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Abstract

This report contains the research results concerning advanced ultrasound for the inspection
of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University
in years 2005/2006.

In the first part of the report we propose a concept of monitoring of the friction stir welding
(FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE
technique and then we present the principle of the system for monitoring the FSW process in
cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular
array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and
the releases of the residual stress at canister’s circumference. Finally, we review the theory of
uniform circular arrays.

The second part of the report is concerned with synthetic aperture focusing technique
(SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches
to perform imaging with less computational cost than that of the extended SAFT (ESAFT)
method proposed in our previous reports. First, a sparse version of ESAFT is presented, which
solves the reconstruction problem only for a small set of the most probable scatterers in the im-
age. A frequency domain the w-k SAFT algorithm, which relies on the far-field approximation
is presented in the second part. Finally, a detailed analysis of the most computationally intense
step in the ESAFT and the sparse 2D deconvolution is presented.

In the final part of the report we introduce basics of the 3D ultrasonic imaging that has
a great potential in the inspection of the FSW welds. We discuss in some detail the three
interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction,
and 3D visualization.
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Chapter 1

Introduction

by Tadeusz Stepinski



In this report we are presenting our recent results concerning monitoring of the friction stir
welding (FSW) process used for sealing of copper canisters for spent nuclear fuel as well as the
inspection of the FSW weld by means of ultrasound.

Our research activity in this project presented in this report was split into three separate
tasks:

e F'SW process monitoring using acoustic emission,
e High resolution synthetic aperture imaging,

e 3D ultrasonic imaging.

The first task, concerned with monitoring of the FSW process used for sealing the SKB
canisters is reported in Chapter 2. In this chapter we propose a concept of monitoring the FSW
process by means of acoustic emission (AE) technique. First, we introduce the AE technique and
we present the principle of the system proposed for monitoring the FSW process in cylindrical
symmetry specific for the SKB canisters. We propose an omnidirectional array of ultrasonic
transducers for receiving the AE signals generated by the FSW tool and the releases of residual
stress at canister’s circumference. Theory of uniform circular arrays (UCAs) that are good
candidates for this kind of application is reviewed in the second part of this chapter.

The second task, which is a continuation of our experimental and theoretical research con-
cerning synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolu-
tion, is reported in Chapter 3. In this chapter we evaluate three different approaches to perform
imaging with less computational cost than of the extended SAFT (ESAFT) method proposed
in our previous reports. First, a sparse version of ESAFT is presented, which is based on the
same model as ESAFT but it solves the reconstruction problem only for a small set of the most
probable scatterers in the image. A frequency domain the w-k SAFT algorithm, which relies on
the far-field approximation is presented in the second part. Finally, an analysis of one of the
most computationally intense steps in the ESAFT and sparse 2D deconvolution is presented.

In Chapter 4 we introduce basics of the 3D ultrasonic imaging that has a great potential
in the inspection of friction stirred welds where a variety of flaws can be encountered. Unlike
traditional 2D imaging, where cross-sections of the inspected volume are displayed and where
the inspector must mentally reconstruct the involved volumetric structures, the 3D images have
the advantage of being seen from whatever angle the inspector may desire. We discuss in
some detail the three interrelated steps involved in 3D ultrasonic imaging: data acquisition, 3D
reconstruction, and 3D visualization. When sufficient amount of data has been gathered the
inspected volume can be reconstructed and the user can choose an appropriate visualization
mode to view the data.



Chapter 2

Monitoring Friction Stir Welding
with Acoustic Emission

by Tadeusz Stepinski



2.1 Introduction

The aim of this chapter is to present our concept of an automatic system for monitoring the
friction stir welding (FSW) process applied to copper canisters.

This chapter consists of two separate parts:

e Brief presentation of acoustic emission (AE) technique,

e Theory of uniform circular arrays.

In the first part we introduce the AE technique focusing on sources of AE events and their
sensing using piezoelectric transducers. We also present the principle of the system proposed for
monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose
an omnidirectional array of ultrasonic transducers for receiving the AE signals generated by the
FSW tool and the releases of residual stress at canister’s circumference. A transducer array,
suitable for this task, should be characterized by good angular selectivity to separate the AE
sources located at different points of canister circumference. Uniform circular arrays (UCAs)
are good candidates for this kind of application. UCAs have applications in mobile telephony
and they have a very rich literature concerning their applications for beamforming and direction
of arrival estimation. We address those issues in the second part of this chapter.

2.2 Introduction to Acoustic Emission

Acoustic emission (AE) refers to the phenomenon of transient elastic wave generation due to a
rapid release of strain energy caused by a structural or microstructural event in a solid mate-
rial [1]. When deformation processes occur in materials, strain energy is released in the form
of vibrations or stress waves. The basic mode of operation of a stress wave detection system
is similar to that of passive sonar. When stress waves reach the specimen surface the small
displacements they produce are detected by a number of ultrasonic transducers. The transduc-
ers that are coupled to the surface of the inspected structure collect the stress-wave, which has
propagated from its source through the structure. The amplified signals from the transducers
are then conditioned, preliminary analyzed and recorded. AE techniques enable detecting stress
waves emitted from tiny energy sources, such as, crack propagation, dislocation motion or fiber
disbonding in composites. A typical setup, used mainly in the laboratory AE applications, is
illustrated in Fig. 2.1. Multiple sensors and amplifier channels that make possible localization
of AE sources are used in most applications.



To AE instrument

Amplifier
Transducer

Stress Elastic wave Stress

= =

AE source

Figure 2.1: AE principle — an elastic wave emitted by a single event in the inspected specimen is received
by the AE transducer.

AE inspection is unique in the sense that it relies on the signal that originates from the
discontinuity itself. Most other NDE methods provide local excitation, some form of energy,
to a structure and information about the structure is subsequently gained from the local re-
sponse to the excitation. AE techniques detect the response of the structure to an external
load (e.g., mechanical or thermal) whose purpose is to create stress throughout the structure,
causing significant discontinuities, wherever they are, to emit acoustically. Because of this dif-
ference, acoustic emission is able to monitor large areas of a structure with a relatively small
number of sensors. The technique can also provide real-time monitoring under normal operating
conditions, [1].

