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Abstract

Bentonite clay intended for use as a buffer around the waste canisters will form a stable gel 
under the expected groundwater compositions at potential repository sites. A literature survey 
has been made of the forces involved that attract and those that repel the clay particles under 
different conditions. Especially the repulsive forces and how these are influenced by the water 
chemistry have been studied, because in low ionic strength waters these forces can become so 
strong that the gel becomes unstable. Results from measurements described in the literature are 
also presented.

The bentonite backfill surrounding the waste canister may be eroded by swiftly flowing water 
in the fractures that intersect the deposition hole. The clay gel acts as a Bingham fluid and there 
is a minimum shear stress that water must exert on the gel to mobilise the particles. The shear 
stress at the gel/water interface has been estimated for a wide range of hydraulic conditions that 
could be expected even under very high gradients that could be generated by a receding ice front 
during an ice age. The shear stress has been compared to the Bingham yield stress. The latter is 
influenced both by the pore water chemistry as well as by the density of the clay gel.

The stability of the clay is strongly influenced by the calcium and other divalent cation 
concentrations in the pore water. If the clay is exposed to water with a calcium concentration 
that is lower than the critical coagulation concentration, the CCC, the clay gel can form a sol 
and the clay particles can be carried away by the passing water. 

Using boundary layer theory for diffusing species we have calculated the rate of transport of 
calcium from the clay to a groundwater that flows and contacts the clay in the fractures that 
intersect the deposition hole. Based on this a simple illustrative entity called the equivalent 
flowrate is introduced and used to derive a simple expression that relates the loss of clay to 
the hydraulic properties, the CCC, the content of soluble calcium minerals and to the composi-
tion of the approaching groundwater. 
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Summary

Previous work

A literature study was made on previous work on clay erosion and on the fundamental processes 
that govern the stability of clay gels. Mechanical erosion has been studied earlier and models 
devised to estimate the tendency to erode. We have used a different approach that we deem is 
fundamentally more correct. Chemical erosion processes have not been found to be studied 
previously and we have approached the problem by applying simple but fundamental mass 
balances and transport processes to the problem.

The physical and chemical processes that govern the repulsive and cohesive forces in clay 
are well understood in principle but cannot yet be applied quantitatively to predict the gel/sol 
behaviour of the bentonite clay. It was necessary to rely directly on laboratory measurements 
for information on swelling and gel/sol properties.

Mechanical erosion

The backfill bentonite clay acts as a Bingham fluid over a wide range of clay density. To mobi-
lise the clay a shear stress larger than the Bingham yield stress must be applied to the gel. The 
Bingham yield stress has been measured to be larger than 1 Pa (N m–2) although it cannot be ruled 
out that lower values can be found under different experimental conditions than those reported.

Shear stresses exerted by the water flowing in the fractures that intersect the deposition holes 
with the clay backfill have been estimated for a wide range of fracture transmissivities, apertures 
and hydraulic gradients that could exist under repository conditions. This includes the extremely 
high gradients that could exist during some periods during an ice age. 

For fracture transmissivities ranging from 10–9 to 10–6 m2 s–1, fracture apertures from 0.1 to 
2 mm and the hydraulic gradients from 0.01 to 1 mH2O m–1, the largest local shear stress 
found in this range was about 0.1 Pa. 

To investigate a “what if” situation where the shear stress exceeds the yield stress simple models 
were devised. They were used to assess the rate of erosion by the groundwater. In one model 
it is assumed that the width and depth of the shear boundary layer is filled with the solubilised 
gel and flowing water simply shears off that portion of the gel. Under extreme conditions on 
the order of a tenth of a kilogram of clay could be eroded per year. In the other model the clay 
gel front is treated as a solute (when the shear stress exceeds the Bingham yield stress) with a 
clay particle diffusivity in the water. Boundary layer theory is used to determine how much clay 
“solute” could diffuse into the water that passes the deposition hole. The results are similar to 
those of the previous model.

We conclude that it is highly unlikely that mechanical erosion should take place even under 
rather extreme conditions in a repository that has been saturated with water. 

Chemical erosion

The stability of the gel decreases with decreasing concentration of especially divalent cations 
and there is a critical coagulation concentration, CCC, under which the gel becomes a disper-
sion, called a sol. The main divalent cation of interest in this context is calcium that is present 
in the clay pore water but also as soluble mineral gypsum or anhydrite. The solubilities of both 
gypsum and anhydrite are higher than the CCC and thus as long as there is gypsum or anhydrite 
in the clay, loss of calcium to a fresh groundwater that comes into contact with the clay can 
be replenished by dissolution of the gypsum or anhydrite. However, with time the mineral is 
exhausted in the clay nearest to the flowing water and the gel can form a sol, which is carried 
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away by the water. This exposes new gel to the flowing water and a steady state loss of clay can 
be attained. Other calcium minerals such as calcite have a much lower solubility than the CCC 
and will contribute less to the replenishing of calcium in the pore water. 

We have approached the problem by modelling the rate of calcium transport from the interface 
between the clay gel and the water flowing in a fracture that intersects the deposition hole. 
Transport into the passing water is modelled using the diffusion equation for transport in the 
water flowing in the fracture. For the range of hydraulic and other variables, we have used a 
very simple analytical solution for the mass transfer. It is summarised and illustrated by the 
entity “equivalent flowrate” Qeq. This entity describes the flowrate of water that would carry a 
concentration of solute equal to that at the gel/water interface. The Qeq is determined by a very 
simple formula that summarises a number of complex processes, including varying diffusion 
into water passing a curved boundary. 

The Qeq depends in a simple way only on the transmissivity and aperture of the fracture, the 
hydraulic gradient and the size of the deposition hole. 

For very fresh water approaching the clay the rate of loss of calcium from the clay gel is shown 
to be proportional the CCC and Qeq. The rate of loss of clay is proportional to the loss of calcium 
and inversely proportional to the content of soluble calcium minerals (mainly gypsum) in the 
clay. 

Sample calculations are given to illustrate how different entities influence the loss of clay. 
The range of parameter values are the same as for the physical erosion, namely: the fracture 
transmissivities from 10–9 to 10–6 m2 s–1, the fracture apertures between 0.1 and 2 mm and the 
hydraulic gradients from 0.01 to 1 mH2O m–1. In the sample calculations the approaching water 
is taken to have no calcium at all. The gypsum content is taken to be 0.7% by weight and the 
CCC to be 1 mmol L–1 (mM).

The rate of loss of clay varies from a few grams per year to some kg per year under the most 
extreme conditions, i.e. T = 10–6 m2 s–1, fracture aperture 2 mm, and hydraulic gradient of 
1 mH2O m–1. 

Finally some very simple equations are given that can be used to calculate the physical as well 
as the chemical erosion. The equations are summarised in Chapter 5 of this report.
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1	 Introduction

In the KBS-3 concept of a spent nuclear fuel repository the long-term stability of the bentonite 
buffer is of vital importance for the retention of the radionuclides in the repository. The com-
pacted bentonite buffer is the engineered barrier in the repository and is one of the important 
components in the multi-barrier system of the repository. 

Compacted bentonite is composed mainly of sodium montmorillonite. Montmorillonite is a clay 
mineral of the dioctahedral smectite 2:1 group, consisting of sheets with a layer of octahedral 
aluminium oxide between two layers of tetrahedral silicon oxides. With uptake of water the 
bentonite buffer may expand under the swelling pressure of the clay, containing Na- and 
Ca-montmorillonite. As the buffer material is confined by the surrounding rocks in a deposition 
hole in a repository, the volumetric expansion will be limited. The volume increase will be 
essentially due to the intrusion of the clay into the fracture(s) in the surrounding rock that may 
intersect the canister. A balance between the swelling pressure and the friction of the intruding 
clay and the fracture planes will determine the depth of the intrusion.

During water uptake, looser clay gels may form where the density of the bentonite decreases. 
The looser gels will mainly form at the front of the clay intrusion in the fracture as the density 
is expected to be lowest there. When the coagulation force of the gel front becomes less than 
the drag force exerted by the flowing groundwater in the fracture, the gel front will be eroded 
and be carried away by the flowing groundwater. This is the physical instability of the bentonite 
buffer considered in the present report.

Moreover, the stability of the gel front, in some cases the entire intrusion or even the inside ben-
tonite proper, depends strongly on the chemical composition of the pore water of the bentonite. 
The pore water composition will gradually change with time if the groundwater in contact with 
the buffer is not in equilibrium with the pore water. During the downward penetration of glacial 
waters at a time of glaciation retreat, the clay gels may become chemically unstable while 
in contact with the water of very low ionic strength. The chemical stability of the bentonite 
depends especially on the divalent cation concentrations in the pore water of the bentonite. 
When the bentonite initially contains minerals of relatively high solubilities of divalent cationic 
species, such as gypsum or anhydrite, the calcium cation concentration in the pore water will be 
buffered by the dissolution of these minerals and be above the critical coagulation concentration 
(CCC) of the montmorillonite. When these calcium containing minerals are depleted by 
diffusion to the passing water, the calcium concentration in the pore water of bentonite may 
drop below the CCC and the gels may disperse into the water as colloidal particles and be also 
carried away by the flowing groundwater. This is the chemical instability of the bentonite buffer 
considered in this report.

Loss of the bentonite buffer may have severe consequences for the performance of the entire 
repository, e.g. it may allow more corrosive water (containing S2–) to contact the copper canister 
and speed up the attack on the canister. Also with the loss of bentonite after the breach of the 
metal canister, radionuclides of fission products and some actinides may be released faster from 
the breached canister. Furthermore the nuclides may sorb on the clay colloid surface and their 
transport in the fracture water may be considerably enhanced /Buddemeier 1988, Möri et al. 
2003). A significant loss of the bentonite buffer may also reduce the radionuclide retention 
capacity of the entire multi-barrier system of the repository concept, as radionuclide transport 
and release through an intact bentonite buffer are molecular diffusion processes and extremely 
slow.

In this report, we will first present a literature review of some of the theoretical as well as 
experimental works on physical and chemical stabilities of the bentonite clay. We then make 
some bounding calculations concerning the physical stability of the bentonite buffer under 
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repository conditions, by considering the force balance of the yield stress of the bentonite and 
the drag force of the flowing groundwater in the fracture. We then proceed to calculate the 
chemical stability of the bentonite buffer, taking into account of different chemical compositions 
of the bentonite buffer.

