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1. Preface

This report summarizes the theoretical knowledge on water flow in and beneath
glaciers and ice sheets and how these theories are applied in models to simulate
the hydrology of ice sheets. The purpose is to present the state of knowledge and,
perhaps more importantly, identify the gaps in our understanding of ice sheet hy-
drology. Many general concepts in hydrology and hydraulics are applicable to water
flow in glaciers. However, the unique situation of having the liquid phase flowing in
conduits of the solid phase of the same material, water, is not a commonly occurring
phenomena. This situation means that the heat exchange between the phases and
the resulting phase changes also have to be accounted for in the analysis. The fact
that the solidus in the pressure-temperature dependent phase diagram of water has
a negative slope provides further complications. Ice can thus melt or freeze from
both temperature and pressure variations or variations in both.

In order to provide details of the current understanding of water flow in con-
junction with deforming ice and to provide understanding for the development of
ideas and models, emphasis has been put on the mathematical treatments, which
are reproduced in detail. Qualitative results corroborating theory or, perhaps more
often, questioning the simplifications made in theory, are also given. The overarch-
ing problem with our knowledge of glacier hydrology is the gap between the local
theories of processes and the general flow of water in glaciers and ice sheets. Water
is often channelized in non-stationary conduits through the ice, features which due
to their minute size relative to the size of glaciers and ice sheets are difficult to
incorporate in spatially larger models. New work is emerging which attempts to
bridge the gap between the ice sheet spatial scale modelling and the details of our
process understanding.

It is our hope that his report will provide both a broad overview and an in-depth
understanding of glacier hydrology to be applied to ice sheets.

In Stockholm,
Peter Jansson, Jens-Ove Näslund, Lars Rodhe
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2. The glacier hydrological system

The hydrology of glaciers has been reviewed by several authors (Weertman, 1972;
Lang, 1987; Röthlisberger and Lang, 1987; Hooke, 1989; Hubbard and Nienow, 1997;
Fountain and Walder, 1998; Schneider, 2000; Boulton et al., 2001; Jansson et al.,
2003; Hock and Jansson, 2005; Hock et al., 2005). However, most reviews concern
specific topics and do not look at the wide spectrum of the topic, no reviews exist
where the current state of knowledge is viewed in the context of ice sheets.

The traditional view of the glacier hydrological system is similar to a combination
of a groundwater system and a limestone karst system of shafts and tunnels and
consist of supra-, en- and subglacial systems components. Figure 2.1 shows the
situation on a typical glacier in summer.

The surface can be divided into two parts, a lower part where the surface consists
of solid ice, referred to as the ablation area since a net loss of mass occurs in this
area, and where water will run off by mostly channelized surface flow and an upper
part, referred to as the accumulation area because a net mass gain occurs, where
the surface consists of permeable snow or firn, snow that has survived one year of
melting. The snow and firn pack is porous and allows water to percolate into the
glacier and accumulate at depth as firn water bodies, equivalent to groundwater
bodies whereas ice effectively is impermeable.

On an ice sheet, the snow covered area can be further subdivided into zones��������������yyyyyyyyyyyyyy 

supraglacial channels 

and ponds

unsaturated snow

and firn

bedrock subglacial cavities 
and conduits

Saturated firn

englacial pockets

and conduits

Figure 2.1. The hydrological system of a glacier consist of supra-, en- and subglacial
subsystems. After Röthlisberger and Lang (1987).
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Figure 2.2. The glacier surface can be divided into different facies starting with the cold
snow zone through the percolation zone to the wet snow zone. After Benson (1961), Müller
(1962) and Paterson (1994).

depending on their thermal conditions (Figure 2.2; Benson, 1961; Müller, 1962; Pa-
terson, 1994). At the center of ice sheets, an example of which is modern Greenland,
the snow pack is cold and no surface melting occurs during any part of the year.
This is the dry snow zone. At some point at lower elevation, surface melting can
occur because of warmer conditions caused by the atmospheric temperature lapse
rate. Hence there is a zone where percolation occurs increasingly wetting the upper
part of the snow pack at lower altitude since the potential for melt increases at lower
altitude. This zone is called the percolation zone. At some elevation the melting
is strong enough to completely warm the snow pack. The zone of completely tem-
perate snow is called the wet snow zone. These zones describe the conditions met
during parts of the season. During winter most of the ice sheet will be covered by
dry snow and development of the different zones initiate as air temperature rises
during spring and summer. This also means that the different zones start to de-
velop at lower altitude and move upglacier as the season progresses to reach their
uppermost position at the end of the melt season or when the annual temperature
cycle has reached maximum temperature. This also indicates that the surface flow
system will develop throughout the entire melt season with accompanying effects on
runoff and water input to a en- and subglacial drainage system.

The progressive development of different zones can also be followed on smaller
glaciers. In the year 2000, mapping of the transient snow lines on Storglaciären
Figure 2.3 reveals how the area of exposed ice is enlarged as the winter snow pack
thins. As the area of exposed ice increases, the runoff also changes, showing more
rapid response with increasing exposed area of ice (e.g. Hock et al., 2005). Hence, the
seasonality of the snow cover also introduces a seasonality in runoff characteristics
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500 m

Figure 2.3. The snow line retreats during the course of a melt season. Transient snow lines
were mapped during the year 2000 melt season and reveal the progressively larger area of
bare ice which allows faster runoff. (Jansson, unpublished data).

from glaciers and ice sheets.
Surface water can enter the en- and subglacial system through crevasses and

vertical shafts, moulins. If the ice is temperate it may also be slightly permeable.
Water that enters the glacier will flow through an englacial system for some time.
Commonly water reaches the bed within a couple of ice thicknesses in distance but
englacial drainage can occur over longer distances. Most often this is associated
with over-deepened basins.

The basal system can be described as either fast or slow response. In traditional
views the fast system can be thought of in terms of a tunnel system and the slow
in terms of a linked cavity system or basal water film. We will now describe these
systems and their characteristics in more detail.
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3. The supraglacial drainage
system

The supraglacial drainage system strongly affects the runoff from glaciers and drains
large quantities of water that is produced through surface melting and liquid precip-
itation and which may enter the en- and subglacial systems (e.g. Hock and Jansson,
2005; Hock et al., 2005). The water production varies on a seasonal basis by the
seasonal variation in temperature. In winter, snow covers all or most of a glacier,
a situation which was likely also true of the Weichselian ice sheet even during its
retreat phases. As melting starts, water will percolate into underlying cold snow and
refreeze. This process warms the snow cover until it is at the melting temperature
throughout. Only then will the snow pack release running water to runoff from the
glacier. Hence, there is a delay between positive temperature and an increase in
runoff from the snow by days or weeks.

The snow pack itself affects runoff after it has reached the melting point and
allows water to pass through. Water can only be generated at or very near the snow
or ice surface because that is where either liquid precipitation hits the glacier surface
or where the exchange in energy between the atmosphere and the glacier can occur.
Water thus generated must then percolate through the snow pack before running
off on the underlying ice surface. Runoff on the ice surface is channelized and hence
much faster, on the order of m/s, than the percolation velocity in snow which can
be on the order of m/day (Schneider, 2001). As the summer season progresses, the
snow cover decreases in both thickness and in terms of surface area coverage. As
the percolation distance, both vertically and horizontally, decreases, partly due to
the waning snow cover and partly through development of flow pathways through
the snow pack, the response time of runoff to changes in water production decreases
(Singh et al., 1997, 2000), the surface system becomes more responsive. This de-
velopment of the system from one dominated by percolation to one dominated by
channelized flow constitutes the major change in the drainage characteristics during
late spring and early summer. Figure 2.3 shows the seasonal development of the
areal snow cover on Storglaciären through weekly mappings of the snow line. One
striking feature is the rapid changes that occur during the early summer as is evident
from the development of the transient accumulation area ratio (AAR), calculated
as the ratio between the snow covered area to the total surface area of the glacier
for each survey.

11



500 km

Figure 3.1. Radarsat-1 ScanSAR image of West Greenland (approximate coverage is given
by the box on the map of Greenland) showing the different facies of the ice sheet from
the exposed ice in the ablation area (white area at the left center of the image) through
the superimposed ice, wet snow and percolation zones (darker shades of grey at the center
of the image) to the dry snow zone to the far right of the image. The grey areas to the
extreme right correspond to lower elevations on the eastern side of the ice divide. Figure
provided by I. Brown.

On the Greenland ice sheet the different facies occupy vast areas because of the
shallow slope of the ice surface at altitude. Figure 3.1 shows a section of the western
central part of the ice sheet east and south of Disco Bay and covers all facies from
the ice in the ablation area to the dry snow at the ice divide. The zones are 10–100
km wide.

During summer water generated on the ice surface is quickly discharged out
from the glacier through supraglacial streams or recharging the en- and subglacial
systems through crevasses and moulins. Water generated in the snow covered area
percolates through the snow and firn pack and may accumulate as a groundwater
aquifer at the firn-ice transition (ice being practically impermeable). This water
constitutes a temporary storage that is filled during the initial melting in late spring
and early summer, maintained during the summer season and released during the
fall when surface melting decreases. Water from this storage is thus responsible for
a substantial winter discharge from the glacier.

Water from the snow- and firn-covered areas is released either through runoff
into surface streams on the glacier or into crevasses, common to the accumulation
area. On the Greenland ice sheet, crevassed zones are commonplace in the ablation
area due to the effects of subglacial topography on the surface morphology of the
ice sheet Figure 3.2.

In the case of larger ice sheets, occurrence of surface bodies of water is common.
On the western part of the Greenland ice sheet surface lakes covering several square
km are common (Figure 3.3, Figures 3.4 and 3.5). These lakes have been found to be
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Figure 3.2. Example of surface morphology and crevassed zones (darker areas) near the
edge of the western Greenland Ice sheet near Russell Glacier. In the background, the
supraglacial lake of Figure 3.5 is visible. The approximate width of the depicted part of
the ice sheet front is 6 km.
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500 km

Figure 3.3. Surface lakes on the Greenland ice sheet.

perennial and thus contain water even during winter. The lakes are interconnected
by surface drainage and seem to be be stable features. It is possible that this is
due to the low surface slopes at higher elevations on the ice sheet which prevents
water flow to reach high enough flow speeds to generate enough frictional heat to
significantly deepen and steepen the channels in the system.

It seems reasonable to think that the hydrology of our past ice sheets would
contain the same features as we can currently see on Greenland and that the same
processes would be active. Like the current situation on Greenland, the characteris-
tics would have varied around the ice sheet perimeter since the differences between,
say, the southern and northern margins would have be significantly different with
more melt occurring in the south. During the retreat of the ice sheet it is also likely
that the surface profile was lowered, particularly while the terminus was calving as
was the case during retreat in the Baltic basin. A lower profile would make the
ablation area larger than during advance for any particular ice sheet configuration
and hence produce more runoff from melt. The surface hydrology of the waning
Weichselian ice sheet therefore sported similar hydrological systems to those met on
the Greenland ice sheet but with flow rates significantly larger.
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Figure 3.4. Radarsat-1 ScanSAR image of West Greenland showing a section of the ice
sheet from the ice in the ablation area to the left through the superimposed ice area to the
wet snow zone to the right. Lakes can be seen as black spots because the radar waves are
absorbed by liquid water. Some of the lakes have ice floes remaining on the lake surface.
Figure provided by I. Brown.
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Figure 3.5. A partially frozen supraglacial lake near Russell Glacier, Western Greenland
(10 September, 2005, photo: Peter Jansson).
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4. The englacial drainage system

4.1 The general flow of water in glaciers
The general conditions for water flow in a glacier was investigated by Shreve (1972)
who applied a simple hydraulic model of water-filled pipes to a glacier. In this
model we assume pipes are cylindrical and that the closure rate of the cylinder
occurs through deformation according to Glen’s empirical flow law for ice

ε̇ = (τ/B)n (4.1)

where ε̇ is the strain rate, τ is the shear stress and B and n are the empirical
constants. n is typically set to a value of 3 (e.g. Hooke, 1981). By dimensional
analysis Shreve obtained the following expression for the pressure in the conduit:

Pw = Pi + KnB

∣∣∣∣
ṙ −M

r

∣∣∣∣
1/n

sign (ṙ −M) (4.2)

where Pw and Pi are the pressures in the water and ice, respectively, K is a function
of the general rate of deformation of the ice beyond the influence of the conduit (if
no deformation occurs K = 1; Nye, 1953, p. 482), r is the radius of the conduit and ṙ
is the rate of change of the conduit radius and M is the melt rate of the passage wall.
For simplicity, Shreve also made the assumption that Pi could be approximated by
the weight of the overlying ice as

Pi = ρig (H − z) (4.3)

where ρi is the density of ice, g is the gravitational acceleration, H is the ice thickness
and z is the height above the bed of the conduit. Since water moves in the direction
of the negative gradient of the potential, Φ, which is given by

Φ = Φ0 + Pw + ρwgz (4.4)

where ρw is the density of water. The potential in the system of deforming conduits
can be obtained by inserting (4.2) and (4.3) into Equation (4.4):

Φ = Φ0 + ρigH + (ρw − ρi) gz + KnB

∣∣∣∣
ṙ −M

r

∣∣∣∣
1/n

sign (ṙ −M) . (4.5)
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���������������
Figure 4.1. By calculating the potential equipotential surfaces, we can plot the general
flow of water through the glacier, here in a longitudinal section. After Hooke (1989).

In the englacial system water flow will be perpendicular to the equipotential surfaces.
We can estimate the orientation of these surfaces by first differentiating Equation
(4.5) with respect to an arbitrary direction, S,

∂Φ

∂S
= ρig

∂ (H − z)

∂S
+ ρwg

∂z

∂S
(4.6)

Since the conditions on an equipotential surface is that ∂Φ/∂S = 0, i.e. no change
in potential with distance, we can determine the orientations of such planes as

− (ρw − ρi)
∂z

∂S
= ρi

∂H

∂S
(4.7)

The slope of a the direction S in the x-direction is given by dz/dx. We can therefore
multiply 4.7 by dS/dx and rearrange

∂z

∂x
=

ρi

ρw − ρi

∂H

∂x
(4.8)

By inserting values for the densities we get that

∂z

∂x
= −11 tan−1

(
∂H

∂x

)
(4.9)

or that the slope of an equipotential plane (dz/dx) is −11 times the surface slope
(dH/dx) and sloping upglacier (Figure 4.1).

Shreve’s approach involves a stable ice and water pressure. In reality water pres-
sures vary depending on input from melt and rain as we will se later. However, the
idea is probably still valid for longer term perspectives where the average conditions
in the hydraulic system is considered.
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Figure 4.2. Junction between four water veins producing a tetrahedral shape void. (after
Nye and Frank, 1973)

4.2 Water flow through ice

Water flow through ice can possibly occur as either Darcian flow through a perme-
able medium or through larger discrete conduits. We will start by reviewing the
possibility of flow through the ice itself.

The extent to which ice is permeable and can can transmit water has been
debated. Steineman (1958a,b) suggested that water could exist in temperate ice only
in tetrahedral pockets and that water flow through ice was negligible. Numerous
early discoverers (cited by Lliboutry, 1971) found that dye poured on the glacier
surface could penetrate in between ice crystals in surface ice and in ice in tension
such as in a crevasse field but not in regions of compression and on ice tunnel
walls (where ice is in compression). This indicated that the occurrence of water
pathways was related to the stresses in the ice. Lliboutry (1971), Nye and Mae
(1972) and Nye and Frank (1973) showed how small conduits could exist between
individual ice crystals, so called three-grain intersections (Figure 4.2). In addition,
water can also collect in tetrahedral pockets where four grains intersect. The three-
grain intersections and the tetrahedral junctions thus form a network of passages
that would allow water to move freely through the temperate ice.

The theoretical equilibrium position of the water phase relative to the grain
structure is governed by the relative surface energies of ice–ice and ice–water inter-
faces. The geometry of the water inclusions can be defined by the dihedral angle ϕ
measured in the liquid between the three surfaces solid–solid, solid–liquid, liquid–
solid (Figure 4.3). We also define the specific free energies between a solid–solid
interface (grain boundary) and a solid–liquid interface as γss and γsl, respectively.
Grain boundaries makes equal angles (π− 1/2ϕ) with the two solid–liquid surfaces.
We can thus establish

2 cos
1

2
ϕ =

γss

γsl

(4.10)

as a general condition for the geometry.
Grain boundaries at triple junctions meet at 120 degree under equilibrium con-

ditions. This produces veins with equilateral curvilinear triangular cross-sections
(Figure 4.4). By applying the following four principles,

19



Figure 4.3. Geometry of a unction between two grains and a water vein. (after Nye and
Frank, 1973)

Ice

Ice

IceWater

Figure 4.4. Equilateral curvilinear cross-section of a three grain intersection vein (after
Nye and Frank, 1973)

(a) the condition formulated in Equation (4.10) on the dihedral angle must be
satisfied at all edges where the liquid is in contact with a grain boundary

(b) the melting point must be the same at all points of the solid-liquid interface,
and therefore the sum of the principal curvatures of the interface must be
constant

(c) the interface must be stable against small displacements

(d) of alternative configurations all satisfying (a), (b) and (c), the one with the
lowest melting point is preferred

Nye and Frank (1973) established Table 4.1. Measurements by Ketcham and Hobbs
(1969) indicate that ϕ = 20◦ ± 10◦ which implies that the stable form in ice should
be three-grain intersection channels coupled together by non-spherical-faced concave
tetrahedra (Table 4.1; Figure 4.2). Thus temperate ice can be considered permeable
contrary to Steineman’s conclusions.

The studies by Ketcham and Hobbs (1969) and Nye and Frank (1973) are based
on calculations for pure water. Glacier ice contains impurities which may affect
these results although observations by the authors corroborate theory. To estimate
the flow through a vein system we follow Nye and Frank (1973) and assume that
water pressure in he veins is close to the hydrostatic pressure in the surrounding
ice. We can then approximate the water pressure by ρigd, where ρi is the density
of ice including the liquid water content, g is the gravitational acceleration, and
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Table 4.1.
Summary of liquid inclusions as a function of relative surface energy and dihedral angle.

γss/γsl ϕ position of liquid
∞ — }

Films, veins and tetrahedra
2 0◦ }

Veins and non-spherical-faced concave tetrahedra√
3 60◦ }

Spherical-faced concave tetrahedra, flat-faced
tetrahedra√

8/3 70◦ 32′ }
Spherical-faced convex tetrahedra, spheres anywhere

0 180◦

d is the depth from the ice surface. This pressure is less than ρwgd which would
give hydrostatic equilibrium and hence there will be a pressure gradient dP/dx =
(ρw − ρi) g which drives water downwards. Frank (1968) used a model in which
crystals are defined as semi-regular truncated octahedra with sides equal to

√
2a/4.

The liquid water content f can be related to the mean radius of the capillary channels
R and the mean grain diameter a as f = 6π

√
2 (R/a)2. Four channels, inclined

45 degree, cross an area a2 parallel to the square faces. The water flux q under the
effect of the pressure gradient can then be expressed as

q =
πR4

23/2a2
(ρw − ρi) g =

(ρw − ρi) gf 2a2

χη
(4.11)

(Frank, 1968) where f is the fractional volume occupied by water, a is the grain
diameter, η is the viscosity of water and χ is a number that characterizes vein cross-
section. Frank (1968) assigned a value of 640 for a circular cross-section but values
of 1500–2000 would be more appropriate for the concave triangular cross-sections of
the veins (Nye and Frank, 1973). Inserting values into Equation (5.3) yields fluxes of
0.009–90 cm year−1 for a range of f -values of 10−5–10−3. Assuming that f < 10−3,
which seems justifiable, this can be translated into a contribution to the base of the
glacier of about 1 m of water per year. The transfer time for water to reach the bed
from the surface will be O(10–100) years.

However, Lliboutry (1971) argued that Nye and Frank’s (1973) calculation leads
to inconsistencies. First, Lliboutry argued that with the flow rates given by f =
10−3–10−2, the heat dissipated from the water would be ρwgQdt and would increase
the radius by dR as

ρiL2πRdR = ρw (ρw − ρi) g2πR2dt/8η (4.12)

or by rearranging
dR

dt
=

R3

α
(4.13)
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where
α =

16ρiηL

ρw (ρw − ρi) g2
(4.14)

Integrating Equation (4.13) with respect to t and assuming an initial radius R0

yields
1

2R2
0

− 1

2R2
=

t

α
(4.15)

which shows that R → ∞ and the glacier would be melted after t = α/2R2
0; for

R0 = 60 µm, t = 4 years. For this process to remain negligible on a real glacier
α/R2

0 > 500 years or R0 < 5 µm and f < 7 × 10−6. Lliboutry (1971) therefore
argued that some factor must be missing in Nye and Frank’s (1973) theory. He
identified the role of air bubbles as a likely contributor since glacier ice contains
∼1–2% air by volume and that bubbles because of the recrystallization processes
during deformation would migrate towards crystal boundaries. The capillary forces
at the air-water interface can suspend the column of water since it is larger than
(ρw − ρi) g∆z, where ∆z is the vertical height between the upper and lower meniscus
of a bubble in a conduit. However, if one passage is blocked, water could find some
other way to circumvent the blockage. Bubbles hence reduce the permeability but
do not necessarily render the ice impermeable.

The deformation of ice causes constant recrystallization of the ice also at the grain
boundaries. The processes at the grain boundaries involve melting and refreezing
in response to locally very high stresses. Lliboutry (1971) thus argue that the
water at the grain boundary is not a film with Poiseuille flow characteristics but
rather a liquid-like transition layer (e.g. Drost-Hansen, 1967; Jellinek, 1967). The
effect is that although liquid, the layer may in places be too thin to support flow.
The recrystallization can also convert passages to inclusions, further reducing the
permeability of the ice. Lliboutry thus concludes that ice may be permeable on the
scale of a few grains but will when considering the bulk be practically impermeable
and cannot be modeled as a Darcian flow type medium. With R = 5 µm the water
percolating through the glacier is 0.012 cm year−1. The deformational processes at
the scale of individual grains thus determine the flow by causing opening and closure
of conduits.

Raymond and Harrison (1975) studied ice samples from Blue Glacier, USA, and
found conduits with diameter of millimeter scale. In one sample they also observed
upward branching. the conduits were irregular from the bounding crystals. They
also argue that the density of such conduits may be several per square meter near the
surface of the glacier. Observations of centimeter-size conduits spouting water into
crevasses are common (e.g. Schneider, 2001). Since water flow tends to concentrate
into larger conduits (Röthlisberger, 1972; Shreve, 1972), Raymond and Harrison
(1975) therefore argue that there may be an upwards branching system that can
transport water from the surface to the bed in temperate glaciers.

The permeability of the glacier ice is thus very small and can be neglected when
comparing to water fluxes transmitted through crevasses and moulins and to water
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production from melting in other locations, e.g. subglacial melting from geothermal
heat. Since most ice sheets, and the past ice sheets are no exceptions, consist of
ice at sub-freezing temperature, we will not consider this process further. Whereas
the processes may be important on temperate glaciers for establishing a connection
between the surface and basal systems, the cold ice prevents establishment of such
slow-flow systems to be established. We need to look at larger scale systems.

4.3 The coupling between surface runoff and en-
and sub-glacial drainage

The englacial drainage system consists of tunnels and other water passage ways that
transmit water from the surface to the bed or the glacier margin.

Water enters glaciers through crevasses and moulins. Moulins are formed when
surface streams are intersected by crevasses. As the crevasses close, the frictional
heat from the running water maintains open channels. As new crevasses form up-
stream of older crevasses, new moulins continuously form in new locations (Figure
4.5). Although the process of formation of the moulin itself is clear, it is not clear
how water entering new crevasses connect to already existing englacial conduits
down-stream. With the exception of Holmlund and Hooke (1983); Reynaud (1987)
and Holmlund (1988), very little research has been made to investigate the shape
and complexity of the englacial drainage.

Holmlund (1988) used repeated mapping of ice structures on the surface of Stor-
glaciären to create a layered model of the upper part of the englacial drainage system
(Figure 4.6). This layered model clearly shows how a system of moulins are inter-
connected along the former crevasse plane. Holmlund and Hooke (1983); Holmlund
(1988) also descended into moulins and found that the 30–40 m vertical shaft ended
in a plunge pool with a highly sinuous channel descending at 45◦ from the vertical.
This angle slightly disagrees with the 90◦−11α = 33◦ angle of the local equipotential
surfaces predicted by Shreve’s 1972 theory. It thus seems that moulins are main-
tained down to a level roughly corresponding to the maximum depth of crevasses
(the boundary where ice becomes plastic due to the overburden pressure) and that
water flow continues in conduits sloping in the direction of maximum potential gra-
dient through the ice to reach the bottom somewhere down-stream of the moulin.
The discrepancy in angle of the descending channel between theory and observation
may be the result between an imbalance between creep closure and melting due to
viscous dissipation of heat. Based on subglacial water pressure measurements made
in the area (e.g. Jansson, 1996), the englacial channels must harbor open channel
flow along at least part of their length during low water pressure.

The issue of how connections between the surface and the bed are established
has not been resolved. The situation is perhaps worse when considering moulins
and englacial draiange to the bed formed in cold ice, a situation which commonly
seems to be the case on the Greenland ice sheet (Thomsen et al., 1989). Establishing
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Figure 4.5. View over an area of moulins on Storglaciären. Open crevasses and crevasse
traces are clearly visible and dark lines or bands on the ice surface. The dark semi-circular
features at the end of the tortous surface streams are moulins. Several moulins have been
formed along the same crevasse (trace). Photo: Johan Kleman, 19 Aug. 1981.
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Figure 4.6. A moulin system on Storglaciären modeled by consecutive (1-year interval)
surface mapping of ice structures. After Holmlund (1988).
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processes that can establish a connection between surface and bed through thick ice
and also operate under cold conditions are thus necessary

Alley et al. (2005) used an approach by Rubin (1995) considering magma-filled
cracks through brittle crustal rocks to investigate the possibility for propagation of
water-filled crevasses through cold ice. Weertman (1973), van der Veen (1998a), and
Scambos et al. (2000) have shown that glacial deviatoric stresses were not sufficient
to overcome hydrostatic stresses. Crevasses could hence not propagate to greater
depths without being water-filled. If the crevasse was not filled to the surface, it
would eventually be pinched off and propagate away as was described by Weertman
(1973) and thus lose its surface connection. In such instances no connection can be
established between surface and bed. Alley et al. (2005) argue that the sustained
high water level in supraglacial lakes such as those seen in Figures 3.3 and 3.5 are
key to providing the necessary over-pressure for the system to work.