2.2.1 AE sensors and signals

A wide range of basic transduction mechanisms can be used to achieve a sensor’s functions —
the detection of surface motion and the subsequent generation of an electrical signal. Capacitive
transducers have been successfully used as acoustic emission sensors for special laboratory tests.
Magnetostrictive transducers are preferred in some industrial applications.

However, almost all sensors applied for the reception of AE signals use piezoelectric elements
for transduction, [1]. A piezoelectric ceramic disc, contained in a metal can, is bonded to the
material’s surface and produces an electrical signal when mechanically excited by the AE wave
motions. The sharp leading edge of the wave excites the disc oscillations at its resonance
frequencies to give a decaying transient signal.

Primarily, element thickness controls the frequencies at which the acoustic emission sensor
has the highest electrical output, i.e. highest sensitivity, for a given input surface velocity. The
predominant frequencies are chosen by selecting the dimensions of the disc and unwanted ones
can be eliminated by using a narrow frequency band preamplifier. The predominant frequency
is usually chosen to be between 50 and 500 kHz, since the background noise (mechanical, flow,
etc.) is large below this band and attenuation of the acoustic surface wave increases at higher
frequencies.

The other principal characteristic of an acoustic emission sensor is the active element di-
ameter. The element diameter defines the area over which the sensor averages surface motion.
Sensors have been designed with element diameters as small as 1 mm. However, larger diameters
are more common. For waves resulting in uniform motion under the transducer, as is the case for
a bulk longitudinal wave propagating in a direction perpendicular to the surface, increase of the



sensor element diameter results in the increased sensitivity. However, for waves traveling along
the surface, e.g. Rayleigh waves, the element diameter strongly influences the sensor sensitivity
as a function of wave frequency.

The high frequency output signal from an AE sensor is seldom recorded in its original form.
In most applications it is fed into a threshold-level detector, which will only pass signals above
the threshold level. For the idealized signal in the upper part of Fig. 2.2, the threshold level is
shown, so the detector will only detect those sine waves in the pulse with the amplitudes above
the threshold resulting in a binary signal shown in the lower part of Fig. 2.2. If the signal is
then fed into a counter, a number of counts of will be recorded depending on the amplitude of
the original AE response at the transducer output. Thus larger bursts will record larger counts.
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Figure 2.2: Typical response of an AE transducer. The AE response and its parameters (upper part)
and the AE response after thresholding (lower part).

This method of counting, using the ringing of the piezoelectric transducer to give a measure
of the pulse signal size is called ringdown counting and is most widely used in AE detection
systems. However, other quantifiable features of AE signals can be used depending on the
application at hand, for example:

e Rise time: the time taken to reach peak amplitude from the first present threshold voltage
crossing of the signal;

e Peak amplitude: this can be related to the intensity of the source in the material producing
an AE signal;

e RMS voltage: a measure of signal intensity.

Various advanced signal processing methods, such as, time series analysis, fast Fourier transform
(FFT), and wavelet transform, have been applied to analysis AE signals, with the aim to extract
the features of AE signals, [2, 3].

2.2.2 Sources of acoustic emission

The primary sources of acoustic emission in metals are the processes of plastic deformation and
crack growth, which are discrete energy release mechanisms on a crystalline microstructure scale.



These micro-displacements produce bursts of stress-waves (acoustic emission) with frequency
ranging from audio to high ultrasonic depending on the size and velocity of the source event.

Researchers in the field of acoustic emission agree that emission signals fall into two general
classes, continuous and burst emission, [4]. In continuous emission, the stress-wave bursts with
very low amplitude are observed that are unresolvable. High sensitivity is thus needed to detect
them. Plastic deformation in a material, for instance, the ductile failure of flaw-free metals,
produces this kind of low-level signal. Burst emission is a form of emission of much higher
amplitude in which the individual stress-wave bursts can be distinguished. It occurs when
sources of higher energy are operating. Crack growth is an important example of such. In
metals, the concentration of stress around the tip of a crack produces a small region of plastic
deformation known as the plastic zone. As this region expands under increasing stress, stress
waves are generated.

In certain materials both the low and high energy sources may operate simultaneously. This is
most likely when the material is non-homogeneous (multi-phase material), e.g., steels containing
brittle carbides. Fibre-reinforced materials are classic examples of such complex materials. Fibre
fracture is a high-energy source whereas matrix deformation and fibre disbonding are probably
of low energy.

An important factor that has to be considered is the maximum previous stress level expe-
rienced by entire specimen. In metals it has been consistently observed that acoustic emission
occurs only when this stress level is exceeded (Kaiser effect) [1].

AE due to crack growth

Cyclic stressing combined with regions of high stress concentration, create conditions for stable
crack growth. The sudden separation of the fracture faces due to strain relief results in relatively
large amplitude stress-wave emission that can be recorded as an AE event. The acoustic emission
source mechanisms that exist at and close to the crack tip fall into the following two categories [5]:

Primary events that are directly associated with crack growth. They originate within the
plastic zone, which extends a short distance ahead of the crack tip.

Secondary events that originate primarily from friction at points of contact between the clean
fracture faces near the crack tip or from disbonding and fracture of corrosion products some
way back from the crack tip.

The intensity of acoustic emission from crack growth depends on the magnitude of the
accompanying micro-fracture events, which is a complicated function of crack size, material
properties and applied stress. The acoustic emission is a measure of the rate of crack growth in
time from which crack size may be inferred only in very special laboratory conditions.

AE emitted by cutting process

Research has shown that AE, due to its ability to detect stress waves generated by the sudden
release of energy in deforming materials, is a very suitable tool for monitoring cutting processes.
AE has been successfully used in laboratory tests to detect tool wear and fracture in single point
turning operations [6].

Among the possible sources of AE during metal cutting processes we can name the following:
plastic deformation during the cutting process in the workpiece and chip, frictional contact
between the tool and the workpiece resulting in tool wear, collisions between chip and tool, chip
breakage and, last but not least, tool fracture, [7, 8].



