21:21	253.00	353.00	KLX20A_0253.00_200611112121.ht2	KLX20A_253.00-273.00_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-11			

HYDRC)TES]	FING V	WITH]	PSS	DRILLHOLE IDENTIFICATIO	DRILLHOLE IDENTIFICATION NO.: KLX20A					
TEST- A	AND I	FILEPI	ROTO	COL	Testorder dated : 2006-11-07						
Teststart	Time	Interval boundari	es	Na (* UT2 51-)	me of Datafiles	Testtype	Copied to	Plotted	Sign.		
2006-11-11	23:23	273.00	293.00	(*.H12-file) KLX20A_0273.00_200611112323.ht2	(*.CSV-file) KLX20A_273.00-293.00_061111_1_CHir_Q_r.csv	CHir	2006-11-14	2006-11-12			
2006-11-12	01:25	287.50	307.50	KLX20A_0287.50_200611120125.ht2	KLX20A_287.50-307.50_061112_1_CHir_Q_r.csv	Chir	2006-11-14	2006-11-12			

Borehole: KLX20A

APPENDIX 2

APPENDIX 2-1

Test 107.50 – 207.50 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

APPENDIX 2-2

Test 207.50 – 307.50 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

APPENDIX 2-3

Test 307.50 – 407.50 m

Pressure and flow rate vs. time; cartesian plot (analysed)

Interval pressure and temperature vs. time; cartesian plot (analysed)

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Pulse injection; deconvolution match

APPENDIX 2-4

Test 348.00 – 448.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 102.20 – 122.20 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 107.50 – 127.50 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 127.50 – 147.50 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 147.50 – 167.50 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 167.50 – 187.50 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 187.50 – 207.50 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 193.50 – 213.50 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 213.00 – 233.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 233.00 – 253.00 m

Pressure and flow rate vs. time; cartesian plot

-3

10

-2

10

Pulse injection; deconvolution plot
APPENDIX 2-14

Test 253.00 – 273.00 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

. .

tD

10 4

10³

CHI phase; log-log match

FLOW MODEL : Two shell composite BOUNDARY CONDITIONS: Constant pressure WELL TYPE : Source SUPERPOSITION TYPE : No superposition PLOT TYPE : Log-log

10 ²

T 3.38E-06 S 1.00E-06 n1 2.00E+00 n2 2.00E+00 rD1 2.64E+02 brw 1.84E+00 s -2.63E+00

10

m2/s -----

10 6

10 -2

CHIR phase; log-log match

CHIR phase; HORNER match

APPENDIX 2-15

Test 273.00 – 293.00 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

APPENDIX 2-16

Test 287.50 – 307.50 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Borehole: KLX20A

APPENDIX 3

Test Summary Sheets

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxema	r Test no:			1	
Borehole ID:	KLX20A	Test start:	061109 0			
Test section from - to (m):	207.50-307.50 n	Responsible for test execution:			Stephan Rohs Philipp Wolf	
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Crist	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
2700	T ¹⁰	p ₀ (kPa) =	2258			
KLX20A_207.50-307.50_061109_1_CHir_Q_r	P section Pabove 9	p _i (kPa) =	2256			
2500	- P below - Q 8	$p_{p}(kPa) =$	2453	p _F (kPa) =	2279	
		(m^{3}/c)	6 17E-05	F 1 (- 7		
© 2300		$\frac{Q_p(m/s)}{tn(s)} =$	1800	t _r (s) =	1800	
22100 ·	1], at a set of the se	$(p_{1}(3))^{*} =$	1 00E 06	$(3)^{*}$	1 00E 06	
- · · ·	ction	Sel S (-)=	1.00E-00	Sel S (-)=	1.0012-00	
5 1900 ·	·······•.	EC _w (m3/m)=	10.2		L	
		Temp _w (gr C)=	10.3			
1700 -		Derivative fact.=	0.04	Derivative fact.=	0.03	
Elapsed	Time [h]	Results	Results			
		$\Omega/c_{\rm c}$ (m ² /c)=	3 1E-06	lioouno		
Log Log plot incl. dorivatos, fl	ow poriod	Q/S (III /S) =	0.1E-00		┣────┤	
Log-Log plot met. derivates- n	ow period	T _M (m /s)=	4.0Ľ-00	Elow rogimo:	transiont	
		Flow regime.		Flow regime.		
Elapsed time [h	۱ 	$dt_1 (min) =$	0.42	$dt_1 (min) =$	0.33	
		$dt_2 (min) =$	2.18	$dt_2 (min) =$	0.71	
	10 °	$T(m^{2}/s) =$	4.0E-06	T (m²/s) =	8.7E-06	
		S (-) =	1.0E-06	S (-) =	1.0E-06	
10 1	0.3	K_{s} (m/s) =	4.0E-08	K _s (m/s) =	8.7E-08	
2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$S_{s}(1/m) =$	1.0E-08	$S_s(1/m) =$	1.0E-08	
(040)) (0	• [10 ⁻¹]	C (m ³ /Pa) =	NA	C (m³/Pa) =	1.4E-09	
, starter and star	the second secon	C _D (-) =	NA	C _D (-) =	1.6E-01	
	0.03	ξ(-) =	-0.9	ξ(-) =	3.2	
	10 2			2		
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
10 ⁴ 10 ⁵ 10	10 ⁶ 10 ⁷ 10 ³	S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.		
		dt_1 (min) =	0.42	C (m³/Pa) =	1.4E-09	
10, ⁵	·	dt_2 (min) =	2.18	C _D (-) =	1.6E-01	
	10 3	$T_T (m^2/s) =$	4.0E-06	ξ(-) =	-0.9	
		S (-) =	1.0E-06			
		$K_s (m/s) =$	4.0E-08			
10 ⁻¹		S _s (1/m) =	1.0E-08			
		Comments:				
•	30	The recommended	transmissivity of	f 4.0E-6 m2/s was de	erived from the	
10 [°]	analysis of the CHi	phase (inner zoi	ne), which shows the	clearest flow		
	10 ¹	stabilization. The co	onfidence range	for the interval trans	smissivity is	
		estimated to be 1E-	6 m2/s to $8E-6 r$	m2/s. The flow dime	nsion displayed	
	3	during the test is 2.	I he static press	ure measured at tran	sducer depth,	
	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	Horner plot to a val	ue of 2 264 2 kF	sing straight line exti	apolation in the	
tD/CD			же 01 2,20т.2 NI	••••		

Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]		Р			
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX20A	Test start:	061109 11				
Test section from - to (m):	307.50-407.50 m	Responsible for test execution:			Stephan Rohs Philipp Wolf		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Cristi	an Enachescu		
Lincer plot O and p		test evaluation:		Passyan, pariad			
Linear plot Q and p		Flow period		Recovery period			
			2072	muata			
3400		$p_0 (kPa) =$	29/3				
- KLX20A_307.50_061109_1_Pi_Q_r • P section • P above • P below		$p_i(\mathbf{K}\mathbf{F}\mathbf{a}) =$	2988	$p_{\rm c}$ (kDa) =	2109		
3200 -	· Q = 0.012	$p_p(KPa) =$	3155	р _ғ (кра) =	3108		
83000	0.010	Q _p (m [°] /s)=	NA		40.60		
	E E E E E E E E E E E E E E E E E E E	tp (s) =	10.2	t _F (S) =	4860		
22000 -	- 0.000 - 20 20 4	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06		
n ho le	트 - 0.000	EC _w (mS/m)=					
Ê2600 -	: : : :	Temp _w (gr C)=	11.3				
2400		Derivative fact.=	NA	Derivative fact.=	0.02		
	· · · · · · · · · · · · · · · · · · ·						
2200 0.00 0.50 1.00 1.50 2.00 2.50 Elapsed Time [h]							
		Results		Results			
		Q/s (m²/s)=	NA				
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	NA				
		Flow regime:	transient	Flow regime:	transient		
		dt ₁ (min) =	NA	dt ₁ (min) =	NA		
		dt ₂ (min) =	NA	dt ₂ (min) =	NA		
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	4.0E-11		
		S (-) =	NA	S (-) =	1.0E-06		
		K _s (m/s) =	NA	K _s (m/s) =	4.0E-13		
		S _s (1/m) =	NA	S _s (1/m) =	1.0E-08		
Not an:	alysable	$C (m^3/P_2) =$	NA	$C (m^3/P_2) =$	1.7F-10		
		$C_{D}(-) =$	NA	$C_{\rm D}(-) =$	1.8F-02		
		$\xi(z) = 0$	NA	ε ₍₋) =	-1 5		
		5 ()		5 ()			
		$T_{(m^{2}/2)} =$	ΝΔ	$T_{(m^{2}/2)} =$	ΝΔ		
		$S_{ORF}(1175) =$	NA	$S_{ORF}(1175) =$	NΔ		
		$D_{\text{GRF}}(r) =$	NA	$D_{\text{GRF}}(r) =$	NΔ		
l og l og plot incl. derivatives	recovery period	Selected represe	ntative param		1.0.1		
		dt (min) =	NA	$C (m^3/D_2) =$	1 7E-10		
10 ⁻³ Elapsed time (h)	10. ⁻¹ 10 ^{.0} 40. ¹	dt_{a} (min) =	NA	$C_{111}(Pa) = C_{22}(-) = -$	1 8⊑_02		
10 3	<u> </u>	=		SD(-) -	1.02-02		
	10	$I_{T}(m/s) =$	4.02-11	ς(-) –	-1.5		
10 ²		S (-) =	1.0E-00				
		R_s (III/S) =	4.0E-13				
	$S_{s}(1/m) =$	1.0E-08					
1 10 ¹	Comments:						
	10	The recommended t	ransmissivity of	4.0E-11 m2/s was c	lerived from the		
10 °	interval transmissivi	ity is estimated t	r_{0} be 1E-11 to 9E-11	mge for the m2/s. The			
	10 -2	flow dimension disp	played during the	e test is 2. The static	pressure could		
		not be extrapolated	due to the very	low transmissivity.			
10 ° 10 1	10 ⁻² 10 ⁻³ 10 ⁻⁴						