We start by considering a water filled crack that extends down-wards (x-direction)
from the ice surface a distance d. The opening of the crack is 2w in response to an
internal pressure ∆P (x) perpendicular (y-direction) to the crack direction (z)

∆P (x) = P (x)− σ′y(x)− Pct (4.16)

where Pct is the dynamic drop in water pressure associated with crack propagation,
σ′y is the far-field deviatoric stress (negative if tensile), and P (x) is the difference
between the fluid pressure in the crack and the hydrostatic pressure in the ice.
P (x) = ∆ρgx, where the density difference ∆ρ = ρwater − ρice. We can approximate
the half-width w of the crack at x = 0 by

w(x = 0) =
∆P

M
d (4.17)

(Rubin, 1995) where M = µ/(1 − ν ′) is the elastic stiffness, µ is the elastic shear
modulus, and ν ′ is Poission’s ratio. Following (Rubin, 1995) we assume linear elastic
fracture mechanics and approximate the stress intensity factor KI as

KI = ∆P
√

d (4.18)

This implicitly assumes infinite crack length which obviously is not realistic (Alley
et al., 2005). This can be accommodated by applying a shape factor. Alley et al.
(2005) points out that this factor is of order one or even close to one to be neglected
their approach. To further simplify the problem Alley et al. (2005), following Rubin
(1995), divide the problem into two. They first consider a shallow region where
the buoyancy term P (x) can be neglected and a deeper region where it becomes
dominant. Alley et al. (2005) set the depth of this change to 100 m or more.

By applying a simple criterion for crack propagation, KI exceeds the fracture
toughness KIc, the crack volume will increase, in absence of freezing, as long as the
crack propagates. The volume can be approximated by a rectangular parallelopiped
(more complex shapes do not significantly improve the results)

V = 2wd (4.19)
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The rate of volume increase due to crack deepening at a rate u = ∂d/∂t in the
shallow region, where the deviatoric stress dominates, is

(
∂V

∂t

)
= −4σ′ydu

M
(4.20)

σ′y is held constant.
We also need to consider the thermal aspect of the problem.If we consider ice at

its initial temperature T0 and water at its pressure dependent freezing temperature
Tpmp we can estimate the thickness of the frozen on layer δ(x) during initial stages
of crack propagation

δ(x) = 2λ
√

κtf (4.21)

where
λ =

C(Tpmp − T0)√
πL

(4.22)

where κ is the thermal diffusivity, C is the specific heat and L is the latent heat of
ice, tf is the time since the onset of freezing at x. If we simplify by by setting u
constant,Alley et al. (2005) admits this is an over-simplification, the total freezing
rate in the crack can be estimated by integrating the time rate of change of δ(x) in
Equation (4.21) from the surface to the depth d

(
∂V

∂t

)

freezing

= −2λ
√

κud (4.23)

For a crack to propagate to depth, it must remain connected to a supply of water.
In order for propagation to occur the inflow must offset the freezing and new volume
created by the crack propagation. This requires a drop in potential along the crack
propagation direction. Most of the potential drop along a crack occurs very close to
the crack tip due to the cubic dependence of laminar fluid flow on crack aperture.

To improve this Alley et al. (2005) make two simplifying assumptions to asses
water inflow: (1) water flow in through the full width 2w and not the reduced width
2w − 2δ and (2) the potential drop forcing flow towards the crack tip is distributed
along the entire crack and not concentrated to the crack tip. These assumptions
lead to quicker crack propagation than real cracks. We also requiring that the crack
propagates as quickly as it can, the pressure drop Pct must be such that KI = KIc

exactly. We now combine Equation (4.16) and Equation (4.18) we get

Pct = −σ′y −
KIc√

d
(4.24)

A limitation of the propagation speed is given by the inflow of fluid, which can be
given as a flux per unit length (laminar flow between parallel plates, e.g. Rubin,
1995)

Q =
G(2w)3

12η
(4.25)
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where
G =

Pct

d
(4.26)

is the magnitude of the potential driving the fluid flow and η is the viscosity of
water.

We can obtain the propagation velocity for which the enlargement of the crack
equals the freezing rate by equating Equations (4.20) and (4.23)

u = −
(

λM

−2σ′y

)2
κ

d
(4.27)

The crack-deepening velocity can be estimated for the situation where fluid inflow is
just sufficient to fill the space created by the crack opening. We combine Equations
(4.20) and (4.25) and solve for the velocity

u = −G(2w)3M

48σ′ydη
(4.28)

We can then modify Equation (4.28) by taking w from Equation (4.17) with ∆P ≈
−σ′y(x) and G from Equations (4.26) and (4.24) with Pct > 0, which means −σ′y >

KIc/
√

d so that the crack is propagating,

u = σ′y
2

(
−σ′y −

KIc√
d

)
d

6ηM2
(4.29)

Equation (4.29) specifies a curve u(σ′y) for any depth d (Figure 4.7). For stress
magnitudes higher than this curve, the crack is wide enough to allow water inflow to
balance the volume increase from crack opening, thus maintaining the water-filled
condition. Equation (4.27) also defines a curve in Figure 4.7 where higher stresses
than the curve yield opening rates that exceed the freezing rate. Because the curves
intersect, there is a minimum stress magnitude −σ′ymin necessary for propagation.
We can solve for this stress by equating Equations (4.27) and (4.29)

σ′ymin
4

(
−σ′ymin −

KIc√
d

)
− 3M4κηλ3

2d2
= 0 (4.30)

or by substituting constants (KIc = (1 − 4) × 105 Pa m1/2 (van der Veen, 1998b),
M = 5× 109 Pa, κ = 1.18× 10−6 m2 s,−1 η = 1.8× 10−3 Pa s, C = 2093 J kg −1K,−1

L = 3.3× 105 J kg)−1

σ′ymin
4

(
−σ′ymin − 1.5× 105

√
d

)
= −2.7× 1027

d2
(4.31)

Alley et al. (2005) study thus shows that cracks that form under sufficient tensile
stresses and with ample water supply can continue to grow through the ice to reach
the bed. Provided the bed is at the melting point, subglacial tunnels can form
through the Walder instability (Walder, 1982). Another important aspect of Alley
et al.’s study is that crevasses can be maintained open at depth in a a glacier provided
that the supply of water and the pressure within the water is maintained.
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Figure 4.7. Schematic graph of the solution space of crack propagation speed u vs. mag-
nityude of the tensile deviatoric stress −σ′y as represented by Equations 4.27 and 4.29.

4.4 Englacial flow in large conduits

Several studies have described englacial drainage based on water pressure measure-
ments in bore holes or bore hole video observations (Hodge, 1976, 1979; Engelhardt,
1978; Hantz and Lliboutry, 1983; Hooke and Pohjola, 1994; Fountain, 1994; Foun-
tain et al., 2005a,b). Englacial drainage in over-deepened basins occurs because of
the problems that arise when water is forced to flow uphill at the down-glacier end
of the over-deepening. As water flows uphill, it must gain potential energy. The
energy used for this is the heat contained in the water. However, subglacial water is
at or very near, one or a few tenths of a degree from, the freezing point. As energy is
drawn from the water, it must freeze. Basal tunnels on upslope beds will therefore be
prone to freeze shut and hence such tunnels are difficult to maintain. This has been
taken as a reason for the absence of observations of subglacial channelized drainage
systems beneath glaciers in over-deepened basins. Tunnels in the ice sloping down
in the direction of flow may instead be stable since they will be maintained with
a slope in the down-glacier direction that allows frictional energy released by the
running water to counteract closure from the ice pressure in the surrounding ice.

Hooke and Pohjola (1994) used borehole drainage depths to show that bore holes
in the over-deepened basin of Storglaciären drained englacially. They further found
that 66% of all bore holes drilled drained englacially and used this to estimate the
existence of c. 800 channels across the glacier width of 1 km to explain the degree of
success in hitting the drainage ways through drilling. Fountain et al. (2005a) found
even higher success rates during drilling on Storglaciären in 2001–2003, reaching
80% success rate in hitting englacial drainage. Hooke (1991), Hooke and Pohjola
(1994), Fountain et al. (2005a), Fountain et al. (2005b) and Jansson (unpublished
data) further found that the drainage characteristics of the overdeepened basin was
characterized by water pressures at or near overburden pressure throughout the year
and that the hydraulic gradient of the system was very low. Hence flow rates were
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also low.
Pohjola (1993) used bore hole video observations in bore holes on Storglaciären to

conclude that channels where similar to R-channels. Subsequent studies by Harper
and Humphrey (1995) and Copland et al. (1997) have shown similar features on
other glaciers.

The observations discussed above led Fountain and Walder (1998) to propose a
theory for the formation of englacial tunnels in over-deepened basins (Figure 4.8).
Their view was that channels start on the surface of the glacier and gradually melt
themselves down into the ice. In the initial phase the channels can deepen fast
because they can steepen and allow the water to release frictional heat at an ac-
celerating rate. At some stage the stream will be so deeply entrenched that the
overlying ice will close above the water level of the channel and form a tunnel. The
tunnel can deepen and steepen until it hits the bed at the downglacier end of the
over-deepened basin. Once this level has been reached, the frictional energy in the
water can only deepen the tunnel upglacier of the lip of the over-deepening, resulting
in a gradual decrease in the slope of the tunnel. This lowering can continue until the
tunnel reaches a slope where the frictional energy released from the flowing water
yields a melt rate on the conduit walls that balances the closure rate from plastic
deformation of surrounding ice. Thus, a stable tunnel has been established. Foun-
tain and Walder (1998) suggested that water pressure in englacial conduits should
be atmospheric as long as it is above the lowest point of the overdeepening. The
conduits cut down into the ice as melting only occurs in the water-filled part of the
conduits. Fountain and Walder (1998) theory explains englacial flow through the
overdeepening with the consequence of low sediment load in that water. However,
water still has the possibility to pick up sediment from the glacier bed at the down-
stream margin of the overdeepening. Röthlisberger and Lang’s (1987) concept on the
other hand, shows that englacial conduits might never reach the glacier bed at the
downstream margin of overdeepenings. Both theories together might explain water
flow through overdeepenings on englacial paths and low sediment load in Nordjåkk.

Fountain et al. (2005a,b) also used bore hole video observations on Storglaciären
and found that the englacial drainage occurred through englacial crevasses (Figure
4.9). Out of 48 bore holes 76% of the holes intersected a hydraulically connected
englacial feature. A total of 36 fracture-like features were observed. The occurrence
of such crevasses could explain the high success rates in hitting englacial drainage
since a crevasse is a planar feature and R-channels a discrete linear feature. The
crevasses all had steep plunges (∼ 70◦), which increases the surface exposed to
intersection with a bore hole, and narrow openings (∼ 40 mm). The system was
found to have be low gradient and thus exhibit low flow velocities (∼ 10 mms)−1. The
depth of the crevasses varied substantially, from near the glacier surface (probably
surface crevasses) to 96% of local ice depth, the deepest crevasse found at 131 mbelow
the surface. They could not explain the origin of the crevasses, some of which seemed
very fresh in appearance.

The crevasses observed and described for the first time on Storglaciären by (Foun-
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Figure 4.8. Model of the formation of englacial conduits in an over-deepened basin. After
Fountain and Walder (1998). A channel (1) melts down into the ice from viscous dissipation
of heat. It maintains a certain slope until it encounters the bed at the down-stream end
of the over-deepening (2) and that end becomes pinned. Since the down-glacier end is not
free to be lowered, the channel can only lower itself upstream of the pinning point, thus
lowering its gradient at the same time (3).

Figure 4.9. Frame capture of an englacial crevasse from a borehole video from within
Storglaciären. The vertical borehole is visible as the circular feature at the center of the
image. The crack dips steeply towards the lower left corner of the image.
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tain et al., 2005a,b) may have been seen in borehole videos from other glaciers but
have not been recognized as part of a drainage system. There has also been debated
whether crevasses can occur at great depth in glaciers and ice sheets because of the
plasticity of ice under high pressure. A crevasse constitutes a brittle failure of ice
under either low stress and low pressure or high stress and high pressure. Stor-
glaciären is not a fast flowing glacier. Hence the occurrence of crevasses at depth
is puzzling. Furthermore, the lack of observations of englacial crevasses in borehole
videos taken by Pohjola (1993) in 1990 and 1991 remains unanswered. Jansson et al.
(in prep.) have identified that ice velocity on Storglaciären has increased between
1982–84 and 2001. It is possible that the crevassing observed in 2001–2003 is a
result of this acceleration although the increased velocity is till small by comparison
to most glaciers in the world. Hence no satisfactory conclusion can yet be drawn on
the origin of the englacial crevasse system.

In summary, the englacial drainage system can consist of a combination of tun-
nels and crevasses. It seems likely that crevasse systems are specific to over-deepened
basins in the glacier topography. In other parts of the glacier, water is transmit-
ted from the surface drainage system through straight or winding tunnels to the
subglacial system.
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5. The subglacial hydrological
system

5.1 The general flow of water in glaciers

Traces of subglacial drainage paths, such as eskers and erosional features, can often
be found at unexpected locations in the landscape, e.g. on valley sides rather than
valley floors. The reason for this is the effects of the combination of bed topography
and the equipotential field which drives the water. Shreve’s (1972) approach to
glacier drainage can also be applied at the base of the glacier, i.e. for the drainage
along the bed of the glacier. In absence of ice, the potential field, determined by
Equation (4.4) reduces to Φ = Φ0 + ρwgz since the water pressure in surface flowing
water can be neglected. Hence the potential energy drives water flow across the
landscape.

In a landscape covered by ice the "topography" forcing the water will be deter-
mined by the intersection between equipotential field and the topography and flow
will occur on the bed topography in the direction perpendicular to line of intersec-
tion of the equipotential planes and the bed topography. As an example Schneider
(2001) has calculated the potential field for Storglaciären given the existing surface
and bed topographies (Figure 5.1). In Figure 5.2 we can see the trajectory (A→B)
originating in the upper part of the glacier and emerging at the terminus both as
it would flow in the basal topography (dashed line) and as it would flow under a
potential field (solid line). It is clear from this figure that water flow paths will
deviate from the path forced by topography alone.A dotted line also shows a back
calculation of where water exiting the glacier in the north river would originate.It
is also clear that water pathways could cling to the valley sides (cf. Figure 5.2).

The question of whether water flows en- or subglacially through overdeepenings
is still unsolved. The areal distribution of zones in which critical adverse slope
is reached is difficult to determine because the conduit slope does not necessarily
equal the bed slope. If we knew the location and direction of such conduits, we could
use bed slope to calculate conduit slope. The theoretical flow path normal to the
maximum potential gradient up-glacier from Nordjåkk is shown in Figure 5.2a (bold
line). Schneider calculated the ratio of surface slope to bed slope along this line and
found one major zone in which adverse bed slope is more than 1.3 times surface slope
(Figure 5.3b). The direction of englacial and subglacial conduits may be estimated
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Figure 5.1. The surface and bed topography of Storglaciären. The map also shows the 2
major streams draining the glacier.
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Figure 5.2. Equipotential lines on Storglaciären. Potential was calculated according to
Equation (4.4), the potential is given in 106 N m−2. Surface elevation is from Holmlund
(1996) and bottom topography from Eriksson et al. (1993). The bold lines show theoretical
flow path along maximum potential gradient from the injection point (A) to the terminal
stream (B). The vertical profile shows surface and bottom elevation and potential lines
along the bold line in the horizontal view of Storglaciären. The dashed line shows the
gradient of steepest slope along the glacier bed, and the dotted line is theoretical flow path
along maximum potential gradient up-glacier from Nordjåkk. Potential was calculated by
Equation (4.4). From Schneider (2001).
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Figure 5.3. Areas of steep adverse bed slope in overdeepenings of Storglaciären. The
ratio of surface slope to bed slope was calculated according to Röthlisberger and Lang
(1987), critical values are 1.3 and 2.0 depending on air saturation in water. Thin lines
are potential contours at the glacier bed (same values as in Figure 5.2) and dotted lines
show bed topography. The bold line indicates maximum potential gradient up-glacier from
Nordjåkk. From Schneider (2001).

by potential gradient in the glacier. From equipotential lines (Figure 5.3a), we can
infer that the main direction of englacial and subglacial channels on Storglaciären
is from west to east, the main direction of surface slope and hence ice flow, except
within a narrow zone along the glacier margin. Accordingly, areal distribution of
zones with critical slope ratio may be roughly estimated by calculating the ratio
of surface slope to bed slope in west-east direction (Figure 5.3a). Critical surface-
bed-slope ratio is most pronounced up-glacier of the riegel due to steep adverse bed
slope. In the northern part of the glacier, areas with large bed-surface slope ratio
are more frequent than in the southern part. Hooke et al. (1988) and Hooke and
Pohjola (1994) report on water up-welling from subglacial sources into a borehole
in the same area, which indicates an upward directed pressure gradient. The above
analysis may explain englacial flow out of overdeepenings. However, the theory does
not explain why water flow should occur along englacial paths in the center of the
overdeepenings.
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5.2 The subglacial water film
The importance of subglacial water on the dynamics of glaciers has been recognized
since the studies of Müller and Iken (1973); Hodge (1974); Iken (1977, 1981); Iken et
al. (1983); Iken and Bindscahdler (1986); Jansson (1995) who identified that glacier
velocity relates to glacier sliding. Weertman (1962) proposed the existence of a
thin water film at the interface between ice and bedrock. The role of the film was
threefold

(a) water needs to flow from high pressure locations to low pressure locations in
the regelation process (Tyndall and Huxley, 1857; Deeley and Parr, 1914)

(b) water prohibits molecular forces to act between the glacier ice and the bedrock
and thus reduces drag

(c) water can be transported beneath the glacier on a wide scale

Nye (1973) estimated the thickness of this layer by studying the requirements for
regelation. First we define the bed as smoothly undulating according to

z0 = A sin kx (5.1)

where A is the amplitude of the bedrock undulations, assumed small compared with
the wavelength 2π/k. The volume of new ice formed from regelation in a portion
of the bed ds is wn(x)ds, where wn(x) is the ice velocity normal to the bed surface.
The volume of water extracted from the water film is then given by (ρi/ρw) wn(x)ds.
Because of the small amplitude ds ≈ dx so that

dq = −
(

ρi

ρw

)
wn(x)dx (5.2)

where q is the water flux.By applying the formula for viscous flow between parallel
plates we get

q = −t3(x)

12ηw

dp

dx
(5.3)

where t(x) is the water layer thickness, ηw is the viscosity of water and p(x) is the
pressure. By applying Equations (26) and (32) in Nye (1969), where Nye derived a
solution for ice flow over a wavy bed,

wn(x) = −UA
k3

k2∗ + k2
cos kx (5.4)

whereU is the general flow velocity of the glacier ice, k2
∗ = ρiL0/4CKηi where L0 is

the latent heat of fusion for ice, C is the depression of the melting point by pressure
(= 0.074 K MPa−1 for air free water) K is the mean thermal conductivity of ice and
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Figure 5.4. Basal water film. See text for discussion. After Nye (1973).

rock and ηi is a linear ice viscosity (Nye approximates ice by a Newtonian fluid),
and

p(x) = 2UA
k2
∗k

2

k2∗ + k2
cos kx (5.5)

By inserting Equation (5.4) into Equation (5.2) and integrating to obtain q and
differentiating Equation (5.5) with respect to x to obtain an expression for dp/dx
and inserting into Equation (5.3), allows us to equate the integrated Equation (5.2)
and Equation (5.3) to yield

UA
k2

k2∗ + k2
sin kx

(
ρi

ρw

− t3(x)ηik
2
∗k

6ηw

)
= 0 (5.6)

From this we see that t(x) is a constant and independent from x, U , and A and
given by

t3 =
6ρiηw

ρwηik2∗k
(5.7)

or, by substituting for k∗ and setting k = 2π/λ, where λ is the wavelength of the
sinusoidal rock,

t =

(
12ηwCKλ

πρwL0

)1/3

(5.8)

This result shows several interesting points. The the layer thickness is independent
of dx and hence the water film should not have any spatial variation in thickness.
The thickness is also independent of the ice viscosity ηi, the ice velocity U , and of
the bed rock amplitude A. Since the relevant wavelengths λ found on the glacier
bed is from cm to m-scale, the layer thickness is ∼ 1 µm.

Weertman (1962) argues for a melt water film 1 mm thick or possibly larger.
This film would then be able to act as a means for transporting water downglacier,
(c). Nye (1973) discussed qualitatively the effects of increasing the layer thickness
derived above by some small increment (see Figure 5.4).

If we increase the thickness of the melt water film by some small amount and
also introduce sinks and sources for heat to be able to produce a new steady state.
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The applied stress will remain constant and hence also he water pressure and the
temperature; the latter because the water will remain at the pressure melting point
everywhere. Since the pressure gradients are also the same but the thickness is
increased, the water flow will be faster. The water flow depends on the melting at
locations such as P and freezing at locations such as Q in Figure 5.4. The melt and
refreezing rates must be larger to accommodate this increased flow of water and as
a result the heat supplied at P and extracted at Q must also increase. If the source
and sink is turned off we will get freezing at P and melting at Q. As a result, the
water film will become tinner at P and thicker at Q. Nye (1973) points out that
to continue the discussion, small perturbation theory no longer applies. He argues
that the water film should regain its former thickness in both places, at Q by either
forming a water inclusion (which has also been observed in regelation under high
stresses (Nye, 1967)) or by flow of water out from the location in a different direction
than downglacier (which would be the case in an open system). It is also possible to
argue in the opposite direction for a decrease in film thickness. The effect is for the
film to stabilize at P and become instable at Q. Steady state regelation demands
a definite film thickness and according to the calculation this should be 1 µm. Nye
(1973) concludes that the water film does not support water flow and argues for flow
of water to be supported by other systems. The function of the basal melt water
film is thus primarily to support the regelation process and should not be considered
part of the basal hydrological system.

The theory of a basal water film has received observational support from Hallet
(1976) who studied particle sizes of rock fragments cemented into carbonate precip-
itates generated in subglacial pockets. The maximum fragment size was 20 µm and
Hallet inferred this to reflect the maximum thickness of the subglacial water film.
Mapping of such subglacial precipitates also revealed complex networks of conduits
and cavities (Walder and Hallet, 1979; Hallet and Anderson, 1980). It is obvious
that free water exists at the interface between a temperate glacier and the subsur-
face on which it rests. It is not clear how uniform such a layer would be or if it
consists of some microscopic drainage network, amplified by channels at ice crystal
intersections. However, since melting occurs at the bed as a result of a combination
of geothermal heat, frictional heating from sliding and deformational heat as ice de-
forms, a process most pronounced near the bed, water is generated across the entire
ice-bed interface and is transmitted along the interface to probably gradually larger
channels.

Walder (1982) investigated the stability of subglacial sheet flow of water. In this
approach we will assume steady, one-dimensional water flow parallel to ice flow. The
bed is planar with a slope α. The ice provides a constant pressure gradient to drive
the flow of water. The water pressure is equal to the ice overburden pressure. The
x-direction is parallel to flow, y is transverse to the flow, and z is perpendicular to
the bed (Figure 5.5). The glacier bed is assumed to be impermeable. The ice-water
interface is described by

z = z0(y) = h (1 + ε sin kx) (5.9)
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Figure 5.5. The geometry of a basal water sheet. See text for discussion. After Walder
(1982).

where h is the average thickness of the sheet and ε ¿ 1. The perturbation amplitude
A = εh. The Navier-Stokes equation for steady flow reduces to

∂2u

∂y2
+

∂2u

∂z2
= −Pg

ηw

(5.10)

where u is the flow velocity, Pg = −∂p/∂x is the pressure gradient driving the flow,
and ηw is the viscosity of water.

The flow can be approximated by an perturbation in flow superimposed on a
mean flow

u(x, y) = u0(z) + εu1(y, z) (5.11)

By substituting Equation (5.11) into Equation (5.10), separating terms of O(1) and
O(ε) yields

d2u0

dz2
= −Pg

ηw

(5.12)

∂2u1

∂y2
+

∂2u1

∂z2
= 0 (5.13)

with the boundary conditions

u = 0 and on z = 0, z = z0(y) (5.14)

which should be satisfied to O(ε). The velocity distribution in the water sheet is
given by

u(y, z) =
Pgh

2

2ηw

(
−z2

h2
+

z

h
+ ε

sinh kz sin ky

sinh kh

)
(5.15)

Walder (1982, Appendix B, p. 286) provides a full derivation. This expression is
used to calculate the temperature field in the water sheet. The thermal energy
equation for steady state, incompressible, one-dimensional flow is

ρwcwu
∂T

∂x
= kw∇2T + ηw




(
∂u

∂y

)2

+

(
∂u

∂z

)2

 (5.16)
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(Bird et al., 1960) where T is the water temperature, ∇2 is the three-dimensional
Laplace operator in Cartesian coordinates, ρw is the water density, cw is the con-
stant volume specific heat of water, and kw is the thermal conductivity. All con-
stants concern water at the pressure melting point. Through dimensional analysis,
Walder (1982) showed that the down-stream and lateral heat conduction compo-
nents, kw∂2T/∂x2 and kw∂2T/∂y2, respectively, were negligible in the overall heat
balances for most cases. The lateral component was found to be small but finite in
terms of perturbation growth rates and was retained in the thermal energy balance.

