# International Progress Report

IPR-07-02

# Äspö Hard Rock Laboratory

**Prototype Repository** 

Hydraulic tests and deformation measurements during operation phase

Test campaign 7

Single hole test

Torbjörn Forsmark SWECO VIAK

March 2007

#### Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00

+46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19



 $\begin{array}{lll} \text{Report no.} & \text{No.} \\ \text{IPR-07-02} & \text{F63K} \\ \text{Author} & \text{Date} \end{array}$ 

Torbjörn Forsmark 2007-03-05

Checked by Date

Ingvar Rhén 2007-03-05

Approved Date

Anders Sjöland 2007-03-20

# Äspö Hard Rock Laboratory

**Prototype Repository** 

Hydraulic tests and deformation measurements during operation phase

Test campaign 7

Single hole test

Torbjörn Forsmark SWECO VIAK

March 2007

*Keywords:* Äspö HRL, Prototype Repository, Hydrogeology, Hydraulic tests, Pressure build-up tests, Hydraulic parameters, Transmissivity, Storage coefficient

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

### **Abstract**

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included in the project but are also part of other projects.

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors.

Single hole tests are done in 8 boreholes of the Prototype Repository tunnel. In some of the holes several tests are made. The pressure change  $(dp_p)$  is limited to approximately 100 metres of water, 200 metres of water and finally a maximum possible pressure change (i.e open the flow control valves entirely) respectively.

There are two HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section used as a reference hole. The results are shown in the table below.

An alternative evaluation method (Dougherty, Babu, 1984), is used using the software AQTESOLV and detailed in the appendices. All data from the earlier test campaigns 1–6 have been re-evaluated and are considered as the results that should prevail from now on. The result from test campaign 7 using the alternative method is shown in the table below.

Table 1. Results from the test campaign 7. <sup>(1)</sup> Indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. <sup>(2)</sup> indicates no tests are done this test campaign

| Section     | HM<br>section | dp <sub>p</sub> (m) | Specific capacity (m²/s) | T <sub>MOYE</sub> (m <sup>2</sup> /s) | T <sub>eval</sub><br>(Jacob's)<br>(m²/s) | Skin factor<br>(Jacob's)<br>(-) | T <sub>eval</sub><br>(Dougherty<br>& Babu)<br>(m <sup>2</sup> /s) | Skin factor<br>(Dougherty<br>& Babu) (-) |
|-------------|---------------|---------------------|--------------------------|---------------------------------------|------------------------------------------|---------------------------------|-------------------------------------------------------------------|------------------------------------------|
| KA3550G01:2 | Х             | (1)                 | (1)                      | (1)                                   | (1)                                      | (1)                             | (1)                                                               | (1)                                      |
| KA3552G01:2 | Х             | max                 | 1.2 · 10 <sup>-9</sup>   | 8.0 · 10 <sup>-10</sup>               | 4.6 · 10 <sup>-10</sup>                  | -1.6                            | 8.0 · 10 <sup>-10</sup>                                           | -0.2                                     |
| KA3554G01:2 | Х             | ~100                | 1.1 · 10 <sup>-7</sup>   | 7.1 · 10 <sup>-8</sup>                | 4.5 · 10 <sup>-7</sup>                   | 17                              | 5.3 · 10 <sup>-7</sup>                                            | 20                                       |
| KA3554G01:2 | Х             | ~200                | 9.3 · 10 <sup>-8</sup>   | 6.0 · 10 <sup>-8</sup>                | 4.0 · 10 <sup>-7</sup>                   | 19                              | 4.6 · 10 <sup>-7</sup>                                            | 22                                       |
| KA3554G01:2 | Х             | max                 | 8.1 · 10 <sup>-8</sup>   | 5.2 · 10 <sup>-8</sup>                | 3.7 · 10 <sup>-7</sup>                   | 22                              | 4.4 · 10 <sup>-7</sup>                                            | 26                                       |
| KA3554G02:4 | Х             | ~100                | 1.3 · 10 <sup>-9</sup>   | 8.6 · 10 <sup>-10</sup>               | 1.1 · 10 <sup>-8</sup>                   | 47                              | 1.1 · 10 <sup>-8</sup>                                            | 50                                       |
| KA3554G02:4 | Х             | max                 | 1.8 · 10 <sup>-9</sup>   | 1.2 · 10 <sup>-9</sup>                | 1.2 · 10 <sup>-8</sup>                   | 35                              | 1.1 · 10 <sup>-8</sup>                                            | 35                                       |
| KA3548A01:3 | Х             | ~100                | 1.0 · 10 <sup>-7</sup>   | 6.8 · 10 <sup>-8</sup>                | 1.0 · 10 <sup>-7</sup>                   | -2.0                            | 8.0 · 10 <sup>-8</sup>                                            | -2.5                                     |
| KA3548A01:3 | Х             | ~200                | 9.3 · 10 <sup>-8</sup>   | 6.3 · 10 <sup>-8</sup>                | 9.5 · 10 <sup>-8</sup>                   | -1.5                            | 8.3 · 10 <sup>-8</sup>                                            | -1.8                                     |
| KA3548A01:3 | Х             | max                 | 8.8 · 10 <sup>-8</sup>   | 5.9 · 10 <sup>-8</sup>                | 1.0 · 10 <sup>-7</sup>                   | -0.9                            | 8.6 · 10 <sup>-8</sup>                                            | -1.3                                     |
| KA3542G01:3 | Х             | ~100                | 5.2 · 10 <sup>-8</sup>   | 3.4 · 10 <sup>-8</sup>                | 3.4 · 10 <sup>-8</sup>                   | -2.0                            | 4.7 · 10 <sup>-8</sup>                                            | -1.5                                     |
| KA3542G01:3 | Х             | ~200                | 5.0 · 10 <sup>-8</sup>   | 3.3 · 10 <sup>-8</sup>                | 3.3 · 10 <sup>-8</sup>                   | -1.6                            | 4.0 · 10 <sup>-8</sup>                                            | -1.5                                     |
| KA3542G01:3 | Х             | max                 | 4.6 · 10 <sup>-8</sup>   | 3.0 · 10 <sup>-8</sup>                | 4.4 · 10 <sup>-8</sup>                   | -0.2                            | 3.8 · 10 <sup>-8</sup>                                            | -0.7                                     |
| KA3544G01:2 | Х             | (1)                 | (1)                      | (1)                                   | (1)                                      | (1)                             | (1)                                                               | (1)                                      |
| KA3542G02:2 | Х             | ~100                | 9.5 · 10 <sup>-10</sup>  | 6.1 · 10 <sup>-10</sup>               | 4.2 · 10 <sup>-10</sup>                  | -1.5                            | 9.0 · 10 <sup>-10</sup>                                           | 0.6                                      |
| KA3542G02:2 | Х             | max                 | 1.1 · 10 <sup>-9</sup>   | 6.8 · 10 <sup>-10</sup>               | 5.1 · 10 <sup>-10</sup>                  | -1.5                            | 4.6 · 10 <sup>-10</sup>                                           | -1.1                                     |
| KA3563G:4   | -             | max                 | (2)                      | (2)                                   | (2)                                      | (2)                             | (2)                                                               | (2)                                      |
| KA3546G01:2 | Х             | max                 | 5.2 · 10 <sup>-10</sup>  | 3.3 · 10 <sup>-10</sup>               | -                                        | -                               | -                                                                 | -                                        |
| KA3566G01:2 | -             | max                 | (2)                      | (2)                                   | (2)                                      | (2)                             | (2)                                                               | (2)                                      |
| KA3572G01:2 | -             | max                 | (2)                      | (2)                                   | (2)                                      | (2)                             | (2)                                                               | (2)                                      |
| KA3574G01:3 | -             | max                 | (2)                      | (2)                                   | (2)                                      | (2)                             | (2)                                                               | (2)                                      |
| KA3539G:2   | х             | ~100                | 1.9 · 10 <sup>-7</sup>   | 1.2 · 10 <sup>-7</sup>                | 4.7 · 10 <sup>-7</sup>                   | -2.3                            | 6.3 · 10 <sup>-7</sup>                                            | -1.5                                     |
| KA3539G:2   | Х             | max                 | 1.7 · 10 <sup>-7</sup>   | 1.1 · 10 <sup>-7</sup>                | 5.5 · 10 <sup>-7</sup>                   | -1.6                            | 7.2 · 10 <sup>-7</sup>                                            | -0.8                                     |

## Sammanfattning

Huvudsyftet med prototypförvaret är att testa och demonstrera funktionen av en del av SKB:s djupförvarssystem. Aktiviteter som syftar till utveckling och försök av praktiska och ingenjörsmässiga lösningar, som krävs för att på ett rationellt sätt kunna stegvis utföra deponeringen av kapslar med kärnbränsle, är inkluderade i projektet för prototypförvaret men även i andra projekt.

Målsättningen med enhålstesterna är att få en uppskattning av transmissiviteten hos de hydromekaniska testsektionerna, (HM), som är utrustade med sprickdeformationssensorer.

Enhålstester gjordes i totalt 8 stycken borrhål. Ett nionde och tionde borrhål är utrustad med HM sensorer men har ej kunnat testas på grund av läckageproblem med de hydrauliska manschetterna. I G-tunneln finns ytterligare ett borrhål med en HM sensor installerad. Det hålet används som referenshål. Resultaten från denna testomgång presenteras i tabellen nedan.

En alternativ metod (Dougherty, Babu, 1984), har använts i samband med utvärderingen av denna testkampanj. Programvaran AQTESOLV har använts vid denna utvärdering. Resultat för testomgång 7 presenteras i tabellen nedan. I appendixdelarna har alla testomgångar 1 – 6 även utvärderats med den alternativa metodiken. Resultaten från utvärderingen enligt Dougherty & Babu anses vara de som skall gälla framöver.

Tabell 1. Resultat från testomgång 7. <sup>(1)</sup> indikerar läckageproblem med manschetterna, "- " indikerar att inget värde kunnat beräknas med valt utvärderingsmetod. <sup>(2)</sup> indikerar att ingen test gjordes i detta borrhål denna testkampanj

| Sektion     | HM<br>sektion | dp <sub>p</sub> (m) | Specifik<br>kapacitet<br>(m³/s·m) | T <sub>MOYE</sub> (m <sup>2</sup> /s) | T <sub>eval</sub><br>(Jacob's)<br>(m²/s) | Skin<br>faktor<br>(Jacob's)<br>(-) | T <sub>eval</sub><br>(Dougherty<br>& Babu)<br>(m <sup>2</sup> /s) | Skinfaktor<br>(Dougherty<br>& Babu) (-) |
|-------------|---------------|---------------------|-----------------------------------|---------------------------------------|------------------------------------------|------------------------------------|-------------------------------------------------------------------|-----------------------------------------|
| KA3550G01:2 | Х             | (1)                 | (1)                               | (1)                                   | (1)                                      | (1)                                | (1)                                                               | (1)                                     |
| KA3552G01:2 | Х             | max                 | 1.2 · 10 <sup>-9</sup>            | 8.0 · 10 <sup>-10</sup>               | 4.6 · 10 <sup>-10</sup>                  | -1.6                               | 8.0 · 10 <sup>-10</sup>                                           | -0.2                                    |
| KA3554G01:2 | Х             | ~100                | 1.1 · 10 <sup>-7</sup>            | 7.1 · 10 <sup>-8</sup>                | 4.5 · 10 <sup>-7</sup>                   | 17                                 | 5.3 · 10 <sup>-7</sup>                                            | 20                                      |
| KA3554G01:2 | Х             | ~200                | 9.3 · 10 <sup>-8</sup>            | 6.0 · 10 <sup>-8</sup>                | 4.0 · 10 <sup>-7</sup>                   | 19                                 | 4.6 · 10 <sup>-7</sup>                                            | 22                                      |
| KA3554G01:2 | Х             | max                 | 8.1 · 10 <sup>-8</sup>            | 5.2 · 10 <sup>-8</sup>                | 3.7 · 10 <sup>-7</sup>                   | 22                                 | 4.4 · 10 <sup>-7</sup>                                            | 26                                      |
| KA3554G02:4 | Х             | ~100                | 1.3 · 10 <sup>-9</sup>            | 8.6 · 10 <sup>-10</sup>               | 1.1 · 10 <sup>-8</sup>                   | 47                                 | 1.1 · 10 <sup>-8</sup>                                            | 50                                      |
| KA3554G02:4 | Х             | max                 | 1.8 · 10 <sup>-9</sup>            | 1.2 · 10 <sup>-9</sup>                | 1.2 · 10 <sup>-8</sup>                   | 35                                 | 1.1 · 10 <sup>-8</sup>                                            | 35                                      |
| KA3548A01:3 | Х             | ~100                | 1.0 · 10 <sup>-7</sup>            | 6.8 · 10 <sup>-8</sup>                | 1.0 · 10 <sup>-7</sup>                   | -2.0                               | 8.0 · 10 <sup>-8</sup>                                            | -2.5                                    |
| KA3548A01:3 | Х             | ~200                | 9.3 · 10 <sup>-8</sup>            | 6.3 · 10 <sup>-8</sup>                | 9.5 · 10 <sup>-8</sup>                   | -1.5                               | 8.3 · 10 <sup>-8</sup>                                            | -1.8                                    |
| KA3548A01:3 | Х             | max                 | 8.8 · 10 <sup>-8</sup>            | 5.9 · 10 <sup>-8</sup>                | 1.0 · 10 <sup>-7</sup>                   | -0.9                               | 8.6 · 10 <sup>-8</sup>                                            | -1.3                                    |
| KA3542G01:3 | Х             | ~100                | 5.2 · 10 <sup>-8</sup>            | 3.4 · 10 <sup>-8</sup>                | 3.4 · 10 <sup>-8</sup>                   | -2.0                               | 4.7 · 10 <sup>-8</sup>                                            | -1.5                                    |
| KA3542G01:3 | Х             | ~200                | 5.0 · 10 <sup>-8</sup>            | 3.3 · 10 <sup>-8</sup>                | 3.3 · 10 <sup>-8</sup>                   | -1.6                               | 4.0 · 10 <sup>-8</sup>                                            | -1.5                                    |
| KA3542G01:3 | Х             | max                 | 4.6 · 10 <sup>-8</sup>            | 3.0 · 10 <sup>-8</sup>                | 4.4 · 10 <sup>-8</sup>                   | -0.2                               | 3.8 · 10 <sup>-8</sup>                                            | -0.7                                    |
| KA3544G01:2 | Х             | (1)                 | (1)                               | (1)                                   | (1)                                      | (1)                                | (1)                                                               | (1)                                     |
| KA3542G02:2 | Х             | ~100                | 9.5 · 10 <sup>-10</sup>           | 6.1 · 10 <sup>-10</sup>               | 4.2 · 10 <sup>-10</sup>                  | -1.5                               | 9.0 · 10 <sup>-10</sup>                                           | 0.6                                     |
| KA3542G02:2 | Х             | max                 | 1.1 · 10 <sup>-9</sup>            | 6.8 · 10 <sup>-10</sup>               | 5.1 · 10 <sup>-10</sup>                  | -1.5                               | 4.6 · 10 <sup>-10</sup>                                           | -1.1                                    |
| KA3563G:4   | -             | max                 | (2)                               | (2)                                   | (2)                                      | (2)                                | (2)                                                               | (2)                                     |
| KA3546G01:2 | Х             | max                 | 5.2 · 10 <sup>-10</sup>           | 3.3 · 10 <sup>-10</sup>               | -                                        | -                                  | -                                                                 | -                                       |
| KA3566G01:2 | -             | max                 | (2)                               | (2)                                   | (2)                                      | (2)                                | (2)                                                               | (2)                                     |
| KA3572G01:2 | -             | max                 | (2)                               | (2)                                   | (2)                                      | (2)                                | (2)                                                               | (2)                                     |
| KA3574G01:3 | -             | max                 | (2)                               | (2)                                   | (2)                                      | (2)                                | (2)                                                               | (2)                                     |
| KA3539G:2   | Х             | ~100                | 1.9 · 10 <sup>-7</sup>            | 1.2 · 10 <sup>-7</sup>                | 4.7 · 10 <sup>-7</sup>                   | -2.3                               | 6.3 · 10 <sup>-7</sup>                                            | -1.5                                    |
| KA3539G:2   | Х             | max                 | 1.7 · 10 <sup>-7</sup>            | 1.1 · 10 <sup>-7</sup>                | 5.5 · 10 <sup>-7</sup>                   | -1.6                               | 7.2 · 10 <sup>-7</sup>                                            | -0.8                                    |

## **Executive Summary**

In Tables 1 to 4 below is a summary of the test results of the single hole tests so far. In the heading of each test campaign column is indicated the number of days since the heaters in canister hole 5 (DA3551G01) were turned on.

An alternative evaluation method (Dougherty, Babu, 1984), is used using the software AQTESOLV and detailed in the appendices. All data from the earlier test campaigns 1–6 have been re-evaluated using Dougherty & Babu model and are considered as the results that should prevail from now on.

Table 1. Specific capacity. For each test campaign is indicated the number of days since starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign

| Section     | dp <sub>p</sub><br>(m) | Test<br>campaign 1<br>(-0 days)<br>(m³/s·m) | Test<br>campaign 2<br>(-166 days)<br>(m³/s·m) | Test<br>campaign 3<br>(-270 days)<br>(m³/s·m) | Test<br>campaign 4<br>(-461 days)<br>(m³/s·m) | Test<br>campaign 5<br>(-622 days)<br>(m³/s·m) | Test<br>campaign 6<br>(-935 days)<br>(m³/s·m) | Test<br>campaign 7<br>(-1236 days)<br>(m³/s·m) |
|-------------|------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------|
| KA3550G01:2 | (1)                    | (1)                                         | (1)                                           | (1)                                           | (1)                                           | (1)                                           | (1)                                           | (1)                                            |
| KA3552G01:2 | max                    | 9.4 · 10 <sup>-9</sup>                      | 1.6 · 10 <sup>-9</sup>                        | 1.4 · 10 <sup>-9</sup>                        | 5.8 · 10 <sup>-9</sup>                        | 1.4 · 10 <sup>-9</sup>                        | 1.5 · 10 <sup>-9</sup>                        | 1.2 · 10 <sup>-9</sup>                         |
| KA3554G01:2 | ~100                   | (2)                                         | (2)                                           | (2)                                           | 1.0 · 10 <sup>-7</sup>                        | 1.1 · 10 <sup>-7</sup>                        | 9.7 · 10 <sup>-8</sup>                        | 1.1 · 10 <sup>-7</sup>                         |
| KA3554G01:2 | ~200                   | (2)                                         | (2)                                           | (2)                                           | 8.8 · 10 <sup>-8</sup>                        | 8.9 · 10 <sup>-8</sup>                        | 8.4 · 10 <sup>-8</sup>                        | 9.3 · 10 <sup>-8</sup>                         |
| KA3554G01:2 | max                    | 8.2 · 10 <sup>-8</sup>                      | 8.3 · 10 <sup>-8</sup>                        | 7.8 · 10 <sup>-8</sup>                        | 7.9 · 10 <sup>-8</sup>                        | 7.7 · 10 <sup>-8</sup>                        | 7.7 · 10 <sup>-8</sup>                        | 8.1 · 10 <sup>-8</sup>                         |
| KA3554G02:4 | ~100                   | (2)                                         | (2)                                           | (2)                                           | 1.2 · 10 <sup>-9</sup>                        | 1.3 · 10 <sup>-9</sup>                        | 1.2 · 10 <sup>-9</sup>                        | 1.3 · 10 <sup>-9</sup>                         |
| KA3554G02:4 | max                    | 1.3 · 10 <sup>-9</sup>                      | 1.2 · 10 <sup>-9</sup>                        | 1.2 · 10 <sup>-9</sup>                        | 1.2 · 10 <sup>-9</sup>                        | 1.2 · 10 <sup>-9</sup>                        | 1.4 · 10 <sup>-9</sup>                        | 1.8 · 10 <sup>-9</sup>                         |
| KA3548A01:3 | ~100                   | (2)                                         | (2)                                           | (2)                                           | (2)                                           | 1.1 · 10 <sup>-7</sup>                        | 1.1 · 10 <sup>-7</sup>                        | 1.0 · 10 <sup>-7</sup>                         |
| KA3548A01:3 | ~200                   | (2)                                         | (2)                                           | (2)                                           | (2)                                           | 1.1 · 10 <sup>-7</sup>                        | 1.0 · 10 <sup>-7</sup>                        | 9.3 · 10 <sup>-8</sup>                         |
| KA3548A01:3 | max                    | 1.1 · 10 <sup>-7</sup>                      | 1.0 · 10 <sup>-7</sup>                        | 1.1 · 10 <sup>-7</sup>                        | 9.8 · 10 <sup>-8</sup>                        | 1.0 · 10 <sup>-7</sup>                        | 9.3 · 10 <sup>-8</sup>                        | 8.8 · 10 <sup>-8</sup>                         |
| KA3542G01:3 | ~100                   | (2)                                         | (2)                                           | (2)                                           | 5.8 · 10 <sup>-8</sup>                        | 5.9 · 10 <sup>-8</sup>                        | 6.9 · 10 <sup>-8</sup>                        | 5.2 · 10 <sup>-8</sup>                         |
| KA3542G01:3 | ~200                   | (2)                                         | (2)                                           | (2)                                           | 4.9 · 10 <sup>-8</sup>                        | 5.4 · 10 <sup>-8</sup>                        | 5.4 · 10 <sup>-8</sup>                        | 5.0 · 10 <sup>-8</sup>                         |
| KA3542G01:3 | max                    | 5.4 · 10 <sup>-8</sup>                      | 4.9 · 10 <sup>-8</sup>                        | 4.7 · 10 <sup>-8</sup>                        | 4.5 · 10 <sup>-8</sup>                        | 4.7 · 10 <sup>-8</sup>                        | 4.4 · 10 <sup>-8</sup>                        | 4.6 · 10 <sup>-8</sup>                         |
| KA3544G01:2 | (1)                    | 7.8 · 10 <sup>-10</sup>                     | 5.9 · 10 <sup>-10</sup>                       | (1)                                           | (1)                                           | (1)                                           | (1)                                           | (1)                                            |
| KA3542G02:2 | ~100                   | (2)                                         | (2)                                           | (2)                                           | (2)                                           | 9.5 · 10 <sup>-10</sup>                       | 9.5 · 10 <sup>-10</sup>                       | 9.5 · 10 <sup>-10</sup>                        |
| KA3542G02:2 | max                    | 5.4 · 10 <sup>-10</sup>                     | 4.9 · 10 <sup>-10</sup>                       | 1.0 · 10 <sup>-9</sup>                        | 9.8 · 10 <sup>-10</sup>                       | 9.9 · 10 <sup>-10</sup>                       | 9.7 · 10 <sup>-10</sup>                       | 1.1 · 10 <sup>-9</sup>                         |
| KA3563G:4   | max                    | 1.7 · 10 <sup>-8</sup>                      | (2)                                           | (2)                                           | (2)                                           | 9.3 · 10 <sup>-9</sup>                        | (2)                                           | (2)                                            |
| KA3546G01:2 | max                    | 6.1 · 10 <sup>-10</sup>                     | 6.0 · 10 <sup>-10</sup>                       | 6.4 · 10 <sup>-10</sup>                       | 5.7 · 10 <sup>-10</sup>                       | 5.9 · 10 <sup>-11</sup>                       | 5.1 · 10 <sup>-10</sup>                       | 5.2 · 10 <sup>-10</sup>                        |
| KA3566G01:2 | max                    | 6.8 · 10 <sup>-10</sup>                     | (2)                                           | (2)                                           | (2)                                           | 6.4 · 10 <sup>-11</sup>                       | (2)                                           | (2)                                            |
| KA3572G01:2 | max                    | 1.9 · 10 <sup>-10</sup>                     | (2)                                           | (2)                                           | (2)                                           | 2.3 · 10 <sup>-10</sup>                       | (2)                                           | (2)                                            |
| KA3574G01:3 | max                    | 8.7 · 10 <sup>-10</sup>                     | (2)                                           | (2)                                           | (2)                                           | 1.9 · 10 <sup>-10</sup>                       | (2)                                           | (2)                                            |
| KA3539G:2   | ~100                   | (2)                                         | (2)                                           | (2)                                           | 2.3 · 10 <sup>-7</sup>                        | 2.2 · 10 <sup>-7</sup>                        | 2.1 · 10 <sup>-7</sup>                        | 1.9 · 10 <sup>-7</sup>                         |
| KA3539G:2   | max                    | 1.9 · 10 <sup>-7</sup>                      | 3.0 · 10 <sup>-7</sup>                        | 2.2 · 10 <sup>-7</sup>                        | 2.3 · 10 <sup>-7</sup>                        | 1.5 · 10 <sup>-7</sup>                        | 1.9 · 10 <sup>-7</sup>                        | 1.7 · 10 <sup>-7</sup>                         |

Table 2.  $T_{\text{MOYE}}$ . For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign

| Section     | dp <sub>p</sub><br>(m) | Test<br>campaign 1<br>(-0 days)<br>(m²/s) | Test<br>campaign 2<br>(-166 days)<br>(m²/s) | Test<br>campaign 3<br>(-270 days)<br>(m²/s) | Test<br>campaign 4<br>(-461 days)<br>(m²/s) | Test<br>campaign 5<br>(-622 days)<br>(m²/s) | Test<br>campaign 6<br>(-935 days)<br>(m²/s) | Test<br>campaign 7<br>(-1236 days)<br>(m²/s) |
|-------------|------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|
| KA3550G01:2 | (1)                    | (1)                                       | (1)                                         | (1)                                         | (1)                                         | (1)                                         | (1)                                         | (1)                                          |
| KA3552G01:2 | max                    | 8.8 · 10 <sup>-9</sup>                    | 1.0 · 10 <sup>-9</sup>                      | 8.8 · 10 <sup>-10</sup>                     | 3.8 · 10 <sup>-9</sup>                      | 8.9 · 10 <sup>-10</sup>                     | 9.9 · 10 <sup>-10</sup>                     | 8.0 · 10 <sup>-10</sup>                      |
| KA3554G01:2 | ~100                   | (2)                                       | (2)                                         | (2)                                         | 6.5 · 10 <sup>-8</sup>                      | 7.2 · 10 <sup>-8</sup>                      | 6.2 · 10 <sup>-8</sup>                      | 7.1 · 10 <sup>-8</sup>                       |
| KA3554G01:2 | ~200                   | (2)                                       | (2)                                         | (2)                                         | 5.6 · 10 <sup>-8</sup>                      | 5.7 · 10 <sup>-8</sup>                      | 5.4 · 10 <sup>-8</sup>                      | 6.0 · 10 <sup>-8</sup>                       |
| KA3554G01:2 | max                    | 5.2 · 10 <sup>-8</sup>                    | 5.3 · 10 <sup>-8</sup>                      | 5.0 · 10 <sup>-8</sup>                      | 5.1 · 10 <sup>-8</sup>                      | 4.9 · 10 <sup>-8</sup>                      | 4.9 · 10 <sup>-8</sup>                      | 5.2 · 10 <sup>-8</sup>                       |
| KA3554G02:4 | ~100                   | (2)                                       | (2)                                         | (2)                                         | 8.2 · 10 <sup>-10</sup>                     | 8.2 · 10 <sup>-10</sup>                     | 7.5 · 10 <sup>-10</sup>                     | 8.6 · 10 <sup>-10</sup>                      |
| KA3554G02:4 | max                    | 8.2 · 10 <sup>-10</sup>                   | 7.9 · 10 <sup>-10</sup>                     | 7.9 · 10 <sup>-10</sup>                     | 7.5 · 10 <sup>-10</sup>                     | 8.0 · 10 <sup>-10</sup>                     | 9.1 · 10 <sup>-10</sup>                     | 1.2 · 10 <sup>-9</sup>                       |
| KA3548A01:3 | ~100                   | (2)                                       | (2)                                         | (2)                                         | (2)                                         | 7.4 · 10 <sup>-8</sup>                      | 7.5 · 10 <sup>-8</sup>                      | 6.8 · 10 <sup>-8</sup>                       |
| KA3548A01:3 | ~200                   | (2)                                       | (2)                                         | (2)                                         | (2)                                         | 7.7 · 10 <sup>-8</sup>                      | 6.8 · 10 <sup>-8</sup>                      | 6.3 · 10 <sup>-8</sup>                       |
| KA3548A01:3 | max                    | 7.1 · 10 <sup>-8</sup>                    | 6.9 · 10 <sup>-8</sup>                      | 6.9 · 10 <sup>-8</sup>                      | 6.6 · 10 <sup>-8</sup>                      | 6.9 · 10 <sup>-8</sup>                      | 6.3 · 10 <sup>-8</sup>                      | 5.9 · 10 <sup>-8</sup>                       |
| KA3542G01:3 | ~100                   | (2)                                       | (2)                                         | (2)                                         | 3.8 · 10 <sup>-8</sup>                      | 3.9 · 10 <sup>-8</sup>                      | 4.5 · 10 <sup>-8</sup>                      | 3.4 · 10 <sup>-8</sup>                       |
| KA3542G01:3 | ~200                   | (2)                                       | (2)                                         | (2)                                         | 3.3 · 10 <sup>-8</sup>                      | 3.5 · 10 <sup>-8</sup>                      | 3.5 · 10 <sup>-8</sup>                      | 3.3 · 10 <sup>-8</sup>                       |
| KA3542G01:3 | max                    | 3.6 · 10 <sup>-8</sup>                    | 3.2 · 10 <sup>-8</sup>                      | 3.1 · 10 <sup>-8</sup>                      | 3.1 · 10 <sup>-8</sup>                      | 3.0 · 10 <sup>-8</sup>                      | 2.9 · 10 <sup>-8</sup>                      | 3.0 · 10 <sup>-8</sup>                       |
| KA3544G01:2 | (1)                    | 5.1 · 10 <sup>-10</sup>                   | 3.6 · 10 <sup>-10</sup>                     | (1)                                         | (1)                                         | (1)                                         | (1)                                         | (1)                                          |
| KA3542G02:2 | ~100                   | (2)                                       | (2)                                         | (2)                                         | (2)                                         | 6.1 · 10 <sup>-10</sup>                     | 6.1 · 10 <sup>-10</sup>                     | 6.1 · 10 <sup>-10</sup>                      |
| KA3542G02:2 | max                    | 3.5 · 10 <sup>-10</sup>                   | 3.1 · 10 <sup>-10</sup>                     | 6.4 · 10 <sup>-10</sup>                     | 6.3 · 10 <sup>-10</sup>                     | 6.4 · 10 <sup>-10</sup>                     | 6.2 · 10 <sup>-10</sup>                     | 6.8 · 10 <sup>-10</sup>                      |
| KA3563G:4   | max                    | 5.6 · 10 <sup>-9</sup>                    | (2)                                         | (2)                                         | (2)                                         | 5.9 · 10 <sup>-9</sup>                      | (2)                                         | (2)                                          |
| KA3546G01:2 | max                    | 3.9 · 10 <sup>-10</sup>                   | 3.9 · 10 <sup>-10</sup>                     | 4.1 · 10 <sup>-10</sup>                     | 3.6 · 10 <sup>-10</sup>                     | 3.6 · 10 <sup>-11</sup>                     | 3.3 · 10 <sup>-10</sup>                     | 3.3 · 10 <sup>-10</sup>                      |
| KA3566G01:2 | max                    | 4.4 · 10 <sup>-10</sup>                   | (2)                                         | (2)                                         | (2)                                         | 4.1 · 10 <sup>-11</sup>                     | (2)                                         | (2)                                          |
| KA3572G01:2 | max                    | 1.3 · 10 <sup>-10</sup>                   | (2)                                         | (2)                                         | (2)                                         | 1.6 · 10 <sup>-10</sup>                     | (2)                                         | (2)                                          |
| KA3574G01:3 | max                    | 6.1 · 10 <sup>-10</sup>                   | (2)                                         | (2)                                         | (2)                                         | 1.4 · 10 <sup>-10</sup>                     | (2)                                         | (2)                                          |
| KA3539G:2   | ~100                   | (2)                                       | (2)                                         | (2)                                         | 1.5 · 10 <sup>-7</sup>                      | 1.4 · 10 <sup>-7</sup>                      | 1.4 · 10 <sup>-7</sup>                      | 1.2 · 10 <sup>-7</sup>                       |
| KA3539G:2   | max                    | 1.3 · 10 <sup>-7</sup>                    | 2.0 · 10 <sup>-7</sup>                      | 1.5 · 10 <sup>-7</sup>                      | 1.5 · 10 <sup>-7</sup>                      | 1.0 · 10 <sup>-7</sup>                      | 1.3 · 10 <sup>-7</sup>                      | 1.1 · 10 <sup>-7</sup>                       |

Table 3. Transmissivity – transient evaluation according to (Dougherty, Babu, 1984). For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign

| Section     | dp <sub>p</sub><br>(m) | Test<br>campaign 1<br>(-0 days)<br>(m²/s) | Test<br>campaign 2<br>(-166 days)<br>(m²/s) | Test<br>campaign 3<br>(-270 days)<br>(m²/s) | Test<br>campaign 4<br>(-461 days)<br>(m²/s) | Test<br>campaign 5<br>(-622 days)<br>(m²/s) | Test<br>campaign 6<br>(-935 days)<br>(m²/s) | Test<br>campaign 7<br>(-1236 days)<br>(m²/s) |
|-------------|------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|
| KA3550G01:2 | (1)                    | (1)                                       | (1)                                         | (1)                                         | (1)                                         | (1)                                         | (1)                                         | (1)                                          |
| KA3552G01:2 | max                    | 4.2 · 10 <sup>-9</sup>                    | 1.3 · 10 <sup>-9</sup>                      | 9.5 · 10 <sup>-10</sup>                     | 8.1 · 10 <sup>-10</sup>                     | 7.4 · 10 <sup>-10</sup>                     | 4.5 · 10 <sup>-10</sup>                     | 8.0 · 10 <sup>-10</sup>                      |
| KA3554G01:2 | ~100                   | (2)                                       | (2)                                         | (2)                                         | 5.7 · 10 <sup>-7</sup>                      | 5.3 · 10 <sup>-7</sup>                      | 5.3 · 10 <sup>-7</sup>                      | 5.3 · 10 <sup>-7</sup>                       |
| KA3554G01:2 | ~200                   | (2)                                       | (2)                                         | (2)                                         | 5.3 · 10 <sup>-7</sup>                      | 4.9 · 10 <sup>-7</sup>                      | 4.8 · 10 <sup>-7</sup>                      | 4.6 · 10 <sup>-7</sup>                       |
| KA3554G01:2 | max                    | 6.4 · 10 <sup>-7</sup>                    | 6.4 · 10 <sup>-7</sup>                      | 5.8 · 10 <sup>-7</sup>                      | 4.9 · 10 <sup>-7</sup>                      | 4.6 · 10 <sup>-7</sup>                      | 4.5 · 10 <sup>-7</sup>                      | 4.4 · 10 <sup>-7</sup>                       |
| KA3554G02:4 | ~100                   | (2)                                       | (2)                                         | (2)                                         | 7.0 · 10 <sup>-9</sup>                      | 9.0 · 10 <sup>-9</sup>                      | 1.7 · 10 <sup>-8</sup>                      | 1.1 · 10 <sup>-8</sup>                       |
| KA3554G02:4 | max                    | 2.1 · 10 <sup>-8</sup>                    | 2.0 · 10 <sup>-8</sup>                      | 1.9 · 10 <sup>-8</sup>                      | 1.2 · 10 <sup>-8</sup>                      | 1.1 · 10 <sup>-8</sup>                      | 1.7 · 10 <sup>-8</sup>                      | 1.1 · 10 <sup>-8</sup>                       |
| KA3548A01:3 | ~100                   | (2)                                       | (2)                                         | (2)                                         | (2)                                         | 1.0 · 10 <sup>-7</sup>                      | 9.0 · 10 <sup>-8</sup>                      | 8.0 · 10 <sup>-8</sup>                       |
| KA3548A01:3 | ~200                   | (2)                                       | (2)                                         | (2)                                         | (2)                                         | 1.2 · 10 <sup>-7</sup>                      | 1.2 · 10 <sup>-7</sup>                      | 8.3 · 10 <sup>-8</sup>                       |
| KA3548A01:3 | max                    | 1.1 · 10 <sup>-7</sup>                    | 1.3 · 10 <sup>-7</sup>                      | 1.1 · 10 <sup>-7</sup>                      | 1.1 · 10 <sup>-7</sup>                      | 1.1 · 10 <sup>-7</sup>                      | 9.1 · 10 <sup>-8</sup>                      | 8.6 · 10 <sup>-8</sup>                       |
| KA3542G01:3 | ~100                   | (2)                                       | (2)                                         | (2)                                         | 4.4 · 10 <sup>-8</sup>                      | 5.8 · 10 <sup>-8</sup>                      | 6.6 · 10 <sup>-8</sup>                      | 4.7 · 10 <sup>-8</sup>                       |
| KA3542G01:3 | ~200                   | (2)                                       | (2)                                         | (2)                                         | 4.8 · 10 <sup>-8</sup>                      | 4.2 · 10 <sup>-8</sup>                      | 6.5 · 10 <sup>-8</sup>                      | 4.0 · 10 <sup>-8</sup>                       |
| KA3542G01:3 | max                    | 4.5 · 10 <sup>-8</sup>                    | 3.0 · 10 <sup>-8</sup>                      | 5.5 · 10 <sup>-8</sup>                      | 3.1 · 10 <sup>-8</sup>                      | 3.5 · 10 <sup>-8</sup>                      | 4.4 · 10 <sup>-8</sup>                      | 3.8 · 10 <sup>-8</sup>                       |
| KA3544G01:2 | (1)                    | 1.1 · 10 <sup>-8</sup>                    | 7.4 · 10 <sup>-9</sup>                      | (1)                                         | (1)                                         | (1)                                         | (1)                                         | (1)                                          |
| KA3542G02:2 | ~100                   | (2)                                       | (2)                                         | (2)                                         | (2)                                         | 1.0 · 10 <sup>-9</sup>                      | 9.6 · 10 <sup>-10</sup>                     | 9.0 · 10 <sup>-10</sup>                      |
| KA3542G02:2 | max                    | 3.6 · 10 <sup>-10</sup>                   | 2.7 · 10 <sup>-10</sup>                     | 9.3 · 10 <sup>-10</sup>                     | 8.7 · 10 <sup>-10</sup>                     | 8.6 · 10 <sup>-10</sup>                     | 6.1 · 10 <sup>-10</sup>                     | 4.6 · 10 <sup>-10</sup>                      |
| KA3563G:4   | max                    | 1.7 · 10 <sup>-7</sup>                    | (2)                                         | (2)                                         | (2)                                         | 5.1 · 10 <sup>-8</sup>                      | (2)                                         | (2)                                          |
| KA3546G01:2 | max                    | 6.8 · 10 <sup>-10</sup>                   | 1.4 · 10 <sup>-9</sup>                      | 1.2 · 10 <sup>-9</sup>                      | 1.1 · 10 <sup>-9</sup>                      | 1.3 · 10 <sup>-9</sup>                      | 1.4 · 10 <sup>-9</sup>                      | 9.6 · 10 <sup>-10</sup>                      |
| KA3566G01:2 | max                    | 1.3 · 10 <sup>-10</sup>                   | (2)                                         | (2)                                         | (2)                                         | 3.3 · 10 <sup>-10</sup>                     | (2)                                         | (2)                                          |
| KA3572G01:2 | max                    | 3.5 · 10 <sup>-9</sup>                    | (2)                                         | (2)                                         | (2)                                         | 1.4 · 10 <sup>-8</sup>                      | (2)                                         | (2)                                          |
| KA3574G01:3 | max                    | -                                         | (2)                                         | (2)                                         | (2)                                         | -                                           | (2)                                         | (2)                                          |
| KA3539G:2   | ~100                   | (2)                                       | (2)                                         | (2)                                         | 1.1 · 10 <sup>-6</sup>                      | 1.2 · 10 <sup>-6</sup>                      | 8.8 · 10 <sup>-7</sup>                      | 6.3 · 10 <sup>-7</sup>                       |
| KA3539G:2   | max                    | 1.3 · 10 <sup>-6</sup>                    | 1.5 · 10 <sup>-6</sup>                      | 1.1 · 10 <sup>-6</sup>                      | 1.0 · 10 <sup>-6</sup>                      | 9.8 · 10 <sup>-7</sup>                      | 9.6 · 10 <sup>-7</sup>                      | 7.2 · 10 <sup>-7</sup>                       |

Table 4. Skin factor – according to (Dougherty, Babu, 1984). For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). (1) indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign

| Section     | dp <sub>p</sub><br>(m) | Test<br>campaign 1<br>(-0 days)<br>(-) | Test<br>campaign 2<br>(-166 days)<br>(-) | Test<br>campaign 3<br>(-270 days)<br>(-) | Test<br>campaign 4<br>(-461 days)<br>(-) | Test<br>campaign 5<br>(-622 days)<br>(-) | Test<br>campaign 6<br>(-935 days)<br>(-) | Test<br>campaign 7<br>(-1236 days)<br>(-) |
|-------------|------------------------|----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|
| KA3550G01:2 | (1)                    | (1)                                    | (1)                                      | (1)                                      | (1)                                      | (1)                                      | (1)                                      | (1)                                       |
| KA3552G01:2 | max                    | 1.1                                    | -0.5                                     | -0.7                                     | -0.9                                     | -0.4                                     | -1.9                                     | -0.2                                      |
| KA3554G01:2 | ~100                   | (2)                                    | (2)                                      | (2)                                      | 26                                       | 24                                       | 25                                       | 20                                        |
| KA3554G01:2 | ~200                   | (2)                                    | (2)                                      | (2)                                      | 30                                       | 28                                       | 28                                       | 22                                        |
| KA3554G01:2 | max                    | 43                                     | 42                                       | 39                                       | 32                                       | 30                                       | 29                                       | 26                                        |
| KA3554G02:4 | ~100                   | (2)                                    | (2)                                      | (2)                                      | 30                                       | 38                                       | 90                                       | 50                                        |
| KA3554G02:4 | max                    | 100                                    | 95                                       | 94                                       | 58                                       | 73                                       | 68                                       | 35                                        |
| KA3548A01:3 | ~100                   | (2)                                    | (2)                                      | (2)                                      | (2)                                      | -1.4                                     | -2.1                                     | -2.5                                      |
| KA3548A01:3 | ~200                   | (2)                                    | (2)                                      | (2)                                      | (2)                                      | -1.1                                     | -0.6                                     | -1.8                                      |
| KA3548A01:3 | max                    | 0.2                                    | 1.1                                      | -1.2                                     | -0.1                                     | -0.4                                     | -1                                       | -1.3                                      |
| KA3542G01:3 | ~100                   | (2)                                    | (2)                                      | (2)                                      | -1                                       | -0.1                                     | -1                                       | -1.5                                      |
| KA3542G01:3 | ~200                   | (2)                                    | (2)                                      | (2)                                      | 0.3                                      | -0.9                                     | 1.1                                      | -1.5                                      |
| KA3542G01:3 | max                    | 0.1                                    | -1                                       | 1.5                                      | -0.9                                     | -0.7                                     | 0.2                                      | -0.7                                      |
| KA3544G01:2 | (1)                    | 90                                     | 100                                      | (1)                                      | (1)                                      | (1)                                      | (1)                                      | (1)                                       |
| KA3542G02:2 | ~100                   | (2)                                    | (2)                                      | (2)                                      | (2)                                      | 0.8                                      | -0.1                                     | 0.6                                       |
| KA3542G02:2 | max                    | 0.4                                    | -0.5                                     | 0.1                                      | 0.1                                      | -0.1                                     | -0.9                                     | -1.1                                      |
| KA3563G:4   | max                    | -                                      | (2)                                      | (2)                                      | (2)                                      | 31                                       | (2)                                      | (2)                                       |
| KA3546G01:2 | max                    | 6                                      | 10                                       | 7                                        | 8                                        | 9                                        | 11                                       | 8                                         |
| KA3566G01:2 | max                    | -                                      | (2)                                      | (2)                                      | (2)                                      | 0.1                                      | (2)                                      | (2)                                       |
| KA3572G01:2 | max                    | -                                      | (2)                                      | (2)                                      | (2)                                      | -                                        | (2)                                      | (2)                                       |
| KA3574G01:3 | max                    | -                                      | (2)                                      | (2)                                      | (2)                                      | -                                        | (2)                                      | (2)                                       |
| KA3539G:2   | ~100                   | (2)                                    | (2)                                      | (2)                                      | 1.8                                      | 2.1                                      | -0.6                                     | -1.5                                      |
| KA3539G:2   | max                    | 3.6                                    | 5.7                                      | 2.7                                      | 1.7                                      | 1                                        | 0.7                                      | -0.8                                      |