Based on the analysis of AE signal sources, AE derived from metal turning consists of
continuous and transient signals, which have distinctly different characteristics. Continuous
signals are associated with shearing in the primary zone and wear on the tool face and flank,
while burst or transient signals result from either tool fracture or chip breakage. Therefore, the
sources listed above generate both continuous AFE signals and transient AE signals.

The relationship between the AE signal and tool wear is not simple. Observations of a purely
progressive tool wear in turning operations indicate that in most experimental results the mean
level of the averaged AE signal increases at first with an increase of flank wear, and then stays at
an approximately constant level even with further increase of flank wear while the fluctuation of
the mean level across the constant level becomes rather high [6]. Those observations support the
conclusion that the relationship between the AE signal and the respective tool wear condition
is nonlinear, so a general mathematical relation cannot be used to map this relation, [6, 9].
Effective monitoring of different tool wear conditions, while avoiding the effect of interfering
factors, such as, cutting parameters is a complex task. Advanced signal processing and pattern
recognition methods have been proposed as solutions to this problem, see, e.g. [6, 7], for review.

Among other indirect methods, AE is one of the most effective for sensing tool wear. The
major advantage of using AE to monitor tool conditions is that the frequency range of the AE
signal is much higher than that of the machine and environmental vibrations. Due to that the
cutting operation essentially does not disturb the AE signals.

2.2.3 AE monitoring of the FSW process

FSW is a relatively new joining technique with continuously growing application field in joining
aluminum alloys, steel, titanium and copper. However, judging from our search in the available
data bases very little attention has been devoted to monitoring of the FSW process.

We are aware of only one published report concerned with using the AE technique to moni-
toring the FSW process. Chen at al. [2] describes an experiment involving an FSW system with a
high-speed rotating tool used to weld butted plates. An on-line emission monitoring system with
two AE sensors arranged symmetrically on both sides of the butting joint was used to acquire
the AE signals. The sensors were moved along the welding direction with the FSW tool and the
AE signals were recorded during the probe penetration, welding, and probe pullout. Since the
signals acquired during the FSW experiment are non-stationary in time their time-frequency
properties were analyzed using discrete wavelet transform. A wavelet transform of AE signals
provided plots of frequency spectra vs time. The plots in the form of two-dimensional contour
plots, showing energy as a function of frequency band and time, were found to be very useful in
the recognition of the AE features.

Conclusions from the work reported above as well as the general knowledge about AE appli-
cations indicate that two major issues have to be addressed to obtain a successful AE monitoring
of the FSW process:

e Suppressing irrelevant AE signals generated by external and internal sources, and

e Extracting features of AE signals that are correlated to the process variables of interest.

The first task is concerned with creating a selective AE system capable of suppressing interference
generated in the FSW process including, for instance, the signals generated by the FSW machine
and transmitted into the workpiece. Activity of the FSW tool generates noise that depends on
its condition but also on the condition of the welded material as well as on a number of process
parameters. Extracting the information on the tool condition from this mixture is a nontrivial
task that requires advanced methods of signal processing.



The AE setup proposed for copper canisters

Generally, two different sources of AE signals are of interest in the FSW process of SKB’s
canisters: the high intensity continuous emission generated by the FSW tool, and the low
intensity burst emissions due to the local releases of residual thermal stress. When both emission
sources are active simultaneously their separation is a considerable challenge.

Source separation in a general case can be achieved in two ways: by filtering the received AE
signals, and by using AE sensors that have selective spatial characteristics. The first way, which
is commonly used, consists in designing signal filters matched to specific signal features using
tools, such as, time-frequency analysis and pattern recognition. The second approach is based
on using an array of AE sensors that can be steered in an electronic way. Multiple AE sensors
have already been used in many AE systems for source localization. The planar localization
of acoustic emission signals of the burst type is performed using the triangulation of the signal
arrival times (for at least 3 probes) in order to determine the source position. Phased arrays
for AE source localization were originally proposed already in 1972 by Hoff [10] and practical
realization of this idea was presented by Holler at al. [11]. Lu at al. [12] explored the use of
smart receiver array for locating AE sources.

Acoustic emissions AE sensor array directivity |

AE sensor

FSW tool

Figure 2.3: The proposed configuration of the AE monitoring system for the FSW of copper canisters.

We are proposing the test setup shown in Fig. 2.3 that takes advantage of the canister lid
symmetry. A circular array of AE sensors is located in the middle of canister lid. The signals
received by the individual transducers are to be fed to a beamformer capable of creating a desired
beam pattern of the array in reception. The beamformer implements an algorithm consisting
in coherent summation of the signals received by the individual sensors to obtain an increased
sensitivity to the AE events in a pre-selected angle sector of the canister’s circumference.

An off-line implementation of the beamformer using recorded signals will be tested in the first
step. In the second step a hardware version of the beamformer could be implemented enabling
monitoring the FSW process in real time. The primary task of the beamformer is to create a
spatial-temporal window for the AE signals received by the individual AE sensors. The term
‘spatial’ should be understood as focusing on a pre-selected angle sector of the whole canister
circumference in order to suppress signals from other AE sources. The temporal window enables
focusing on a desired wave type propagating with a given velocity as well as eliminating multiple



reflected signals.

Contrary to linear uniform arrays, circular arrays are used quite seldom in ultrasound ap-
plications. Optimal beamformer design for the circular arrays requires special tools that will be
briefly reviewed in the subsequent section of this report.

2.3 Uniform Circular Arrays

2.3.1 Introduction

In many scenarios for array systems, such as, wireless communications, radar and sonar, all-
azimuth angle coverage is desired. One method to achieve the 360° coverage is to use uniform
circular arrays (UCAs). Circular arrays have been studied extensively because of their simple
structure and the unique features they offer, among those the most important is that beam
shapes in the plane of the array (the azimuth plane) are essentially independent of the steering
angle, [13, 14].