To facilitate an analytical solution, Walder (1982) also assumed that the tem-
perature in a melt film would not differ much from the pressure melting point Tpmp,

T ≈ Tpmp ,
∂T

∂x
≈ ctPg (5.17)

where ct = −∂T/∂P . ∂T/∂x is constant in this approximation because of the
assumption of a constant pressure gradient. Substituting the approximations in
Equation (5.17) in Equation (5.16), neglecting down-stream conduction reduces the
thermal energy equation to

γPgu = kw

(
∂2T

∂y2
+

∂2T

∂z2

)
+ ηw




(
∂u

∂y

)2

+

(
∂u

∂z

)2

 (5.18)

where γ = ρwcwct = 0.316 is a dimensionless constant that comes from the pressure
melting behavior of ice (Röthlisberger, 1972).

The temperature field can now be described as a composite of a mean value and
a perturbation

T (x, y, t) = T0(x, z) + εT1(y, z) (5.19)

with boundary conditions

T |(z=z0) = Tpmp(x) = −ctp(x) , −kw
∂T

∂z

∣∣∣∣∣
(z=0)

= qG (5.20)

where qG is the geothermal heat flux at the bed. T0 and T1 can be solved by
transforming Equation (5.18) into two separate equations and applying the boundary
conditions in Equation (5.20). For the stability analysis we are mostly concerned
with −k∂T/∂n, where n is the local upward vector from the ice-water interface,
which describes the heat flux from the water sheet into the ice. By applying the
chain rule and noting that the slope ∂z0/∂y of the interface is O(ε), we get

∂T

∂n
=

∂T

∂z
(5.21)

The heat flux into the basal ice can be written

QZ0 =

[
qG +

P 2
g h3 (1− γ)

12ηw

]
+

[
P 2

g h3 (1− γ)

4ηw

ε sin kx

]
−

+

[(
P 2

g h3 (1− γ)

6ηw

+ qG

)
k2h2ε sin ky

]
(5.22)

40



in which the thickness of the wave length of the perturbation 2π/k is much larger
than the the water sheet thickness, kh ¿ 1. In Equation (5.22) the first bracketed
term is the mean heat flux which includes a geothermal component and the heat
from viscous dissipation. (1− γ) is a factor that maintains the water at the pressure
melting point by correcting for down-stream advection of heat. The second bracketed
term is a locally enhanced heat production from viscous dissipation. The dependency
on sin ky varies the melting of ice from heat flow into the ice so that it is larger in
thick parts of the sheet (sin ky > 0) and smaller in thin parts (sin ky < 0). This
is also the source for the instability. The third bracketed term describes the lateral
heat conduction from thick to thin parts of the water sheet due to warping of the
isotherms relative to the unperturbed case. This quantity is of O(k2h2) and hence
negligible for kh ¿ 1.

The rate of perturbation growth from melting can be examined through the
following. Melt rates in the basal ice is determined by qz0/ρiL where ρi is the
density of ice and L is the latent heat of fusion. Because the mean heat flux causes
a mean melt rate, we can concentrate on the perturbed portion of the melt speed
wm with which the interface moves

wm =

[
P 2

g h3 (1− γ)

4ηwρiL
−

(
P 2

g h3 (1− γ)

6ηwρiL
+

qG

ρiL

)
k2h2

]
ε sin ky (5.23)

To analyze the relaxation of the perturbed ice-water interface Walder (1982),
following Fletcher (1977), used the analogy of an interface between two quasi-static,
incompressible fluids with different density and linear viscosity. The linear viscosity
for ice is justified because the pressure difference between ice and water in incipient
channels at the glacier bed will be small, linearizing the flow law (Weertman, 1972, p.
299–306). The stresses and velocities can be decomposed into a mean (= hydrostatic
for stresses and = 0 for mean velocity). The effective viscosity of ice is much
larger than that for water so that the analysis reduces to a determination of the
perturbation relaxation speed on a free surface. The speed with which the interface
moves due to viscous sagging is

wp = −(ρw − ρi) gA

2ηik
sin ky (5.24)

where g is the gravitational acceleration and ηi is the effective viscosity of ice.
The water sheet maintains an average thickness h from the mean melt rate.

Local variations in melt and sagging rates changes the thickness locally resulting in
a quasi-static change in amplitude. This means that points on the interface z = z0

are considered remaining on the interface,
D

Dt
(z − z0(y, t)) = 0 (5.25)

where D/Dt = (∂/∂t) + v (∂/∂y) + w (∂/∂z) is the total time derivative. Equation
(5.25) can be expanded to

∂z0

∂t
= wp + wm − v(z0)

∂z0

∂y
(5.26)
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Substituting Equation (5.9), Equation (5.23), and Equation (5.24) and noting that
v is of O(kA) yields

1

A

dA

dt
=

1

τ1

(
1− 2/3k2h2

)
− 1

τ2

− 1

τ3

(
k2h2

)
(5.27)

where A = hε, and

1

τ1

=
P 2

g h2 (1− γ)

4ηwρiL
,

1

τ2

=
(ρw − ρi) g

2ηik
,

1

τ3

=
qG

ρiLh
, (5.28)

kh ¿ 1. By inserting values into Equation (5.27) Walder (1982) could show that
the factor 1/τ3 is negligible and that 1/τ2 ¿ 1/τ1 given that h and k are not small.
Equation (5.27) can thus be approximated by

1

A

dA

dt
=

1

τ1

(5.29)

if kh ¿ 1. This indicates that small perturbations in the water sheet grows expo-
nentially with a time constant τ1 (Figure 5.6)and that this instability increases with
Pg and h.

This analysis shows that perturbations in water sheet thickness would make sheet
flow on a planar bed would be unstable. However, the analysis assumes a planar
bed and so the effects of roughness must be taken into consideration. Nye (1973)
noted that incipient channels, which is one way of viewing the thicker parts of a film
may be destroyed when the ice flows over bedrock undulations. Walder and Hallet
(1979) and Hallet and Anderson (1980) also discusses the possibility that subglacial
cavities on the lee-side of the bedrock bumps may capture melt water and hence limit
the thickness of the water sheets. The rate at which incipient channels encounter
bedrock bumps is a function of the sliding speed. In Walder’s (1982) approach the
water sheet will be quasi stable when the characteristic time for sheet perturbation
growth is exceeded by the average travel time between bedrock bumps, referred to
as a decay time τd.

To investigate the effect of bed roughness, Walder (1982) uses the sliding formula-
tion from Lliboutry (1978) in which bed roughness is parameterized as a distribution
of hemispherical bumps on a planar bed. The incipient channels will move across
the bed and may become destroyed if they encounter a bump which has a size near
the transition obstacle size R? (Lliboutry, 1978). If the bumps are much smaller
they do not perturb the water film significantly and if the bumps are much larger
than the ice would move around the bumps by enhanced plastic deformation rather
than by regelation (Weertman, 1964).

To implement Lliboutry’s (1978) formulation, we need to assume a non-dimensional
bed where the fraction of bed covered by hemispherical bumps with a radius in the
range (R, R + dR) equals µdR/R where µ is a constant describing the bed rough-
ness. This means that the total fraction of the bed covered by bumps in the range
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Figure 5.6. Curves for characteristic growth τ1 and decay τd times for water sheet pertur-
bations. After Walder (1982).

Rmin ≥ R ≥ Rmax is µ ln(Rmax/Rmin), assumed to be ¿ 1. Lliboutry (1978) sug-
gests Rmin = 1 µm and Rmin = 10 m (an approximate size of roche moutonnés)
which leads to µ ¿ 1/16.

Walder (1982) uses a formulation similar to that for drag on a sphere moving
through temperate ice to express the relative efficiency

E =
2RR?

R2 + R2
?

(5.30)

which has the property that E(R?) = 1 and that E → 0 as R →∞.
The number of bumps in the range Rmin ≥ R ≥ Rmax per unit area is given by

dν =
µdR

πR3
(5.31)

and hence the effective number of bumps per unit bed area, νe that may destroy
incipient channels is given by.

νe =
2µR?

π

∫ ∞

W/2

dR

R2 (R2 + R2
?)

(5.32)

The lower limit of integration reflects the smallest size bump that blocks and incip-
ient channel of width W . Given a bed area of width W and length l the average
number of effective bumps is νelW with an average spacing of l/νelW . The average
time between encounters of incipient channels with bumps can be given by

τd =
πR?

2µUW

{
2

W
+

1

R?

[
tan−1

(
W

2R?

)
− π

2

]}−1

(5.33)
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Lliboutry (1978) suggests that R? = 0.16U−1/2 and although the value of 0.16 may
be incorrect (Lliboutry, 1979), the insensitivity of Walder’s (1982) results to both
increase and decrease in the factor by a factor of two, we can rewrite Equation (5.33)

τd =
0.08π

µWU3/2

{
2

W
+ 6.25U1/2

[
tan−1

(
3.12WU1/2

)
− π

2

]}−1

(5.34)

The width of an incipient channel W is identified by its wave number k through
W = πk−1. The incipient channel width is constrained by W À πh because the
analysis of growth of perturbations is valid only for kh ¿ 1. Walder (1982) therefore
assigns min(W ) = 30h and rewrites Equation (5.34)

τd =
0.084

hU3/2

{
0.067

h
+ 6.25U1/2

[
tan−1

(
93.75hU1/2

)
− π

2

]}−1

(5.35)

where h is expressed in m, U in m year−1, and µ = 0.01.
For reasonable choices of Pg and U , Walder (1982) calculated that the stability

criterion could only be met for h <∼1–4 mm. If the water sheet becomes thicker
it also becomes unstable. A water film of large thickness only seems possible in
the absence of discrete drainage pathways. Subglacial pathways are typically low
pressure, especially relative to the ice overburden pressure and would act as sinks for
the water in the film. The role of the melt water film and the thickness of the film
therefore seems to be related to the presence of a conduit system. Walder (1982)
concludes that large quantities of surface water is necessary to maintain a significant
sheet of water. However, it is difficult to see how large input of surface water can
affect a system that occurs in absence of discrete basal conduit systems.

Walder’s 1982 study shows that sheet flow is nearly always unstable on planar
beds. The roughness met on real beds may, however, result in quasi-stable sheet flow
for thicknesses < 4 mm although the numerical experiments proved to be sensitive
to the choice of roughness model. The prerequisites for the existence of a water
sheet at the bed of a glacier seems to be that cavities are absent or at least rare and
that water supply is abundant, i.e. large quantities of surface water must penetrate
to the bed.

5.3 The tunnel system
The existence of tunnel systems beneath glaciers probably originates from observa-
tions of tunnel portals at the terminus of glaciers and the existence of eskers, thought
to form in tunnels beneath former ice sheets. However, no ocular observations exist
of tunnels beneath glaciers except for ones in stagnant ice or very near the terminus
in slow moving ice. Tunnels have thus generally been though of as semicircular in
cross-section Figure 5.7.

The first model of subglacial drainage in a tunnel was put forward by Röthlis-
berger (1972) who considered cylindrical conduits in glacier ice to model the drainage
of a glacier dammed lake in Switzerland.
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Figure 5.7. Geometry of a classic subglacial tunnel. After Hooke (2005).

Röthlisberger considered a horizontal cylindrical pipe with radius r and water
pressure Pw at a location x while the pressure at x − dx is Pw − dPw. Since the
conduit is located at some depth beneath the ice surface, the conduit is subjected
to an ice pressure Pi, which causes radial ice flow in the direction of the axis of the
cylinder proportional to the difference between ice pressure and the water pressure
in the conduit, Pi − Pw. The melt on the conduit walls is caused by the energy
loss from the flowing fluid. Röthlisberger assumes instantaneous energy transfer
from the water to the ice which means energy produced within a segment of the
conduit is also transferred to the same part of the conduit and that the water will
always be at the pressure melting point. Given a discharge, Q, it is thus possible
to write the energy loss per unit time as dE = QdPw. Since a pressure change
also involves a temperature change, only part of the energy becomes available for
melting. This means that the energy available for melt, dEM , is reduced by an
amount corresponding to the energy needed for the change in temperature, dET ,
thus dEM = dE−dET . By inserting values for the change in pressure melting point
with pressure, cT , the specific heat capacity of water, cw, and the density of water
at 0◦C, ρw, we obtain dET = −cT cwρwQdPw which yields dEM = 0.684dE.

The closure rate of a cylindrical hole in ice is given by

ṙ

r
=

(
Pi − Pw

nB

)n

(5.36)

where r and ṙ are the cylinder radius and rate of change of the radius, respectively,
n and B are the empirical constants in Glen’s flow law for ice. The volume change
through creep, per unit time, dVc, of a cylindrical hole can thus be estimated by

dVc = 2rπṙdx = 2r2π
(

Pi − Pw

nB

)n

(5.37)

At equilibrium, the change in volume from melt is equal to the change in volume
from creep, dVM = dVc. This results in the following differential equation for the
change in Pw with distance x

dp

dx
=

2πcMρi

0.684Q

(
Pi − Pw

nB

)n

r2 (5.38)
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In order to relate the radius, r, to Q and dPw/dx we can use the Gauckler-Manning-
Strickler formula (e.g. Williams, 1970) to calculate the mean velocity for turbulent
flow,

v̄ =
Q

r2π
= kR2/3

(
1

ρwg

dPw

dx

)1/2

(5.39)

where k is the roughness coefficient, R is the hydraulic radius. The radius of the
conduit can thus be expressed in terms of Q and dPw/dx as

r2 =

(
24/3ρwg

π2

)3/8

k−3/4Q3/4

(
dPw

dx

)−3/8

(5.40)

If we insert Equation (5.40) into Equation (5.38) we obtain

dPw

dx
= Ck−6/11 (nB)−8n/11 Q−2/11 (Pi − Pw)8n/11 (5.41)

where
C = 212/11π2/11

(
cmρi

0.684

)8/11

(ρwg)3/11 (5.42)

With this equation in hand we can see that the pressure gradient, dPw/dx, increases
with the pressure difference between ice and water pressure (Pi − Pw) and with
channel roughness (k). We can also see that the larger the discharge (Q), the
smaller the pressure gradient. If the water pressure is integrated from atmospheric
pressure at the terminus to some distance x, a channel with higher Q would have
lower pressure than one with lower Q. This means that if two parallel channels
occur with different discharge, the channel with higher discharge will pirate water
from the one with lower Q because of the pressure difference. Put differently, larger
channels will tend to grow at the expense of smaller. Hence distributed networks
of channels will with time tend to coalesce into less complicated networks of a few
larger tunnels. This has also been inferred from dye tracing experiments (Hock and
Hooke, 1993) (Figure 5.8).

In the developments of Röthlisberger (1972) and Shreve (1972) conduits were
assumed to be filled with water. In reality it is common to have partially filled
conduits which was also recognized by Röthlisberger (1972), Shreve (1972) and
Lliboutry (1983). Hooke (1984) investigated how such conditions would affect the
theories put forward by Röthlisberger, Shreve and Lliboutry.

If we consider a conduit on the glacier bed as seen in Figure 5.9 we can apply tur-
bulent pipe flow theory to analyze conditions in the pipe. Hunsacker and Rightmire
(1947) gives

P1 − P2

ρwg
+ z2 − z1 − f

L

Dc

V 2

2g
= 0 (5.43)

where P1 and P2 and z1 and z2 are the water pressures and elevations at locations
1 and 2, respectively, Dc is the diameter of the cylindrical conduit, f is the friction
coefficient, ρw is the density of water, V is the velocity of water flowing in the
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Figure 5.8. Schematic sketch of the multi-branched arborescent conduit system inferred
from dye trace experiments on Storglaciären (Hock and Hooke, 1993). Individual streams
are inferred to be braided. After Hooke (2005).

conduit, g is the gravitational acceleration, and L is the slope distance between
locations 1 and 2. If the conduit is larger than necessary to carry the discharge,
the pressure will be atmospheric or from its triple point value to the pressure of air
trapped in the ice depending on if the conduit is connected to the atmosphere or
not. Under such conditions P2 = P1 and P1 − P2/ρwg vanishes. If the air space
in the tunnel increases f will decrease and flow will accelerate which will further
decrease the cross-sectional area of the conduit occupied by water.

We need to investigate under what conditions a transition from full to open
conduit flow in the conduit will occur. Continuity allows us to express the discharge
Q as Q = πV D2

c/4 and from geometrical considerations the bed slope β, positive
if sloping down in the flow direction, can be expressed as sin β = (z2 − z1) /L. If
we substitute these expressions into Equation (5.43) and rearrange to solve for the
conduit diameter we obtain

Dc =

(
8fQ2

gπ2 sin β

)1/5

(5.44)

At the bed, a semicircular cross-section is more reasonable than a circular cross-
section. We assume that the hydraulic radius will remain the same an that the
friction factor remains constant. This leads to

Ds = C1Q
2/5 sin−1/5 β (5.45)

where the constant C1 = 0.55 s2/5 m−1/5.
As water flows through the conduit, the potential energy released for a fall in

height h is given by ρwQgh. Part of this energy may be used to warm the water in
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Figure 5.9. Definitions of the conduit system on the glacier bed and symbols used in
Equation (5.43). After Hooke (1984).

a full conduit because the pressure melting point temperature Tpmp rises as pressure
decreases. In a conduit with open channel flow, this does not necessarily hold.
Because of the pressure difference between the water and the ice, the walls of the
conduit will be colder than the water and some of the energy will be conducted into
the walls. The remaining energy will be available for melting at a rate ṁ as

1

2
ρiṁπDsHL = ρwQgh−K

πDsL

2

dPi

dR

dTpmp

dPi

(5.46)

where ρi is the density of ice, H is the latent heat of fusion, R is the distance into
the tunnel wall, K is the thermal conductivity of ice, and Pi is the ice pressure.
Through Nye’s (1953) relations for closure of a borehole it is possible to show that
dPi/dR = 8ρiZ/9Ds for an ice thickness Z(x). Since sin β = h/L we can modify
Equation (5.46) to

m =

(
2g

DsH

ρwQ

ρi

Q

π
sin β − 4

9
KZ

dTpmp

dPi

)
(5.47)

Harrison (1972) provides values for K = 2.1 J m−1 s−1 and dTpmp/dPi = 9.8× 10−8

◦ Pa−1 yielding KZdTpmp/dPi = 9.1× 10−8Z. However, the thermal conductivity of
ice very near the melting point is 1–10% that of the cold ice values above (Paterson,
1971). Hooke (1984) also identified that a finite temperature rise is necessary across
the tunnel wall necessary for finite heat transfer. Hence the second term in Equation
(5.47) is of order 5× 10−9Z or 5× 10−10Z to be compared with 10−2Q for the first
term. This indicates that the second term can be neglected for ice thicknesses smaller
than a few hundred meters and for discharges exceeding ∼ 10−3 m3 s−1. Neglecting
the second term and combining Equation (5.45) and Equation (5.47) yields

ṁ = C2Q
3/5 sin6/5 β (5.48)
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C2 = 3.73 × 10−5 m−4/5 s−2/5 for ρi = 916 kg m−3, ρw = 999.8 kg m−3 at 0◦C, and
H = 3.34× 105 J kg−1.

From the work of Nye (1953) we can estimate the approximate rate of tunnel
closure ṙ by

ṙ

Ds/2
=

(
ρigZ

nB

)
(5.49)

where B is the viscosity parameter in Glen’s flow law for ice (Equation (4.1)). Equa-
tion (5.49) is valid only when ρigZ ≈ τ , the effective stress, and when no frictional
forces exist that prevents sliding of ice over the bed towards the tunnel. The last
assumption is not realistic and will be treated in more detail below. Combining
Equation (5.45) and Equation (5.49) with n = 3 yields

ṙ = C3
Q2/5

sin1/5 β
Z3 (5.50)

where C3 = 5.70× 10−14 m−16/5 s−3/5 for B = 1.6× 105 Pa a1/3.
The condition ṁ > ṙ can be investigated from Equation (5.48) and Equation

(5.50)

Q >

(
Z3

C4 sin7/5 β

)5

(5.51)

where C4 = 6.55 × 108 m12/5 s1/5. Melt rates will exceed the closure rates when
this condition is met resulting in a tunnel that is larger than necessary to carry the
existing discharge.

Figure 5.10 shows how bed slope and discharge varies for different values of ice
thickness and for the situation when discharge equals the r.h.s. of Equation (5.51).
Hooke (1984) points out that because proglacial river discharge typically exceeds
1 m3 s−1 the results indicate that subglacial tunnels on downsloping beds should
experience open channel flow. By inserting a value of 5×10−10Z in Equation (5.47),
Hooke also investigated the field of Q and β values for which second term exceeded
10% of the first term and where thus heat loss to the tunnel walls appreciably reduces
the melt rate on the tunnel walls. It is evident from Figure 5.10 that such conditions
occurs only at very low Q.

In this analysis we have only considered a constant slope conduit. In reality
conduits will be extending over variable bed slopes. Hooke (1984) therefore also
considers back pressure effects. We can imagine a situation in which conditions
satisfy Equation (5.51) in a conduit downstream of location A and upstream of
location B but between A and B in Figure 5.11 because of the differences in bed
slope. At B the pressure must be high enough to prevent tunnel closure at a rate
faster than the melt rate. In order for this to occur the necessary pressure required
must be built up by backing up water upstream of B. Hence, the extent to which a
subglacial system is filled or not depends on more than just the local conditions.

Lliboutry (1983) argued that open channel flow was very common beneath
glaciers and Hooke’s (1984) results corroborate this. In the non-steady state, it is
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Figure 5.11. A simple model for calculating back pressure effects in basal conduit flow.
After Hooke (1984).
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Figure 5.12. Measured subglacial water pressures beneath Storglaciären 1994. After Hooke
(1984).

conceivable that diurnal and other short-term variations in water flux may rapidly
enlarge the tunnel system while closure from creep is slower. In such a case tunnels
might spend more time under open channel flow conditions than under pipe flow
conditions. Jansson (1996) also discusses such a scenario based on water pressure
observations (Figure 5.12) where water pressures vary on a diurnal basis but are gen-
erally lower after high precipitation events only to gradually build during periods
with more steady inflow of water.

Kohler (1992, 1995) investigated the extent of pressurized flow beneath Stor-
glaciären by analyzing tracer test results and applying a theoretical model of flow
routing through the glacier. The model consisted of a vertical shaft, corresponding
to a moulin, and a segment of horizontal semicircular pressurized conduit leading to
another segment of channel with open channel flow. Kohler obtained results that in-
dicate that substantial lengths of the subglacial channel was pressurized, in contrast
to Hooke’s (1984) analysis of Röthlisberger’s (1972) results. This may be because
the semi-circular tunnel cross-section does not allow fast enough closure or other
factors summarized by Hooke et al. (1990).

Röthlisberger (1972) applied his model to the conditions beneath Gornergletscher
but could not successfully model the water pressure given common values for the
constants in the model. To obtain better results, Röthlisberger needed to make the
ice softer and also use an unusually high channel roughness. This led Lliboutry
(1983) and Iken and Bindscahdler (1986) to suggest that perhaps the tunnel geom-
etry used by Röthlisberger was not representative for most of the subglacial system.
However, no alternative theory was put forward until Hooke et al. (1990) suggested
that tunnels could be low and broad.
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Figure 5.13. Geometry of a Hooke-type subglacial tunnel. After Hooke (2005).

The subglacial tunnels have long been thought of as semi-circular conduits (Fig-
ure 5.7). As results from tracer experiments have been analyzed, it has become clear
that the traditional tunnel shape does not explain the drainage characteristics of the
subglacial system. The observational data implies that tunnel systems may collapse
rapidly once water pressure drops in the system and that the cross-sectional area
must also be able to adapt quickly. With the traditional shape, the tunnel is kept
open by two effects. If the tunnel is to decrease its cross-section, the ice at the bed
must slide inwards. Frictional resistance will however be large and prevent this from
happening to the extent necessary. Hooke et al. (1990) therefore proposed an alter-
native shape of subglacial tunnels that could better accommodate the observational
data (Figure 5.13). Their tunnel was low and broad which allowed it to decrease
in size rapidly since closure could be accomplished by simply collapsing the tunnel
ceiling downwards.

Hooke et al. (1990) found that water pressure beneath Storglaciären, Sweden,
and Austdalsbreen, Norway, could be calculated with

G11/8 − 0.316G3/8dP

dx
=

ΩD∆P n

k3/4 (nB)n Q0.25 cos11/8 β
(5.52)

where dP/dx is the pressure gradient along the course of the conduit, D is a constant
involving the densities of water and ice, the latent heat of fusion and the gravitational
acceleration g, k is the reciprocal of the Manning channel roughness, n (= 3) and B
are the Glen’s flow law constants, Q is the water discharge, β is the slope of the bed
(positive when sloping down in the direction of flow), ∆P is the pressure difference
between the ice overburden pressure at the conduit and the water pressure in the
conduit, and G = (dP/dx + ρwg tan β), where ρw is the acceleration due to gravity.
This is identical to Röthlisberger’s Equation (5.41) (above) except for the term Ω.

Hooke et al. (1990) argued that the shape of low broad tunnels can be approxi-
mated by the area between the chord of a circle, constituting the channel bed, and
the arc of the circle corresponding to the chord, constituting the tunnel roof (Figure
5.13). The cross-sectional area, A, and wetted perimeter, p, can then be calculated
as A = r2 (θ − sin θ) /2 and p = r (θ + 2 sin θ/2), respectively. They further argued
that closure rates would lie between limiting values obtained by inserting the con-
duit height H and the conduit half-width W/2, respectively, into Nye’s 1953 theory.
They then used the average of these lengths in place for the radius Röthlisberger
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used in Equation (5.36) (above). This leads to Equation (5.52) with

Ω =
θ (1− cos θ/2 + sin θ/2) (θ + 2 sin θ/2)1/2

25/2π1/4 [(θ − sin θ) /2]5/4
(5.53)

Numerical simulation made by Hooke et al. (1990) show that estimating closure rates
with Equation (5.36) and using r = 1/2 (H + W/2) yields rates that are higher than
those modeled by up to 50%. When comparing to field measurements of water
pressures, a much closer agreement can be obtain than with Röthlisberger’s original
formulation. The reason for this is that the angle θ can be varied. Comparisons
yielded good results with angles varying from 2◦ to 36◦. Because of the underlying
geometrical assumptions, the angles translate into a general shape, low and broad to
higher and narrower, but their cross-sectional areas are adjustable to accommodate
the discharge. Hence similar discharges can be put through channels of different
geometry, whereas in Röthlisberger’s version, the geometry was fixed and only cross-
sectional areas could be varied.