The aims of the report are (1) to study the physical stability of the bentonite buffer, i.e. the 
erosive resistance of the gel front of the bentonite intruding into the fracture, and (2) to study 
the chemical stability of the bentonite buffer when the groundwater in the fracture becomes 
extremely low in ionic strength. 
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2	 Literature review

2.1	 Bentonite expansion with water uptake and its intrusion 
into the intersecting fracture

The bentonite buffer material consists mainly of Na- and Ca-montmorillonite, with small 
amounts of other minerals such as quartz, feldspars, zeolites, calcite/sidertie, gypsum/anhydrite, 
and pyrite. Two different types of bentonite are considered as reference buffer material in a 
recent interim report of SKB, which aims at supporting SKB’s license application to build 
an encapsulation plant for spent nuclear fuel: the natural mainly Na-bentonite of Wyoming 
type (MX-80) supplied by the American Colloid Company, and a natural mainly Ca-bentontie 
(Deponit CA-N) from Milos, Greece, supplied by Silver and Baryte /SKB 2004/. The detailed 
compositions, especially the amounts of the calcium-containing minerals of the two types of 
bentonite vary and we will address this issue in a later section of this report. For the buffer, 
freshly compacted bentonite has a bulk density of about 1,600 to 1,800 kg m–3 and a water 
content of about 10% by weight. The compact bentonite retains the fine structure of the 
bentonite powder that forms it. Commercial bentonite powders of the MX-80 type are very 
dense aggregates of silt/sand size (with a mean value of about 0.16 µm). The aggregates consist 
of parallel-oriented laminae (synonymously also called lamellae, platelets, sometimes even 
informally “plates”, in the literature) of montmorillonite crystals. In the compact bentonite as 
well as in the bentonite powder, the intra-aggregate spacing is very small and the inter-aggregate 
spacing (the pores) is fairly large /Pusch 1983, Pusch 1999, Pusch and Adey 1999/.

In the course of water saturation the aggregates expand and, after a sufficiently long time, most 
of the larger voids (the inter-aggregate pores) will be partly or entirely filled by the clay gel 
emerging from the expanding aggregates. The aggregate expansion results in a swelling pres-
sure. When the bentonite is confined in space, as is the situation in a spent fuel repository, the 
degree of expansion is small and the physical properties of the bentonite are relatively isotropic 
and homogeneous. At not too high water saturation the initial condition of parallel orientation 
of the thin laminae in the individual aggregates will be preserved while the spacing between the 
laminae will be increased /Pusch 1983/.

The increase of the spacing between the laminae in the bentonite aggregates (intra-aggregate 
spacing) is a result of crystal lattice expansion during the uptake of water. The water molecules 
will be coupled to the basal plane of a lamina and the near-surface water film “crystallise” to 
give looser structural arrangement of the water molecules. It has been shown /Forslind and 
Jacobsson 1973/ that the hydration stages seem to be relatively unaffected by the pore water 
chemistry for water contents lower than about 35%, which corresponds to 3 ordered water 
molecule layers. The swelling pressure is also relatively little affected by the water compositions 
under the above level of water uptake, which implies that the pressure is mainly due to the 
structural changes of the intra-lamellar water. The stability of the structural lattice water drops 
rapidly when the distance between basal planes of the laminae of the bentonite increases, and 
the influence of the structural water on swelling pressure then becomes negligibly small.

The relatively free expansion of the spacing between the laminae of Na-montmorillonite may 
result in significant deviation from the original parallel arrangement of the laminae and there-
fore the volume may increase many times. During expansion Ca-montmorillonite preserves its 
original parallel arrangement of the laminae and therefore shows more limited swelling. Similar 
results have been observed for potassium as a counterion. As K+ is less hydrated compared 
with Na+, it readily migrates and binds to the clay surface to shield the negative charges on 
the surface, and thus effectively reduces the repulsive forces and decreases the tendency of 
K+-saturated clay to expand /Boek et al. 1995/.
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With certain groundwater compositions (low ionic strengths), the aggregates in the bentonite 
powders or gel can be completely dispersed to form sols of individual flakes of the constituent 
laminae with a thickness of about 1 nm. This issue will be considered later.

/Boek et al. 1995/ have suggested that two types of swelling should be distinguished in relation 
to clay hydration: (1) intracrystalline swelling, involving the adsorption of limited amounts of 
water in the interlayer (intra-lamellar) spacing, and (2) osmotic swelling, related to unlimited 
adsorption of water due to the difference between ion concentrations close to the clay surface 
and in the pore water. Osmotic swelling occurs probably only when the water uptake in the 
bentonite becomes large.

When a deposition hole in a repository is intersected by a fracture, the swelling bentonite will 
intrude into the fracture. In a model proposed by /Pusch 1983/ the penetration was considered  
to be the net effect of two different mechanisms: (1) Swelling due to water uptake, (2) Retar-
dation due to wall friction effects. The friction effects were modelled by adapting a stepwise 
methodology to account for the variation of the viscosity of bentonite with density. The 
intrusion rate is a function of the density of the bentonite and the aperture size of the fracture 
/Pusch 1983/. The modelling results of the intrusion depth into the fracture indicate that, for 
fracture apertures between 0.1 and 0.5 mm, the depth could be 0.3 cm to 7.5 cm after 106 years. 
Further consideration of the effect of the temperature on the viscosity of the bentonite buffer 
results in much larger intrusion depths, at least 10 cm of bentonite with an average density of 
1,500 kg m–3 for all apertures after a few hundred years. Experimental results also confirmed 
this conclusion /Pusch 1983/.

2.2	 Forces of particle interaction and the physical stability of 
the bentonite buffer

During the intrusion of the bentonite buffer into the intersecting fracture, the density of the clay 
in the fracture will decrease as a result of expansion. A zone of clay gel will be formed at the 
front of the intruding bentonite as the density there becomes the lowest. The gel front was 
observed in experiments to be thin and soft, while the rest of the intruding clay is relatively  
stiff /Pusch, 1983/. In this report the physical stability of the bentonite is meant to be the stabil-
ity of the gel front of the intruding clay under the drag force exerted by the flowing groundwater 
in the fracture.

The physical stability of the bentonite buffer is usually characterised by the balance of the inter
actions of clay particles (the laminae or aggregates) and the drag force of the groundwater 
flow. It will be seen later that the chemical stability of the bentonite clay is also determined by 
the interactions of clay particles. In consideration of the chemical stability, however, we focus 
on the changes (often weakening) of the clay particle interactions by the change of pore water 
chemical compositions and the dispersion of the gel front. 

The gel front of the intruding bentonite in the fracture can possibly be eroded by the flowing 
groundwater in the fracture if the drag force of the flow water is larger than the force of clay 
particle interactions. As long as the gel has not been dispersed as sols by changing chemical  
compositions of the groundwater, the erosion rate will be determined by the gel’s shear strength 
as well as the flowrate of the groundwater, which exerts a shear force on the gel surface. 

When the laminae in the clay aggregates are no longer parallel with large amount of water 
uptake, the inter-laminar force fields are changed. The bonds between the laminae become 
weak as a result of the expansion. Three modes of association of the bentonite laminae are 
now possible: face-to-face (FF), edge-to-edge (EE) and edge-to-face (EF) /M’bodj et al. 2004/. 
The face here indicates the facial plane of the 2:1 phyllosilicate sheet of a clay lamina. The 
edges are boundaries of the sheet other than the facial plane. These three types of interactions 
cause the clay laminae to flocculate and form gels when the chemical conditions favour this. 
Theoretical description of the particle interaction by the Derjaguin-Landau-Verwey-Overbeek 
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(DLVO) /Verwey and Overbeek 1948/ theory (interaction between electrical double layer repul-
sion and the London-type van der Waals force attraction) has been found to be in reasonable 
agreement with many experimental observations. The DLVO model probably can treat the FF 
interaction adequately. Yet it fails to give a complete picture, especially in accounting for the EE 
or EF associations of the laminae. It has not been found possible to use these models to quantita-
tively describe the balance between the repulsive and attractive forces on the bentonite buffer. 
Empirical relations based on direct measurements have to be used. However, the theoretical 
models give valuable insights into the qualitative behaviour of the clay, some of the theoretical 
considerations are summarised below.

In the clay lamina, there exist permanent charges of the silicate layers resulting from 
isomorphous ionic substitutions in the crystal lattice (Mg2+ and Al3+ for Si4+). Such charges 
are hence essentially independent of the ionic composition of the medium in which the 
bentonite is dispersed. In contrast, the edges of the lamina originated by fracturing (breaking) 
of the crystal structure have a composition close to that of Al or Si oxides, and form surface 
hydroxyl functional groups (SOH) in water. Charges on the edge are therefore strongly pH 
dependent /Ramos-Tejada et al. 2001/. At the broken edge of the octahedral sheets positive 
charges may arise in acidic and neutral solutions. At the broken edge of the tetrahedral sheets 
positive charges may exist when small amounts of aluminium are present in the solution.

It has been postulated /van Olphen 1951, 1963, Lambe 1958/ that flocculation of clay particles 
could be a result of the interactions between positive charges present on the edge of clay 
laminae and negative charges on the face of the clay plates. /Missana and Adell 2000/ have 
shown that the small fraction of the pH-dependent charges on the edge greatly influence the 
stability behaviour of the clay colloids and that the DLVO theory is not particularly suitable 
to predict the stability, mainly because it is not able to account for this charge contribution. 
A significantly larger value of the Hamaker constant in the attractive potential of the van der 
Waals interaction has to be used to account for the experimental data. This value is unreasonably 
larger than that obtained from experimentally determined critical coagulation concentration 
(CCC) of Na-bentonite. /Missana and Adell 2000/ attributed the large discrepancy to other 
interactions, especially the edge-to-face (EF) interaction that are not accounted for by the DLVO 
theory. The EF aggregation is mainly an electrostatic interaction between the positively charged 
edge and the negatively charged face.

Other types of bonding mechanisms have also been assumed in the literature /Rosenqvist 
1955/ for the particle interactions: (1) attraction caused by the asymmetrical distribution of 
the adsorbed cations to form electrostatic bonding, (2) van der Waals forces between polarised 
adsorbed cations, (3) attractive forces between cations adsorbed on one particle and the lattice 
field of an adjacent particle, (4) attraction by the action of the adsorbed polar molecules or 
hydrogen bonds.

As it is usually difficult to quantify the interactions of the clay aggregates, experiments have 
been made by many authors to directly determine the rheological properties of the buffer. 
A large number of publications concerning the rheological properties of the bentonite are 
available in the literature as bentonite has been intensively used in drilling fluids in the 
petroleum industry /e.g. Chilingarian and Vorabutr 1983, Darley and Gray 1991/.