The desired beam shape can be achieved if the outputs of all array elements are fed to a
structure, which will be referred to as beamformer in the sequel. Beamformers can take the
form of analog electronic circuits (mostly in high frequency applications) or parallel algorithms
for processing digitized signals from the elements. If the excitation of each array element is first
theoretically determined for a desired beam shape, the conventional beamformer circuit then
consists of phase shifters! (or delays) and attenuators (weight coefficients) inserted in all feed
lines, and a combiner for all the line outputs [13].

Computationally, the phase shift and attenuation of a signal can be represented by a complex
multiplication. If the signal can be sampled at a sufficiently low rate, as is the case with
ultrasound signals, digital multiplications and additions can be performed in real time. In the
general case, a beamformer for a circular array capable of generating a desired beam shape
would have a complex structure with a considerable number of complex multiplications. The
beamformer structure could be simplified considerably thanks to Butler and Lowe [15], who
invented a matrix network (Butler matriz) of interconnected feed lines in which phase shifters
serve multiple beams simultaneously. Computations according to the Butler matrix for a linear
array can be completed in a much shorter time than those according to the conventional circuit.

Furthermore, it was realized that the Butler matrix was closely related to the Discrete Fourier
Transform (DFT) and it could also be used to the beamforming of circular arrays. It can be
shown that using the Butler matrix, any arbitrary excitation of a UCA aperture can be expressed
by a spatial Fourier series. Each term in this representation constitutes an excitation function,
referred to as a phase mode, whose phase changes by uniform steps from element to element as
in the beam excitation of a linear array.

The Butler matrix, therefore, offers advantages in the digital beam forming process for UCA
similar to those that DFT offers in the signal processing; it can serve sequentially as a spectral
analyzer of broadband signals, as a mode former, and as a beamformer.

Below, we will present a brief review of the theory needed for understanding how the phase
modes of a UCA can be excited using a Butler beamforming matrix.

'Phase shifters are equivalent to delays for narrowband signals
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2.3.2 Phase Mode excitation for UCA

The UCA consists of a number of elements (transducers) uniformly distributed over the cir-
cumference of a circle of radius r in the zy plane as shown in Fig. 2.4. The individual array
elements are assumed to be identical and omnidirectional. We assume that the elements are
small comparing to the wavelength and their diffraction effects can be neglected.
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Figure 2.4: Geometry of the uniform circular array consisting of NV elements.

We will use vector notation in a spherical coordinate system to represent the UCA, the
beamformer, and the arrival directions of the incoming plane waves. The origin of the coordinate
system is located at the center of the array and the z axis points up from the zy plane as in
Fig. 2.4. Source elevation angles 6 € [0,7/2] are measured down from the z axis, and azimuth
angles ¢ € [0, 27| are measured counterclockwise from the z axis.

Continuous circular aperture

Let us start from introducing the phase modes for a continuous circular aperture. Continuous
circular aperture (CCA) can be thought of as a line circular source of ultrasound located at
the xy plane with its center in the origin of coordinate system. The line source is excited by
an excitation function with angular argument . Any excitation function w(y) of a CCA is
periodic with period 7, = 27 and can therefore be represented using a Fourier series. The
arbitrary excitation function w(y) thus has the representation [14]

(o9}
w) = Y eme™, (2.1)
m=—o00
where ¢,, is the corresponding Fourier series coefficient defined as
1 2 )
Cm = — w(y)e 7™ dy. (2.2)
27 0
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The mth phase mode wp,(y) = /™7 is just a spatial harmonic of the array excitation [14].

The CCA will radiate ultrasonic waves in the xy plane as well as in the whole space. The
farfield pattern in the 2y plane has the same azimuthal variation e/™? as the excitation function
itself.

The normalized farfield pattern for any elevation angle 6 # 0 resulting from exciting the
aperture with the mth phase mode is

1
o

2
(@) =5 [ wn(pe e, (23)
0

where the superscript ¢ denotes the continuous aperture, ( = korsinf, kg = 27/ includes the
elevational information, and the vector ® = ((, ¢) represents the arrival directions of plane
waves. Substituting for wy,(v) the elevation farfield pattern of the circular aperture can be
expressed as

J5(©) = ™ Tm(C)e™, (2.4)
where Jp,(C) is the Bessel function of the first kind of order m. Hence, the amplitude and el-
evation dependence of the farfield pattern is defined through the Bessel function J,,,(¢). Since
the mode amplitude J,,,(¢) in (2.4) is small when the Bessel function order m exceeds its argu-
ment ¢, only a limited number of modes can be excited by a given circular aperture for a given
wavelength. Let M denote the highest order mode that can be excited by the aperture at a
reasonable strength. A rule of thumb for determining M is [14]

M =~ ko?‘. (25)

Thus the beamformer for mode |m| > M severely attenuates sources from all directions.

Uniform circular array

Let us consider the UCA with N elements located in the xy plane so that the first ele-
ment is on z-axis as shown in Fig. 2.4. Element n of the UCA is displaced by an angle
Y= (n—1)y. = (n—1)2r/N from the x axis. The position vector at this location is p, =
(rcos(n—1)7.,rsin(n—1)7.,0). Consider a narrowband plane wave with wavenumber kg = 27/
propagating in the direction —7, with elevation and azimuth 6 and ¢, respectively. The unit
vector 7 has Cartesian coordinates 7 = (sin @ cos ¢, sin 0 sin ¢, cos #); the minus sign indicates the
propagation direction towards the origin. The phase difference between the complex envelopes
of the signals received at the origin and at element n at a given time is

Wy = IR0 — gikorsin@cos(9—(n=1)7e) _ giCeos(é=(n=1)%)

)

where, similarly as for the CCA, { = kgrsin 6.

We will define the array manifold vector a(®), which incorporates all of the spatial charac-

teristics of the UCA as

eI cos(6—c)

a(®) =a((,¢) = : (2.6)
eJ¢ cos(¢—(N—1)vc)
where the elevation dependence is through the parameter (.

Let us consider phase mode excitation of the N element UCA defined above. The normalized
beamforming weight vector that excites the array with phase mode m, |m| < M is [16]

H_ 1 /M0 eI | ejm(N—l)%] _ i[l, ei2mm/N ’ej27rm(N—1)/N]’ (2.7)

N

W
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H

where w,,

is a conjugate transpose of the vector wy,.