Analysis of water pressure observations, discharge, and tracer studies, has estab-
lished that tunnel systems are not stable but change through the course of a melt
season. Hock and Hooke (1993) performed numerous dye traces on the lowermost
part of Storglaciären where the drainage system is inferred to mostly consist of sub-
glacial tunnels. Tracer dispersion indicated that the tunnel system early in the melt
season was highly distributed and that it, as the season progressed, became more
focused on fewer and larger, and hence more efficient, tunnels. Transfer times for
the tracer clouds were also halved during the course of the season implying a bulk
decrease in complexity and lowering of resistance to flow of the system. The tunnel
system hence goes through a seasonal variation in terms of its spatial configuration.

Observations of subglacial water pressure variations (Jansson, 1996) indicate
that the drainage system can change abruptly on even shorter time scales. Figure
5.12 shows water pressure records from the lowermost part of Storglaciären. Water
pressures vary from close to atmospheric pressure to overburden pressure on a diurnal
cycle. This variation reflects the variation in water input generated by melting,
indicated by the temperature curve in Figure 5.12. On 23 July, precipitation occurs
which causes a change in the drainage system so that peak pressures no longer reach
overburden. This can be interpreted as an enlargement of the tunnels from the
additional water input from the precipitation event so that larger recharge would be
required to produce similar pressure peaks as observed before the event. After the
precipitation event peak pressures increase day by day, which can be interpreted as
an effect of gradual closure of the tunnel back to conditions similar to those before
the event. Hence, the system is quickly adapting to changes in input. Enlargement
is a quicker process than closure because it involves melting from frictional heating
whereas closure depends on the slow creep of the glacier ice.
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5.4 The linked cavity system
Tunnel systems are not the only type of system inferred to exist beneath glaciers.
During the surge of Variegated Glacier Kamb (1987), Kamb et al. (1985) found that
the hydraulics of tunnels could not explain the combination of water pressures and
discharges measured on the glacier.

The following observations were made:

• fast flow due to high sliding rates.

• water pressure was close to overburden pressure and peaks reach overburden.
In contrast, pressures were significantly lower during no-surge conditions.

• Large flood peaks were associated with the termination of the surge indicating
that water was released from the glacier as the surge stopped.

• water flow in the basal system was slower during surge than during non-surge
conditions

• The drainage system was interconnected over the whole width of the glacier
during surge. Dye injected into the glacier emerged in all exiting streams
during surge but only in one during non-surge conditions.

• Turbidity was significantly higher during surge than during non-surge condi-
tions.

Dispersivity calculations from dye tracing experiments (Brugman, 1986) indi-
cated that the system could not consist of normal tunnels or R-channels (after
Röthlisberger (1972)’s model) during surge, while they exist under non-surge con-
ditions. This is because the observed high water pressure could not be maintained
with the small observed flow velocities, where the conduits are of tunnel character.
Hence Kamb (1987) developed ideas of a different subglacial drainage system that
could maintain a large volume of water at high pressure but discharging only small
quantities of water.

Kamb (1987) proposed the linked cavity system (Figure 5.14) which is similar
to mappings of natural examples (Walder and Hallet, 1979; Hallet and Anderson,
1980). The system is characterized by large cavities caused by separation of ice from
the bed in the lee of bumps. These cavities are linked by the separation-gap orifices.
Because of the characteristics of cavity formation, flow tends to occur more in the
transverse direction than in the downglacier direction. Also note that cavities are
interconnected so that no unique flow path can be established. This will result in
the high dispersion observed by dye-tracing Brugman (1986).

Kamb (1987) used a typical cavity and orifice to develop his model (Figure 5.15).
Kamb defined typical parameters to describe the system. The average width of the
cavity lc would be measured parallel to ice flow since the width would reflect the
separation. The orifice width lo may be parallel to ice flow but can also have a
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Figure 5.14. Planar (a) and side view (b) of Kamb’s (1987) linked cavity system for basal
water flow during surge conditions.

significant downglacier component. The length of the orifice Lo is measured in the
direction parallel to water flow. The dimension of the cavity is also measured in
the direction between two orifices which would represent the direction of water flow.
The average height of the cavities is defined as gc. The height of the orifices g(x)
is measured perpendicular to the floor and a function of position across the orifice.
The number of independent orifices, i.e. orifices not coupled in series, in a cross-
section of the glacier is given by No which leads to an average lateral spacing of
No/W , where W is the glacier width.

Figure 5.15 represents a highly simplified picture of the system. The complex
natural system of cavities and orifices of different sizes affected by local shear stress
τ , water pressure Pw and ice overburden pressure Pi becomes replaced by a typical
size reflecting average conditions.

In analyzing the linked cavity system, we need to think of the processes involved.
(1) the size and shape of the orifice is determined by the bed roughness and the
cavity formed from this roughness given a Pw, Pi, and velocity v. (2) the water flow
through the orifice will be determined by the orifice geometry and the hydraulic
gradient through the orifice. (3) the water flow through the orifice will dissipate
viscous energy that will melt the roof of the orifice. This leads to modifications and
a feedback through (1) and (2).

To calculate the flow of water through the linked cavity system, we start by
assuming a longitudinal hydraulic gradient αw along the glacier. We can assume
that αw = α (the ice surface slope) for simplicity. If we assume the flow path has
a certain tortuosity ω we obtain a flow path hydraulic gradient as α/ω. Since the
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Figure 5.15. Definitions of parameters in Kamb’s (1987) linked cavity system model.

model states the role of the orifices is to control the flow, this also means that
the hydraulic head loss occur in the orifices and not in the cavities. The head
gradient in the orifices is then the average gradient multiplied by the head gradient
concentration factor Lc/Lo = Λ. The orifice height is small compared to the width
(max g(x) ¿ lo). We can now apply Manning’s equation in the same manner as
Röthlisberger (1972) (Equation (5.39)) by setting the hydraulic radius = g(x)/2,

ūw(x) =
1

M

(
g

2

)2/3 (
αΛ

ω

)1/2

(5.54)

where ūw is the mean water velocity averaged across the gap height g, M is the
Manning roughness, and αΛ/ω is the local hydraulic gradient in the orifice. The
total flux of water carried by the linked cavity system is obtained by multiplying
Equation (5.54) by the local gap width g(x), integrating over the width l of the
orifice and summing the contribution from all No orifices,

Qw =
No

22/3M

(
αΛ

ω

)1/2 ∫ l

0
g(x)5/3dx (5.55)

The local heat generation from viscous dissipation of heat is the product of the
local water flux ūwg(x) and the potential gradient ρwgrαλ/ω, where the gr is the
gravitational acceleration and ρw is the density of water. The local heat generation
rate can be expressed in terms of a equivalent volume rate of melting dividing by

56



ρiH, where ρi is the density of ice and H is the latent heat of fusion for ice

ṁ =
(αΛ/ω)3/2

22/3DM
g5/3 (5.56)

where D = ρiH/ρwgr is a length constant.
There are two main types of cavity forming situations, separation of the ice from

the bed at an angular step and at a sinusoidal bed form. In the stepped case, the
separation point is fixed whereas its has no predetermined location on the sinusoidal
bed. The step can also maintain a cavity at lower sliding speed, higher Pe, or lower
Pw than that of a sinusoidal bed form. In reality all kinds of mixtures between these
forms exist.

We first start by examining the step form with a rectangular step height h (Figure
5.16). The gap height can then be approximated by

g(x) = h


1

2
− 1

π
sin−1 2x− l

l
− 2 (2x− l)

√
x (l − x)

πl2


 (5.57)

where 0 ≤ x ≤ l. The gap width is

l = 4

√
ηv (h + m)

πPe

(5.58)

where η is the ice viscosity, v is the sliding velocity, Pe (= Pi − Pw) is the effective
pressure, and m = 0 if there is no melting of the gap roof. The rate of closure of the
gap is given in terms of the vertical component of the velocity along the gap roof

w(x) = vg′(x) = −Pe

2η

√
x (l − x) (5.59)

The closure rate is balanced by the sliding speed to maintain a steady state open
gap. Because l → 0 as Pe →∞ but remains non-zero for small Pe, the step orifices
remain open even under large Pi or small Pw. In such cases when l ¿ h, g′(x) ¿ 1
breaks down. However, (Kamb, 1987) argues that the system is valid up to the
largest values of Pe that occur in reality.

Since actual ice rheology is non-linear, Equation (5.57)–Equation (5.59) are only
approximations. We can deal with this by making η shear stress dependent. We can
use Pe as a measure of the shear stress level since all stresses would be hydrostatic
if Pe = 0. We can thus write

η = ηref

(
Pe(ref)

Pe

)n−1

(5.60)

where the reference values Pe(ref) show the effective viscosity at a reference stress
level.
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Figure 5.16. Geometry of the step cavity or orifice without (a) and with (b) melting of the
ice roof. After Kamb (1987)

In the case of sinusoidal bed separation, we can consider a sinusoidal bed with
wave crests perpendicular to ice flow and with wavelength and amplitude λ and
a, respectively. As for the angular step, the gap length is l and the gap height is
g(x). The origin for x is at the separation point, which is undetermined. If a ¿ λ
the separation problem can be solved in closed form for a linear rheology. This
is an appropriate assumption for the orifices. The normal stress on the bedrock
undulations is assumed to vary as (x− x0)

2, where x0 is the inflection point of the
le side of the sinusoid. The gap length is

l =
4λ

π

(
2

5

)1/2

, Pe ≤ Σ (5.61)

where the cavitation parameter Σ

Σ = 8π2ηav/λ2 (5.62)

This is the limiting effective confining pressure for cavitation, if Pe ≥ Σ there is no
cavitation. This indicates that cavities can only form once Pw is sufficiently high
(Pw > Pi − Σ). The gap height is given by

g(x) =
2π4

3

a

λ4
x5/2 (l − x)3/2 (5.63)
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for 0 ≤ x ≤ l. The separation point lies 3/8l upstream of x0.
Kamb (1970) showed how a non-linear rheology and be introduced to a problem

similar to that described above for a sinusoidal bed. The strain rate dependence is
written

η = Nε̇−1+1/n (5.64)

where N and n are constants and where ε̇ is the second strain rate invariant. The
value of ε̇ at a height λ/2π over the sliding interface, which is assumed to govern
the effective viscosity, is

ε̇ = 4π2e−1avλ−2 (5.65)

(Kamb, 1970) for small wavelengths. Combining Equation (5.64) and Equation
(5.65), with n = 3 yields,

η = N

(
eλ2

4π2av

)2/3

(5.66)

and introducing this into Equation (5.62) yields

Σ = 2N

(
4π2e2av

λ2

)1/3

(5.67)

which shows that Σ ∝ v1/3. This is an approximation where the effect of additional
stresses is neglected and one which is reasonable for the sinusoidal wave bed because
Pe < Σ, whereas in the step case η depends on Pe as in tunnel closure.

We now need to introduce roof melting of the orifices into the general theory.
This can be done by introducing an adjustment of the contact point equivalent
of introducing an imaginary floor lowered from the original floor by an amount
corresponding the melt, m. The height of the virtual step thus becomes h + m,
which was already introduced in Equation (5.58). The steady state gap profile is
then obtained by the melt rate and vertical velocity distributions along the gap
profile

vg′(x) = ṁ(x) + w(x) (5.68)

By combining Equation (5.56), Equation (5.58), Equation (5.59), and Equation
(5.68) and introducing the dimensionless variables

γ = g/h, ξ = x/l, µ = m/h (5.69)

we get
dγ

dξ
= 2Ξ

√
1 + µγ5/3 − 8

π
(1 + µ)

√
ξ (1− ξ) (5.70)

where

Ξ =
21/3

π1/2

(αΛ/ω)3/2

DM

(
η

vPe

)1/2

h7/6 (5.71)

Ξ is a dimensionless quantity called the orifice melting-stability parameter and pro-
vides a measure of the importance of roof melting by viscous dissipation of heat in
the linked cavity system.
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After Kamb (1987)

Integrating Equation (5.70) yields the gap profile γ(ξ). Figure 5.17 show the
effect of melt back of the dimensionless orifice for different values of Ξ. The roof is
raised and the peak of the roof is shifted downstream. The length of the gap also
increases, which cannot be seen in Figure 5.17 because of the dimensionless length.

When the gap geometry is established we can calculate the discharge as

Qw =
24/3

π1/2

No

M

(
αΛ

ω

)1/2 (
ηv

Pe

)1/2

h13/6Φ (5.72)

where the flux factor Φ is given by

Φ =
√

1 + µ
∫ 1

0
γ5/3dξ (5.73)

and is obtained by numerical integration of the results in Figure 5.17.
In the case of a wave orifice (Figure 5.18), the melt back is obtained from Equa-

tion (5.62) in the same way as for the step by introducing a virtual floor. A complica-
tion arises from the fact that the coordinates for the separation and recontact points
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are not constant but are affected by the meltback. The non-dimensionalization is
done by ξ = x/l and γ = g/go where

go

a
=

(
128

75

) (
1− Pe

Σ

)2

(5.74)

We define a meltback parameter

ν =
24

π5

(
λ

l

)4
m

a
(5.75)

and the dimensionless quantity

B =
5

5− 2ν + ν2
(5.76)

We can then write the equation for the gap profile as

dγ

dξ
= Ξ′ (5B)1/2 γ5/3 −B2ξ3/2 (1− ξ) (8ξ + 3v − 5) (5.77)

with the melting stability parameter Ξ′ defined as

Ξ′ =
27

32/357/3

(αΛ/ω)3/2

DM

(
η

νΣ

)1/2

a7/6
(
1− Pe

Σ

)11/6

(5.78)

Σ/η can be removed from Equation (5.78) by Equation (5.62) to yield

Ξ′ =
211/2

32/357/3π

(αΛ/ω)3/2

DM

λa2/3

v

(
1− Pe

Σ

)11/6

(5.79)

which does not contain the effective ice viscosity η. Equation (5.77) can be integrated
in the same way as Equation (5.70) for different values of Ξ′.

Wave orifice gap profiles γ(ξ) for a succession of Ξ′ values are shown in Figure
5.19. The gap height is plotted as a dimensionless ratio g/g0 where the scaling factor
g0 is the mid-point height of the gap when no melting occurs. One feature of the gap
profile is that sagging occurs in the upstream part of the slope cavity. This sagging
is linked to the downstream migration of the point of separation when meltback
increases.

The discharge carried by the linked cavity model, with wave cavity orifices, can
be written

Qw =
225/2

755/3

NO

M

(
αΛ

ω

)1/2

λa5/3
(
1− Pe

Σ

)23/6

Ψ (5.80)

where
Ψ = B1/2

∫ 1

0
γ5/3dξ (5.81)

is the flux factor analogous to Φ in Equation (5.73).

61



������������������������������������������������������������(a)

(b)

Without roof melting

With roof melting

Sliding velocity, v
Seapration point Cavity length, l

Re-contact

point

x

z
–w

v

g(x)

Pw

2a

x

z
g(x)

–w

v

l

Cavity roof

Melt back

Virtual particle trajectory

“virtual bed”

m

Figure 5.18. Geometry of an ideal wave cavity or orifice without (a) and with (b) melting
of the ice roof. After Kamb (1987)

62



1.5

1.0

0.5

0
0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

1.4
0.6
1.0

x/l

g
/g

0

Figure 5.19. Transient cavity growth from different values on the meltback stability param-
eter Ξ, perturbation in confining pressure Pe/Pe0 , and proportionality constant f . After
Kamb (1987)

63



In both the step orifice and wave orifice cases, Kamb (1987) found that the
orifice melting stability parameters Ξ and Ξ′ indicates instability for certain meltback
parameters (µ and ν, respectively). The critical values for this instability are Ξ ∼ 1
and Ξ′ ∼ 1.5. This can be analyzed by subjecting the system to a perturbation in
water pressure. Initially we have an orifice in steady state with a confining pressure
Pe0 , meltback parameters Ξ0 and µ0 and gap length l0. The confining pressure is
then decreased abruptly (Pe < Pe0) so that the orifice begins to enlarge. The gap
length will be a function of time or equivalently a function of position of the reference
point as it moves forward with the ice (ξ = x/l0). The new gap height γ(ξ) = g(ξ)/h
at the position ξ can be derived from Equation (5.70)

dγ

dξ
= 2Ξ0

√
1 + µ0γ

5/3 − 8

π
(1 + µ0)

Pe

Pe0

√
ξ (Υ(ξ)− ξ) (5.82)

where Υ(ξ) = l/l0 derives from l in Equation (5.59). The ratio Pe/Pe0 appears
because gap closure rates are proportional to Pe. Integrating Equation (5.82) from
γ(0) = 1, Υ(0) = 1 we obtain how γ varies with position ξ as the reference point
moves along the length of the orifice. To accomplish this, Υ(ξ) needs to be deter-
mined. Kamb (1987) does not provide details of this calculation but states that
the important results are (1) that the orifice gap immediately starts to lengthen
at a rate l̇(0) = v (1− Pe/Pe0) in response to the pressure perturbation, and (2)
the maximum gap lengthening rate is v. To test the possibility of unstable orifice
enlargement, we identify that an increase in water pressure is a prerequisite and the
maximum stabilization against enlargement is provided by maximum closure rate
which occurs when l is maximized. We make the approximation that the lengthening
rate l̇ is constant (l̇ = fv) so that

Υ(ξ) = 1 + fξ (5.83)

where f is a proportionality constant. By integrating Equation (5.82) forward from
ξ = 0, γ(0) = 1 we obtain a touch-down point ξT , corresponding to the chosen l̇
value, where the orifice ceiling hits the bed. This requires Υ(ξT ) = ξT which by
using Equation (5.83) becomes

f = 1− ξT
−1 (5.84)

A stable transient response of the orifice is possible if it is possible to find f < 1.
If f = 1, the integration of Equation (5.82) leads to γ(ξ) increasing without bound
since f = 1 yields the maximum closure rate at all stages. Figure 5.20 shows results
from calculations of trajectories according to the analysis described above. The
magnitude of the perturbations are given by 1 − Pe/Pe0 . The results indicate that
step orifices have an unstable response for Ξ ≥ 1. Kamb (1987) argues that a similar
instability arises for wave orifices at Ξ′ ≥ 1.5. The cause of the instability is related
to the increase in melt that occurs when the gap height is increased. The stability
of the system is probably better than discussed above because the assumption of
local heat transfer. Some of the heat will then be transferred to the roofs of the
large cavities instead of the orifice roofs.
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Figure 5.20. Transient cavity growth from different values on the meltback stability param-
eter Ξ, perturbation in confining pressure Pe/Pe0 , and proportionality constant f . After
Kamb (1987)
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5.5 Transitions between tunnel and linked cavity sys-
tems

The tunnel and linked cavity systems are fundamentally different. Discharge in a
tunnel system is an inverse function of water pressure. The linked cavity system dis-
charge increases with increasing pressure. This has the effect that the linked cavity
system can be maintained as an interconnected system which would be impossible
for a tunnel system where large branches will increase at the expense of smaller ones
(Röthlisberger, 1972; Shreve, 1972). The linked cavity system also requires much
larger basal water pressure than required by a tunnel system. The reason for this
is that high pressure is required to keep the orifices open. The cavities present in
the system are not a requirement for the flow characteristics but was introduced by
Kamb (1987) to account for observed dispersion of tracers injected into Variegated
Glacier.

A tunnel system exhibits a strong stability/unstability condition which stems
from the inverse water pressure water flux relationship. If a tunnel in steady state
experiences a perturbation in pressure the tunnel will increase or decrease in size
at ever accelerating rates because wall melting changes faster than tunnel closure
rates as the tunnel size changes. This instability is responsible for the jökulhlaup
phenomenon (Nye, 1976; Spring and Hutter, 1981; Clarke et al., 1984). The orifices
under a fixed hydraulic gradient and steady state conditions, linked cavity system
the orifices are stable against infinitesimal perturbations.

The stability of a inked cavity system are set by the melting-stability parameters
Ξ and Ξ′ since they provide a measure of the viscous dissipation. The stability is
maintained as long as Ξ < 1 and Ξ′ < 1.5 or the viscous dissipation is small. At
higher values the the viscous dissipation becomes significant and the result is an un-
controllable enlargement of the orifices similar to what happens in tunnel systems.
Under steady state hydraulic gradients, tunnels are unstable against even infinitesi-
mal perturbations, whereas linked cavities become unstable for finite perturbations.
The response of the tunnels occurs because no steady state condition exists in the
absence of of viscous heating. The perturbation size causing instability in a linked
cavity system decreases with increasing Ξ and Ξ′. In conclusion, the orifices are
unstable only for an increase in size or water pressure whereas the tunnel instability
is bilateral. The behaviors of the two systems are thus widely different.

Figure 5.21 shows the relationship between water discharge and water pressure
for the linked cavities and tunnel systems. It is clear how the tunnel system expe-
riences an inverse relationship between discharge and water pressure whereas for a
linked cavity system there is a direct relationship between the two. The systems
are thus fundamentally different. The response functions for step and wave-orifice
systems are also different. These relationships imply that a numerous parallel con-
nections can be maintained simultaneously whereas in a tunnel system a smaller
tunnel is unstable relative to a larger one, which thus captures the discharge from
the smaller one until it closes completely.
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Figure 5.21. Characteristics of tunnel system and linked cavity systems. After Kamb
(1987)
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Figure 5.22 shows a chain of events initiated by a perturbation of an orifice in
the linked cavity system. The orifice grows rapidly and will approach the size of
neighboring cavities, it this becomes a tunnel. With time the tunnel is advected
downstream by ice flow. Because of the geometry of the upstream part of the
tunnel, roof collapse will commence and close off a new orifice from the tunnel.
Kamb (1987) argues that simultaneous formation of such tunnel elements from a
larger scale perturbation in velocity or water pressure may cause the segments to
coalesce into progressively longer tunnel segments until an entire tunnel system is
developed. Hence, the linked cavity can irreversibly be converted into a tunnel
system. This explains the observations at the end of the surge of Variegated Glacier
where large volumes of water were discharged from the glacier while water pressures
and velocity dropped.

5.6 Subglacial channels on deformable subglacial
sediments

The discussion above on basal melt films, tunnel and linked cavity systems have
all dealt with bedrock as the substrate beneath the glacier. This is true for many
valley glaciers but is probably not a good general condition to be expected beneath
ice sheets where the ice rests on a variety of sediments, the most common of which
would be poorly sorted sediments or till. Subglacial sediments can also deform from
the shear stresses imposed by the overlying ice. A large number of papers have dealt
with the different flow mechanisms of deforming subglacial sediments (Boulton and
Hindmarsh, 1987; Kamb, 1991; Iverson et al., 1994, 1995, 1999; Hooke et al., 1997;
Fischer et al., 1998).

Shoemaker (1986) was the first to formulate how subglacial channels interacted
with the deformable sediments beneath a glacier or ice sheet. He identified three
different types of systems:

1. Basal melt water drainage is along the bed. This is the hard bedrock case
described in previous chapters.

2. Bed and substrate are fully coupled.

3. Basal meltwater drainage is dominated by ground-water flow.

Shoemaker (1986) developed a model for a temperate ice sheet resting on a
deformable bed by applying the following argument. In a radially flowing ice sheet,
two conduits A and B (Figure 5.23) separated by a distance d are extended in the
flow direction by the advancing ice sheet to A′ and B′, respectively. He argued that
the subglacial channel will occupy a formerly subaerial part of the channel system
as the glacier advances over older proglacial areas. To form a new channel C we
can apply Darcian flow theory within the substrate to investigate where the steepest
hydraulic gradients occur. If we assume that the water flow is radial, symmetrical
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Figure 5.22. Development of tunnel segments from perturbations in orifice size of the linked
cavity system. After Kamb (1987).
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Figure 5.23. Schematic model of subglacial tunnel initiation beneath an ice sheet resting
on a deformable bed. After Shoemaker (1986)

around the channel line C–C ′ and that water is produced in a region described by
A′C ′B′CA′, then the maximum hydraulic gradient must occur at C ′.

The flow velocity of water in the substrate along C–C ′ is given by

v =
ṁd

2t
(5.85)

where ṁ is the uniform basal melt rate, d/2 is the estimated length of the radial
flow line for water flow, and t is the thickness of the aquifer. The hydraulic gradient
is given by

i =
v

K
(5.86)

where K is the hydraulic conductivity. When the ice sheet increases in size, d
increases and the hydraulic gradient reaches a critical value ic where a channelized
flow starts. The critical flow length is described by

dc =
2ticK

ṁ
(5.87)

When the critical value ic (= 1.2; Terzaghi and Peck (1941) cited by Shoemaker
(1986)) is reached, upward flow of water and accompanying soil dilation begins
outside of the ice sheet terminus. This condition causes removal of sediment from
the "spring" area outside of the glacier and focuses even more water flow to the
area. The result will be back-ward erosion in under the ice sheet and formation of
a channel incised into the subglacial sediments. Applying Equation (5.87) to values
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of K for dilatant tills (K = 10−5) yields dc = 4 × 104. because surface water can
reach the bed through surface crevasses, the dc-value must be decreased by perhaps
two orders of magnitude. Shoemaker (1986) points out that a similar calculation
for non-dilatant till values of K yield unreasonable dc values (0.04–400 m) which
implies that dilatant tills may be commonplace in the terminus area.

In till, a channel will develop until its bed becomes armored by larger particles
preventing further removal of fines. These channels resemble N-channels (Nye, 1973).

If we consider steady state flow in a debris-layer system we can use the equa-
tions of Röthlisberger (1972) and Weertman (1972) for turbulent steady flow on ice
conduits

ρigh− Pc = B?Qq

(
dPw

dx

)p

(5.88)

where x is the distance upstream from the terminus, ρigh is the ice overburden
pressure, Pc is the water pressure in the channel, B? is the flow law parameter
determined by temperature, impurities etc. of the ice. Q is the channel flow rate
and dPw/dx is the pressure gradient in the upstream direction. Weertman (1972)
showed that the exponents p and q become 11/24 and 1/12, respectively, by assuming
n = 3 in the flow law for ice (Equation (4.1)). dPw/dx can be replaced by dPc/dx
since the velocity gradient in general is negligible (Lliboutry, 1983), however, this
may not be true near the terminus.