Test Summary Sheet						
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>	CH			
Area:	Laxema	ar Test no:			1	
Borehole ID:	KLX20	A Test start:	061110 19:1		061110 19:13	
Test section from - to (m):	102.20-122.20	n Responsible for			Stephan Rohs	
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for		Crist	an Enachescu	
Linear plot Q and p		test evaluation:		Passyony pariod		
Linear plot & and p		Flow period		Recovery period		
		n. (kPa) =	885	inuata		
1200	10	$p_0 (kPa) =$	884			
1150 - •	_102.20-122.20_061110_1_CHIF_Q_F • P section	$p_1(kPa) =$	1105	n-(kPa) =	887	
1100	P above P below Q	$p_{p}(R a) = 0$	8 50E-05	ρ _F (κι α) –	887	
	7	$Q_p (m/s) =$	8.50E-05	t_ (c) =	2400	
e 1000 -	16 <u>5</u>	(p(s)) =	1.00E.06	$r_{\rm F}(3) =$	1.00E.06	
		S el S (-)= EC _w (mS/m)=	1.002-00	S el S (-)=	1.00E-00	
850 .		Temp _w (gr C)=	8.4			
800	- 2	Derivative fact.=	0.04	Derivative fact.=	0.04	
750	1					
700	00 1.20 1.40 1.60 1.80 2.00					
Elapsed	Time [h]	Results		Results	•	
		Q/s (m ² /s)=	3.8E-06			
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	3.9E-06			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time (h	12 	dt ₁ (min) =	6.78	dt ₁ (min) =	3.42	
		dt ₂ (min) =	16.68	dt ₂ (min) =	17.84	
	10 °	T (m²/s) =	5.3E-06	T (m²/s) =	4.2E-06	
	•	S (-) =	1.0E-06	S (-) =	1.0E-06	
10 1	0.3	$K_s (m/s) =$	2.7E-07	$K_s (m/s) =$	2.1E-07	
· · · · · · · · · · · · · · · · · · ·		$S_{s}(1/m) =$	5.0E-08	S _s (1/m) =	5.0E-08	
	10 "	C (m ³ /Pa) =	NA	C (m³/Pa) =	3.9E-09	
10 °	:	$C_{\rm D}(-) =$	NA	C _D (-) =	4.3E-01	
· · · · · · · · · · · · · · · · · · ·		ξ(-) =	-1.7	ξ(-) =	-1.9	
· · ·	10 -2					
· ·		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
10 ⁻² 10 ⁻³	10 ⁴ 10 ⁵ 10 ⁶	$S_{GRF}(-) =$	NA	S _{GRF} (-) =	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	neters.	2.05.00	
Elapsed time [h]	10 ⁻¹	$dt_1(min) =$	3.42	C (mř/Pa) =	3.9E-09	
10 ²	3000	dt_2 (mm) =	17.04	$C_{\rm D}(-) =$	4.3E-01 1.0	
		$I_{T}(m^{-}/s) =$	4.2E-00	ς(-) –	-1.9	
	10 -	S(-) = K(m/s) =	1.0E-00 2.1E-07			
10 1	300	$S_{s}(11/s) =$	5.0E-08			
		Comments:	0.02-00			
Comments:						
10 ⁻¹		analysis of the CHi	r phase (outer zo	one), which shows th	e clearest flow	
	30	stabilization. The c	onfidence range	for the interval trans	smissivity is	
	·····	estimated to be 1E-	06 m2/s to 8E-6	m2/s. The flow dim	ension	
		displayed during th	e test is 2. The s	tatic pressure measu	red at g straight line	
10 [°] 10 ¹ 10×CD	10 ⁻² 10 ⁻³ 10 ⁻⁴	extrapolation in the	Horner plot to a	value of 880.9 kPa		
		1	1			

Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]		CHir			
Area:	Laxemar	Test no:					
Borehole ID:	KLX20A	Test start:	061110 2				
Test section from - to (m):	107.50-127.50 m	Responsible for			Stephan Rohs		
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu		
		test evaluation:		-			
Linear plot Q and p		Flow period		Recovery period			
		Indata		Indata			
1200 1		p ₀ (kPa) =	928				
KLX20A_107.50-127.50_061110_1_CHir_Q_r	P section P above	p _i (kPa) =	928				
1100 -	P below 7	p _p (kPa) =	1127	p _F (kPa) =	932		
1050 -	- 6	Q _p (m ³ /s)=	4.83E-05				
re 4 3 9 1000	- 5 [ei ei	tp (s) =	1200	t _F (s) =	1200		
3 8 9 950		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
특 900 ·	ection	EC _w (mS/m)=					
Q 850 .		Temp _w (gr C)=	8.4				
800 -	- 2	Derivative fact.=	0.07	Derivative fact.=	0.04		
750 -	· · ·						
0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40 d Time [h]	Results		Results			
		Q/s $(m^{2}/s)=$	2.4E-06		1		
Log-Log plot incl. derivates- fl	ow period	$T_{M}(m^{2}/s) =$	2.5E-06		l		
5 51	•	Flow regime:	transient	Flow regime:	transient		
to ⁴ to ³ Elapsed time	(h)	dt ₁ (min) =	9.96	dt₁(min) =	3.35		
10	03	dt_2 (min) =	17.70	dt_2 (min) =	18.78		
0 0 0 0 0 0 00 00	999 m	$T_{m}(m^{2}/c) =$	4.3E-06	$T_{m}(m^{2}/c) =$	3.6E-06		
	10 -1	S(-) =	1.0E-06	S(-) =	1.0E-06		
10 0	al marine in	K (m/s) =	2 2E-07	K (m/s) =	1.8E-07		
	0.03	$R_{s}(11/3) =$	5.05.08	$R_{s}(11/3) =$	5 0E 08		
(G04)		$S_{s}(1/11) =$		$S_{s}(1/11) =$	3.0E-08		
52 C		C (m [*] /Pa) =		C (m ² /Pa) =	1.12-09		
10 -1	0.003	$C_{\rm D}(-) =$	114	$C_D(-) =$	1.3E-01		
	•	ζ(-) =	-1.9	ς(-) =	-2.4		
	10 -3	$T_{(m^{2}/c)} =$	NA	$T_{(m^{2}/c)} =$	NA		
10 ⁻³ 10 ⁻⁴	10 ⁵ 10 ⁶ 10 ⁷	$S_{ORF}(-) =$	NA	$S_{ORF}(1173) =$	NA		
		$D_{ORF}(-) =$	NA	$D_{ORF}(-) =$	NA		
l og-l og plot incl. derivatives-	recovery period	Selected represe	ntative param		101		
33 Plot mon derivatives-		dt_{4} (min) =	3 35	$C (m^3/D_2) =$	1 1F_00		
Elapsed time [h]		dt_{o} (min) =	18 78	$C_{p}(-) =$	1.3E_01		
10 '	300	$T_{m}^{2}(m^{2}/c) =$	3 65-06	ε ₍₋) –	⊃ /		
		$I_{T}(m/s) =$	1.0E-00	ς (-) –	-2.4		
	t 10 ²	(-) –			┠────┤		
10 *		κ_{s} (m/s) =	1.8E-07		ļ		
	30	$S_s(1/11) =$	5.0E-08		<u> </u>		
	10 ² 10 ² 10 ² 10 ²	The recommended t analysis of the CHin stabilization. The co estimated to be 1E- displayed during the transducer depth, w extrapolation in the	ransmissivity of phase (outer zo onfidence range 06 m2/s to 7E-6 e test is 2. The so as derived from Horner plot to a	f 3.6E-06 m2/s was a one), which shows a for the interval tran- m2/s. The flow dim tatic pressure measu the CHir phase usin a value of 923.5 kPa	lerived from the horizontal flow smissivity is lension red at lg straight line		
1			- Flottot				

	Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]		CHir			
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX20A	Test start:	061111 06:		061111 06:37		
Test section from - to (m):	147.50-167.50 m	Responsible for test execution:			Stephan Rohs Philipp Wolf		
Section diameter, 2·r _w (m):	0.076	Responsible for		Cristi	an Enachescu		
Linear plot Q and p		Flow period		Recovery period			
		Indata		Indata			
		p ₀ (kPa) =	1231				
1450 KLX20A_147.50-167.50_061111_1_CHir_Q_r	• P section	p _i (kPa) =	1225				
1400 -	P above P below O	$p_{p}(kPa) =$	1425	p _F (kPa) =	1230		
1350 -		Q_{n} (m ³ /s)=	4.50E-08				
[8] 8]	م - 0.000 آق	tp(s) =	1200	t _F (s) =	1200		
1250		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
9 1200 -	0.004 <mark></mark>	EC _w (mS/m)=					
۲ 1150 ·		Temp _w (ar C)=	8.9				
1100	0.002	Derivative fact.=	0.17	Derivative fact.=	0.03		
1050	· 0.000						
0.00 0.20 0.40 0.60 0.80 Elapsed	1.00 1.20 1.40 1.60 1.80 Time [h]						
		Results		Results			
		$Q/s (m^2/s) =$	2.2E-09				
Log-Log plot incl. derivates- fl	ow period	$T_{M}(m^{2}/s) =$	2.3E-09				
	•	Flow regime:	transient	Flow regime:	transient		
10, 4 Elapsed time [h]		dt_1 (min) =	NA	dt_1 (min) =	NA		
10	2 2000	dt_2 (min) =	NA	dt_2 (min) =	NA		
	.	$T(m^{2}/s) =$	2.7E-09	$T(m^{2}/s) =$	3.2E-09		
	10 3	S (-) =	1.0E-06	S (-) =	1.0E-06		
10 ⁻¹	a a w	$K_s (m/s) =$	1.4E-10	$K_s (m/s) =$	1.6E-10		
• • •	300	$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08		
0, (140)	[rum]	$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	7.7E-11		
2 · · ·	14. (14	$C_{D}(-) =$	NA	$C_{\rm D}(-) =$	8.5E-03		
10	30	ξ(-) =	3.8	ξ(-) =	7.4		
• •							
· · · ·	• • 10 ¹	$T_{GRE}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA		
10 ⁴ 10 ⁵	10 [°] 10 [°] 10 [°]	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
5		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters.			
Elapsed time (h)	.1 0 1	dt ₁ (min) =	NA	C (m³/Pa) =	7.7E-11		
10 2		dt ₂ (min) =	NA	C _D (-) =	8.5E-03		
	10 3	$T_{T} (m^{2}/s) =$	3.2E-09	ξ(-) =	7.4		
		S (-) =	1.0E-06				
10 1	300	K _s (m/s) =	1.6E-10				
		S _s (1/m) =	5.0E-08				
Comments:							
$\int_{10}^{\frac{5}{4}} \frac{1}{8}$ The recommended transmissivity of 3.2E-09 m2/s was					lerived from the		
analysis of the CHir phase (inner zone), which shows the better data					e better data		
3.444	10 1	and derivative quality	ty. The confider	$10 \text{ m}^2/\text{s to } 5\text{F}_9 \text{ m}^2$	erval 2/s. The flow		
· * * .		dimension displaye	d during the test	is 2. The static pres	sure could not		
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³	be extrapolated due	to the low trans	missivity.			
tb/CD							

Test Summary Sheet							
Project:	Oskarshamn site invest	igation	Test type:[1]			CHir	
Area:	La	xemar	Test no:			1	
Borehole ID:	K	LX20A	Test start:			061111 11:05	
Test section from - to (m):	187.50-207	7.50 m	Responsible for test execution:			Stephan Rohs Philipp Wolf	
Section diameter, $2 \cdot r_w$ (m):		0.076	Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p			Flow period	-	Recovery period		
			Indata		Indata		
4770		0.010	p₀ (kPa) =	1528			
KLX20A_187.50-207.50_061111_1_CHir_Q_r	P section Pabove	0.010	p _i (kPa) =	1534			
1700 -	P below Q	+ 0.008	$p_{\rm p}(kPa) =$	1709	p₌ (kPa) =	1613	
1650 -		0.000	O_{1} (m ³ /c)-	2 67E-08	pr (~)	1015	
		- 0.006 ju	$\frac{Q_p(\Pi / S)}{tn(s)} =$	1200	t_ (s) =	2400	
21550	····	Rate [I	(p(3)) =	1.00E.06	u (3) −	1.00E.06	
	•	ection ection	SelS (-)=	1.00E-00	S el S (-)=	1.00E-00	
2 SUU -		Ĩ	EC _w (mS/m)=			ļ	
1450 -		- 0.002	Temp _w (gr C)=	9.3			
1400			Derivative fact.=	0.2	Derivative fact.=	0.07	
1350	1.50 2.00	0.000					
Etapsed	lime [h]		Rosults		Rosults		
			$\Omega(a_1(m^2/a) =$	1.5E-09	Results		
Log Log plot incl. dorivatos, f	low poriod		$Q/S (\Pi /S) =$	1.5E-09		╉────┤	
Log-Log plot lifel. derivates- i	low period		I _M (m /s)=	1.0L-09	Elow rogimo:	transiont	
Elapsed time [ħ]			Flow regime.	transient	Flow regime.		
10 10, 10, 10, 10, 10, 10, 10, 10, 10, 1		}	$dl_1 (min) =$	NA	$dl_1(min) =$	NA	
	•	3000	$dt_2 (min) =$	NA	$dt_2 (min) =$	NA	
		-	$T(m^2/s) =$	2.2E-10	$T(m^2/s) =$	1.4E-10	
10 °	النبيد	10 3	S (-) =	1.0E-06	S (-) =	1.0E-06	
	and an and a second	300	K _s (m/s) =	1.1E-11	K _s (m/s) =	7.2E-12	
		[min1]	S _s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-08	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 ² 1011	C (m³/Pa) =	NA	C (m³/Pa) =	1.4E-10	
10 ⁻¹			C _D (-) =	NA	C _D (-) =	1.6E-02	
		30	ξ(-) =	-2.8	ξ(-) =	-3.1	
		10 1					
10 ⁻³ 10 ⁻² 1D	10 ⁻¹ 10 ⁰ 10 ¹	ł	T _{GRF} (m ² /s) =	NA	T _{GRF} (m²/s) =	NA	
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative param	neters.		
			dt ₁ (min) =	NA	C (m ³ /Pa) =	1.4E-10	
10, ² , 10, ¹ Elapsed time (h)			dt ₂ (min) =	NA	C _D (-) =	1.6E-02	
10 "		300	$T_{T}(m^{2}/s) =$	2.2E-10	ξ(-) =	-2.8	
			S (-) =	1.0E-06		<u> </u>	
	_	10 2	$K_{s}(m/s) =$	1.1F-11		╉────┤	
10 -1-			$S_{s}(1/m) =$	5.0F-08			
		50 30	Comments:				
		- 10 ⁻¹	The recommended	transmissivity of	$52.2E 10 m^{2/c} was$	derived from the	
10 ⁻³		06d	analysis of the CHi	phase, which sh	ows the better data a	and derivative	
		3	quality. The confid	ence range for th	e interval transmiss	ivity is	
	F	10 ⁰	estimated to be 9E-	11 m2/s to 6E-1	0 m2/s. The flow dia	nension	
· · · · · · · · · · · · · · · · · · ·			displayed during th	e test is 2. The s	tatic pressure could	not be	
10 10 ⁻⁷ ID/CD	טד 10 [°] 10 [°]		extrapolated due to	the low transmi	ssivity.		

	Test Sun	mary Sheet			
Project:	Oskarshamn site investigation	on Test type:[1]			CHir
Area:	Laxem	ar Test no:			1
Borehole ID:	KLX20	A Test start:	061111 13:		
Test section from - to (m):	193.50-213.50	m Responsible for test execution:			Stephan Rohs Philipp Wolf
Section diameter, 2·r _w (m):	0.0	76 Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p	-	Flow period		Recovery period	l
		Indata		Indata	
1800 KLX20A_193.50-213.50_061111_1_CHir_Q_r	• P section 0.020	p ₀ (kPa) =	1570		
1750	P above P below	p _i (kPa) =	1574		1
1700	· · · · · · · · · · · · · · · · · · ·	$p_{p}(kPa) =$	1752	p _⊑ (kPa) =	1638
		$- (m^3/c) -$	6.67E-08	P1 ()	
¥1650 -		$\frac{Q_p(11/3)}{tn(s)} =$	1200	t _r (s) =	1200
2 1600 	0.010	(p(3)) = 0	1 00E 06	$(-1, 0^*)$	1 00E 06
₩ 5 5 5 5 5 5 5 5 5 5 5 5 5		Sel S (-)=	1.001-00	Sel S (-)=	1.00E-00
å 1500 -	· · · · · · · · · · · · · · · · · · ·	$= EC_w (IIIS/III) =$	0.2		
- 0051		Temp _w (gr C)=	9.3		
1450 -		Derivative fact.=	0.08	Derivative fact.=	0.06
1400 0.00 0.50 1.00	1.50 2.00				
Elapsed 1	îme (h)	Results		Results	<u> </u>
		$\Omega/s (m^2/s) =$	3.7E-09		
Log-Log plot incl. derivates- fl	ow period	$T_{\rm H} (m^2/s) =$	3.8E-09		
		Flow regime:	transient	Flow regime.	transient
10, ³ Elapsed time [h]	10 [°] , 10 [°]	dt₄ (min) =	7 44	dt (min) =	NA
10 '	10 ³	$dt_1(min) =$	17.44	$dt_1 (min) =$	NA
		$T_{1}(r_{1}r_{2}^{2}(r_{1}))$	1 1E-09	$T_{2}(1111) = T_{2}(1111)$	9.0E-10
	300	1 (m/s) =	1.1E-09	I (m /s) =	9.0E-10
10.0		3(-) = 1	T.0Ľ-00	S(-) = K(m/n) = -	
	10 2	R_s (III/S) =	5.3E-11	$\kappa_{\rm s}$ (III/S) =	4.5E-11
		$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08
⁹⁰		C (m³/Pa) =	NA	C (m /Pa) =	2.4E-10
10 -1	10 1	$C_{\rm D}(-) =$	NA	C _D (-) =	2.6E-02
		ξ(-) =	-2.5	ξ(-) =	-2.8
	3	- (2)	NIA	- (2)	ΝΑ
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³	$I_{GRF}(m^{-}/s) =$		I _{GRF} (m ⁻ /s) =	
L L LD		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
Les les pletinel devivatives	waaawamu naniad	D _{GRF} (-) =		$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	0.45.40
Elapsed time (h)	10 ⁰ ¹⁰ ²	$at_1 (min) =$	/.44	C (m)/Pa) =	2.4E-10
10 1		$dt_2 (min) =$	17.40	C _D (-) =	2.6E-02
:	10 3	$T_{T}(m^{2}/s) =$	1.1E-09	ξ(-) =	-2.5
1		S (-) =	1.0E-06		
10 07	300	$K_s (m/s) =$	5.3E-11		
	10 ²	S _s (1/m) =	5.0E-08		
		Comments:			
10 ⁻⁴ 	30 10 ¹ 10 ¹ 10 ² 10 ³	The recommended analysis of the CHi quality. The confid estimated to be 6E- displayed during th extrapolated due to	transmissivity of phase, which sh ence range for th 10 m2/s to 5E-0 e test is 2. The s the low transmi	f 1.1E-09 m2/s was of ows the better data are interval transmiss 9 m2/s. The flow direct tatic pressure could ssivity.	derived from the and derivative ivity is mension not be