# **Contents**

| <b>1</b> 1.1 | Background<br>Äspö Hard Rock Laboratory                                                                                      | 15<br>15                         |
|--------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|              | Prototype Repository                                                                                                         | 16                               |
| 1.2          | 1.2.1 General objectives                                                                                                     | 16                               |
| 2            | Objective                                                                                                                    | 17                               |
| 3            | Scope                                                                                                                        | 19                               |
|              | Equipment Description of equipment Pressure sensors Flowmeter equipment Deformation measurements 4.4.1 Measurement equipment | 21<br>21<br>22<br>23<br>24<br>24 |
| 5            | Execution                                                                                                                    | 29                               |
|              | Preparations                                                                                                                 | 29                               |
| 5.2          | Execution of tests/measurements                                                                                              | 29                               |
|              | 5.2.1 Test principle                                                                                                         | 29<br>29                         |
| 5.3          | 5.2.2 Test procedure Data handling                                                                                           | 30                               |
| 5.4          | Analyses and interpretation                                                                                                  | 30                               |
| J. 1         | 5.4.1 Single hole tests                                                                                                      | 30                               |
| 6            | Results                                                                                                                      | 35                               |
| 6.1          | Single hole tests                                                                                                            | 35                               |
| 0.1          | 6.1.1 KA3552G01:2, test No 7:1                                                                                               | 35                               |
|              | 6.1.2 KA3554G01:2, test No 7:2a                                                                                              | 38                               |
|              | 6.1.3 KA3554G01:2, test No 7:2b                                                                                              | 41                               |
|              | 6.1.4 KA3554G01:2, test No 7:2c                                                                                              | 44                               |
|              | 6.1.5 KA3554G02:4, test No 7:3a                                                                                              | 47                               |
|              | 6.1.6 KA3554G02:4, test No 7:3b                                                                                              | 50                               |
|              | 6.1.7 KA3548A01:3, test No 7:4a                                                                                              | 53                               |
|              | 6.1.8 KA3548A01:3, test No 7:4b                                                                                              | 56                               |
|              | 6.1.9 KA3548A01:3, test No 7:4c                                                                                              | 59                               |
|              | 6.1.10 KA3542G01:3, test No 7:5a                                                                                             | 62                               |
|              | 6.1.11 KA3542G01:3, test No 7:5b                                                                                             | 65                               |
|              | 6.1.12 KA3542G01:3, test No 7:5c                                                                                             | 68                               |
|              | 6.1.13 KA3542G02:2, test No 7:7a                                                                                             | 71<br>74                         |
|              | 6.1.14 KA3542G02:2, test No 7:7b<br>6.1.15 KA3546G01:2, test No 7:9                                                          | 77                               |
|              | 6.1.16 KA3539G:2, test No 7:13a                                                                                              | 80                               |
|              | 6.1.17 KA3539G:2, test No 7:13a<br>6.1.17 KA3539G:2, test No 7:13b                                                           | 83                               |
| 6.2          | Deformation measurements                                                                                                     | 86                               |
| 7            | Conclusion                                                                                                                   | 87                               |
|              |                                                                                                                              |                                  |
| Ket          | erences                                                                                                                      | 89                               |

# **Appendices**

| Appendix 1 – Tests in KA3552G01:2   | 93  |
|-------------------------------------|-----|
| Appendix 2 – Tests in KA3554G01:2   | 97  |
| Appendix 3 – Tests in KA3554G02:4   | 105 |
| Appendix 4 – Tests in KA3548A01:3   | 111 |
| Appendix 5 – Tests in KA3542G01:3   | 119 |
| Appendix 6 – Tests in KA3544G01:2   | 127 |
| Appendix 7 – Tests in KA3542G02:2   | 129 |
| Appendix 8 – Tests in KA3563G:4     | 135 |
| Appendix 9 – Tests in KA3546G01:2   | 137 |
| Appendix 10 – Tests in KA3566G01:2  | 141 |
| Appendix 11 – Tests in KA3572G01:2  | 143 |
| Appendix 12 – Tests in KA3574G01:3  | 145 |
| Appendix 13 – Tests in KA3539G:2    | 147 |
| Appendix 14 – Tests in KA3542G02:5  | 153 |
| Appendix 15 – Tests in KA3590G02:1  | 155 |
| Appendix 16 – Tests in KG0021A01:3  | 157 |
| Appendix 17 – Tests in KG0048A01:3  | 159 |
| Appendix 18 – Tests in KA3573A:4    | 161 |
| Appendix 19 – Comparison of results | 163 |

# **Tables**

| Table 3-1  | Single hole tests during the campaign in November - December 2005. (1) indicates packer system failure, "X" indicates that section is equipped with HM sensors. (2) indicates no test is done in this campaign. | 19 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 4-1  | Data of the deformation measurement sections (sensors, length, number of fractures etc).                                                                                                                        | 26 |
| Table 6-1  | General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01                                                                                                                   | 35 |
| Table 6-2  | General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01                                                                                                                 | 38 |
| Table 6-3  | General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01                                                                                                                 | 41 |
| Table 6-4  | General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01                                                                                                                 | 44 |
| Table 6-5  | General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02                                                                                                                 | 47 |
| Table 6-6  | General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02                                                                                                                 | 50 |
| Table 6-7  | General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01                                                                                                                  | 53 |
| Table 6-8  | General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01                                                                                                                  | 56 |
| Table 6-9  | General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01                                                                                                                  | 59 |
| Table 6-10 | General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01                                                                                                                 | 62 |
| Table 6-11 | General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01                                                                                                                 | 65 |
| Table 6-12 | General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01                                                                                                                 | 68 |
| Table 6-13 | General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02                                                                                                                 | 71 |
| Table 6-14 | General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02                                                                                                                 | 74 |
| Table 6-15 | General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01                                                                                                                   | 77 |
| Table 6-16 | General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G                                                                                                                   | 80 |
| Table 6-17 | General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G                                                                                                                   | 83 |

# **Figures**

| Figure 1-1. Äspö Hard Rock Laboratory                                                                                                                                        | 15 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed. | 21 |
| Figure 4-2. Pressure transducers connections                                                                                                                                 | 22 |
| Figure 4-3. The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system                                                                          | 23 |
| Figure 4-4. A schematic figure that shows the different parts of the test equipment and also the definitions of the terms outer and inner.                                   | 25 |
| Figure 4-5. A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.                                                                         | 27 |
| Figure 6-1. Flow rates during draw down in KA3552G01:2.                                                                                                                      | 36 |
| Figure 6-2. Flow rates during draw down in KA3554G01:2.                                                                                                                      | 39 |
| Figure 6-3. Flow rates during draw down in KA3554G01:2.                                                                                                                      | 42 |
| Figure 6-4 Flow rates during draw down in KA3554G01:2.                                                                                                                       | 45 |
| Figure 6-5 Flow rates during draw down in KA3554G02:4.                                                                                                                       | 48 |
| Figure 6-6 Flow rates during draw down in KA3554G02:4.                                                                                                                       | 51 |
| Figure 6-7 Flow rates during draw down in KA3548A01:3.                                                                                                                       | 54 |
| Figure 6-8 Flow rates during draw down in KA3548A01:3.                                                                                                                       | 57 |
| Figure 6-9 Flow rates during draw down in KA3548A01:3.                                                                                                                       | 60 |
| Figure 6-10 Flow rate during draw down in KA3542G01:3.                                                                                                                       | 63 |
| Figure 6-11 Flow rate during draw down in KA3542G01:3.                                                                                                                       | 66 |
| Figure 6-12 Flow rate during draw down in KA3542G01:3.                                                                                                                       | 69 |
| Figure 6-13 Flow rate during draw down in KA3542G02:2.                                                                                                                       | 72 |
| Figure 6-14 Flow rate during draw down in KA3542G02:2.                                                                                                                       | 75 |
| Figure 6-15 Flow rate during draw down in KA3546G01:2. The flow in this section is very low. No flowmeter readings are available.                                            | 78 |
| Figure 6-16 Flow rate during draw down in KA3539G:2.                                                                                                                         | 81 |
| Figure 6-17 Flow rate during draw down in KA3539G:2.                                                                                                                         | 84 |

# 1 Background

## 1.1 Äspö Hard Rock Laboratory

In order to prepare for the siting and licensing of a spent fuel repository SKB has constructed an underground research laboratory.

In the autumn of 1990, SKB began the construction of Äspö Hard Rock Laboratory (Äspö HRL), see Figure 1-1, near Oskarshamn in the southeastern part of Sweden. A 3.6 km long tunnel was excavated in crystalline rock down to a depth of approximately 460 m.

The laboratory was completed in 1995 and research concerning the disposal of nuclear waste in crystalline rock has since then been carried out.

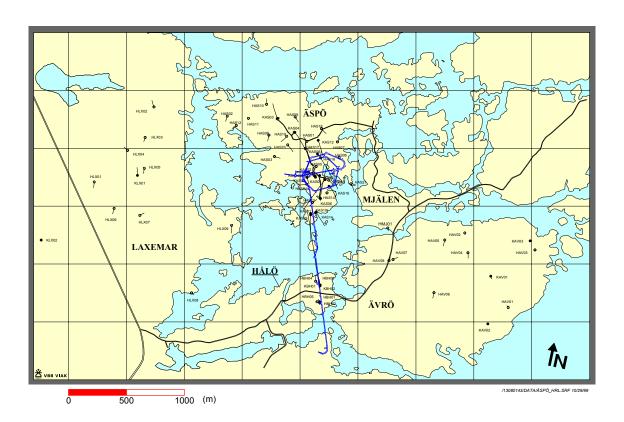



Figure 1-1. Äspö Hard Rock Laboratory.

### 1.2 Prototype Repository

The Äspö Hard Rock Laboratory is an essential part of the research, development, and demonstration work performed by SKB in preparation for construction and operation of the deep repository for spent fuel. Within the scope of the SKB program for RD&D 1995, SKB has decided to carry out a project with the designation "Prototype Repository Test". The aim of the project is to test important components in the SKB deep repository system in full scale and in a realistic environment.

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included. However, efforts in this direction are limited, since these matters are addressed in the Demonstration of Repository Technology project and to some extent in the Backfill and Plug Test.

#### 1.2.1 General objectives

The Prototype Repository should simulate as many aspects as possible a real repository, for example regarding geometry, materials, and rock environment. The Prototype Repository is a demonstration of the integrated function of the repository components. Results will be compared with models and assumptions to their validity.

The major objectives for the Prototype Repository are:

- To test and demonstrate the integrated function of the repository components under realistic conditions in full scale and to compare results with models and assumptions.
- To develop, test and demonstrate appropriate engineering standards and quality assurance methods.
- To simulate appropriate parts of the repository design and construction process.

The objective for the operation phase program is:

 To monitor processes and properties in the canister, buffer material, backfill and near-field rock mass

# 2 Objective

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors, (Alm et al, 2005).

## 3 Scope

Single hole tests are done in 8 boreholes of the Prototype Repository tunnel. There are two more HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The tested intervals and basic test data are listed in Table 3-1. The first figure in the test number indicates this being the seventh single hole test campaign, while the second number indicates the chronological order of the single hole tests. The same numbering of the tests as used during test campaign 1 to 6 is used (Forsmark et al, 2004), (Forsmark, Rhén, 2004a, 2004b, 2004c, 2005a, 2005b, 2005c), (Forsmark, 2006). Also indicated in the table are the sections where Hydro Mechanical (HM) measurements are done. In chapter 6 the results of the tests are presented.

In some of the holes several tests are made. The pressure change (dp<sub>p</sub>) is limited to approximately 100 metres of water, approximately 200 metres of water and finally a maximum possible pressure change (i.e open the flow control valves entirely) respectively.

Table 3-1. Single hole tests during the campaign in September 2006. (1) indicates packer system failure, "X" indicates that section is equipped with HM sensors. (2) indicates no test is done in this campaign

| Bore hole                  | Section<br>(m) | HM<br>section | Single<br>hole | Date of test | Start of test | Flow start | Flow stop | Test stop |
|----------------------------|----------------|---------------|----------------|--------------|---------------|------------|-----------|-----------|
|                            |                |               | test no.       |              |               |            |           |           |
| KA3550G01:2 <sup>(1)</sup> | 5.20-7.30      | X             | - (1)          | -            | -             | -          | -         | -         |
| KA3552G01:2                | 4.35-6.05      | X             | 7:1            | 2006-09-28   | 08:00:00      | 09:00:00   | 11:00:00  | 12:00:00  |
| KA3554G01:2                | 22.60-24.15    | X             | 7:2a           | 2006-09-25   | 12:00:00      | 13:00:00   | 15:00:00  | 17:00:00  |
| KA3554G01:2                | 22.60-24.15    | X             | 7:2b           | 2006-09-26   | 09:00:00      | 10:00:00   | 12:00:00  | 13:00:00  |
| KA3554G01:2                | 22.60-24.15    | Х             | 7:2c           | 2006-09-27   | 08:00:00      | 09:00:00   | 11:00:00  | 12:00:00  |
| KA3554G02:4                | 10.50-12.20    | Х             | 7:3a           | 2006-09-26   | 06:00:00      | 07:00:00   | 09:00:00  | 10:00:00  |
| KA3554G02:4                | 10.50-12.20    | X             | 7:3b           | 2006-09-28   | 11:00:00      | 12:00:00   | 14:00:00  | 15:00:00  |
| KA3548A01:3                | 8.80-10.75     | Х             | 7:4a           | 2006-09-26   | 14:00:00      | 15:00:00   | 16:00:00  | 17:00:00  |
| KA3548A01:3                | 8.80-10.75     | Х             | 7:4b           | 2006-09-27   | 06:00:00      | 07:00:00   | 08:00:00  | 09:00:00  |
| KA3548A01:3                | 8.80-10.75     | Х             | 7:4c           | 2006-09-28   | 06:00:00      | 07:00:00   | 08:00:00  | 09:00:00  |
| KA3542G01:3                | 18.60-20.30    | Х             | 7:5a           | 2006-09-25   | 17:00:00      | 18:00:00   | 19:00:00  | 21:00:00  |
| KA3542G01:3                | 18.60-20.30    | Х             | 7:5b           | 2006-09-26   | 16:00:00      | 17:00:00   | 18:00:00  | 20:00:00  |
| KA3542G01:3                | 18.60-20.30    | Х             | 7:5c           | 2006-09-27   | 16:00:00      | 17:00:00   | 18:00:00  | 20:00:00  |
| KA3544G01:2 <sup>(1)</sup> | 8.90-10.65     | Х             | - (1)          | -            | -             | -          | -         | -         |
| KA3542G02:2                | 25.60-27.20    | Х             | 7:7a           | 2006-09-28   | 14:00:00      | 15:00:00   | 18:00:00  | 20:00:00  |
| KA3542G02:2                | 25.60-27.20    | Х             | 7:7b           | 2006-09-29   | 04:30:00      | 05:30:00   | 08:30:00  | 10:30:00  |
| KA3563G:4                  | 1.50-3.00      | -             | - (2)          | -            | -             | -          | -         | -         |
| KA3546G01:2                | 6.75-8.30      | X             | 7:9            | 2006-09-27   | 11:00:00      | 12:00:00   | 15:00:00  | 17:00:00  |
| KA3566G01:2                | 20.00-21.50    | -             | - (2)          | -            | -             | -          | -         | -         |
| KA3572G01:2                | 2.70-5.30      | -             | - (2)          | -            | -             | -          | -         | -         |
| KA3574G01:3                | 1.80-4.10      | -             | - (2)          | -            | -             | -          | -         | -         |
| KA3539G:2                  | 15.85-17.60    | Х             | 7:13a          | 2006-09-25   | 15:00:00      | 16:00:00   | 17:00:00  | 18:00:00  |
| KA3539G:2                  | 15.85-17.60    | X             | 7:13b          | 2006-09-26   | 12:00:00      | 13:00:00   | 14:00:00  | 15:00:00  |

# 4 Equipment

## 4.1 Description of equipment

A large number of boreholes are instrumented with one or several packers. In all packed-off sections, the water pressure is measured. Each borehole section is connected to a tube of polyamide that via lead-through holes ends in the G-tunnel. All pressure transducers are placed in the G-tunnel to facilitate easy calibration and exchange of transducers that are out of order. The transducers are connected to the HMS system at Äspö Laboratory and it is a flexible system for changing the sampling frequency, see Figure 4-1. The maximum scan frequency is every third second. During periods with no hydraulic tests, the sampling (storing a value in the data base) frequency will be every second hour with an automatic increase of the sampling frequency if the pressure change since last registration is larger than 2kPa. During hydraulic tests, the sampling frequency may be up to every third second.



**Figure 4-1.** All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.

#### 4.2 Pressure sensors

The pressure in a borehole is transmitted via a plastic tube directly to a pressure transducer, *see* Figure 4-2.

The pressure transducers are either of the type DRUCK PTX 500 series or DRUCK PTX 600 series with a pressure range of 0 - 50 bar (absolute).

According to the manufacturer the uncertainty for these transducers is +/-0.2 % (type 500) and +/-0.08 % (type 600) of full scale (F.S) for the best straight line (B.S.L.). For the 600 series types the time drift is given to max. 0.05 % F.S., while no figure is given for the 500 series types. Normally, a pressure value is scanned once every third second. If the change since the latest stored value exceeds a "change value" of approximately 2 kPa the newly scanned value is stored. A value is always stored once every second hour, regardless of any changes.



Figure 4-2. Pressure transducers connections.

### 4.3 Flowmeter equipment

A new kind of flowmeter, see Figure 4-3, is used in order to obtain continously flow measurements during the tests. The equipment system used was originally developed by Micro Motion, Inc. in USA, and is comprised of a sensor and a signal processing transmitter. It is called a Coriolis mass flowmeter and measures mass flow directly. The volume flow can be obtained when knowing the temperature, the pressure and finally the density of the fluid (water).

The fluid enters the sensor and travels through the sensor's flow tubes, which vibrate and twist. The twisting characteristic is called the Coriolis effect. According to Newton's Second Law of Motion, the amount of sensor tube twist is directly proportional to the mass flow rate of the fluid flowing through the tube.

The equipment unit consist of two flowmeters with different measurement ranges. The measurement range for the large flowmeter is 0 to appr. 36 kg/min and for the small flowmeter is 0 to approx. 1.8 kg/min.



**Figure 4-3.** The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system.

#### 4.4 Deformation measurements

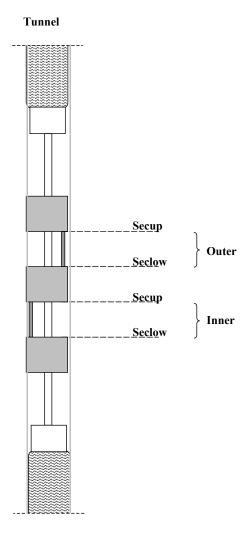
During storage of nuclear waste in the rock mass the temperature will increase due to the heat loss from the canisters with spent fuel. This will increase the rock stresses and the fractures will generally close, but may locally open due to the stress situation (*Alm et al*, 2005).

It is of interest to investigate the magnitude of this effect on the fracture transmissivity since the fracture transmissivity is essential of two reasons. First, enough transmissivity is needed to provide the bentonite buffer with water if no artificial moistening of the buffer is arranged. Secondly, the transmissivity should be as low as possible in order to minimise the hydraulic contact with the canisters. The increased temperature will decrease the transmissivity, which in principal is positive in perspective of Safety Assessment. The last effect is however limited in time and may not be of any greater importance in Safety Assessment.

Displacement measurements are done continuously. Hydraulic tests will be made a number of times during the operation period for the ten measurement sections. An extra section is also equipped with hydromechanical measurements equipment and is used as a reference hole (KG0010B01). Most tests have been planned to be made during the first years of operation when the largest displacements are expected to occur. This report details the interference results from the fifth test campaign. They are done in order to provide hydrogeological data useful for setting up a hydrogeological model of the rock volume around the TBM tunnel.

In order to investigate the hydro mechanical response of the fractures as a result of the increased thermal load, two different approaches are considered.

The first approach is to measure the change of the fracture width as function of temperature and time. The displacement is both measured for the intact rock as for a section with one or more fractures.


The second approach implies that the mechanical response is evaluated indirect by using the results from hydraulic tests. Single hole hydro tests is performed in the same sections as the mechanical measurements are made (*Forsmark*, *Rhén*, 2004a, 2004b, 2004c, 2005a and 2005c), (*Forsmark*, 2006).

All results from the hydromechanical measurements will be documented in separate documents.

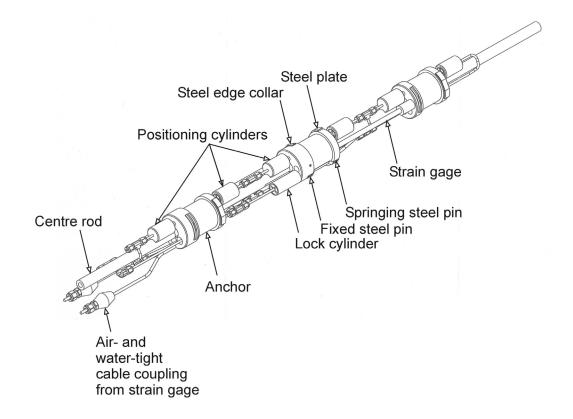
#### 4.4.1 Measurement equipment

In order to measure the fracture deformation (and to separate the fracture deformation from the deformation of the intact rock) due to the increased temperature a measurement equipment has been developed.

The equipment consists of two hydraulic packers, which hydraulically isolate the test section. Between the packers three anchors are placed. These anchors are fixed to the borehole wall and in the sections between the anchors sensors (strain gage) are mounted. These sections are called mechanical measurement sections. The sensors will register any relative movement between the anchors; see Figure 4-4 and 4-5. The temperature is also measured in each sensor by a thermistor.



**Figure 4-4.** A schematic figure that shows the different parts of the test equipment and also the definitions of the terms outer and inner.


The deformation is measured in two sections in each borehole. One mechanical measurement section is placed over a fracture (or fractures) and the other mechanical measurement section is placed over intact rock. That makes it possible to separate the fracture deformation from the deformation of the intact rock.

Of all boreholes in the prototype tunnel, ten are equipped as described above. Five of the measurement sections are placed over a single fracture and the rest are placed over two to six fractures, see Table 4-1.

Since hydraulic packers isolate the test sections and the test sections have contact with the tunnel (atmospheric pressure) via tubes and valves it is possible to perform hydraulic tests in the sections.

Table 4-1. Data of the deformation measurement sections (sensors, length, number of fractures etc)

| Label         | Cable<br>mark | Sensor<br>S/N | Position | Secup | Seclow | Section<br>length (m) | Number of fractures |
|---------------|---------------|---------------|----------|-------|--------|-----------------------|---------------------|
| KA3539G-2-1   | HRA 1121      | 3511          | Inner    | 16.77 | 16.97  | 0.20                  | 2                   |
| KA3539G-2-2   | HRA 1122      | 3510          | Outer    | 16.47 | 16.67  | 0.20                  | 0                   |
| KA3542G01-3-1 | HRA 1231      | 3513          | Inner    | 19.47 | 19.67  | 0.20                  | 0                   |
| KA3542G01-3-2 | HRA 1232      | 3512          | Outer    | 19.17 | 19.37  | 0.20                  | 1                   |
| KA3542G02-2-1 | HRA 1321      | 3515          | Inner    | 26.50 | 26.70  | 0.20                  | 1                   |
| KA3542G02-2-2 | HRA 1322      | 3514          | Outer    | 26.20 | 26.40  | 0.20                  | 0                   |
| KA3544G01-2-1 | HRA 1621      | 3509          | Inner    | 9.82  | 10.02  | 0.20                  | 1                   |
| KA3544G01-2-2 | HRA 1622      | 3508          | Outer    | 9.52  | 9.72   | 0.20                  | 0                   |
| KA3546G01-2-1 | HRA 1721      | 3517          | Inner    | 7.67  | 7.87   | 0.20                  | 1                   |
| KA3546G01-2-2 | HRA 1722      | 3516          | Outer    | 7.37  | 7.57   | 0.20                  | 0                   |
| KA3548A01-3-1 | HRA 1831      | 3526          | Inner    | 9.70  | 10.15  | 0.45                  | 2                   |
| KA3548A01-3-2 | HRA 1832      | 3518          | Outer    | 9.40  | 9.60   | 0.20                  | 0                   |
| KA3550G01-2-1 | HRA 2121      | 3527          | Inner    | 6.10  | 6.70   | 0.60                  | 6                   |
| KA3550G01-2-2 | HRA 2122      | 3519          | Outer    | 5.80  | 6.00   | 0.20                  | 0                   |
| KA3552G01-2-1 | HRA 2521      | 3521          | Inner    | 5.25  | 5.45   | 0.20                  | 0                   |
| KA3552G01-2-2 | HRA 2522      | 3520          | Outer    | 4.95  | 5.15   | 0.20                  | 2                   |
| KA3554G01-2-1 | HRA 2821      | 3525          | Inner    | 23.54 | 23.80  | 0.26                  | 2                   |
| KA3554G01-2-2 | HRA 2822      | 3522          | Outer    | 23.24 | 23.44  | 0.20                  | 0                   |
| KA3554G02-4-1 | HRA 2941      | 3524          | Inner    | 11.40 | 11.60  | 0.20                  | 0                   |
| KA3554G02-4-2 | HRA 2942      | 3523          | Outer    | 11.10 | 11.30  | 0.20                  | 1                   |
| KG0010B01-1-1 | -             | 3238          | Inner    | 3.66  | 3.86   | 0.20                  | -                   |
| KG0010B01-1-2 | -             | 3507          | Outer    | 3.36  | 3.56   | 0.20                  | -                   |



**Figure 4-5.** A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.

### 5 Execution

### 5.1 Preparations

Planning is an important step in the preparation stage. No other activities, which may cause pressure responses, must occur in the neighbourhood of the test area. Such activities include drilling, blasting and flowing of boreholes.

Preparations also include checking of equipment to be used in the tests. The equipment included

- measuring glasses of various sizes
- synchronizing watches with the HMS system (only normal time)
- protocols for flow measurements
- water sampling bottles
- hand calculator
- flow rate measurement equipment with Micro Motion flowmeter system

#### 5.2 Execution of tests/measurements

### 5.2.1 Test principle

The main purpose of a single hole pressure build-up test is to do a test, which makes it possible to evaluate the hydraulic properties of the bedrock around the tested borehole section.

#### 5.2.2 Test procedure

The following measurement cycle is used:

- Initialising of the HMS system 30 minutes before flow start with logging interval of 5 minutes
- A couple of minutes before flow start and until 5 minutes after flow start the highest logging interval of 3 seconds are used. Thereafter the logging interval is 30 seconds which is used until 30 minutes after flow start and a logging interval of 5 minutes is then used once again
- The flow is measured manually 2-3 times the first 5 minutes after flow start, 2-3 times the following 60 minutes and 3 times shortly before flow stop
- From shortly before flow stop until 5 minutes after flow stop the highest logging interval of 3 seconds are used. Thereafter the logging frequency is 30 seconds which is used until 30 minutes after flow start and a logging frequency of 5 minutes is then used
- The valve shutting is done as swiftly as possible

### 5.3 Data handling

The test operator is keeping a diary during the test period. Data from the hydro tests includes:

- Daily logs in accordance with Äspö Hard Rock Laboratory routines
- Protocols from flow measurements

The project coordinator collected all data and delivered it to the data handling responsible person at Äspö for further SICADA handling.

### 5.4 Analyses and interpretation

#### 5.4.1 Single hole tests

The following description applies to the analysis in this report. The analysis done is for the recovery phase only.

The specific capacity is as mentioned above, Q/s, where Q is the calculated average water flow before shutting the valve and s is the maximum change of pressure, in metres, during the test.

The Moye formula can be used for interpretation of stationary tests in order to get an estimate of the transmissivity

$$\begin{split} T_{Moye} &= Q \cdot (\ 1 + \ln(L/(2 \cdot r_w))) \, / \, (2 \cdot \pi \cdot \Delta h) \quad \text{where} \\ \Delta h &= (p_0 - p_p) \, / \, (\rho_w \cdot g) \\ L &= \text{test section length} \\ r_w &= \text{borehole radius} \\ p_0 &= \text{absolute pressure in test section before start of flow period} \\ p_p &= \text{absolute pressure in test section before stop of flow period} \\ p_w &= \text{water density} \\ g &= \text{acceleration of gravity} \\ [m/s^2] \end{split}$$

When the skin factor,  $\xi$ , is determined, use is made of the fact that the increase in pressure change,  $\Delta p$ , due to the skin effect is constant during the test, (Blomquist et al, 1985). When the straight portion of the recovery curve displayed in a semi-logarithmic diagram is extrapolated to the zero line, this is cut at time  $t_0$  (in minutes). If the skin effect would not exist the same line would cut the zero line at time  $t_{0f}$ . This time can be calculated as

$$t_{0f} = (S^* \cdot r_w^2) / (135 \cdot T)$$
 where [min]

$$S^*$$
 = estimated rock storativity (10<sup>-6</sup> is used in this area) [-]

$$r_w$$
 = borehole radius [m]

$$T = \text{evaluated transmissivity}$$
 [m<sup>2</sup>/s]

Finally the skin factor is calculated such as

$$\xi = 1.15 \cdot \log (t_{0f}/t_0)$$
 [-]

While plotting the data, three different kinds of graphs are produced. The first plot is made in a linear scale. The time, date and hours is indicated on the horizontal axis. The pressure (p), expressed in bar or metres of water head is indicated on the vertical axis. The second plot is made in a semi-logarithmic diagram, where the pressure change,  $\Delta p$ , is plotted versus the equivalent time,  $dt_e$ , in minutes. The equivalent time,  $dt_e$ , (*Spane, Wurstner, 1993*) is defined as

$$dt_e = (t_p \cdot dt) / (t_p + dt)$$
 where

 $t_p =$  the flowing time of the borehole before shutting the valve

dt = the time after shutting the valve

The pressure change  $\Delta p$  is calculated as

$$\Delta p = p(dt) - p(t_p)$$

p(dt) = measured pressure at time dt after shutting the valve

$$p(t_p)$$
 = measured pressure just before shutting the valve

The third plot is made in a logarithmic diagram, where the change of pressure,  $\Delta p$ , is plotted versus the equivalent time,  $dt_e$ , in minutes. The derivative of the pressure is also plotted in this diagram.

The pressure normally is signed using the p and a change of pressure using a  $\Delta p$ . In the diagrams the pressure can be expressed in bar, kPa or in metres of water head. In the formulas below however the praxis is to use the s for the change of water head and  $\Delta s$  for the difference of pressure over one decade in a logarithmic diagram. The s or  $\Delta s$  values shall be expressed in metres before used in the formulas.

Hydrologic test analysis based on the derivative of pressure (i.e., rate of pressure change) with respect to the natural logarithm of time has been shown to significantly improve the diagnostic and quantitative analysis of slug and constant-rate discharge tests (i.e., pumping tests) (*Spane, Wurstner, 1993*). The improvement in hydrologic test analysis is attributed to the sensitivity of the derivative response to small variations in the rate of pressure change that occurs during testing, which would otherwise be less obvious with standard pressure change versus time analysis techniques. The sensitivity of pressure derivatives to pressure change responses facilitates their use in identifying the presence of wellbore storage, boundaries, and establishment of flow conditions, as e.g. radial flow, within the test data record. Specifically, pressure derivative analysis can be used to:

- diagnostically determine formation response (homogeneous vs. heterogeneous) and boundary conditions (impermeable or constant head) that are evident during the test,
- determine when radial flow conditions are established and, therefore, when straight-line solution analysis of drawdown data is valid, and
- assist in log-log type-curve matching to determine hydraulic properties for test data exhibiting wellbore storage and/or leakage effects.

The software DERIV, (*Spane, Wurstner, 1993*), is used to produce the derivative. DERIV is a software for converting slug and constant-rate discharge test data and type curves to derivative format. The software has features that permit the smoothing of noisy test data, accounts for pressure derivative end-effects, and can be used to convert slug test data to equivalent constant-rate test responses.

To evaluate the transmissivity, T, the following methodology should be used:

The flow regime can be estimated from the logarithmic plot. In most cases the flow can be said to be radial to the borehole approximately 1.0-1.5 decades after the time the curve has left the 1:1 curve. The 1:1 curve indicates the well bore storage, WBS. The transmissivity is then calculated with Jacob's semi logarithmic approximation of Theis well function

$$T = 0.183 \cdot Q / \Delta s$$

Q = the average flow rate before shutting the valve  $(m^3/s)$ 

 $\Delta s$  = the pressure change in metres during a decade along the straight line (radial flow period) in the semi logarithmic diagram.

Sometimes both the logarithmic and the semi logarithmic diagrams indicate a more complicated flow regime than described above (WBS, transition, radial flow, linear flow) and in these cases it is necessary to decide what part of the curve and what evaluation method that is appropriate for estimating the hydraulic properties.

In a fracture, different flow regimes may be observed at different times, (Horne, 1995). At very early time only a linear flow regime occur within the fracture. At early time, there is linear flow within the fracture and linear flow into the fracture from the rock formation. The combination of these two linear flows gives rise to a bilinear flow period. This part of the pressure response is charcterized by a straight line with slope 1:4 at early time on a log-log plot of pressure drop against time. Following the bilinear flow period, finite conductivity fracture responses generally enter a transition after bilinear flow, but reach radial flow before ever achieving linear flow, recognizeable by the upward bending of the pressure response curve towards a 1:2 slope on the log-log plot. In practice, the 1:2 slope is rarely seen except in fractures where the conductivity is infinite. The above described methodology is used in chapter 6.

The tests are also evaluated using the software AQTESOLV ver. 4.01, and results are reported in Appendix 1-19 and in the executive summary. AQTESOLV is the all-inone software package for the design and analysis of aquifer tests including pumping tests, step-drawdown tests, variable-rate tests, recovery tests, single-well tests, slug tests and constant-head tests. The software is developed by HydroSOLVE, Inc., USA.

Test campaign 1 – 7 have been evaluated using this software and the results are considered somewhat more reliable than using DERIV as the matching of data to models is more integrated using AQTESOLV, *see Appendices* for results. The solution used in these analysis is the Dougherty-Babu model for a pumping test in a confined aquifer (Dougherty, Babu, 1984). The model assumes radial flow in a porous medium. AQTESOLV uses the principle of superposition in time to simulate variable-rate tests including recovery with the solution. The result consist of

- Transmissivity, T (m<sup>2</sup>/s)
- Skinfactor, Sw (-)

It is of uttermost importance when evaluation the hydraulic tests within the scope of this report that all tests are evaluated using the <u>same approach</u> between the test campaigns. This is important to be able to evaluate the <u>relative difference</u> of the transmissivity from one test campaign to another.

It is however important as well to observe any significant changes of the pressure plot from on time to another. If changes have occurred another matching of the data to a chosen model may be necessary.

# 6 Results

# 6.1 Single hole tests

# 6.1.1 KA3552G01:2, test No 7:1

General test data for the pressure build-up test in the interval 4.35-6.05 m of borehole KA3552G01 are presented in Table 6-1.

Table 6-1. General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01  $\,$ 

| General test data                           |                  |                                |                   |  |  |
|---------------------------------------------|------------------|--------------------------------|-------------------|--|--|
| Borehole section                            | KA3552G01:2      |                                |                   |  |  |
| Test No                                     | 7:1              |                                |                   |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                     |                   |  |  |
| Test equipment system                       | HMS              |                                |                   |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = max) |                   |  |  |
|                                             | Nomencl ature    | Unit                           | Value             |  |  |
| Test section- secup                         | Secup            | m                              | 4.35              |  |  |
| Test section- seclow                        | Seclow           | m                              | 6.05              |  |  |
| Test section length                         | L <sub>w</sub>   | m                              | 1.70              |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                             | 76                |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                | 20060928 08:00:00 |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                | -                 |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                | 20060928 09:00:00 |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                | 20060928 11:00:00 |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                | 20060928 12:00:00 |  |  |
| Total flow time                             | tp               | min                            | 120               |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                            | 60                |  |  |

## Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value | Comment |
|--------------------------------------------------------------|----------------|------|-------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 738.1 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 98.3  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 677.4 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 639.8 |         |

| Flow data                                               | Nomenclature | Unit              | Value                   |
|---------------------------------------------------------|--------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp           | m <sup>3</sup> /s | 7.84 · 10 <sup>-8</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm           | m <sup>3</sup> /s | 9.40 · 10 <sup>-8</sup> |
| Total volume discharged during flow period              | Vp           | m <sup>3</sup>    | 6.77 · 10 <sup>-4</sup> |

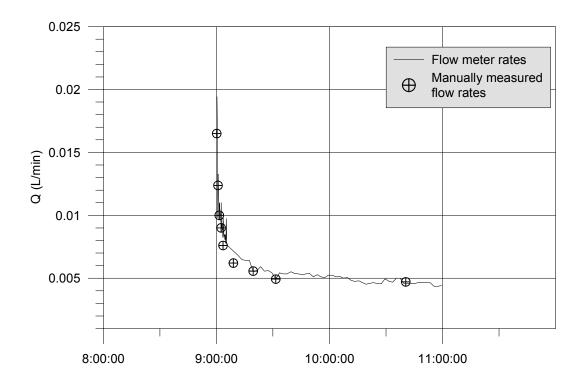



Figure 6-1. Flow rates during draw down in KA3552G01:2.

# Interpreted flow regimes

| 0 - 2  | minutes | Well Bore Storage (WBS) |
|--------|---------|-------------------------|
| 2 - 30 | minutes | Transition period       |
| 30 –   | minutes | Radial flow period      |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 4.35-6.05 m in KA3552G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                              | Test Sun                              | nmary Sheet                                    |                         |                        |                         |
|----------------------------------------------|---------------------------------------|------------------------------------------------|-------------------------|------------------------|-------------------------|
| Project:                                     | PROTOTYPE                             | Test type:                                     | PBT                     |                        |                         |
| Area:                                        | ÄSPÖ                                  | Test no:                                       | 7:1                     |                        |                         |
| Borehole ID:                                 | KA3552G01                             | Test start:                                    | 2006-09-28              | 08:00                  |                         |
| Test section (m):                            | 4.35-6.05                             | Responsible for                                | SWECO VI                | AK AB                  |                         |
|                                              |                                       | test performance:                              | A. Blom                 |                        |                         |
| Section diameter, 2·r <sub>w</sub> (m):      | 0.076                                 | Responsible for                                | SWECO VI                | AK AB                  |                         |
|                                              |                                       | test evaluation:                               | T. Forsmark             | (                      |                         |
| Linear plot Head                             |                                       | Flow period                                    |                         | Recovery period        |                         |
| -360                                         |                                       | Indata                                         |                         | Indata                 |                         |
|                                              |                                       | p <sub>0</sub> (kPa)                           | 738.1                   |                        |                         |
| -380                                         |                                       | p <sub>i</sub> (kPa )                          |                         |                        |                         |
|                                              | MII                                   | p <sub>p</sub> (kPa)                           | 98.3                    | p <sub>F</sub> (kPa )  | 677.4                   |
| (g) -400                                     |                                       | $Q_p (m^3/s)$                                  | 7.84 · 10 <sup>-8</sup> |                        |                         |
| (is -400 — — — — — — — — — — — — — — — — — — |                                       | tp (min)                                       | 120                     | t <sub>F</sub> (min)   | 120                     |
| 9 -420 -                                     |                                       | S*                                             | 1 · 10 <sup>-6</sup>    | S*                     | 1 · 10 <sup>-6</sup>    |
|                                              |                                       | EC <sub>w</sub> (mS/m)                         |                         |                        |                         |
| -440                                         |                                       | Te <sub>w</sub> (gr C)                         |                         |                        |                         |
| '                                            |                                       | Derivative fact.                               |                         | Derivative fact.       | 0.2                     |
| 460                                          |                                       |                                                |                         | 2011144110144          | 0.2                     |
| -460 +                                       | 0:00 18:00:00 0:00:00                 |                                                |                         |                        |                         |
| 0:00:00 6:00:00 12:00                        | 0:00 18:00:00 0:00:00                 |                                                |                         |                        |                         |
| Lin-Log plot                                 |                                       | Results                                        |                         | Results                |                         |
| og p.o.                                      |                                       | Q/s (m²/s)                                     | 1.2 · 10 <sup>-9</sup>  | Flow regime:           | Radial                  |
| 0                                            |                                       | $T_{\text{Moye}}(\text{m}^2/\text{s})$         | 8.0 · 10 <sup>-10</sup> | dt <sub>e1</sub> (min) | 30                      |
|                                              |                                       | Flow regime:                                   | 0.0 10                  | dt <sub>e2</sub> (min) | 38                      |
|                                              |                                       | dt <sub>1</sub> (min)                          |                         | T (m <sup>2</sup> /s)  | 4.6 · 10 <sup>-10</sup> |
|                                              |                                       | dt <sub>2</sub> (min)                          |                         | S (-)                  | 1.0 10                  |
| Ê 20 <b>1</b>                                |                                       | T (m <sup>2</sup> /s)                          |                         | K <sub>s</sub> (m/s)   |                         |
| Recovery (m)                                 |                                       | S (-)                                          |                         | S <sub>s</sub> (1/m)   |                         |
| 00                                           |                                       | K <sub>s</sub> (m/s)                           |                         | C (m <sup>3</sup> /Pa) |                         |
| ₩ 40                                         |                                       | S <sub>s</sub> (1/m)                           |                         | C <sub>D</sub> (-)     |                         |
|                                              |                                       | C (m <sup>3</sup> /Pa)                         |                         | ξ(-)                   | -1.6                    |
| -                                            |                                       | C <sub>D</sub> (-)                             |                         | \( \sigma_{-}\)        | 1.0                     |
|                                              |                                       |                                                |                         |                        |                         |
| 0.1 1 10                                     | 100 1000                              | ξ (-)                                          |                         |                        |                         |
| Equivalent time                              | e, dt <sub>e</sub> , (min)            |                                                |                         |                        | +                       |
| Log-Log plot incl. derivative- r             |                                       | Interpreted forma                              | tion and wa             | I narametere           |                         |
| Log-Log plot ilici. derivative- r            | ecovery periou                        |                                                | Radial                  | C (m³/Pa)              |                         |
| 100 -                                        |                                       | Flow regime:                                   | 30                      |                        | +                       |
|                                              |                                       | dt <sub>1</sub> (min)<br>dt <sub>2</sub> (min) | 38                      | C <sub>D</sub> (-)     | -1.6                    |
|                                              |                                       | $T_T$ (m <sup>2</sup> /s)                      | 4.6 · 10 <sup>-10</sup> | ξ (-)                  | -1.0                    |
|                                              |                                       |                                                | 4.0 10                  |                        | +                       |
| Ē 10 €                                       | -                                     | S (-)                                          |                         |                        | -                       |
|                                              |                                       | K <sub>s</sub> (m/s)                           |                         |                        |                         |
| Recovery (m)                                 |                                       | S <sub>s</sub> (1/m)                           |                         |                        | 1                       |
|                                              |                                       | Comments:                                      |                         |                        |                         |
| -                                            |                                       |                                                |                         |                        |                         |
|                                              |                                       |                                                |                         |                        |                         |
|                                              |                                       |                                                |                         |                        |                         |
| 0.1                                          | 400                                   |                                                |                         |                        |                         |
| 0.1 1 10<br>Equivalent time,                 | 100 1000<br>, dt <sub>e</sub> , (min) |                                                |                         |                        |                         |
| ,                                            |                                       |                                                |                         |                        |                         |
| <u> </u>                                     |                                       |                                                |                         |                        |                         |

# 6.1.2 KA3554G01:2, test No 7:2a

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-2.