In a steady state situation, the size of a conduit in ice is determined by a balance
between ice closure given by

uc = aB (ρigh− Pc)
3 (5.89)

where a is the channel radius, B is a constant different from B?, and melting from
viscous dissipation of heat given by

um = Q
dPc

dx

2πaF
(5.90)

where F is the heat of fusion modified to account for incomplete heat transfer
between water and ice wall (here 2/3 of the heat is used for melting).

The soil must also be treated in the model. Failure of soils can be modelled by
the Coulomb inequality

τb ≤ c + (ρigh− Pp) tan φ (5.91)

where τb is the basal shear stress, Pp is the pore-water pressure, c is the soil cohesion,
and φ is the angle of internal friction of the material. Under steady state, neglecting
deviatoric stresses, and assuming that the ice thickness h is smoothed over distances
of O(h), the equilibrium equation

τb = ρigh
dh

dx
(5.92)

holds.
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The pore-water pressure is governed by Darcy’s law

q =
−Kt

ρwg

dPp

dy
(5.93)

where q is the pore-water flow rate, K is the hydraulic conductivity, and y is the
direction towards a channel from a point midways between channels. In this model
we will assume that the aquifer permeability is uniform and that the vertical pressure
drop is negligible.

The pore-water flow rate is given by

q = ṁy, 0 ≤ y ≤ d/2 (5.94)

where ṁ is a melt rate that can be adjusted for surface water input as long as
it reaches the bed uniformly. Shoemaker (1986) points out that surface water is
assumed to reach the channels directly in his approach. This seems to be a reasonable
assumption. Hence Equation (5.93) and Equation (5.94) describe the motion of
water through the aquifer towards the conduits

Pp =
ṁρwg

8Kt

(
d2 − 4y2

)
+ Pc (5.95)

where the boundary condition Pp(d/2) = Pc was applied during integration. The
pressure drop along the conduit is constant

∆Pp =
ṁρwgd2

8Kt
(5.96)

By inserting reasonable values for d and K Shoemaker (1986) showed that the result-
ing pressure difference became high. With melt rates of 1 cm year−1 Equation (5.87)
yields values of d that are perhaps two order of magnitude too high. Furthermore, if
Equation (5.96) is used to evaluate values of d for a specific pressure change, the re-
sulting d-values are ∝ K, much more reasonable than those obtained from Equation
(5.87). For very small K-values, the resulting d-values are still too large. Shoe-
maker (1986) concludes that it seems reasonable to adopt a fixed dPp/dx-criterion
for establishing channel spacing calculations, although no physical explanation can
be given as to why channel spacing should depend on dPp/dx.

By assuming that the top surface of the aquifer meets the failure failure criterion
in Equation (5.91), we can investigate the maximum profiles h(x) of the system. To
simplify, we will assume that d is determined by ∆Pp/dx = 105 Pa. The average Pp

at a specific section x is given by

P̄p = Pc +
ṁρwgd2

12Kt
(5.97)

which indicates that the bed will either deform uniformly or not at all at a section
x = constant. By combining Equation (5.88), Equation (5.91), Equation (5.92), and
Equation (5.97) and assuming that ρi = ρw, yields

dPc

dx
=

(
ρgh− Pc

B?Qq

)1/P

(5.98)
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and
dh

dx
=

c

ρgh
+

(
1− Pc

ρgh
− ṁd2

12Kth

)
tan φ (5.99)

If we define
e =

c

ρgH
− ṁd2

12Kt
tan φ =

c

ρg
− 2∆Pp tan φ

3ρgd
(5.100)

Equation (5.99) becomes

dh

dx
=

(
1− Pc

ρgh

)
tan φ +

e

h
(5.101)

These equations show that there is no solution satisfying Pc(0) = h(0) = 0 near
x = 0 because in general e < 0 (Equation (5.103)). At the terminus ρgH → 0 and
Pp < 0. Equation (5.91) implies that no stress is sustained if Pp tan φ ≥ c. However,
h′ = O(1) at the terminus and Equation (5.92) indicates positive shear stresses at the
terminus which is inconsistent. In the region of the terminus deviatoric longitudinal
stresses txx must be considered but these were assumed negligible when establishing
Equation (5.92). A more general equilibrium equation is

τb = ρgh′ − 2 (hτxx)
′ (5.102)

Near the terminus, Equation (5.103) must be replaced by

dh

dx
=

c + 2 (htxx)
′

ρgh
+

(
1− Pc

ρgh
− ṁd2

12Kth

)
tan φ (5.103)

and Equation (5.103) by

dh

dy
=

(
1− Pc

ρgh

)
tan φ +

e?

h
(5.104)

where

e? = e +
2 (htxx)

′

ρg
(5.105)

In order to obtain a simple regular solution at the origin we prescribe

e?(0) = 0 (5.106)

h′(0) = tan φ (5.107)

and
txx(0) =

−ρge(0)

2
tan φ (5.108)

The prescription of e?(x) near the terminus introduces arbitrariness into the solu-
tions but qualitative results are not affected as long as the prescriptions above are
satisfied. The function e?(x) is arbitrarily defined as

e?(x) =
ex

l?
, 0 ≤ x ≤ l? (5.109)
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where l? = 2 km, but can be assigned other values.
The function q(x) in Equation (5.97) has contributions from both subglacial and

surface water and can be written as

Q(x) =





md(L− x) winter

md(L− x)+

{
Md
H

[
H (L? − x)− ∫ L?

x h(x)dx
]
, h(x) < H

0, h(x) > H, summer
(5.110)

The second term in the summer equation concerns elevation dependent surface melt-
ing with a cut-off at h(x) = H. L? is defined by H = h(L?). The initial conditions
for the maximum profile problem are

Pc(0) = h(0) = 0 (5.111)

Equation (5.98) and Equation (5.103) can be solved on 0 < x < L for L = 100 and
1000 km. Using e values from Table 5.1 shows that txx < 1 bar.

Table 5.1: Standard parameters for four soils used in calculations. After Shoemaker (1986).
K φ c d e

m s−1 ◦ kPa m m
Silty clay 10−7 5 1 360 ∼0.
Silty sand 10−6 20 0 1140 –2.5
Medium sand 10−4 30 0 11400 –3.9
Medium gravel 10−2 50 0 114000 –8.0

Figure 5.24 shows the results of calculations using values from Table 5.2 with
L = 1000 km, ∆Pp = 1 bar and assuming steady state winter flow. The results
indicate that the ice sheet profiles all lie above the first-approximation theoretical
surface profile given by h = 3

√
x, indicating that low-relief ice sheet profiles do not

result if efficient melt water drainage occurs provided small d values. The surface
profiles become very flat some distance away from the divide because Pc/ρgh → 1
very rapidly. The profiles increase in height with coarser aquifer medium reflecting
an increasing φ.

Table 5.2: Ratios of winter h (standard e values)/h (10× standard e values) at mid-span
and divide for 100 km and 1000 km ice sheets. Channel spacings are unchanged. After
Shoemaker (1986).

50 km 100 km 500 km 1000 km
Silty sand 1.09 1.13 1.14 1.23
Medium sand 1.06 1.08 1.10 1.15
Medium gravel 1.03 1.05 1.06 1.08

Alley (1989) developed ideas relevant for understanding the coupling between
basal sliding and sediment deformation for the ice streams A–E in Antarctica. The
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Figure 5.24. Maximum profiles corresponding to data of Table 5.1. After Shoemaker
(1986).

presence of subglacial sediments beneath Ice Stream B (currently named Whillans
Ice Stream) was determined through seismic reflection investigations (Blankenship
and Bentley, 1986; Blankenship et al., 1986, 1987, 1989; Rooney et al., 1987a,b,
1988). In order to understand the processes of till deformation, the hydrology of the
ice stream needed a theoretical framework.

Alley (1989) summarizes the sources for water by introducing two types of con-
tributions: distributed and localized sources. Distributed sources are melting at the
bed, downward transport of en- and supraglacial melt and precipitation (through in-
tracrystalline veins), and porous flow from subglacial aquifers; localized sources are
downward transport of en- and supraglacial melt and precipitation (through discrete
channels), and stream transport from unglaciated areas. Since the most common
situation for Antarctica, in absence of surface contribution of water, probably is the
distributed contribution from basal melting, Alley (1989) considers only this case.
Hence this will be valid for large areas of ice sheets overlain by dry snow or perco-
lation zones (Figure 2.1). The dry snow zone on Greenland is variable with a trend
showing a steady decrease (e.g. Steffen et al., 2004; ACIA, 2005, fig. 6.18, p. 205).
The zonation also show a clear latitudinal trend with larger dry snow zone towards
the climatologically colder north. Similar zonation, albeit unknown in extent and
configuration probably also existed on the past Fennoscandian ice sheet.

Water generated by at the base of an ice sheet by basal melt will flow downward
into the sediment and outward to the edge of the ice sheet through porous flow
or sheet flow at the ice-sediment interface or both. The component of porous flow

75



has been investigated by many (e.g. Boulton et al., 1974; Boulton and Jones, 1979;
Clarke et al., 1984; Boulton and Hindmarsh, 1987; Clarke, 1987; Lingle and Brown,
1987). However, the porous flow system has a limited capability to transport water
and most studies indicate that subglacial aquifers are inefficient for large wet-based
ice sheets. (Alley, 1989) shows, as an example, that a 1000 km flow line in a wet
based ice sheet produces water that would require a 250 m thick aquifer of unconsol-
idated sand to evacuate the water (given sliding velocity of 25 m year−1, an average
basal shear stress of 105 Pa, a surface slope of 0,01, and a hydraulic conductivity of
10−4 m s−1). To remedy this situation, it is necessary to invoke a drainage system of
some finite thickness at the ice–bed interface such as the film suggested by Weert-
man (1972) and, including instability, by Walder (1982). Hence depending on the
conditions of the basal aquifer, drainage can occur as any combination from 100%
porous flow to ∼100% channelized flow in terms of volume rate. Close to ice divides
the first situation may be common whereas the importance of discrete channelized
flow increases towards the margins of the ice sheet since flow rates increases radially
but aquifer, generally does not.

To investigate channel instability on a deformable bed, Alley (1989) assumes
that the basal sediment follows a constitutive law of the form

ε̇ =

{
Kb

(τ−τ?)a

Nb τ > τ ?

0 τ ≤ τ ? (5.112)

where ε̇ is the strain rate, τ is the shear stress, and a, b, and Kb are empirical
constants. N is the effective water pressure given by

N = Pi − Pw (5.113)

and τ ? is the sediment yield strength given by the Mohr-Coulomb yield strength
criterion

τ ? = c + N tan φ (5.114)

where c is the cohesion and φ is the angle of internal friction (e.g. Lambe and
Whitman, 1969). Alley (1989) follows Boulton and Hindmarsh (1987) and uses
their experimental results which indicate that b > a in Equation (5.112).

Tunnel closure, in absence of non-hydrostatic fields around the conduit (Boulton
and Hindmarsh, 1987), can then be described by the following set of equations

ξc =

{
Kb

(N−τ?)a

Nbaa N > τ ?

0 N ≤ τ ?

ξc ≡ ṙ
r

(5.115)

where the subscript c refers to creep closure, the driving stress τ = N , r and ṙ are
the tunnel radius and change in radius with time, respectively. Equation (5.115)
applies to a channel with circular cross-section but Alley (1989) identifies a more
realistic case as an channel incised into the till with an ice roof that has collapsed,
hence resembling an N-channel in subglacial sediment. The equation above may
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reasonably well model this situation although any coupling at the ice-bed interface
is ignored. At a steady state the creep closure ξc must be balanced by an erosion rate
ξe. The flow of sediment is crucial. Alley (1989) states that basally derived water
will always carry sediments at its carrying capacity since it is always in contact with
sediment and hence erosion along some stretch of the conduit will be determined by
the added water from melting along that stretch.

The sediment flux in a channel Js can be approximated by

Js = J0πr2ū2
w (5.116)

(e.g. Allen, 1985) where J0 is a constant and ūw is the mean flow velocity given by

ūw` =
Pgr

2

8µ
(5.117)

and
ūwt = MPg

1/2r2/3 (5.118)

where subscripts ` and t refer to laminar and turbulent flow, respectively, Pg is
the magnitude of the volumetric fluid-potential along flow gradient, µ is the water
viscosity, and M is the inverse of the Manning roughness coefficient. The transi-
tion between laminar and turbulent flow occurs within a narrow range of Reynolds
numbers centered on

2rρwūw

µ
= 2300 (5.119)

(Weertman, 1972) where ρw is the density of water. The erosion rate ξe in the steady
state is

ξe =
1

2πr2

∂Js

∂x
=

ṙ

r
(5.120)

where x is the along-channel distance.
To obtain an expression for ξe in terms of water influx into the channel Alley

(1989) assumes that J0, µ, M , and Pg are independent of x and then combine
Equation (5.116) and Equation (5.118), differentiate with respect to x to substitute
∂Js/∂x in Equation (5.120) to obtain an expression for ξc in terms of r and ∂r/∂x.
r is related to water flux Q by

Q = πr2ūw (5.121)

Combining Equation (5.121) and Equation (5.118), differentiating with respect to
x, solving for ∂r/∂x and substituting into Equation (5.120) yields

ξe` =
J0P 2

g r2Qx

64πµ2

ξet = 3J0M2PgQx

4πr2/3

(5.122)

where Qx is the derivative of Q in the x-direction and corresponds to the water
influx to the channel. In the steady state, equations (5.115) and (5.122) equate.

77



Table 5.3: Value of constants used in calculating Figure 5.25 and Figure 5.26. Values are
gathered to fit data from a variety of cases such as Ice Stream B, Antarctica, and Variegated
glacier, Alaska USA. After Alley (1989).

Parameter Value Parameter Value
a 1 L 3.1× 108 J m−3

b 2 ṁ 9.5× 10−10 m s−1

B 1.8× 10−25 Pa−3 s−1 M 0.58 Pa−1/2 m5/6 s−1

C 0, 4, 25 kPa Pg 20 Pa m−1

g 9.8 m m−2 tanφ 0, 0.2, 0.75
J0 1.5× 10−5 s2 m−2 µ 1.8× 10−3 Pa s
K 10−6 m s−1 ρw 103 kg m−3

Kb 0.33 Pa s−1

The influx of water to the channel depends on the water supply rate at the
bed and the collecting area (Shoemaker, 1986). (Alley, 1989) uses two ways to
approximate the water supplied to the channel: (1) supply from a porous half-space
where water is not drawn down from N/ρwg above the center of the tunnel and
(2) that water is collected from an area 104 times wider than the tunnel width.
Approximation (1) leads to

Qx =
2πKN

ρwg ln
(

2N
ρwgr

) (5.123)

where K is the hydraulic gradient in the sediment and g is the gravitational acceler-
ation. With a tunnel radius of 1 m and appropriate constants (Table 5.3), Equations
(5.115), (5.122) and (5.123) yields N = 107 Pa and Qx equivalent of a basal melt
rate of 10 mm year−1 over a 2400 km width. Approximation (2) corresponds to

Qx = 104rṁ (5.124)

where ṁ is the basal melt rate. A 1 m channel would in this case drain a 10 km width
of the ice sheet, which becomes the assumed tunnel spacing. Alley (1989) considers
Equation (5.124) a restrictive estimate whereas Equation (5.123) constitutes an
upper limit.

Figure 5.25 shows estimates of N for steady state N-channels in subglacial sed-
iments calculated using values in Table 5.3. The two cases involve (1) Equation
(5.123) which corresponds to a maximum and (2) Equation (5.124) corresponds to a
likely case which probably over-estimates Qx and underestimates N for small values
of r. The values used to evaluate the equations are a combination of values from
Weertman (1972), Boulton et al. (1974), Humphrey et al. (1986) and Boulton and
Hindmarsh (1987), data fitted to observations from Ice Stream B, Antarctica, and
Variegated Glacier, Alaska, USA. The curves in Figure 5.25 represent calculation
for two cases, τ ? = 0 and the upper limit for τ ? in a basal sediment, till (C = 4kPa,
tan φ = 0.75; Sladen and Wrigley, 1983). The area between these cases represent
likely values, the only exception being the case for low N where an intermediate
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curve (C = 4 kPa, tan φ = 0.2; τ ?
likely). Included are also curves for R-channels

calculated following Weertman (1972) using the same constants (Table 5.3)

N` =
(

P 2
g r2

16BµL

)1/3

Nt =
(

MP
3/2
g r2/3

2LB

)1/3

(5.125)

where B is related to the creep hardness of ice, H is the heat of fusion and ice is
assumed to obey Glen’s flow law for ice (Equation (4.1); Nye, 1953). The difference
between the creep closure rate and the melt rate of an R-channel is

(ξ`)net = BN3 − P 2
g r2

16µL

(ξt)net = BN3 − MP
3/2
g r2/3

2L

(5.126)

(Weertman, 1972).
Figure 5.26 shows contours of (ξ)net) for both R-channels and channels in sub-

glacial sediment (assuming C = 4kPa, (Boulton and Hindmarsh, 1987), and tan φ =
0.2, (Alley et al., 1987)). Closure is positive and growth is negative.

Figure 5.25 and Figure 5.26 show that two steady configurations for subglacial
channels in sediment. When the driving stress is low, channels are stable at high N
and conversely when till viscosity is high. The low values of N occurs near Nc, which
is the critical value where driving stress for creep closure equals the yield strength
of the subglacial sediment

Nc =
C

1− tan φ
(5.127)

The value used for Figure 5.26 is Nc = 5 kPa. Because erosion by basal water is
slow and is balanced by equally slow creep closure rates, the driving stress is low
(N − τ ?) and the effective pressure equilibrium is close to Nc. Furthermore, Figure
5.26 shows that steady state R-channels occur where rapid creep closure of channels
in subglacial sediment occurs, which indicates that an R-channel would rapidly fill
with sediment through creep. This holds for all but the tills with very high yield
strength (C = 25 kPa,tan φ = 0.75; Sladen and Wrigley, 1983). The largest R-
channel that can exist over a till bed has an N ≈ Nc for that particular bed. A rigid
bed is one for which Nc > N in the largest R-channel that can develop over a rigid
bed in the glacier in question. Furthermore, till channels at low N occur in a region
of R-channel growth, which is a similar situation to that explored by Walder (1982)
for rigid beds. Hence perturbations in a distributed water system tends to grow.

In conclusion Alley (1989) hypothesizes that the water system at the ice-sediment
interface resembles a thin film but with local mm-sized thickening. The effective
pressure should be above Nc but not above the equilibrium value for R-channels
of mm radius; this means between 0 and ∼ 400 kPa. Any local thickening will be
rapidly counteracted by till creep.
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The water pressure in the water film beneath an ice sheet is of major importance
since it affects the sliding speed and hence the dynamics of the ice sheet. Weert-
man (1972) estimate that an interconnected water film requires an N less than the
root-mean-square fluctuation in local ice normal stress on the bed necessary to al-
low sliding without cavitation. Kamb (1970) provided the following condition for
Weertman’s estimate

Nmax ≤ τb

c1

(5.128)

where τb is the basal shear stress c1 is a constant that depends on bed roughness
and varies from 1/2 to 1/9.

The fraction of the bed f occupied by a water film can expand if the water
pressure increases and hence f ∝ 1/N . Fluctuations in local ice pressure increases
with τb (Kamb, 1970), which implies that N ∝ τb. Alley (1989) thus proposes a
simple relationship of the form

N =
βτb

f
(5.129)

where β is a geometric factor as a first approximation to the actual relation.
This relationship can be viewed in the perspective of conditions on an irregular

bed. If we consider a unit area of horizontal glacier bed with average normal ice
pressure Pi, a single bump occupying a fractional area s and sustaining a vertical
stress Pb, and water occupying a fractional area f = 1−s at pressure Pw. A vertical
force balance on the unit area then requires

Pbs + Pw(1− s) = Pi (5.130)

or
(Pb − Pw) s = Pi − Pw (5.131)

Since water does not support shear stresses, the average shear stress exerted on the
unit area is taken up by the bump with fractional area s, τb/s. Thus an excess
vertical force acts on the bump which causes ice flow over the bump according to

Pb = Pi +
βτb

s
(5.132)

where β is the ratio of excess vertical stress to the shear stress on the bump of area
s. Combining Equation (5.131) and Equation (5.132) and rearranging yields

βτb = (Pi − Pw) (1− s) (5.133)

and with N = Pi − Pw and f = 1− s we get Equation (5.129).
Humphrey (1987) showed that the effective pressure becomes constant at N?

when all low-pressure zones are occupied by water. N? is given by

N? = β′τb (5.134)
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where β′ is related to the bed geometry. Humphrey also showed that this is limiting
basal shear stress that can be supported by the bed. Depending on the smoothness
of the bed, conditions represented by either Equation (5.129) or Equation (5.134)
apply. A smooth bed with few irregularities is conducive for producing a linked
cavity system as described by Humphrey (1987) through Equation (5.134). A till
bed on the other hand will exhibit a wide range of local ice pressures because of the
wide range of grain-sizes causing the surface irregularities at the till-ice interface.
In such cases Equation (5.129) applies.

Equation (5.129) provides a link between the water system and the velocity from
sliding and bed deformation for glaciers with water film drainage. The fractional
area covered by water must increase with the average thickness of the water film,
f = f(d). Weertman (1972) and Weertman and Birchfield (1982) formulated the
water film thickness as

d =

(
12µq

Pg

)
(5.135)

where q is the water flux in m3 s−1 per m width. Pg is measured from conduits or
linked cavities, if such are present in other cases

Pg = ρigαs + (ρw − ρi) gαb (5.136)

where αs and αb are the surface and bed slopes, respectively.
Alley (1992) extended his 1989 study by investigating co-existence of low-pressure

channels and deforming subglacial sediments. Several studies (e.g. Engelhardt et
al., 1978) have observed deforming sediments in conjunction with low pressure sub-
glacial tunnels. Alley (1992) considers a model as shown in Figure 5.27. Ice with
an overburden pressure Pi overlies an h m thick till layer in which a subglacial tun-
nel with water pressure Pw < Pi is cut down t underlying impermeable bedrock.
Alley (1992) models the till layer in three ways: perfectly plastic, linearly viscous,
and with a Bingham rheology. The till is characterized by a pseudo-hydrostatic
model (Turcotte and Schubert, 1982) in terms of a pressure P and gradients in P .
Smaller scale effects such as grain bridging effects and differences between pore-
water pressure and clast-contact pressures are thus ignored. Far from the conduit,
the subglacial sediment carries the full weight of the overlying ice and P = Pi. At
the channel P = Pw, hence there is a drop in pressure near the channel, Pi − Pw

which drives the deformation of the subglacial sediment.
Perfect plasticity. The force causing creep is Fc = (Pi − Pw) hw where hw is the

thickness of the subglacial sediment in contact with the channel. The force acts in
the ice flow direction perpendicular to the plane of Figure 5.27. The force resisting
creep is Fr = 2τ ?x? where τ ? is the yield strength of the sediment and x? is the
maximum catchment for sediment creep into the channel. The factor two arises
from creep occurring past upper and lower surfaces of the till. By applying a force
balance approach and balancing Fr and Fc, we get

x? =
(Pi − Pw) hw

2τ ?
(5.137)
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Figure 5.27. The geometry of the model of coexisting low pressure subglacial channels and
deforming subglacial sediment. After Alley (1992).

The yield stress can be approximated by a Mohr-Coulomb yield criterion

τ ? = N tan φ + C (5.138)

where tan φ is the angle of internal friction, C is the cohesion, and N is the difference
between the bulk pressure of the sediment and the pore-water in the till, P −Pp. In
accordance with Boulton et al. (1974) and Alley (1989) C = 4 kPa and tan φ = 0.2
for the deforming till.

At the channel (x = 0) N → 0 where the boundary condition is P = Pp = Pw.
Pore water pressures will increase away from the channel to a maximum at the di-
vide between channels but not exceed the Weertman (1972) film value just below
Pi. Shoemaker (1986) showed that a low-pressure in typical subglacial sediments
will reduce pore-water pressures significantly below the Weertman-film value in a
wide zone (O(10–100)m) around the channel and causing Pp ≈ Pw near the channel.
Alley (1992) shows that this is not necessarily true. Pw probably depends on both
ice–water and sediment–water interactions (Walder and Fowler, 1994) but can be
approximated by R-channel theory (Röthlisberger, 1972; Weertman, 1972). This as-
sumes that the channel is water-filled and the ice-water interaction controls channel
pressure. If channel radius and potential gradients driving channel flow are not too
small (r >≈ 0.1 m, dPw/ds >≈ 10 Pa m−1) then

(Pi − Pw) tan φ À C (5.139)

Combining Equations (5.138) and (5.139) and assuming that N is constant with an
average value between the extreme values at X = 0 and x = x?,

N =
1

2
(Pi − Pw) (5.140)
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we get

τ ? ≈ 1

2
(Pi − Pw) tan φ (5.141)

Inserting Equation (5.141) into Equation (5.137) yields

x? ≈ hw

tan φ
≈ 5hw (5.142)

assuming tan φ = 0.2. This shows that creep cannot occur in a very wide area.
Assuming channel heights are of O(0.1–1) m yields x? ≈ 0.05–5 m.

The perfectly plastic case assumes the existence of a yield strength but since the
till will be deforming pervasively by ice motion the yield strength may be reduced
or completely eliminated. This would enlarge the catchment area for creep into the
channel significantly to the point of reaching the divide between channels.

Bingham rheology. The Bingham relation for sediment deformation can be writ-
ten

∂u
∂z

= 1
µ

(τ ± τ ?) , |τ | > τ ?

∂u
∂z

= 0, |τ | ≤ τ ?