	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Pi
Area:	Laxemar	Test no:			1
Borehole ID:	KLX20A	Test start:	061111 15		
Test section from - to (m):	233.00-253.00 m	Responsible for test execution:			Stephan Rohs Philipp Wolf
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Crist	an Enachescu
l inear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
		n. (kPa) =	1865	indutu	
		p ₀ (kPa) =	1803		
2100 KLX20A_233.00-253.00_061111_1_Pi_Q_r	P section	p _i (kFa) =	1902	n (kDa) -	2007
2050 -	P below Q	$p_p(kPa) =$	2003	р _F (кра) –	2007
2000 -		$Q_p (m^{\circ}/s) =$	#IN V	t (-)	2400
e 1950 - a	⁻²⁰ Ē	tp (s) =	10	t _F (S) =	2400
58 82 1900	ت • د • ۲ عد	Sel S (-)=	1.00E-06	S el S (-)=	1.00E-06
	ection	EC _w (mS/m)=			
a a a a a a a a a a a a a a a a a a a	- 1.0 Ē	Temp _w (gr C)=	9.7		
1800 -		Derivative fact.=	NA	Derivative fact.=	0.07
1750 -					
0.00 0.20 0.40 0.60 C	1.80 1.00 1.20 1.40 1.60	Results	Results		
		Q/s (m ² /s)=	NA		
Log-Log plot incl. derivates- f	low period	T_{M} (m ² /s)=	NA		
	•	Flow regime:	transient	Flow regime:	transient
		dt₁ (min) =	NA	dt₁ (min) =	0.20
		dt_{2} (min) =	NA	dt_{2} (min) =	1.22
		$T_{m}^{2}(c) =$	NA	$T_{m}^{2}(c) =$	1.7E-11
		S (-) =	NA	S (-) =	1.0E-06
		K (m/s) =	NA	K (m/s) =	8.4E-13
		$S_{\rm s}(1/m) =$	NΔ	$S_{\rm s}(1/m) =$	5.0E-08
Not a	nalysed	$O_{s}(m^{3}(D_{z}))$		$O_{s}(m^{3}(D_{z}))$	5.0E-00 7.1E-12
		C (m /Pa) =		C (m /Pa) =	7.12-12
		$C_{\rm D}(-) =$		$C_{\rm D}(-) =$	7.02-04
		ζ(-) =	NA	ς(-) =	-0.2
		$I_{GRF}(m^2/s) =$	NA	$I_{GRF}(m^2/s) =$	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
	• •	$D_{GRF}(-) =$	NA	$D_{\text{GRF}}(-) =$	NA
Log-Log plot incl. derivatives	- recovery period	Selected represe	entative param	neters.	
Elapsed time (h)		$dt_1 (min) =$	0.20	C (m³/Pa) =	7.1E-12
10 2		$dt_2 (min) =$	1.22	$C_{D}(-) =$	7.8E-04
	10	T _⊤ (m²/s) =	1.7E-11	ξ(-) =	-0.2
		S (-) =	1.0E-06		
10 °		$K_s (m/s) =$	8.4E-13		
	$S_s(1/m) =$	5.0E-08			
10 °	and the second sec	Comments:			
	10 ⁻¹	The recommended	transmissivity of	f 1.7E-11 m2/s was o	lerived from the
		analysis of the Pi pl	nase (outer zone). The confidence ra	nge for the
	10 ⁻²	Interval transmissiv	ity is estimated t	to be $7E-12$ to $4E-11$	m2/s. The
·		not be extrapolated	due to the verv	e test is 2. The static	pressure could
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³	not of entrupolated	and to the very	ion dunishilissivity.	
Ct					

	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX20A	Test start:	061111 21		
Test section from - to (m):	253.00-273.00 m	Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	Philipp woil ian Enachescu
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
2300	т 10	p ₀ (kPa) =	2013		
KLX20A_253.00-273.00_061111_1_CHir_Q_r	P section P above g	p _i (kPa) =	2008		
2100	· P Below · Q 8	p _p (kPa) =	2206	p _F (kPa) =	2028
		Q _p (m³/s)=	6.20E-05		10.00
2,2000 9 9 9 8 8	+ 6 2 2	tp (s) =	1200	t _F (s) =	1200
2 1900 - 		S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
1800 - O		$EC_w (mS/m) =$			
1700 -	- 2	Temp _w (gr C)=	9.9		
1600 -	-1	Derivative fact.=	0.02	Derivative fact.=	0.04
1500	0.80 1.00 1.20 1.40				
		Results		Results	
		$Q/s (m^2/s) =$	3.1E-06		
Log-Log plot incl. derivates- fl	ow period	$T_{M}(m^{2}/s)=$	3.2E-06		ł
0 01		Flow regime:	transient	Flow regime:	transient
Elapsed tim	re [h] . 10, ⁻²	dt_1 (min) =	0.67	dt_1 (min) =	0.31
10	3	dt_2 (min) =	2.08	dt_2 (min) =	0.70
	- 0	$T(m^{2}/s) =$	3.4E-06	$T(m^2/s) =$	7.8E-06
		S (-) =	1.0E-06	S (-) =	1.0E-06
10 1	0.3	$K_s (m/s) =$	1.7E-07	$K_s (m/s) =$	3.9E-07
		S _s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-08
Iden: (1vdb	10 -1	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	7.8E-10
10 °		C _D (-) =	NA	C _D (-) =	8.6E-02
· .	0.03	ξ(-) =	-2.6	ξ(-) =	3.5
	10 -2				
	· .	T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA
10 ² 10 ³	10 ⁻⁴ 10 ⁻² 10 ⁻² tD	S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.	
		dt ₁ (min) =	0.67	C (m³/Pa) =	7.8E-10
Elapsed time [h]		dt ₂ (min) =	2.08	C _D (-) =	8.6E-02
	10 ³	$T_{T}(m^{2}/s) =$	3.4E-06	ξ(-) =	-2.6
		S (-) =	1.0E-06		
	300	K _s (m/s) =	1.7E-07		
10 1	10 2	S _s (1/m) =	5.0E-08		
a 10 [°]	and good good good good good good good go	Comments: The recommended t analysis of the CHi stabilization. The co estimated to be 9E- during the test is 2. was derived from th	transmissivity of phase (inner zon onfidence range 7 m2/s to 7E-6 r The static pressure CHir phase us	f 3.4E-6 m2/s was do ne), which shows the for the interval trans m2/s. The flow dime ure measured at tran sing straight line extr	erived from the e clearest flow smissivity is nsion displayed sducer depth, rapolation in the
10 ° 10 1 tD/CD	10 ² 10 ³ 10 ⁴	Horner plot to a val	ue of 2,015.3 kI	Pa.	1 in the

Borehole: KLX20A

APPENDIX 4

Nomenclature

Character	SICADA designation	Explanation	Dimension	Unit
Variables,	constants			
A _w		Horizontal area of water surface in open borehole, not including area of signal cables, etc.	[L ²]	m²
b		Aquifer thickness (Thickness of 2D formation)	[L]	m
В		Width of channel	[L]	m
L		Corrected borehole length	[L]	m
L ₀		Uncorrected borehole length	[L]	m
L _p		Point of application for a measuring section based on its	[L]	m
F		centre point or centre of gravity for distribution of transmissivity in the measuring section.		
L _w		Test section length.	[L]	m
dĽ		Step length, Positive Flow Log - overlapping flow logging. (step length, PFL)	[L]	m
r		Radius	[]]	m
r		Borehole well or soil pipe radius in test section		m
r		Effective borehole, well or soil pipe radius in test section		m
we		(Consideration taken to skin factor)	[-]	
r		Distance from test section to observation section, the	ГI 1	m
I _S		shortest distance.		
r _t		interpreted shortest distance via conductive structures.	[L]	m
r _D		Dimensionless radius, r _D =r/r _w	-	-
Z		Level above reference point	[L]	m
Zr		Level for reference point on borehole	[L]	m
Z _{wu}		Level for test section (section that is being flowed), upper limitation	[L]	m
Z _{wl}		Level for test section (section that is being flowed), lower limitation	[L]	m
Z _{ws}		Level for sensor that measures response in test section (section that is flowed)	[L]	m
Zou		Level for observation section, upper limitation	[L]	m
Zol		Level for observation section, lower limitation		m
Z _{os}		Level for sensor that measures response in observation section	Ĺ	m
E		Evaporation:	[L ³ /(T L ²)]	mm/y, mm/d
		hydrological budget:	П ³ /Т1	m^{3}/s
ET		Evapotranspiration	$[L^{3}/(T L^{2})]$	mm/y,
		bydrological bydgot:	гі ³ /ті	m^{3}/c
D	+	Procinitation		mm/v
P			[L /(I L)]	mm/y , mm/d, $m^{3/2}$
<u> </u>			$[L^{7}]$	m [°] /S
R		Groundwater recharge	[L [°] /(1 L ²)]	mm/y, mm/d,
		hydrological budget:	[L°/T]	m ⁄/s
D		Groundwater discharge	[L ³ /(T L ²)]	mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m³/s
Q _R	1	Run-off rate	$[L^3/T]$	m³/s
Q _p	1	Pumping rate	ſĽ³/TÌ	m³/s
Q	1	Infiltration rate	ſĽ³/TÌ	m³/s
	1			
Q		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$ (Flow rate)	[L ³ /T]	m³/s
Q ₀		Flow in test section during undisturbed conditions (flow logging)	[L ³ /T]	m³/s
Q _p		Flow in test section immediately before stop of flow.	[L ³ /T]	m³/s
1	1		1	