Table 6-2. General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01  $\,$ 

| General test data                           |                   |                                   |                   |  |  |  |
|---------------------------------------------|-------------------|-----------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3554G           | KA3554G01:2                       |                   |  |  |  |
| Test No                                     | 7:2a              |                                   |                   |  |  |  |
| Field crew                                  | A. Blom(S         | SWECO VIAK)                       |                   |  |  |  |
| Test equipment system                       | HMS               |                                   |                   |  |  |  |
| General comment                             | Single hol        | e test (dp <sub>p</sub> = approx. | 100 m)            |  |  |  |
|                                             | Nomen-<br>clature | Unit                              | Value             |  |  |  |
| Test section- secup                         | Secup             | m                                 | 22.60             |  |  |  |
| Test section- seclow                        | Seclow            | m                                 | 24.15             |  |  |  |
| Test section length                         | L <sub>w</sub>    | m                                 | 1.55              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub>  | 2·r <sub>w</sub> mm 76            |                   |  |  |  |
| Test start (start of pressure registration) |                   | yymmdd hh:mm:ss                   | 20060925 12:00:00 |  |  |  |
| Packer expanded                             |                   | yymmdd hh:mm:ss                   | -                 |  |  |  |
| Start of flow period                        |                   | yymmdd hh:mm:ss                   | 20060925 13:00:00 |  |  |  |
| Stop of flow period                         |                   | yymmdd hh:mm:ss                   | 20060925 15:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                   | yymmdd hh:mm:ss                   | 20060925 17:00:00 |  |  |  |
| Total flow time                             | tp                | min                               | 120               |  |  |  |
| Total recovery time                         | t <sub>F</sub>    | min                               | 60                |  |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2737.3 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 2081.2 |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2723.8 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 656.1  |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Q <sub>p</sub> | m <sup>3</sup> /s | 7.33 · 10 <sup>-6</sup> |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 7.37 · 10 <sup>-6</sup> |
| Total volume discharged during flow period              | Vp             | m <sup>3</sup>    | 0.05305                 |

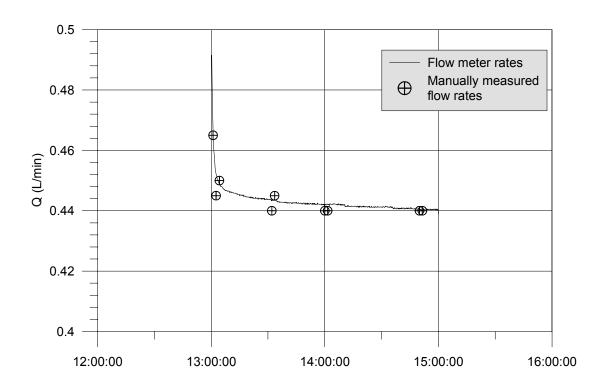
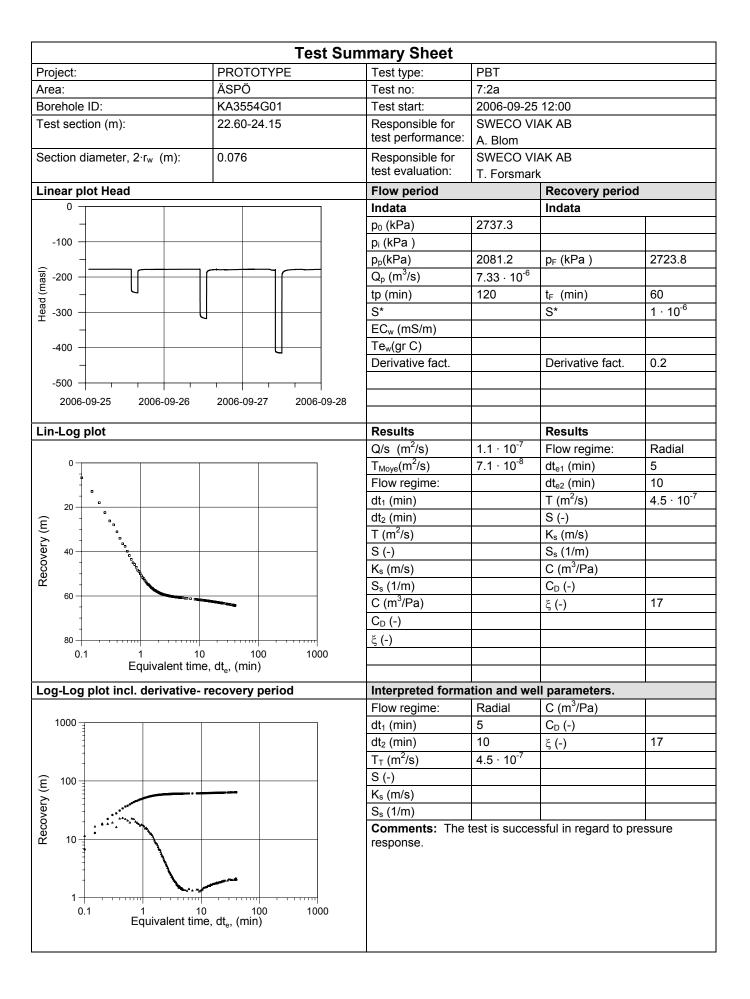



Figure 6-2. Flow rates during draw down in KA3554G01:2.

The test is successful in regard to pressure response.

## Interpreted flow regimes


| 0 - 0.3 | minutes | Well Bore Storage (WBS)           |
|---------|---------|-----------------------------------|
| 0.3 - 5 | minutes | Transition period                 |
| 5 – 10  | minutes | Radial flow period                |
| 10 - 30 | minutes | Transition period                 |
| 30 –    |         | Possible larger scale radial flow |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.



# 6.1.3 KA3554G01:2, test No 7:2b

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-3.

Table 6-3. General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01  $\,$ 

| General test data                           |                  |                                     |                   |  |  |  |
|---------------------------------------------|------------------|-------------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3554G          | KA3554G01:2                         |                   |  |  |  |
| Test No                                     | 7:2b             |                                     |                   |  |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                          |                   |  |  |  |
| Test equipment system                       | HMS              |                                     |                   |  |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = approx. 2 | 200 m)            |  |  |  |
|                                             | Nomencl ature    | Unit                                | Value             |  |  |  |
| Test section- secup                         | Secup            | m                                   | 22.60             |  |  |  |
| Test section- seclow                        | Seclow           | m                                   | 24.15             |  |  |  |
| Test section length                         | L <sub>w</sub>   | m                                   | 1.55              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm 76                               |                   |  |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                     | 20060926 09:00:00 |  |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                     | -                 |  |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                     | 20060926 10:00:00 |  |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                     | 20060926 12:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                     | 20060926 13:00:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>   | min                                 | 120               |  |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                                 | 60                |  |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2736.3 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 1366.1 |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2712.5 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 1370.2 |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Q <sub>p</sub> | m <sup>3</sup> /s | 1.28 · 10 <sup>-5</sup> |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 1.32 · 10 <sup>-5</sup> |
| Total volume discharged during flow period              | Vp             | m <sup>3</sup>    | 0.09552                 |

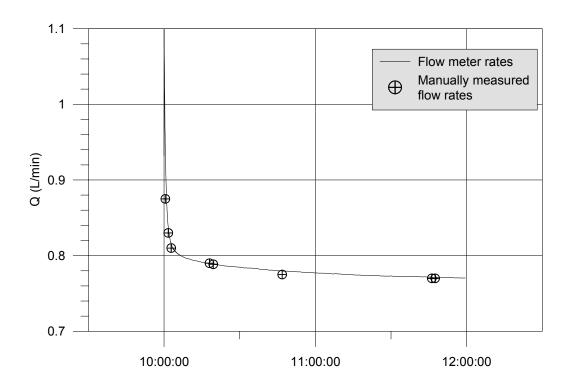
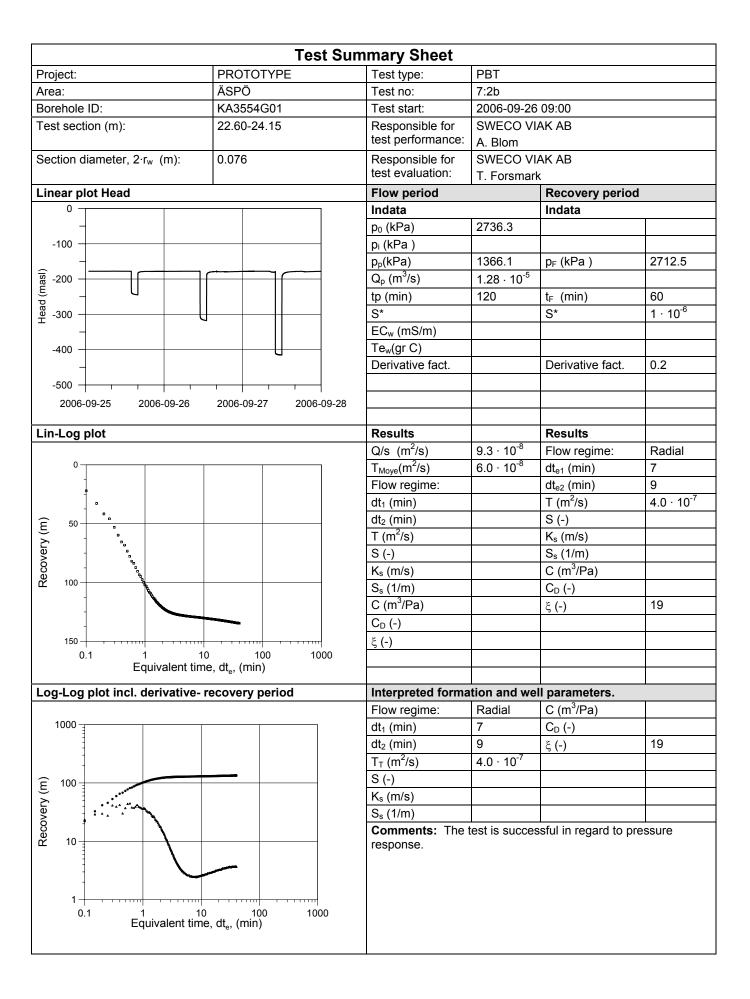



Figure 6-3. Flow rates during draw down in KA3554G01:2.

The test is successful in regard to pressure response.

## Interpreted flow regimes


| 0 - 0.2 | minutes | Well Bore Storage (WBS)           |
|---------|---------|-----------------------------------|
| 0.2 - 7 | minutes | Transition period                 |
| 7 – 9   | minutes | Radial flow period                |
| 9 – 30  | minutes | Transition period                 |
| 30 –    |         | Possible larger scale radial flow |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.



# 6.1.4 KA3554G01:2, test No 7:2c

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-4.

Table 6-4. General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01  $\,$ 

| General test data                           |                  |                                |                   |  |  |  |
|---------------------------------------------|------------------|--------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3554G          | KA3554G01:2                    |                   |  |  |  |
| Test No                                     | 7:2c             |                                |                   |  |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                     |                   |  |  |  |
| Test equipment system                       | HMS              |                                |                   |  |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = max) |                   |  |  |  |
|                                             | Nomencl ature    | Unit                           | Value             |  |  |  |
| Test section- secup                         | Secup            | m                              | 22.60             |  |  |  |
| Test section- seclow                        | Seclow           | m                              | 24.15             |  |  |  |
| Test section length                         | L <sub>w</sub>   | m                              | 1.55              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                             | 76                |  |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                | 20060927 08:00:00 |  |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                | -                 |  |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                | 20060927 09:00:00 |  |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                | 20060927 11:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                | 20060927 12:00:00 |  |  |  |
| Total flow time                             | tp               | min                            | 120               |  |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                            | 60                |  |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2718.7 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 408.2  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2693.3 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 2310.5 |         |

| Flow data                                               | Nomenclature | Unit              | Value                   |
|---------------------------------------------------------|--------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp           | m <sup>3</sup> /s | 1.87 · 10 <sup>-5</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm           | m <sup>3</sup> /s | 1.94 · 10 <sup>-5</sup> |
| Total volume discharged during flow period              | Vp           | m <sup>3</sup>    | 0.1396                  |

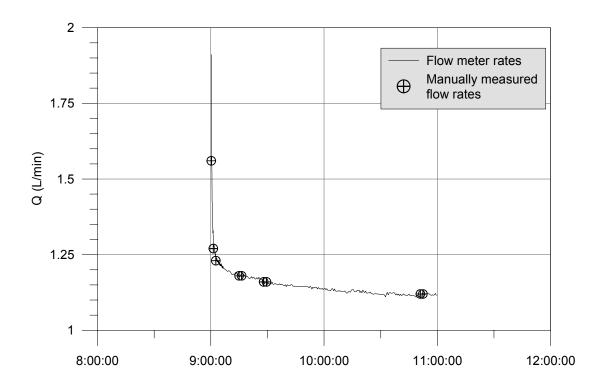
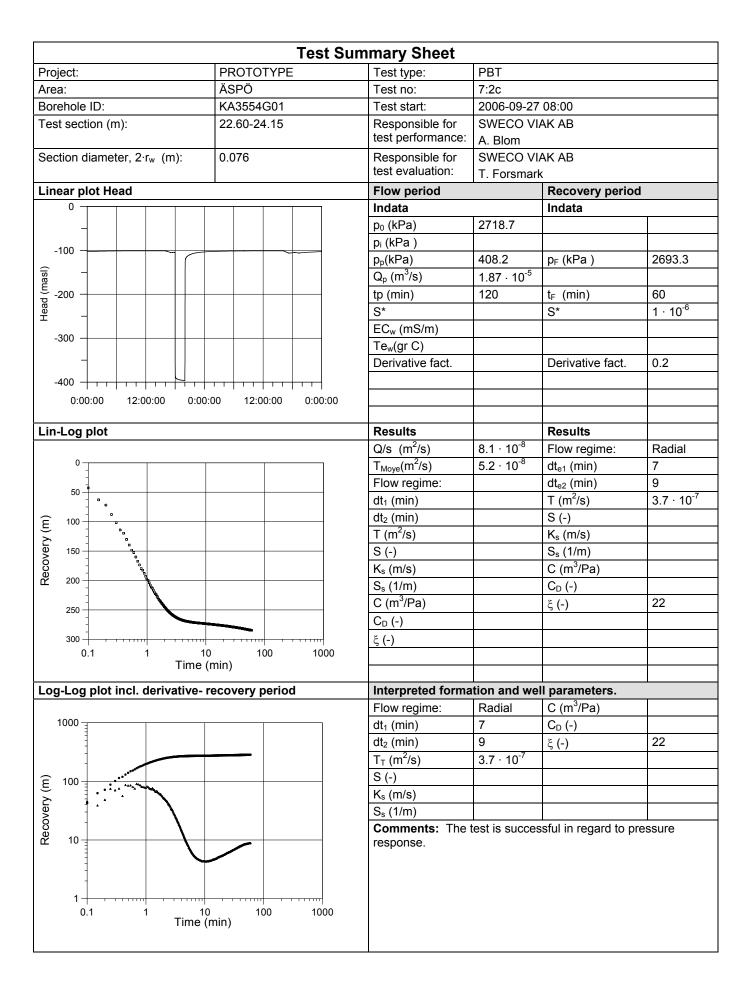



Figure 6-4. Flow rates during draw down in KA3554G01:2.

The test is successful in regard to pressure response.

## Interpreted flow regimes


| 0 - 0.3 | minutes | Well Bore Storage (WBS)           |
|---------|---------|-----------------------------------|
| 0.3 - 7 | minutes | Transition period                 |
| 7 – 9   | minutes | Radial flow period                |
| 9 – 30  | minutes | Transition period                 |
| 30 –    |         | Possible larger scale radial flow |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

# Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.



# 6.1.5 KA3554G02:4, test No 7:3a

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-5.

Table 6-5. General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02

| General test data                           |                  |                                     |                   |  |  |  |
|---------------------------------------------|------------------|-------------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3554G          | KA3554G02:4                         |                   |  |  |  |
| Test No                                     | 7:3a             |                                     |                   |  |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                          |                   |  |  |  |
| Test equipment system                       | HMS              |                                     |                   |  |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = approx. 1 | 100 m)            |  |  |  |
|                                             | Nomencl ature    | Unit                                | Value             |  |  |  |
| Test section- secup                         | Secup            | m                                   | 10.50             |  |  |  |
| Test section- seclow                        | Seclow           | m                                   | 12.20             |  |  |  |
| Test section length                         | L <sub>w</sub>   | m                                   | 1.70              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                                  | 76                |  |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                     | 20060926 06:00:00 |  |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                     | -                 |  |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                     | 20060926 07:00:00 |  |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                     | 20060926 09:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                     | 20060926 11:00:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>   | min                                 | 120               |  |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                                 | 60                |  |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 1329.3 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 710.6  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 1343.1 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 618.7  |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Q <sub>p</sub> | m <sup>3</sup> /s | 8.14 · 10 <sup>-8</sup> |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 8.83 · 10 <sup>-8</sup> |
| Total volume discharged during flow period              | Vp             | m <sup>3</sup>    | 6.37 · 10 <sup>-4</sup> |

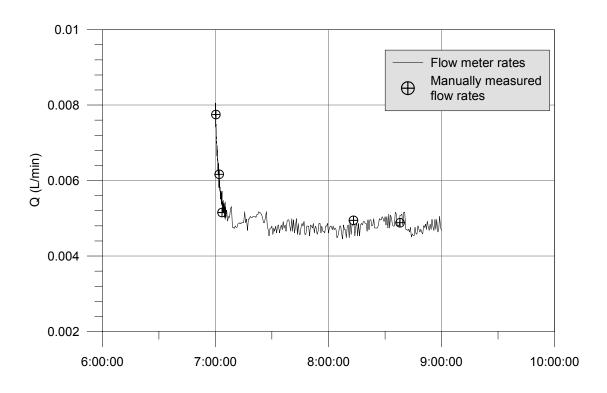



Figure 6-5. Flow rates during draw down in KA3554G02:4.

The test is successful in regard to pressure response. The radial flow period is uncertain.

## Interpreted flow regimes

| 0 - 1  | minutes | Well Bore Storage (WBS)     |
|--------|---------|-----------------------------|
| 1 - 30 | minutes | Transition period           |
| 30 –   | minutes | Probable radial flow period |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                                                             | Test Sur                | mmary Sheet                           |                              |                        |                        |
|-----------------------------------------------------------------------------|-------------------------|---------------------------------------|------------------------------|------------------------|------------------------|
| Project:                                                                    | PROTOTYPE               | Test type:                            | PBT                          |                        |                        |
| Area:                                                                       | ÄSPÖ                    | Test no:                              | 7:3a                         |                        |                        |
| Borehole ID:                                                                | KA3554G02               | Test start:                           | 2006-09-26 06:00             |                        |                        |
| Test section (m):                                                           | 10.50-12.20             | Responsible for test performance:     | SWECO VIAK AB<br>A. Blom     |                        |                        |
| Section diameter, 2·r <sub>w</sub> (m):                                     | 0.076                   | Responsible for test evaluation:      | SWECO VIAK AB<br>T. Forsmark |                        |                        |
| Linear plot Head                                                            |                         | Flow period                           |                              | Recovery period        |                        |
| 0 —                                                                         |                         | Indata                                |                              | Indata                 |                        |
|                                                                             |                         | p <sub>0</sub> (kPa)                  | 1329.3                       |                        |                        |
| -100                                                                        |                         | p <sub>i</sub> (kPa )                 |                              |                        |                        |
|                                                                             |                         | p <sub>p</sub> (kPa)                  | 710.6                        | p <sub>F</sub> (kPa )  | 1343.1                 |
| <del>\( \overline{\text{g}} \) -200                                  </del> |                         | $Q_p (m^3/s)$                         | 8.14 · 10 <sup>-8</sup>      |                        |                        |
| ( <u>w</u> )                                                                |                         | tp (min)                              | 120                          | t <sub>F</sub> (min)   | 60                     |
| (se -200                                                                    |                         | S*                                    |                              | S*                     | 1 · 10 <sup>-6</sup>   |
|                                                                             |                         | EC <sub>w</sub> (mS/m)                |                              |                        |                        |
| -400 V                                                                      |                         | Te <sub>w</sub> (gr C)                |                              |                        |                        |
|                                                                             |                         | Derivative fact.                      |                              | Derivative fact.       | 0.2                    |
| -500                                                                        |                         |                                       |                              |                        |                        |
| 2006-09-26 2006-09-27                                                       | 2006-09-28 2006-09-29   |                                       |                              |                        |                        |
| 2000 00 20 2000 00 27                                                       | 2000 00 20 2000 00 20   |                                       |                              |                        |                        |
| Lin-Log plot                                                                |                         | Results                               |                              | Results                |                        |
|                                                                             |                         | Q/s (m <sup>2</sup> /s)               | 1.3 · 10 <sup>-9</sup>       | Flow regime:           | Radial                 |
| 0                                                                           |                         | T <sub>Moye</sub> (m <sup>2</sup> /s) | 8.6 · 10 <sup>-10</sup>      | dt <sub>e1</sub> (min) | 30                     |
| U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                     |                         | Flow regime:                          |                              | dt <sub>e2</sub> (min) | 40                     |
| 20                                                                          |                         | dt <sub>1</sub> (min)                 |                              | T (m <sup>2</sup> /s)  | 1.1 · 10 <sup>-8</sup> |
| l 15 15                                                                     |                         | dt <sub>2</sub> (min)                 |                              | S (-)                  |                        |
| Recovery (m)                                                                |                         | T (m <sup>2</sup> /s)                 |                              | K <sub>s</sub> (m/s)   |                        |
| ÿ 40 <b>-</b>                                                               |                         | S (-)                                 |                              | S <sub>s</sub> (1/m)   |                        |
|                                                                             |                         | K <sub>s</sub> (m/s)                  |                              | C (m <sup>3</sup> /Pa) |                        |
| _                                                                           |                         | S <sub>s</sub> (1/m)                  |                              | C <sub>D</sub> (-)     |                        |
| 60                                                                          |                         | C (m <sup>3</sup> /Pa)                |                              | ξ (-)                  | 47                     |
|                                                                             |                         | C <sub>D</sub> (-)                    |                              |                        |                        |
| 80                                                                          |                         | ξ (-)                                 |                              |                        |                        |
| 0.1 1 10                                                                    | 100 1000                |                                       |                              |                        |                        |
| Equivalent time                                                             |                         |                                       |                              |                        |                        |
| Log-Log plot incl. derivative- r                                            | ecovery period          | Interpreted forma                     |                              |                        |                        |
|                                                                             |                         | Flow regime:                          | Radial                       | C (m <sup>3</sup> /Pa) |                        |
| KA3554G                                                                     | 02:4                    | dt <sub>1</sub> (min)                 | 30                           | C <sub>D</sub> (-)     |                        |
| 100                                                                         |                         | dt <sub>2</sub> (min)                 | 40                           | ξ (-)                  | 47                     |
|                                                                             |                         | $T_T (m^2/s)$                         | 1.1 · 10 <sup>-8</sup>       |                        |                        |
|                                                                             |                         | S (-)                                 |                              |                        |                        |
| Ē 10 → ·:•••                                                                |                         | K <sub>s</sub> (m/s)                  |                              |                        |                        |
|                                                                             |                         | S <sub>s</sub> (1/m)                  |                              |                        |                        |
| Recovery (m)                                                                |                         | Comments:                             |                              |                        |                        |
| Å 1                                                                         | \ <u></u>               |                                       |                              |                        |                        |
|                                                                             | - <del>1</del>          |                                       |                              |                        |                        |
|                                                                             |                         |                                       |                              |                        |                        |
| 0.1                                                                         |                         |                                       |                              |                        |                        |
| 0.1 1 10                                                                    | 100 1000                |                                       |                              |                        |                        |
| Equivalent time,                                                            | at <sub>e</sub> , (min) |                                       |                              |                        |                        |
| <u> </u>                                                                    |                         | 1                                     |                              |                        |                        |

# 6.1.6 KA3554G02:4, test No 7:3b

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-6.

Table 6-6. General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02

| General test data                           |                  |                                |                   |  |  |  |
|---------------------------------------------|------------------|--------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3554G          | KA3554G02:4                    |                   |  |  |  |
| Test No                                     | 7:3b             |                                |                   |  |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                     |                   |  |  |  |
| Test equipment system                       | HMS              |                                |                   |  |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = max) |                   |  |  |  |
|                                             | Nomencl ature    | Unit                           | Value             |  |  |  |
| Test section- secup                         | Secup            | m                              | 10.50             |  |  |  |
| Test section- seclow                        | Seclow           | m                              | 12.20             |  |  |  |
| Test section length                         | L <sub>w</sub>   | m                              | 1.70              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                             | 76                |  |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                | 20060928 11:00:00 |  |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                | -                 |  |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                | 20060928 12:00:00 |  |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                | 20060928 14:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                | 20060928 15:00:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>   | min                            | 120               |  |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                            | 60                |  |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 1336.5 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 458.8  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 1345.9 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 877.7  |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp             | m <sup>3</sup> /s | 1.58 · 10 <sup>-7</sup> |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 1.67 · 10 <sup>-7</sup> |
| Total volume discharged during flow period              | V <sub>p</sub> | m <sup>3</sup>    | 1.25 · 10 <sup>-3</sup> |

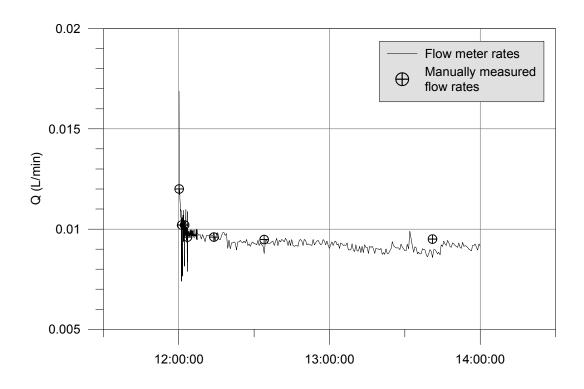



Figure 6-6. Flow rates during draw down in KA3554G02:4.

The test is successful in regard to pressure response. The radial flow period is uncertain.

## Interpreted flow regimes

| 0 - 1   | minutes | Well Bore Storage (WBS      |  |  |
|---------|---------|-----------------------------|--|--|
| 1? – 30 | minutes | Transition period           |  |  |
| 30 –    | minutes | Probable radial flow period |  |  |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sur                            | nmary Sheet                                           |                                    |                        |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------|------------------------------------|------------------------|------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROTOTYPE                           | Test type:                                            | PBT                                |                        |                        |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÄSPÖ                                | Test no:                                              | 7:3b                               |                        |                        |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KA3554G02                           | Test start:                                           | 2006-09-28 11:00                   |                        |                        |
| Test section (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.50-12.20                         | Responsible for test performance:                     | SWECO VIAK AB A. Blom              |                        |                        |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                               | Responsible for test evaluation:                      | SWECO VI.                          |                        |                        |
| Linear plot Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | Flow period                                           | 1.1010111011                       | Recovery period        |                        |
| 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | Indata                                                |                                    | Indata                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | p <sub>0</sub> (kPa)                                  | 1336.5                             | maata                  |                        |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | p <sub>i</sub> (kPa )                                 | 1000.0                             |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | p <sub>p</sub> (kPa)                                  | 458.8                              | p <sub>F</sub> (kPa )  | 1345.9                 |
| <del>g</del> -200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | $Q_p (m^3/s)$                                         | 1.58 · 10 <sup>-7</sup>            | ρ- ( α )               | 1010.0                 |
| -2003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003003 |                                     | tp (min)                                              | 120                                | t <sub>F</sub> (min)   | 60                     |
| -300 <del>- aa</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | S*                                                    | 120                                | S*                     | 1 · 10 <sup>-6</sup>   |
| ± -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | EC <sub>w</sub> (mS/m)                                |                                    |                        | 1 10                   |
| 100 ] V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | Te <sub>w</sub> (gr C)                                |                                    |                        | +                      |
| -400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | Derivative fact.                                      |                                    | Derivative fact.       | 0.2                    |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | Denvalive lact.                                       |                                    | Delivative lact.       | 0.2                    |
| -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                                       |                                    |                        |                        |
| 2006-09-26 2006-09-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2006-09-28 2006-09-29               |                                                       |                                    |                        |                        |
| Lin Log plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | Results                                               |                                    | Results                |                        |
| Lin-Log plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | Q/s (m <sup>2</sup> /s)                               | 1.8 · 10 <sup>-9</sup>             |                        | Radial                 |
| 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                       | 1.8 · 10<br>1.2 · 10 <sup>-9</sup> | Flow regime:           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | T <sub>Moye</sub> (m <sup>2</sup> /s)                 | 1.2 · 10                           | dt <sub>e1</sub> (min) | 30                     |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Flow regime:                                          |                                    | dt <sub>e2</sub> (min) | 1.2 · 10 <sup>-8</sup> |
| 🐪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | dt <sub>1</sub> (min)                                 |                                    | T (m <sup>2</sup> /s)  | 1.2 · 10               |
| Ê ; -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | $dt_2$ (min)                                          |                                    | S (-)                  |                        |
| 20 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | T (m <sup>2</sup> /s)                                 |                                    | K <sub>s</sub> (m/s)   |                        |
| 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | S (-)                                                 |                                    | S <sub>s</sub> (1/m)   |                        |
| Recovery (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | K <sub>s</sub> (m/s)                                  |                                    | C (m³/Pa)              |                        |
| - 1   <b>\</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | S <sub>s</sub> (1/m)                                  |                                    | C <sub>D</sub> (-)     |                        |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | C (m <sup>3</sup> /Pa)                                |                                    | ξ (-)                  | 35                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | C <sub>D</sub> (-)                                    |                                    |                        |                        |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                 | ξ (-)                                                 |                                    |                        |                        |
| 0.1 1 10<br>Equivalent time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 1000<br>e dt (min)              |                                                       |                                    |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                       |                                    |                        |                        |
| Log-Log plot incl. derivative- re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecovery period                      | Interpreted forma                                     |                                    | •                      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Flow regime:                                          | Radial                             | C (m <sup>3</sup> /Pa) |                        |
| KA3554G0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )2:4                                | dt <sub>1</sub> (min)                                 | 30                                 | C <sub>D</sub> (-)     |                        |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | dt <sub>2</sub> (min)                                 | 40                                 | ξ (-)                  | 35                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | $T_T (m^2/s)$                                         | 1.2 · 10 <sup>-8</sup>             |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | S (-)                                                 |                                    |                        |                        |
| € 10 <b>X*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | K <sub>s</sub> (m/s)                                  |                                    |                        |                        |
| <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | S <sub>s</sub> (1/m)                                  |                                    |                        |                        |
| Recovery (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     | Comments: The recovery is not kno considered as relia | wn. Howeve                         |                        |                        |
| 0.1 1 10 Equivalent time,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 1000<br>dt <sub>e</sub> , (min) |                                                       |                                    |                        |                        |

# 6.1.7 KA3548A01:3, test No 7:4a

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-7.

Table 6-7. General test data for the pressure build-up test in section  $8.80\text{-}10.75~\mathrm{m}$  of borehole KA3548A01

| General test data                           |                  |                                   |                   |  |  |
|---------------------------------------------|------------------|-----------------------------------|-------------------|--|--|
| Borehole section                            | KA3548A0         | KA3548A01:3                       |                   |  |  |
| Test No                                     | 7:4a             |                                   |                   |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                        |                   |  |  |
| Test equipment system                       | HMS              |                                   |                   |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = approx. | 100 m)            |  |  |
|                                             | Nomencl ature    | Unit                              | Value             |  |  |
| Test section- secup                         | Secup            | m                                 | 8.80              |  |  |
| Test section- seclow                        | Seclow           | m                                 | 10.75             |  |  |
| Test section length                         | L <sub>w</sub>   | m                                 | 1.95              |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                                | 76                |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                   | 20060926 14:00:00 |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                   | -                 |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                   | 20060926 15:00:00 |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                   | 20060926 16:00:00 |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                   | 20060926 17:00:00 |  |  |
| Total flow time                             | t <sub>p</sub>   | min                               | 60                |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                               | 60                |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2442.7 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 1794.8 |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2365.6 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 647.9  |         |

| Flow data                                               | Nomenclature | Unit              | Value                   |
|---------------------------------------------------------|--------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp           | m <sup>3</sup> /s | 6.50 · 10 <sup>-6</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm           | m <sup>3</sup> /s | 7.29 · 10 <sup>-6</sup> |
| Total volume discharged during flow period              | Vp           | m <sup>3</sup>    | 0.0262                  |

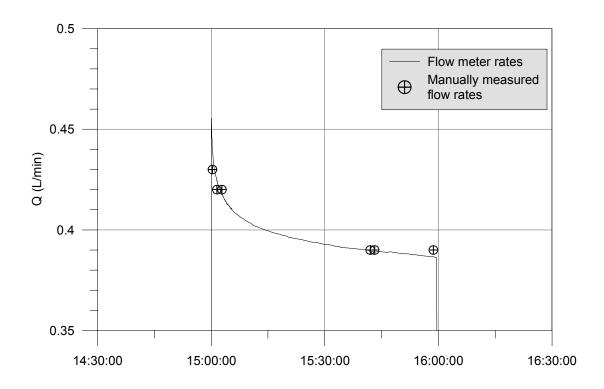
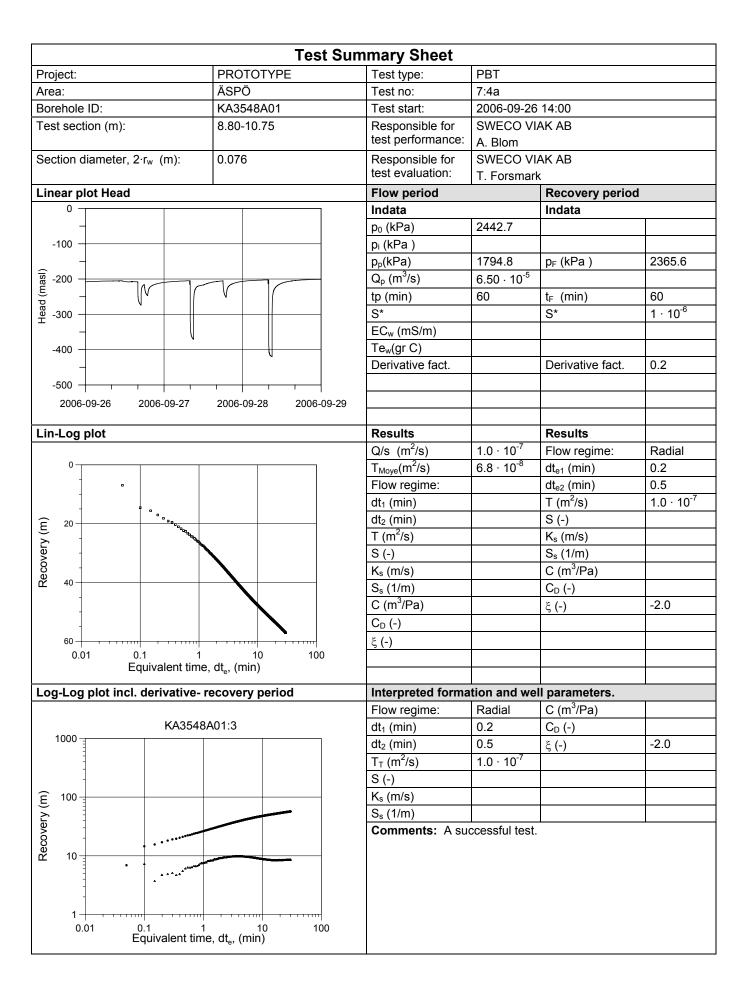



Figure 6-7. Flow rates during draw down in KA3548A01:3.

The test is successful in regard to pressure response. The radial flow period occurs very early in the test.

## Interpreted flow regimes


| 0 - 0.1   | minutes | Well Bore Storage (WBS)           |
|-----------|---------|-----------------------------------|
| 0.1 - 0.2 | minutes | Transition period                 |
| 0.2 - 0.5 | minutes | Radial flow period                |
| 0.5 - 15  | minutes | Transition period                 |
| 15 –      | minutes | Possible larger scale radial flow |

# Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.



# 6.1.8 KA3548A01:3, test No 7:4b

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-8.

Table 6-8. General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01

| General test data                           |                  |                        |                   |  |  |
|---------------------------------------------|------------------|------------------------|-------------------|--|--|
| Borehole section                            | KA3548A0         | KA3548A01:3            |                   |  |  |
| Test No                                     | 7:4b             |                        |                   |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)             |                   |  |  |
| Test equipment system                       | HMS              |                        |                   |  |  |
| General comment                             | Single hol       | e test (dpp = approxin | nate 200 m)       |  |  |
|                                             | Nomencl ature    | Unit                   | Value             |  |  |
| Test section- secup                         | Secup            | m                      | 8.80              |  |  |
| Test section- seclow                        | Seclow           | m                      | 10.75             |  |  |
| Test section length                         | L <sub>w</sub>   | m                      | 1.95              |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                     | 76                |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss        | 20060927 06:00:00 |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss        | -                 |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss        | 20060927 07:00:00 |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss        | 20060927 08:00:00 |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss        | 20060927 09:00:00 |  |  |
| Total flow time                             | t <sub>p</sub>   | min                    | 60                |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                    | 60                |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2471.1 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 842.4  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2300.0 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 1628.7 |         |

| Flow data                                               | Nomenclature | Unit              | Value                   |
|---------------------------------------------------------|--------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp           | m <sup>3</sup> /s | 1.51 · 10 <sup>-5</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm           | m <sup>3</sup> /s | 1.60 · 10 <sup>-5</sup> |
| Total volume discharged during flow period              | Vp           | m <sup>3</sup>    | 0.05754                 |

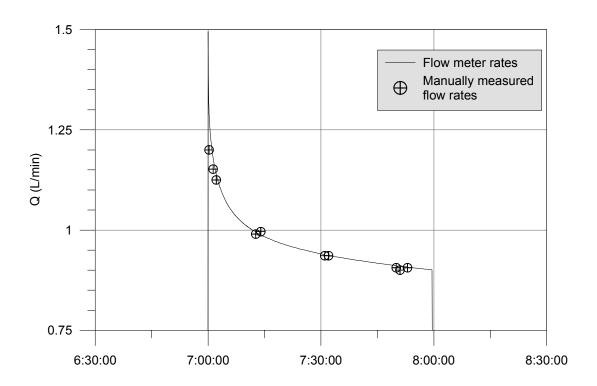
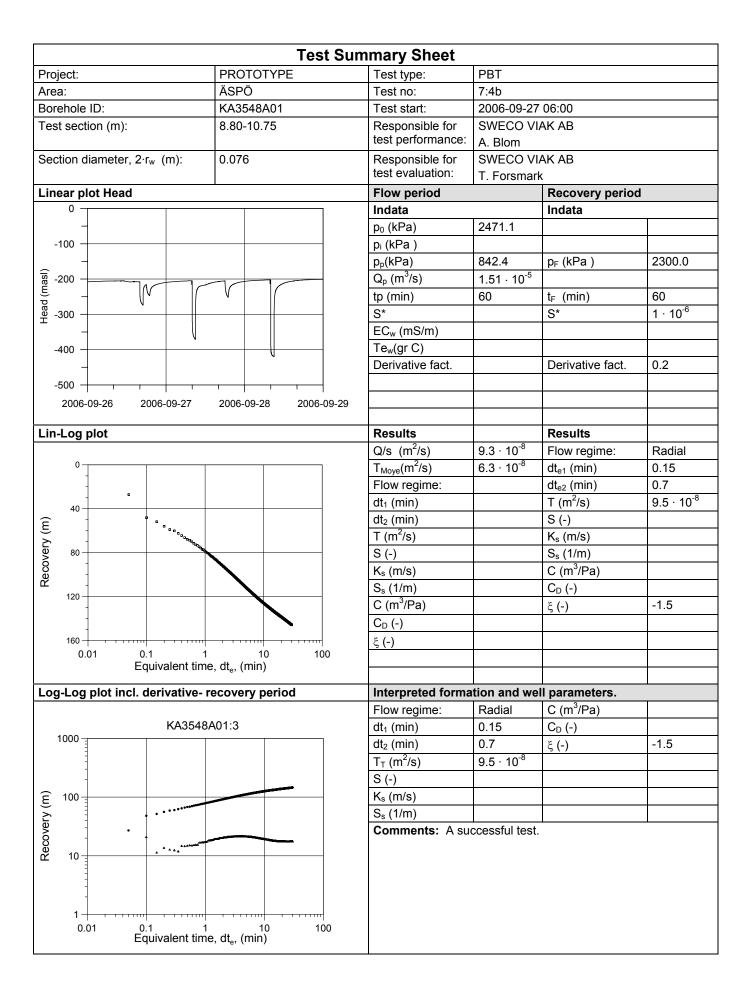



Figure 6-8. Flow rates during draw down in KA3548A01:3.