(5.143)

where u is the velocity in the x-direction and µ is the Bingham viscosity. The
sign in τ ± τ ? is chosen so that the magnitude of the expression is reduced since
sediment deformation slows with increasing yield strength. The pressure gradient
in te x-direction must be balanced by a shear stress in the same direction, hence

∂P

∂x
=

∂τ

∂z
(5.144)

Integrating Equation (5.144) with τ = 0 and z = 0 yields

τ = z
∂P

∂x
(5.145)

Inserting the expression for τ in Equation (5.145) into Equation (5.143) and inte-
grating with a non-slip condition at the upper and lower till boundary (z = ±h/2)
yields

u = − 1
µ

{
1
2

∂P
∂x

[(
h
2

)2 − z2

]
± τ ?

(
h
2
− |z|

)}
, z? ≤ |z| ≤ h

2

u = − 1
µ

{
1
2

∂P
∂x

[(
h
2

)2 − z?2
]
± τ ?

(
h
2
− z?

)}
, 0 ≤ |z| ≤ z?

(5.146)

where the sign of τ ? is determined by the sign of ∂P/∂x (±τ ? = ∓∂P/∂x). A rigid
plug of sediment occurs between ±z?

z? =

∣∣∣∣∣∣
τ ?

(
∂P

∂x

)−1
∣∣∣∣∣∣

(5.147)
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The till flux into the channel can be estimated by averaging Equation (5.146)

hū = − 1

µ





h3

12

∂P

∂x
±


τ ?h2

4
− τ ?3

3

(
∂P

∂x

)−2





 (5.148)

For an incompressible subglacial sediment, the continuity equation becomes

∂ (hū)

∂x
= −ḣ (5.149)

where ḣ is the rate of change in thickness with time. By assuming ice and sediment
remain and contact the thinning can be estimated using Walder’s (1986) approach
of thinning of a cavity containing a low-viscosity fluid

−ḣ = K1h (Pi − P )n (5.150)

with n = 3, the flow law exponent and the constant K1 = An−n where A is the
viscosity factor of the flow law (A = 1/B; Equation (4.1)). By differentiating
Equation (5.148) with respect to x and combining with Equation (5.149) and solving
with τ ?, µ, K1, and n assumed independent of x yields





h3 ±

2τ ?

(
∂P

∂x

)−1



3




∂2P

∂x2
+

(
3h2∂P

∂x
± 6τ ?h

)
∂h

∂x
+

+ 12µK1h (Pi − P )n = 0 (5.151)

A steady channel with water pressure Pw is introduced to the bed consisting of
a deforming sediment of thickness h0 at t = 0 and we require that the sediment
is deforming towards the channel while maintaining sediment ice contact. At the
sediment creep limit x?, the sediment pressure must rise to over-burden pressure,
the creep must cease at x? to maintain ice-sediment contact because the driving
stress drops to zero. This leads to the following boundary conditions

h(x, t = 0) = h0

P (x = 0, t) = Pw

(5.152)
P (x = x? = Pi

∂P

∂x
(x = x?, t) =

2τ ?

h

Here x? is time-dependent and determined by the creep and ice-water contact. The
system of equations (5.151) and (5.152) can be solved numerically. The second
condition in Equation (5.152) enables us to integrate Equation (5.150) to

h(x = 0) = h0 exp
(
− t

θ

)

1
θ
≡ K1 (Pi − Pw)n

(5.153)
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Table 5.4: Response times and rates of till supply per unit length of channel for different
assumed parameter values. After Alley (1992).
Channel Potential Pressure Response Sediment Sediment Initial
radius gradient drop time thickness viscosity sediment

supply
r Φ Pi − Pw θ h0 µ
m Pa m−1 Pa year m Pa s m3 year−1 m−1

1 20 7.8× 105 0.33 1 1010 3.7
1 20 7.8× 105 0.33 1 1012 1.5
1 1000 5.5× 106 9.5× 10−4 1 1010 709
1 1000 5.5× 106 9.5× 10−4 1 1012 90
0.1 20 4.6× 105 1.6 0.1 1010 0.0077
0.1 20 4.6× 105 1.6 0.1 1012 0.0043
0.1 1000 3.2× 106 4.8× 10−3 0.1 1010 1.9
0.1 1000 3.2× 105 4.8× 10−3 0.1 1012 0.46

Alley (1992) tested several combinations of realistic values for the variables in the
model, results are summarized in Table 5.4, from which the following results are
obtained:

1. A decrease in sediment viscosity as well as an increase in sediment thickness
increases the initial rate of sediment supply to the channel

2. Sediment thinning is fastest adjacent to the channel

3. The maximum rate of till supply to the channel occurs at t = 0

4. Given sediment properties, lowering channel water pressure increases the driv-
ing stress for creep and hence the rate of sediment supply

5. The maximum distance x? from which creep can occur increases with time
because the fastest thinning occurs at the channel. The pressure gradient
driving sediment creep must steepen to force sediment through the thinning
layer at the channel

6. Results are only weakly sensitive to the assumed sediment yield strength for
assumed sediment viscosities

In conclusion the model provided by Alley (1992) shows that low-pressure chan-
nels and deforming subglacial sediments can coexist. The key lies in that channels
quickly can become isolated from their surrounding through removal and thinning
of the sediment layer near the channel. Once the sediment layer is pinched out, the
channel is equivalent to a Röthlisberger-channel with ice walls and a stable bed of
bedrock or gravel lag. These results seem robust.

Walder and Fowler (1994) developed a model that differs from that of Shoemaker
(1986) in that it is located at the ice-till interface and hence have large but not
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Figure 5.28. A conduit located at the ice-till interface at the bed of a glacier. After Walder
and Fowler (1994).

necessarily equal fractions of the cross-sectional circumference in both till and ice
(Figure 5.28). In this system Pi > Pc, where Pi is the ice overburden pressure and Pc

is the water pressure in the conduit. In the channel the effective channel pressure is
given by Nc = Pi−Pc and the pore water pressure in the till away from the channel
can be described by the effective pressure Ne = Pi − Pw. The conduit will remain
open by a balance between creep closure and melt-back from viscous dissipation of
heat. However, the till will also creep, having a typical yield stress of ∼ 50 kPa.
Since the basal shear stress typically exceeds this value, creep of till into the conduit
is likely to occur in most places beneath the glacier and can only be counteracted
by erosion and transport of sediments.

The closure rate of a tunnel is given by

1

R

dR

dt
= −A1

2

(
Pi − Pc

n

)n

(5.154)

where R is the tunnel radius, and Ai and n are the constants in Glens flow law for
ice (Equation (4.1); Nye, 1953). The deformation of till has been investigated by
Boulton and Hindmarsh (1987) who suggested a flow law of the form

ε̇ = Asτ
aNe

−b (5.155)

where ε̇ is the shear strain rate, τ is the shear stress, Ne is the effective pressure
as defined above, and As, a, and b are positive empirical constants. Studies by e.g.
Kamb (1991), Blake (1992) and Iverson et al. (1995) have questioned this relation-
ship which is based on only seven measurements. However, lacking a general law
for till deformation, Walder and Fowler’s approach using Boulton and Hindmarsh’s
(1987) flow law will continue to apply since it captures the idea that deformation
rate is inversely dependent of the effective pressure.
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Boulton and Hindmarsh (1987) argued that the creep closure rate of a canal in
till can be approximated by

Ṙ

R
∼ −AsNe

a−b

aa
(5.156)

where Nc = Ne (Pc = Pw). By inserting Boulton and Hindmarsh (1987) values for
a = 1.33 < b = 1.8, Equation (5.156) indicates that sediment creep is most effective
at low Nc.

Fowler and Walder (1993) solved the Nye (1953) borehole closure problem for a
saturated, deformable till. The closure rate depends on the dimensionless perme-
ability parameter Λ where 10−6 < Λ < 1 for a permeability range 10−19–10−13 m2

and an apparent till viscosity of 109 Pa s−1 (e.g. Blake and Clarke, 1989; Blake,
1992; Humphrey et al., 1993). Since for most tills Λ ¿ 1 Equation (5.154) can be
generalized to

1

R

dR

dt
= −1

2
As

(
Nc

a

)a

Ne
−b (5.157)

under the condition
∆Pw = Pw − Pc ≤ (a− 1) Ne (5.158)

If the condition in Equation (5.158) is not met, conditions near the the hole are
probably conducive to piping associated with locally enhanced bulk permeability.
This is similar to bank failure which occurs during falling stages following flood
events in regular rivers. Fowler and Walder (1993) showed that Equation (5.157)
is a reasonable approximation even when considering the failed zone around a bore
hole when condition Equation (5.158) is not met. Hence, Walder and Fowler (1994)
use Equation (5.157) for their continued analysis.

Walder and Fowler (1994) applied Shoemaker’s (1986) analysis of waterway spac-
ing which assumes that Pw > Pc and hence that water generated under the ice is
drawn towards conduits. There are several criteria for initiating conduits and Walder
and Fowler (1994) suggest that conduit spacing should be self-adjustable so that the
edge of the conduits are marginally stable against piping. This means that Nc = aNe

(from Equation (5.158)). If conduits were closer, piping would occur drawing down
pore pressure at the drainage divide until the condition was again met. Equation
(5.157) then reduces to

1

R

dR

dt
= −1

2
As

(
Nc

a

)a−b

(5.159)

To handle the sediment balance in the channel, Walder and Fowler (1994) resort
to applying some rough estimates based on theory from alluvial channels in non-
cohesive sediments. Erosion in a channel will only occur if the shear stress τ imposed
by the flowing water exceeds a critical threshold τc. The value of τc is a function of
the grain size Ds for sorted sediments. Transport occurs either as bed or suspended
load, depending on the size relative to the force of the flowing water. Walder and
Fowler (1994) use the Meyer-Peter and Müller (1948) equation to describe the bed
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load transport rate Qb

Qb =
Kρsls

ρw
1/2g∆ρ

(τ − τc)+
3/2 (5.160)

where (τ − τc)+ = max(τ − τc, 0), K is a constant (≈ 10), ρs is the density of the
sediment, ls is the width of the stream bed, g is the gravitational acceleration, ρw is
the density of water and ∆ρ = ρs−ρw. In glacial rivers, sediments can be described
as a mixture of sand and gravel-sized clasts which enables us to apply an "equal
mobility" condition, where all grains starts to move under roughly similar stresses

τ≈µ̄g∆ρD50 (5.161)

(Parker et al., 1982) where µ̄ ≈ 0.05 is a dimensionless empirical constant and D50

is the median grain size. For suspendable sediments erosion rates are harder to
estimate because the general theories (e.g. Richards, 1982) involve a local steady
state where erosion rates Ė equal deposition rates Ḋ. However Ė may be prescribed
as a boundary condition on the concentration profile and Parker (1978a) proposed
that erosion rates may be given by

Ė = K1vs

(
τ − τc

g∆ρDs

)3/2

(5.162)

and that the deposition rate is given by

Ḋ = K2vsc̄
(

g∆ρDss

τ

)1/2

(5.163)

where c̄ is the depth averaged suspended sediment concentration and K2 ≈ 6. the
net erosion rate of suspended sediment is then

ṁs = ρss

(
Ė − Ḋ

)
+

(5.164)

Subglacial channels incised into subglacial sediments differ from alluvial channels
in one respect. Alluvial channels maintain their cross-section if there is no net erosion
of the banks (Parker, 1978a,b). Subglacial channels maintain such a cross-section
only if erosion balances the creep of sediment into the channel. Hence we can write
Equation (5.178) for a silt-sand type channel in terms of the cross-sectional averages,
denoted by 〈 〉

〈Ė〉 = 〈Ḋ〉+
〈ṁs〉
ρsls

(5.165)

For a gravel-type channel τ > τc on the banks and will be just enough to erode
the banks and erode the influx of creeping till at an appropriate rate. Parker’s
(1978a; 1978b) analysis of equilibrium stream channels does not strictly apply to
subglacial channels but the processes described by Parker should apply and hence
yield channels with high aspect ratio.
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To describe the subglacial channel we first define the total cross-sectional area S
as the sum of the areas bounded by either ice Si or sediment Ss

S = Si + Ss (5.166)

The flow in the conduit is based on the equations put forward by Röthlisberger
(1972), Nye (1976), Spring and Hutter (1981) and Lliboutry (1983) but must be
augmented by a prescription of sediment creep, erosion and transport. Walder and
Fowler (1994) assumes homogeneous flow, that sediment and water travel with the
same speed. Conservation of mass yields, for water,

∂

∂t
[ρw (1− αs) S] +

∂

∂s
[ρw (1− αs) Su] = ṁi + Ṁw (5.167)

and for sediment
∂

∂t
(c̄S) +

∂

∂s
(Qs + Qb) = ṁS + Ṁs (5.168)

where ṁi is the ice melt, Ṁw and Ṁs are the water supply rate due to flow from
tributaries, moulins or veins, αs = c̄/ρs is the volume fraction of suspended sediment
and

Qs = c̄uS (5.169)

is the suspended sediment flux where u is the mean flow rate.
The kinematics of conduit closure can be described by using Equation (5.154)

and Equation (5.159) as

∂Si

∂t
=

ṁi

ρi

−Kili
2Ai

(
Nc

n

)n

(5.170)

and
∂Ss

∂t
=

ṁs

ρs

−Ksls
2As

(
Nc

n

)a−b

(5.171)

where Ki and Ks are O(1) shape factors reflecting the difference between an idealized
cylindrical conduit and the general case reflected by Figure 5.28. If conduits are
cylindrical Si ∼ li

2 and Ss ∼ ls
2 and the creep closure rate dS/dt ∼ S. For a wide

flat channel (c.f. Hooke et al., 1990) with height h and width l À h, dh/dt ∼ l and
dS/dt ∼ l2. The approximations are hence reasonable.

The momentum balance for the flow can be replaced by a force balance between
pressure forces and drag on the channel walls by neglecting inertial forces

S

(
ρwg sin θ − ∂Pc

∂s

)
= τ l (5.172)

where sin θ is the bed slope and ls = l − li is the channel perimeter. If the flow is
turbulent, the average wall shear stress is

τ =
1

8
fRρwu2 (5.173)
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where the dimensionless friction factor fR is weakly dependent on the Reynolds
number (∼ 0.1 for subaerial streams). The average shear stress over the sediment
bed τs may differ from τ but they are assumed to be the same which is reasonable
for pressurized flow but not so for open-channel flow.

The energy equation can be written

ρwcp

[
∂

∂t
(ST ) +

∂

∂s
(SuT )

]
= τul − lihT ∆T (5.174)

where cp is the specific heat, T is temperature, ∆T is the temperature drop across
a thermal boundary layer at the ice wall and hT is the heat transfer coefficient. The
temperature is related to the ice at the pressure melting point

T = ∆T − ctPc (5.175)

where ct is the change in melting temperature with pressure and ∆T is the temper-
ature drop across the ice water interface. The heat transfer across this boundary,
ignoring any temperature gradients in the ice, is given by

lihT ∆T = ṁiL (5.176)

where L is the latent heat.
Equations (5.167), (5.168), (5.170)–(5.172) and (5.174) constitute a system of

differential equations for the variables c̄, Si, Ss, u, Pc, and T . (5.160), (5.163),
(5.166), (5.169), (5.173), (5.175) and (5.176) are algebraic expressions determining
Qb, ṁs, S, Qs, τ , ∆T , and ṁi.

The model constituting the list of equations above are used to determine the ef-
fective channel pressure defined as Ne = Pi−Pw. Walder and Fowler (1994) consider
only a steady state situation where the water flux Q is determined by integrating
Equation (5.178) and determining the effective pressure from the expression for Q.
The steady state situation is probably valid for average conditions but will not be
valid for, say diurnal variations in water flow.

At a steady state Equation (5.170) and Equation (5.171) yield

ṁi = ρiKili
2Ai (Nc/n)n (5.177)

and
ṁs = ρsKsls

2As (Nc/a)a−b (5.178)

yielding a relative ice to till creep rate of

ṁi

ṁs

=
(

Nc

P̃

)n+b−a

(5.179)

where

P̃ =

(
ρsKsls

2Asn
n

ρiKili
2Aiaa−b

)1/(n+b−a)

(5.180)
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By assuming Ki ≈ Ks and li ≈ ls and inserting ρi = 900 kgm−3, ρs = 2650 kgm−3,
Ai = 7.36× 10−5 Pa−3s−1, n = 3, As = 3× 10−5 Paa−b s−1, a = 1.33, and b = 1.8 we
obtain

P̃ ≈ 8 bar (5.181)

This indicates that till creep is larger than ice creep for Nc < P̃ whereas the op-
posite is true for Nc > P̃ and hence we have two end cases where either process is
dominating.

To proceed Walder and Fowler (1994) assumes a non-slip boundary condition
between the ice and the till. This implies that as the conduit closes, ice and sediment
flow towards the conduit with the same speed. It is thus possible to approximate
the creep rates as

ṁk ≈ ρkVklk sin θk (5.182)

where k = i, s and θk is the angle of the ice roof or till floor to the horizontal. We
then get

ṁi

ṁs

≈ ρili sin θi

ρsls sin θs

(5.183)

and the two extreme cases ṁi/ṁs À 1 and ṁi/ṁs ¿ 1 corresponding to θi/θs À 1
and θi/θs ¿ 1 which correspond to level-floored ice tunnels and level-roofed till
channels respectively. This mean that if Nc > P̃ the conduit is essentially a Röth-
lisberger channel with a stiff till floor and if Nc < P̃ the conduit will be a Nye-type
channel cut into the till with a stiff ice roof.

To solve the equation we can make several simplifications. First, c ¿ ρs ⇒
αs ¿ 1and the volume flux Q = Su is determined from Equation (5.167). Equation
(5.177) shows that melting from frictional dissipation is small and probably negligible
in most circumstances and that water fluxes Q(s) will be determined by surface
derived fluxes and that Q(s) therefore is a prescribed function. The energy equation
(Equation (5.174)) can be rewritten using Equations (5.175) and (5.176) as

∂

∂s

[
Q

(
ṁi

κwNu
− γ

Pc

L

)]
= −ṁi +

τul

L
(5.184)

where γ = ρwcpct ≈ 0.32 (Röthlisberger, 1972), κw = kw/ρwcpis the thermal conduc-
tivity and Nu = hT li/kw is the dimensionless Nusselt number which concerns heat
transfer at the ice-water interface.

Equations (5.172), (5.173), (5.177), (5.184), and

Su = Q (5.185)

allows us to determine S, u, τ , Pc, and ṁi, given li and ls, and can be combined to a
single non-linear differential equation for Pc. However, it is possible to simplify the
problem by making two approximations. First, Nc = Pi − Pc and Pi = ρigd, where
d is ice depth, which results in

ρwg sin θ − ∂Pc

∂s
= (ρw − ρi) g sin θ + ρig cos θ tan α +

∂Nc

∂s
(5.186)
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where α is the ice surface slope (Weertman, 1972). For a slowly varying bedrock
slope ∂Nc/∂s will be negligible. As an example, we can study what effects significant
bedrock slope changes occur over a length lf of a flow line of an ice sheet.

∂Nc/∂s

ρig sin α
≈ ∆Nc

Pi

d

lf sin α
(5.187)

where ∆Nc is the variation of Nc. For an alpine glacier δNc < Pc so that ∂Nc/∂s
can be neglected if lf À d/ sin α ∼ 1 which corresponds to ∼ 10 ice thicknesses. For
an ice sheet lf À d/ sin α ∼ 1. The hydraulic gradient can also be approximated
without introducing large errors as

ρwg sin θ − ∂Pc

∂s
= ρig sin θ (5.188)

A second simplification to solving the system of equations results from Equation
(5.184). Q/κwNu is dimensionally a length over which ṁi relaxes to its equilibrium
value. Inserting Q = 1 m3 s−1, κw = 10−6 m2 s−1, Nu ≈ 0.1Re0.8 (Spring and Hutter,
1981), Re ≈ 106, assuming u = 1 m s−1and l = 1 m, we obtain Q/κwNu ≈ 102

m which implies that the derivative of ṁi is negligible everywhere. We can thus
rewrite the second l.h.s. term in Equation (5.184) as

∂

∂s

(
−γPcQ

L

)
= −γ

L

(
Q

∂Pc

∂s
+ Pc

∂Q

∂s

)
(5.189)

In line with our previous approximation ∂Nc/∂s ¿ ∂Pi/∂s so that by setting Pc =
Pi −Nc

∂

∂s
(PcQ) ≈ ∂

∂s
(PiQ)−Nc

∂Q

∂s
(5.190)

We can thus rewrite Equation (5.184) as

ṁi ≈ τul

L
+

γ

L

[
∂

∂s
(PiQ)−Nc

∂Q

∂s

]
(5.191)

which provides us with a series of algebraic equations to find Nc since both Pi and
Q are prescribed functions of s. It is possible to estimate the contribution of the
bracketed term in Equation (5.191) to 0.1–0.3 that of τul/L and hence it is possible
to neglect it.

In summary the model consists of five algebraic equations

ṁi =
τul

L
Sρig sin α = τ l

τ =
1

8
fRρwu2 (5.192)

ṁi = ρiKili
2Ai

(
Nc

n

)n

Q = Su

94



By setting li ≈ l we get

l2Nc
n = b2Q

τ = B1

(
S

l

)1/2

(5.193)

u = b3
1/3

(
S

l

)1/2

S3

l5
=

Nc
2n

b2
2b3

where

b1 = ρig sin α

b2 =
nnb1

ρiLKiAi

(5.194)

b3 =
8b1

fRρw

To determine Nc in terms of Q we must prescribe l in terms of S which implies
that conduit shape becomes important. We will now look at the two cases Nc > P̃ ,
channel drainage, and Nc < P̃ , canal drainage.

Channel drainage. When Nc > P̃ the tunnel resembles a Röthlisberger tunnel
and protrudes into the ice. We expect a semicircular cross-section and can prescribe

S ≈ l2 (5.195)

Equation (5.193) then becomes

Q ≈ Nc
5n

b2
5b3

2 (5.196)

This equation shows that as Q increases, Nc and thus also Pc decreases which is
consistent with an arborescent network of channels. Since the dependence of Nc on
Q is weak Q can be approximated by a constant in order to calculate Nc

Canal drainage. When Nc < P̃ then the tunnel resembles a Nye-type canal,
incised into the subglacial sediment and hence the processes of erosion and transport
of sediment become important. Such canals are expected to be broad and shallow
which implies that Equation (5.195) does not apply, instead

S ≈ hl (5.197)

where h is the canal depth, which depends on the nature of the stream bed and thus
can be prescribed in different ways. From Equation (5.193) we get

Q ≈ b2b3h
3

Nc
n (5.198)
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This result is radically different from that for Röthlisberger channels since Nc in-
creases as Q increases. Such behavior is consistent with a distributed system such
as that for linked cavity system (Walder, 1986; Fowler, 1987b; Kamb, 1987).

Based on the Equations (5.192)–(5.194), we can numerically estimate conditions
in the channels. Coefficients b1, b2, and b3 depend only on the surface slope and by
using n = 3 we get

b1 ≈ 9× 103 sin α Pa m−1

b2 ≈ 1.1× 1020 sin α Pa s m−1 (5.199)
b3 ≈ 6× 102m s−2

When Nc > P̃ Röthlisberger channels exist and Equation (5.196) can be expressed
numerically as

[Q] ≈ 2× 10−31 [Nc]
15

sin7 α
(5.200)

where Q = [Q] m3 s−1and Nc = [Nc] bar ([x] denoted the magnitude of x). By
inverting Equation (5.200) we obtain

[Nc] ≈ 1.1× 102[Q]1/15 (sin α)7/15 (5.201)

Inserting sin α = 0.1 and [Q] = 1 we obtain [Nc] ≈ 38, for sin α = 0.001, [Nc] ≈ 4.
This implies that for valley glaciers Nc > P̃ but that this is not generally true for
ice sheets. Hence Rötlisberger channels are less likely to exist beneath ice sheets
and ice streams where these are underlain by deforming sediments.

If we assume that Nc < P̃ then Equation (5.198) becomes

[Q] ≈ 6.2× 107
3 sin2 α

[Nc]3
(5.202)

where h = m. Inserting [Q] = 1 and sin α = 0.1 we get [Nc] = 85; for sin α = 0.001
[Nc] = 4. This implies that canals in subglacial sediments can only exist with depths
of cm-scale in valley glaciers whereas they can be up to 2 m beneath ice sheets.

No experimental data exist to elucidate how subglacial canals would be config-
ured on a till bed. However, we can gain an appreciation by investigating conditions
valid for other materials. Gravel bed rivers are generally wide and shallow and ad-
just their shape so that the average bed shear stress is roughly equal to the critical
shear stress for bed load transport. By combining Equations (5.161) (5.193) (5.197)
we obtain

h ≈ τc

b1

≈ µ̄∆ρD50

ρi sin α
(5.203)

Because the subglacial channel also needs to handle a net input of sediment by
creep the shear stress needs to be higher than otherwise. Equation (5.203) yields
h/D50 = O(1) for sin α ∼ 0.1 (valley glaciers) and h/D50 = O(102) for sin α ∼ 0.001
(ice sheets).
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For sandy silty river beds channels are also expected to be broad and shallow.
Parker (1978a) analyzed sand-silt bedded streams and established

h = 85
(

Rf

sin α

)1/2

Ds (5.204)

where Ds = D15 is the "characteristic" size of suspended grains, Rf is a dimensionless
parameter that depends on grain size and is of O(10−1) for sand and silt. This yields
h/Ds ∼ 102 for sin α = 0.1 and h/Ds ∼ 103 for sin α = 0.001

Sediments containing clay attain cohesive properties when the clay content ex-
ceeds ∼ 10% (Skempton, 1964). Therefore it is likely that clay rich materials can
maintain steeper banks and it is thus possible that the dimension of subglacial canals
in clay may be similar to Röthlisberger-type channels, i.e. S ≈ l2.

Typical tills or glacier diamictons are very poorly sorted sediments where the
larger clasts are matrix supported. The clay content may vary depending on the
parent material but most Swedish tills do typically not have cohesive properties.
Hence steep banks could occur if the clay content is favorable. However, the constant
flow of poorly sorted material towards the canal and the erosion of primarily finer
particles will leave a lag to form the stream bed and hence lead to broad shallow
channels. Estimating h for till channels remains difficult and results are ambiguous.
For gravelly tills with Ds ∼ 0.01 m we get 0.01 < h < 1 m and for sandy-silty till
with Ds ∼ 0.0001 m, 0.01 < h < 0.1 m.