Character	SICADA designation	Explanation	Dimension	Unit
Q _m		Arithmetical mean flow during perturbation phase.	$[L^3/T]$	m ³ /s
Q ₁		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s
Q ₂		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s
50	0		ri ³ / - -1	···· ³ /a
ΣQ	SumQ	Cumulative volumetric flow along borehole		m /s
ΣQ_0	SumQU	conditions (ie, not pumped)		m'/s
ΣQ_1	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q_{p1}	[L³/T]	m³/s
ΣQ_2	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q_{p2}	[L ³ /T]	m³/s
ΣQ_{C1}	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma Q_1 - \Sigma Q_0$	[L ³ /T]	m³/s
ΣQ_{C2}	SumQC2	Corrected cumulative volumetric flow along borehole, $\Sigma O_{2} - \Sigma O_{3}$	[L ³ /T]	m³/s
a		Volumetric flow per flow passage area (Specific	$([L^{3}/T*L^{2}])$	m/s
4		discharge (Darcy velocity, Darcy flux, Filtration velocity)).		
V		Volume	[L ³]	m ³
V _w		Water volume in test section.	ĨL ³ Ĩ	m ³
V _p		Total water volume injected/pumped during perturbation phase.	[L ³]	m ³
v		Velocity	$([L^{3}/T*L^{2}])$	m/s
Va		Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));. $v_a=q/n_e$	([L ³ /T*L ²]	m/s
t		Time	[T]	hour,mi n,s
t _o		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as p_0).	[T]	S
t _F		Duration of recovery phase (from p_p to p_F).	ודו	S
t_1, t_2 etc		Times for various phases during a hydro test.	[T]	hour,mi n,s
dt		Running time from start of flow phase and recovery phase respectively.	[T]	S
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D		$t_{\rm D}$ = T·t / (S· $r_{\rm w}^2$) . Dimensionless time	-	-
p		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa
p _a		Atmospheric pressure	$[M/(LT)^2]$	kPa
pt		Absolute pressure; p _t =p _a +p _g	$[M/(LT)^2]$	kPa
pg		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	[M/(LT) ²]	kPa
p ₀		Initial pressure before test begins, prior to packer expansion.	[M/(LT) ²]	kPa
p _i		Pressure in measuring section before start of flow.	[M/(LT) ²]	kPa
p _f		Pressure during perturbation phase.	[M/(LT) ²]	kPa
p _s		Pressure during recovery.	[M/(LT) ²]	kPa
p _p		Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
p _F		Pressure in measuring section at end of recovery.	$[M/(LT)^2]$	kPa
p _D		$p_{\rm D}=2\pi\cdot T\cdot p/(Q\cdot \rho_{\rm w} g)$, Dimensionless pressure	-	-
dp		Pressure difference, drawdown of pressure surface between two points of time.	[M/(LT) ²]	kPa
			L	

Character	SICADA designation	Explanation	Dimension	Unit
dp _f		$dp_f = p_i - p_f$ or $p_f = p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive.	[M/(LT) ²]	kPa
dp _s		$dp_s = p_s - p_p$ or $p_p = p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	[M/(LT) ²]	kPa
dpp		$dp_p = p_i - p_p$ or $p_p = p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.	[M/(LT) ²]	kPa
dp _F		$dp_F = p_p - p_F$ or $p_F = p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	[M/(LT) ²]	kPa
Н		Total head; (potential relative a reference level) (indication of h for phase as for p). $H=h_e+h_p+h_v$	[L]	m
h		Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). h=he+ho	[L]	m
h _e		Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p		Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v		Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S		Drawdown; Drawdown from undisturbed level (same as dh _p , positive)	[L]	m
Sp		Drawdown in measuring section before flow stop.	[L]	m
h ₀		Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i		Level above reference level in measuring section before start of flow.	[L]	m
h _f		Level above reference level during perturbation phase.	[L]	m
hs		Level above reference level during recovery phase.	ÎLÎ	m
h _p		Level above reference level in measuring section before flow stop.	[L]	m
h _F		Level above reference level in measuring section at end of recovery.	[L]	m
dh		Level difference, drawdown of water level between two points of time.	[L]	m
dh _f		$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh_f usually expressed positive.	[L]	m
dh _s		$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p		$dh_p = h_i - h_p$ or $= h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F		$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w		Temperature in the test section (taken from temperature logging). Temperature		°C
Te _{w0}		Temperature in the test section during undisturbed conditions (taken from temperature logging).		°C

Character	SICADA designation	Explanation	Dimension	Unit
Te₀		Temperature in the observation section (taken from		°C
FC		Electrical conductivity of water in test section		mS/m
EC _w		Electrical conductivity of water in test section during		mS/m
		undisturbed conditions.		moni
EC _o		Electrical conductivity of water in observation section		mS/m
		Total salinity of water in the test section.	[M/L ³]	ma/L
TDS _{w0}		Total salinity of water in the test section during	[M/L ³]	mg/L
		undisturbed conditions.		Ŭ
TDS _o		Total salinity of water in the observation section.	$[M/L^3]$	mg/L
g		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to	[L/T ²]	m/s ²
		gravity)		
π	pi	Constant (approx 3.1416).	[-]	
r		Residual. r= p_c - p_m , r= h_c - h_m , etc. Difference between		
		measured data (p_m , h_m , etc) and estimated data (p_c , h_c ,		
		etc)		
ME		Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN}), x: measured variable considered.		
MAE		Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n} r_i $		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured variable considered.		
RMS		Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\right)^{0.5}$		
NRMS		Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN}), x: measured variable considered.		
SDR		Standard deviation of residual.		
		$SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
SEMR		Standard error of mean residual. $SEMR = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
Parameters	5	Our for a second the second se	L ru 2/ 1	21-
Q/S		Specific capacity $s=ap_p$ or $s=s_p=n_0-n_p$ (open borehole)		m /s
D		Interpreted flow dimension according to Barker, 1988.		-
		characteristic counted from start of flow phase and recovery phase respectively.	[']	5
dt ₂		End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	s
dt∟		Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ		Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L³/T]	m³/s
Т		Transmissivity	[L ² /T]	m²/s
T _M		Transmissivity according to Moye (1967)	$[L^2/T]$	m²/s
TQ		Evaluation based on Q/s and regression curve between Q/s and T, as example see Rhén et al (1997) p. 190.	[L ² /T]	m²/s
Ts		Transmissivity evaluated from slug test	[L ² /T]	m²/s

Character	SICADA designation	Explanation	Dimension	Unit
T _D		Transmissivity evaluated from PFL-Difference Flow Meter	[L ² /T]	m²/s
T		Transmissivity evaluated from Impeller flow log	$[L^2/T]$	m²/s
T _{Sf} , T _{Lf}		Transient evaluation based on semi-log or log-log diagram for perturbation phase in injection or pumping.	[L ² /T]	m²/s
T _{Ss} , T _{Ls}		Transient evaluation based on semi-log or log-log diagram for recovery phase in injection or pumping.	[L ² /T]	m²/s
T _T		Transient evaluation (log-log or lin-log). Judged best	[L ² /T]	m²/s
Тыгр		Evaluation based on non-linear regression.	$[L^2/T]$	m²/s
T _{Tot}		Judged most representative transmissivity for particular	$[L^2/T]$	m²/s
- 101		test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[]	
К		Hydraulic conductivity	[L/T]	m/s
Ks		Hydraulic conductivity based on spherical flow model	[L/T]	m/s
K _m		Hydraulic conductivity matrix, intact rock	[L/T]	m/s
k		Intrinsic permeability	$[L^2]$	m ²
kb		Permeability-thickness product: kb=k·b	[L ³]	m ³
SB		Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one- dimensional structure	[L]	m
SB*		Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
S		Storage coefficient, (Storativity)	[-]	-
S*		Assumed storage coefficient	[-]	-
Sy		Theoretical specific yield of water (Specific yield; unconfined storage. Defined as total porosity (n) minus retention capacity (S_r)	[-]	-
S _{ya}		Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. $S_{ya} = S_y$ (often called S_y in literature)	[-]	-
Sr		Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.	[-]	-
S _f		Fracture storage coefficient	[-]	-
S _m		Matrix storage coefficient	[-]	-
S _{NLR}		Storage coefficient, evaluation based on non-linear regression	[-]	-
S _{Tot}		Judged most representative storage coefficient for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[-]	-
S		Specific storage coefficient: confined storage	[1/]	1/m
Ss S*		Assumed specific storage coefficient: confined storage		1/m
S _s		Assumed specific storage coefficient, confined storage.		1/111
Cf		Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. $c_f=b'/K'$ where b' is thickness of the aquitard and K' its hydraulic conductivity across the aquitard.	נדז	S
L _f		Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents characteristics of the aquifer.	[L]	m
ξ	Skin	Skin factor	[-]	-