The resulting array pattern f;5,(0) of a sampled circular aperture is

N-1
f;(@) = Wga(@) = % Z ejm(nil)fycejcCOS(QS*(n*l)’YC) (28)
n=0

For mode orders |m| < N, the array pattern can be expressed using Bessel functions [14, 16]
Fi(®) = "I + 37 (#95(Qe T + (e ") (2.9
q=1

where g = Ng¢—1 and h = Nq + m.

Note that the first term in this equation, the principal term, is identical to the far-field
pattern of (2.4) corresponding to the continuous aperture case. The remaining terms are called
residual terms; they arise due to sampling of the continuous aperture. The principal term in
(2.9) will be the dominant one if the condition N > 2|m| is satisfied. The highest mode excited
has order M, and

N > 2M =~ kgr (2.10)

array elements is needed to excite all M modes [14]. This condition is identical to the Nyquist
sampling criterion as M defines the maximum spatial frequency component in the array exci-
tation. With M as in (2.10), it is clear that the circumferential spacing between adjacent array
elements should be less than 0.5\, which means that with this interelement spacing we can avoid
grating lobes with UCA’s. The detailed discussion concerning the contribution of the residual
terms to the pattern defined by (2.9) can be found, e.g. in [14, 16].

When the residual terms in (2.9) can be ignored the array pattern for m mode can be
expressed in a more compact form using the Bessel functions property J_,,(¢) = (—=1)™Jn(C)

£2(0) = LT (O™ Im| < M. (2.11)

Beamforming matrices

The first step in the design of a beamformer for the UCA is to find the beamformer matrix Bg M
that is based on the principle of phase mode excitation. The phase mode excitation (PME)
beamformer transforms the UCA’s manifold a(®) to the beamspace manifold a.(®),

B,,a(@®) = a.(©). (2.12)

The azimuthal variation of the manifold a(@®) produced by the beamformer (2.12) is similar
to that of a uniform linear array. This is a great advantage since after this transformation
the classical beamforming techniques can be used for steering the UCA resulting in compact
beamformer matrices with low number of multiplications. The elevation beampattern takes the
form of a symmetric taper-like main lobe and a number of side lobes.

The beamformer matrix is defined as follows [14, 16]:

B, = Cy Vv, (2.13)

where Cy = diag [j~™,...,;71,5% 4%, ...,iM and V = V/N[w_ps:...'wo' ... W]

The matrix V includes vectors wil defined by (2.7). Each vector wil that excites the UCA
with the phase mode m generates a pattern in the form of (2.11). The term j~I™l in (2.11) is
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canceled by the corresponding term ;! in the matrix Cy. The beamspace manifold generated
by BgM is thus
a.(®) = BY,,a(@) = Cy'V#a(@) = VNI v(s), (2.14)

The azimuthal beam pattern of a.(®) is given by the vector
v(p) = [e7 MO eI 70 IO . eIM9] (2.15)

that defines the manifold of the uniform linear array.

The elevation dependence takes the form of a symmetric amplitude taper defined through
the matrix of Bessel functions

JC = dlag[JM(C)¢ RN Jl(C)v JO(C)7 Jl(C)? RN JM(C)] (216)

The subscript e on a.(®) ”even”, and is intended to reflect the fact that the diagonal elements
of J¢, are even about the center element.

When the beam space manifold a.(®) has been found we can operate on it to achieve a
desired beam pattern using the weight vector

wiy = [wr,, ... wh. . wh) T
The output y(k) of our beamformer, given the input vector x(k) will be

y(k) = wiyBEyx(k). (2.17)

The structure of the PME beamformer (2.17) is illustrated in Fig. 2.5. The signals from the
UCA elements are first transformed using the matrix Bg > and then a desired beam pattern is
created using the weight vector Wg s resulting in a scalar output y(k).

x(k)

—

Xpy (K) H y(k)
PM T Wen [

Figure 2.5: Phase mode excitation beamformer.

Example of the PME beamformer

For illustration of the theory presented above we will present simulations of the theoretical beam
patterns that can be obtained for the UCA with 20 elements located at the radius R = 10\/2m,
which results in the Nyquist spacing between the transducer equal to A/2. For copper with
sound velocity of longitudinal waves ¢; = 4660 m/s and frequency 500 kHz the corresponding
array diameter would be approx. 29.7 mm.

Both azimuthal and elevational beam patterns were simulated for different weighting vectors
wi, ;. The beam patterns obtained for the uniform weights are shown in Fig. 2.6. The azimuthal
pattern takes the form characteristic for uniform linear arrays with the side lobe level approx.
-14dB. The elevational pattern is symmetrical with respect to the xy plane with the main lobes
pointing out in both directions of the z axis.
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Beam pattern of circular array, 20 = elements
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Figure 2.6: Azimuth and elevation beam patterns of the UCA obtained with the PME beamformer
with uniform weighting.
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Figure 2.7: Azimuth beam patterns of the 20 element UCA obtained with the PME beamformer with
Hamming and Kaiser window weighting, respectively.
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The beam patterns obtained for weight vectors in the form of Hamming and Kaiser windows
are shown in Fig. 2.7. Generally, the azimuthal patterns obtained using windowing are char-
acterized by lower level of the side lobes obtained at the price of increased width of the main
lobe.

Increased array diameter requires more elements to meet the Nyquist condition. Increasing
number of elements to 32 would make possible increasing array diameter to 47.5 mm. The
corresponding beam patterns are shown in Fig. 2.8.

Beam pattern of circular array, 32 = elements Beam pattern of circular array, 32 = elements
T T T T T T T T T T

-10k

20k

—301

Beam pattern (dB)
| | |
Beam pattern (dB)

—40k

il

I I 1 L L I A i I i
0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6

I L I I
-1 -0.8 -0.6 -0.4 -0.2

0 0
Azimuth @'mt Azimuth @'rt

(a) Uniform window (b) Kaiser window

Figure 2.8: Azimuth beam patterns of the 32 element UCA obtained with the PME beamformer with
uniform and Kaiser window weighting, respectively.