The test is successful in regard to pressure response. The radial flow period occurs very early in the test.

## Interpreted flow regimes


| 0 - 0.07    | minutes | Well Bore Storage (WBS)           |
|-------------|---------|-----------------------------------|
| 0.07 - 0.15 | minutes | Transition period                 |
| 0.15 - 0.7  | minutes | Radial flow period                |
| 0.7 - 15    | minutes | Transition period                 |
| 15 –        | minutes | Possible larger scale radial flow |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.



# 6.1.9 KA3548A01:3, test No 7:4c

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-9.

Table 6-9. General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01

| General test data                           |                  |                                |                   |  |  |
|---------------------------------------------|------------------|--------------------------------|-------------------|--|--|
| Borehole section                            | KA3548A0         | KA3548A01:3                    |                   |  |  |
| Test No                                     | 7:4c             |                                |                   |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                     |                   |  |  |
| Test equipment system                       | HMS              |                                |                   |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = max) |                   |  |  |
|                                             | Nomencl ature    | Unit                           | Value             |  |  |
| Test section- secup                         | Secup            | m                              | 8.80              |  |  |
| Test section- seclow                        | Seclow           | m                              | 10.75             |  |  |
| Test section length                         | L <sub>w</sub>   | m                              | 1.95              |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                             | 76                |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                | 20060928 06:00:00 |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                | -                 |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                | 20060928 07:00:00 |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                | 20060928 08:00:00 |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                | 20060928 09:00:00 |  |  |
| Total flow time                             | t <sub>p</sub>   | min                            | 60                |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                            | 60                |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2496.1 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 364.0  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2279.4 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 2132.1 |         |

| Flow data                                               | Nomenclature | Unit              | Value                   |
|---------------------------------------------------------|--------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp           | m <sup>3</sup> /s | 1.87 · 10 <sup>-5</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm           | m <sup>3</sup> /s | 2.04 · 10 <sup>-5</sup> |
| Total volume discharged during flow period              | Vp           | m <sup>3</sup>    | 0.07363                 |

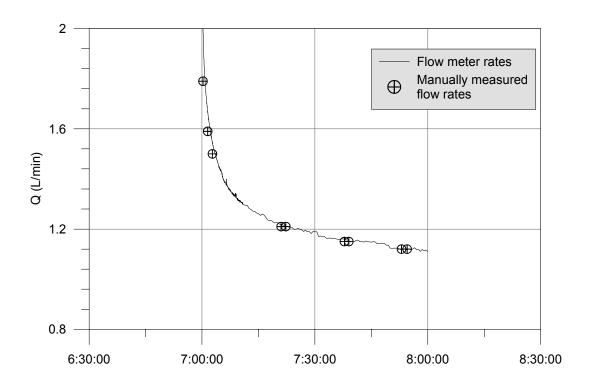



Figure 6-9. Flow rates during draw down in KA3548A01:3.

The test is successful in regard to pressure response. The evaluated radial flow period occurs early in the test.

## Interpreted flow regimes

| 0 - 0.07    | minutes | Well Bore Storage (WBS)           |
|-------------|---------|-----------------------------------|
| 0.07 - 0.15 | minutes | Transition period                 |
| 0.15 - 0.5  | minutes | Radial flow period                |
| 0.5 - 15    | minutes | Transition period                 |
| 15 –        | minutes | Possible larger scale radial flow |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Sun                   | nmary Sheet                           |                         |                        |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|-------------------------|------------------------|------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PROTOTYPE                  | Test type:                            | PBT                     |                        |                        |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ÄSPÖ                       | Test no:                              | 7:4c                    |                        |                        |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KA3548A01                  | Test start:                           | 2006-09-28              | 06:00                  |                        |
| Test section (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.80-10.75                 | Responsible for test performance:     | SWECO VIA               | AK AB                  |                        |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.076                      | Responsible for test evaluation:      | SWECO VI.               |                        |                        |
| Linear plat Hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                       | 1. FUISIIIair           |                        |                        |
| Linear plot Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Flow period<br>Indata                 |                         | Recovery period        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | p <sub>0</sub> (kPa)                  | 2496.1                  | indata                 | 1                      |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | ,                                     | 2490.1                  |                        |                        |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | p <sub>i</sub> (kPa )                 | 364.0                   | n (IsDa )              | 2279.4                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | $p_p(kPa)$                            |                         | p <sub>F</sub> (kPa )  | 2279.4                 |
| -300 -300 -300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | $Q_p (m^3/s)$                         | 1.87 · 10 <sup>-5</sup> |                        |                        |
| ) ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>,</b>                   | tp (min)                              | 60                      | t <sub>F</sub> (min)   | 60                     |
| <u></u> 300 − − − − − − − − − − − − − − − − − −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | S*                                    |                         | S*                     | 1 · 10 <sup>-6</sup>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | EC <sub>w</sub> (mS/m)                |                         |                        |                        |
| -400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - <del> </del>             | Te <sub>w</sub> (gr C)                |                         |                        |                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Derivative fact.                      |                         | Derivative fact.       | 0.2                    |
| -500 <del>  1   1   1   1   1   1   1   1   1   </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2006-09-28 2006-09-29      |                                       |                         |                        |                        |
| 2000-09-20 2000-09-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000-09-20 2000-09-29      |                                       |                         |                        |                        |
| Lin-Log plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Results                               |                         | Results                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | $Q/s (m^2/s)$                         | 8.8 · 10 <sup>-8</sup>  | Flow regime:           | Radial                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | T <sub>Moye</sub> (m <sup>2</sup> /s) | 5.9 · 10 <sup>-8</sup>  | dt <sub>e1</sub> (min) | 0.15                   |
| ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Flow regime:                          |                         | dt <sub>e2</sub> (min) | 0.5                    |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | dt <sub>1</sub> (min)                 |                         | T (m <sup>2</sup> /s)  | 1.0 · 10 <sup>-7</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | dt <sub>2</sub> (min)                 |                         | S (-)                  |                        |
| L) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( |                            | T (m <sup>2</sup> /s)                 |                         | K <sub>s</sub> (m/s)   |                        |
| Recovery (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | S (-)                                 |                         | S <sub>s</sub> (1/m)   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | K <sub>s</sub> (m/s)                  |                         | C (m <sup>3</sup> /Pa) |                        |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | S <sub>s</sub> (1/m)                  |                         | C <sub>D</sub> (-)     |                        |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | C (m <sup>3</sup> /Pa)                |                         | ξ (-)                  | -0.9                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | C <sub>D</sub> (-)                    |                         |                        |                        |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | ξ (-)                                 |                         |                        |                        |
| 0.01 0.1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 100                     |                                       |                         |                        |                        |
| Equivalent time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e, at <sub>e</sub> , (min) |                                       |                         |                        |                        |
| Log-Log plot incl. derivative- re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecovery period             | Interpreted forma                     | tion and we             | Il parameters.         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                          | Flow regime:                          | Radial                  | C (m <sup>3</sup> /Pa) |                        |
| KA3548A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A01:3                      | dt <sub>1</sub> (min)                 | 0.15                    | C <sub>D</sub> (-)     |                        |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | dt <sub>2</sub> (min)                 | 0.5                     | ξ (-)                  | -0.9                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | $T_T$ (m <sup>2</sup> /s)             | 1.0 · 10 <sup>-7</sup>  |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | S (-)                                 |                         |                        |                        |
| ε 100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | K <sub>s</sub> (m/s)                  |                         |                        |                        |
| \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | S <sub>s</sub> (1/m)                  |                         |                        |                        |
| Recovery (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Comments: A suc                       | ccessful test.          | ı                      | 1                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                       |                         |                        |                        |
| ž 10 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                       |                         |                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                       |                         |                        |                        |
| ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                       |                         |                        |                        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                       |                         |                        |                        |
| 0.01 0.1 1<br>Equivalent time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 100<br>e dt (min)       |                                       |                         |                        |                        |
| Equivalent time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , a.e, (IIIII)             |                                       |                         |                        |                        |

# 6.1.10 KA3542G01:3, test No 7:5a

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-10.

Table 6-10. General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

| General test data                           |                  |                                     |                   |  |  |
|---------------------------------------------|------------------|-------------------------------------|-------------------|--|--|
| Borehole section                            | KA3542G          | KA3542G01:3                         |                   |  |  |
| Test No                                     | 7:5a             |                                     |                   |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                          |                   |  |  |
| Test equipment system                       | HMS              |                                     |                   |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = approx. 1 | 100 m)            |  |  |
|                                             | Nomencl ature    | Unit                                | Value             |  |  |
| Test section- secup                         | Secup            | m                                   | 18.60             |  |  |
| Test section- seclow                        | Seclow           | m                                   | 20.30             |  |  |
| Test section length                         | L <sub>w</sub>   | m                                   | 1.70              |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                                  | 76                |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                     | 20060925 17:00:00 |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                     | -                 |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                     | 20060925 18:00:00 |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                     | 20060925 19:00:00 |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                     | 20060925 21:00:00 |  |  |
| Total flow time                             | tp               | min                                 | 60                |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                                 | 120               |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2410.2 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 1781.9 |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2376.8 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 628.3  |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp             | m <sup>3</sup> /s | 3.28 · 10 <sup>-6</sup> |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 3.33 · 10 <sup>-6</sup> |
| Total volume discharged during flow period              | V <sub>p</sub> | m <sup>3</sup>    | 0.01199                 |

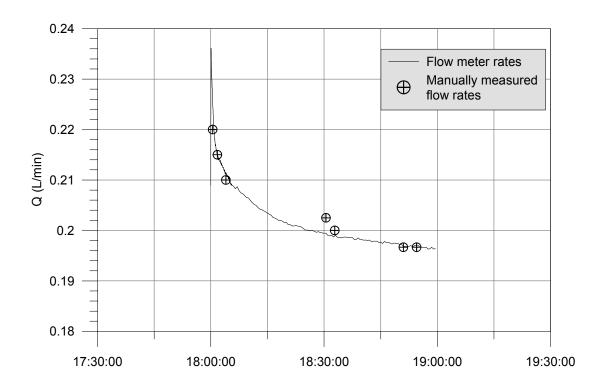



Figure 6-10. Flow rate during draw down in KA3542G01:3.

A successful test. During the earlier test campaigns the rather flat shape of the derivative curve for the period 0.3 - 2 min was not as apparent as now. This may be an indication of an earlier radial flow period than that is presented below. However, the late radial flow period is used to estimate the transmissivity to give a fairer comparison with results from earlier test campaigns.

## Interpreted flow regimes

| 0 - 0.1   | minutes | Well Bore Storage (WBS) |
|-----------|---------|-------------------------|
| 0.1 - 0.3 | minutes | Transition period       |
| 0.3 - 2   | minutes | Radial flow period      |
| 2 - 30    | minutes | Transition period       |
| 30 –      | minutes | Radial flow period      |

# Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sun                     | nmary Sheet                                                                                               |                                                                                                             |                                                                                                                                                |                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROTOTYPE                    | Test type:                                                                                                | PBT                                                                                                         |                                                                                                                                                |                                                                                 |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÄSPÖ                         | Test no:                                                                                                  | 7:5a                                                                                                        |                                                                                                                                                |                                                                                 |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KA3542G01                    | Test start:                                                                                               | 2006-09-25                                                                                                  | 17:00                                                                                                                                          |                                                                                 |
| Test section (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.60-20.30                  | Responsible for                                                                                           | SWECO VI                                                                                                    | AK AB                                                                                                                                          |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | test performance:                                                                                         | A. Blom                                                                                                     |                                                                                                                                                |                                                                                 |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                        | Responsible for                                                                                           | SWECO VI                                                                                                    | AK AB                                                                                                                                          |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | test evaluation:                                                                                          | T. Forsmark                                                                                                 | (                                                                                                                                              |                                                                                 |
| Linear plot Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                            | Flow period                                                                                               |                                                                                                             | Recovery period                                                                                                                                |                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | Indata                                                                                                    |                                                                                                             | Indata                                                                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | p <sub>0</sub> (kPa)                                                                                      | 2410.2                                                                                                      |                                                                                                                                                |                                                                                 |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | p <sub>i</sub> (kPa )                                                                                     |                                                                                                             |                                                                                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | p <sub>p</sub> (kPa)                                                                                      | 1781.9                                                                                                      | p <sub>F</sub> (kPa )                                                                                                                          | 2376.8                                                                          |
| (math display="block")   (math display="blo    |                              | $Q_p (m^3/s)$                                                                                             | 2.49 · 10 <sup>-6</sup>                                                                                     |                                                                                                                                                |                                                                                 |
| (Fig200 ) (Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | tp (min)                                                                                                  | 60                                                                                                          | t <sub>F</sub> (min)                                                                                                                           | 120                                                                             |
| 300 -300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                     | S*                                                                                                        |                                                                                                             | S*                                                                                                                                             | 1 · 10 <sup>-6</sup>                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | EC <sub>w</sub> (mS/m)                                                                                    |                                                                                                             |                                                                                                                                                |                                                                                 |
| -400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | Te <sub>w</sub> (gr C)                                                                                    |                                                                                                             |                                                                                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Derivative fact.                                                                                          |                                                                                                             | Derivative fact.                                                                                                                               | 0.2                                                                             |
| -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                           |                                                                                                             |                                                                                                                                                |                                                                                 |
| 2006-09-25 2006-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-27 2006-09-29              |                                                                                                           |                                                                                                             |                                                                                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 00 20                   |                                                                                                           |                                                                                                             |                                                                                                                                                |                                                                                 |
| Lin-Log plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | Results                                                                                                   |                                                                                                             | Results                                                                                                                                        |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | $Q/s (m^2/s)$                                                                                             | 5.2 · 10 <sup>-8</sup>                                                                                      | Flow regime:                                                                                                                                   | Radial                                                                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | T <sub>Moye</sub> (m <sup>2</sup> /s)                                                                     | 3.4 · 10 <sup>-8</sup>                                                                                      | dt <sub>e1</sub> (min)                                                                                                                         | 30                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Flow regime:                                                                                              |                                                                                                             | dt <sub>e2</sub> (min)                                                                                                                         | 35                                                                              |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | dt <sub>1</sub> (min)                                                                                     |                                                                                                             | $T (m^2/s)$                                                                                                                                    | 3.4 · 10 <sup>-8</sup>                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | dt <sub>2</sub> (min)                                                                                     |                                                                                                             | S (-)                                                                                                                                          |                                                                                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | T (m <sup>2</sup> /s)                                                                                     |                                                                                                             | K <sub>s</sub> (m/s)                                                                                                                           |                                                                                 |
| <u>50</u> 50 −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | S (-)                                                                                                     |                                                                                                             | S <sub>s</sub> (1/m)                                                                                                                           |                                                                                 |
| Recovery (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | K <sub>s</sub> (m/s)                                                                                      |                                                                                                             | C (m <sup>3</sup> /Pa)                                                                                                                         |                                                                                 |
| —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | S <sub>s</sub> (1/m)                                                                                      |                                                                                                             | C <sub>D</sub> (-)                                                                                                                             |                                                                                 |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | C (m <sup>3</sup> /Pa)                                                                                    |                                                                                                             | ξ (-)                                                                                                                                          | -2.0                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | C <sub>D</sub> (-)                                                                                        |                                                                                                             |                                                                                                                                                |                                                                                 |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | ξ (-)                                                                                                     |                                                                                                             |                                                                                                                                                |                                                                                 |
| 0.01 0.1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 100                       |                                                                                                           |                                                                                                             |                                                                                                                                                |                                                                                 |
| Equivalent time,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ut <sub>e</sub> , (mm)       |                                                                                                           |                                                                                                             |                                                                                                                                                |                                                                                 |
| Log-Log plot incl. derivative- re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecovery period               | Interpreted forma                                                                                         | tion and we                                                                                                 |                                                                                                                                                | _                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Flow regime:                                                                                              | Radial                                                                                                      | C (m <sup>3</sup> /Pa)                                                                                                                         |                                                                                 |
| KA35420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G01:3                        | dt <sub>1</sub> (min)                                                                                     | 30                                                                                                          | C <sub>D</sub> (-)                                                                                                                             |                                                                                 |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | dt <sub>2</sub> (min)                                                                                     | 35                                                                                                          | ξ (-)                                                                                                                                          | -2.0                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | $T_T (m^2/s)$                                                                                             | 3.4 · 10 <sup>-8</sup>                                                                                      |                                                                                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | S (-)                                                                                                     |                                                                                                             |                                                                                                                                                |                                                                                 |
| € 100 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | K <sub>s</sub> (m/s)                                                                                      |                                                                                                             |                                                                                                                                                |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | S <sub>s</sub> (1/m)                                                                                      |                                                                                                             |                                                                                                                                                |                                                                                 |
| 100 Loon (II) 100 Loon (II) 100 Loon (III) 100 Loon | 10 100                       | campaigns the rath<br>period 0.3 – 2 min<br>indication of an ea<br>above. The transm<br>However, the late | ner flat shape<br>was not as a<br>rler radial flow<br>iissivity for the<br>radial flow pe<br>ve a fairer co | During the earlier to of the derivative cupparent as now. The period that is presis period is T = 3.8 riod is used to estir mparison with resu | urve for the is may be an sented · 10 <sup>-8</sup> m <sup>2</sup> /s. nate the |
| Equivalent time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ul <sub>e</sub> , (IIIIII) |                                                                                                           |                                                                                                             |                                                                                                                                                |                                                                                 |

# 6.1.11 KA3542G01:3, test No 7:5b

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-11.

Table 6-11. General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

| General test data                           |                  |                                     |                   |  |  |
|---------------------------------------------|------------------|-------------------------------------|-------------------|--|--|
| Borehole section                            | KA3542G          | KA3542G01:3                         |                   |  |  |
| Test No                                     | 7:5b             |                                     |                   |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                          |                   |  |  |
| Test equipment system                       | HMS              |                                     |                   |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = approx. 2 | 200 m)            |  |  |
|                                             | Nomencl ature    | Unit                                | Value             |  |  |
| Test section- secup                         | Secup            | m                                   | 18.60             |  |  |
| Test section- seclow                        | Seclow           | m                                   | 20.30             |  |  |
| Test section length                         | L <sub>w</sub>   | m                                   | 1.70              |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                                  | 76                |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                     | 20060926 16:00:00 |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                     | -                 |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                     | 20060926 17:00:00 |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                     | 20060926 18:00:00 |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                     | 20060926 20:00:00 |  |  |
| Total flow time                             | t <sub>p</sub>   | min                                 | 60                |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                                 | 120               |  |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2315.0 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 878.9  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2310.6 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 1436.1 |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Q <sub>p</sub> | m <sup>3</sup> /s | 7.17 · 10 <sup>-6</sup> |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 7.43 · 10 <sup>-6</sup> |
| Total volume discharged during flow period              | Vp             | m <sup>3</sup>    | 0.02675                 |

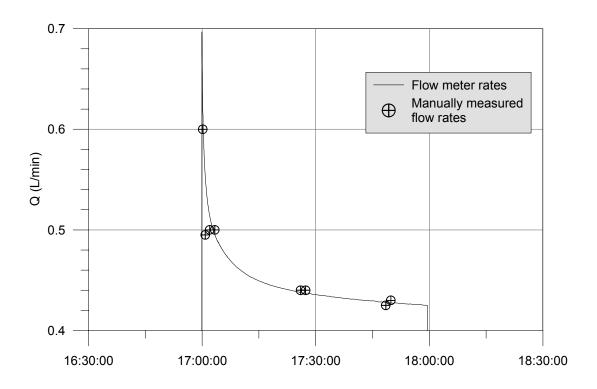



Figure 6-11. Flow rate during draw down in KA3542G01:3.

A successful test. During the earlier test campaigns the rather flat shape of the derivative curve for the period 1.7 - 3 min was not as apparent as now. This may be an indication of an earler radial flow period than that is presented below. However, the late radial flow period is used to estimate the transmissivity to give a fairer comparison with results from earlier test campaigns.

## Interpreted flow regimes

| 0 - 0.1   | minutes | Well Bore Storage (WBS) |
|-----------|---------|-------------------------|
| 0.1 - 0.3 | minutes | Transition period       |
| 1.7 - 3   | minutes | Radial flow period      |
| 3 - 20    | minutes | Transition period       |
| 20 - 30   | minutes | Radial flow period      |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

### Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

| Test Summary Sheet                      |                                       |                                                                                                                                       |                                                                                           |                                                                                                                                     |                                                                                   |
|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Project:                                | PROTOTYPE                             | Test type:                                                                                                                            | PBT                                                                                       |                                                                                                                                     |                                                                                   |
| Area:                                   | ÄSPÖ                                  | Test no:                                                                                                                              | 7:5b                                                                                      |                                                                                                                                     |                                                                                   |
| Borehole ID:                            | KA3542G01                             | Test start:                                                                                                                           | 2006-09-26 16:00                                                                          |                                                                                                                                     |                                                                                   |
| Test section (m):                       | 18.60-20.30                           | Responsible for test performance:                                                                                                     | SWECO VIAK AB<br>A. Blom                                                                  |                                                                                                                                     |                                                                                   |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                                 | Responsible for test evaluation:                                                                                                      | SWECO VIAK AB T. Forsmark                                                                 |                                                                                                                                     |                                                                                   |
| Linear plot Head                        | 1                                     | Flow period                                                                                                                           | l                                                                                         | Recovery period                                                                                                                     | i                                                                                 |
| 0 —                                     |                                       | Indata                                                                                                                                |                                                                                           | Indata                                                                                                                              |                                                                                   |
|                                         |                                       | p <sub>0</sub> (kPa)                                                                                                                  | 2315.0                                                                                    |                                                                                                                                     |                                                                                   |
| -100                                    |                                       | p <sub>i</sub> (kPa )                                                                                                                 |                                                                                           |                                                                                                                                     |                                                                                   |
|                                         |                                       | p <sub>p</sub> (kPa)                                                                                                                  | 878.9                                                                                     | p <sub>F</sub> (kPa )                                                                                                               | 2310.6                                                                            |
| (F) -200                                |                                       | $Q_p (m^3/s)$                                                                                                                         | 7.17 · 10 <sup>-6</sup>                                                                   | ,                                                                                                                                   |                                                                                   |
| (ig -200 – )                            |                                       | tp (min)                                                                                                                              | 60                                                                                        | t <sub>F</sub> (min)                                                                                                                | 120                                                                               |
| 9 -300                                  | <u> </u>                              | S*                                                                                                                                    |                                                                                           | S*                                                                                                                                  | 1 · 10 <sup>-6</sup>                                                              |
|                                         |                                       | EC <sub>w</sub> (mS/m)                                                                                                                |                                                                                           |                                                                                                                                     | -                                                                                 |
| -400                                    |                                       | Te <sub>w</sub> (gr C)                                                                                                                |                                                                                           |                                                                                                                                     |                                                                                   |
|                                         |                                       | Derivative fact.                                                                                                                      |                                                                                           | Derivative fact.                                                                                                                    | 0.2                                                                               |
| -500                                    |                                       |                                                                                                                                       |                                                                                           |                                                                                                                                     |                                                                                   |
| 2006-09-25 2006-0                       | 9-27 2006-09-29                       |                                                                                                                                       |                                                                                           |                                                                                                                                     |                                                                                   |
| 2000-03-23 2000-0                       | 3-21 2000-03-23                       |                                                                                                                                       |                                                                                           |                                                                                                                                     |                                                                                   |
| Lin-Log plot                            |                                       | Results                                                                                                                               |                                                                                           | Results                                                                                                                             |                                                                                   |
|                                         |                                       | Q/s (m <sup>2</sup> /s)                                                                                                               | 5.0 · 10 <sup>-8</sup>                                                                    | Flow regime:                                                                                                                        | Radial                                                                            |
| 0                                       |                                       | T <sub>Moye</sub> (m <sup>2</sup> /s)                                                                                                 | 3.3 · 10 <sup>-8</sup>                                                                    | dt <sub>e1</sub> (min)                                                                                                              | 20                                                                                |
|                                         |                                       | Flow regime:                                                                                                                          |                                                                                           | dt <sub>e2</sub> (min)                                                                                                              | 30                                                                                |
| - " " "                                 |                                       | dt <sub>1</sub> (min)                                                                                                                 |                                                                                           | T (m <sup>2</sup> /s)                                                                                                               | 3.3 · 10 <sup>-8</sup>                                                            |
|                                         |                                       | dt <sub>2</sub> (min)                                                                                                                 |                                                                                           | S (-)                                                                                                                               |                                                                                   |
| Secovery (m)                            |                                       | T (m <sup>2</sup> /s)                                                                                                                 |                                                                                           | K <sub>s</sub> (m/s)                                                                                                                |                                                                                   |
| Net -                                   |                                       | S (-)                                                                                                                                 |                                                                                           | S <sub>s</sub> (1/m)                                                                                                                |                                                                                   |
| 8 -                                     |                                       | K <sub>s</sub> (m/s)                                                                                                                  |                                                                                           | C (m <sup>3</sup> /Pa)                                                                                                              |                                                                                   |
| ₫ 100 <u> </u>                          |                                       | S <sub>s</sub> (1/m)                                                                                                                  |                                                                                           | C <sub>D</sub> (-)                                                                                                                  |                                                                                   |
|                                         |                                       | C (m <sup>3</sup> /Pa)                                                                                                                |                                                                                           | ξ (-)                                                                                                                               | -1.6                                                                              |
|                                         |                                       | C <sub>D</sub> (-)                                                                                                                    |                                                                                           |                                                                                                                                     |                                                                                   |
| 150                                     | · · · · · · · · · · · · · · · · · · · | ξ (-)                                                                                                                                 |                                                                                           |                                                                                                                                     |                                                                                   |
| 0.01 0.1 1                              | 10 100                                |                                                                                                                                       |                                                                                           |                                                                                                                                     |                                                                                   |
| Equivalent time,                        | at <sub>e</sub> , (min)               |                                                                                                                                       |                                                                                           |                                                                                                                                     |                                                                                   |
| Log-Log plot incl. derivative- re       | ecovery period                        | Interpreted forma                                                                                                                     | tion and we                                                                               | II parameters.                                                                                                                      | ·                                                                                 |
|                                         |                                       | Flow regime:                                                                                                                          | Radial                                                                                    | C (m <sup>3</sup> /Pa)                                                                                                              |                                                                                   |
| KA35420                                 | G01:3                                 | dt <sub>1</sub> (min)                                                                                                                 | 20                                                                                        | C <sub>D</sub> (-)                                                                                                                  |                                                                                   |
| 1000                                    |                                       | dt <sub>2</sub> (min)                                                                                                                 | 30                                                                                        | ξ (-)                                                                                                                               | -1.6                                                                              |
|                                         |                                       | $T_T (m^2/s)$                                                                                                                         | 3.3 · 10 <sup>-8</sup>                                                                    |                                                                                                                                     |                                                                                   |
|                                         |                                       | S (-)                                                                                                                                 |                                                                                           |                                                                                                                                     |                                                                                   |
| € 100 ±                                 |                                       | K <sub>s</sub> (m/s)                                                                                                                  |                                                                                           |                                                                                                                                     |                                                                                   |
| <u> </u>                                |                                       | S <sub>s</sub> (1/m)                                                                                                                  |                                                                                           |                                                                                                                                     |                                                                                   |
| Recovery (m)                            |                                       | Comments: A succampaigns the rath period 1.7 – 3 min indication of an ear above. The transm However, the late it transmissivity to gi | ner flat shape<br>was not as a<br>rler radial flow<br>hissivity for the<br>radial flow pe | e of the derivative of pparent as now. The pparent as now. The pparent as period that is presented is T = 3.3 priod is used to esti | curve for the his may be an sented · 10 <sup>-8</sup> m <sup>2</sup> /s. mate the |
| 0.01 0.1 1<br>Equivalent time           | 10 100<br>e, dt <sub>e</sub> , (min)  | earlier test campai                                                                                                                   |                                                                                           | p === 1000                                                                                                                          |                                                                                   |

# 6.1.12 KA3542G01:3, test No 7:5c

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-12.

Table 6-12. General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01

| General test data                           |                   |                                 |                   |  |
|---------------------------------------------|-------------------|---------------------------------|-------------------|--|
| Borehole section                            | KA3542G           | KA3542G01:3                     |                   |  |
| Test No                                     | 7:5c              |                                 |                   |  |
| Field crew                                  | A. Blom(S         | SWECO VIAK)                     |                   |  |
| Test equipment system                       | HMS               |                                 |                   |  |
| General comment                             | Single ho         | le test (dp <sub>p</sub> = max) |                   |  |
|                                             | Nomen-<br>clature | Unit                            | Value             |  |
| Test section- secup                         | Secup             | m                               | 18.60             |  |
| Test section- seclow                        | Seclow            | m                               | 20.30             |  |
| Test section length                         | L <sub>w</sub>    | m                               | 1.70              |  |
| Test section diameter                       | 2·r <sub>w</sub>  | mm                              | 76                |  |
| Test start (start of pressure registration) |                   | yymmdd hh:mm:ss                 | 20060927 16:00:00 |  |
| Packer expanded                             |                   | yymmdd hh:mm:ss                 | -                 |  |
| Start of flow period                        |                   | yymmdd hh:mm:ss                 | 20060927 17:00:00 |  |
| Stop of flow period                         |                   | yymmdd hh:mm:ss                 | 20060927 18:00:00 |  |
| Test stop (stop of pressure registration)   |                   | yymmdd hh:mm:ss                 | 20060927 20:00:00 |  |
| Total flow time                             | t <sub>p</sub>    | min                             | 60                |  |
| Total recovery time                         | t <sub>F</sub>    | min                             | 120               |  |

### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 2430.6 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 176.8  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 2341.7 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 2253.8 |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp             | m <sup>3</sup> /s | 1.03 · 10 <sup>-5</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm             | m <sup>3</sup> /s | 1.15 · 10 <sup>-5</sup> |
| Total volume discharged during flow period              | V <sub>p</sub> | m <sup>3</sup>    | 0.04128                 |

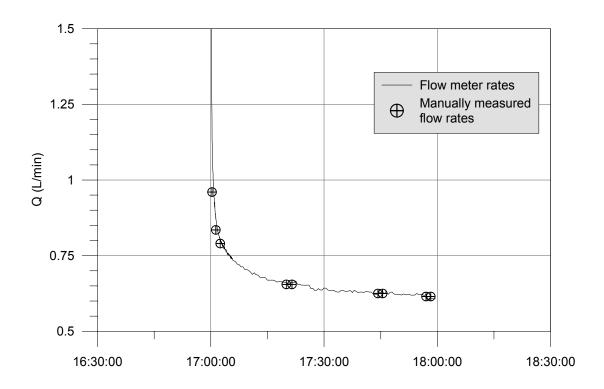



Figure 6-12. Flow rate during draw down in KA3542G01:3.

A successful test. During the earlier test campaigns the rather flat shape of the derivative curve for the period 2-8 min was not as apparent as now. This may be an indication of an earlier radial flow period than that is presented below. However, the late radial flow period is used to estimate the transmissivity to give a fairer comparison with results from earlier test campaigns.

### Interpreted flow regimes

| 0 - 0.1 | minutes | Well Bore Storage (WBS) |
|---------|---------|-------------------------|
| 0.1 - 2 | minutes | Transition period       |
| 2 - 8   | minutes | Radial flow period      |
| 8 - 20  | minutes | Transition period       |
| 20 - 40 | minutes | Radial flow period      |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

| Test Summary Sheet                                  |                                      |                                                                                                                                                                                          |                         |                        |                                                  |  |
|-----------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|--------------------------------------------------|--|
| Project: PROTOTYPE                                  |                                      | Test type:                                                                                                                                                                               | PBT                     |                        |                                                  |  |
| Area: ÄSPÖ                                          |                                      | Test no:                                                                                                                                                                                 | 7:5c                    |                        |                                                  |  |
| Borehole ID: KA3542G01                              |                                      | Test start:                                                                                                                                                                              | 2006-09-27 16:00        |                        |                                                  |  |
| Test section (m):                                   | 18.60-20.30                          | Responsible for                                                                                                                                                                          | SWECO VIAK AB           |                        |                                                  |  |
|                                                     |                                      | test performance:                                                                                                                                                                        | A. Blom                 |                        |                                                  |  |
| Section diameter, 2·r <sub>w</sub> (m):             | 0.076                                | Responsible for                                                                                                                                                                          | SWECO VI                | AK AB                  |                                                  |  |
|                                                     |                                      | test evaluation:                                                                                                                                                                         | T. Forsmark             | . Forsmark             |                                                  |  |
| Linear plot Head                                    | -                                    | Flow period                                                                                                                                                                              |                         | Recovery period        |                                                  |  |
| 0 —                                                 |                                      | Indata                                                                                                                                                                                   |                         | Indata                 |                                                  |  |
| _                                                   |                                      | p <sub>0</sub> (kPa)                                                                                                                                                                     | 2430.6                  |                        |                                                  |  |
| -100                                                |                                      | p <sub>i</sub> (kPa )                                                                                                                                                                    |                         |                        |                                                  |  |
|                                                     |                                      | p <sub>p</sub> (kPa)                                                                                                                                                                     | 176.8                   | p <sub>F</sub> (kPa )  | 2341.7                                           |  |
| (F) -200                                            |                                      | $Q_p (m^3/s)$                                                                                                                                                                            | 1.03 · 10 <sup>-5</sup> | ,                      |                                                  |  |
| (SR -200 )                                          |                                      | tp (min)                                                                                                                                                                                 | 60                      | t <sub>F</sub> (min)   | 120                                              |  |
| -300                                                | V   V                                | S*                                                                                                                                                                                       |                         | S*                     | 1 · 10 <sup>-6</sup>                             |  |
|                                                     |                                      | EC <sub>w</sub> (mS/m)                                                                                                                                                                   |                         | -                      |                                                  |  |
| -400                                                |                                      | Te <sub>w</sub> (gr C)                                                                                                                                                                   |                         |                        | <del>                                     </del> |  |
|                                                     |                                      | Derivative fact.                                                                                                                                                                         |                         | Derivative fact.       | 0.2                                              |  |
| 500                                                 |                                      | Benvative last.                                                                                                                                                                          |                         | Benvalive lact.        | 0.2                                              |  |
| -500                                                |                                      |                                                                                                                                                                                          |                         |                        |                                                  |  |
| 2006-09-25 2006-0                                   | 9-27 2006-09-29                      |                                                                                                                                                                                          |                         |                        |                                                  |  |
| Lin-Log plot                                        |                                      | Results                                                                                                                                                                                  |                         | Results                |                                                  |  |
| Em-Log plot                                         |                                      | Q/s (m <sup>2</sup> /s)                                                                                                                                                                  | 4.6 · 10 <sup>-8</sup>  | Flow regime:           | Radial                                           |  |
| 0 —                                                 |                                      | $T_{\text{Moye}}(\text{m}^2/\text{s})$                                                                                                                                                   | 3.0 · 10 <sup>-8</sup>  | dt <sub>e1</sub> (min) | 20                                               |  |
|                                                     |                                      | Flow regime:                                                                                                                                                                             | 3.0 10                  | dt <sub>e2</sub> (min) | 40                                               |  |
| 50                                                  |                                      | dt <sub>1</sub> (min)                                                                                                                                                                    |                         | T (m <sup>2</sup> /s)  | 4.4 · 10 <sup>-8</sup>                           |  |
| -   •                                               |                                      | dt <sub>1</sub> (min)                                                                                                                                                                    |                         | S (-)                  | 4.4 10                                           |  |
| E 100                                               |                                      | T (m <sup>2</sup> /s)                                                                                                                                                                    |                         | K <sub>s</sub> (m/s)   |                                                  |  |
| Recovery (m) 100 100 100 100 100 100 100 100 100 10 |                                      | S (-)                                                                                                                                                                                    |                         | S <sub>s</sub> (1/m)   |                                                  |  |
| 8 150                                               |                                      | K <sub>s</sub> (m/s)                                                                                                                                                                     |                         | C (m <sup>3</sup> /Pa) |                                                  |  |
| 8 130 -                                             |                                      | S <sub>s</sub> (1/m)                                                                                                                                                                     |                         | C <sub>D</sub> (-)     |                                                  |  |
|                                                     |                                      | C (m <sup>3</sup> /Pa)                                                                                                                                                                   |                         |                        | -0.2                                             |  |
| 200                                                 |                                      | ` ′                                                                                                                                                                                      |                         | ξ (-)                  | -0.2                                             |  |
|                                                     |                                      | C <sub>D</sub> (-)                                                                                                                                                                       |                         |                        |                                                  |  |
| 0.01 0.1 1                                          | 10 100                               | ξ (-)                                                                                                                                                                                    |                         |                        | <b> </b>                                         |  |
| Equivalent time,                                    | dt <sub>e</sub> , (min)              |                                                                                                                                                                                          |                         |                        | <b> </b>                                         |  |
|                                                     |                                      |                                                                                                                                                                                          |                         |                        |                                                  |  |
| Log-Log plot incl. derivative- re                   | ecovery period                       | Interpreted forma                                                                                                                                                                        |                         |                        |                                                  |  |
| 140510                                              | 204.2                                | Flow regime:                                                                                                                                                                             | Radial                  | C (m <sup>3</sup> /Pa) |                                                  |  |
| 1000 <del>+                                 </del>  | JU 1.3                               | dt <sub>1</sub> (min)                                                                                                                                                                    | 20                      | C <sub>D</sub> (-)     |                                                  |  |
|                                                     |                                      | dt <sub>2</sub> (min)                                                                                                                                                                    | 40                      | ξ (-)                  | -0.2                                             |  |
|                                                     |                                      | $T_T (m^2/s)$                                                                                                                                                                            | 4.4 · 10 <sup>-8</sup>  |                        |                                                  |  |
|                                                     |                                      | S (-)                                                                                                                                                                                    | 1                       |                        | <u> </u>                                         |  |
| Ê 100                                               |                                      | K <sub>s</sub> (m/s)                                                                                                                                                                     |                         |                        |                                                  |  |
| Recovery (m)                                        |                                      | S <sub>s</sub> (1/m)                                                                                                                                                                     |                         |                        | <u> </u>                                         |  |
| l X                                                 |                                      | Comments: A successful test. During the earlier test                                                                                                                                     |                         |                        |                                                  |  |
| ğ 10 <u>-                                  </u>     |                                      | campaigns the rather flat shape of the derivative curve for the period 2 – 8 min was not as apparent as now. This may be an indication of an earler radial flow period that is presented |                         |                        |                                                  |  |
|                                                     |                                      |                                                                                                                                                                                          |                         |                        |                                                  |  |
|                                                     |                                      | above. The transm                                                                                                                                                                        | issivity for th         | is period is T = 3.4   | · 10 <sup>-8</sup> m <sup>2</sup> /s.            |  |
|                                                     |                                      |                                                                                                                                                                                          |                         | riod is used to estin  |                                                  |  |
| 1                                                   | 10 100                               | transmissivity to gi earlier test campai                                                                                                                                                 |                         | mparison with resul    | ts from                                          |  |
| 0.01 0.1 1<br>Equivalent time                       | 10 100<br>e, dt <sub>e</sub> , (min) | earner test campar                                                                                                                                                                       | yı15.                   |                        |                                                  |  |
|                                                     |                                      |                                                                                                                                                                                          |                         |                        |                                                  |  |

# 6.1.13 KA3542G02:2, test No 7:7a

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in Table 6-13.

Table 6-13. General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02

| General test data                           |                   |                         |                   |  |  |  |
|---------------------------------------------|-------------------|-------------------------|-------------------|--|--|--|
| Borehole section                            | KA3542G           | KA3542G02:2             |                   |  |  |  |
| Test No                                     | 7:7a              |                         |                   |  |  |  |
| Field crew                                  | A. Blom(S         | SWECO VIAK)             |                   |  |  |  |
| Test equipment system                       | HMS               |                         |                   |  |  |  |
| General comment                             | Single ho         | le test (dpp = approxim | ate 100 m)        |  |  |  |
|                                             | Nomen-<br>clature | Unit                    | Value             |  |  |  |
| Test section- secup                         | Secup             | m                       | 25.60             |  |  |  |
| Test section- seclow                        | Seclow            | m                       | 27.20             |  |  |  |
| Test section length                         | L <sub>w</sub>    | m                       | 1.60              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub>  | 2·r <sub>w</sub> mm 76  |                   |  |  |  |
|                                             |                   |                         |                   |  |  |  |
| Test start (start of pressure registration) |                   | yymmdd hh:mm:ss         | 20060928 14:00:00 |  |  |  |
| Packer expanded                             |                   | yymmdd hh:mm:ss         | -                 |  |  |  |
| Start of flow period                        |                   | yymmdd hh:mm:ss         | 20060928 15:00:00 |  |  |  |
| Stop of flow period                         |                   | yymmdd hh:mm:ss         | 20060928 18:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                   | yymmdd hh:mm:ss         | 20060928 20:00:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>    | min                     | 180               |  |  |  |
| Total recovery time                         | t <sub>F</sub>    | min                     | 120               |  |  |  |

#### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 1796.8 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 951.5  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 1734.7 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 845.3  |         |

| Flow data                                               | Nomenclature   | Unit              | Value                    |
|---------------------------------------------------------|----------------|-------------------|--------------------------|
| Flow rate from test section just before stop of flowing | Q <sub>p</sub> | m <sup>3</sup> /s | 8.00 · 10 <sup>-8</sup>  |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 8.60 · 10 <sup>-8</sup>  |
| Total volume discharged during flow period              | Vp             | m <sup>3</sup>    | 9.285 · 10 <sup>-4</sup> |

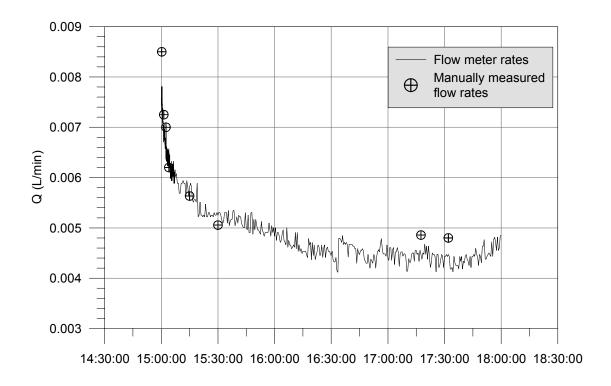



Figure 6-13. Flow rate during draw down in KA3542G02:2.