As in other disperse systems, the rheological properties of bentonite are strongly correlated 
with the degree of flocculation between the particles and with the structure of the flocculi. The 
pioneering works of /Norrish 1954, 1972/ and /van Olphen 1956/ suggested that the mechanical 
strength of montmorillonite gels must be related to the formation of particle networks in which 
individual clay particles are in contact with others, forming ribbon-like or scaffolding structures. 
/Ramos-Tejada et al. 2001/ have recently studied the rheological behaviour of Na-montmorillo-
nite suspensions. The behaviour is mainly due to the complex structure of the electric double 
layer surrounding the particles when they are in contact with aqueous ionic solution.

The rheological properties of the saturated clay have been studied by treating the clay as com-
pressible fluid, under both Newtonian and non-Newtonian (often of Bingham type) assumptions 
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/Grindrod et al. 1999/. The yield stress of a sodium kaolinite with a clay concentration of 9.1% 
has been measured by /Nickel 1997/. The clay was dispersed in various concentrations of NaCl, 
ranging from 10–5–10–3 M for dispersed clay, 3·10–3–3·10–1 M for flocculated clay and 1–3 M for 
highly flocculated clay.

The yield stress of Wyoming bentonite (MX-80) has been measured by /Pusch 1983/ for differ-
ent clay concentrations in different waters (distilled water, Allard water /Allard et al. 1983/, and 
NaCl and CaCl2 solutions).

The yield stress, σ, and the elastic modulus, G, of a natural sodium bentonite from Almería, 
Spain, have been found to have a power-law relation with the concentration of the clay particles 
(% wt/vol) /Ramos-Tejada et al. 2001/. The power is between 2 and 5 for strongly flocculated 
suspensions and between 5 and 8 for stable or weakly flocculated ones.

The yield stress and the elastic modulus of a smectite-illite clay have been experimentally 
studied by /M’bodj et al. 2004/ to clarify the effects of the clay fraction, the salt concentration 
and the addition of a semigrid polymer, on the values of σ and G. They found that both the 
yield stress and the elastic modulus have a power-law relation with the clay volume fraction. 
Moreover, progressive addition of NaCl to the clay dispersions decreases the thickness of the 
diffuse double layer, which makes the system rigid, increasing the yield stress and the elastic 
modulus.

More detailed information including the values of the yield stress measured will be presented 
later in this report in Chapter 3: “Modelling of physical stability of the bentonite buffer”.

/Pusch 1983/ addressed the physical stability of bentonite by using a model of force balance 
on individual clay particles. First, the yield stress was used to derive a rough estimation of the 
particle bond strength. This was done by assuming a homogeneous clay gel, and by dividing 
the yield stress by the total number of particle contact per unit area to obtain an average strength 
of each particle interaction. The values were on the order of 10–13 N per interaction. The drag 
force exerted by the flowing groundwater was represented by the force born by each particle 
using Stoke’s equation (F = 3d�·η·v) in which d is the diameter of the clay particle (m), η is 
the viscosity of the flowing groundwater (Pa s), and v is the groundwater velocity (m s–1). The 
results showed that for typical groundwater velocities in a fracture (< 10–5 m s–1) and for the 
majority of the clay particles (with a size less than 0.5 µm) the drag force is much less than the 
interaction force of the particles and concluded that the clay is physically stable. Similar results 
have been found in a later study of the same author /Pusch 1999/.

2.3	 Modification of surface charges and chemical stability of 
the bentonite buffer

The chemical stability of the bentonite buffer is closely related to its physical stability. Both 
physical and chemical stabilities are determined by the strengths of interactions between the 
clay particles. While the physical stability emphasises the influences of the external forces on 
the interactions, the chemical stability focuses on the influences of the chemical properties of 
the medium (in our case the chemical compositions of the groundwater) on the interactions, 
especially the modification of the surface charges (and hence the interfacial interactions) by the 
changing water compositions (e.g. its ionic strength and acidity/alkalinity).

It has been observed experimentally that there is an abrupt change from stability to instability 
of the bentonite gel coagulates or flocculi on changing the salt concentration of the medium (the 
water) /van Olphen 1977/. The electrolyte concentration at the changing point is termed critical 
coagulation concentration (CCC). In the DLVO theoretical framework, i.e. by assuming that 
the stability is the result of the interaction between the diffuse electrical double layer repulsion 
and the van der Waals attraction, the turning point of stability is the point at which the repulsive 
force balances exactly the attractive force and thus the mechanical potential (the force is defined 
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as the negative gradient of the mechanical potential) has a maximum. At this point the separa-
tion in distance will be equal to the Debye length (1/κ) between spherical particles and twice as 
large between parallel plates /Evans and Wennerström 1999/. As the Debye length is inversely 
proportional to the square root of the ionic strength, the chemical stability of clay coagulates 
or flocculi will therefore decrease with decreasing ionic strength. It should be noted that in this 
report we focus on the stability of the gels (coagulates or flocculi) that is actually the instability 
of the clay colloids that is usually the focus in the colloid chemical literature.

Within the DLVO theoretical framework, the CCC can be related to the surface electrical poten-
tial, to the dielectric constant of the medium, to the valence of the electrolyte of the medium, 
as well as to the Hamaker constant of the van der Waals interaction /Evans and Wennerström 
1999/:
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where ε0 is the electric permittivity in vacuum (8.854·10–12 F m–1), εr is the relative electric 
permittivity or dielectric constant of water (78.5 at 25°C), kB is the Boltzman constant 
(1.38·10–23 J K–1), z is the valence of the electrolyte ions, e is the electric charge of an 
electron (1.602·10–19 C), T is the absolute temperature (K), φ0 is the surface potential of  
the clay particle (V), and H121 is the Hamaker constant (J).

The CCC can usually be experimentally determined by adding salt solution into the clay disper-
sion in the turbidity measurement. When the dispersion concentration is high in the original 
colloid solution, the rheological method for measuring CCC is based on the fact that at the 
CCC the viscosity of the dispersion increases sharply.

The CCC of 5–10 mM sodium counterions for Na-montmorillonite dispersions is extremely 
low, compared with the usual values between 25 and 500 mM for other clay minerals /Verwey 
and Overbeek 1948, Lagaly et al. 1997/. For divalent counterions like Ca2+, the CCC for Na-
montmorillonite is about 1 mM /Pusch 1983, SKB 2004a/. The observation of the relatively  
low CCC values for Na-montmorillonite was explained by the interaction of positive edge 
charges with negative face charges producing T-type contacts and aggregation in card-house 
type arrangement /van Olphen 1977/. /Lagaly and Ziesmer 2003/ observed that, at pH near 
or higher than the point of zero charge (pzc) of the edges, i.e. positive charges are no longer 
present at the edges (the edges become negatively charged), coagulation still occurs between 
edges (–) and faces (–). In addition to the pH influences, the negative double layer extending 
from the basal plane (the face) surfaces may “spill over” into the edge region when the Debye 
length of the double layer becomes significantly larger than edge thickness and thus diminish 
the effect of the positive charges at the edges. As the negative edge charge density is very small, 
coagulation requires low sodium salt concentrations (low CCC). Even by assuming that the 
edge charge density is the same as that of the face charge, calculations by the DLVO theory 
still showed that the repulsion is distinctly smaller between EF interaction than between FF 
interaction /Pierre 1992/. This study by /Pierre 1992/ implies that, even at higher pH values,  
the EF interaction may still be a dominating factor for the coagulation of the Na-montmorillonite 
colloids at low ionic strengths (or salt concentrations).

Most studies on colloid stability were made by following the relationship between the changes 
only of the surface electric charges of the particles represented most often by their zeta poten-
tials or electrophoretic mobility and that of the stability of the dispersed system. It has been, 
however, of considerable interest in the literature to broaden the correlation studies by including 
also the correlation between variations of the electric moments of the surface charges and the 
colloid stability. Thus besides total surface charges their distribution and dynamics should also 
be considered. This particular issue has been intensively reviewed by /Stoylov 1994/.

A natural bentonite often contains calcium minerals like gypsum or anhydrite (often also calcite) 
which, when dissolved, can function as a source of calcium cations in the pore water of the 
bentonite. When such a bentonite is used as a buffer material in a repository, the Na-montmo-
rillonite will not disperse to colloids when initially in contact with groundwaters of low ionic 
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strengths. The solubilities of these calcium minerals are usually higher than the divalent cation 
CCC of the Na-montmorillonite /Wanner et al. 1992, Wieland et al. 1994, Bruno et al. 1999/.

/Bruno et al. 1999/ have studied quantitatively the chemical evolution of the buffer as a result of 
the interactions of the intruding groundwater with the MX-80 bentonite main components and 
accessory minerals. The following processes have been considered in their study: (1) dissolution 
of anhydrite and calcite, (2) ion-exchange reactions at the facial sites, (3) surface protonation 
and complexation reactions at the edge silanol and aluminol sites, (4) montmorillonite weather-
ing reactions, (5) redox buffering reaction of the pyrite or siderite. The first three processes were 
modelled with chemical equilibrium approach while the last two were modelled by chemical 
kinetics.

Dissolution of the calcium-containing minerals during initial equilibrium of bentonite with 
groundwaters will result in cation-exchange reactions for the calcium cations to replace the 
original sodium cations in the facial diffuse double layers, even for waters that are low in 
calcium concentration /Bruno et al. 1999/. For example, the initial Ca2+ concentrations in the 
Swedish Äspö, Finnsjön and Gideå groundwaters are 4.73·10–2, 3.55·10–3 and 5.25·10–4 M 
respectively. After equilibrium with the MX-80 bentonite of a total content of calcium minerals 
of 1.4% (wt), the final concentration of Ca2+ in the pore waters become 3.71·10–3, 2.04·10–3 and 
1.96·10–3 M, respectively /Bruno et al. 1999/. When the Ca2+ concentration in the initial water 
is high, less calcium minerals will dissolve than required for the cation-exchange of Na+ and 
the Ca2+ concentration in the water decreases after equilibrium with the bentonite clay. When 
the initial water has lower concentration of Ca2+, the opposite will be true. In any case, it seems 
that the final Ca2+ concentration in the water will be larger than the CCC concentration of the 
Na-montmorillonite which is 1·10–3 M when the bentonite is initially equilibrated with the above 
three types of groundwaters.

The chemical evolution of the bentonite in contact with different groundwaters has also been 
modelled by /Bruno et al. 1999/. Their results indicated that the concentration of the Ca2+ in the 
groundwaters is of great significance. When the Ca2+ is high as is the case for the Äspö ground-
water, the Na-bentonite could be completely converted to Ca-bentonite through cation-exchange 
reactions within 0.5 million years. While for the Gideå groundwater with a low concentration 
of Ca2+, the depletion of gypsum or anhydrite, and eventually even calcite in the bentonite could 
not be compensated by the slow Na-Ca exchange reactions and the pH values will increase to 
10.5 after 1 to 1.5 million years.