Character	SICADA designation	Explanation	Dimension	Unit
*ع	Skin	Assumed skin factor	[-]	-
Č		Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m³/Pa
-		$C_{\rm D} = C_{\rm D} \cdot q_{\rm I} (2\pi) S_{\rm I} \cdot r_{\rm u}^2$ Dimensionless wellbore storage	[(= ·) · · ·]	
CD		coefficient	[-]	-
ω	Stor-ratio	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio); the ratio	[-]	-
		of storage coefficient between that of the fracture and		
		total storage.		
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
TOPE		Transmissivity interpreted using the GRF method	$[L^2/T]$	m²/s
SCRE		Storage coefficient interpreted using the GRF method	[]	1/m
		Flow dimension interpreted using the GRF method	[-]	-
		J		
Cw		Water compressibility; corresponding to β in	$[(LT^2)/M]$	1/Pa
		hydrogeological literature.		
Cr		Pore-volume compressibility, (rock compressibility);	[(LT ²)/M]	1/Pa
		Corresponding to α/n in hydrogeological literature.		
Ct		$c_t = c_r + c_w$, total compressibility; compressibility per	[(LT ²)/M]	1/Pa
		volumetric unit of rock obtained through multiplying by		
		the total porosity, n. (Presence of gas or other fluids can		
		be included in c _t if the degree of saturation (volume of		
		respective fluid divided by n) of the pore system of		
		respective fluid is also included)		
nct		Porosity-compressibility factor: $nc_t = n \cdot c_t$	[(L1 ²)/M]	1/Pa
nc _t b		Porosity-compressibility-thickness product: $nc_tb = n \cdot c_t \cdot b$	[(L ⁻ I ⁻)/M]	m/Pa
n		I otal porosity	-	-
n _e		Kinematic porosity, (Effective porosity)	-	-
е		I ransport aperture. e = n _e ·b	[L]	m
-	Density	Density	[N//I ³]	$ka/(m^3)$
p	Density w	Eluid density in measurement section during		$kg/(m^3)$
ρ _w	Density-w			Ky/(III)
2	Density-0	Fluid density in observation section	[M/I ³]	$ka/(m^3)$
ρ_0	Density en	Fluid density in observation section		$kg/(m^3)$
βsp	Density-sp			Ry/(III)
<u>н</u>	my	Dynamic viscosity (Fluid density in measurement section		Pac
Рw	iiiy	during numping/injection)		1 4 5
FCT		Fluid coefficient for intrinsic permeability transference of	[1/ T]	1/(ms)
101		k to K' K=EC:k' EC_= $0 \cdot \alpha/\mu$	["""	17(1113)
FCs		Fluid coefficient for porosity-compressibility transference	Γ M/T ² I ² 1	Pa/m
. 03		of c to S_{a} : S_{a} =FCs·n·c : FCs=o _w ·q	[
Index on K,	T and S			<u> </u>
	1		1	
S		S: semi-log		
L c		L. IUG-IOG		
Ť		Pump phase or injection phase, designation following S		
6		Decovery phase designation following S or L (receivery)		
		NI R: Non-linear regression. Performed on the ontire test		├
		sequence perturbation and recovery		
М				
GRE		Generalised Radial Flow according to Barker (1988)		
m		Matrix		
f		Fracture		<u> </u>
T		Judged best evaluation based on transient evaluation		
<u> </u>	I		I	ı
Character	SICADA	Explanation	Dimension	Unit
------------	-----------------	---	-----------	------
	designation			
Tot		Judged most representative parameter for particular test		
		section and (in certain cases) evaluation time with		
		respect to available data (made by SKB at a later stage).		
b		Bloch property in a numerical groundwater flow model		
е		Effective property (constant) within a domain in a		
		numerical groundwater flow model.		
Index on p	and Q		T	1
0		Initial condition, undisturbed condition in open holes		
Ì		Natural, "undisturbed" condition of formation parameter		
f		Pump phase or injection phase (withdrawal, flowing		
		phase)		
S		Recovery, shut-in phase		
р		Pressure or flow in measuring section at end of		
		perturbation period		
F		Pressure in measuring section at end of recovery period.		
m		Arithmetical mean value		
С		Estimated value. The index is placed last if index for		
		"where" and "what" are used. Simulated value		
m		Measured value. The index is placed last if index for		
		"where" and "what" are used. Measured value		
Some misc	ellaneous index	xes on p and h	1	T
w		Test section (final difference pressure during flow phase		
		in test section can be expressed dp _{wp} ; First index shows		
		"where" and second index shows "what")		
0		Observation section (final difference pressure during flow		
		phase in observation section can be expressed dp _{op} ;		
		First Index snows "where" and second index snows		
£		Wild)		
1		social to measuring bases where pressure and level are		
		section to measuring noses where pressure and level are		
		the same as that of the measuring section. Measured		
		aroundwater level is therefore normally represented by		
		what is defined as point-water head. If pressure at the		
		measuring level is recalculated to a level for a column of		
		water with density of fresh water above the measuring		
		point it is referred to as fresh-water head and h is		
		indicated last by an f. Observation section (final level		
		during flow phase in observation section can be		
		expressed h _{opf} ; the first index shows "where" and the		
		second index shows "what" and the last one		
		"recalculation")		

Borehole: KLX20A

APPENDIX 5

SICADA data tables

KLX 20A Page 5/2 (Simplified version v1.4 **SICADA/Data Import Template** SKB & Ergodata AB 2004 File Identity Compiled By Created By Stephan Rohs Quality Check For Delivery 2006-11-22 Delivery Approval Created KLX 20A AP PS 400-06-112 Activity Type Project KLX 20 - Injection test Activity Information Additional Activity Data C10 P20 P200 P220 R25 Field crew evaluating Seclow (m) Section No Company manager **Field crew** data Report Idcode Start Date Secup (m) Stop Date KLX20A 2006-11-08 20:26 2006-11-12 03:43 102.20 448.00 Golder Associates Stephan Reinder van Cristian Stephan Rohs, Philipp Enacescu, Rohs der Wall Philipp Wolf, Wolf, Stephan Mesgena Gebrezghi, Rohs Nikolaj Sokrut

Tabl	e	plu_s_hole_t	test_d General information
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
flow_rate_end_qp	FLOAT	m**3/s	Flow rate at the end of the flowing period
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
mean_flow_rate_qm	FLOAT	m**3/s	Arithmetic mean flow rate during flow period
q_measll	FLOAT	m**3/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m**3/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m**3	Total volume of pumped or injected water
dur_flow_phase_tp	FLOAT	S	Duration of the flowing period of the test
dur_rec_phase_tf	FLOAT	S	Duration of the recovery period of the test
initial_head_hi	FLOAT	m	Hydraulic head in test section at start of the flow period
head_at_flow_end_hp	FLOAT	m	Hydraulic head in test section at stop of the flow period.
final_head_hf	FLOAT	m	Hydraulic head in test section at stop of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in test section at start of flow period
press_at_flow_end_pp	FLOAT	kPa	Groundwater pressure in test section at stop of flow period.
final_press_pf	FLOAT	kPa	Ground water pressure at the end of the recovery period.
fluid_temp_tew	FLOAT	oC	Measured section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Measured section fluid el. conductivity, see table descr.
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC, see table descr.
fluid_salinity_tdswm	FLOAT	mg/l	Tot. section fluid salinity based on water sampling, see
reference	CHAR		SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
In	FL OAT	m	Hydraulic point of application

					section		formation			flow_rate_end	value_type	mean_flow_rate			
idcode	start_date	stop_date	secup	seclow	_no	test_type	_type	start_flow_period	stop_flow_period	_qp	_qp	_qm	q_measll	q_measlu	tot_volume_vp
KLX20A	2006-11-08 20:26:00	2006-11-08 23:06:00	107.50	207.50)	3	1	2006-11-08 21:33:52	2006-11-08 22:04:02	1.38E-04	0	1.49E-04	1.67E-08	8.33E-04	2.68E-01
KLX20A	2006-11-09 07:43:00	2006-11-09 09:37:00	207.50	307.50)	3	1	2006-11-09 08:35:33	2006-11-09 09:05:43	6.17E-05	0	7.17E-05	1.67E-08	8.33E-04	1.29E-01
KLX20A	2006-11-09 11:20:00	2006-11-09 13:55:00	307.50	407.50		4B	1	2006-11-09 12:09:27	2006-11-09 12:09:37	#NV	-1	#NV	1.67E-08	8.33E-04	2.77E-05
KLX20A	2006-11-09 14:54:00	2006-11-09 17:40:00	348.00	448.00)	3	1	2006-11-09 16:37:55	2006-11-09 17:08:05	4.17E-08	0	7.67E-08	1.67E-08	8.33E-04	1.38E-04
KLX20A	2006-11-10 19:13:00	2006-11-10 21:06:00	102.20	122.20)	3	1	2006-11-10 20:03:43	2006-11-10 20:23:53	8.50E-05	0	9.03E-05	1.67E-08	8.33E-04	1.08E-01
KLX20A	2006-11-10 21:58:00	2006-11-10 23:27:00	107.50	127.50		3	1	2006-11-10 22:44:54	2006-11-10 23:05:04	4.83E-05	0	5.20E-05	1.67E-08	8.33E-04	5.20E-05
KLX20A	2006-11-11 00:09:00	2006-11-11 02:17:00	127.50	147.50		3	1	2006-11-11 00:54:54	2006-11-11 01:15:04	8.08E-05	0	8.68E-05	1.67E-08	8.33E-04	1.04E-01
KLX20A	2006-11-11 06:37:00	2006-11-11 08:17:00	147.50	167.50		3	1	2006-11-11 07:35:27	2006-11-11 07:55:37	4.50E-08	0	4.67E-08	1.67E-08	8.33E-04	5.60E-05
KLX20A	2006-11-11 08:50:00	2006-11-11 09:20:00	167.50	187.50)	3	1	2006-11-11 08:38:41	2006-11-11 08:58:51	1.00E-06	0	1.27E-06	1.67E-08	8.33E-04	1.52E-03
KLX20A	2006-11-11 11:05:00	2006-11-11 13:27:00	187.50	207.50		3	1	2006-11-11 12:25:32	2006-11-11 12:45:42	2.67E-08	0	4.33E-08	1.67E-08	8.33E-04	5.20E-05
KLX20A	2006-11-11 13:59:00	2006-11-11 16:02:00	193.50	213.50		3	1	2006-11-11 15:20:42	2006-11-11 15:40:52	6.67E-08	0	1.00E-07	1.67E-08	8.33E-04	1.20E-04
KLX20A	2006-11-11 16:40:00	2006-11-11 18:20:00	213.00	233.00)	3	1	2006-11-11 17:37:53	2006-11-11 17:58:03	5.83E-07	0	6.67E-07	1.67E-08	8.33E-04	8.00E-04
KLX20A	2006-11-11 19:04:00	2006-11-11 20:30:00	233.00	253.00)	4B	1	2006-11-11 19:48:47	2006-11-11 19:48:57	#NV	-1	#NV	1.67E-08	8.33E-04	1.12E-06
KLX20A	2006-11-11 21:21:00	2006-11-11 22:46:00	253.00	273.00		3	1	2006-11-11 22:04:24	2006-11-11 22:24:34	6.20E-05	0	7.10E-05	1.67E-08	8.33E-04	8.52E-02
KLX20A	2006-11-11 23:23:00	2006-11-12 00:49:00	273.00	293.00		3	1	2006-11-12 00:07:49	2006-11-12 00:27:59	1.13E-05	0	1.16E-05	1.67E-08	8.33E-04	1.39E-02
KI X20A	2006-11-12 01:25:00	2006-11-12 03:43:00	287 50	307 50		3	1	2006-11-12 02:11:03	2006-11-12 02:41:13	5 83E-07	0	6.33E-07	1 67E-08	8 33E-04	1 14E-03