The test is successful in regard to pressure response.

## Interpreted flow regimes

| 0 - 0.5  | minutes | Well Bore Storage (WBS) |
|----------|---------|-------------------------|
| 0.5 - 12 | minutes | Transition period       |
| 12 - 20  | minutes | Radial flow             |
| 20 –     | minutes | Transition period       |

### Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

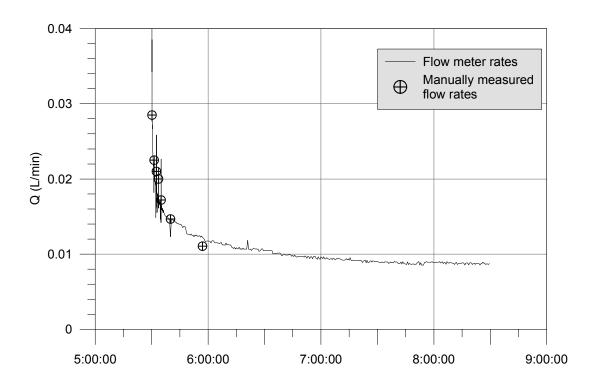
## Selected representative parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                         | Test Sun                                           | nmary Sheet                                    |                          |                                                |                         |
|-----------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------|------------------------------------------------|-------------------------|
| Project:                                | PROTOTYPE                                          | Test type:                                     | PBT                      |                                                |                         |
| Area:                                   | ÄSPÖ                                               | Test no:                                       | 7:7a                     |                                                |                         |
| Borehole ID:                            | KA3542G02                                          | Test start:                                    | 2006-09-28 14:00         |                                                |                         |
| Test section (m):                       | 25.60-27.20                                        | Responsible for test performance:              | SWECO VIAK AB<br>A. Blom |                                                |                         |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                                              | Responsible for test evaluation:               | SWECO VIA                |                                                |                         |
| Linear plot Head                        | 1                                                  | Flow period                                    | l                        | Recovery period                                |                         |
| 0 —                                     |                                                    | Indata                                         |                          | Indata                                         |                         |
|                                         |                                                    | p <sub>0</sub> (kPa)                           | 1796.8                   |                                                |                         |
| -100                                    |                                                    | p <sub>i</sub> (kPa )                          |                          |                                                |                         |
|                                         |                                                    | p <sub>p</sub> (kPa)                           | 951.5                    | p <sub>F</sub> (kPa )                          | 1734.7                  |
| <u>8</u> -200                           |                                                    | $Q_p (m^3/s)$                                  | 8.00 · 10 <sup>-8</sup>  |                                                |                         |
| [ E                                     |                                                    | tp (min)                                       | 180                      | t <sub>F</sub> (min)                           | 120                     |
| © -200                                  |                                                    | S*                                             |                          | S*                                             | 1 · 10 <sup>-6</sup>    |
|                                         |                                                    | EC <sub>w</sub> (mS/m)                         |                          |                                                |                         |
| -400                                    |                                                    | Te <sub>w</sub> (gr C)                         |                          |                                                |                         |
|                                         |                                                    | Derivative fact.                               |                          | Derivative fact.                               | 0.2                     |
| -500                                    | <del>-                                      </del> |                                                |                          |                                                |                         |
| 2006-09-28 2006-0                       | 9-29 2006-09-30                                    |                                                |                          |                                                |                         |
|                                         |                                                    |                                                |                          |                                                |                         |
| Lin-Log plot                            |                                                    | Results                                        | 40                       | Results                                        |                         |
| 0                                       |                                                    | Q/s (m <sup>2</sup> /s)                        | 9.5 · 10 <sup>-10</sup>  | Flow regime:                                   | Radial                  |
| 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                                    | T <sub>Moye</sub> (m <sup>2</sup> /s)          | 6.1 · 10 <sup>-10</sup>  | dt <sub>e1</sub> (min)                         | 12                      |
|                                         |                                                    | Flow regime:                                   |                          | dt <sub>e2</sub> (min)                         | 20                      |
| 25                                      |                                                    | dt <sub>1</sub> (min)                          |                          | T (m <sup>2</sup> /s)                          | 4.2 · 10 <sup>-10</sup> |
| [E]                                     |                                                    | dt <sub>2</sub> (min)                          |                          | S (-)                                          |                         |
| Ø 50                                    |                                                    | T (m <sup>2</sup> /s)                          |                          | K <sub>s</sub> (m/s)                           |                         |
| Recovery (m)                            |                                                    | S (-)                                          |                          | S <sub>s</sub> (1/m)<br>C (m <sup>3</sup> /Pa) |                         |
| N N N                                   |                                                    | K <sub>s</sub> (m/s)                           |                          | C <sub>D</sub> (-)                             |                         |
| 75                                      |                                                    | S <sub>s</sub> (1/m)<br>C (m <sup>3</sup> /Pa) |                          | ` '                                            | -1.5                    |
|                                         |                                                    |                                                |                          | ξ (-)                                          | -1.5                    |
| 100                                     |                                                    | C <sub>D</sub> (-)                             |                          |                                                |                         |
| 0.01 0.1 1                              | 10 100                                             | ξ (-)                                          |                          |                                                |                         |
| Equivalent time,                        | dt <sub>e</sub> , (min)                            |                                                |                          |                                                | +                       |
| Log-Log plot incl. derivative- re       | ecovery period                                     | Interpreted forma                              | tion and wel             | I parameters                                   |                         |
| 99 p wowallo                            | y p                                                | Flow regime:                                   | Radial                   | C (m <sup>3</sup> /Pa)                         |                         |
| KA3542G                                 | 02:2                                               | dt <sub>1</sub> (min)                          | 12                       | C <sub>D</sub> (-)                             | 1                       |
| 100                                     |                                                    | dt <sub>2</sub> (min)                          | 20                       | ξ(-)                                           | -1.5                    |
|                                         |                                                    | $T_T$ (m <sup>2</sup> /s)                      | 4.2 · 10 <sup>-10</sup>  |                                                |                         |
|                                         |                                                    | S (-)                                          |                          |                                                |                         |
| € 10                                    |                                                    | K <sub>s</sub> (m/s)                           |                          |                                                | 1                       |
| Recovery (m)                            |                                                    | S <sub>s</sub> (1/m)                           |                          |                                                |                         |
| S : · ·                                 |                                                    | Comments: A su                                 | ccessful test.           |                                                | ·                       |
| 9 1                                     |                                                    |                                                |                          |                                                |                         |
| "                                       |                                                    |                                                |                          |                                                |                         |
|                                         |                                                    |                                                |                          |                                                |                         |
|                                         |                                                    |                                                |                          |                                                |                         |
| 0.01 0.01 1                             | 10 100                                             |                                                |                          |                                                |                         |
| Equivalent time,                        | $dt_{\rm e}$ , (min)                               |                                                |                          |                                                |                         |
|                                         |                                                    |                                                |                          |                                                |                         |

# 6.1.14 KA3542G02:2, test No 7:7b

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in Table 6-14.


Table 6-14. General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02

| General test data                           |                   |                                 |                   |  |  |  |
|---------------------------------------------|-------------------|---------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3542G           | KA3542G02:2                     |                   |  |  |  |
| Test No                                     | 7:7b              |                                 |                   |  |  |  |
| Field crew                                  | A. Blom(S         | SWECO VIAK)                     |                   |  |  |  |
| Test equipment system                       | HMS               |                                 |                   |  |  |  |
| General comment                             | Single ho         | le test (dp <sub>p</sub> = max) |                   |  |  |  |
|                                             | Nomen-<br>clature | Unit                            | Value             |  |  |  |
| Test section- secup                         | Secup             | m                               | 25.60             |  |  |  |
| Test section- seclow                        | Seclow            | m                               | 27.20             |  |  |  |
| Test section length                         | L <sub>w</sub>    | m                               | 1.60              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub>  | mm                              | 76                |  |  |  |
| Test start (start of pressure registration) |                   | yymmdd hh:mm:ss                 | 20060929 04:30:00 |  |  |  |
| Packer expanded                             |                   | yymmdd hh:mm:ss                 | -                 |  |  |  |
| Start of flow period                        |                   | yymmdd hh:mm:ss                 | 20060929 05:30:00 |  |  |  |
| Stop of flow period                         |                   | yymmdd hh:mm:ss                 | 20060929 08:30:00 |  |  |  |
| Test stop (stop of pressure registration)   |                   | yymmdd hh:mm:ss                 | 20060929 10:30:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>    | min                             | 180               |  |  |  |
| Total recovery time                         | t <sub>F</sub>    | min                             | 120               |  |  |  |

#### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 1840.3 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 97.8   |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 1600.7 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 1742.5 |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Q <sub>p</sub> | m <sup>3</sup> /s | 1.84 · 10 <sup>-7</sup> |
| Mean (arithmetic) flow rate during flow period          | Q <sub>m</sub> | m <sup>3</sup> /s | 2.02 · 10 <sup>-7</sup> |
| Total volume discharged during flow period              | Vp             | m <sup>3</sup>    | 2.18 · 10 <sup>-3</sup> |



*Figure 6-14.* Flow rate during draw down in KA3542G02:2.

The reason to the pressure disturbance during recovery is not known. However, the later part of the recovery is considered as reliable.

### Interpreted flow regimes

| 0 - 1   | minutes | Well Bore Storage (WBS) |
|---------|---------|-------------------------|
| 1 – 18  | minutes | Transition period       |
| 18 - 28 | minutes | Radial flow             |
| 28 –    | minutes | Transition period       |

#### Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

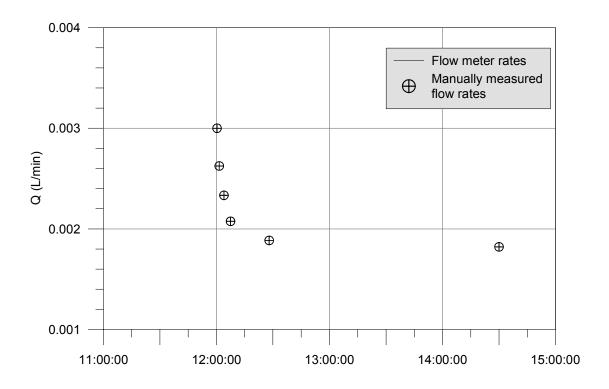
#### Selected representative parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                              | Test Sun                              | nmary Sheet                           |                         |                        |                         |
|----------------------------------------------|---------------------------------------|---------------------------------------|-------------------------|------------------------|-------------------------|
| Project:                                     | PROTOTYPE                             | Test type:                            | PBT                     |                        |                         |
| Area:                                        | ÄSPÖ                                  | Test no:                              | 7:7b                    |                        |                         |
| Borehole ID:                                 | KA3542G02                             | Test start:                           | 2006-09-29              | 04:30                  |                         |
| Test section (m):                            | 25.60-27.20                           | Responsible for                       | SWECO VI                | AK AB                  |                         |
|                                              |                                       | test performance:                     | A. Blom                 |                        |                         |
| Section diameter, 2·r <sub>w</sub> (m):      | 0.076                                 | Responsible for                       | SWECO VI                | AK AB                  |                         |
|                                              |                                       | test evaluation:                      | T. Forsmark             | <                      |                         |
| Linear plot Head                             |                                       | Flow period                           |                         | Recovery period        |                         |
| 0                                            |                                       | Indata                                |                         | Indata                 |                         |
| -                                            |                                       | p <sub>0</sub> (kPa)                  | 1840.3                  |                        |                         |
| -100                                         |                                       | p <sub>i</sub> (kPa )                 |                         |                        |                         |
| _                                            |                                       | p <sub>p</sub> (kPa)                  | 97.8                    | p <sub>F</sub> (kPa )  | 1600.7                  |
| <u>®</u> -200 −                              |                                       | Q <sub>p</sub> (m <sup>3</sup> /s)    | 1.84 · 10 <sup>-7</sup> |                        |                         |
| (ig -200 — — — — — — — — — — — — — — — — — — |                                       | tp (min)                              | 180                     | t <sub>F</sub> (min)   | 120                     |
| 9 -300                                       |                                       | S*                                    |                         | S*                     | 1 · 10 <sup>-6</sup>    |
| -   -   -                                    |                                       | EC <sub>w</sub> (mS/m)                |                         |                        |                         |
| -400                                         |                                       | Te <sub>w</sub> (gr C)                |                         |                        |                         |
|                                              |                                       | Derivative fact.                      |                         | Derivative fact.       | 0.2                     |
| -500                                         |                                       |                                       |                         |                        |                         |
| 2006-09-28 2006-0                            | 9-29 2006-09-30                       |                                       |                         |                        | 1                       |
| 2000-03-20 2000-0                            | 3-23 2000-03-30                       |                                       |                         |                        |                         |
| Lin-Log plot                                 |                                       | Results                               |                         | Results                |                         |
|                                              |                                       | Q/s (m <sup>2</sup> /s)               | 1.1 · 10 <sup>-9</sup>  | Flow regime:           | Radial                  |
| 0 - • • • • • • • • • • • • • • • • • •      |                                       | T <sub>Moye</sub> (m <sup>2</sup> /s) | 6.8 · 10 <sup>-10</sup> | dt <sub>e1</sub> (min) | 18                      |
|                                              |                                       | Flow regime:                          | 0.0                     | dt <sub>e2</sub> (min) | 28                      |
|                                              |                                       | dt <sub>1</sub> (min)                 |                         | T (m <sup>2</sup> /s)  | 5.1 · 10 <sup>-10</sup> |
| 50                                           |                                       | dt <sub>2</sub> (min)                 |                         | S (-)                  | 1011                    |
| Recovery (m)                                 |                                       | T (m <sup>2</sup> /s)                 |                         | K <sub>s</sub> (m/s)   |                         |
| Q 100                                        |                                       | S (-)                                 |                         | S <sub>s</sub> (1/m)   |                         |
|                                              |                                       | K <sub>s</sub> (m/s)                  |                         | C (m <sup>3</sup> /Pa) |                         |
| -                                            |                                       | S <sub>s</sub> (1/m)                  |                         | C <sub>D</sub> (-)     |                         |
| 150                                          |                                       | C (m <sup>3</sup> /Pa)                |                         | ξ (-)                  | -1.5                    |
| -                                            |                                       | C <sub>D</sub> (-)                    |                         | 5()                    | 110                     |
| 200                                          |                                       | ξ (-)                                 |                         |                        |                         |
| 0.01 0.1 1                                   | 10 100                                | 5()                                   |                         |                        |                         |
| Equivalent time,                             | dt <sub>e</sub> , (min)               |                                       |                         |                        |                         |
| Log-Log plot incl. derivative- r             | ecovery period                        | Interpreted forma                     | tion and we             | II parameters          | 1                       |
|                                              |                                       | Flow regime:                          | Radial                  | C (m³/Pa)              | 1                       |
| KA35420                                      | G02:2                                 | dt <sub>1</sub> (min)                 | 18                      | C <sub>D</sub> (-)     |                         |
| 1000                                         |                                       | dt <sub>2</sub> (min)                 | 28                      | ξ (-)                  | -1.5                    |
|                                              |                                       | $T_T (m^2/s)$                         | 5.1 · 10 <sup>-10</sup> | 2 ( /                  |                         |
|                                              |                                       | S (-)                                 | 0.1 10                  |                        | +                       |
| Ê 100                                        |                                       | K <sub>s</sub> (m/s)                  |                         |                        | +                       |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \        |                                       | S <sub>s</sub> (1/m)                  |                         |                        | +                       |
| Recovery (m)                                 |                                       | Comments: The                         | reason to the           | pressure disturbat     | nce during              |
| l o                                          |                                       | recovery is not kno                   |                         |                        |                         |
| ۳ 10 <u> </u>                                |                                       | considered as relia                   |                         | •                      | ,                       |
|                                              |                                       |                                       |                         |                        |                         |
|                                              |                                       |                                       |                         |                        |                         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      |                                       |                                       |                         |                        |                         |
| 0.01 0.1 1                                   | 10 100                                |                                       |                         |                        |                         |
| Equivalent time                              | 5, ui <sub>e</sub> , (IIIII <i>I)</i> |                                       |                         |                        |                         |
| •                                            |                                       | •                                     |                         |                        |                         |

# 6.1.15 KA3546G01:2, test No 7:9

General test data for the pressure build-up test in the interval 6.75-8.30 m of borehole KA3546G01 are presented in Table 6-15.


Table 6-15. General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01

| General test data                           |                   |                                 |                   |  |  |  |
|---------------------------------------------|-------------------|---------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3546G           | KA3546G01:2                     |                   |  |  |  |
| Test No                                     | 7:9               |                                 |                   |  |  |  |
| Field crew                                  | A. Blom(S         | SWECO VIAK)                     |                   |  |  |  |
| Test equipment system                       | HMS               |                                 |                   |  |  |  |
| General comment                             | Single ho         | le test (dp <sub>p</sub> = max) |                   |  |  |  |
|                                             | Nomen-<br>clature | Unit                            | Value             |  |  |  |
| Test section- secup                         | Secup             | m                               | 6.75              |  |  |  |
| Test section- seclow                        | Seclow            | m                               | 8.30              |  |  |  |
| Test section length                         | L <sub>w</sub>    | m                               | 1.55              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub>  | mm                              | 76                |  |  |  |
| Test start (start of pressure registration) |                   | yymmdd hh:mm:ss                 | 20060927 11:00:00 |  |  |  |
| Packer expanded                             |                   | yymmdd hh:mm:ss                 | -                 |  |  |  |
| Start of flow period                        |                   | yymmdd hh:mm:ss                 | 20060927 12:00:00 |  |  |  |
| Stop of flow period                         |                   | yymmdd hh:mm:ss                 | 20060927 15:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                   | yymmdd hh:mm:ss                 | 20060927 17:00:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>    | min                             | 180               |  |  |  |
| Total recovery time                         | t <sub>F</sub>    | min                             | 120               |  |  |  |

#### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value | Comment |
|--------------------------------------------------------------|----------------|------|-------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 658.5 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 77.7  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 685.7 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 580.8 |         |

| Flow data                                               | Nomenclature   | Unit              | Value                   |
|---------------------------------------------------------|----------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp             | m <sup>3</sup> /s | 3.04 · 10 <sup>-8</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm             | m <sup>3</sup> /s | _                       |
| Total volume discharged during flow period              | V <sub>p</sub> | $m^3$             | _                       |



**Figure 6-15.** Flow rate during draw down in KA3546G01:2. The flow in this section is very low. No flowmeter readings are available.

A very low flowrate is established from this borehole.

## Interpreted flow regimes

0-3 minutes Well Bore Storage (WBS)

3 – minutes Transition period

No radial flow regime period is established.

### Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

### Selected representative parameters

The selected representative parameters from the test in the interval 6.75-8.30 m in KA3546G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                         | Test Sun                          | nmary Sheet                            |                          |                        |                      |
|-----------------------------------------|-----------------------------------|----------------------------------------|--------------------------|------------------------|----------------------|
| Project:                                | PROTOTYPE                         | Test type:                             | PBT                      |                        |                      |
| Area:                                   | ÄSPÖ                              | Test no:                               | 7:9                      |                        |                      |
| Borehole ID:                            | KA3546G01                         | Test start:                            | 2005-11-30 07:00         |                        |                      |
| Test section (m):                       | 6.75-8.30                         | Responsible for test performance:      | SWECO VIAK AB<br>A. Blom |                        |                      |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                             | Responsible for test evaluation:       | SWECO VIA                |                        |                      |
| Linear plot Head                        | 1                                 | Flow period                            | l                        | Recovery period        |                      |
| 0 —                                     |                                   | Indata                                 |                          | Indata                 |                      |
|                                         |                                   | p <sub>0</sub> (kPa)                   | 658.5                    |                        |                      |
| -100                                    |                                   | p <sub>i</sub> (kPa )                  |                          |                        |                      |
|                                         |                                   | p <sub>p</sub> (kPa)                   | 77.7                     | p <sub>F</sub> (kPa )  | 685.7                |
| (F) -200                                |                                   | $Q_p (m^3/s)$                          | 3.04 · 10 <sup>-8</sup>  | , ,                    |                      |
| -200 (maxl) -200                        |                                   | tp (min)                               | 180                      | t <sub>F</sub> (min)   | 120                  |
| -300                                    |                                   | S*                                     |                          | S*                     | 1 · 10 <sup>-6</sup> |
| +                                       |                                   | EC <sub>w</sub> (mS/m)                 |                          |                        |                      |
| -400                                    |                                   | Te <sub>w</sub> (gr C)                 |                          |                        | +                    |
|                                         | 7                                 | Derivative fact.                       |                          | Derivative fact.       | 0.2                  |
|                                         |                                   | Derivative fact.                       |                          | Derivative fact.       | 0.2                  |
| -500                                    | <del></del>                       |                                        |                          |                        |                      |
| 2006-09-27 2006-0                       | 9-28 2006-09-29                   |                                        |                          |                        |                      |
| Lin-Log plot                            |                                   | Results                                |                          | Results                |                      |
| Em-Log plot                             |                                   | Q/s (m <sup>2</sup> /s)                | 5.2 · 10 <sup>-10</sup>  | Flow regime:           | 1_                   |
| 0                                       |                                   | $T_{\text{Moye}}(\text{m}^2/\text{s})$ | 3.3 · 10 <sup>-10</sup>  | dt <sub>e1</sub> (min) | -<br> -              |
|                                         |                                   |                                        | 3.3 · 10                 | <u> </u>               |                      |
| ]     `                                 |                                   | Flow regime:                           |                          | dt <sub>e2</sub> (min) | -                    |
| 20                                      |                                   | dt <sub>1</sub> (min)                  |                          | T (m <sup>2</sup> /s)  | -                    |
| [E] ]                                   |                                   | dt <sub>2</sub> (min)                  |                          | S (-)                  |                      |
| ∑ -                                     |                                   | T (m <sup>2</sup> /s)                  |                          | K <sub>s</sub> (m/s)   |                      |
| Recovery (m)                            |                                   | S (-)                                  |                          | S <sub>s</sub> (1/m)   |                      |
| Ğ                                       |                                   | K <sub>s</sub> (m/s)                   |                          | C (m <sup>3</sup> /Pa) |                      |
| 60                                      |                                   | S <sub>s</sub> (1/m)                   |                          | C <sub>D</sub> (-)     |                      |
|                                         |                                   | C (m <sup>3</sup> /Pa)                 |                          | ξ (-)                  |                      |
|                                         |                                   | C <sub>D</sub> (-)                     |                          |                        |                      |
| 0.01 0.1 1                              | 10 100                            | ξ (-)                                  |                          |                        | 1                    |
| Equivalent time, o                      | tt (min)                          |                                        |                          |                        |                      |
|                                         |                                   |                                        |                          |                        |                      |
| Log-Log plot incl. derivative- r        | ecovery period                    | Interpreted forma                      | tion and wel             |                        |                      |
|                                         |                                   | Flow regime:                           |                          | C (m <sup>3</sup> /Pa) |                      |
| KA3546G                                 | 01:2                              | dt <sub>1</sub> (min)                  |                          | C <sub>D</sub> (-)     |                      |
| 100                                     |                                   | dt <sub>2</sub> (min)                  |                          | ξ (-)                  |                      |
|                                         |                                   | $T_T (m^2/s)$                          |                          |                        |                      |
|                                         |                                   | S (-)                                  |                          |                        |                      |
| Ê 10 €                                  |                                   | K <sub>s</sub> (m/s)                   |                          |                        |                      |
| <u>`</u>                                | 7 P                               | S <sub>s</sub> (1/m)                   |                          |                        |                      |
| Recovery (m)                            |                                   | Comments: No raperiod.                 | adial flow regi          | ime occurred durin     | g the test           |
| 0.1                                     |                                   |                                        |                          |                        |                      |
| 0.01 0.1 1<br>Equivalent time,          | 10 100<br>dt <sub>e</sub> , (min) |                                        |                          |                        |                      |

# 6.1.16 KA3539G:2, test No 7:13a

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-16.

Table 6-16. General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G  $\,$ 

| General test data                           |                  |                                     |                   |  |  |  |
|---------------------------------------------|------------------|-------------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3539G          | KA3539G:2                           |                   |  |  |  |
| Test No                                     | 7:13a            |                                     |                   |  |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                          |                   |  |  |  |
| Test equipment system                       | HMS              |                                     |                   |  |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = approx. 1 | 00 m)             |  |  |  |
|                                             | Nomencl ature    | Unit                                | Value             |  |  |  |
| Test section- secup                         | Secup            | m                                   | 15.85             |  |  |  |
| Test section- seclow                        | Seclow           | m                                   | 17.60             |  |  |  |
| Test section length                         | L <sub>w</sub>   | m                                   | 1.75              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                                  | 76                |  |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                     | 20060925 16:00:00 |  |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                     | -                 |  |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                     | 20060925 17:00:00 |  |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                     | 20051128 18:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                     | 20051128 19:00:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>   | min                                 | 60                |  |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                                 | 60                |  |  |  |

#### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 1456.1 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 643.5  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 1209.1 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 812.6  |         |

| Flow data                                               | Nomenclature | Unit              | Value                   |
|---------------------------------------------------------|--------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp           | m <sup>3</sup> /s | 1.51 · 10 <sup>-5</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm           | m <sup>3</sup> /s | 1.68 · 10 <sup>-5</sup> |
| Total volume discharged during flow period              | Vp           | m <sup>3</sup>    | 0.0603                  |

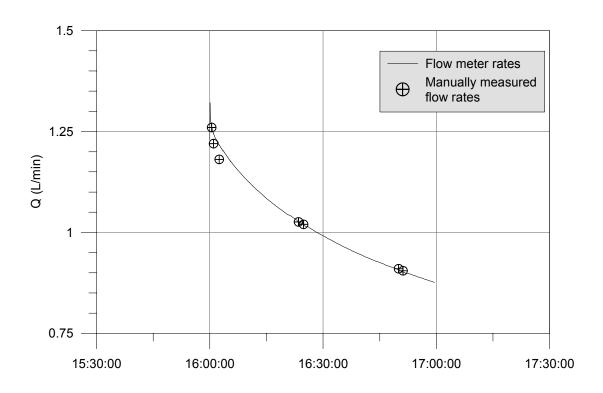



Figure 6-16. Flow rate during draw down in KA3539G:2.

The test is successful in regard to pressure response. A linear channel flow period occurs during this test.

#### Interpreted flow regimes

| 0 - 0.05    | minutes | Well Bore Storage (WBS)             |
|-------------|---------|-------------------------------------|
| 0.05 - 0.25 | minutes | Transition period                   |
| 0.25 - 0.5  | minutes | Radial flow period                  |
| 0.5 - 10    | minutes | Transition period                   |
| 10 –        | minutes | Possible linear channel flow period |

#### Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

### Selected representative parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Sur                              | nmary Sheet                           |                         |                        |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------|------------------------|---------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROTOTYPE                             | Test type:                            | PBT                     |                        |                                       |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÄSPÖ                                  | Test no:                              | 7:13a                   |                        |                                       |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KA3539G                               | Test start:                           | 2006-09-25              | 15:00                  |                                       |
| Test section (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.85-17.60                           | Responsible for test performance:     | SWECO VIA               | AK AB                  |                                       |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076                                 | Responsible for test evaluation:      | SWECO VI                |                        |                                       |
| Linear plot Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Flow period                           |                         | Recovery period        |                                       |
| 0 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Indata                                |                         | Indata                 |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | p <sub>0</sub> (kPa)                  | 1456.1                  |                        |                                       |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | p <sub>i</sub> (kPa )                 |                         |                        |                                       |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | p <sub>p</sub> (kPa)                  | 643.5                   | p <sub>F</sub> (kPa )  | 1209.1                                |
| (F) -200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | $Q_p (m^3/s)$                         | 1.51 · 10 <sup>-5</sup> | ,                      |                                       |
| -200 (mag (mag -300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300300 |                                       | tp (min)                              | 60                      | t <sub>F</sub> (min)   | 60                                    |
| -300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | S*                                    |                         | S*                     | 1 · 10 <sup>-6</sup>                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | EC <sub>w</sub> (mS/m)                |                         |                        | 1                                     |
| -400 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Te <sub>w</sub> (gr C)                |                         |                        | 1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | Derivative fact.                      |                         | Derivative fact.       | 0.2                                   |
| -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                       |                         |                        |                                       |
| 2006-09-25 2006-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-26 2006-09-27                       |                                       |                         |                        |                                       |
| 2000 00 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000 00 21                            |                                       |                         |                        |                                       |
| Lin-Log plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Results                               |                         | Results                |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | Q/s (m <sup>2</sup> /s)               | 1.9 · 10 <sup>-7</sup>  | Flow regime:           | Radial                                |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | T <sub>Moye</sub> (m <sup>2</sup> /s) | 1.2 · 10 <sup>-7</sup>  | dt <sub>e1</sub> (min) | 0.25                                  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | Flow regime:                          |                         | dt <sub>e2</sub> (min) | 0.5                                   |
| - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | dt <sub>1</sub> (min)                 |                         | T (m <sup>2</sup> /s)  | 4.7 · 10 <sup>-7</sup>                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | dt <sub>2</sub> (min)                 |                         | S (-)                  |                                       |
| u) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | T (m <sup>2</sup> /s)                 |                         | K <sub>s</sub> (m/s)   |                                       |
| Ne.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | S (-)                                 |                         | S <sub>s</sub> (1/m)   |                                       |
| Recovery (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>\</b>                              | K <sub>s</sub> (m/s)                  |                         | C (m <sup>3</sup> /Pa) |                                       |
| <u>لا</u> 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | S <sub>s</sub> (1/m)                  |                         | C <sub>D</sub> (-)     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \                                     | C (m <sup>3</sup> /Pa)                |                         | ξ (-)                  | -2.3                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | C <sub>D</sub> (-)                    |                         | 3()                    |                                       |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • • • • • • • • • • • • • • • • • • • | ξ (-)                                 |                         |                        |                                       |
| 0.01 _0.1 _ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 100                                | 5()                                   |                         |                        |                                       |
| Equivalent time, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>e</sub> , (min)                |                                       |                         |                        |                                       |
| Log-Log plot incl. derivative- re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ecovery period                        | Interpreted forma                     | tion and we             | I parameters.          |                                       |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - <b>y</b> p                          | Flow regime:                          | Radial                  | C (m <sup>3</sup> /Pa) |                                       |
| KA35390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G:2                                   | dt <sub>1</sub> (min)                 | 0.25                    | C <sub>D</sub> (-)     |                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | dt <sub>2</sub> (min)                 | 0.5                     | ξ(-)                   | -2.3                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | $T_T$ (m <sup>2</sup> /s)             | 4.7 · 10 <sup>-7</sup>  | 2 ( /                  | -                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | S (-)                                 |                         |                        |                                       |
| £ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | K <sub>s</sub> (m/s)                  |                         |                        |                                       |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | S <sub>s</sub> (1/m)                  |                         |                        |                                       |
| Recovery (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Comments: A ch                        | annel flow reg          | gime is established    | during this                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | test.                                 | ·                       | -                      | -                                     |
| r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                       |                         |                        |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                       |                         |                        |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                       |                         |                        |                                       |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                       |                         |                        |                                       |
| 0.01 0.1 1<br>Equivalent time,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 100<br>dt (min)                    |                                       |                         |                        |                                       |
| Equivalent time,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | αι <sub>e</sub> , (ΠΠΠ <i>)</i>       |                                       |                         |                        |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | ·                                     | ·                       |                        | · · · · · · · · · · · · · · · · · · · |

# 6.1.17 KA3539G:2, test No 7:13b

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-17.

Table 6-17. General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G  $\,$ 

| General test data                           |                  |                                |                   |  |  |  |
|---------------------------------------------|------------------|--------------------------------|-------------------|--|--|--|
| Borehole section                            | KA3539G          | KA3539G:2                      |                   |  |  |  |
| Test No                                     | 7:13b            |                                |                   |  |  |  |
| Field crew                                  | A. Blom(S        | WECO VIAK)                     |                   |  |  |  |
| Test equipment system                       | HMS              |                                |                   |  |  |  |
| General comment                             | Single hol       | e test (dp <sub>p</sub> = max) |                   |  |  |  |
|                                             | Nomencl ature    | Unit                           | Value             |  |  |  |
| Test section- secup                         | Secup            | m                              | 15.85             |  |  |  |
| Test section- seclow                        | Seclow           | m                              | 17.60             |  |  |  |
| Test section length                         | L <sub>w</sub>   | m                              | 1.75              |  |  |  |
| Test section diameter                       | 2·r <sub>w</sub> | mm                             | 76                |  |  |  |
| Test start (start of pressure registration) |                  | yymmdd hh:mm:ss                | 20060926 12:00:00 |  |  |  |
| Packer expanded                             |                  | yymmdd hh:mm:ss                | -                 |  |  |  |
| Start of flow period                        |                  | yymmdd hh:mm:ss                | 20060926 13:00:00 |  |  |  |
| Stop of flow period                         |                  | yymmdd hh:mm:ss                | 20060926 14:00:00 |  |  |  |
| Test stop (stop of pressure registration)   |                  | yymmdd hh:mm:ss                | 20060926 15:00:00 |  |  |  |
| Total flow time                             | t <sub>p</sub>   | min                            | 60                |  |  |  |
| Total recovery time                         | t <sub>F</sub>   | min                            | 60                |  |  |  |

#### Pressure data

| Pressure data                                                | Nomenclature   | Unit | Value  | Comment |
|--------------------------------------------------------------|----------------|------|--------|---------|
| Absolute pressure in borehole before start of flow period    | p <sub>0</sub> | kPa  | 1463.7 |         |
| Absolute pressure in test section before stop of flow        | p <sub>p</sub> | kPa  | 371.2  |         |
| Absolute pressure in test section at stop of recovery period | p <sub>f</sub> | kPa  | 1118.4 |         |
| Maximal pressure change during flow period                   | dpp            | kPa  | 1092.5 |         |

| Flow data                                               | Nomenclature | Unit              | Value                   |
|---------------------------------------------------------|--------------|-------------------|-------------------------|
| Flow rate from test section just before stop of flowing | Qp           | m <sup>3</sup> /s | 1.90 · 10 <sup>-5</sup> |
| Mean (arithmetic) flow rate during flow period          | Qm           | m <sup>3</sup> /s | 2.42 · 10 <sup>-5</sup> |
| Total volume discharged during flow period              | Vp           | m <sup>3</sup>    | 0.0873                  |

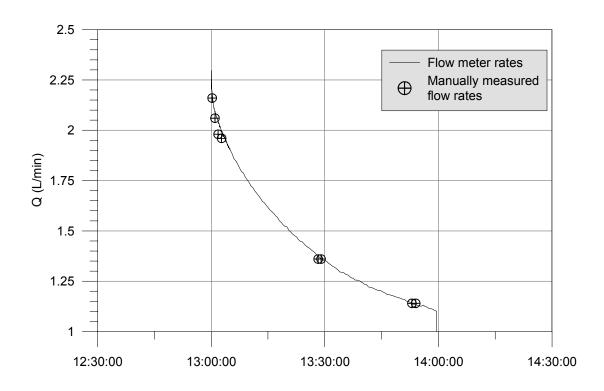
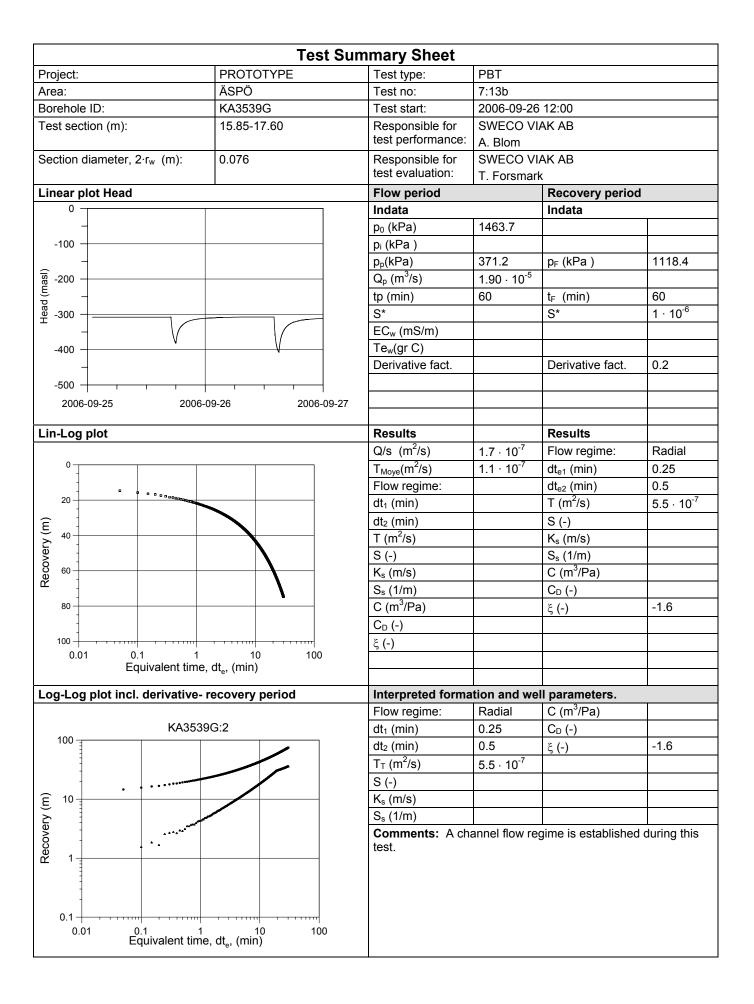



Figure 6-17. Flow rate during draw down in KA3539G:2.

The test is successful in regard to pressure response. A linear channel flow period during this test.

### Interpreted flow regimes


| 0 - 0.05    | minutes | Well Bore Storage (WBS)             |
|-------------|---------|-------------------------------------|
| 0.05 - 0.25 | minutes | Transition period                   |
| 0.25 - 0.5  | minutes | Radial flow period                  |
| 0.25 - 10   | minutes | Transition period                   |
| 10 –        | minutes | Possible linear channel flow period |

## Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

## Selected representative parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.



# 6.2 Deformation measurements

Deformation measurements started 2003-05-06. Evaluation of the deformations will be made in a separate report.

# 7 Conclusion

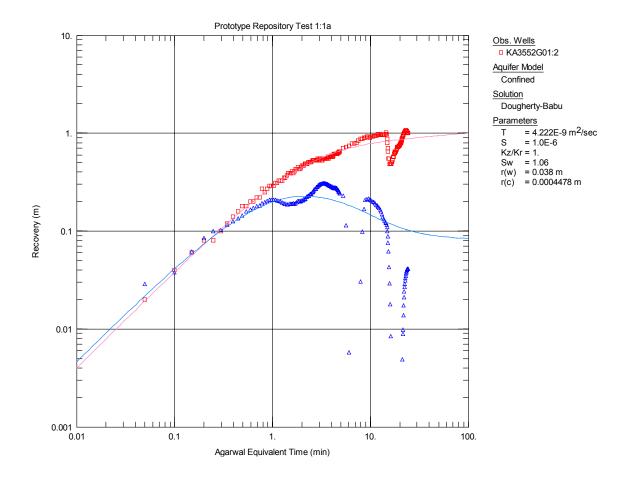
In order to use the measured variable rates in a more qualitative manner an alternative evaluation method, (*Dougherty, Babu, 1984*), have been used in using the software AQTESOLV and detailed in the appendices. All data from the earlier test campaigns 1–6 have been re-evaluated and are considered as the results that should prevail from now on.

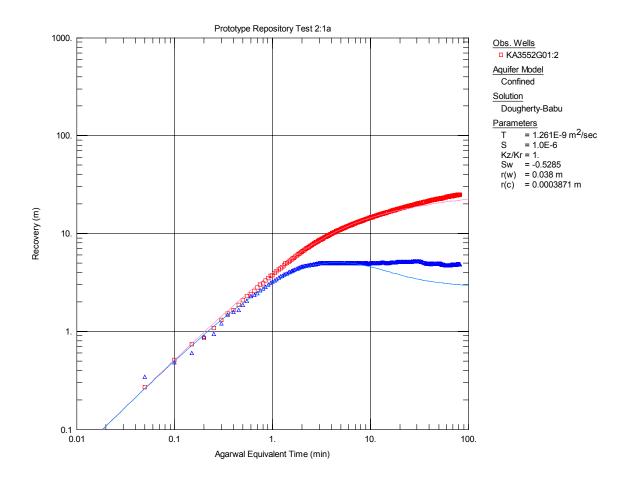
AQTESOLV is the all-in-one software package for the design and analysis of aquifer tests including pumping tests, step-drawdown tests, variable-rate tests, recovery tests, single-well tests, slug tests and constant-head tests. The software is developed by HydroSOLVE, Inc., USA.