One important finding of /Bruno et al. 1999/ is that the calcite present in the bentonite is 
only dissolved marginally when the bentonite is equilibrated with Äspö, Finnsjön and Gideå 
groundwaters. The presence of soluble calcium containing minerals has a strong impact on the 
chemical erosion of bentonite as will be demonstrated later. 
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3	 Modelling of physical stability of bentonite

The term of physical stability has a very narrow connotation in this report as has been discussed 
earlier. The front part of the bentonite intruding into the intersecting fracture is usually in a gel 
form and is very soft compared to the other part of the bentonite buffer. When subject to the 
shear force exerted by the flowing groundwater, the gel front may be torn apart and carried 
away as small particles of clay aggregates by the groundwater.

The strength of the gel front that will balance the shear force of the groundwater depends on 
the interactions of the clay aggregates. The most profound interaction of this concern is the 
edge-face electrostatic interaction among the clay particles. There still has been no reliable 
theoretical foundation for the strengths of such interactions. In this report we therefore will 
give a modelling approach based on experimental data of the Bingham� yield stress and the 
groundwater velocity in the fracture.

The model proposed in this report is similar to that of /Pusch 1983/ as has been discussed at 
the end of Section 2.1 of this report. We will, however, use a more straightforward approach 
to directly balance the Bingham yield stress of the gel front with the shear stress exerted on 
the front by the flow of the groundwater.

The Bingham yield stress of a clay depends on the ratio of clay solids and water in the clay 
body. It varies with the clay to water content ratio by a power-law relation. The yield stress 
depends also strongly on the salt content (or ionic strength) of the water. Some experimentally 
determined values of the Bingham yield stresses of different clay minerals are listed in Table 3-1.

Table 3-1. The Bingham yield stresses of different smectite minerals.

Mineral type Clay/water 	
wt. ratio (%)

Salt content 	
(M)

Yield stress 	
(Pa)

Ref.

Smectite-illite 8–13 0.001–0.02 18–120 /M’Bodj et al. 2004/
Na-montmorill 5–11 0.001–0.1 0.6–30 /Romos-Tejada et al. 2001/
Na-kaolinite 4.9–9.1 0.003–0.3 4–6 /Nickel 1997/
MX-80 benton. 2 Dist. water < 0.1 /Pusch 1983/

5 3
10 39
5 Allard water 3
10 28
20 ~ 1,000
5 6·10–3 M NaCl 2
10 24
20 ~ 900
5 3·10–3 M CaCl2 1
10 20
20 ~ 750
5 6·10–2 M NaCl 1
10 6
20 ~ 300
5 3·10–2 M CaCl2 0.1
10 0.5
20 ~ 20

�  A Bingham fluid acts like a solid when the shear stress is less than the yield stress. At higher stresses it 
acts like a fluid.
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The data of the Bingham yield stress shown in Table 3-1 vary considerably for different smectite 
minerals, for different clay/water ratios as well as for different salt contents of the water. The 
values are especially sensitive to the clay/water ratio or water content in the clay. For our pur-
pose the values for the MX-bentonite determined by /Pusch 1983/ are considered. The measured 
data of the rate of shear plotted against the shear stress for different water types at a clay/water 
ratio of 5% (wt.) are reproduced and shown in Figure 3-1. The yield stresses are obtained from 
the intersections with the horizontal axis of the extrapolated straight lines. These values are 
shown in Table 3-1, together with data obtained at other clay/water ratios by /Pusch 1983/. It is 
not clear how much the water content of the gel front in the fracture is, but it is unlikely to have 
clay/water weight ratios less than 5% /Pusch 1983/. Then the smallest value of the Bingham 
yield stress shown in the table for MX-bentonite is 1 Pa except for the case with a salt content 
of 3·10–2 M CaCl2. Such high Ca2+ concentrations may not be representative of the pore water 
compositions, as has been shown by /Bruno et al. 1999/ that the cation-exchange reactions will 
result in Ca2+ concentrations in the pore water in the order of 10–3 M. In the following, we will 
use a yield stress value of 1 Pa which we deem is rather conservative for characterising the 
physical stability of the bentonite.

The shear force exerted by the flowing groundwater on the gel front will depend on the velocity 
of the groundwater at the clay-water interface in the intersecting fracture. The volumetric 
flowrate in a fracture can be calculated by the following equation:

Q = T·W·i

where Q is the volumetric flowrate (m3 s–1), T is the transmissivity of the fracture (m2 s–1), W 
is the width of the fracture (m), and i is the hydraulic gradient of the groundwater (mH2O m–1). 
The groundwater velocity in a fracture can be obtained by dividing Q with the cross section area 
of the fracture:

δδ
iT

W
Q

A
Qv ⋅=

⋅
== 	 (3-1)

where v is the groundwater velocity (m s–1) in the fracture, A is the cross-section area of the 
fracture (m2), and δ is the aperture of the fracture (m).

Figure 3-1. Rate of shear against shear stress of Na-bentonite measured by /Pusch 1983/. From left to 
right: the solutions used are 3·10–2M CaCl2, 6·10–2M NaCl, 3·10–3M CaCl2, 6·10–3M NaCl, Allard water, 
and distilled water, respectively. The clay/water ratio is 5% (wt.).
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Typical values for the hydraulic gradient in the Swedish granitic rocks at repository depth are 
expected to be less than a few percent. Field measured data of transmissivity vary considerably 
but often between 10–6 and 10–9 m2 s–1 /Andersson et al. 2002/. The fracture aperture may 
vary between less than a tenth of a millimetre and a few millimetres locally. Theoretically the 
transmissivity of a fracture should increase with the increase of fracture aperture, but fracture 
structures in granitic bedrocks are extremely heterogeneous and it is often difficult to give 
quantitative correlations between the transmissivity and the aperture of a fracture. In the follow-
ing analyses, we will use a “central value” of 1%, i.e. 0.01 mH2O m–1, for the hydraulic gradient. 
For the transmissivity and fracture aperture, however, we will consider all combinations in 
the range of 10–6 to 10–9 m2 s–1 for the transmissivity and 10–4 to 2·10–3 m (i.e. 0.1 to 2 mm) for 
the fracture aperture. The highest groundwater velocity in these ranges of transmissivity and 
fracture aperture will be 10–4 m s–1 and the lowest velocity will be 5·10–9 m s–1.

The shear stress of the groundwater exerted on the gel front can be calculated using Newton’s 
law of viscosity:

dy
dvx

yx ητ −=
 	 (3-2)

where τxy is the shear stress (shear force per unit area) exerted on the gel front, h is the viscosity 
of water (10–3 Pa s), vx is the groundwater velocity (m s–1), and x and y are axis coordinates (m).

The results of the shear stress calculated by using Equations 3-1 and 3-2, and by taking dy to 
be on the order of the fracture aperture are shown in Figure 3-2. The choice of dy equal to the 
fracture aperture is based on the inspection of the physics giving rise to the velocity profile in a 
fracture. The friction between the fracture wall and flowing water generates a parabolic velocity 
profile over the aperture of the fracture. The velocity drops from the maximum in the centre of 
the fracture to zero at the wall over a distance of half the aperture. The presence of the gel will 
act similarly to the fracture wall and the effect on the velocity profile perpendicular to the gel 
will extend a similar distance. 

Figure 3-2. Shear stress on the front gel of bentonite exerted by the flowing groundwater in the 
intersecting fracture.
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The results shown in Figure 3-2 indicate that, the highest shear stress will be 10–3 Pa when 
a fracture with the smallest aperture and the largest transmissivity (in the ranges we have 
considered) happens to intersect the deposition hole. The results also show that the shear stress 
exerted by the flowing groundwater is much less than the typical Bingham yield stress (1.0 Pa) 
of the gel front. It can thus be concluded that the bentonite buffer is physically stable with 
respect to the tearing off by the shear force exerted by the flowing groundwater on the gel front 
provided that the pore water does not have a very low ionic strength.

We will return to the question of the pore water chemistry at the outer rim of the clay when in 
contact with groundwater of very low ionic strength in the next section of this report.

In safety analyses of the spent fuel repository a climate scenario is often considered in addition 
to the base scenario /SKB 1999, 2004b, SKI 1996/. In the base scenario present-day climate 
conditions are assumed. In the climate scenario, possible dramatic changes of the future climate 
are also included. Historical climate change has been cyclical. During the Quaternary Period, 
i.e. the past 2 million years, the earth’s climate has been characterised by global cold periods 
when continental ice sheets and glaciers have extended. The cold periods have been interrupted 
by shorter warm periods with a climate similar to the current. In the next 100,000 years, there 
will possibly be three glacial-interglacial cycles, with at least the largest glaciation to reach the 
entire Sweden /SKB 1999/. With the advance and retreat of the ice sheet, the earth’s crust will 
be depressed and then up-lifted, the shoreline will rise and then sink. The hydraulic condition 
will be greatly influenced by the changes of hydraulic boundary conditions as a result of 
changed precipitation, shoreline displacement and ice growth and retreat /SKB 1999/. The 
hydraulic gradient of the deep groundwater will be increased profoundly when the ice sheet 
melts and recedes. 

For our example calculations we take the hydraulic gradient as high as 1 mH2O m–1 and to last 
for a maximum of 100 years during the time that the ice recedes and the ice front passed the 
repository location. An idea of the duration of the extreme hydraulic gradient is useful to form 
an idea of whether possible high erosion rates must be studied in more detail. 

We base these values on our interpretation of the description of the past ice ages and projection 
of future ice ages /SKB 1999/. From both Equations 3-1 and 3-2 it can be seen that the shear 
stress exerted by the flowing groundwater in the intersecting fracture on the gel front of the 
bentonite buffer is proportional to the hydraulic gradient. When the hydraulic gradient becomes 
100 times larger in the climate scenario than in the base scenario (by assuming the current cli-
mate), the shear stress will be 100 times larger. The highest shear stress will then become 0.1 Pa. 
This is still less than the lower limit of the yield stress of the bentonite buffer that is about 1 Pa 
if it has an ion concentration above the CCC. When the large uncertainties (in the measured data 
of the yield stress, in the estimate of the hydraulic gradient and the fracture aperture) involved in 
this simple calculation are considered, the difference by a factor of 10 is deemed to be not large 
enough to conclude that the bentonite buffer is still physically stable against mechanical erosion 
during the time when the ice sheet recedes.