In all theoretical and field based studies on water flow on or in sediment beds,
very little consideration is given to the sediments themselves. This is probably due to
that each author bases their study on conditions found at one glacier of particular
interest. The studies are therefore sometimes difficult to compare in detail. The
picture, however, is clear in that water flow through channels on till beds and their
configuration are intimately coupled to the till properties.
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6. Melting at the base of a glacier

So far this report has concerned water generated by either melting of the surface ice
and snow or by rainfall on the glacier surface and how such water is routed through
a drainage system through the glacier. This type of system is gravity driven and
characterized by atmospheric pressure both where water is generated and where
water exists the glacier. Pressures and pressure gradients are mainly built up by
the hydraulic properties of the drainage system. This, however, is not the only type
of drainage that occurs in the glacier system. Water can also be generated in and
under the glacier. This part of water generation in a glacier or ice sheet is often
ignored or assumed negligible for most purposes. Typical melt rates on a glacier
surface may be on the order of meters per year, liquid precipitation may be on the
order of several decimeters to meters per year. Water generated by melting at the
base of glaciers is typically on the order of centimeters or 1/100th or less of that of
the surface processes. Melting within a glacier may be even less.

The water supplied by sub- and englacial melting may be negligible in terms of
rates when compared to the surface components melt and rain. Whereas the surface
components undergo seasonal variations, subglacial melting is more stable through
time. Basal melt rates may change if the dynamics of the ice changes since a change
in deformation rate also causes an associated change in internal heat production in
the ice; frictional heating may also change if the ice is sliding. Furthermore, the
subglacial melting may occur over very large areas and the volumes produced are
obviously related to the area of such melt. On regular glaciers the volumes are
small since glaciers are small. Under ice sheets, however, the sheer magnitude of
potentially melting area yields significant volumes of water. There is, hence, reason
to also consider the processes responsible for sub- and englacial melt.

6.1 Melting from geothermal heat
Glaciers and ice sheets experience melting of basal ice where the basal ice temper-
ature is at the pressure melting point. Heat for this melting can be added from
geothermal heat flow and from the internal deformation of basal ice. The thermo-
dynamic situation at the base of an ice sheet is determined by the thermal properties
of ice. Energy can be transferred by diffusion along a temperature gradient in ice
as in all materials. However, the solidus of the ice-water vapor phase space has a
negative slope, which means that the melting or freezing temperature is depressed
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with increasing pressure by 0.09 K Pa−1.
As a general statement, freezing of liquid water occurs when temperature and

pressure satisfies the generalized Clapeyron equation (e.g. O’Neill and Miller, 1985):

Pw

ρw

− Pi

ρi

=
L

273.15
T +

PO

ρw

(6.1)

where Pw is the water pressure, ρw is the density of water, Pi is the ice pressure, ρi is
the density of ice, L is the coefficient of latent heat of fusion, T is the temperature in
degrees centigrade, and PO is the osmotic pressure. Equation (6.1) couples the effect
of temperature and pressure. It is a general thermodynamic relationship not specific
for the case of ice sheets and glaciers. The phase change of the ice-water system is not
only controlled by temperature and pressure as often described. Two other factors
may be of importance; 1) the presence of solutes in water, and 2) surface tension
arising from interface curvature. Just as in the case with an increasing pressure, an
increase in solutes in liquid water also depresses the melting/freezing point. This
effect may be referred to as the osmotic pressure (e.g. Padilla and Villeneuve, 1992),
and it is included in Equation (6.1). If liquid water is present at the base of ice sheet,
and it contains solutes, this will together with the pressure modify the melting point.

The second factor constitute an ice/water interfacial effect. It is especially im-
portant when ice crystals are growing in within micro-sized pores, such as within
different types of subglacial sediments (e.g. Tulaczyk, 1999). The finer grains sedi-
ment has, the higher the curvature of the ice-water interface becomes, which in turn
lowers the melting point (Hohmann, 1997). For example, in clays, liquid water has
been observed at temperatures down to −10 ◦C (O’Neill and Miller, 1985).

If the effect of phase curvature is taken into consideration, the Clapeyron equa-
tion may be modified to (Raymond and Harrison, 1975),

T = −273.15

L

(
1

ρi

− 1

ρw

)
Pw − 273.15σI−W

LρiRp

− 273.75

ρwL
PO (6.2)

where σI−W is the ice-water surface energy, and Rp is the characteristic particle
radius. Equation (6.2) is the fundamental equation for the ice water phase transition
given by Hooke (2005). In this equation, the first of the three terms describes the
effect of water pressure on the ice water phase transition, the second term describes
the effect of interfacial pressure, and the third term the effect of osmotic pressure.
Equation (6.2) thus give the complete treatment of the ice-water phase transition.
Commonly only the first term is used for calculations of the pressure melting point
beneath glaciers and ice sheets. Sometimes it is rewritten in glaciological literature
to give a simplified expression for calculations of the pressure melting point (e.g.
Remy and Minster, 1993),

Tpmp =
H

1503
(6.3)

where Tpmp (◦C) is the pressure melting point temperature, and H is the ice thick-
ness. The effect of the lowering of the pressure melting point described above is, in
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the case of an ice sheet, that the melting point is lowered by ∼ 2 K beneath 3 km
of ice. This is very important, since the basal conditions change drastically if the
bed of an ice sheet becomes melted or frozen. It affects ice sheet flow by turning
on and off basal sliding, governs if glacial efficiently can take place or not, and of
course have a profound impact on basal hydrology.

In a glacier with either entirely cold ice (frozen to its bed) or just reaching the
melting point at the bed, all geothermal heat is transferred through the glacier by
the temperature gradient in the ice (Figure 6.2a). The basal temperature of an
glacier is determined by the general heat equation (considering incompressible ice)

κ

(
∂2θ

∂x2
+

∂2θ

∂y2
+

∂2θ

∂z2

)
− u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
+

Q

ρC
= 0 (6.4)

where θ is the temperature, κ is the thermal diffusivity, ρI is the density of ice, C
is the heat capacity of ice, Q is the change in heat from e.g. internal deformation,
u, v, and w are the velocity components in the x, y, and z-directions, respectively.
The temperature in the ice is hence determined by both diffusion and convection,
where the diffusion is the transfer of the geothermal heat, heat generated at the
base from friction and heat from internal friction during flow deformation along the
resulting temperature gradient, and the convection is the flow of ice with different
temperature through the general flow of the glacier. A typical temperature profile
based on data from the Camp Century drill site (e.g. Hooke, 2005) can be seen in
Figure 6.1.

If ice at the base is at the pressure melting point, the actual temperature will
be increasing upwards in the temperate ice due to the change in pressure melting
point (Figure 6.2b). Since heat conduction can only occur from higher to lower
temperature, the heat entering the base of the glacier can only be used to melt ice.
We will now focus on supply of heat from the ground used for such melt.

The geothermal heat flow has two main components, one originating from the
mantle (reduced- or Moho heat flow) and one constituting radiogenic heat produced
within the upper part of the Earth’s crust (c.f. Furlong and Chapman, 1987). Over
typical continental cratons, such as the East European craton hosting Fennoscandia,
the Moho heat flow show smooth large-scale spatial trends. The Moho heat flow is
lowest in the central part of the Baltic Shield (C̆ermak, 1989). The crustal part of the
geothermal heat flow displays much larger spatial variations, down to a regional scale
(Näslund et al., 2004). In the upper part of the crust energy produced by the natural
radioactive decay of primarily 40K, 238U, and 232Th is absorbed by the bedrock
and stored as heat. There is a close correlation between the distribution of heat
produced in the crust and regional geological units, with higher heat flow observed
in granitic rocks. As example, over Sweden and Finland the total geothermal heat
flow observed at the crustal surface varies with a factor of more than 2 on a regional
scale Näslund et al. (2004). The geothermal heat flow has a strong control on basal
temperatures of ice sheets (e.g. Waddington, 1987). Typically, for a 3 km thick ice
sheet at steady-state, a 20% error in geothermal heat flux generates a 6 K error in
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Figure 6.1. Vertical temperature profile through an ice sheet calculated using a simplified
Equation 6.4 focussing on vertical components.

Figure 6.2. Schematic detail of the bed-ice interface of a glacier showing (a) the conduction
heat from the glacier base due to a geothermal gradient, and (b) the heat trap produced
by the presence of temperate ice at the bed. See text for further discussion.
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basal temperature. This has direct implications on for example numerical ice sheet
modeling, if the geothermal heat flow is not realistic in the model setup, ice sheet
models will not produce useful patterns on basal melting.

The basal melting beneath an ice sheet can not easily be estimated from the
geothermal heat flux, although, in a relative sense, melting will be a function of the
flux. Since the basal conditions are determined by all components of Equation 6.4,
knowledge of the geothermal heat flux will not suffice, typically numerical modeling
of the Equation with known and estimated boundary conditions are required.

Qualitatively, the energy available for melting is determined by the flux of heat
conducted away from the base through the overlying ice. At the boundary this
reduced to the difference between the geothermal heat flux and the conduction of
heat through the ice near the boundary. The melt rate is thus determined by

ṁ =
τbub + G−Kβ0

KρI

(6.5)

(e.g. Tulaczyk et al., 2000; Hooke, 2005), where βG is the geothermal heat flux, Kβ0

is the heat conducted away from the bed interface upwards in the ice (K is the
thermal conductivity of ice and β0 is the local thermal condition in the ice), τbub is
the frictional heat production, τb is the basal shear stress and ub is the basal sliding
speed, L is the latent heat of fusion, and ρI is the density of ice.

The geothermal heat flux varies spatially as discussed above. For the Fennoscan-
dian ice sheet the average value from Näslund et al. (2005) of 49 mWm−2, can be
considered typical. To provide an order of magnitude estimate of basal melting, we
can consider data calculated by (Hooke, 1977) from which we can extract a tem-
perature gradient of 0.015◦C m−1. If we disregard frictional heating from the bed
a typical melt rate would be on the order of millimeters to a centimeter per year.
Fahnestock et al. (2001) show estimated annual melt rates beneath Greenland to
on the order of cms, although much higher values reaching 0.15 m are inferred in
areas of rapid ice motion, indicating the typical feedback between basal water and
glacier sliding. Modelling results also yield values from a several mmyear−1 to a few
cm year−1 (J. Johnson, personal communication, Nov. 10, 2006). Hence, values on
the order of cm year−1 can be expected and used to estimate the volumes of water
produced beneath an ice sheet if the area of melt is considered known.

To roughly estimate the maximum contribution of discharge from basal melt, we
will perform a rough calculation using the following assumptions.

1. We consider a straight flow line from the ice divide to the terminus located
at the Younger Dryas zone of south central Sweden. The choice of terminus
position is mainly that of a well defined position, we do not consider the
climate aspects of this stand. The flow line length would be approx. 300 km
(this number should be taken for its magnitude, not absolute value).

2. The width of the drainage area would be triangular with an apex at the divide
and widening towards the margin, as envision by Shoemaker (e.g. 1986). We
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consider the esker spacing a measure of drainage area width at the margin
which yields a rough width of 30 km (Geological Survey of Finland, 1984).

3. The entire triangular drainage area experiences a uniform 0.01 m year−1 basal
melt rate.

Performing the simple calculation yields a discharge of 14m3 s or 1.2×106 m3 day−1.
This corresponds to normal discharge in a medium size natural stream. The im-
portance of this water, however, is that it is highly pressurized through most of its
transport in the basal meltwater film.

That basal melting from geothermal heat is important for understanding the sta-
bility of ice sheets is gaining more support. (Näslund et al., 2005) provide a first de-
tailed geothermal heat flux distribution of the Fennoscandian ice sheet and show that
significant differences occur in response to local variations. The ice sheet average
melting and discharge, however, is not severely affected. It should be remembered
that the paleo-ice-sheet geothermal heat distributions are more easily obtainable
than those for Antarctica and Greenland (Fox Maule et al., 2005). Hence studies
introducing large scale variable geothermal heat flux boundaries are emerging (e.g.
Fahnestock et al., 2001; Pollard et al., 2005; Näslund et al., in prep).

6.2 Melting from internal deformation and basal fric-
tion

Heat that can be made available for basal and englacial melting is produced by
the deformation processes as ice flows. Such contributions depend strain rates and,
hence, larger contributions occur near the bed and where the ice moves faster. In the
case of fast flowing ice streams where much movement is by sliding, large strain rates
are primarily found in the marginal shear zones of the streams. It is possible that
heat can also be produced by subglacial sediment-deformation and friction between
the base and the substrate.

In the simplest case, we can consider simple shear. The rate of energy dissipated
by internal deformation can then be described by

dE

dt
= τxz ε̇xz (6.6)

where τxz is the basal shear stress (parallel to the bed) and ε̇xz is the the strain rate
parallel to the bed, defined by ε̇xz = (τxz/B)n, where B and n are the constants of
Glen’s flow law for ice (Equation 4.1). Equation 6.7 can be rewritten as

dE

dt
=

(ρgh sin α)n+1)

Bn
ekθ (6.7)

by using τxz = ρIgh sin α and the approximation that the temperature dependence
of B can be accommodated by an exponential effect(ekθ Hooke, 2005). Because of
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Figure 6.3. Graph of the fraction of heat contributed from ice below a certain depth in a
glacier. Data from Budd (1969, table 4.2b, p. 69).

the strong deformation rates, most of the contributed heat is produced near the
bed. Figure 6.3 shows how much of the total heat flux is caused by internal friction
at a certain level in the ice column. It is evident that only 3% of the heat from
internal deformation is produced in the upper half of the ice column. The lower 1/5
contributes 67% and the bottom 10% of the ice contributes over 40% of the heat.
Hence much heat is generated near the basal boundary where melting is most likely
to occur.

When ice under temperate basal conditions slides over its bed and deforms in
response to the basal shear stress, heat is produced. One process involved in sliding
is the regelation. Regelation was first described by Tyndall and Huxley (1857),
Faraday (1859, 1861) and Deeley and Parr (1914) but developed into the sliding
theory for glaciers by Weertman (1957, 1964), and Robin (1976). Figure 6.4 shows
how regelation in a closed system works where basal ice encounters a small obstacle
on the glacier bed. The term closed indicates that neither water nor heat are
lost from the system in the figure. When ice encounters the obstacle it becomes
compressed on the upglacier side of the obstacle. This rise in pressure changes
the pressure melting point so that ice is melting from the rise in pressure alone.
The melted water can then flow around the obstacle to the downglacier side. The
downglacier side experiences a proportionally lowered pressure and hence higher
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Figure 6.4. Principles for heat the energy circulation around a bedrock obstacle from the
process of regelation as ice moves past the obstacle. See text for discussion.

pressure melting point. Water that arrives here will thus freeze because of the lower
pressure. The phase change requires energy to either be gained (melting) or lost
(freezing) by the ice or water. This means that energy is produced by freezing at
the downglacier side and consumed by melting at the upglacier side. This sets up
a temperature gradient through the obstacle and a circulation of energy by liquid
water flowing in the glacier flow direction and through heat conduction through the
obstacle in the reverse direction.

If we consider an open system (in contrast to the closed discussed above) where
water or heat or both can escape the system, the result is that a net loss of ice in
the form of liquid water can result at the bed. Hence, the sliding mechanism can
contribute to the subglacial water production. However, the heat that inevitably
must be used to switch phase, is of course taken from other processes and may e.g.
cool the basal ice and reduce the amount of basal melting from geothermal heat.
The net result may therefore be very little when all processes are considered in
conjunction.
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7. Ice sheet hydrology

As stated at the beginning of this report, ice sheet and valley glacier hydrology does
not differ in terms of the processes involved. However, the scale over which the
processes act and the size of the water fluxes are of course much larger on the ice
sheet than on the valley glacier. The only modern ice sheet that can be used as an
analogue to the past Fennoscandian ice sheet is the Greenland ice sheet. Antarctica
is a poorer analog since it largely lacks surface melting and also has vast marine-
based portions; Greenland is a land-based ice sheet. Although the analog can be
argued not to be perfect, Greenland exhibit the same processes as those found in
conjunction with past ice sheets and at similar scales. The Greenland analog is
therefore important. We will therefore summarize work done on the Greenland ice
sheet and how this fits with general theory.

7.1 Surface hydrology of present ice sheets
The Greenland ice sheet covers 1 640 000 km2 (e.g. ACIA, 2005, p. 205). K. Steffen
(reported in ACIA, 2005) has estimated the ablation area to cover 5×105km2 and the
area of the dry snow zone to be 1 140 000 km2. There is however large variability
in ablation area extent ranging 3–6×105 km2, and with minimum and maximum
values beyond this range. Most of the ablating area is found in southern Greenland
because of the large latitudinal range of Greenland.

Since Greenland is sparsely populated, the interest for studying the hydrology
of the ice sheet has been mostly for academic reasons. One notable exception is a
study for hydroelectric purposes performed by Grønlands Geologiske Undersøgelse
(Thomsen et al., 1986, 1993; Braithwaite and Thomsen, 1989; Thomsen et al., 1989).
Thomsen et al. (1986, 1989) investigated the surface hydrology of the Greenland ice
sheet in the Ilulissat/Jakobshavn area for hydro-electric power planning purposes.
They found that the surface hydrology of the ice sheet consisted of numerous equidis-
tant drainage areas draining through moulins into the interior of the ice sheet (Figure
7.1).

This study does not cover the entire ablation area but the most peripheral part.
The ice sheet topography is also rougher in these parts (see Figure 7.1) than higher
up. It is therefore likely that catchments grow in size on the lower slope upstream
parts of the ablation area. The map in Figure 7.1 also shows indications of this. The
surface drainage, nevertheless, forms a mosaic of smaller catchments that each are
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Figure 7.1. Delineation of surface drainage basins on the Greenland Ice Sheet near Ilulis-
sat/Jakobshavn. From Thomsen et al. (1989)

associated with moulins. Since moulins, and thereby connections to the bed, can
only be established in the presence of crevasses, the size of the drainage systems will
be determined by how widely spaced such crevassed areas are. There are currently
no such maps available.

Ahlstrøm et al. (2002) have built on the earlier studies and introduced space-
borne sensors to study the ice-sheet drainage basin. By combining the surface
observations with a digital terrain model of the ice sheet bed topography, made
from ground penetrating radar surveys, and a energy balance melt-model, they
could model and compare results with 25 years of runoff data.

7.2 Subglacial hydrology
Very few publications deal with the subglacial hydrological conditions beneath ice
sheets. Water has been found at the base of ice sheets through deep drilling for
ice cores (e.g. Kapitsa et al., 1996; Dahl-Jensen et al., 2003). Indirect evidence in
the form of seismic investigations, ground penetrating radar measurements and in-
ferences from fast flowing ice are, however, abundant. The fast flowing ice streams
of the Siple Coast in West Antarctica serve as good examples (e.g. Kamb, 1991).
Zwally et al. (2002) analyzed differential global position system (DGPS) data from
a location near the equilibrium line on the Greenland ice sheet and found seasonal
variations in flow velocity. Their locality is near (∼ 30 km) the Jakobshavns isbrae,
the fastest flowing glacier in the world. Zwally et al. (2002) attributes these varia-
tions in velocity to variations in water input from the surface presumably affecting
the basal hydrological system and causing accelerations. Modeling of the ice in the
area suggests sub-freezing basal temperatures. However, such modeling experiments
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rely heavily on assumed values of geothermal heat flux which has been shown by
Näslund et al. (2004) to be highly variable and probably the cause for erroneous
basal temperatures. The importance of Zwally et al.’s findings are that the entire
ablation area of the ice sheet seems to be affected by, at least, seasonal variations
in basal hydrology. Hence the ice sheet margins may be subject to significant varia-
tions in both water pressure and glacier sliding speed. Furthermore, it seems likely
that water routing from the surface to the bed is a common process on ice sheets
with ablation areas.

To date no study has been made where processes found on smaller glaciers have
been studied in the ice sheet context. The need for such a study is thus of major
importance to verify that a coupling similar to that on smaller glaciers occur also
on ice sheets.

7.3 Subglacial Lakes

Subglacial lakes have been known to exist since the discovery of Lake Vostok, east
Antarctica, in 1996 (Kapitsa et al., 1996). Numerous large lakes have since been
identified to exist beneath the Antarctic ice sheet (Siegert et al., 1996, 2005) by e.g.
satellite based remote sensing methods. The lakes leave a footprint in the surface
topography of the ice sheet. Because the ice sheet is locally floating in the water of
the lakes, the basal shear stress is locally zero which produce a near horizontal ice
surface over the lake. It is reasonable to assume that lakes are identifiable by this
method as long as they have larger width and length than the local ice thickness since
the effect would otherwise be taken up by the ice mass (e.g. Balise and Raymond,
1986).

Lake Vostok is the largest lake found beneath the Antarctic ice sheet and mea-
sures 280 km in length and 50–60 km in width and with a maximum depth of in
excess of 1000m, Comparable to Lake Ontario in North America. The lake subglacial
lake alters the basal ice composition through melting-refreezing and other processes
(Petit et al., 1998; Duval et al., 1998; Siegert et al., 2000, 2001). In the case of Lake
Vostok hydrothermal activity does not seem to be present for maintaining the water
body (Jean-Baptiste et al., 2001). In other cases (Siegert and Glasser, 1997) it is
possible that either strain heating or geothermal heat or both produce excess heat
that can melt and maintain water bodies at the base of the ice sheet. This issue is
of major importance for the stability of the lakes.

If the subglacial lakes are in thermal equilibrium, water is generated through
melting and lost through freezing at equal rates, thus maintaining a constant water
volume. If the lake water is generated by e.g. high anomalies in geothermal heat
fluxes and strain heating it is likely that a positive water balance results. Such lakes
thus have the possibility to grow until thresholds are reached where they can drain.
Such inferences have been made from observation of changes in the East Antarctic Ice
sheet surface topography (Wingham et al., 2006). Such re-organization of subglacial
water will likely reach the marginal areas through outburst-like phenomena. It is not
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certain that outbursts will be similar to the spectacular Jökulhlaups from Icelandic
ice caps where subglacial lakes formed by extremely high geothermal heat fluxes from
volcanoes generate large quantities of water that catastrophically drains through the
overlying ice caps (Björnsson, 1998). The effect of large bodies of water at the base
of ice sheets can be sudden outburst floods which yield transient extreme pressure
and discharge peaks.

There are several indications that large floods have occurred from ice sheets. In
Antarctica, Denton and Sugden (2005) discuss observable melt water generated fea-
tures originating from larger extents of the ice sheet. Sawagaki and Hirakawa (1997)
observed traces of meltwater in coastal areas of Antarctica. There are indications
that large quantities of water drained through the Laurentide ice sheet during its
waning phase (e.g. Josenhans and Zevenhuisen, 1990; Barber et al., 1999; Clarke et
al., 2003). Some of the observations from Antarctica have been heavily discussed
but the evidence is mounting that large floods do occur. Spectacular floods have
been inferred from re-interpretation of landforms typically not thought to be asso-
ciated with floods (e.g. Shaw, 2002). This flood hypothesis has not gained general
acceptance (e.g. Clarke et al., 2005) but cannot be completely disregarded. Hence,
large scale, low frequency drainage phenomena are possible in ice sheets. In the case
of the Fennoscandian ice sheet all identified large scale drainage phenomena area
associated with subaerial lakes dammed by ice at the margin and not subglacial
phenomena.
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8. Modeling glacier hydrology

Modeling of the hydrology of glaciers and ice sheets is important for several reasons.
There is a need to predict runoff volumes and timing of variations in runoff from
glaciers on short-term time scales (e.g. Jansson et al., 2003). Because of the strong
coupling between glacier dynamics and basal water pressure (e.g. Jansson, 1995), it
is vital to include basal hydrology in glacier and ice sheet models to correctly model
their behavior.

Modeling efforts attempting to replicate the drainage system of a glacier faces
several problems. The general flow of water, in the direction of the gradient in
potential, does not pose a major problem. The reality, including discrete tunnels or
other conduit-like systems, is very hard to implement, especially since the systems
are varying both temporally and spatially. The ice sheet models typically use grid
cells that are of km scale which means any hydrological model must average or
parameterize processes that vary over shorter distances than this (Alley, 1996).
Hence, ice sheet models can replicate the general directions of water flow but cannot
reproduce the development and changes of discrete pathways in parallel with changes
in size of the general ice sheet. We will therefore describe the general modeling of
ice sheet hydrology and the attempts that have been made to include specific flow
routing through and under the ice sheet.

8.1 General flow of water under ice sheets

To model the general hydrology at the base of an ice sheet, it is common to take
an existing thermo-mechanical ice sheet flow model and couple it to a model for
the subglacial hydrology (e.g. Johnson and Fastook, 2002). The basal melt rate
is determined by the ice model and includes geothermal heat, heat from internal
deformation, and heat from basal friction. In the example of the Johnson and
Fastook (2002) model, the water is handled by a separate flow model for water
which is similar to the ice flow part. We will briefly summarize this approach.