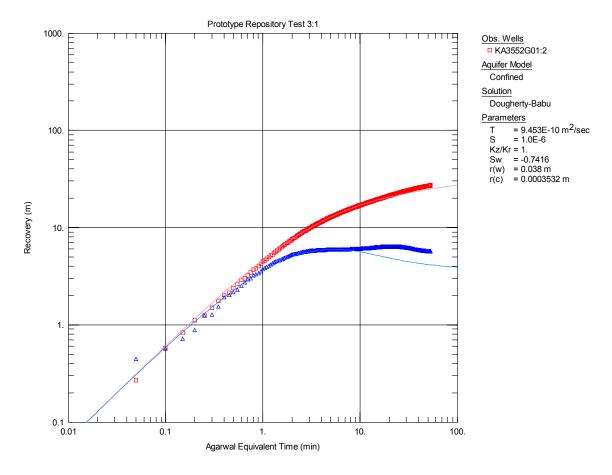
# References

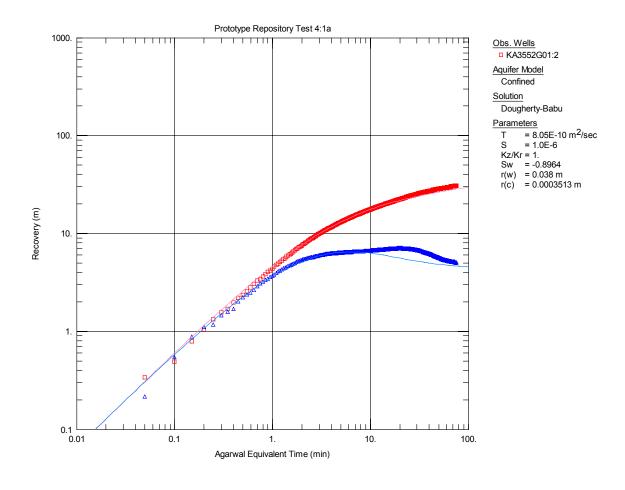
- **Alm P, Forsmark T, Rhen I, 2005.** Äspö HRL Prototype repository Installations for measurements of flow into tunnels, water pressure in rock and hydro mechanical responses in boreholes during operation phase. SKB IPR-05-04.
- **Blomquist T, Gustafson G, Maripuu P, 1985.** Groundwater in rock. Geohydrological investigation methods for installations in rock. Document D17:1985, Swedish Council for Building Research.
- **Dougherty, D.E and Babu, D.K, 1984.** Flow to a patially penetrating well in a double-porosity reservoir, Water Resources Research, Vol 20, No. 8, pp 1116–1122.
- **Forsmark T, Forsman I, Rhén I, 2004.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 1 Interference tests. SKB IPR-04-16.
- **Forsmark T, Rhén I, 2004a.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 1 Single hole tests. SKB IPR-04-17.
- **Forsmark T, Rhén I, 2004b.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 2 Single hole tests. SKB IPR-04-18.
- **Forsmark T, Rhén I, 2004c.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 3 Single hole tests. SKB IPR-04-19.
- **Forsmark T, Rhén I, 2005a.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 4 Single hole tests. SKB IPR-05-02.
- **Forsmark T, Rhén I, 2005b.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 5 Interference tests. SKB IPR-05-18.
- **Forsmark T, Rhén I, 2005c.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 5 Single hole tests. SKB IPR-05-17.
- **Forsmark T, 2006.** Äspö HRL Prototype repository Hydraulic tests and displacement measurements during operation phase. Test campaign 6 Single hole tests. SKB IPR-06-01.
- **Horne R N, 1995.** Modern Well Test Analysis. A computer-Aided Approach. 2<sup>nd</sup> Edition. Petroway Inc, Palo Alto.
- **Spane F A, Wurstner S K, 1993.** DERIV: A computer program for calculating pressure derivatives for use in hydraulic tests. Groundwater Vol 31, No. 5, pp 814 822.

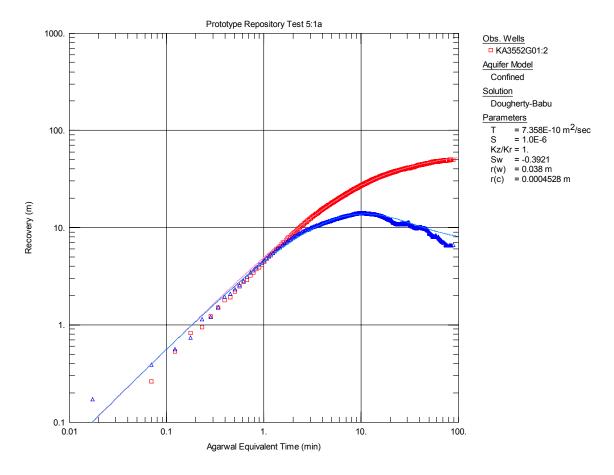
# **Appendices**

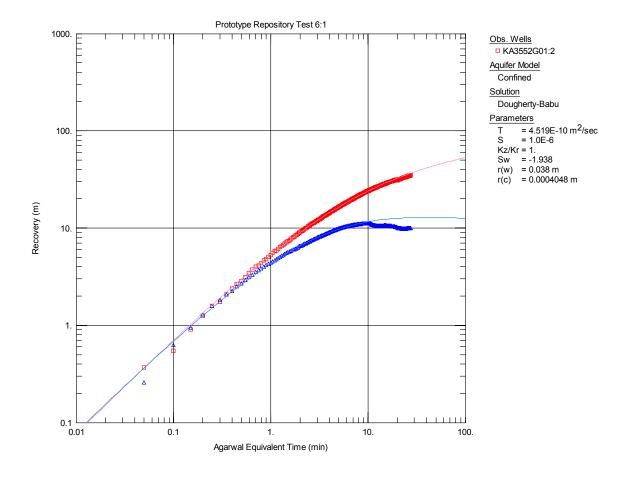

In the appendices all hydraulic tests made during the test campaigns 1-7 are reevaluated using the software AQTESOLV developed by HydroSOLVE, Inc., USA.

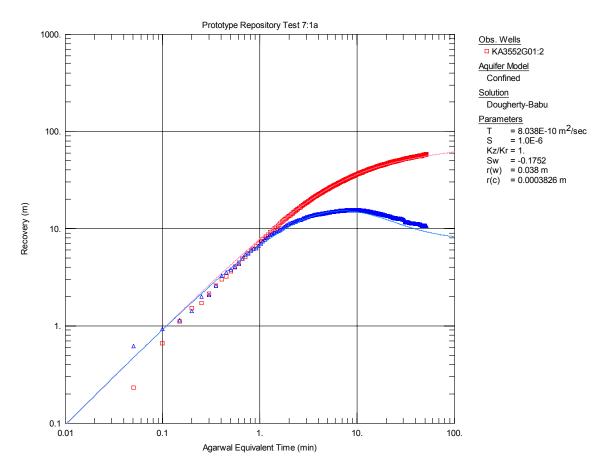

All base data are presented earlier in this report (TC 7) and in the earlier evaluation reports (TC 1 - TC 6), (see reference list).


| Appendix 1 – Tests in KA3552G01:2   | 93  |
|-------------------------------------|-----|
| Appendix 2 – Tests in KA3554G01:2   | 97  |
| Appendix 3 – Tests in KA3554G02:4   | 105 |
| Appendix 4 – Tests in KA3548A01:3   | 111 |
| Appendix 5 – Tests in KA3542G01:3   | 119 |
| Appendix 6 – Tests in KA3544G01:2   | 127 |
| Appendix 7 – Tests in KA3542G02:2   | 129 |
| Appendix 8 – Tests in KA3563G:4     | 135 |
| Appendix 9 – Tests in KA3546G01:2   | 137 |
| Appendix 10 – Tests in KA3566G01:2  | 141 |
| Appendix 11 – Tests in KA3572G01:2  | 143 |
| Appendix 12 – Tests in KA3574G01:3  | 145 |
| Appendix 13 – Tests in KA3539G:2    | 147 |
| Appendix 14 – Tests in KA3542G02:5  | 153 |
| Appendix 15 – Tests in KA3590G02:1  | 155 |
| Appendix 16 – Tests in KG0021A01:3  | 157 |
| Appendix 17 – Tests in KG0048A01:3  | 159 |
| Appendix 18 – Tests in KA3573A:4    | 161 |
| Appendix 19 – Comparison of results | 163 |

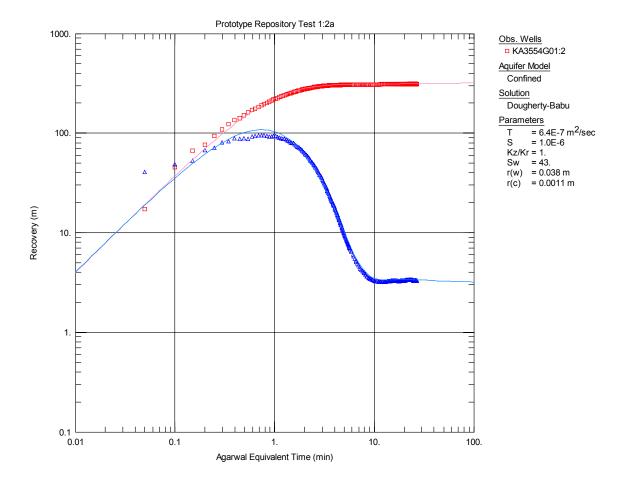

The solution used in these analysis is the Dougherty-Babu model for a pumping test in a confined aquifer (Dougherty, Babu, 1984). The model assumes radial flow in a porous medium. Aqtesolv uses the principle of superposition in time to simulate variable-rate tests including recovery with the solution.