One approach is to assume that only the shear boundary layer, i.e. a distance of water, dy, will 
take up the clay particles at a concentration of the gel at the gel/water interface. In the sample 
calculations we use the value 5% by weight. This is the lowest figure reported by /Pusch 1983/ 
for the clay gels in waters with Ca somewhat higher than the CCC.

Loss of clay due to physical erosion will only occur when the shear stress at the gel/water 
interface is larger than the Bingham yield stress. This is expected to be on the order of 1 Pa.

The local shear stress can be estimated from

2δ
η

δ
ηητ Tiv

dy
dvx

yx −=−≅−=	 (3-3)
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Even for the highest values of the transmissivities T, gradients i and the lowest value of the 
fracture aperture δ, the shear stress is 0.1 Pa. Should for some reason the stress become larger 
then the Bingham yield stress the physical erosion rate can be roughly estimated by the follow-
ing simple expression. It is based on the estimate that the gel is solubilised to a depth equal to 
the thickness of the shear boundary layer, see Equation 3-4. Similar results are obtained using 
an alternative model with the equivalent flowrate Qeq for clay particles that diffuse out into the 
passing water.

Nclay = T·i·δ·cBentGel	 (3-4)

where Nclay is the rate of loss of clay due to erosion, cBentGel is the concentration of bentonite 
(kg m–3) in the outermost layer of the gel. It is expected to be on the order of (some weight%) 
10’s of kg m–3. δ is the local fracture aperture.

For a transmissivity T = 1·10–6 m2 s–1, a gradient i = 1 mH2O m–1 and an aperture δ of 0.1 mm the 
rate of bentonite loss would be on the order of some tenths of kg a–1. Note that this is based on 
the assumption that the shear stress is large enough to shear off gel, which was found previously 
not to be probable. 

Another approach is to estimate the rate of diffusion from the solubilising gel boundary of 
the colloidal bentonite particles in the sol into the passing groundwater. These processes are 
described in the next section where the depletion of solutes (calcium) from the pore is described. 
The same formulae can be used for the colloidal clay particles. It will later be shown that this 
approach give erosion rates smaller than those just obtained above. However, the effects are 
additive.
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4	 Modelling of chemical stability of the bentonite

By the term “chemical stability” it is meant specifically the stability of the aggregates of the 
clay particles in the bentonite buffer. When the Na-montmorillonite in the bentonite buffer is 
in contact with water, clay gel may form. If the ionic strength of the water is lower than the 
critical coagulation concentration (CCC) of the Na-montmorillonite, the gel may disperse into 
a colloid sol in the water. The relatively abundant divalent cations, especially the Ca2+, are of 
great importance since the CCC is inversely proportional to the square of the valence number 
(see Equation 2-1). For pure Na-montmorillonite, the clay will disperse readily in waters having 
concentrations lower than the CCC. When accessory minerals containing the cations of the CCC 
are present, dissolution of these minerals may buffer the concentration of the cations in the pore 
water of the clay to be higher than the CCC, and the dispersion of the clay to form colloid sols 
will then be determined by the mass transfer processes of the cations out of the pore water of the 
bentonite. In this report, we will consider only the calcium containing minerals (represented by 
gypsum or anhydrite) as a buffer of the calcium concentration in the pore water of the bentonite 
buffer. Other calcium containing minerals like calcite and siderite have solubilities lower than 
the CCC under the repository conditions and will not be considered in this report.

The mineral compositions of the two types of bentonite (the Wyoming type, MX-80, Na-ben-
tonite and the Deponit CA-N type Ca-bentonite) are given in a Table in /SKB 2004b/. The table 
is reproduced below.

It should be noted that in this table the mineral compositions in the MX-80 bentonite is different 
from that in most previous works of SKB /e.g. Wanner et al. 1992, Wieland et al. 1994, Bruno 
et al. 1999/, e.g. the geochemical data of the MX-80 bentonite have also been given in /Bruno 
et al. 1999/:

Table 4-1. Bentonite composition of MX-80 and Deponit CA-N. The uncertainties are mainly 
related to the precision of the analysis method used.

Component MX-80 	
(wt.%)

Deponit CA-N 	
(wt.%)

Uncertainty 	
(± wt.%)

Calcite+siderite 0 10 1
Quartz 3 1 0.5

Cristoballite 2 1 0.5
Pyrite 0.07 0.5 0.05
Mica 4 0 1
Gypsum 0.7 1.8 (anhydrite) 0.2
Albite 3 0 1
Dolomite 0 3 1
Montmorillonite 87 81 3
Na 72% 24% 5
Ca 18% 46% 5
Mg 8% 29% 5
K 2% 2% 1
Anorthoclase 0 2 1
CEC (meq/100g) 75 70 2
Organic carbon 0.2 0.2 –
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Table 4-2. Geochemical data for MX-80 bentonite.

Property Value Reference

Cation exchange capacity (CEC) 85.0 meq/100g /1/
Edge sites (OH groups) 2.8 meq/100g /1/

Exchangeable Na 81.7% /2/
Exchangeable Mg 3.9% /2/
Exchangeable Ca 14.1% /2/
Exchangeable K 0.3% /2/
Total carbonate (CaCO3) 1.4 wt.% /2/
Total quartz (SiO2) 10 wt.% /3/
Total pyrite (FeS2) 0.3 wt.% /8/
CaSO4 impurities 0.34 wt.% /4/
NaCl impurities 0.007 wt.% /4/
Plagioclase (mainly albite) 5 to 9 wt.% /1, 5 and 6/
Illite 0 to 4 wt.% /1 and 6/
Kaolinite < 1 to 7 wt.% /1 and 6/

In Table 4-2 it can be seen that the total carbonate content as CaCO3 is assumed to be 1.4 wt.%. 
Moreover, 0.34 wt.% of gypsum/anhydrite (CaSO4) has also been assumed.

4.1	 Conceptual model
The conceptual model of the chemical stability of the bentonite buffer with respect to colloid 
dispersion we propose in this report can be described as follows:

After the closure of the repository, the bentonite buffer will be saturated by groundwater flowing 
in an intersecting fracture that is perpendicular to the axis of the canister. With water uptake, the 
bentonite will expand (intrude) somewhat into the fracture. The intrusion depth is assumed to 
be up to 15 cm, in accordance with the experimental and modelling results of /Pusch 1983/. We 
choose a large distance because this will give slightly conservative results.

The bentonite initially contains 0.7 wt.% of gypsum as is indicated in Table 4-1 for MX-80 
bentonite. This figure is used only as an illustrative example. Other values could be readily used 
to substitute this figure when necessary. The bentonite is also assumed to have a bulk density 
of 2,100 kg m–3 (fully water saturated) and a porosity of about 40%. After saturation with 
groundwater, the pore water in the bentonite will have the equilibrium compositions calculated 
by /Bruno et al. 1999/ before the intrusion of glacial water. Of particular importance to our 
proposed model in this report are the Ca2+ concentrations in the pore water of the bentonite, 
3.71·10–3, 2.04·10–3 or 1.96·10–3 M depending on the groundwater compositions (groundwaters 
at the Swedish Äspö, Finnsjön and Gideå sites, respectively). 

The intrusion of glacial water during the period of ice sheet retreat will change the groundwater 
compositions in the fracture intersecting the deposition hole. The previous groundwater with 
relatively high salinity (e.g. the water at the Äspö site) will be replaced by the glacial water. The 
pore water inside the bentonite buffer will also be altered, approaching gradually the composi-
tion of the glacial water. 

The groundwater flow and mass transfer processes considered in our model are the following 
(see Figure 4-1):

•	 Groundwater flows from the upstream, passing around the bentonite buffer that has expanded 
out into the fracture. The groundwater velocity is determined by the prevailing hydraulic 
gradient, the transmissivity and the (local) aperture of the fracture.
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•	 The groundwater composition is assumed contain essentially no dissolved species, represent-
ing the downward penetration of the glacial melt water (an example of such groundwater 
composition can be the groundwater at the Swiss Grimsel site /Möri et al. 2003/.

•	 The pore water composition in the bentonite is assumed to have an initial equilibrium 
composition of the glacial water with the minerals (gypsum and calcite and pyrite) and 
cation-exchange sites of the bentonite. The aqueous species, especially the Ca2+ in the pore 
water of the bentonite, will diffuse from the bentonite into the passing groundwater. The rate 
of diffusion is determined by the concentration gradient built up in the bentonite (including 
the part of the intrusion in the fracture) and the advective flux in the flowing groundwater in 
the fracture. The groundwater carries away the calcium that has diffused out into it.

Different stages will be considered in our model. In an initial stage of glacial water intrusion, we 
assume that the bentonite, which had been equilibrated with typical saline groundwaters during 
the temperate period of a glaciation cycle, becomes equilibrated with typical fresh glacial ground-
water, resulting in an initial concentration of the Ca2+ cations in the pore water of 9.8·10–3 M in 
the gel at the gel/water interface. The fresh groundwater will flow in the fracture and Ca2+ will 
diffuse into the fresh water. The diffusive flux will form an upper-bound limit of the transport  
of Ca2+ into the water, since the concentration gradient of Ca2+ is now the largest.

This maximum rate of Ca2+ transport can then be estimated to give an upper-bound limit of the 
dissolution rate of the more soluble calcium mineral like gypsum. First for illustrative purposes 
we assume that when a parcel of clay has been depleted of gypsum and calcium in the pore 
water down to the CCC, the parcel will form a sol. Then by knowing the rate of depletion of 
calcium by diffusion to the passing water the rate of sol formation and loss of clay is obtained 
by assuming that the sol is carried away by the water. This gives an upper-bound limit of the 
clay colloid dispersion. This case of the initial stage dispersion will be presented in Section 4.2. 
This neglects a re-supply of calcium from the clay further from the interface to the water. It also 
neglects to account for any possible limitations in transport capacity of the clay particles by the 
water. If the clay sol cannot be fully carried away an additional diffusion resistance for calcium 
escape will build up and clay loss will decrease. This simple case is therefore conservative. 

Figure 4-1. Geometrical arrangement of the intersecting fracture and the bentonite buffer and canister. 
The brown region surrounding the bentonite represents the intrusion into the fracture.
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We then proceed to consider the intermediate stage when part of the bentonite intrusion in the 
fracture facing the flowing groundwater is depleted of gypsum and the calcium concentration in 
that part will drop to less than the solubility of gypsum. At the outmost region of the bentonite 
gel, the concentration may become equal to or lower than the critical coagulation concentration 
(CCC). The region of clay with calcium concentration less than CCC will disperse into the 
flowing groundwater. At this intermediate stage, however, we still assume that the loss of clay 
is moderate and the bentonite can still expand to fill the region of the lost clay, and therefore the 
depth of the bentonite intrusion into the fracture remains constant. This case of the intermediate 
stage dispersion will be considered in Section 4.3.