Johnson and Fastook’s 2002 model for subglacial water uses a water depth w
as the variable. This water depth is not a true thickness of basal water or similar
concept but a way of describing the flux of water. The flux equation for the system
is

∂w

∂t
= −∇ ·~σ + S (8.1)
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where ~σ = ~vw, ~v is the velocity vector, S represents external sources of water such as
melting or re-freezing of water at the bed. Once the water is generated it is subject
to a pressure which is determined from the overburden pressure of the ice and the
topography of the subglacial landscape. The pressure is described by

φ = ρIgH + ρW gzb −N (8.2)

where ρI and ρW are the densities of ice and water, respectively, g is the gravitational
acceleration, H is the ice thickness, zb is the elevation of the bed and N is the effective
pressure (the difference between ice overburden and water pressure, PI − PW ) and
calculated by Alley (1989) as

N = kn
τb

w
(8.3)

where kn is a constant and τb is the basal shear stress. Johnson and Fastook (2002)
following Alley (1989) argues that the concept of w is such that when higher water
pressure will tend to lower w and an increase results in increased tb. The driving
stress can be expressed as

τb = ρIgH∇h (8.4)
since H = h − zb, h is the local ice surface elevation and by assuming the driving
stress is balanced locally by vertical shear stresses. ∇ = ∂/∂xı + ∂/∂x, where ı, 
are the cardinal directions in the map plane. This results in

φ = ρIgh + ρIg

(
ρW

ρI

− 1

)
zb − kn

ρIg(h− zb)|∇h|
w

(8.5)

The velocity of the water must then be specified in terms of the pressure gradient.
This can be made with the Manning’s equation (e.g. Freese and Cherry, 1979) which
can be rewritten to the form

~V =
Rp

n

(∇φ

ρIg

)q

(8.6)

where n is the Manning’s n Modified to produce a velocity in ms−1, R is the hydraulic
radius, and p and q are exponents which vary depending on the type of flow. The use
of Equation (8.6) is not obvious since it represents an averaging of phenomena that
take place on much shorter scales than accommodated by the resolution of the ice
flow model. Johnson and Fastook (2002) argue that an appropriate parametrization
can be reached for a carefully chosen set of p (= 2,laminar; = 1/2, turbulent),
q (= 1,laminar; = 2/3, turbulent) and n (= 0.025, gravelly channel, turbulent;
5.7×10−7, laminar).

The concept outlined above allows for detailed flow routing of melt water pro-
duced at the base of an ice sheet. Such a model is highly suitable for estimating basal
contribution of melt water and to survey how water is generally routed beneath an
ice sheet. The concept has also been widely used (e.g. Pattyn et al., 2005). When
studying smaller scale phenomena, however, the lack of discrete tunnels and input
from surface melt, possibly with diurnal variations (e.g. Allen, 1971; Lindeberg and
Ringberg, 1999) or at least annual variations (e.g. Banerjee and McDonald, 1975) is
not covered. A few attempts of solving this problem have emerged.

112



8.2 Discrete routing of flow
The lack of detail in hydrological models of ice sheets regarding small scale phenom-
ena, such as point input of water from the surface and tunnel routing of water at
the base of the ice sheet and the variable pressure effects expected in such a system,
poses a large problem when trying to estimate how ice sheets affect the subsurface
flow of water. The problems are largest when concerning transient effects on diurnal
to seasonal time scales. We will therefore review emerging models which attempt
at implementing such dynamic processes Arnold et al. (1998), Arnold and Sharp
(2002) and Flowers and Clarke (2002a,b).

Arnold et al. (1998) presents a model for valley glacier hydrology which consists of
three main submodel components, a surface energy balance model which calculates
meltwater on the glacier surface, a surface routing model which routes generated
water across the glacier surface and a subglacial hydrology submodel which predicts
flow conditions in the subglacial system. The subglacial system can change between a
distributed system and a channelized system depending on flow conditions, governed
by the input rates from the surface. The model is semi-empirical in the sense that
it relies on site specific experimental data for estimating certain model parameters.

In this model the input points are known since Arnold et al. (1998) attempted to
model an existing glacier. Hence water routed on the surface was transferred to the
base a a fixed number of points. The subglacial routing was accomplished by using
parts of the US Department of Transportation Agency Storm Water Management
Model (EPA SWMM; Roesner et al., 1988). This model simulates drains (moulins)
where water can enter and leave the system by pipes (tunnels) with individual
characteristics. To simulate the distributed, or linked cavity, system (Kamb, 1987),
Arnold et al. (1998) used bundles of eight small rough conduits or by using one very
low and broad rectangular rough conduit. Conduits are allowed to increase in size
from melting and decrease in response to creep. The melting rate at the conduit
wall is calculated using

M =
(πS)1/2ρW (ftv

3/4)

L
(8.7)

(Spring and Hutter, 1981) where S is the conduit cross-section, ft is a friction
parameter, v is the water velocity in the conduit and L is the latent heat of fusion
of water. The rate of conduit closure is calculated using

A = −(PI − PW )|PI − PW |n−1s(1/nb)nS (8.8)

where PI and PW are the ice overburden and subglacial water pressure, respectively,
n and B are the empirical constant of the Glen flow law for ice (Equation (4.1)).

The resulting physically based semi-distributed model captures the essential fea-
tures of the glacier Haut d’Arolla in terms of temporal variations and to some
extent also spatial variations in the drainage. The spatial variations do not include
re-organization in terms of location of conduits, recognized from (e.g. Hock and
Hooke, 1993).
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Arnold and Sharp (2002) developed a model which generates water at the base
and at the surface of the ice sheet and routes water down to the bed where the
subglacial hydraulic potential gradient (Shreve, 1972) drives the water along the bed.
The model then calculates the flow of water at the bed according to two possible
configuration, the linked cavity system proposed by Kamb (1987) characterized by
slow flow speeds, and a fast drainage system consisting of tunnels as suggested by
Röthlisberger (1972). The water pressure in these systems is calculated by Fowler’s
1987a; 1987b theory. For tunnels the effective pressure is calculated by

NR = [ρW gφQRρIALSK ]1/n (8.9)

where NR is the effective pressure for a tunnel based system, ρW and ρI are the
densities of water and ice, respectively, g is the gravitational acceleration, QR is
the tunnel discharge, A is the Arrhenius’ parameter, L is the latent heat, SK is the
tunnel cross sectional area, and n is the Glen’s flow law exponent (Equation (4.1)).
The hydraulic gradient, φ, is defined as

φ = α +

[
ρW − ρI

ρW

]
β (8.10)

where α and β are the ice surface and glacier bed slope,respectively. The tunnel
cross-sectional area SK is calculated as

SR =

(
fQ2

R

ρW gφ

)3/8

(8.11)

where f is an empirical constant related to turbulent channel flow. For cavities, the
effective pressure is calculated by

NK = r

[
ρW gφ

ρIKL

QK

nKSK

]1/n

(8.12)

where NK is the effective pressure fora cavity based system, r is a shadowing function
(Lliboutry, 1978), defined as the probability that a randomly selected area of the
bed is in contact with the ice, QK (= QR) is the discharge through the cavity
system, nK is the number of passageways across the width of the glacier and SK

is the cross-sectional area of a typical passageway. Which of these configurations
exist at a specific node point is calculated by a stability criterion provided by Fowler
(1987b). At each time step and in each node of the model, this criterion has the
form

Λ =
νUs

lAN
(8.13)

where ν (= a/l), a and l are the characteristic bedrock bump amplitude and length,
respectively, and A is the Arrhenius’ parameter.The critical value for tunnel stability
Λc is given by

Λc =
(

3nSR

A?

)(4−µ)/µ

(8.14)
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where A? is the total cavity cross-sectional area, and µ is the power function for
self-similar bedrock surfaces (Fowler, 1987a,b)

Water generated by melting and precipitation at the surface of the modeled ice
sheet is routed on the surface by an upstream contributing area algorithm suggested
by Sharp et al. (1993). At model nodes where the accumulated water reaches a
threshold value it is added to the basal water at that node location. Hence, this
model allows water to enter at points that are not pre-determined as in the Arnold
et al. (1998) model. The same routing routine is used to calculate the discharge at
the basal model nodes based on the subglacial hydraulic potential gradient (Shreve,
1972). This model thus encapsulates the idea that the surface and basal hydrology
of ice sheets are coupled. The way in which the input points for surface water into
the subglacial system are determined is not based on observational knowledge. In
fact, this is a key point which, despite its importance, is lacking in our understanding
of ice sheet hydrology.

(Flowers and Clarke, 2002a,b) has developed a physically based model for glacier
hydrology which couples glacier surface runoff, englacial transport and storage, and
flow of water beneath the glacier, including flow within subglacial sediments. This
model was developed using the extensively investigated Trapridge Glacier, Yukon,
Canada, as a reference but has since been used in other contexts as well. The model
consists of communicating two-dimensional, vertically integrated layers, model com-
ponents.

Figure 8.1 shows the hydrological system handled by the Flowers and Clarke
(2002a) model. Surface melt is handled by a degree-day model (e.g. Hock, 2005), a
common approach in all glacier and ice sheet models. The surface runoff, a linear
diffusion approach (Marshall and Clarke, 1999) is used where routing is governed by
a local runoff depth hr and spatial gradients in hr and surface elevation. The water
volume is conserved, assuming incompressibility,

∂hr

∂t
+

∂Qr
j

∂xj

= M + R− φr:e + φr:s + φr:a (8.15)

where Qr
j is the discharge per unit width, j = 1, 2 are the two horizontal directions,

M is the melt generated by the degree day model, R is the rate of liquid precipi-
tation, φr:e is a source/sink term connected to exchange of water with the englacial
system ((b) in Figure 8.1), φr:s is the rate of discharge from the subglacial system
to proglacial runoff and φr:e is the exchange with the groundwater system in the ice
free region.

Qr
j =

Kr
jkh

r

ρW g

∂Ψr

∂xk

(8.16)

where j, k = 1, 2 are the two horizontal directions, ρW is the density of water and g
is the gravitational acceleration. The total fluid potential Ψr is given by the sum of
the water pressure and the elevation potential

Ψr = pr + ρW gzs (8.17)
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Figure 8.1. The conceptual model for glacier hydrology containing fours coupled model sys-
tems: (a) surface hydrology; (b) englacial hydrology; (c) flow in a porous subglacial sheet;
and (d) groundwater flow (excluding bedrock flow). After Flowers and Clarke (2002a).

where pr is the water pressure and zs is the elevation above a datum zs = 0.
The englacial drainage in the Flowers and Clarke (2002a) model is represented

by a combination of storage elements, surface and basal crevasses and vertical pipes
(moulins). These elements are given volumes according to

V1 = πr2
1h1 (moulins)

V2 = 1/2w2l2h1(f2 + 1) (surface crevasses)
V3 = 1/4w3l3h1 (basal crevasses)

(8.18)

where r1 is the radius of the moulin, h1 is the ice thickness (moulins and surface
crevasses are thought to extend through the ice, basal crevasses are h1/2 in height),
w2 and w3 are the surface and bed widths of surface and basal crevasses, respectively,
f1 is geometric factor that scales the area in contact with the bed to the area exposed
at the surface. The total englacial void volume is then given by

VT =
∫

S
Ni(x, y)Vi(x, y)dS (8.19)

where Ni(x, y) density of storage element i per unit area, Vi(x, y) is the volume of
those storage elements calculated by Equation (8.18). The different storage elements
have different hypsometric curves, which yield unique relationships between water
volume and pressure. For a vertical pipe, we obtain

p1 =
ρW gV W

1

πr2
(8.20)

for the pressure at the base of a surface crevasse

p =





ρW gV W
2

w2l2
, f2 = 1

ρW g

√
2V W

2 h1

w2l2
, f2 = 0

ρW gh1f2

(1−f2)

(
−1 +

√
1 +

2V W
2 (1−f2)

h1w2l22

)
, f2 6= 0, 1

(8.21)
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For basal crevasses solutions for both underfull conditions and conditions when the
uncompressed water volume V W

3 exceeds the void volume V3 are required. Underfull
conditions yield

p3 =
ρW gh1

2


1−

√
1− 4V W

3

h1w3l3


 V W

3 ≤ V3 (8.22)

For V W
3 > V3

p3 =
ρW gh1

2
+

1

β
ln

(
V W

3

V3

)
(8.23)

where β is the compressibility of water. In the model, Flowers and Clarke (2002a)
make the assumption that only one type of drainage element occurs in each grid
cell of the model and that water pressures in all elements are equilibrated such that
pe = p1 = p2 = p3.

Horizontal transport is achieved by applying a fractured medium approach. The
areally average englacial water volume is defined as

V e =
∫

S
he(x, y, t)dS (8.24)

The water balance equation analogous to Equation (8.15) is

∂he

∂t
+

∂Qe
j

∂xj

= M + R− φr:e + φr:s (8.25)

where the source/sink terms involve exchange with the surface runoff system and
the underlying subglacial sheet system. The horizontal flux is determined by a
Darcy-type equation

Qe
j = − T e

jk

ρW g

∂Ψe

∂xk

(8.26)

where the fluid potential ψe = pe + ρW gzB, zB is the glacier bed elevation. T e
jk =

Ke
jkh1, where Ke

jk is the hydraulic conductivity and h1 is the local ice thickness. The
hydraulic conductivity of a fractured aquifer with uniform planar joints is

K =
ρW g

µ

NLb3

12
(8.27)

(Snow, 1968) where µ is the dynamic viscosity of water, NL is a line-density of
cracks, and b is crack aperture. Rearranging Equation (8.27) yields an expression
for the effective porosity

ne = NLb =
µ

ρW g

12K

b2
(8.28)

The volume of englacial joints is calculated by

Vjoint =
∫

S

∫ zS

zB

nedzdS (8.29)
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Vjoint <<¿ VT in general but where bulk storage is absent Vjoint = VT . The englacial
water pressure in such situations is given by

pe = ρIgh1(v
e/VT ) (8.30)

where ρI is the density of ice.
The subglacial drainage in the Flowers and Clarke (2002a) model is treated as

a porous sheet composed of water and sediment. The thickness of the subglacial
water sheet is defined as an areally averaged water volume

hs(x, y, t) =
1

S

∫

S
ns(x, y, t)Hs(x, y, t)dS (8.31)

where S is the area, ns is the porosity and Hs is the combined thickness of the
binary sediment-water mixture. The water balance of the system is

∂hs

∂t
+

∂Qs
j

∂xj

= bs − φr:s + φe:s + φr:a (8.32)

where bs is a source term that includes basal melting dur to geothermal heat and
glacier sliding friction, φr:s is discharge from the glacier margin, φe:s is the exchange
with englacial storage and φs:a is the exchange with the underlying aquifer.

The basal melt rate is determined by

bs =
QG + QF

ρIL
(8.33)

where QG and QF are the heat fluxes from geothermal and frictional sources, re-
spectively, L is the latent heat of fusion for ice. The frictional heat flux is estimated
in terms of the basal velocity and the basal shear stress

QF = τbjvbj (8.34)

where the shear stress is given by

τbj = ρIgh1 sin αsj (8.35)

where αsj is the local surface slope. In cases where surface water dominates basal
melting bs is negligible.

The flux of water in te subglacial water sheet is determined by Darcian-type flow

Qs
j = −Ks

jkh
s

ρW g

∂Ψs

∂xk

(8.36)

where Ψs = p‘s + ρW gzB. For mathematical closure, a relationship is required
between hs and ps which Flowers and Clarke (2002a) achieves by implementing the
empirical relationship derived by Flowers (2000, derived for Trapridge Glacier)

ps = pI

(
hs

hs
c

)7/2

(8.37)
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where pI = ρIgh1 and hs
c is the critical water thickness such that ps = pI . The

hydraulic conductivity is allowed to fluctuate in space and time as a function of hs

as

log(Ks) =
1

π
[log(Ks

max)− log(Ks
min)] arctan

[
ka

(
hs

hs
c

− kb

)]
+

+
1

2
[log(Ks

max) + log(Ks
min)] (8.38)

(Flowers, 2000) where ka modulates abrupt transitions from Ks
min to Ks

m and kb

determines it position.
Flowers and Clarke’s 2002a model, finally, has a subsurface groundwater sub-

model, envisioned as an aquifer, subparallel to the glacier bed and capped by a
low-permeability till. The mass of water in the aquifer can be estimated by

ma(x, y, t) =
∫

S

∫ zW

zL

na(x, y, t)ρa(x, y, t)dzdS (8.39)

where the second integral is calculated between the lower boundary of the aquifer
zL(x, y) and the upper boundary of the saturated layer zW (x, y, t), na is the porosity
and pa is the water density. By assuming no variations in z and that the water
thickness in the aquifer ha(x, y, t) = na(zw − zL) Equation (8.39) becomes

ma =
∫

S
ρahadS (8.40)

All exchange in mass is thought to occur either with the overlying subglacial water
sheet or with the runoff system depending on what overlies the aquifer. Hence the
mass balance is described by

dma

dt
=

∫

S
ρa(φs:a + φr:a)dS (8.41)

By applying Reynold’s transport theorem, Flowers and Clarke (2002a) compute
dma/dt as

dma

dt
=

d

dt

∫

S
ρahadS =

∫

S

[
∂

∂t
(ρaha) +

∂

∂xj

(va
j ρ

aha)

]
dS (8.42)

or by combining Equation (8.41) and Equation (8.42)

∫

S

[
∂

∂t
(ρaha) +

∂

∂xj

(va
j ρ

aha)

]
dS =

∫

S
ρa(φs:a + φr:a)dS (8.43)

which becomes
∂

∂t
(ρaha) +

∂

∂xj

(va
j ρ

aha) = ρa(φs:a + φr:a) (8.44)
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in its local form. Since va
j is equivalent to qj, the Darcy flux (Freese and Cherry,

1979), Qa
j = va

j h
a = qa

j h
a where

qa
j =

Kjk

ρW g

∂Ψa

∂xk

(8.45)

where the fluid potential is determined by Ψa = pa + ρW gzL. With the assumption
va

j (∂ρa/∂xj) ¿ (∂ρa/∂t) Equation (8.44) becomes

∂

∂t
(ρaha) + ρa ∂Qa

j

∂xj

= φs:a + φr:a (8.46)

The final balance equation may then be obtained by dividing Equation (8.46) by ρa

and differentiating the first term
(

ha

ρa

)
∂ρa

∂t
+

∂ha

∂t
+

∂Qa
j

xj

= φs:a + φr:a (8.47)

which governs both saturated and unsaturated flow in the aquifer. The transition
between saturated and unsaturated conditions is handled by choosing a rule pa(ha),
for unsaturated conditions,

pa = ρW gh‘a, ha ≤ nada (8.48)

and for saturated conditions

pa = ρW gha +
ha − nada

αada
(8.49)

where αa = 1/(1− na)∂na/∂pa is an aquifer compressibility and da = zU − zL is the
aquifer thickness.

The exchange between the different models is determined by a series of rules.

φr:e =

{ Ξr:ehr

τr:e V e ≤ VT
Ξr:ehr

τr:e

(
VT

S
− he

)
V e > VT

(8.50)

where τ r:e is a time constant, Ξr:e represents the coupling strength of the two systems.
Subglacial discharge to the proglacial runoff is written

φr:s =
1

S

∫

S
Qs

jn̂jdl (8.51)

where the line integral follows the margin, n̂j is the unit outward flow normal to dl
and S is the area over which water is deposited. The exchange between the englacial
and subglacial models is formulated as

φe:s =
χe:s

ρW gτ e:s
(pe − ps) (8.52)
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where pe − ps is a pressure differential, χe:s is a coupling strength and τ e:s. The
saturation level of the aquifer is written for two cases

φs:a =

{ χs:aKt

ρW gdt
[(ps − pa) + ρW gdt] , ha ≥ nada

χs:aKt

ρW gdt
[ps + ρW gdt] , ha < nada (8.53)

where ρW gdt represents the driving potential arising from the elevation difference
between the two systems. The exchange between surface runoff and the groundwater
system is described by

φr:a =

{ χr:aKt

ρagdt
[(pr − pa) + ρagdt] , ha ≥ nada

χr:aKt

ρW gdt
[pr + ρW gdt] , ha < nada (8.54)

This model has been successfully used to model the hydrological system of Trapridge
Glacier, Canada (Flowers and Clarke, 2002b). Flowers et al. (2003) used a simplifi-
cation of the the Flowers and Clarke (2002a) model and applied it to Vatnajökull,
Iceland, to study the contribution of water from the ice cap to Icelandic rivers.
Flowers et al. (2005) continued to also model the future development of Vatnajökull
by further coupling the hydrological model to an ice flow model.

To include discrete water carrying features, Flowers et al. (2004) employed one-
dimensional flow line model that account for both sheet-like and ice-walled conduit
water flow. This development is based on Clarke (2003) revision of the Spring and
Hutter (1981, 1982) work. The balance equation for the subglacial water sheet is
written as

∂hs

∂t
= −∇Qs − φs:c (8.55)

where hs is the water sheet thickness, Qs is the water flux and φs:c concerns wa-
ter leakage into conduits from the water sheet. The water sheet is treated as a
macroporous horizon that accommodates turbulent flow at the ice contact (Stone
and Clarke, 1993)

Qs = −2K
s hs∇ψs

ρwg

(
1 + (1 + C |∇ψs|)1/2

)−1
(8.56)

where Ks is the hydraulic conductivity, ρW is the density of water, ψs = ps + ρwgzL

is the fluid potential, zL is the drainage path elevation, ps is the water pressure.
C = (2880K3

s (1−m)2/Re2µm3ρW g3)
1/2 where m is the porosity, Re = QsρW /µ is

the Reynolds number, and µ is the viscosity. The exchange of water between the
sheet and the conduits is written as a function of pressure

φs:c = χs:c Ksh
s:c

ρW gd2
c

(ps − pc) (8.57)

where χs:c ∈ 0, 1 controls the coupling between sheet and conduit. The evolution
of conduit cross-sectional area depends on the balance between conduit closure by
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creep and melting due to viscous dissipation of heat. The rate of change in conduit
cross-sectional area ∂S/∂t thus becomes

∂S

∂t
= − Qc

ρIL
(∇ψc −D∇pc)− 2S

(
pI − pc

nB

)n

(8.58)

where Qs is the conduit discharge, L is the latent heat of fusion for water and
ψc = pcρW gzL is the fluid potential. n and B are the empirical constants of the
Glen’s flow law for ice (Equation (4.1)). D = ctρW cW where ct is the change in
melting point temperature with pressure, cW is the heat capacity of water. The
water mass balance for a system of conduits is thus expressed as

∂pc

∂t
= − 1

βS

(
∂S

∂t
+∇Qc +

Qc

ρW L
(∇ψc −D∇pc)− dcφ

s:c

)
(8.59)

where β is a numerical compressibility parameter (Clarke, 2003). The conduit dis-
charge can be expressed by

Qc = −
(

2S3

PW ρW fR

)1/2 ∇ψc

|∇ψc|1/2
(8.60)

where PW i sthe wetted perimeter, fR = 8gn′2/R1/3
H is the Darcy-Weisbach roughness

with a Manning roughness n′, and hydraulic radius RH . Using this model, Flowers et
al. (2004) modeled the discharge through Jökulhlaup from Grimsvötn, Iceland. Such
drainage is a special case but the approach is the first where spatially discretized
conduits occur.

8.3 Conclusions on glacier hydrology modeling
The state of physically-based models that simulates glacier hydrology remains fairly
crude although promising work is emerging. The model efforts have been made to
gain insights into specific glaciers or glacier-types and are not necessarily easily and
generally applicable. The well investigated melt water production at the glacier
surface can be handled comparatively well. It is also the most easily observable part
and hence simplest part to model by surface energy balance models and tempera-
ture index melt models. The internal and subglacial system is characterized by large
variability in possible drainage system configurations. Much uncertainty remains as
to the exact geometry of drainage systems and how these systems can co-exist or
switch from one state to the other. A crevasse-like englacial network, as adopted
in the Flowers and Clarke (2002a) model, has been observed on Storglaciären, Swe-
den (Fountain et al., 2005a,b), countering previous notions of englacial water flow
through few melt-enlarged conduits. If subglacial sediments are present, ground-
water flow may be a significant part of the system, as in the Flowers and Clarke
(2002a) model, or flow may occur in channels eroded into the subglacial sediments.
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On harder beds or beds of less permeable sediments such as tills, water flow may
occur in conduit systems melted into the ice or in linked cavity systems. Hence, a
general physically-based model would have to accommodate all these possibilities
and even coupled different types of systems beneath different parts of a glacier. Such
a model would be inherently complex.

Another issue which at present is not satisfactorily met is the time-transgressive
development of subglacial systems. In the Flowers and Clarke (2002a) model, this
is not necessary since flow through porous sediments does not involve significant
time-dependent changes, except possible changes such as development of piping or
siltation of the porous media from fines produced through sediment deformation. In
the case of the Arnold and Sharp (2002) model, it is widely reported (e.g. Nienow
et al., 1998) that the subglacial drainage system changes both in sizes of conduits
and in complexity of the network of channels through the course of a season. The
subglacial system is very dynamic and it seems as if a complete and accurate model
description of this system may be distant. However, most changes in such a system
occur in response to rapid changes, both increases or decreases in water inputs, so
a first-order approximation may be to switch between a series of systems prompted
by key events in the forcing.
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9. Concluding statement

The hydrological systems of glaciers and ice sheets have attracted much attention
in the glaciological research literature. Detailed theories have been developed for
the drainage of water through and beneath the glaciers that detail the processes in
tunnels, distributed systems as well as water films. Flow of water beneath glaciers
in the presence of a subglacial diamicton is also well understood. As with all process
studies, these theories describe variations on time scales where problem geometries,
such as conduit location (but not change in size of conduits) are constant. Hence,
changes in routing of water is not handled in process theories and their modeling.
Modeling of general water flow through glaciers has its origin at the other end of
the time spectrum and models, hence, handle changes in large scale flow routing
well but do not implicitly include processes. A few attempts have been made to
include discrete tunnels or other physically-based characteristics into models and
this direction in model development will obviously develop further.

The main problem with our understanding of the hydrology of glaciers and ice
sheets, hence, lie in that processes and large scale flow characteristics are not coupled
in models. The main reason for this is of course the complexity of the highly,
especially spatially, transient behavior of the glacier hydrological system. A tunnel
system with conduits of meter-width may change location over areas of a factor 10–
100 larger, whereas the model resolution may be at one order of magnitude larger
still. Furthermore, most process studies have been made on small glaciers whereas
most modeling attempts concern ice sheets. This division comes from the scale issues
discussed earlier but also from the fact that no glacier hydrological process studies
have been made on ice sheets. In order to significantly improve our understanding of
glacier hydrology on ice sheet scales and couple the processes into numerical schemes,
we need to perform detailed process studies on present day ice sheets, preferably the
Greenland ice sheet. Since the dynamic response of ice sheets to global warming is
becoming a key issue in, e.g. sea-level change studies, the problems of the coupling
between the hydrology of an ice sheet and its dynamics is steadily gaining interest.
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