			dur_flow_phase_	dur_rec_phase_	initial_head_	head_at_flow	final_head_	initial_press_	press_at_flow_	final_press_p	fluid_temp_t f	fluid_elcond_	fluid_salinity	fluid_salinity			
idcode	secup	seclow	tp	tf	hi – –	_end_hp	hf	 pi	end_pp	f	ew e	ecw	_tdsw	_tdswm	reference	comments	lp
KLX20A	107.50	207.50	1800	3600				1509	1709	1511	9.3						157.50
KLX20A	207.50	307.50	1800	1800				2256	2453	2279	10.3						257.50
KLX20A	307.50	407.50	10	4860				2988	3155	3108	11.3						357.50
KLX20A	348.00	448.00	1800	1800				3248	3425	3349	11.7						398.00
KLX20A	102.20	122.20	1200	2400				884	1105	887	8.4						152.20
KLX20A	107.50	127.50	1200	1200				928	1127	932	8.4						157.50
KLX20A	127.50	147.50	1200	3600				1080	1290	1080	8.7						177.50
KLX20A	147.50	167.50	1200	1200				1225	1425	1230	8.9						197.50
KLX20A	167.50	187.50	1200	1800				1377	1572	1397	9.1						217.50
KLX20A	187.50	207.50	1200	2400				1534	1709	1613	9.3						197.50
KLX20A	193.50	213.50	1200	1200				1574	1752	1638	9.3						203.50
KLX20A	213.00	233.00	1200	1200				1716	1942	1741	9.5			1	1		223.00
KLX20A	233.00	253.00	10	2400				1902	2063	2007	9.7						243.00
KLX20A	253.00	273.00	1200	1200				2008	2206	2028	9.9						263.00
KLX20A	273.00	293.00	1200	1200				2161	2362	2161	10.1						283.00
KLX20A	287.50	307.50	1800	3600				2266	2466	2265	10.3						297.50

sign

Table	e PLU	plu_s_hol Single hole tests, pump	le_test_ed1 ing/injection. Basic evaluation
<u> </u>			
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date			Date (vymmdd nn:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		l est type code (1-7), see table description!
In	FLOAT	m	Hydraulic point of application for test section, see descr
seclen_class	FLOAT	m	Planned ordinary test interval during test campaign.
spec_capacity_q_s	FLOAT	m**2/s	Specific capacity (Q/s) of test section, see table descript.
value_type_q_s	CHAR		0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
transmissivity_tq	FLOAT	m**2/s	Tranmissivity based on Q/s, see table description
value_type_tq	CHAR		0:true value,-1:TQ <lower meas.limit,1:tq="">upper meas.limit.</lower>
bc_iq transmissivity_move		m**2/s	Transmissivity TM based on Move (1967)
bc tm	CHAR	111 2/3	Best choice code. 1 means Tmove is best choice of T. else 0
value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
hydr_cond_moye	FLOAT	m/s	K_M: Hydraulic conductivity based on Moye (1967)
formation_width_b	FLOAT	m	b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.
width_of_channel_b	FLOAT	m	B:Inferred width of formation for evaluated TB
tb	FLOAT	m**3/s	TB:Flow capacity in 1D formation of T & width B, see descr.
I_measi_tb	FLOAT	m^*3/s	Estimated lower meas. limit for evaluated TB, see description
sh	FLOAT	m	SB:S=storativity B=width of formation 1D model see descript
assumed sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
_ leakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
transmissivity_tt	FLOAT	m**2/s	TT: Transmissivity of formation, 2D radial flow model, see
value_type_tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc_tt	CHAR		Best choice code. 1 means TT is best choice of T, else 0
I_measl_q_s	FLOAT	m**2/s	Estimated lower meas. limit for evaluated 11, see table descr
u_measi_q_s	FLOAT	111 2/5	S:Storativity of formation based on 2D rad flow see descr
assumed s	FLOAT		Assumed Storativity.2D model evaluation.see table descr.
bc_s	FLOAT		Best choice of S (Storativity) ,see descr.
ri	FLOAT	m	Radius of influence
ri_index	CHAR		ri index=index of radius of influence :-1,0 or 1, see descr.
leakage_coeff	FLOAT	1/s	K'/b':2D rad flow model evaluation of leakage coeff,see desc
nyar_cond_kst	CHAR	m/s	Ksr.3D model evaluation of hydraulic conductivity,see desc.
I measl ksf	FLOAT	m/s	Estimated lower meas limit for evaluated Ksf see table desc.
u measl ksf	FLOAT	m/s	Estimated upper meas.limit for evaluated Ksf,see table descr
spec_storage_ssf	FLOAT	1/m	Ssf:Specific storage,3D model evaluation,see table descr.
assumed_ssf	FLOAT	1/m	Ssf*:Assumed Spec.storage,3D model evaluation,see table des.
с	FLOAT	m**3/pa	C: Wellbore storage coefficient; flow or recovery period
cd	FLOAT		CD: Dimensionless wellbore storage coefficient
skin dt1	FLOAT	0	Skin factor; best estimate of flow/recovery period, see descr.
dt2	FLOAT	5	Estimated start time of evaluation, see table description
t1	FLOAT	s	Start time for evaluated parameter from start flow period
t2	FLOAT	S	Stop time for evaluated parameter from start of flow period
dte1	FLOAT	S	Start time for evaluated parameter from start of recovery
dte2	FLOAT	S	Stop time for evaluated parameter from start of recovery
p_horner	FLOAT	kPa	p*:Horner extrapolated pressure, see table description
storativity s nlr	FLOAT	111 2/5	S NIR=storativity based on None Linear Regression see
value type t nlr	CHAR		0:true value1:T_NLR
bc_t_nir	CHAR		Best choice code. 1 means T_NLR is best choice of T, else 0
c_nlr	FLOAT	m**3/pa	Wellbore storage coefficient, based on NLR, see descr.
cd_nlr	FLOAT		Dimensionless wellbore storage constant, see table descrip.
skin_nlr	FLOAT		Skin factor based on Non Linear Regression,see desc.
transmissivity_t_grf	FLOAT	m**2/s	T_GRF:Transmissivity based on Genelized Radial Flow,see
value_type_t_grf			u:true value,-1: I_GRF <lower meas.limit,1:="">upper meas.limit</lower>
storativity s orf	FLOAT		S GRE:Storativity based on Generalized Radial Flow see des
flow_dim_grf	FLOAT		Inferred flow dimesion based on Generalized Rad. Flow model
comment	VARCHAR	no_unit	Short comment to the evaluated parameters
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)