Should the loss of the clay become so massive that the bulk density of the bentonite buffer  
is noticeably lowered, the buffer could possibly loose some of its swelling capability. 
Then our assumption of constant depth of clay intrusion into the fracture will be not valid. 
However, the function indicator used in the safety analysis by SKB for the swelling pressure 
is Pswell >1 MPa /SKB 2004/. To maintain such a swelling pressure, the buffer must have a bulk 
density ρbulk > 1,550–1,900 kg m3 /SKB 2004a/. Moreover, to safely exclude microbial activity 
(which is especially detrimental to copper canister corrosion by reduction of the abundant 
sulphate in the groundwater to sulphide), we must have ρbulk > 1,800 kg m3 /SKB 2004/. These 
requirements imply that, before the bentonite considerably looses its swelling pressure, its 
other function indicators may have already been violated. With all these issues in mind, we 
will therefore in this report not proceed to the late stages of clay colloid dispersion when 
the bentonite buffer looses its swelling pressure. Consequently in our following models it is 
legitimate to assume a constant geometry of the bentonite buffer, i.e. a constant radius of the 
bentonite proper in the disposition hole and a constant depth of the intrusion of the buffer into 
the intersecting fracture.

4.2	 The upper-bound limit calculation of the initial release 	
rate of calcium

The initial release of calcium depends on the solubility of the gypsum in the bentonite and the 
groundwater flow velocity in the intersecting fracture. A central value of 9.8·10–3 M of gypsum 
solubility will be used in the following calculations (see discussions in the Section 4.1). The 
groundwater velocity is determined by the hydraulic gradient of the groundwater, the transmis-
sivity and the aperture of the fracture. All of them vary considerably in deep crystalline rocks. 
For illustrative purposes we will first present a calculation using some representative “central 
values” of the hydraulic gradient, the transmissivity and aperture of the fracture. The values are 
0.01 mH2O m–1 for the hydraulic gradient, 10–8 m2 s–1 for the transmissivity and 10–4 m for the 
fracture aperture.

The model used for the calculation is two-dimensional. The intersecting fracture is modelled 
as a 2-dimensional domain (see Figure 4-1). The outer periphery of the intruding bentonite is 
assumed be a circular boundary with a radius of 1 m. This figure represents the sum of the radii 
of the copper canister (0.5 m), the thickness of the bentonite buffer (0.35 m) and the intrusion 
depth of the bentonite (0.15 m). The other boundaries are the inflow boundary and the outflow 
boundary, as well as the boundaries of symmetry parallel to the flow direction. The diffusive 
transport is coupled with the groundwater flow and is modelled by assigning a constant 
concentration of 9.8 mM at the boundary of the circle. The coupled multiphysical problem 
is solved by the FEMLAB program /Comsol 2004/. The concentration profile and the velocity 
arrows are shown in Figure 4-2.

The integrated total flux of calcium along the boundary of the outer periphery of the intruding 
bentonite is 1.49·10–10 mol s–1 (or 4.68·10–3 mol a–1) for this special case. The equivalent flowrate 
(see discussions below) Qeq is 4.78·10–4 m3 a–1. When the gypsum content in the bentonite buffer 
is assumed to be 0.7 wt.% and a solid/water ratio to be 4.85 kg L–1, the above integrated total 
flux of calcium gives a rate of bentonite loss of 112 g a–1.
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The various input data used in the above calculation are summarised in the following table.

In the above calculation, both the transmissivity and the aperture of the fracture have been 
assigned central values. These two parameters are known to vary over very large ranges. In 
the following we will make calculations using ranges of the values as shown in Table 4-3. 

Alternatively, the diffusive flux of the calcium from the outer periphery of the bentonite intru-
sion will be calculated by the product of an equivalent flowrate, Qeq, and the difference between 
the boundary concentration and the concentration in the approaching groundwater, the latter in 
our case is assumed to be zero. The equivalent flowrate is a very illustrative entity which shows 
what flowrate would carry away the species with the concentration it has at the clay boundary if 
the approaching concentration of the water is zero. If it is not it is defined by Equation 4-1.

N = Qeq (c0 –cw)	 (4-1)

where N (mol s–1) is the rate of loss of the calcium from the outer surface of the bentonite 
intrusion into the groundwater, Qeq (m3 s–1) is the equivalent flowrate, and c0 and cw (mol m–3) 
are calcium concentrations at the outer surface and in the groundwater, respectively.

Table 4-3. Input data used in the upper-bound calculations.

Property Value

Transmissivity of the fracture 1·10–8 m2 s–1 (1·10–9 to 1·10–6 m2 s–1)*
Aperture of the fracture 1·10–4 m (1·10–4 to 2·10–3 m)*
Outer radius of bentonite including the intrusion in fracture 1 m
Hydraulic gradient of the groundwater 0.01 mH2O m–1

Gypsum content in bentonite 0.7 wt.%
Diffusivity of Ca in water Dw = 1·10–9 m2 s–1

Solubility of gypsum 9.8 mol m–3 (9.8 mM)

* The ranges of values will be used in the following calculations.

Figure 4-2. Groundwater flows in the intersecting fracture and surrounding the canister. Calcium is 
transported from the surface of the gel front into the groundwater. The calcium concentration profile is 
shown by the colour surface plot and the groundwater velocity by the arrow plot.
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The equivalent flowrate for the specific geometry considered in this report will be given by 
/Neretnieks 1982, Nilsson et al. 1991, Nordman and Vieno 2004/:

δδ
π

δπ iTrDvrD
r
vDrQ ww

w
eq 4442 2 ===  	 (4-2)

where r (m) is the radius of the out periphery of the bentonite intrusion, δ (m) is the fracture 
aperture, Dw (m2 s–1) is the diffusivity of a solute (calcium) in water, and v (m s–1) is the ground-
water velocity. The groundwater velocity is related to the hydraulic gradient, the transmissivity 
and aperture of the fracture by Equation 3-1. The use of Equation 4-2 obviates the need to 
numerically solve the flow and diffusion equations as was done to generate Figure 4-2 for 
every parameter combination. 

The equivalent flowrate is calculated by using the data listed in Table 4-3 (the ranges of values for 
the fracture transmissivity and fracture aperture are used). The results are shown in Figure 4-3.

The calculated equivalent flowrate ranges from 1.26·10–4 m3 a–1 when the transmissivity is  
1·10–9 m2 s–1 and the fracture aperture is 1·10–4 m, to 1.78·10–2 m3 a–1 when the transmissivity 
is 1·10–6 m2 s–1 and the fracture aperture is 2·10–3 m. Using the solubility of gypsum for co 
the release rate of calcium will then be 1.23·10–3 mol a–1 and 1.77·10–1 mol a–1 respectively. 
The corresponding losses of bentonite when assuming a gypsum content of 0.7 wt.% are 
2.95·10–2 kg a–1 and 4.25 kg a–1 respectively. These two results are summarised in Table 4-4.

It should be noted that the results of the approach with the concept of equivalent flowrate agree 
well with those obtained by the detailed coupled mass transport and flow modelling using the 
FEMLAB program. For the case that has been calculated using FEMLAB with the fracture 
transmissivity of 1·10–8 m2 s–1and the fracture aperture of 1·10–4 m, the fully coupled approach 
gives an equivalent flowrate, Qeq, of 4.78·10–4 m3a–1. When Qeq is calculated using Equations 4-1 
and 4-2 with the concept of equivalent flowrate, the value of Qeq will be 3.98·10–4 m3 s–1. 
Therefore in the following model calculations of this report, we will mainly use the approach 
of the equivalent flowrate.

Figure 4-3. Equivalent flowrate calculated by using the data shown in Table 4-3.
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Table 4-4. The ranges of fracture transmissivity and fracture aperture, the equivalent 
flowrate, and the results of the rate of calcium loss and bentonite loss at the initial stage.

Property Low value High value

Transmissivity of the fracture 1·10–9 m2 s–1 1·10–6 m2 s–1

Aperture of the fracture 1·10–4 m 2·10–3 m
Equivalent flowrate 1.26·10–4 m3 a–1 1.78·10–2 m3 a–1

Rate of calcium loss 1.23·10–3 mol a–1 1.74·10–1 mol a–1

Rate of bentonite loss 2.95·10–2 kg a–1 4.19 kg a–1

When the radius of the copper canister is taken to be 0.5 m, the thickness of the bentonite buffer 
0.35 m, and the length of the copper canister 5 m, the volume of the annulus of the bentonite 
buffer will be 7.4 m3. Further by assuming a bulk density of the buffer to be 2,100 kg m–3 and 
a porosity of 40%, the dry density of the buffer will be 1,700 kg m–3. The total mass of the 
bentonite buffer will then be 1.26·104 kg. Should the initial rate of calcium loss remain constant 
at later stages of calcium loss (this is not the case as will be discussed in the next subsection), 
and the high value of the rate of calcium loss in Table 4-3 be used, the entire bentonite buffer in 
a repository will be lost within 2.96·103 years. Note also that these results apply for a very fresh 
water approaching the canister and calcium concentration equal to the solubility of gypsum. 
After some time the calcium concentration at the bentonite water interface will decrease as the 
dissolution front of gypsum recedes into the bentonite. 

Further elaboration of the chemical stability will not be pursued here since what we have 
modelled here is just the very initial stage of the bentonite loss. More detailed discussions  
will be provided in the next subsection.

4.3	 Modelling bentonite loss after the initial period 
In the previous subsection, we studied the initial stage of the loss of calcium and bentonite. 
The initial stage will last during a period during which pseudo steady condition for the chemical 
gradients and the intrusion rate of the clay is established. It is estimated to be less than a few 
years. 

The subsequent mass transport of calcium will be different from the initial stage. In this report 
the groundwater flowing in the intersecting fracture is assumed to be essentially fresh water 
with zero concentration of calcium (and other species as well). When calcium is released 
from the outer periphery of the gel front of the bentonite into the fresh groundwater, the 
concentration of calcium in the pore water in the gel front will start to decrease. When the 
pore water concentration in the bentonite becomes lower than the solubility of gypsum, the 
gypsum mineral will dissolve. In the region where the gypsum has been depleted, the pore 
water concentration will no longer be equal to the solubility of gypsum but be lower than that. 
Furthermore, at the outer edge of the gel front, the calcium concentration in the pore water may 
become less than the critical coagulation concentration (CCC) of the bentonite clay, and the 
clay at the outer edge of the gel front will be dispersed to clay sols that will be carried away 
by the groundwater. As has been discussed in the previous subsection, we still assume that the 
loss of clay is moderate and the bentonite can still expand to fill the region of the loss clay, and 
therefore the depth of the bentonite intrusion into the fracture remains constant.