Note that the beam patterns presented above are correspond to a single frequency continuous
wave with frequency f = c/A.

2.4 Summary and future work

Judging from the literature, reviewed in the section 2.2, acoustic emission should be a suitable
tool for monitoring the FSW process used for sealing the SKB’s copper canisters. AE sensors are
known to generate signals containing reach information about metal cutting processes. However,
the information ”richness” is an issue that has to be addressed to find suitable methods for
extracting the relevant information about the tool condition.

We propose using signal processing in space and time for this purpose. Spatial signal process-
ing consists in employing a sensor array with regular circular shape for receiving the AE signals.
We have shown that such an array has nice properties, i.e., it can be steered omnidirectionally
using beamformers known from the literature.

The example presented in section 2.3.2 shows that such an array can be considered as feasible;
it should consist of approx. 20 elements located on a circle with diameter 30 mm if the AE signal
bandwidth is limited to 0.5 MHz. Increasing the number of elements to 32 results in an array
with the diameter approx. 48 mm. The array elements should be small because of two quite
different reasons, first, since we are expecting waves propagating on material surface, and second,
there is not much place if they are to be spaced at A\/2 ~ 4.6 mm.

To test our concept in the laboratory we need to manufacture the UCA with suitable pream-
plifiers. To optimize signal to noise ratio the preamplifiers are to be integrated with the array
elements. When the array is ready we will attach it to a circle plate made of aluminium. The
first step of the experiment will consist in receiving artificially generated AE signals to measure
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the the spatial characteristics of the UCA. The signals will be received using our 32 channel
phased array system. Later we are planning to record signals generated by a drill machine with
sharp and blunt drills.
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Chapter 3

Computational aspects of synthetic
aperture imaging

by Erik Wennerstrom, Tadeusz Stepinski and Tomas Olofsson
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3.1 Introduction

In our previous work the ESAFT image reconstruction method was developed. The ESAFT is a
model based method capable of compensating for diffraction effects introduced by the imaging
system using a linear model of that system. This approach has proved to yield good results
in terms of spatial resolution, but at a high cost in computational complexity and workload.
In practical situations, the large computational burden of the ESAFT method can become a
bottle-neck in material evaluation.

In this chapter we evaluate three different approaches to perform imaging with less compu-
tational cost than of the ESAFT method. In section 3.2 a sparse version of ESAFT is presented.
It utilizes the same linear model of the imaging system as the ESAFT, but solves the reconstruc-
tion problem only for a small set of the most probable scatterers in the image. In section 3.3
the w-k SAFT algorithm is presented. It can be applied to less generic imaging problems than
the ESAFT method, as it relies on the far-field approximation. It is however computationally
very efficient as the bulk of the computations are done utilizing 2D Fourier transforms. Sec-
tion 3.4 offers an analysis of one of the most computationally intense steps in the ESAFT and
sparse 2D deconvolution methods. A scheme to reorder calculations that considerably reduces
the computational burden is presented.

3.2 Sparse deconvolution of B-scan images

This section is (©2007 IEEE. Reprinted, with permission, from IEEE Transactions on Ultrason-
ics, Ferroelectrics, and Frequency Control Special Issue on ultrasonic imaging, 2007.

3.2.1 Introduction

In this chapter, a new computationally efficient sparse deconvolution algorithm for the use on
B-scan images from objects with relatively few scattering targets is presented. It is based on a
similar linear image formation model that has been used earlier in the ESAFT algorithm. The
linear minimum mean squared error (MMSE) 2-d deconvolution results obtained with ESAFT
have shown high resolution, but at the cost of increased computation time.

The proposed algorithm utilizes the sparsity of the image, reducing the degrees of freedom
in the reconstruction problem, to reduce the computation time and to improve the resolution.
The dominating task in the algorithm consists in detecting the set of active scattering targets,
which is done by iterating between one up-dating pass that detects new points to include in
the set, and a down-dating pass that removes redundant points. In the up-date, a spatio-
temporal matched filter is used to isolate potential candidates. A subset of those are chosen
using a detection criterion. The amplitudes of the detected scatterers are found by the MMSE
deconvolution. The algorithm properties are illustrated using synthetic and real B-scans and
the involved computation times are analyzed.

Resolution enhancement of ultrasonic pulse-echo B-scan images can be achieved using SAFT
or using estimation based approaches, such as 2-d deconvolution techniques. In the estimation
based approaches, the entities of interest are the scattering strengths from points in the image
plane. Although we may argue that SAFT techniques also aim at finding this map of scattering
strengths, these methods do not use any statistically motivated method for estimation; they
should rather be interpreted as mimicking the behavior of an acoustical lens using the delay-
and-sum (DAS) technique. As such, they inherit the intrinsic limitations of DAS; the lateral
resolution is diffraction limited and grating lobes appear when using too coarse a spatial sampling
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[1].

Methods using the estimation based approach can, for images with low noise levels, overcome
the above mentioned limitations and far outperform SAFT. For mechanically scanned B-scans,
examples of this class of methods can be found in [2] where linear MMSE was used to estimate
the scatter map. A similar method based on singular value decomposition (SVD) regularization
is found in [3]. A serious disadvantage of the methods is that they require computation time
that is typically much longer than that for SAFT processing, often limiting their use only to
applications without real-time constraints.

Linear methods as those in [2] and [3] are best adapted to objects containing diffuse scatterers,
with a Gaussian distribution modeling the amplitudes of these. In many application, particularly
in nondestructive testing (NDT), the images are better described by a collection of a few but
relatively strong contribution, for instance, indicating small cracks or material inclusions. For
such images, sparse models and sparse deconvolution techniques are more appropriate. The
majority of work on sparse deconvolution has concerned 1-d signals. Sparse deconvolution can
be described as the combined detection of the spikes and estimation of their amplitudes.