					section_n	test_typ	formatio	:	seclen	spec_capacit	value_type	transmissivit	value_type		transmissivit		value_typ	hydr_cond	n_width_	width_of_c
idcode	start_date	stop_date	secup	seclow	0	е	n_type	lp	_class	y_q_s	_q_s	y_tq	_tq	bc_tq	y_moye	bc_tm	n e_tm	_moye	b	hannel_b
KLX20A	2006-11-08 20:26:00	2006-11-08 23:06:00	0 107.50	207.50		3	1	157.50	100	6.76E-06	0)			8.80E-06	(0 0	8.80E-0	8	
KLX20A	2006-11-09 07:43:00	2006-11-09 09:37:00	207.50	307.50		3	1	257.50	100	3.07E-06	0)			4.00E-06	(0 0	4.00E-0	8	
KLX20A	2006-11-09 11:20:00	2006-11-09 13:55:00	307.50	407.50		4B	1	357.50	100	#NV	0)			#NV	(o c	#N\	/	
KLX20A	2006-11-09 14:54:00	2006-11-09 17:40:00	348.00	448.00		3	1	398.00	100	2.31E-09	0)			3.01E-09	() C	3.01E-1	1	
KLX20A	2006-11-10 19:13:00	2006-11-10 21:06:00	102.20	122.20		3	1	152.20	20	3.77E-06	0)			3.95E-06	() C	1.98E-0	7	
KLX20A	2006-11-10 21:58:00	2006-11-10 23:27:00	0 107.50	127.50		3	1	157.50	20	2.38E-06	0)			2.49E-06	() C	1.25E-0	7	
KLX20A	2006-11-11 00:09:00	2006-11-11 02:17:00) 127.50	147.50		3	1	177.50	20	3.78E-06	0)			3.95E-06	(0 0	1.98E-0	7	
KLX20A	2006-11-11 06:37:00	2006-11-11 08:17:00	147.50	167.50		3	1	197.50	20	2.21E-09	0)			2.31E-09	(o c	1.16E-1	0	
KLX20A	2006-11-11 08:50:00	2006-11-11 09:20:00	167.50	187.50		3	1	217.50	20	5.03E-08	0)			5.26E-08	(0 0	2.63E-0	9	
KLX20A	2006-11-11 11:05:00	2006-11-11 13:27:00	187.50	207.50		3	1	197.50	20	1.49E-09	0)			1.56E-09	(0 0	7.80E-1	1	
KLX20A	2006-11-11 13:59:00	2006-11-11 16:02:00	193.50	213.50		3	1	203.50	20	3.67E-09	0)			3.84E-09	() C	1.92E-1	0	
KLX20A	2006-11-11 16:40:00	2006-11-11 18:20:00	213.00	233.00		3	1	223.00	20	2.53E-08	0)			2.65E-08	(o c	1.33E-0	9	
KLX20A	2006-11-11 19:04:00	2006-11-11 20:30:00	233.00	253.00		4B	1	243.00	20	#NV	0)			#NV	() C	#N\	/	
KLX20A	2006-11-11 21:21:00	2006-11-11 22:46:00	253.00	273.00		3	1	263.00	20	3.07E-06	0)			3.21E-06	(0 0	1.61E-0	7	
KLX20A	2006-11-11 23:23:00	2006-11-12 00:49:00	273.00	293.00		3	1	283.00	20	5.53E-07	0)			5.79E-07	. () C	2.90E-0	8	
KLX20A	2006-11-12 01:25:00	2006-11-12 03:43:00	287.50	307.50		3	1	297.50	20	2.86E-08	0)			2.99E-08	(0 0	1.50E-0	9	

				I_measl	u_measl		assumed	leakage_t	ftransmissivity	value_type		l_measl_q	u_measl_q	storativity	assumed	1			leakage	hydr_co	value_ty	I_measl	u_measl	spec_storage	assumed
idcode	secup	seclow	tb	_tb	_tb	sb	_sb	actor_lf	_tt	_tt	bc_tt	_s	_s	_s	_s	bc_s	ri	ri_index	_coeff	nd_ksf	pe_ksf	_ksf	_ksf	_ssf	_ssf
KLX20A	107.50	207.50)	[1.25E-05	() 1	7.00E-06	4.00E-05	1.00E-06	1.00E-06	6	254.85	C)						
KLX20A	207.50	307.50)						3.97E-06	0) 1	1.00E-06	8.00E-06	1.00E-06	1.00E-06	6	36.50	1							
KLX20A	307.50	407.50)						4.01E-11	0) 1	1.00E-11	9.00E-11	1.00E-06	1.00E-06	6	12.53	1							
KLX20A	348.00	448.00)	1		1			8.98E-10	0) 1	5.00E-10	5.00E-09	1.00E-06	1.00E-06	5	16.59	1							1
KLX20A	102.20	122.20)			1			4.18E-06	() 1	1.00E-06	8.00E-06	1.00E-06	1.00E-06	5	158.22	-1							1
KLX20A	107.50	127.50)			1			3.60E-06	() 1	1.00E-06	7.00E-06	1.00E-06	1.00E-06	6	107.79	-1							
KLX20A	127.50	147.50)						5.27E-06	() 1	3.00E-06	8.00E-06	1.00E-06	1.00E-06	6	118.56	C)						
KLX20A	147.50	167.50)						3.21E-09	() 1	9.00E-10	5.00E-09	1.00E-06	1.00E-06	6	#NV	-1							
KLX20A	167.50	187.50)			1			2.86E-08	() 1	9.00E-09	5.00E-08	1.00E-06	1.00E-06	6	32.17	1							
KLX20A	187.50	207.50)						2.23E-10	() 1	9.00E-11	6.00E-10	1.00E-06	1.00E-06	6	9.56	C)						
KLX20A	193.50	213.50)						1.06E-09	0) 1	6.00E-10	5.00E-09	1.00E-06	1.00E-06	6	14.12	C)						
KLX20A	213.00	233.00)	1	1	1			1.58E-08	() 1	7.00E-09	4.00E-08	1.00E-06	1.00E-06	6	27.74	Ċ)						1
KLX20A	233.00	253.00)			1			1.67E-11	0) 1	7.00E-12	4.00E-11	1.00E-06	1.00E-06	6	1.24	1							
KLX20A	253.00	273.00)						3.38E-06	() 1	9.00E-07	7.00E-06	1.00E-06	1.00E-06	6	34.23	1							
KLX20A	273.00	293.00)						2.54E-06	() 1	5.00E-07	4.00E-06	1.00E-06	1.00E-06	5	98.79	C)						
KLX20A	287.50	307.50)]			1.00E-07	() 1	4.00E-08	5.00E-07	1.00E-06	1.00E-06	5	76.22	C)						

												transmissivity	storativity	value_type					transmissivity	value_type		storativity	flow_di	
idcode	secup	seclow	с	cd	skin	dt1	dt2	t1 t2	dte1	dte2	p_horner	_t_nlr	_s_nlr	_t_nlr	bc_t_nlr	c_nlr	cd_nlr	skin_nlr	_t_grf	_t_grf	bc_t_grf	_s_grf	m_grf	comment
KLX20A	107.50	207.50	9.60E-09	1.06E+00	2.28	122.8	1245.6				1508.0													
KLX20A	207.50	307.50	1.42E-09	1.57E-01	-0.88	25.2	131.0				2264.2													
KLX20A	307.50	407.50	1.66E-10	1.83E-02	-1.47	#NV	#NV				#NV					1								
KLX20A	348.00	448.00	2.31E-10	2.55E-02	-1.91	298.8	1627.2				#NV		1		1									
KLX20A	102.20	122.20	3.94E-09	4.34E-01	-1.88	205.2	1070.3				880.9													
KLX20A	107.50	127.50	1.14E-09	1.26E-01	-2.41	201.2	1126.8				923.5													
KLX20A	127.50	147.50	6.60E-09	7.27E-01	1.27	38.2	745.2				1078.1													
KLX20A	147.50	167.50	7.68E-11	8.46E-03	7.35	#NV	#NV				#NV					1								
KLX20A	167.50	187.50	1.89E-10	2.08E-02	3.35	349.9	986.4				1361.7		[1									
KLX20A	187.50	207.50	1.34E-10	1.48E-02	-2.75	#NV	#NV				#NV													
KLX20A	193.50	213.50	2.39E-10	2.63E-02	-2.50	446.4	1044.0				#NV													
KLX20A	213.00	233.00	2.28E-10	2.51E-02	-1.60	784.8	1184.4				1705.4				1								1	
KLX20A	233.00	253.00	7.11E-12	7.84E-04	0.25	12.2	73.2				#NV		1			1								
KLX20A	253.00	273.00	7.80E-10	8.60E-02	-2.63	40.0	124.9				2015.3									1				
KLX20A	273.00	293.00	1.84E-10	2.03E-02	20.38	36.0	622.8				2159.9	[[1									
KLX20A	287.50	307.50	5.67E-11	6.25E-03	15.20	151.2	763.2				2265.0		1		1	-				1				

-

Tab	ble	plu_s_ho	DIe_test_obs ections of single hole test
-	-		
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section, at stop flow period
pf_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
pp_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
pf_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

KLX 20A

idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX20A	061108 20:26:00	061108 23:06:00	107.50	207.50		208.50	457.92	778	779	778	1545	1545	1545	
KLX20A	061109 07:43:00	061109 09:37:00	207.50	307.50		308.50	457.92	1530	1530	1530	2306	2301	2298	
KLX20A	061109 11:20:00	061109 13:55:00	307.50	407.50		408.50	457.92	2271	2271	2270	3006	3007	3000	
KLX20A	061109 14:54:00	061109 17:40:00	348.00	448.00		449.00	457.92	2562	2562	2562	3849	3913	3912	
KLX20A	061110 19:13:00	061110 21:06:00	102.20	122.20		123.20	457.92	750	750	751	919	922	921	
KLX20A	061110 21:58:00	061110 23:27:00	107.50	127.50		128.50	457.92	791	792	792	961	963	963	
KLX20A	061111 00:09:00	061111 02:17:00	127.50	147.50		148.50	457.92	944	945	945	1110	1109	1109	
KLX20A	061111 06:37:00	061111 08:17:00	147.50	167.50		168.50	457.92	1094	1094	1094	1258	1259	1259	
KLX20A	061111 08:50:00	061111 09:20:00	167.50	187.50		188.50	457.92	1244	1244	1244	1407	1407	1406	
KLX20A	061111 11:05:00	061111 13:27:00	187.50	207.50		208.50	457.92	1392	1392	1391	1554	1553	1552	
KLX20A	061111 13:59:00	061111 16:02:00	193.50	213.50		214.50	457.92	1436	1436	1436	1597	1597	1596	
KLX20A	061111 16:40:00	061111 18:20:00	213.00	233.00		234.00	457.92	1581	1581	1580	1741	1742	1741	
KLX20A	061111 19:04:00	061111 20:30:00	233.00	253.00		254.00	457.92	1730	1729	1728	1891	1891	1890	
KLX20A	061111 21:21:00	061111 22:46:00	253.00	273.00		274.00	457.92	1877	1877	1877	2040	2109	2061	
KLX20A	061111 23:23:00	061112 00:49:00	273.00	293.00		294.00	457.92	2026	2027	2026	2209	2208	2205	
KLX20A	061112 01:25:00	061112 03:43:00	287.50	307.50		308.50	457.92	2133	2132	2132	2317	2312	2307	