The following conceptualisations are used to set up the model of the intermediate stage of 
bentonite clay dispersion.

The clay in the deposition hole has a swelling pressure that acts as a force to push out the clay 
into the fracture. As the clay moves out into the fracture it expands and the swelling pressure 
decreases with decreasing clay density. During swelling the clay takes up water and equilibrates 
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with the local water composition. There will therefore be a gradient of water content as well as 
of the water chemistry along the swollen clay. A final state is eventually approached when the 
friction force of the clay against the walls of the fracture balances the force that pushes the clay 
out into the fracture. At the outer rim of the clay the clay forms a stable gel and no particles are 
carried away if the salt concentration is above the CCC. 

Next, let the water composition at the outer edge of the clay change so that it will be lower 
than the CCC. For simplicity of description we assume that it is the calcium concentration in 
the water that determines the CCC. Also consider a case where there is a constant exchange of 
water with a known rate Qeq with an approaching concentration cw that is assumed to be zero in 
this report. When the pore water has a higher concentration of calcium than the water outside 
the clay, calcium diffuses out from the gel to the water. The water will take up calcium at the 
outer rim of the bentonite gel and leave with a concentration ci. 

At some point in the gel the calcium concentration would become less than CCC. The clay 
particles will disperse and be carried away by the water. This implies that the concentration at 
the gel/sol interface will be equal to the CCC. This will also be the concentration in the leaving 
water. Thus ci = CCC. 

This of course is a simplified model because in the fracture the approaching water will first meet 
clay that gives off calcium, which has to diffuse out further in the water in the fracture. It will 
therefore develop a concentration gradient in the water that passes the clay and the longer the 
water has been in contact with clay the further out the calcium has diffused. This can be handled 
by the boundary layer theory and has previously been used to describe the transport to and from 
the clay at the fracture interface. On the average the transport capacity of the flowing water can 
be summarized in an equivalent flowrate Qeq (m3 a–1). This is the flowrate of water that will 
carry away the calcium with a concentration equal to that at the interface, ci minus that in the 
approaching water cw. The equivalent flowrate is given by Equations 4-1 and 4-2.

As calcium is transported into the groundwater, the gypsum mineral inside the bentonite buffer 
dissolves. Somewhere inside the gel intrusion and from there to the gel rim facing the ground-
water, the gypsum has been completely depleted. In this region, the calcium concentration in 
the pore water drops from the solubility of gypsum, cs, to ci at the gel rim (see Figure 4-4). 
In the region where the gypsum mineral has not been depleted, the calcium concentration in 
the pore water will be equal to the solubility of gypsum. The calcium in the pore water is first 
transported from the front of the gypsum mineral to the outer rim of the bentonite gel, and is 
then transported into the groundwater from the gel surface. We assume that a steady state will 
prevail so that the thickness of the clay intrusion in which the clay still contains gypsum and the 
thickness in which the clay is depleted of gypsum are both constant. The validity of the constant 
geometry assumption has been discussed earlier.

The flux of calcium transported from the outer rim of the bentonite gel into the groundwater is 
still described by Equations 4-1 and 4-2. The concentration c0 in Equation 4-1, however, has 
to be replaced by ci, i.e. instead of using the solubility of gypsum we now use the CCC of the 
bentonite clay. When the flow properties are assumed to be the same as in the previous subsec-
tion, Qeq will be exactly the same. As the CCC is assumed to be 1 mM and the solubility, cs, 
9.8 mM, the rate of calcium loss as well as the rate of bentonite loss will just be 9.8 times less 
than the rates we have calculated in the previous subsection. The results of the rate of calcium 
loss and the rate of bentonite loss at the intermediate stage are shown in Table 4-5.
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Table 4-5. The ranges of fracture transmissivity and fracture aperture, the equivalent 
flowrate, and the results of the rate of calcium loss and bentonite loss at the intermediate 
stage.

Property Low value High value

Transmissivity of the fracture 1·10–9 m2 s–1 1·10–6 m2 s–1

Aperture of the fracture 1·10–4 m 2·10–3 m
Equivalent flowrate 1.26·10–4 m3 a–1 1.78·10–2 m3 a–1

Rate of calcium loss 1.26·10–4 mol a–1 1.78·10–2 mol a–1

Rate of bentonite loss when 	
bentonite contains gypsum

3.0·10–3 kg a–1 0.43 kg a–1

Rate of bentonite loss if there 	
is no gypsum in bentonite

0.536 kg a–1 76.9 kg a–1

Figure 4-4. Clay swells into a fracture. The Ca minerals dissolve and Ca diffuses towards the flowing 
groundwater water. Ca concentration drops to CCC. Clay disperses into the groundwater and is carried 
away by the water.
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The values in the last row of the table are obtained by assuming that the bentonite does not 
contain gypsum or other calcium minerals, and the calcium concentration in the pore water 
of the bentonite is just that of CCC.

In the above discussions we assumed that the gypsum dissolution front (the demarcation line 
between the region where the gypsum has not been depleted and where it has been) lies in the 
intrusion zone in the intersecting fracture rather than in the bentonite proper inside the deposi-
tion hole. We will in the following show that from a transport resistance point of view this is 
the case for the flow and transport conditions considered in this report. 

As is shown in Figure 4-4, the radius of the gel rim (measured from the central axis of the 
canister) where the calcium concentration is CCC is b = 1 m. Assume that the radius of the 
gypsum dissolution front is a (m). Then the rate of calcium transport from a to b is
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At steady state it should equal to the rate of transport of calcium from the gel rim to the 
groundwater.
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where DB (1·10–11 m2 s–1) is the diffusivity of calcium in the pore water in bentonite, 
c0 (9.8 mol m–3) is the solubility concentration of the gypsum mineral, ci (1.0 mol m–3)  
is the CCC, δ (m) is the fracture aperture, b (1.0 m) is the radius of the outer rim of the  
bentonite gel, a (m) is the radius of the gypsum dissolution front, Qeq (m3 s–1) is the equivalent 
flowrate, and cw (0 mol m–3) is the calcium concentration in the groundwater.

After inserting Equations 4-1 and 4-2 into Equation 4-4, we get
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where Dw (1·10–9 m2 s–1) is the diffusivity of calcium in water, T (m2 s–1) is the transmissivity of 
the fracture, and i (0.01 mH2O m–1) is the hydraulic gradient of the groundwater.

It can be seen from Equation 4-5 that a will be smallest when δ is the largest and T is the small-
est. In the ranges of values we have considered for them, the largest δ and the smallest T are 
2·10–3 m and 1·10–9 m2 s–1 respectively. When these values together with the values for the other 
parameters given above are used, the value of a is 0.94 m. This implies that inside the 0.15 m-
thick bentonite intruded into the fracture, 0.06 m has been depleted of the gypsum mineral, and 
the gypsum dissolution front lies in the region of bentonite intrusion in the fracture.

Even in the case when the gypsum dissolution front does not lie inside the bentonite intrusion 
in the fracture but in the bentonite proper in the deposition hole, our above modelling approach 
will still be valid for steady state conditions. The rate of calcium loss into the groundwater 
is determined only by the equivalent flowrate of the groundwater, Qeq, and the difference 
between calcium concentrations at the outer gel rim (ci) and in the groundwater (cw). None of 
these parameters are influenced by the transport of calcium inside the bentonite. We have not 
considered the balance of friction forces and swelling pressure in this analysis and just assumed 
that loss of clay by solubilisation can be replenished form the deposition hole. 

In the following we will analyse the consequences of the steady-state, intermediate-stage release 
of calcium.
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In safety assessment of spent fuel repository, several function indicators of the bentonite buffer 
are given by its bulk density /SKB 2004/. When the bentonite is lost by dispersion to clay sols, 
the bulk density of the bentonite will decrease. Assume a mass of m kg of bentonite is lost, the 
bulk density becomes
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ρρρ −−= 	 (4-6)

where  (kg m–3) is the bulk density of the bentonite ρ0
bulk after loosing m (kg) of bentonite, 

ρ0
bulk (2,100 kg m–3) is the original bulk density of bentonite, ρw (1,000 kg m–3) is the density 

of water ρdry,  (1,700 kg m–3) is the dry density of bentonite, and V (7.4 m3) is the total volume 
of bentonite in one deposition hole.

The changes of bulk density of bentonite with time are plotted in Figure 4-5 using the different 
rates of bentonite loss shown in the last two rows in Table 4-4.

It can be seen from the results that, when the bentonite contains 0.7 wt.% of gypsum, the bulk 
density will drop to 1,500 kg m–3 after about 3·104 years in contact with fresh groundwater if 
the transmissivity and aperture of the intersecting fracture are large (the green line); if they 
are small, the bulk density will drop to about 1,930 kg m–3 after 106 years (the blue line). On 
the other hand, when the bentonite does not contain gypsum, the bulk density will drop to 
1,500 kg m–3 after about 150 years if the transmissivity and aperture of the fracture are large  
(the black line); if they are small, the bulk density drops to 1,500 kg m–3 after about 2·104 years 
in contact with fresh groundwater (the red line).

Figure 4-5. Changes of the bulk density with time with different rates of bentonite loss shown in the last 
two rows of Table 4-4. The blue line: low values of the transmissivity and fracture aperture, and the ben-
tonite contains 0.7 wt.% gypsum. The green line: high values of the transmissivity and fracture aperture, 
and the bentonite contains 0.7 wt.% gypsum. The red line: low values of the transmissivity and fracture 
aperture, and the bentonite does not contain gypsum. The black line: high values of the transmissivity 
and fracture aperture, and the bentonite does not contain gypsum.
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Fresh water from melting ice might intrude to repository depth during an ice age. During some 
periods a considerably higher hydraulic gradient and water flowrate can be expected. The water 
may then not have time to dissolve much minerals and can have much lower calcium content 
than otherwise. In order to form some idea of the possible duration of fresh water intrusion we 
consider the following. Note, however, that this section is not meant to be any prediction. It is 
useful when developing models to assess what time range of validity they could be expected to 
have.