The presence of overlapping contributions from the individual scatterers makes the detection
of their images (spikes in sparse deconvolution) a complicated task. Iterative search approaches
have been used to find the most likely combination of the spike positions. The single most likely
replacement (SMLR) algorithm [4] has been widely used for this purpose in both the Kalman
and linear algebra approaches. SMLR iteratively scans every potential spike position and finds
the replacement yielding the largest improvement in the chosen criterion. The replacement may
consist in either including or removing a point from a set of positions found so far.

One of relatively few examples of sparse deconvolution in imaging applications can be found
in star field astronomy [5] where a spatially invariant point spread function (PSF) well describes
the image formation. Note, however, that the linear algebra approach mentioned above allows
for treating any linear measurement model, where image generation models with spatially variant
PSFs are important special cases. A recent paper by the authors [6] proposed the use of 2-d
sparse deconvolution for ultrasonic B-scan images in which such spatially varying PSFs were
considered. Note that the involved matrices and vectors are usually much larger in imaging
applications than in 1-d deconvolution. This is particularly true for the spatially variant PSFs
relevant to mechanically scanned B-scans and time- and memory efficient methods are therefore
much desired.

In [6] in was shown that the sparsity of the image could be utilized to significantly reduce the
time required for the estimation compared to linear MMSE solutions. An efficient search strategy
was developed that can be regarded as a 2-d extension of the multiple most likely replacement
(MMLR) search in [7], which was based on recursions that are not applicable for images. In
[6], the search strategy was combined with efficient computations of the search criterion and
a simulation study verified that significant time saving were possible. However, few algorithm
details were given and no results were presented for real data. This paper gives a more thorough
presentation of the algorithm and presents results for real B-scans.

The Section 3.2 is organized as follows: In Section 3.2.2, the image formation model and
the search criterion are presented. In Section 3.2.3, the algorithm is presented along with
some of the related computational issues. Simulation- and experimental results are presented in
Section 3.2.4. Finally, in Section 3.2.5 conclusions and comments are given.

20



3.2.2 Theory
Image model

Consider the measurement setup depicted in Fig. 3.1 in which a transducer is scanned in the
z-direction and transmits in the z-direction. At each of the L scanning positions, a pulse echo
measurement is performed insonifying the region of interest (ROI). The ROI, which lies in the
zx-plane, consists of a rectangular grid of M x N equally spaced potential scatterers. The
spacing is Az and Az in z- and z directions, respectively. Furthermore, Ax is set equal to
the distance between the scanning positions. Although nothing prevents from choosing a quite
arbitrary grid, this particular choice results in simplified algorithm implementations.

The received A-scans are sampled at K time instants with a sampling period T;. We have
chosen Az = Tscp,/2, where ¢, is the sound speed. This corresponds to one grid point per time
sample.

Let y(k, ) denote the ith A-scan, sampled at time k and let y; = col(y(1,1), y(K, 1), ..., y(K,1))

represent this A-scan as a K x 1 vector. L such column vectors are acquired and the B-scan
)T

can be represented by a column vector y = (yrfyf , 1.e., a column vector of size KL x 1

consisting of the A-scans placed on top of each other.

Figure 3.1: Illustration of the measurement setup in the text. The ROI is divided in an M x N grid
with the center points in the grid separated with Az and Az in the z- and z-directions, respectively.
Pulse echo measurements are performed at L transducer positions with a scan increment of Az, resulting
in a B-scan of size K x L.

Let further the column vector p(y, ) denote the vectorized B-scan that a hypothetical (noise
free) response from a unit strength scatter at grid position (m, n) would result in. This template
is defined by the electro-mechanical impulse response of the transducer and the double-path
spatial impulse responses (SIRs) associated with the scatterer position, see [2] for details.

We consider the B-scan to be the result of backscattering from a subset, Z, of the points in
the ROI. In the following we denote this subset as the set of active scatterers. Let n, denote the
number of points in this set.

If we neglect multiple scattering, we can model the B-scan as a noise-corrupted superposition
of contributions from active scatterers,

y= Z P(mn)0(m,n) + e = Pror +e, (3.1)
(m,n)eT

where the sum runs over only the positions listed in Z. The matrix Pz consists of ng,
columns p(,, ) with (m,n) € Z and the n, x 1 vector oz consists of the corresponding amplitudes
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o(m,n). Finally, the vector e represents measurement noise. In practice, we let this vector model
anything that cannot be explained by the linear relation in (3.1). This could include model
discrepancies, such as errors in the template p(,, ) predicting the response from a scatterer
at position (m,n). This can, for instance, occur when using an inappropriate method for the
spatial impulse response (SIR) calculation, errors in the measurement of the transducer impulse
response, or because the true scatterer positions are not found exactly on the grid points.

Statistical assumptions

The image is modeled using a Bernoulli-Gaussian distribution. A priori, a scatterer is indepen-
dently of the other scatterers assumed to belong to the active set with a probability A. This
number roughly describes how large a fraction of the grid positions that can be expected to
contain an active scatterer.

We model the noise as zero mean white Gaussian, e ~ N (0, O'?IKL), where I denotes a
KL x KL identity matrix. Furthermore, we model the amplitudes of the active scatterers to be
independent and identically distributed (iid) as o, ~ N(0,02), yielding the joint distribution
or ~ N(0,021,,). If necessary, these assumptions can be relaxed to include colored noise as
well as correlations between elements in o7.

Search criterion

We define sparse deconvolution as the combination of (i) joint detection, i.e., finding the set Z
that maximizes the probability P(Z|y), which is equivalent to maximizing the product p(y|Z)P(Z),
and then, as a final stage, (ii) estimating the amplitudes indicated by the so found Z. Step (i)
is the dominating task and is solved iteratively by successively improving a criterion function
that is obtained as follows:

We take as the criterion the logarithm of the above product, with constant terms removed.
The logarithm of P(Z) is given by

In P(Z) = In(\" (1 — \)NVM=1a) = In + const. (3.2)

1-A

To find Inp(y|Z), the marginalization integral is solved yielding

exp(—%yTDfly)
T) = , d = , 3.3
p(y|Z) /p(y oz|Z)dor (2m)NM/2|D[1/2 (3.3)
where D7 is given by
Dz = ¢’k + 02P7PL. (3.4)

This matrix is of size KL x KL, which makes the quadratic form and determinant in (3.3)
computationally awkward. Both these factors can however be simplified to more attractive
forms which results in the log marginal likelihood

1 1
Inp(y[Z) =naln = o n [Br + 821, | — Iy
1 ¢ (3.5)
+ jcg(BI + B2Ina)_lcfy
20
where 3 = g—z, where the n, X 1 vector c; is defined as
Cr = P%)’? (36>
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and with the symmetric n, X n, matrix Bz defined as
B; = PIP;. (3.7)

Note that the elements in Bz are scalar products between the different p(,, ,)-vectors in the
active set. These can be extracted from a matrix (look-up-table) B = PTP, where P is the
KL x MN matrix consisting of the p-vectors for all points in the ROI. Note also that B does
not depend on the received data and it can be computed and stored off-line.