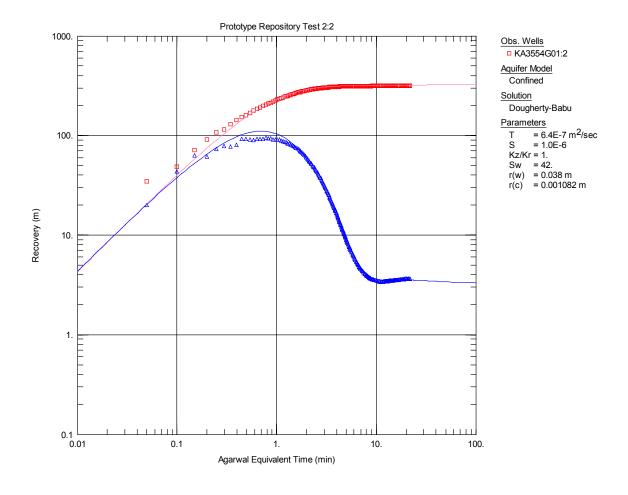

# Appendix 1 - KA3552G01:2



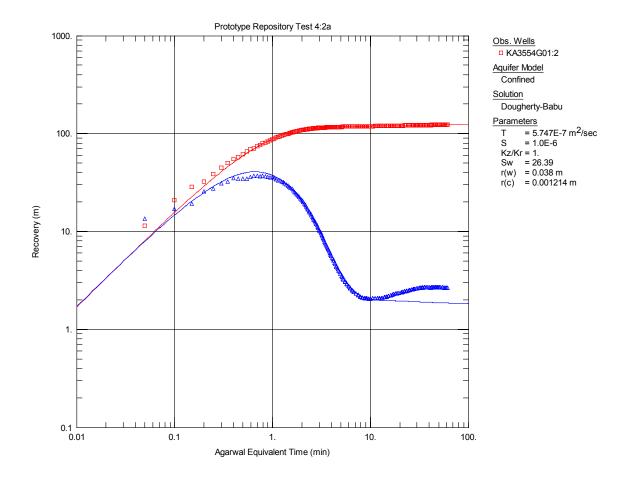



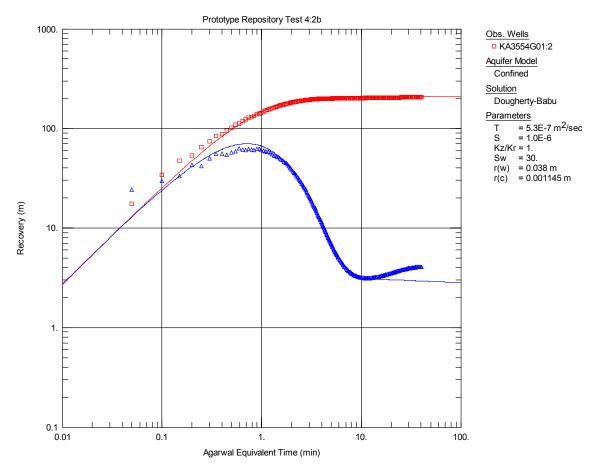


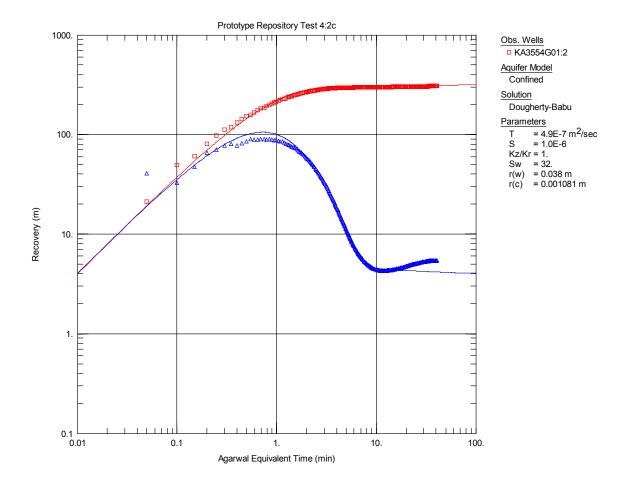



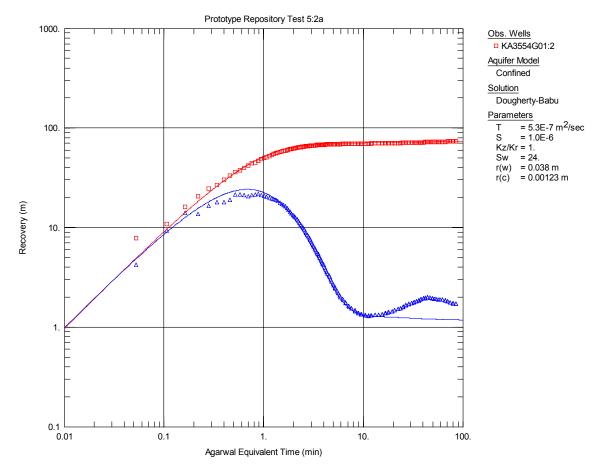



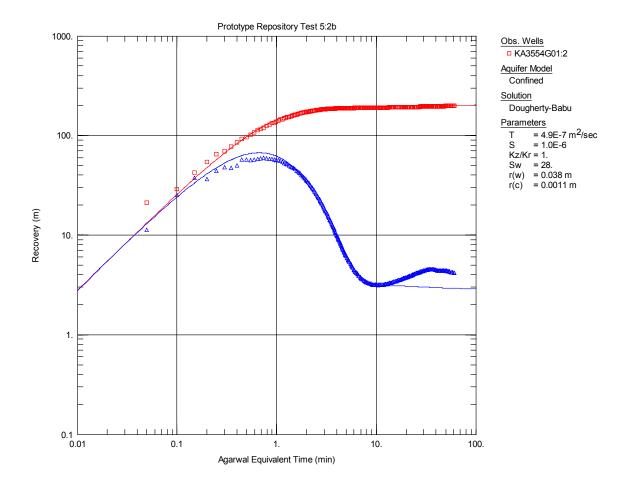


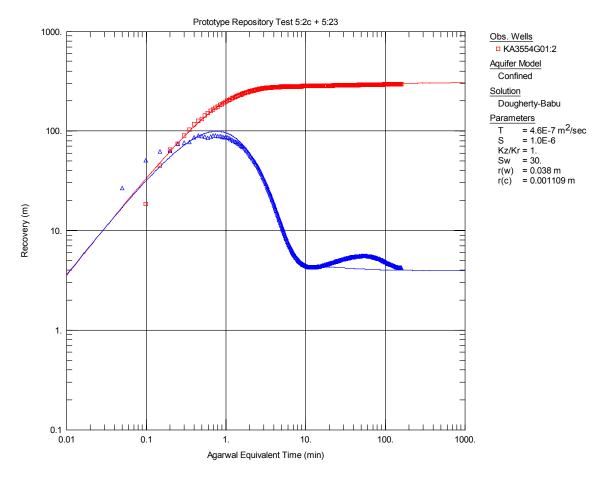



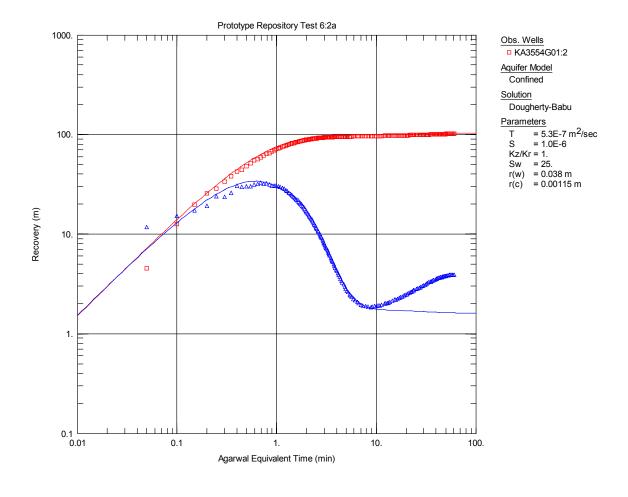


# Appendix 2 - KA3554G01:2

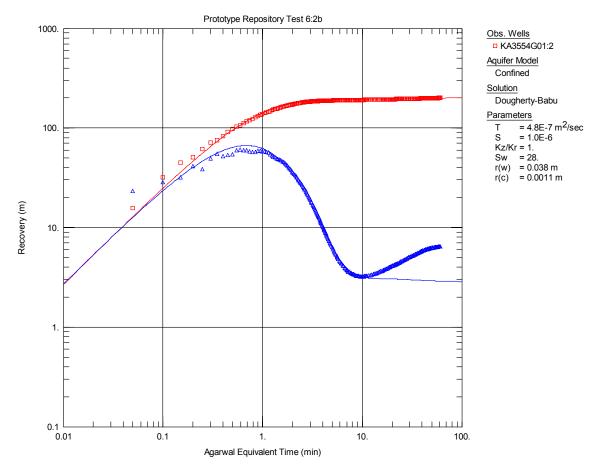


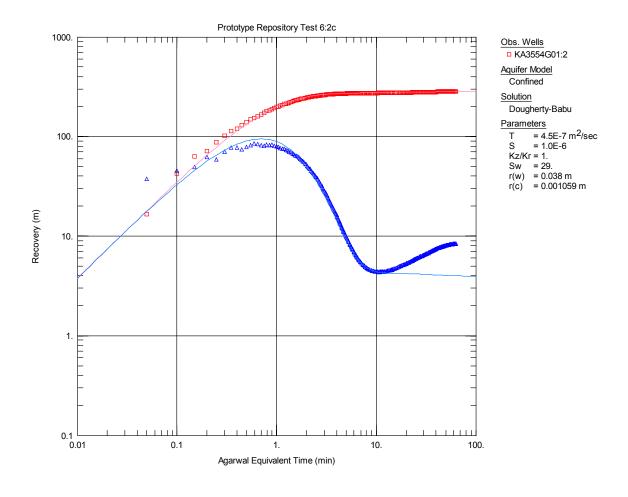



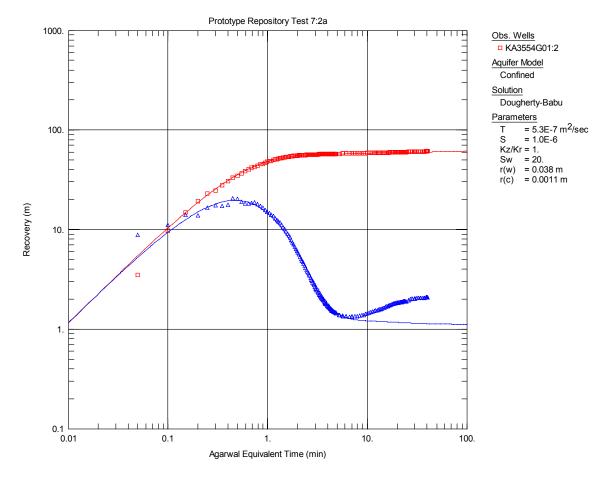



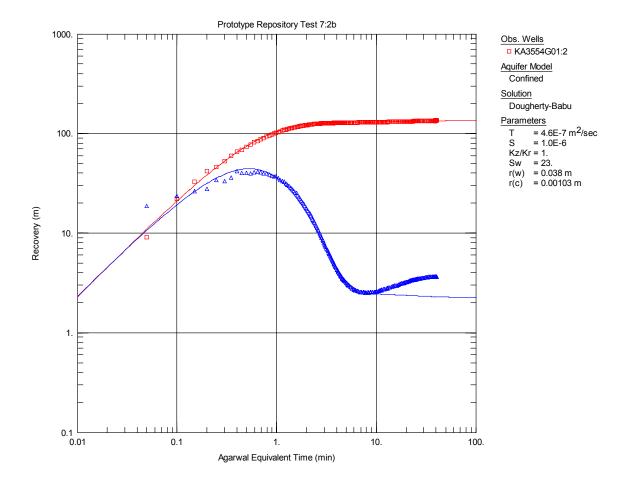



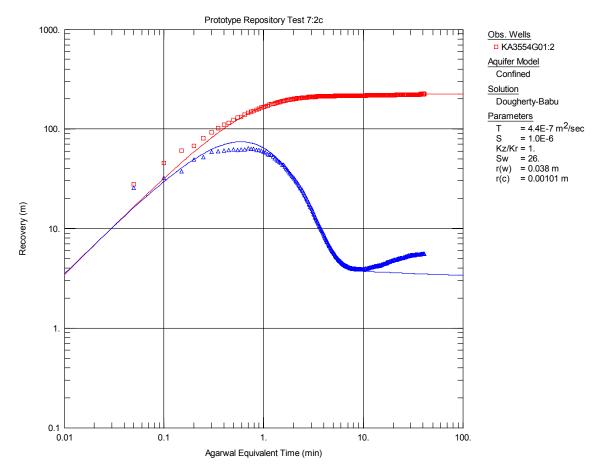



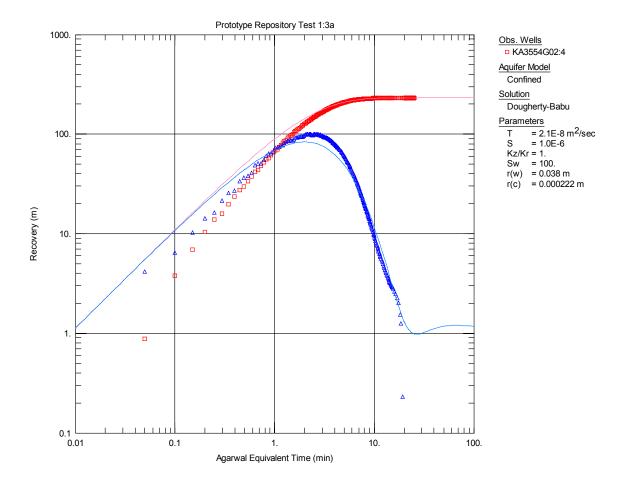



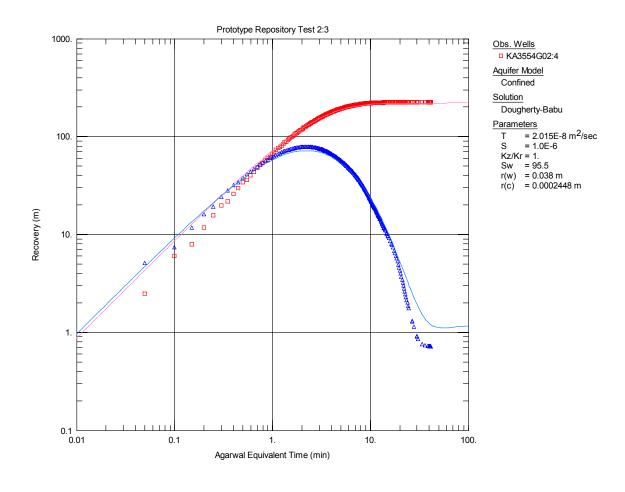



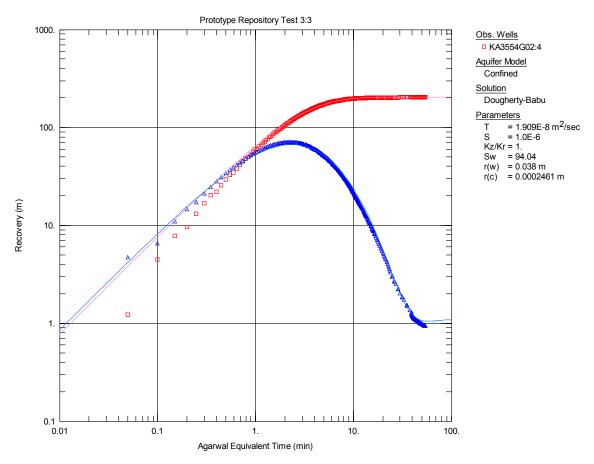



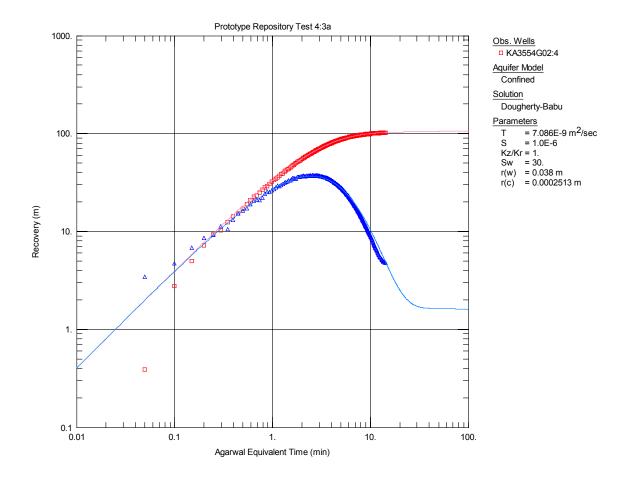



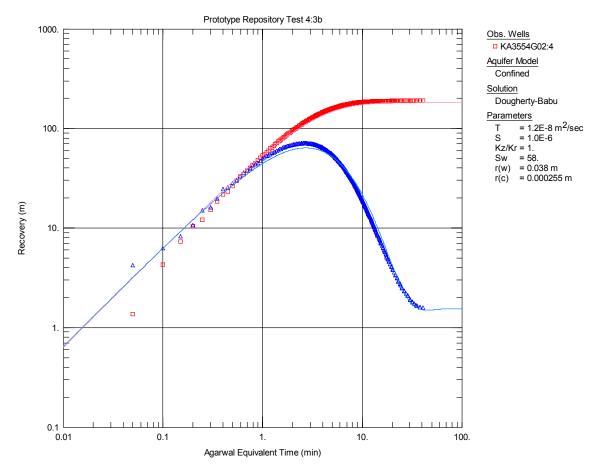


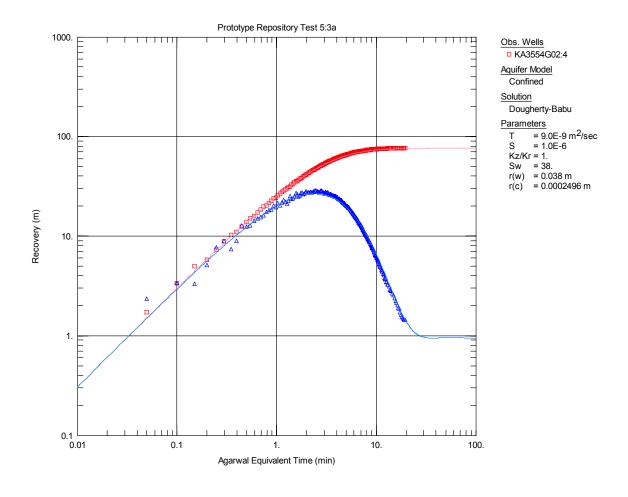



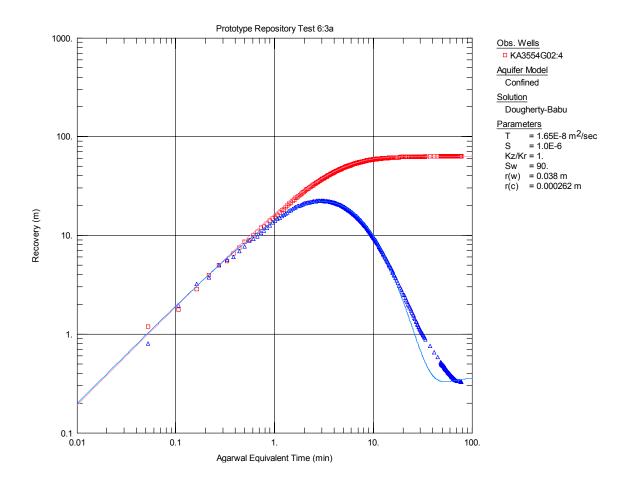



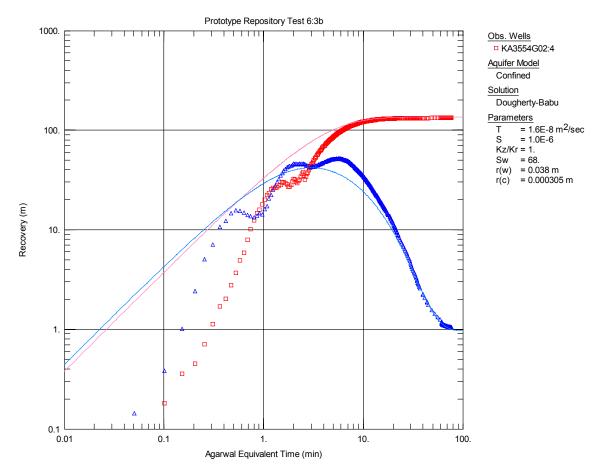



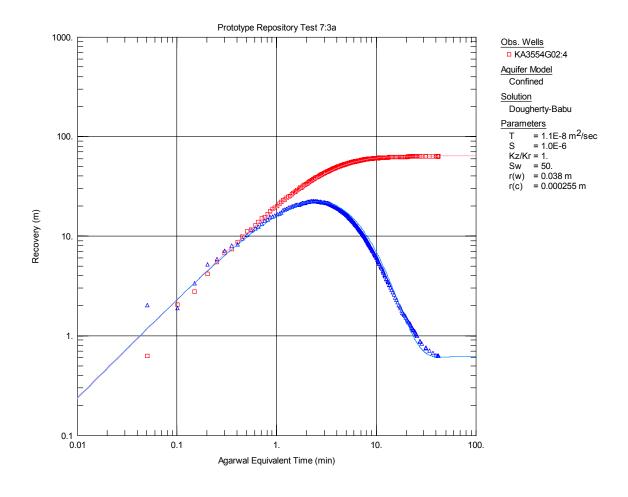


# Appendix 3 - KA3554G02:4

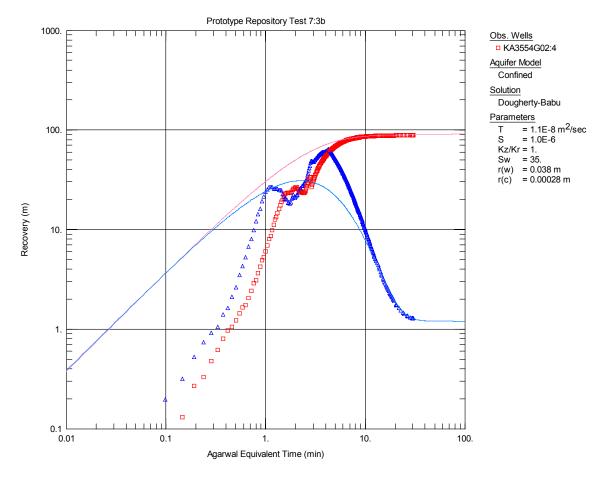




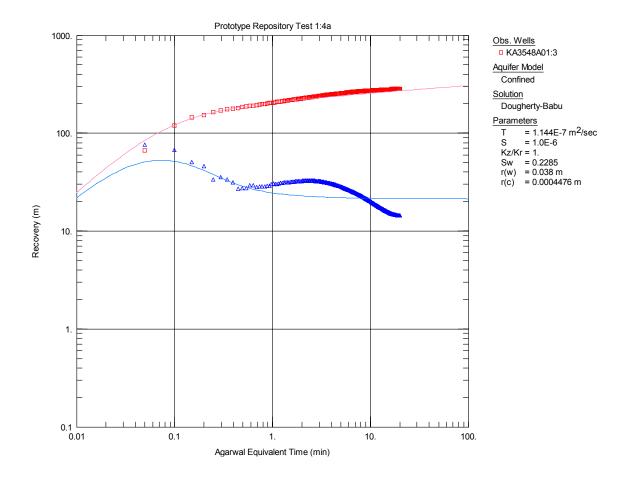



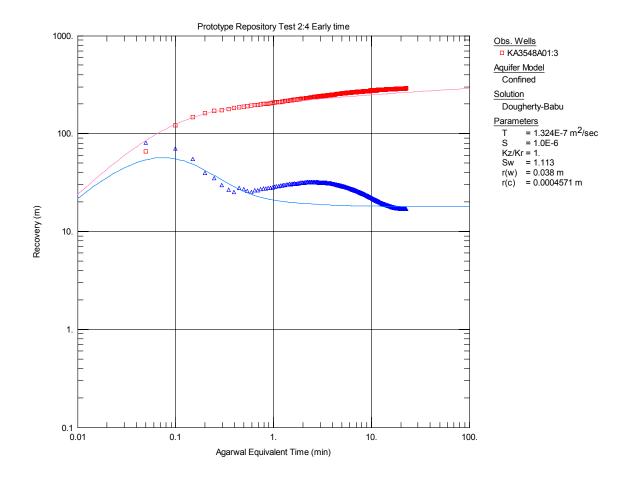



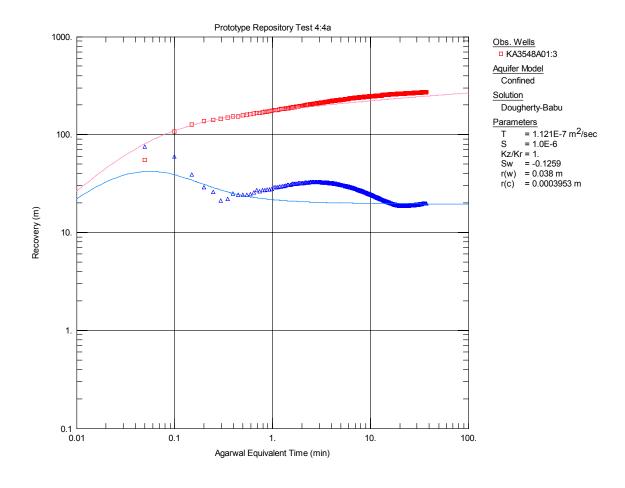


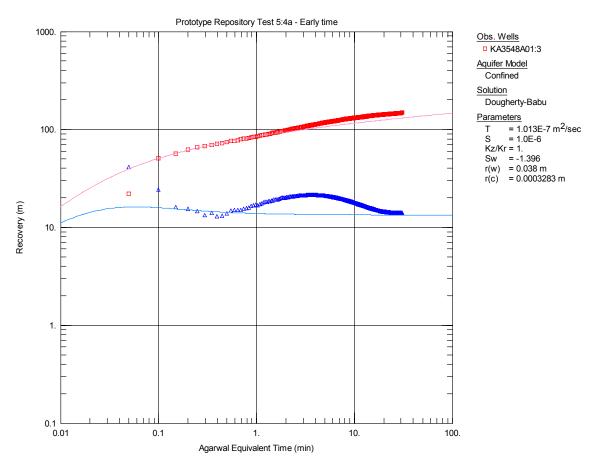



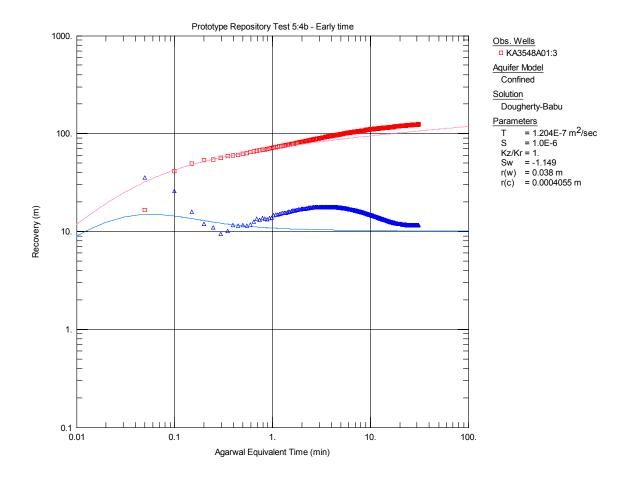



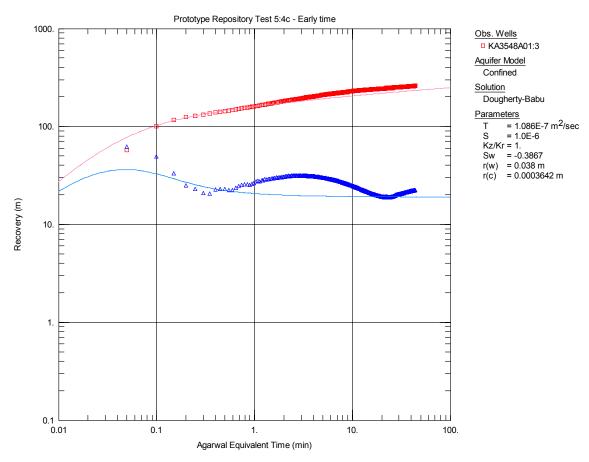


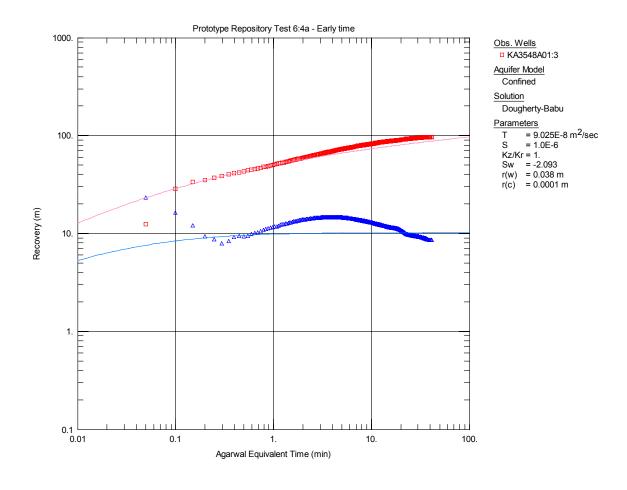


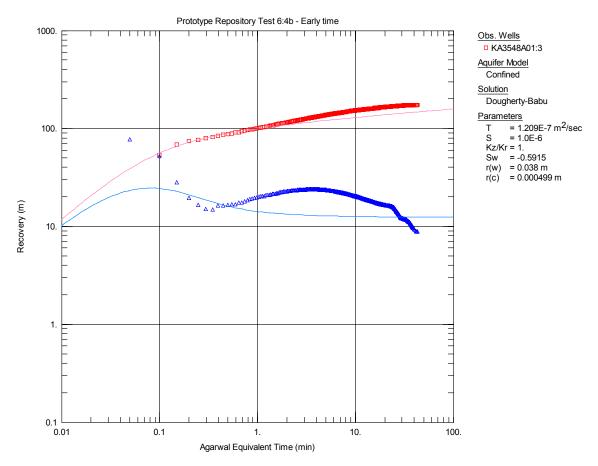


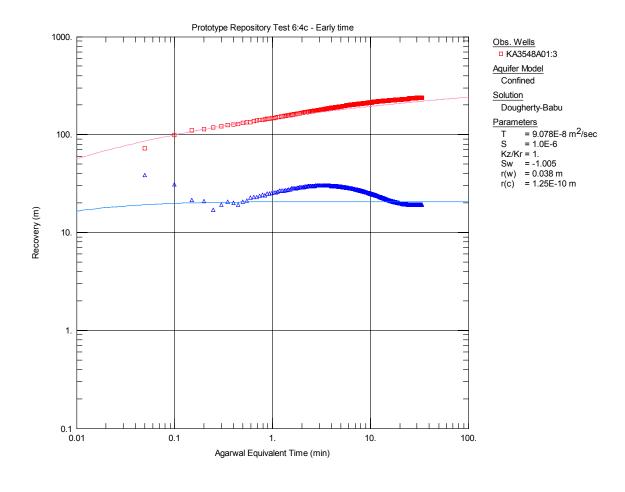


# Appendix 4 - KA3548A01:3

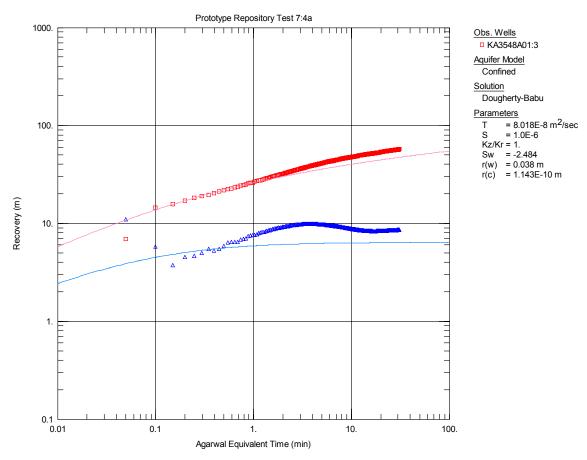


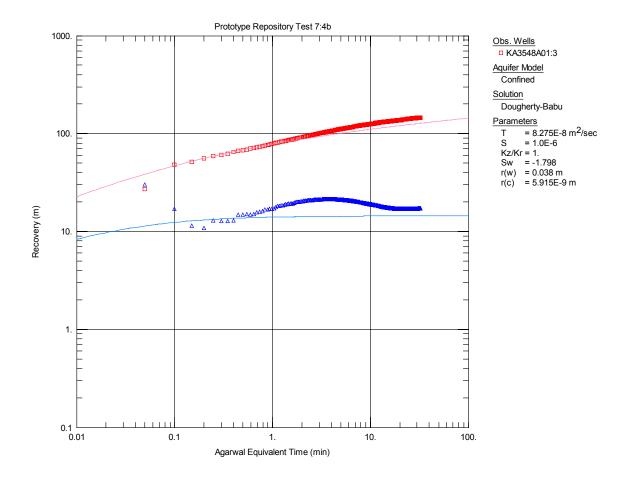



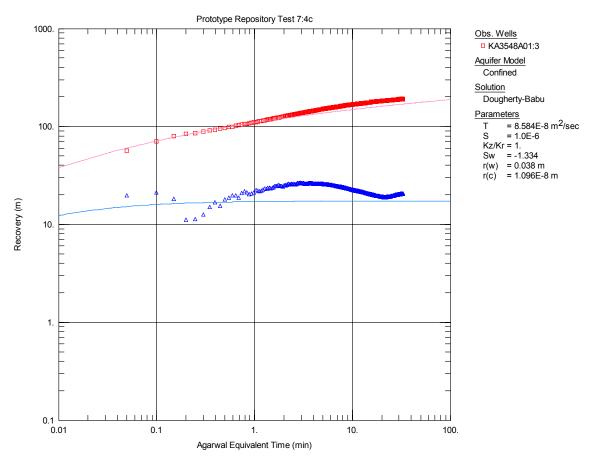



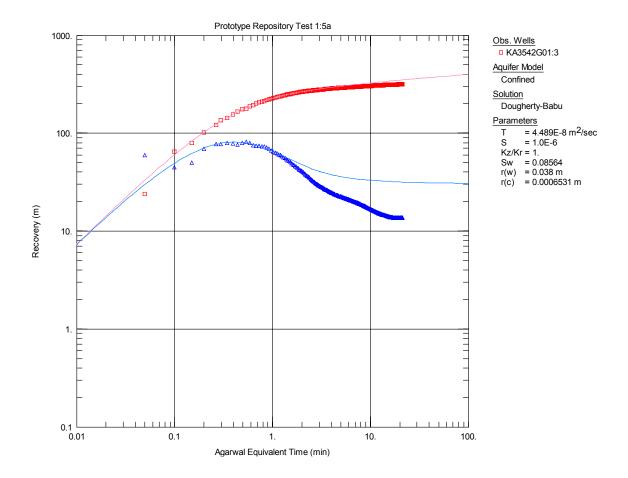



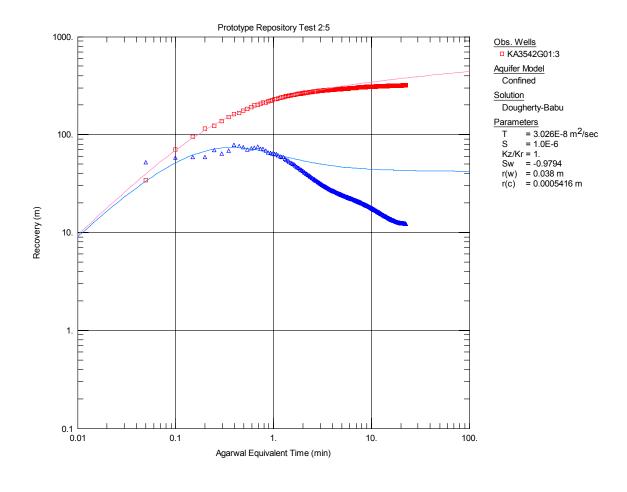



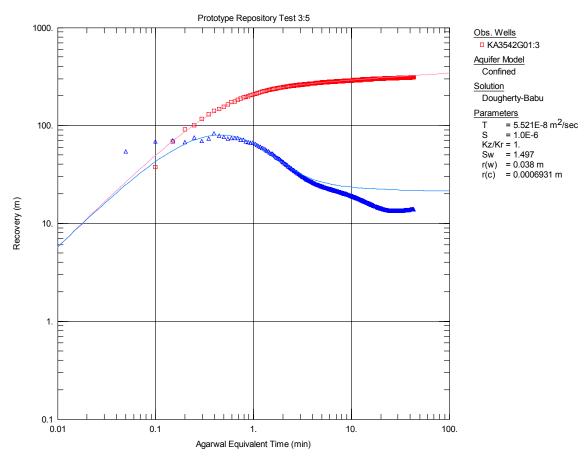



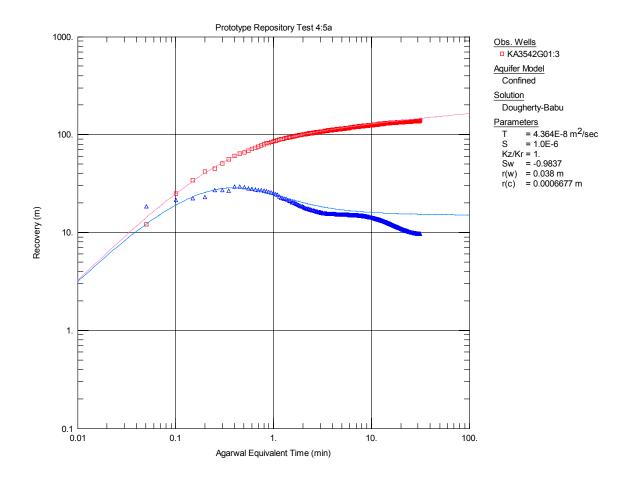



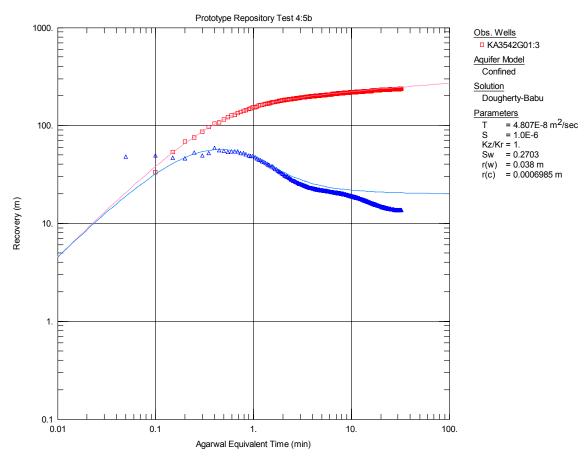


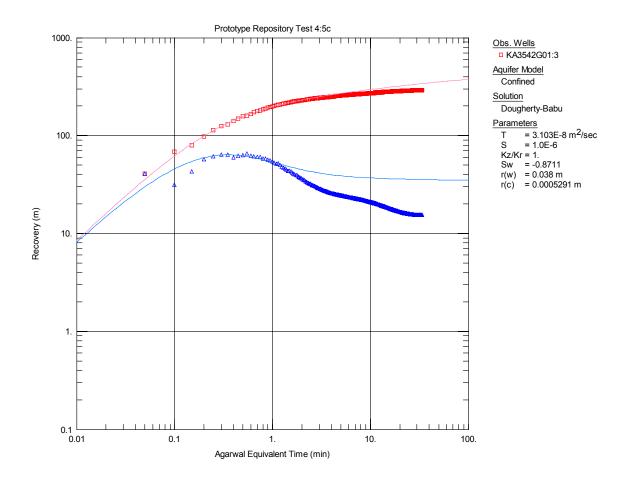



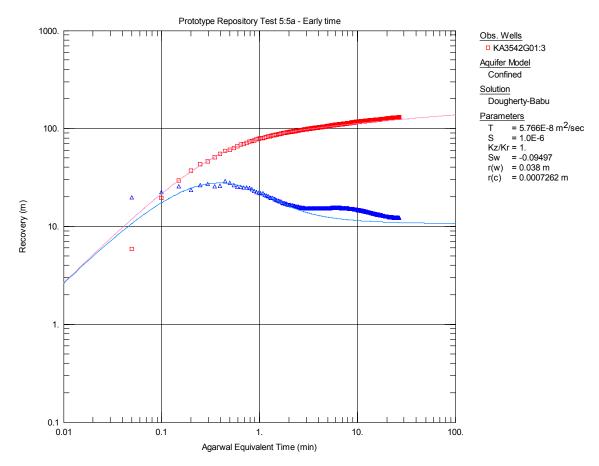



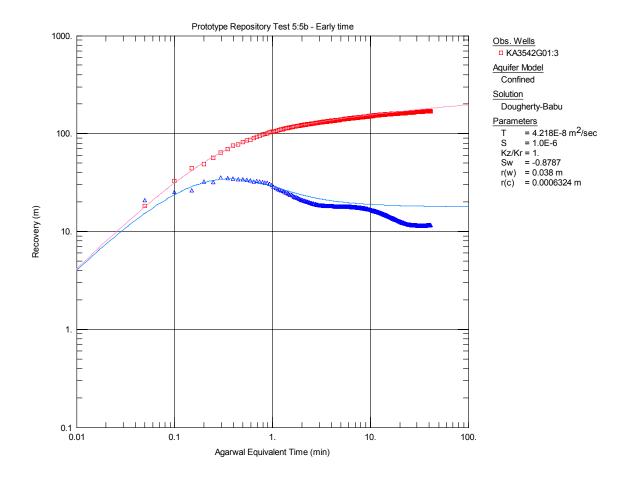



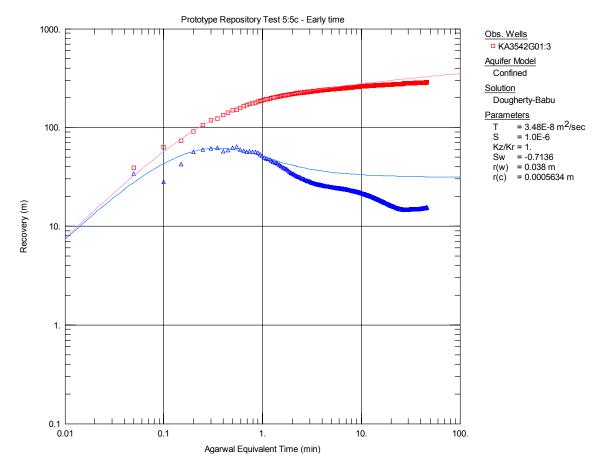



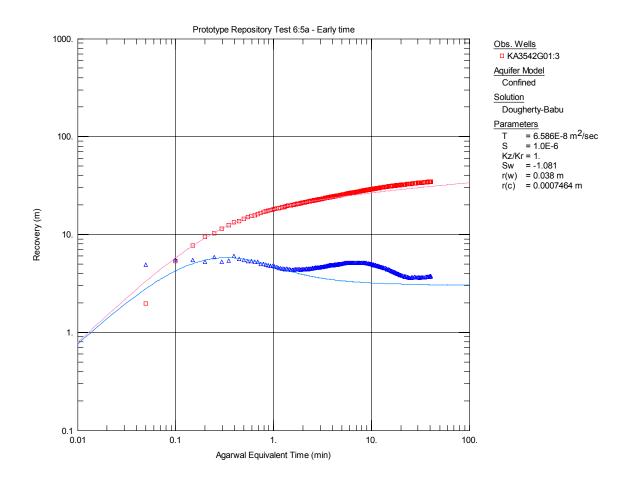


# Appendix 5 - KA3542G01:3

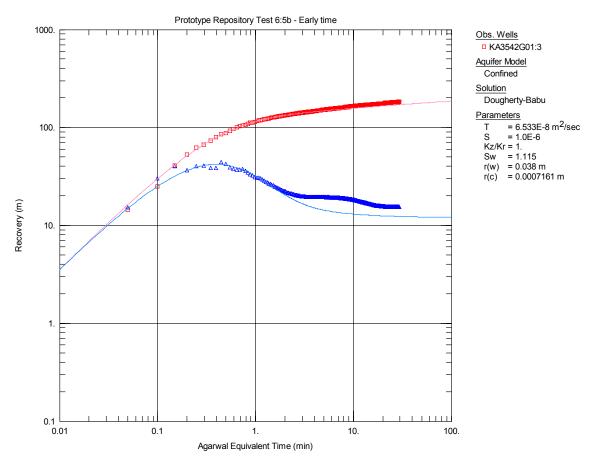


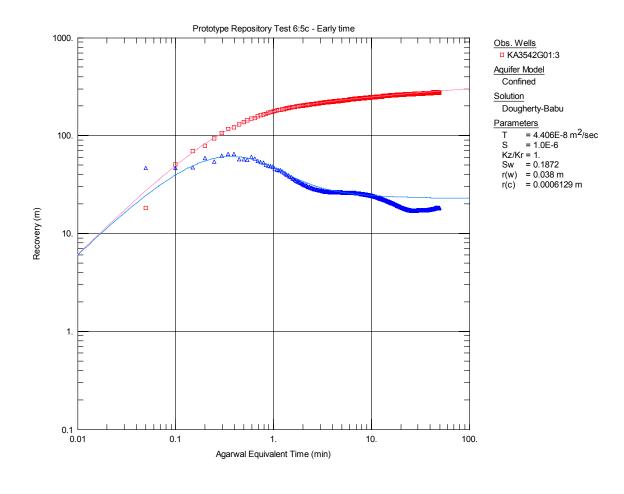



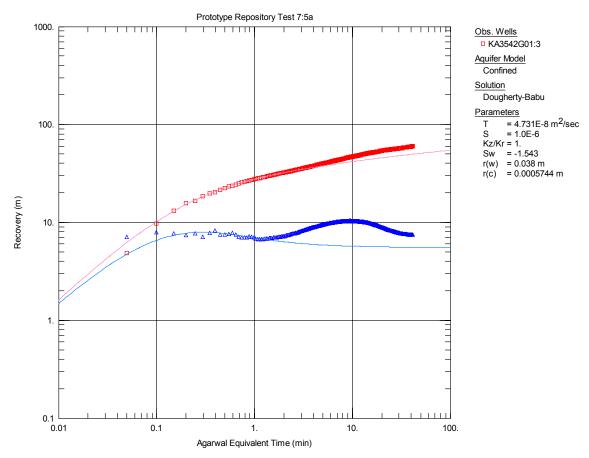



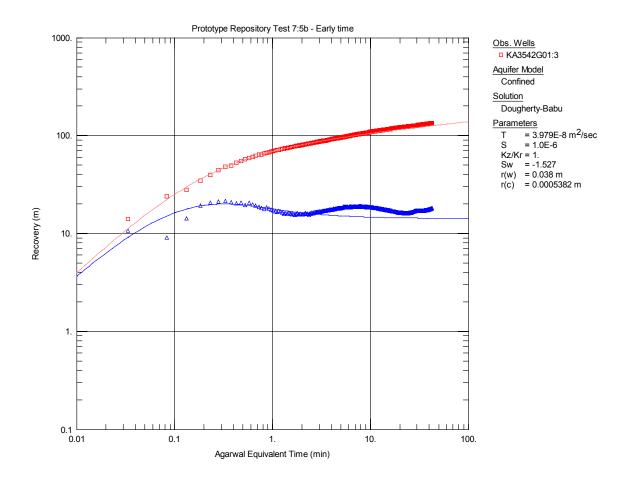



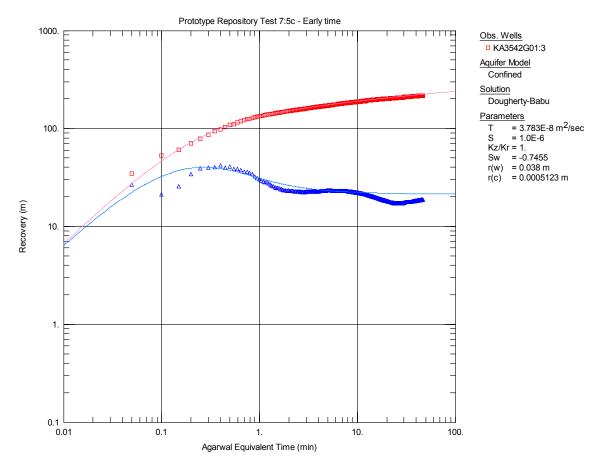



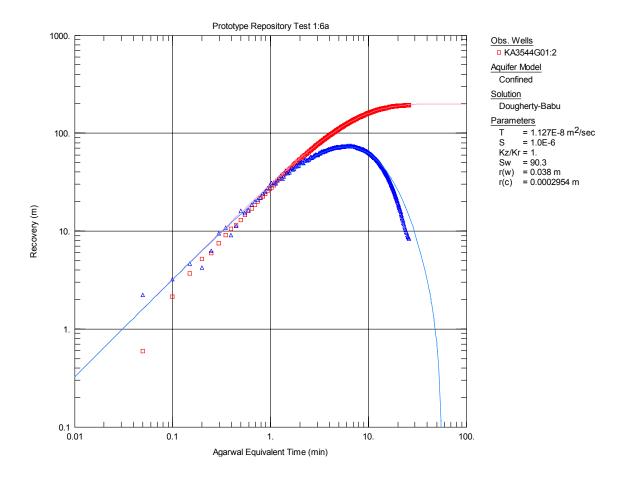



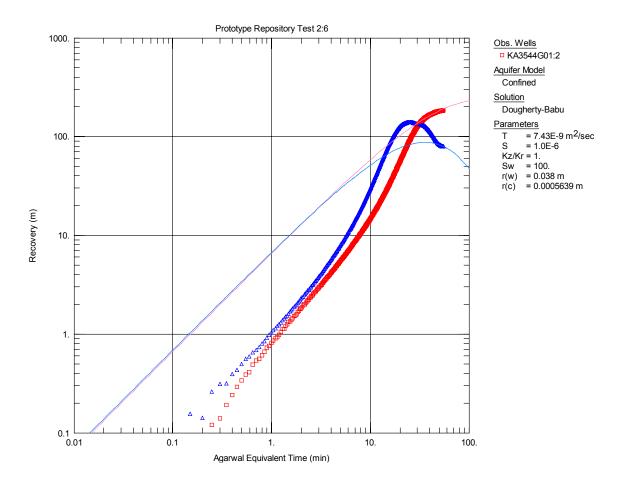



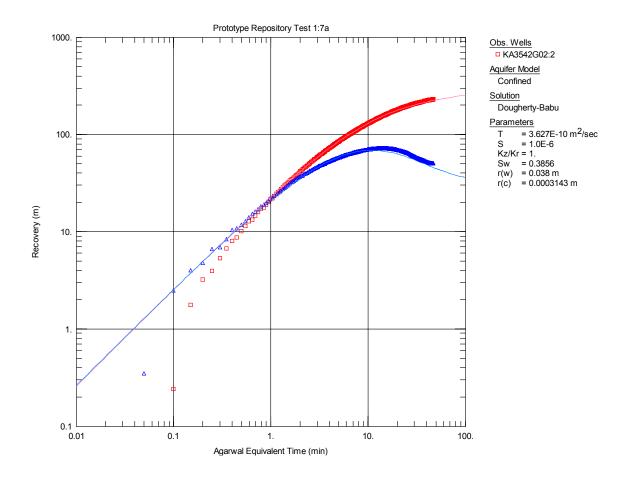


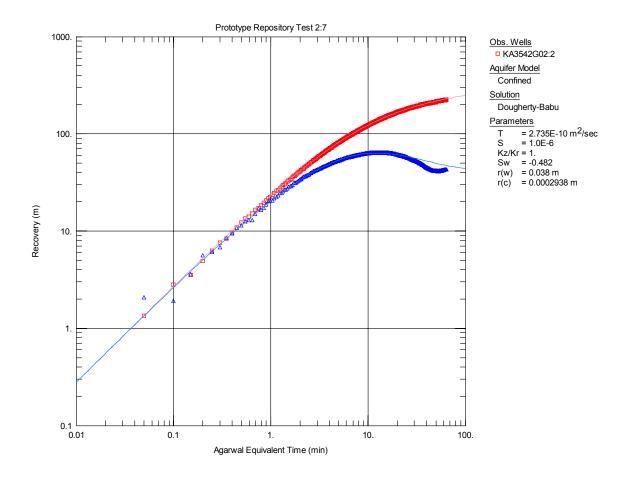



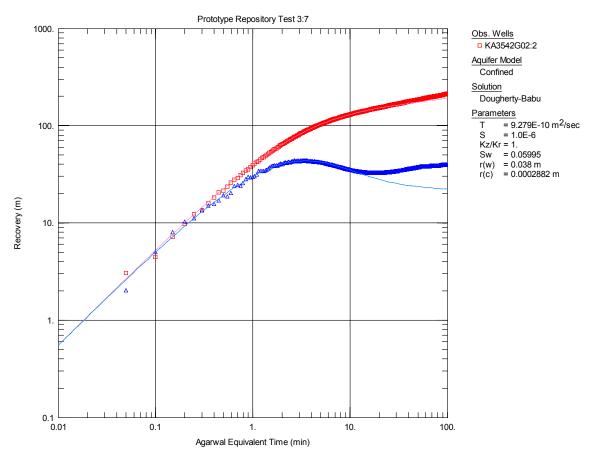



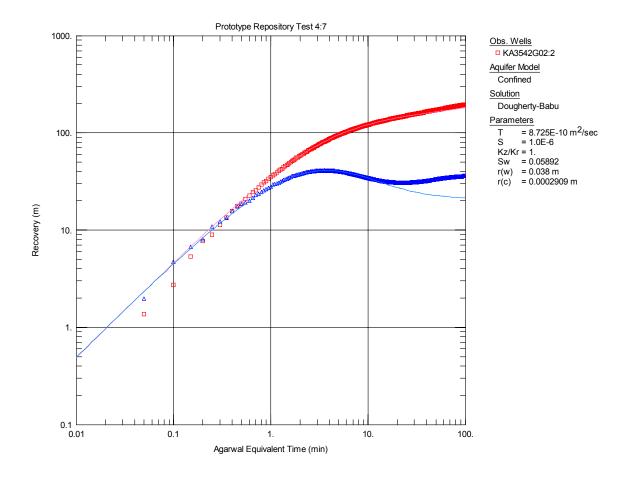


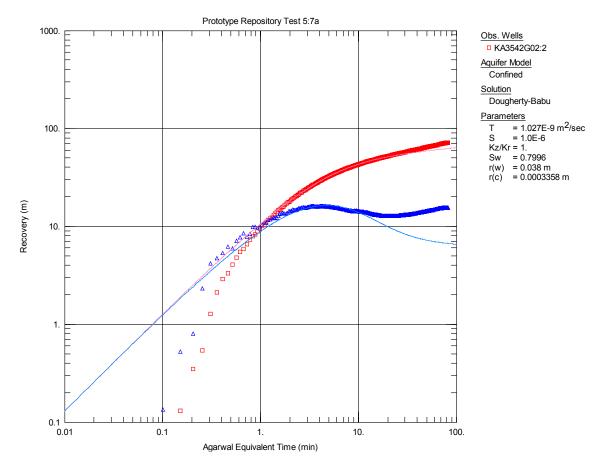


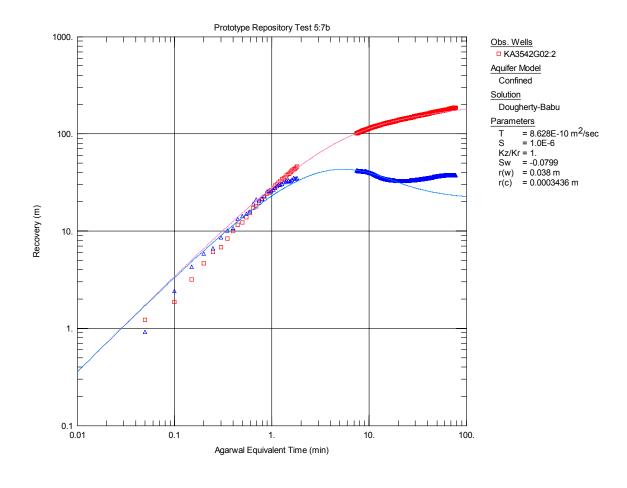


# Appendix 6 - KA3544G01:2

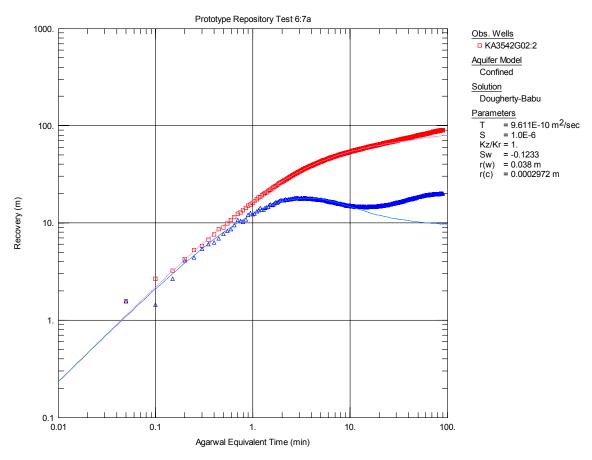


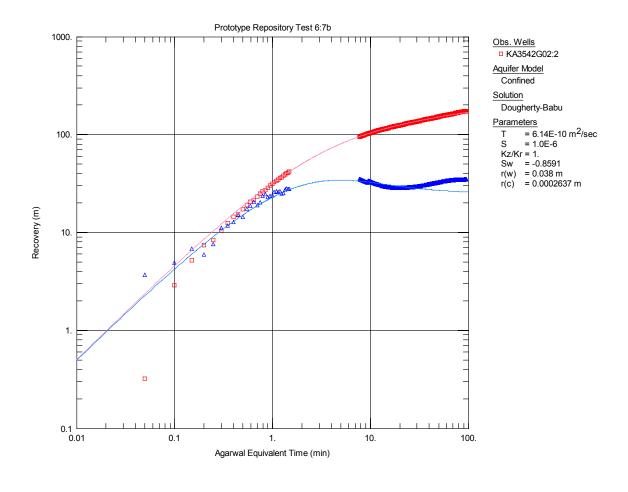



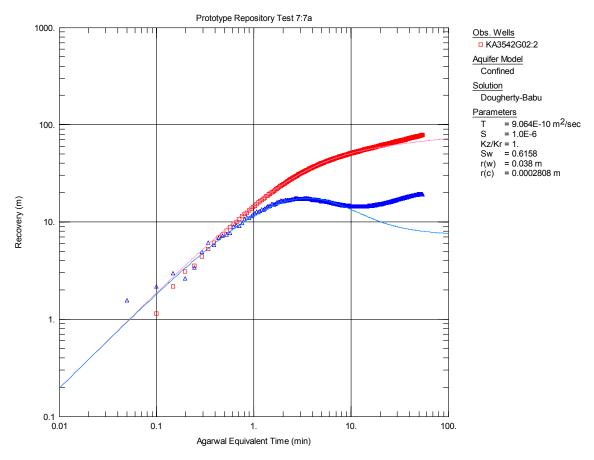


• Probably air in tube system. Uncertain evaluation.

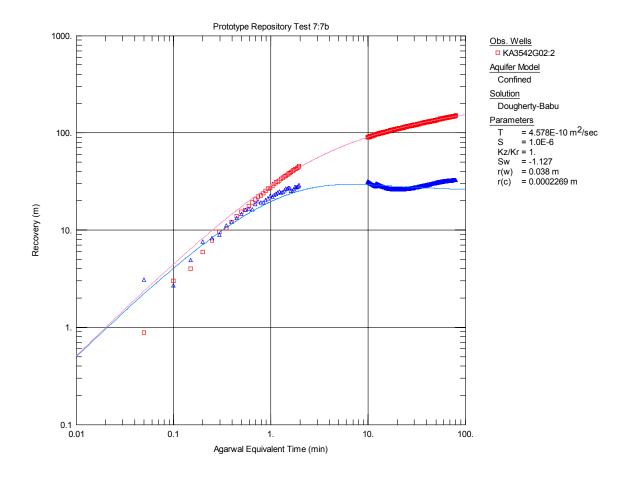

# Appendix 7 - KA3542G02:2



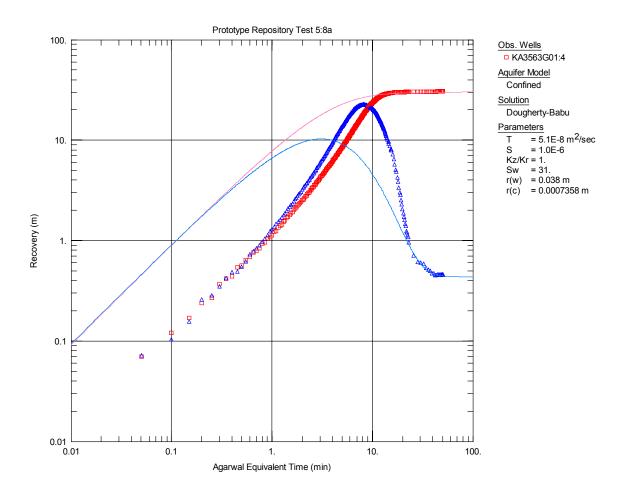



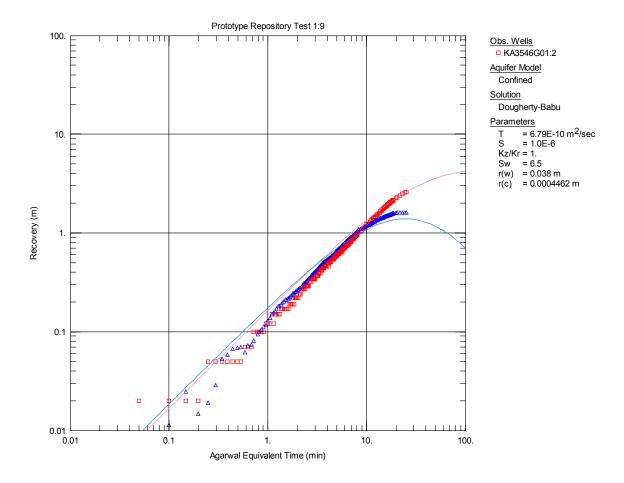



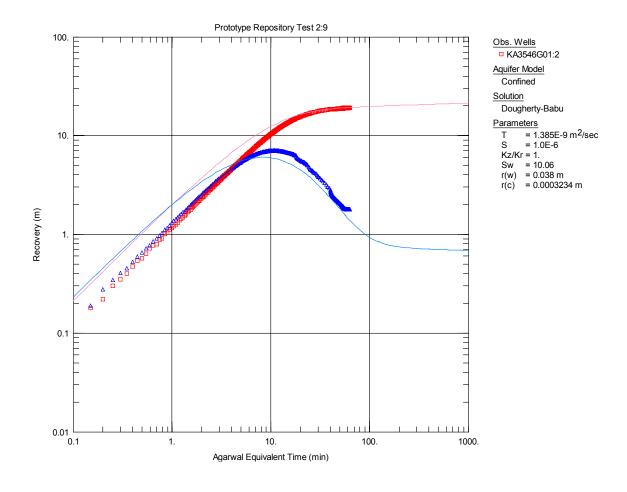


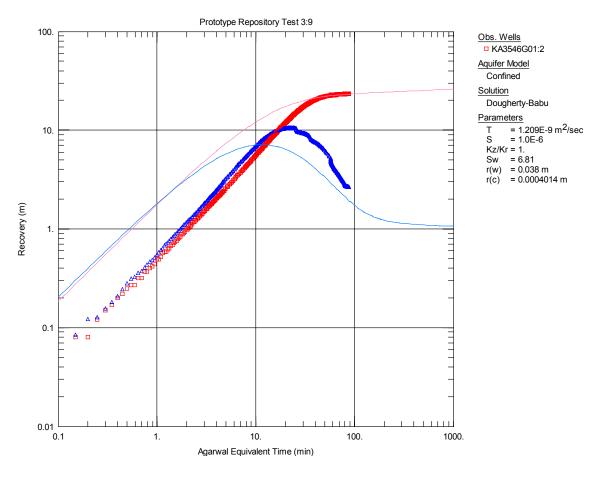



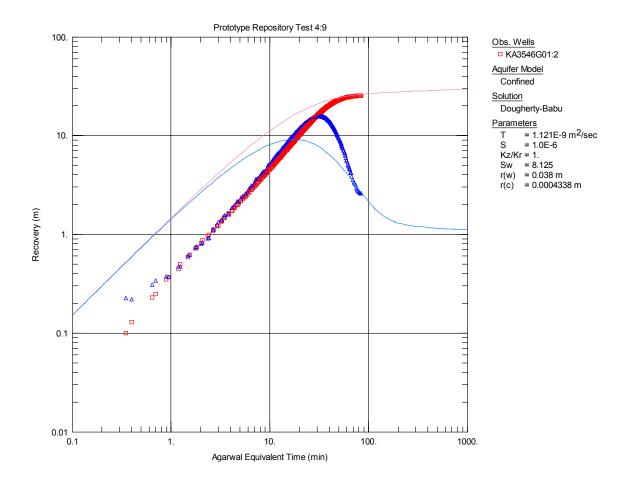


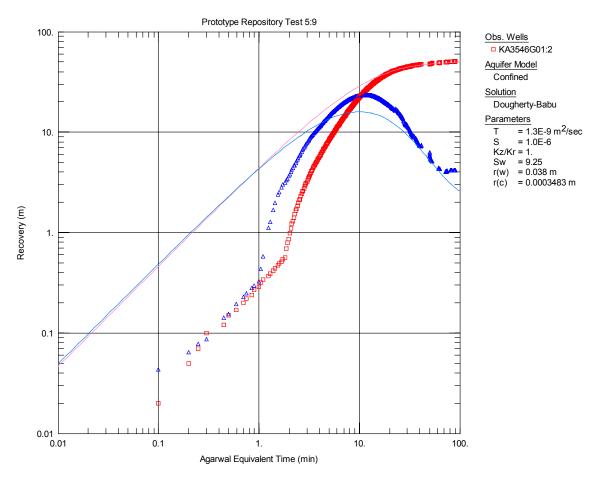


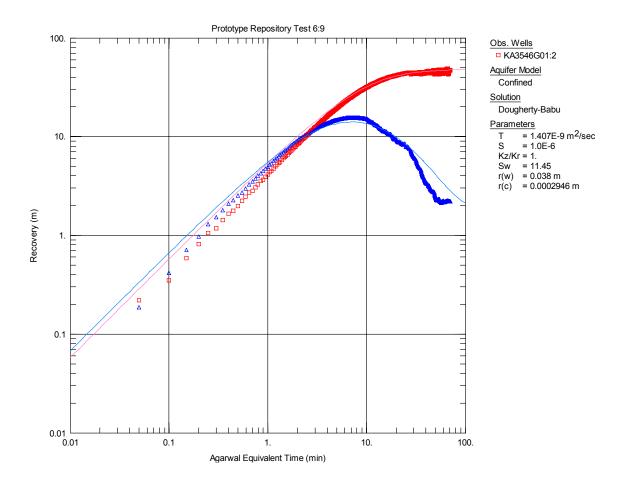



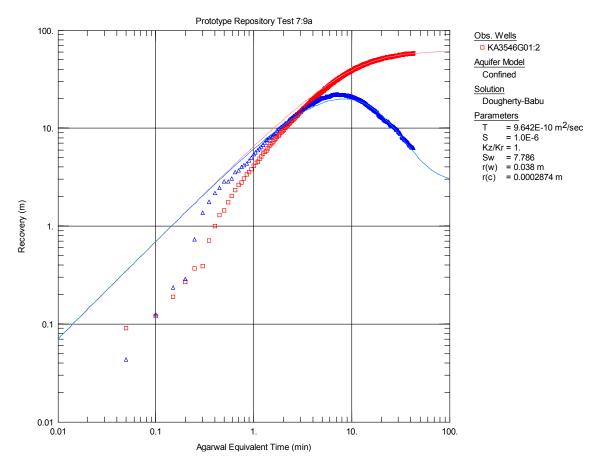


### **Appendix 8 – KA3563G:4**



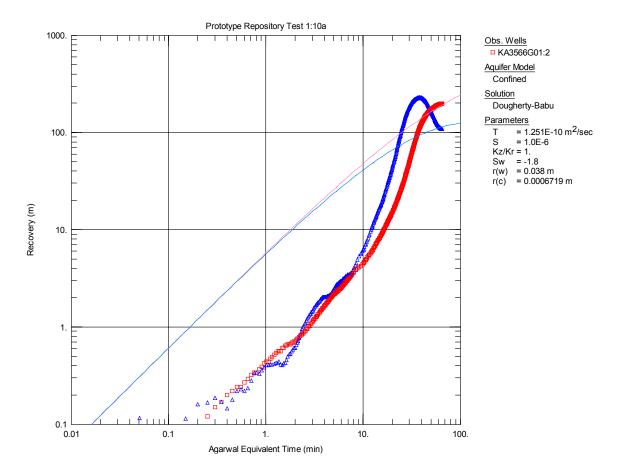


• Probably air in tube system.


# Appendix 9 - KA3546G01:2

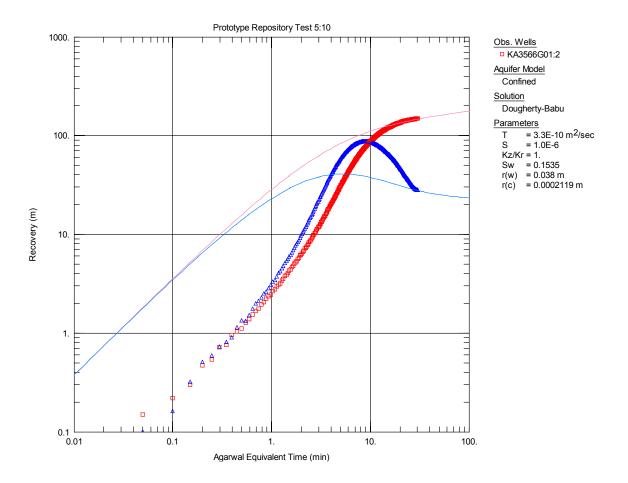




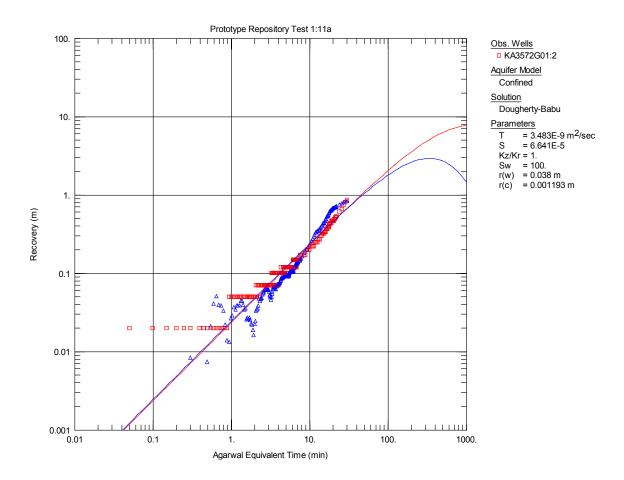








### Appendix 10 - KA3566G01:2

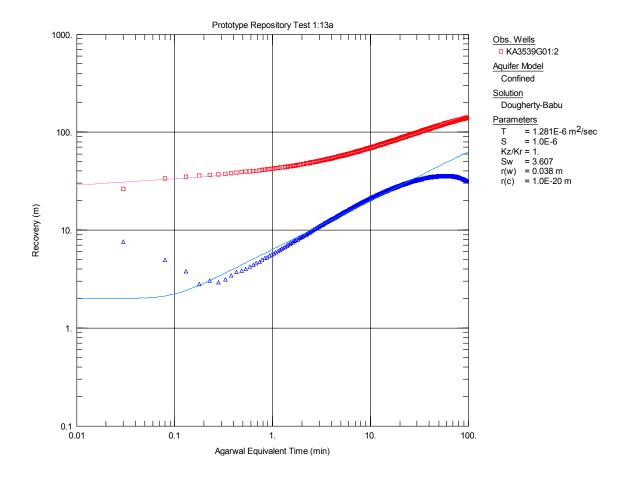


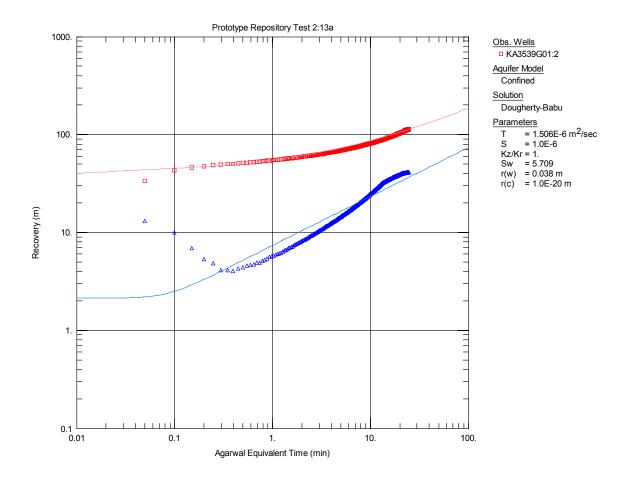

• Probably air in tube system. Uncertain evaluation.

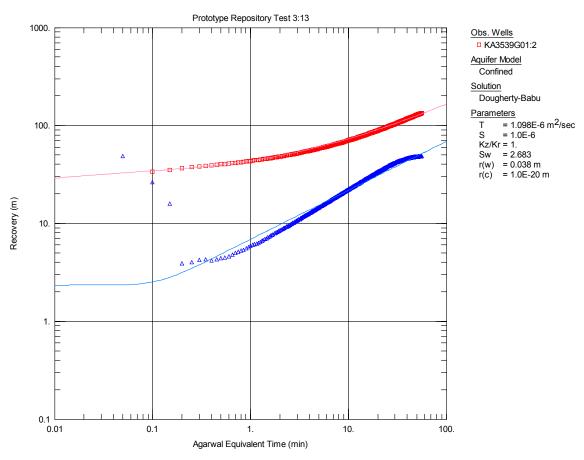


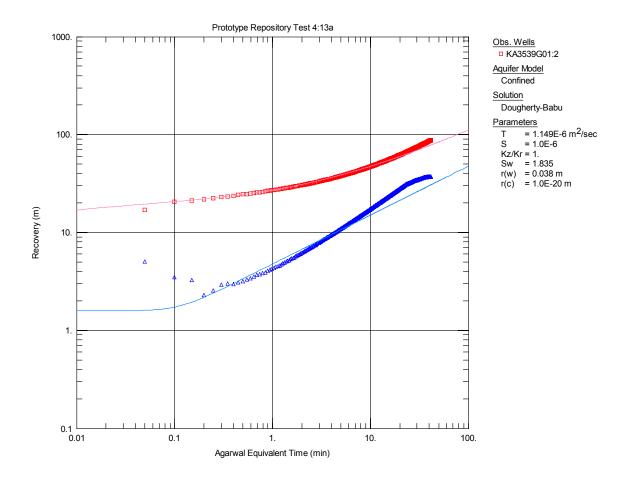
• Probably air in tube system.

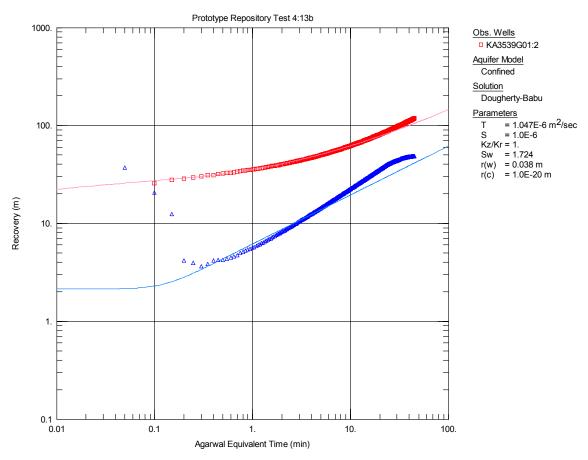
# Appendix 11 - KA3572G01:2

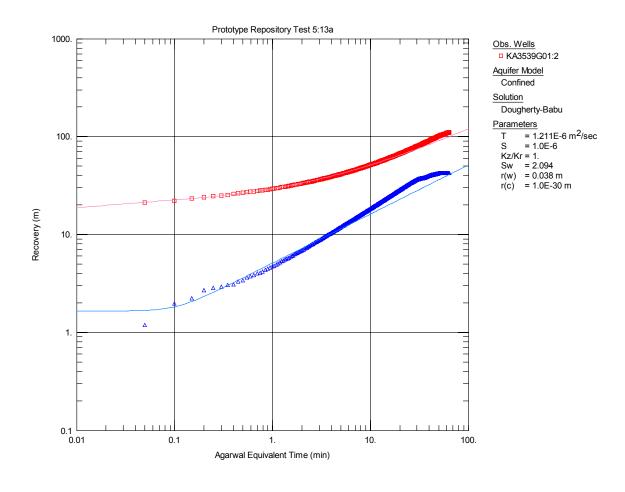


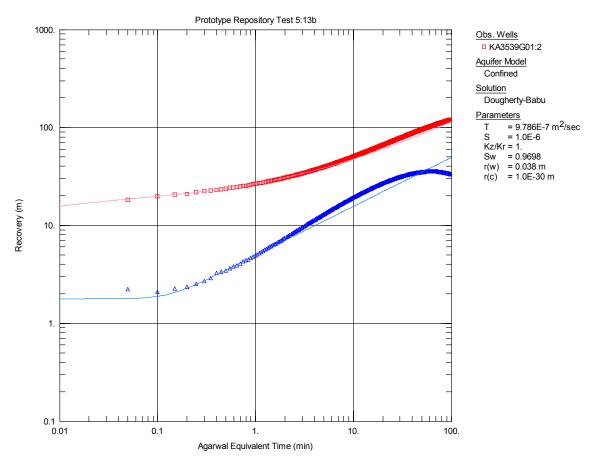


• Uncertain evaluation.