The length of time during which the bentonite buffer is in contact with fresh groundwater 
depends on the duration of the ice-sheet cover during a glacial/interglacial circle. This in turn 
depends on the geographical location of the site of the repository. In Sweden, the Bberg area 
(the Finnsjön area in central Sweden) will be infiltrated by fresh water during 74,000 of the 
130,000 years of the next glacial/interglacial cycle, i.e. about 56.9% of the total time. In the 
Cberg area (the Gideå area also in central Sweden, but to the north of the Bberg), the fresh water 
infiltration time will be 84,000 years out of the total 130,000 years (64.6%) /SKB 1999/. If all 
the future glacial cycles are expected to be similar, the above argument implies that during more 
than half of the future time the repository site could be infiltrated by fresh groundwater and that 
the bentonite buffer will be in contact with the fresh water. The bulk density of bentonite will 
drop to less than 1,500 kg m–3 (and thus all of its function indicators are violated) in less than 
3·104 years except for the case when the bentonite contains 0.7 wt.% of gypsum and when the 
transmissivity and aperture of the fracture are small in the range of values we have considered. 
In the latter case the bulk density will drop to about 1,930 kg m–3 after 106 years. 

However, when the ice recedes and there is a thick ice cover at one line but ice has melted away 
on the other side of the line, high hydraulic gradients can develop in the rock under the melting 
ice front.

If we, for illustrative purposes, assume that the gradient is as high as 1mH2O m–1 at the reposi-
tory location while the ice recedes the equivalent flowrate Qeq will be 10 times higher than the 
values shown earlier for the same transmissivity and aperture. This high gradient is not deemed 
to last over very long times, however.
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5	 Summary of the models

In the previous sections we have developed the models for bentonite loss due to physical and 
chemical erosion. Sample calculations were made using values of the main parameters that were 
deemed to be within the ranges that can be expected for Swedish sites and the bentonites that 
have been suggested for use as buffer materials.

5.1	 Physical erosion
It was found that physical erosion could possibly occur only under the highest hydraulic 
gradients and in the most conductive fractures.

Loss of clay due to physical erosion will only occur when the shear stress at the gel/water 
interface is larger than the Bingham yield stress. This is expected to be on the order of 1 Pa.

The local shear stress can be estimated from Equation 3-2 given earlier:
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Even for the highest values of the transmissivities T, the hydraulic gradients i and the lowest 
value of the fracture aperture δ, the shear stress is 0.1 Pa. Should for some reason the stress 
become larger then the Bingham yield stress the physical erosion rate can be roughly estimated 
by the following simple expression. It is based on the estimate that the gel is solubilised to a 
depth equal to the thickness of the shear boundary layer, see Equation 5-2. Similar results are 
obtained using an alternative model using the equivalent flowrate Qeq for clay particles that 
diffuse out into the passing water.

Nclay = T·i·δ·c BentGel	 (5-2)

where Nclay is the rate of loss of clay due to erosion (kg s–1), cBentGel is the concentration of 
bentonite (kg m–3) in the outermost layer of the gel. It is expected to be on the order of (some 
weight%) 10’s of kg m–3. δ is the local fracture aperture.

For a transmissivity T = 1·10–6 m2 s–1, a hydraulic gradient i = 1 mH2O m–1 and an aperture δ of 
0.1 mm the rate of bentonite loss would be on the order of some hundreds of grams per year. 

5.2	 Chemical erosion
As long as the pore water in the bentonite has a concentration of divalent ions (calcium) in 
excess of the CCC the loss of bentonite due to sol formation at the bentonite/water interface 
will be determined by the rate of loss of calcium from the clay. Then the amount of clay that 
has had its pore water depleted of the calcium can be solubilised and carried away by the water.

When there are minerals still present that replenish the pore water with divalent ions such as 
calcium to a concentration exceeding the CCC, calcium can be lost without clay being solubi-
lised. When the calcium mineral has been depleted in the region nearest the gel/water interface 
a balance will be established between the rate of replenishment of the calcium by diffusion from 
where there is still calcium mineral and the rate of loss of calcium at the gel/water interface. The 
rate of loss of calcium can then be calculated from

NCa = Qeq(CCCC–cw)	 (5-3)
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and the rate of loss of clay is:

Ca

Ca
Clay m

NN = 	 (5-4)

where mCa (kg Ca/kg clay) is the concentration of calcium in the clay as dissolved Ca and in 
minerals that can dissolve out Ca to a concentration higher than the CCC.

The equivalent flowrate Qeq is obtained from Equation 4-2 given earlier
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6	 Discussion

Role of minerals

It was found that soluble minerals containing divalent ions such as Ca2+ are very important for 
the long-term erosion stability of the bentonite buffer. However, only the more soluble calcium 
minerals such as gypsum or anhydrite can give calcium concentrations exceeding the CCC of 
the bentonite clay. Calcium minerals such as calcite and siderite have solubilities well below the 
CCC and do not significantly contribute to stabilise the bentonite clay from chemical erosion. In 
this report we take gypsum as the soluble calcium mineral.

Duration of fresh water intrusion

It is outside the scope of this report to assess the duration of the time fresh water can intrude 
to repository depths. However, in the sample calculations we have considered very long times. 
This is not to be interpreted that we have information that this could be the case. By general 
considerations it may be expected that the fresh water intrusion can be expected to be largest 
when a sharp ice front is located above the repository, generating very high gradients and thus 
flowrates. It is conceivable (to these authors) that fresh melt water will intrude also when the 
ice covers an extended region. Then, however, the gradient is expected to be much lower. The 
longer residence of the intruding fresh water will give more time for mineral weathering and  
the ion strength can be expected to be higher in the water that reaches repository depth.

Fracture transmissivity

We have used a broad range of transmissivity values and a high upper end of 10–6 m2 s–1. Such 
values are probably much too high for a host rock where a repository may be located. The high 
values were used mainly for illustration purposes and should not be used as probable values. No 
account has been taken to the possible decrease of transmissivities due to a large ice overburden.

Possible sources of divalent ions

The main calcium containing minerals in the clays are calcium carbonate and gypsum or 
anhydrite. Both gypsum and anhydrite have solubilities of calcium larger than the CCC of  
the bentonite clay. Calcite and Siderite have solubilities lower than the CCC. The contribution  
to ferrous iron in the pore water from this compound would give a Fe2+ concentration on the 
order of 0.01 mmol L–1. This is well below the CCC and will thus contribute only marginally  
to the stability of the bentonite gel. 

Clay expansion into the fracture

We have not in our own models made calculations of the rate of extrusion of the clay into 
the fractures but have relied upon the estimates of /Pusch 1983/. In our models it is therefore 
assumed that clay expands into the fracture at the same rate as it is carried away by erosion 
and that a steady state is reached. The penetration depth will stabilise at different distances for 
different erosion rates. Although it would be possible to devise a model that accounts for the 
combined effects of clay expansion, diffusion of calcium (and other species), dissolution of 
gypsum and chemical erosion at the gel/water interface we have at present deemed it to give 
little further insights into the erosion processes, considering the complexity and the scarcity  
of data for such a model.
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Variable aperture fractures

Fractures have very variable apertures. This causes the water to flow very unevenly in preferen-
tial flowpaths. Some flow paths can carry much more water and at higher velocities than others. 
Erosion can therefore be localised and not as even as our model assumes. By choosing a very 
wide range of transmissivities, apertures and hydraulic gradients we have tried to capture such 
possible variations also of local conditions in the fractures. 

Some other points

Many other points have been considered in other reports and publications. We note some here 
because they have been raised but we deem that they are not of the highest concern or relevance 
for our modelling and our conclusions and are not within the scope of this report.

•	 The long-term mineralogical stability of the Na-montmorillonite. As /Arthur et al. 2005/ 
pointed out that, during the period of 106 years, possible changes of the smectite lattice 
chemistry resulting in alteration of montmorillonite to other dioctahedral or trioctahedral 
smectitic clays such beidellite, nontronite, or saponite through the slow process of 
amorphous substitution cannot be convincingly excluded.

•	 The influence of the corrosion products of the copper canister and the iron in-fillings on the 
stability of the clay mineral. /Karnland et al. 2000/ measured an increase of up to 100 ppm of 
Cu in the block of compacted bentonite that was placed in contact with a heated Cu tube for 
one year in SKB’s Long Term Test of Buffer Material (LOT) experiments at the Äspö Hard 
Rock Laboratory (HRL). It is still unclear whether the copper cations are at the inter-laminar 
sites or are incorporated in the octahedrally coordinated sites.

•	 The influence of the oxidation state of Fe at the octahedral sites on the rheological and 
chemical properties of the bentonite. /Morcos 2003/ noted that the oxidation state of 
octahedral Fe in smectites can have a strong effect on the swelling pressure of bentonite. 
/Gates et al. 2000/ pointed out that the oxidation state of octahedral Fe can profoundly 
alter the cation-exchange properties, particle size, surface acidity, swelling behaviour and 
other properties of the smectites. /Wilson et al. 2000/ suggested that the precipitation of Fe 
oxyhydroxides on inter-laminar surfaces could result in a loss of cation-exchange capacity 
and swelling capacity of the smectites.

•	 Possible increase of pH values of the pore water caused by the release of bicarbonate anions 
together with the release of Ca2+ and its influence on the stability of the bentonite buffer. For 
Ca(II) poor groundwaters the pore water of the bentonite may evolve to high alkalinity of pH 
values of 10.5–10.8 /Bruno et al. 1999/. The charges at the edge sites are strongly dependent 
on pH and an increase in pH may change the charge from positive to negative and therefore 
decrease the strength of the EF electrostatic interactions. These interactions in turn determine 
the physical and chemical stabilities of the bentonite as has been discussed in Chapter 2 of 
this report.

•	 The influence of the calcium at the CEC site on our results when the bentonite does not 
contain calcium minerals. When calcium at the CEC site is to be released, other cations must 
be transported into the diffuse layer to compensate the charge loss. When the groundwater 
is fresh, probably only H+ can exchange the calcium cations. (Exchange by other cations in 
the pore water will not have net effect as their loss will also decrease the ionic strength of the 
pore water). Then the effect of such exchanges on the charge at the edge of the clay laminae 
will be very complicated. 
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7	 Conclusions

Our models are based on some basic fundamental physical and mass balance processes. It has 
been possible to summarise the main effects in a few very simple formulae that can be useful  
for performance assessment calculations.

Mechanical erosion is not expected to take place to any appreciable extent as long as the pore 
water in the clay has divalent cation concentrations above the CCC. 

Chemical corrosion due to massive intrusion of fresh water during the aftermath of an ice age 
will cause chemical erosion that can be noticeable in the most transmissive fractures during the 
time that a very high hydraulic gradient exists.

The rate of clay erosion due to chemical effects is inversely proportional to its content 
of gypsum mineral and a clay with readily soluble calcium minerals such as gypsum and 
anhydrite could be beneficial. 
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