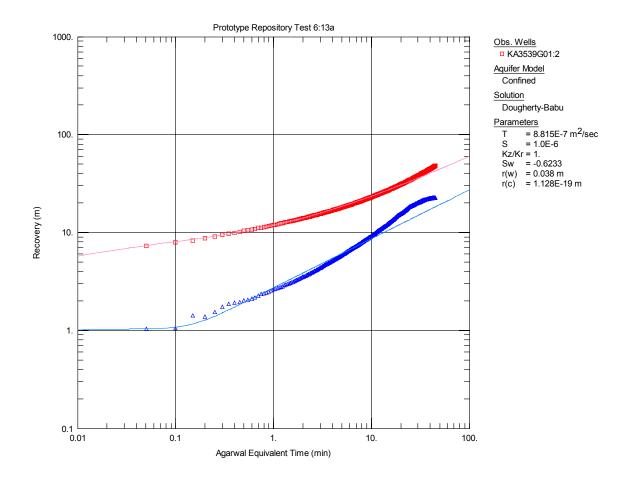

# **Appendix 12 - KA3574G01:3**

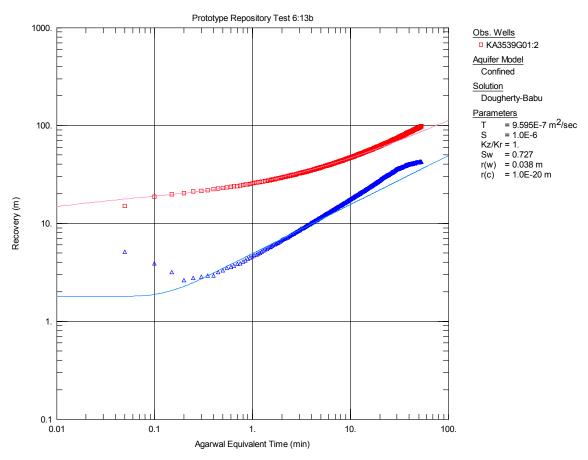

No tests were possible to evaluate

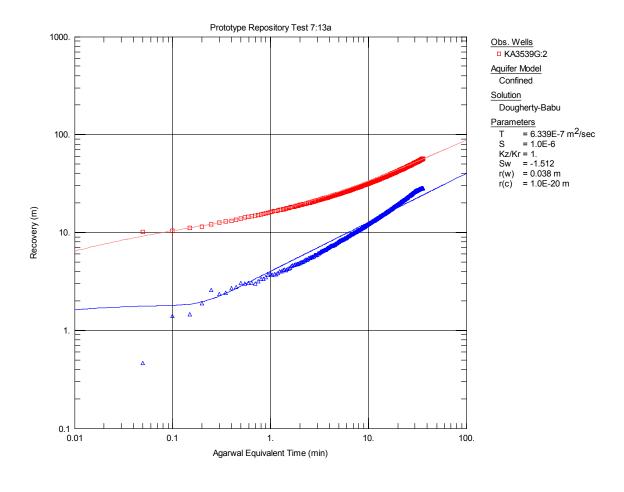

# Appendix 13 - KA3539G:2

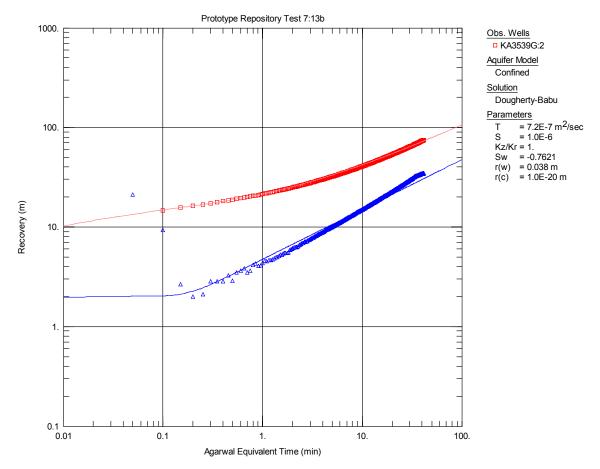


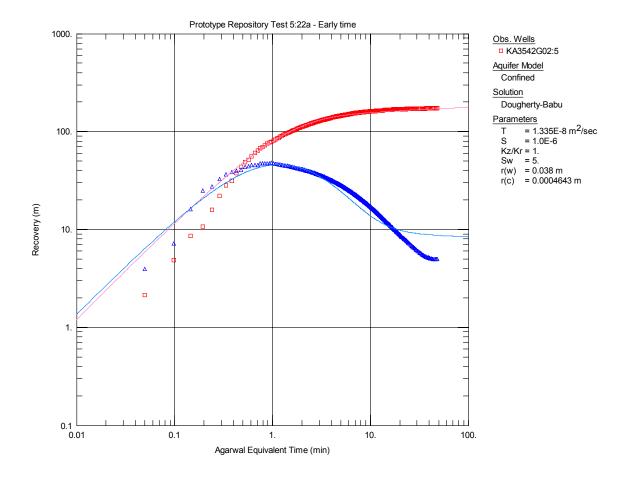



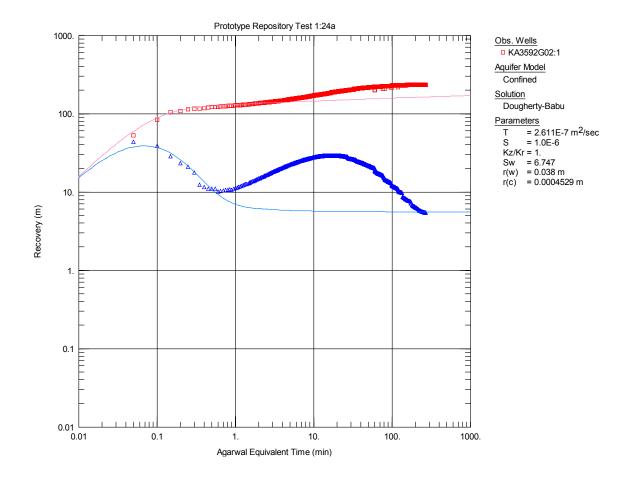



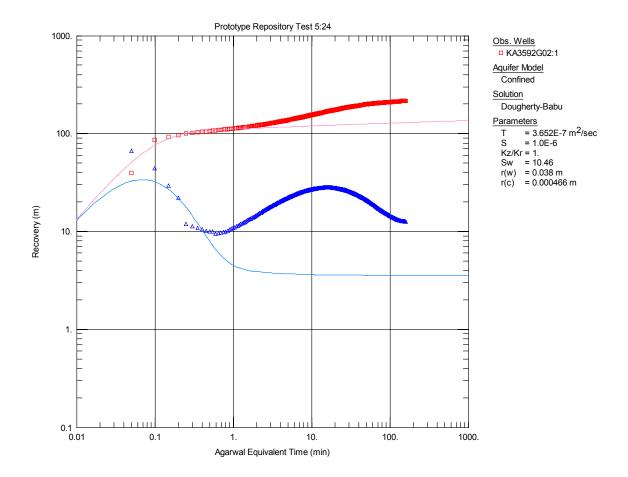




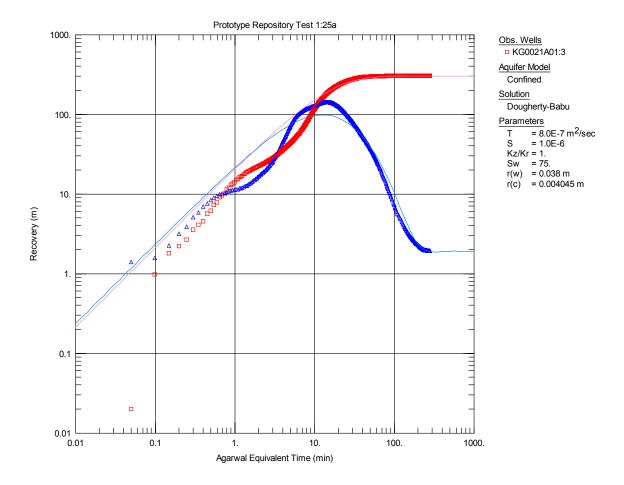



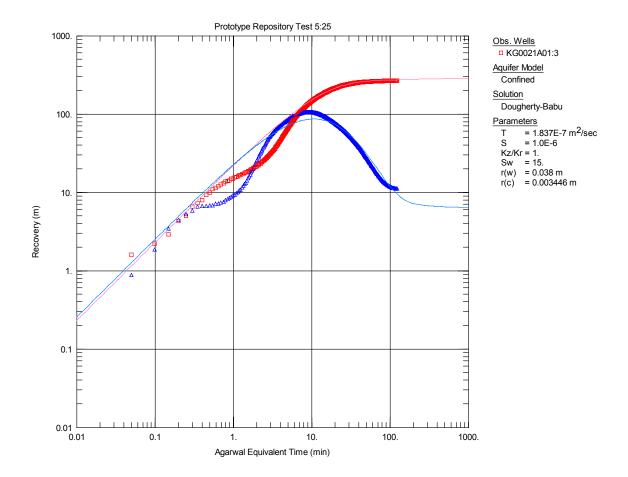


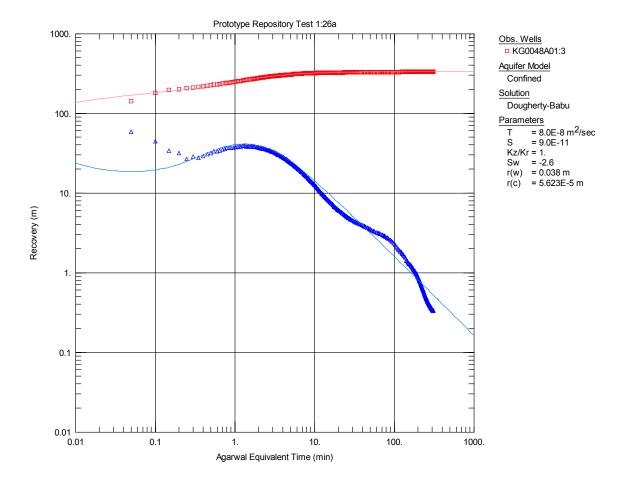


### Appendix 14 - KA3542G02:5

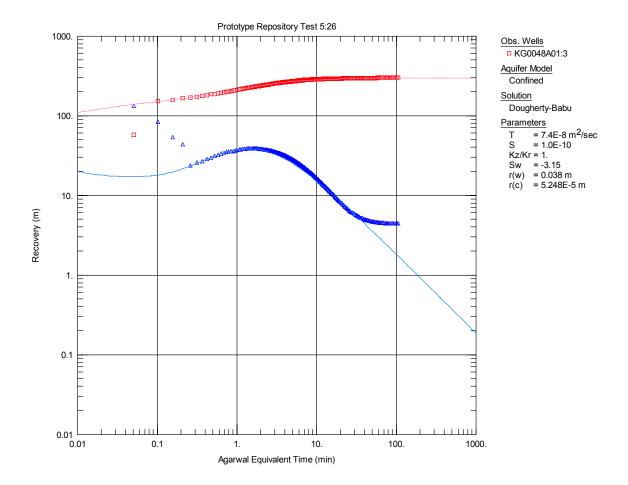




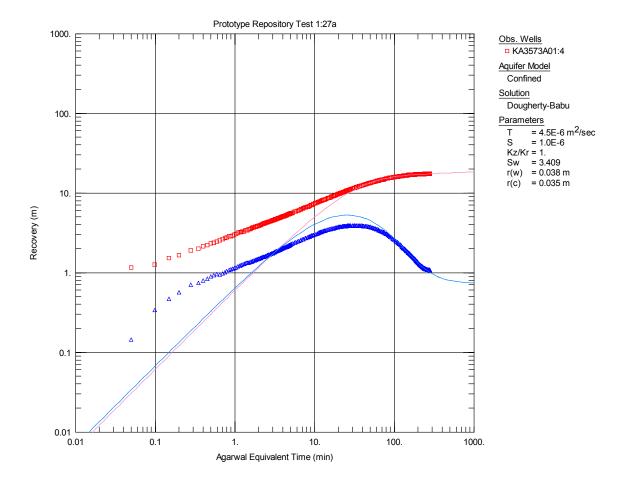


# Appendix 15 - KA3590G02:1

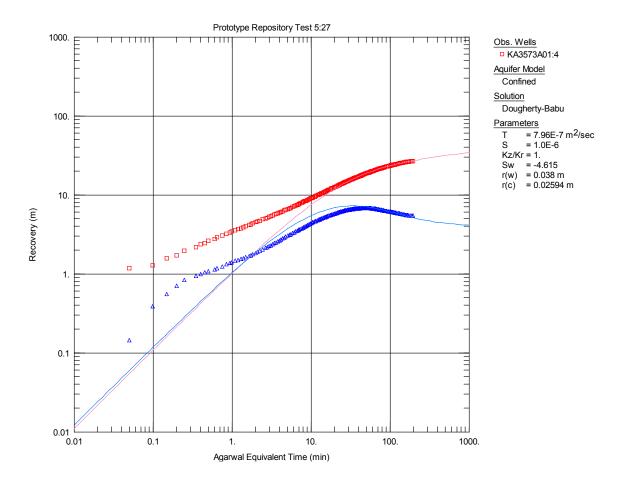






### **Appendix 16 - KG0021A01:3**







# Appendix 17 - KG0048A01:3





# Appendix 18 - KA3573A:4





### **Appendix 19 – Comparison of results**

The transmissivity is displayed in the tables A19-1 and A19-2, where T TRAN is the transmissivity evaluated using Jacob's semi-logarithmic approximation while T AQTS is the transmissivity evaluated using the Dougherty-Babu solution in the software AQTESOLV.

Table A19-1. Transmissivity results from the test campaigns 1 - 4. <sup>(1)</sup> Indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. <sup>(2)</sup> indicates no tests are done this test campaign

|             | حالم                   | TC 1                    | TC 1                    | TC 2                    | TC 2                    | TC 3                    | TC 3                    | TC 4                    | TC 4                    |
|-------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Section     | dp <sub>p</sub><br>(m) | T TRAN<br>(m²/s)        | T AQTS<br>(m²/s)        |
| KA3552G01:2 | max                    | -                       | 4.2 · 10 <sup>-9</sup>  | 6.5 · 10 <sup>-10</sup> | 1.3 · 10 <sup>-9</sup>  | 5.3 · 10 <sup>-10</sup> | 9.5 · 10 <sup>-10</sup> | 2.2 · 10 <sup>-9</sup>  | 8.1 · 10 <sup>-10</sup> |
| KA3554G01:2 | ~100                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | 4.9 · 10 <sup>-7</sup>  | 5.7 · 10 <sup>-7</sup>  |
| KA3554G01:2 | ~200                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | 4.7 · 10 <sup>-7</sup>  | 5.3 · 10 <sup>-7</sup>  |
| KA3554G01:2 | max                    | 6.4 · 10 <sup>-7</sup>  | 6.4 · 10 <sup>-7</sup>  | 5.3 · 10 <sup>-7</sup>  | 6.4 · 10 <sup>-7</sup>  | 5.1 · 10 <sup>-7</sup>  | 5.8 · 10 <sup>-7</sup>  | 4.7 · 10 <sup>-7</sup>  | 4.9 · 10 <sup>-7</sup>  |
| KA3554G02:4 | ~100                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | -                       | 7.0 · 10 <sup>-9</sup>  |
| KA3554G02:4 | max                    | 1.1 · 10 <sup>-8</sup>  | 2.1 · 10 <sup>-8</sup>  | 2.5 · 10 <sup>-8</sup>  | 2.0 · 10 <sup>-8</sup>  | -                       | 1.9 · 10 <sup>-8</sup>  | -                       | 1.2 · 10 <sup>-8</sup>  |
| KA3548A01:3 | ~100                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3548A01:3 | ~200                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3548A01:3 | max                    | 8.1 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-7</sup>  | 9.8 · 10 <sup>-8</sup>  | 1.3 · 10 <sup>-7</sup>  | 8.9 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-7</sup>  | 8.2 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-7</sup>  |
| KA3542G01:3 | ~100                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | 6.9 · 10 <sup>-8</sup>  | 4.4 · 10 <sup>-8</sup>  |
| KA3542G01:3 | ~200                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | 6.6 · 10 <sup>-8</sup>  | 4.8 · 10 <sup>-8</sup>  |
| KA3542G01:3 | max                    | 9.5 · 10 <sup>-8</sup>  | 4.5 · 10 <sup>-8</sup>  | 9.7 · 10 <sup>-8</sup>  | 3.0 · 10 <sup>-8</sup>  | 8.3 · 10 <sup>-8</sup>  | 5.5 · 10 <sup>-8</sup>  | 6.4 · 10 <sup>-8</sup>  | 3.1 · 10 <sup>-8</sup>  |
| KA3544G01:2 | (1)                    | -                       | 1.1 · 10 <sup>-8</sup>  | -                       | 7.4 · 10 <sup>-9</sup>  | (1)                     | (1)                     | (1)                     | (1)                     |
| KA3542G02:2 | ~100                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3542G02:2 | max                    | 2.2 · 10 <sup>-10</sup> | 3.6 · 10 <sup>-10</sup> | 1.9 · 10 <sup>-10</sup> | 2.7 · 10 <sup>-10</sup> | 5.4 · 10 <sup>-10</sup> | 9.3 · 10 <sup>-10</sup> | 5.3 · 10 <sup>-10</sup> | 8.7 · 10 <sup>-10</sup> |
| KA3563G:4   | max                    | -                       | 1.7 · 10 <sup>-7</sup>  | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3546G01:2 | max                    | 7.8 · 10 <sup>-11</sup> | 6.8 · 10 <sup>-10</sup> | -                       | 1.4 · 10 <sup>-9</sup>  | -                       | 1.2 · 10 <sup>-9</sup>  | -                       | 1.1 · 10 <sup>-9</sup>  |
| KA3566G01:2 | max                    | -                       | 1.3 · 10 <sup>-10</sup> | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3572G01:2 | max                    | -                       | 3.5 · 10 <sup>-9</sup>  | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3574G01:3 | max                    | -                       | -                       | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3539G:2   | ~100                   | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | 5.5 · 10 <sup>-7</sup>  | 1.1 · 10 <sup>-6</sup>  |
| KA3539G:2   | max                    | 7.0 · 10 <sup>-7</sup>  | 1.3 · 10 <sup>-6</sup>  | 8.6 · 10 <sup>-7</sup>  | 1.5 · 10 <sup>-6</sup>  | 6.2 · 10 <sup>-7</sup>  | 1.1 · 10 <sup>-6</sup>  | 5.4 · 10 <sup>-7</sup>  | 1.0 · 10 <sup>-6</sup>  |
| KA3542G02:5 | max                    | 3.2 · 10 <sup>-9</sup>  | 4.2 · 10 <sup>-9</sup>  | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3590G02:1 | max                    | 1.3 · 10 <sup>-7</sup>  | 3.4 · 10 <sup>-7</sup>  | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KG0021A01:3 | max                    | 1.2 · 10 <sup>-7</sup>  | 8.0 · 10 <sup>-7</sup>  | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KG0048A01:3 | max                    | 3.8 · 10 <sup>-8</sup>  | 8.0 · 10 <sup>-8</sup>  | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3573A:4   | max                    | 4.9 · 10 <sup>-6</sup>  | 4.5 · 10 <sup>-6</sup>  | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     | (2)                     |

Table A19-2. Transmissivity results from the test campaigns 5 - 7. <sup>(1)</sup> Indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. <sup>(2)</sup> indicates no tests are done this test campaign

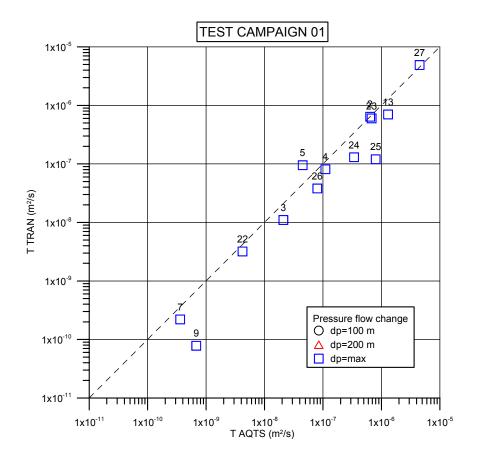
|             | dp <sub>p</sub><br>(m) | TC 5                    | TC 5                    | TC 6                    | TC 6                    | TC 7                    | TC 7                    |
|-------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Section     |                        | T TRAN<br>(m²/s)        | T AQTS<br>(m²/s)        | T TRAN<br>(m²/s)        | T AQTS<br>(m²/s)        | T TRAN<br>(m²/s)        | T AQTS<br>(m²/s)        |
| KA3552G01:2 | max                    | 6.7 · 10 <sup>-10</sup> | 7.4 · 10 <sup>-10</sup> | 4.6 · 10 <sup>-10</sup> | 4.5 · 10 <sup>-10</sup> | 4.6 · 10 <sup>-10</sup> | 8.0 · 10 <sup>-10</sup> |
| KA3554G01:2 | ~100                   | 4.5 · 10 <sup>-7</sup>  | 5.3 · 10 <sup>-7</sup>  | 4.5 · 10 <sup>-7</sup>  | 5.3 · 10 <sup>-7</sup>  | 4.5 · 10 <sup>-7</sup>  | 5.3 · 10 <sup>-7</sup>  |
| KA3554G01:2 | ~200                   | 4.5 · 10 <sup>-7</sup>  | 4.9 · 10 <sup>-7</sup>  | 4.3 · 10 <sup>-7</sup>  | 4.8 · 10 <sup>-7</sup>  | 4.0 · 10 <sup>-7</sup>  | 4.6 · 10 <sup>-7</sup>  |
| KA3554G01:2 | max                    | 4.3 · 10 <sup>-7</sup>  | 4.6 · 10 <sup>-7</sup>  | 4.0 · 10 <sup>-7</sup>  | 4.5 · 10 <sup>-7</sup>  | 3.7 · 10 <sup>-7</sup>  | 4.4 · 10 <sup>-7</sup>  |
| KA3554G02:4 | ~100                   | 2.0 · 10 <sup>-8</sup>  | 9.0 · 10 <sup>-9</sup>  | 1.5 · 10 <sup>-8</sup>  | 1.7 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-8</sup>  |
| KA3554G02:4 | max                    | 1.3 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-8</sup>  | 1.8 · 10 <sup>-8</sup>  | 1.7 · 10 <sup>-8</sup>  | 1.2 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-8</sup>  |
| KA3548A01:3 | ~100                   | 9.0 · 10 <sup>-8</sup>  | 1.0 · 10 <sup>-7</sup>  | 1.1 · 10 <sup>-7</sup>  | 9.0 · 10 <sup>-8</sup>  | 1.0 · 10 <sup>-7</sup>  | 8.0 · 10 <sup>-8</sup>  |
| KA3548A01:3 | ~200                   | 9.9 · 10 <sup>-8</sup>  | 1.2 · 10 <sup>-7</sup>  | 9.2 · 10 <sup>-8</sup>  | 1.2 · 10 <sup>-7</sup>  | 9.5 · 10 <sup>-8</sup>  | 8.3 · 10 <sup>-8</sup>  |
| KA3548A01:3 | max                    | 8.4 · 10 <sup>-8</sup>  | 1.1 · 10 <sup>-7</sup>  | 9.6 · 10 <sup>-8</sup>  | 9.1 · 10 <sup>-8</sup>  | 1.0 · 10 <sup>-7</sup>  | 8.6 · 10 <sup>-8</sup>  |
| KA3542G01:3 | ~100                   | 4.9 · 10 <sup>-8</sup>  | 5.8 · 10 <sup>-8</sup>  | 5.0 · 10 <sup>-8</sup>  | 6.6 · 10 <sup>-8</sup>  | 3.4 · 10 <sup>-8</sup>  | 4.7 · 10 <sup>-8</sup>  |
| KA3542G01:3 | ~200                   | 6.0 · 10 <sup>-8</sup>  | 4.2 · 10 <sup>-8</sup>  | 5.0 · 10 <sup>-8</sup>  | 6.5 · 10 <sup>-8</sup>  | 3.3 · 10 <sup>-8</sup>  | 4.0 · 10 <sup>-8</sup>  |
| KA3542G01:3 | max                    | 6.5 · 10 <sup>-8</sup>  | 3.5 · 10 <sup>-8</sup>  | 5.8 · 10 <sup>-8</sup>  | 4.4 · 10 <sup>-8</sup>  | 4.4 · 10 <sup>-8</sup>  | 3.8 · 10 <sup>-8</sup>  |
| KA3544G01:2 | (1)                    | (1)                     | (1)                     | (1)                     | (1)                     | (1)                     | (1)                     |
| KA3542G02:2 | ~100                   | 4.6 · 10 <sup>-10</sup> | 1.0 · 10 <sup>-9</sup>  | 4.9 · 10 <sup>-10</sup> | 9.6 · 10 <sup>-10</sup> | 4.2 · 10 <sup>-10</sup> | 9.0 · 10 <sup>-10</sup> |
| KA3542G02:2 | max                    | 4.8 · 10 <sup>-10</sup> | 8.6 · 10 <sup>-10</sup> | 5.0 · 10 <sup>-10</sup> | 6.1 · 10 <sup>-10</sup> | 5.1 · 10 <sup>-10</sup> | 4.6 · 10 <sup>-10</sup> |
| KA3563G:4   | max                    | 3.3 · 10 <sup>-8</sup>  | 5.1 · 10 <sup>-8</sup>  | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3546G01:2 | max                    | -                       | 1.3 · 10 <sup>-9</sup>  | -                       | 1.4 · 10 <sup>-9</sup>  | -                       | 9.6 · 10 <sup>-10</sup> |
| KA3566G01:2 | max                    | 6.4 · 10 <sup>-11</sup> | 3.3 · 10 <sup>-10</sup> | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3572G01:2 | max                    | -                       | -                       | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3574G01:3 | max                    | -                       | -                       | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3539G:2   | ~100                   | 5.9 · 10 <sup>-7</sup>  | 1.2 · 10 <sup>-6</sup>  | 5.5 · 10 <sup>-7</sup>  | 8.8 · 10 <sup>-7</sup>  | 4.7 · 10 <sup>-7</sup>  | 6.3 · 10 <sup>-7</sup>  |
| KA3539G:2   | max                    | 6.6 · 10 <sup>-7</sup>  | 9.8 · 10 <sup>-7</sup>  | 6.6 · 10 <sup>-7</sup>  | 9.6 · 10 <sup>-7</sup>  | 5.5 · 10 <sup>-7</sup>  | 7.2 · 10 <sup>-7</sup>  |
| KA3542G02:5 | max                    | 2.4 · 10 <sup>-9</sup>  | 1.3 · 10 <sup>-8</sup>  | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3590G02:1 | max                    | 1.3 · 10 <sup>-7</sup>  | 2.5 · 10 <sup>-7</sup>  | (2)                     | (2)                     | (2)                     | (2)                     |
| KG0021A01:3 | max                    | 1.5 · 10 <sup>-7</sup>  | 5.7 · 10 <sup>-7</sup>  | (2)                     | (2)                     | (2)                     | (2)                     |
| KG0048A01:3 | max                    | 4.1 · 10 <sup>-8</sup>  | 7.4 · 10 <sup>-8</sup>  | (2)                     | (2)                     | (2)                     | (2)                     |
| KA3573A:4   | max                    | 2.4 · 10 <sup>-6</sup>  | 8.0 · 10 <sup>-7</sup>  | (2)                     | (2)                     | (2)                     | (2)                     |

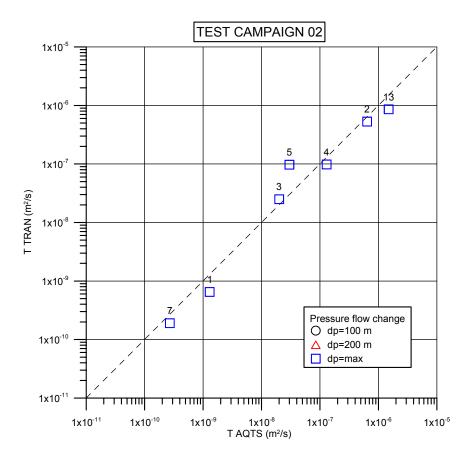
The skinfactor results is displayed in the tables A19-3 and A19-4, where SKIN TRAN is the skinfactor evaluated using Jacob's semi-logarithmic approximation while SKIN AQTS is the skinfactor evaluated using the Dougherty-Babu solution utilizing the software AQTESOLV.

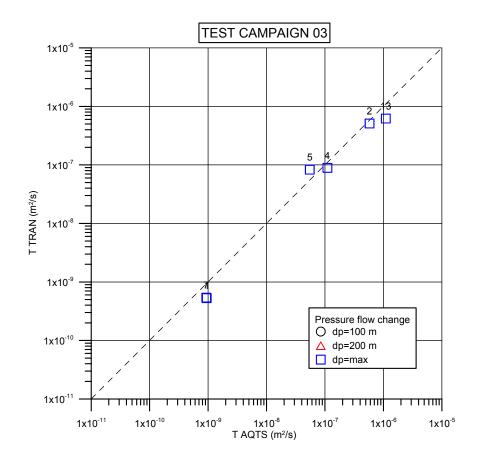
Table A19-3. SKIN Results from the test campaigns 1 - 4.  $^{(1)}$  Indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method.  $^{(2)}$  indicates no tests are done this test campaign

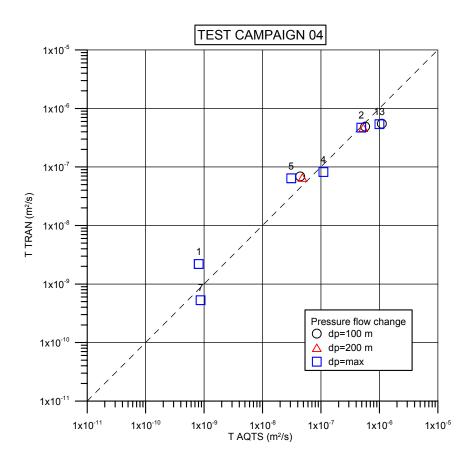
| Section     | dp <sub>p</sub><br>(m) | TC 1<br>SKIN<br>TRAN<br>(m²/s) | TC 1<br>SKIN<br>AQTS<br>(m²/s) | TC 2<br>SKIN<br>TRAN<br>(m²/s) | TC 2<br>SKIN<br>AQTS<br>(m²/s) | TC 3<br>SKIN<br>TRAN<br>(m²/s) | TC 3<br>SKIN<br>AQTS<br>(m²/s) | TC 4<br>SKIN<br>TRAN<br>(m²/s) | TC 4<br>SKIN<br>AQTS<br>(m <sup>2</sup> /s) |
|-------------|------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------|
| KA3552G01:2 | max                    | -                              | 1.1                            | -1.8                           | -0.5                           | -1.7                           | -0.7                           | -2.5                           | -0.9                                        |
| KA3554G01:2 | ~100                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | 22                             | 26                                          |
| KA3554G01:2 | ~200                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | 26                             | 30                                          |
| KA3554G01:2 | max                    | 43                             | 43                             | 34                             | 42                             | 34                             | 39                             | 30                             | 32                                          |
| KA3554G02:4 | ~100                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | -                              | 30                                          |
| KA3554G02:4 | max                    | 51                             | 100                            | 120                            | 95                             | -                              | 94                             | -                              | 58                                          |
| KA3548A01:3 | ~100                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3548A01:3 | ~200                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3548A01:3 | max                    | -2                             | 0.2                            | -0.3                           | 1.1                            | -1.7                           | -1.2                           | -1.2                           | -0.1                                        |
| KA3542G01:3 | ~100                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | 1.1                            | -1                                          |
| KA3542G01:3 | ~200                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | 2.1                            | 0.3                                         |
| KA3542G01:3 | max                    | 5                              | 0.1                            | 6                              | -1                             | 4.9                            | 1.5                            | 2.7                            | -0.9                                        |
| KA3544G01:2 | (1)                    | -                              | 90                             | -                              | 100                            | (1)                            | (1)                            | (1)                            | (1)                                         |
| KA3542G02:2 | ~100                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3542G02:2 | max                    | -0.3                           | 0.4                            | -1.3                           | -0.5                           | -1.1                           | 0.1                            | -1.2                           | 0.1                                         |
| KA3563G:4   | max                    | -                              | -                              | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3546G01:2 | max                    | -2                             | 6                              | -                              | 10                             | -                              | 7                              | -                              | 8                                           |
| KA3566G01:2 | max                    | -                              | -                              | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3572G01:2 | max                    | -                              | -                              | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3574G01:3 | max                    | -                              | -                              | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3539G:2   | ~100                   | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | -1.5                           | 1.8                                         |
| KA3539G:2   | max                    | 1.5                            | 3.6                            | 1.6                            | 5.7                            | -0.2                           | 2.7                            | -1.2                           | 1.7                                         |
| KA3542G02:5 | max                    | -1.6                           | -1.2                           | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3590G02:1 | max                    | 0.9                            | 9.3                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KG0021A01:3 | max                    | -4                             | 75                             | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KG0048A01:3 | max                    | -0.7                           | -2.6                           | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |
| KA3573A:4   | max                    | -4.5                           | 3.4                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                            | (2)                                         |

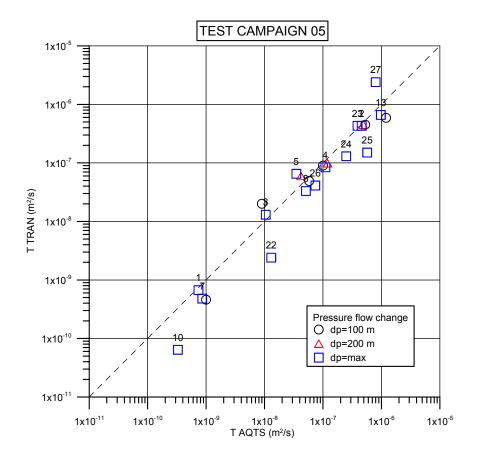
Table A19-4. SKIN Results from the test campaigns 5 - 7.  $^{(1)}$  Indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method.  $^{(2)}$  indicates no tests are done this test campaign

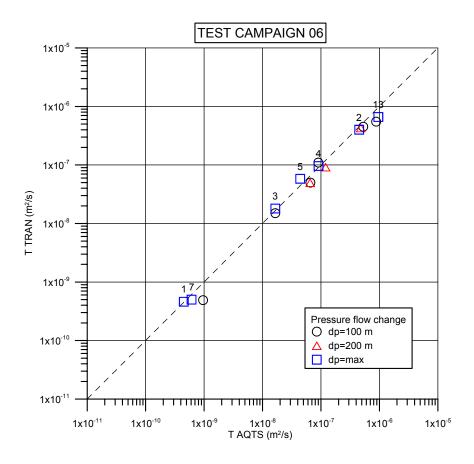

| Section     | dp <sub>p</sub><br>(m) | TC 5<br>SKIN<br>TRAN<br>(m²/s) | TC 5<br>SKIN<br>AQTS<br>(m²/s) | TC 6<br>SKIN<br>TRAN<br>(m²/s) | TC 6<br>SKIN<br>AQTS<br>(m²/s) | TC 7<br>SKIN<br>TRAN<br>(m²/s) | TC 7<br>SKIN<br>AQTS<br>(m²/s) |
|-------------|------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| KA3552G01:2 | max                    | -1.7                           | -0.4                           | -1.6                           | -1.9                           | -1.6                           | -0.2                           |
| KA3554G01:2 | ~100                   | 18                             | 24                             | 20                             | 25                             | 17                             | 20                             |
| KA3554G01:2 | ~200                   | 24                             | 28                             | 23                             | 28                             | 19                             | 22                             |
| KA3554G01:2 | max                    | 27                             | 30                             | 25                             | 29                             | 22                             | 26                             |
| KA3554G02:4 | ~100                   | 95                             | 38                             | 75                             | 90                             | 47                             | 50                             |
| KA3554G02:4 | max                    | 61                             | 73                             | 77                             | 68                             | 35                             | 35                             |
| KA3548A01:3 | ~100                   | -1.7                           | -1.4                           | -1.7                           | -2.1                           | -2                             | -2.5                           |
| KA3548A01:3 | ~200                   | -1.8                           | -1.1                           | -1.5                           | -0.6                           | -1.5                           | -1.8                           |
| KA3548A01:3 | max                    | -1.4                           | -0.4                           | -0.9                           | -1                             | -0.9                           | -1.3                           |
| KA3542G01:3 | ~100                   | -0.7                           | -0.1                           | -2.3                           | -1                             | -2                             | -1.5                           |
| KA3542G01:3 | ~200                   | 0.6                            | -0.9                           | -0.5                           | 1.1                            | -1.6                           | -1.5                           |
| KA3542G01:3 | max                    | 2.4                            | -0.7                           | 1.7                            | 0.2                            | -0.2                           | -0.7                           |
| KA3544G01:2 | (1)                    | (1)                            | (1)                            | (1)                            | (1)                            | (1)                            | (1)                            |
| KA3542G02:2 | ~100                   | -1.3                           | 0.8                            | -1.2                           | -0.1                           | -1.5                           | 0.6                            |
| KA3542G02:2 | max                    | -1.4                           | -0.1                           | -1.3                           | -0.9                           | -1.5                           | -1.1                           |
| KA3563G:4   | max                    | 16                             | 31                             | (2)                            | (2)                            | (2)                            | (2)                            |
| KA3546G01:2 | max                    | -                              | 9                              | -                              | 11                             | _                              | 8                              |
| KA3566G01:2 | max                    | 4.3                            | 0.1                            | (2)                            | (2)                            | (2)                            | (2)                            |
| KA3572G01:2 | max                    | -                              | -                              | (2)                            | (2)                            | (2)                            | (2)                            |
| KA3574G01:3 | max                    | -                              | -                              | (2)                            | (2)                            | (2)                            | (2)                            |
| KA3539G:2   | ~100                   | -1.3                           | 2.1                            | -2                             | -0.6                           | -2.3                           | -1.5                           |
| KA3539G:2   | max                    | -0.8                           | 1                              | -0.8                           | 0.7                            | -1.6                           | -0.8                           |
| KA3542G02:5 | max                    | -2                             | 5                              | (2)                            | (2)                            | (2)                            | (2)                            |
| KA3590G02:1 | max                    | 1                              | 4.6                            | (2)                            | (2)                            | (2)                            | (2)                            |
| KG0021A01:3 | max                    | -4                             | 59                             | (2)                            | (2)                            | (2)                            | (2)                            |
| KG0048A01:3 | max                    | -0.4                           | -3.2                           | (2)                            | (2)                            | (2)                            | (2)                            |
| KA3573A:4   | max                    | -4.8                           | -4.6                           | (2)                            | (2)                            | (2)                            | (2)                            |

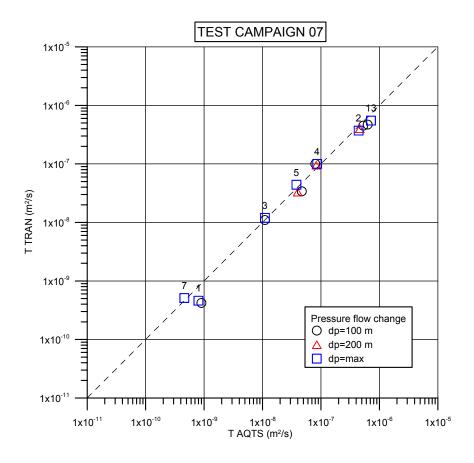

In the figures below the transmissivity is plotted in a cross-plot to visualize the differences between the two evaluation methods.


The numbers shown in the figures below is the test sequience number according to *Table A19-5*.


Table A19-5. Test sequence numbering


| Section     | dp <sub>p</sub> (m) | Testnumber |
|-------------|---------------------|------------|
| KA3552G01:2 | max                 | 1          |
| KA3554G01:2 | ~100                | 2a         |
| KA3554G01:2 | ~200                | 2b         |
| KA3554G01:2 | max                 | 2c         |
| KA3554G02:4 | ~100                | 3a         |
| KA3554G02:4 | max                 | 3b         |
| KA3548A01:3 | ~100                | 4a         |
| KA3548A01:3 | ~200                | 4b         |
| KA3548A01:3 | max                 | 4c         |
| KA3542G01:3 | ~100                | 5a         |
| KA3542G01:3 | ~200                | 5b         |
| KA3542G01:3 | max                 | 5c         |
| KA3544G01:2 | (1)                 | 6          |
| KA3542G02:2 | ~100                | 7a         |
| KA3542G02:2 | max                 | 7b         |
| KA3563G:4   | max                 | 8          |
| KA3546G01:2 | max                 | 9          |
| KA3566G01:2 | max                 | 10         |
| KA3572G01:2 | max                 | 11         |
| KA3574G01:3 | max                 | 12         |
| KA3539G:2   | ~100                | 13a        |
| KA3539G:2   | max                 | 13b        |
| KA3542G02:5 | max                 | 22         |
| KA3554G01:3 | max                 | 23         |
| KA3590G02:1 | max                 | 24         |
| KG0021A01:3 | max                 | 25         |
| KG0048A01:3 | max                 | 26         |
| KA3573A:4   | max                 | 27         |














In general the evaluated AQTESOLV transmissivity using the Dougherty-Babu solution is a little higher than the Jacob's transmissivity. The main reason is the use of the variable flowrate instead of the end of flow period flowrate. One exception are the tests in KA3542G01:3 (5 in the plots) where it have been possible to evaluate an earlier time period when using AQTESOLV, i.e a rock volume closer to the tested borehole sections.