Similarly, the vector ¢z for a certain 7 can be extracted from a M N x 1 vector ¢ = Py,
that we can compute before we begin the search for the optimal Z. The vector c¢ is the output
from a spatio-temporal matched filter and large entries in ¢ indicates the likely presence of an
active scatterer. This is used in the search strategy described in Section 3.2.3.

By combining (3.2) and (3.5) and removing terms that are constant with respect to Z, we
obtain the search criterion

1
J(T) =naor = 5 1In Bz + %I,

1, , » (3.8)
+ T‘gCI(BI + 6°Ln,) " ez,
with the scalar a = In 12 + In 3.
Note also that for a given Z, the linear MMSE estimate of the amplitudes is given by
67 = (Bz + °L,,) ‘ez (3.9)

The linear (non-sparse) MMSE solution used in [2] is obtained as the special case when 7 consists
of all points in the ROI:
ovmse = (PTP + 3°Iyn)"'PTy. (3.10)

3.2.3 Algorithm
Initialization

The initialization consists of calculating the look-up-tables B and ¢ and for this we first need to
calculate the p-vectors. These are defined by the transducer’s electrical impulse response, which
is measured, and the SIRs associated with the points in the ROI. In this work we have used the
DREAM (Discrete REpresentation Array Modeling) toolbox [8, 9] for calculating the SIRs.

Note that choosing the grid point distance and scanning step to be identical results in that
the response from a scatterer (m,n) at scan positions [ is identical to a response from (m+1,n)
at [+ 1. As a result from this shift invariance, the matrix P is block Toeplitz containing L x N
blocks, each of size K x M. Only M + N blocks need to be calculated to fully determine P.

We have developed an algorithm that utilizes this block Toeplitz structure in the compu-
tation of B. Matrix products of the smaller blocks occur at several instants in B and by
avoiding repeated calculations of these block we reduce the computation time from being of
order (KM)? x (LN)? to (KM)? x max(L, N)?.

Search

We aim at, as efficiently as possible, finding the set of Z that maximizes the criterion J(Z).
In the search we generate a sequence of sets that yield monotonically increasing J(Z) and the

23



search ends when no further increase is achieved. We start at iteration ¢ = 0 with the empty set

70 =.

At iteration 7, the search has produced the set Z¢. The next iteration then consists of the
following steps:

1. Adding elements (up-dating). The elements to add are chosen as follows:

(a) Compute the output from the matched filter applied to a residual image, Cpes =
PTyres where y,es = y — P1iO7i. 07 is the vector of estimated amplitudes for
the scatterers indicated in Z°. Intuitively, y,es is the remaining B-scan after having
removed the effects of the so far found scatterers. By applying the matched filter, we
try to detect scatterers that best help to explain the residual B-scan.

(b) Find a set of candidates, C, by extracting peaks in the point-wise squared matched fil-
ter output |cres|? and including also their neighboring points in C. These neighboring
points are found by a user-defined mask centered at each peak.

(c) Compute J(Z* U (m,n)) for all points (m,n) € C. Remove all points from C that do
not yield improvements compared to J(Z?).

(d) Iterate until C is empty: (i) pick the currently best point (m*, n*) = arg max(,, ,yec J(Z°U
(m,n)). (ii) remove from C all elements that are not orthogonal to p(y,« »+). Let U
denote the set of points found in this iteration.

2. Removing redundant elements (down-dating). For all (m,n) € (Z® UlU), calculate J((Z* U
U)\ (m,n)), where '\’ denotes set difference. Remove those elements that yield improve-
ments compared to J(Z' UU).

Step (1-d) relies on the following: Suppose that we have several candidates that all yield
increases in J if they are included in Z%. Unfortunately, there is no guarantee that these elements
will yield an increase in J if they are simultaneously included in Z°. However, it can be shown
that if their associated p-vectors are all mutually orthogonal, the increase in J that is obtained
by including all candidates can be written as a sum of the individual increases. This sum is
guaranteed to be positive since all these terms are positive.

The p-vectors describe contributions from different scatterers. Even for well separated points,
there will be a slight overlap of these contributions in the B-scans and the corresponding vectors
will therefore typically not be perfectly orthogonal. Since, for all practical purposes, it is usually
sufficient that the scalar product is small, but not necessarily zero, we say that the vectors p;
and po are orthogonal if ]plTpg\ < tol, where tol is a user-defined tolerance.

Computational aspects

For a fast search we need efficient methods to evaluate J. The majority of the evaluations
occur in up-date (1-c¢) and down-date (2) and different computation strategies are suitable in
these cases. In the up-date we base the computations on lower triangular Cholesky factors of
Bz + 3°1,,, satisfying

G;GI =B; +5%1,,. (3.11)

This factorization requires approximately n3 /3 floating point operations (flops). Having Gz we
can then compute J as

Ng 1 )
J(I) = nga — ;m(ez)k,k + 2Tgnvzn , (3.12)
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where (G7) ik is the kth diagonal element of Gz and vz is the solution to the equation Gzvz =
cz. For moderate to large ng, the computations in (3.12) require approximately 2n, + n2/2
flops. Note further that 67 in eq. (3.9) can be obtained by solving GLé7 = vz. Thus, having
computed vz, approximately n2/2 flops are required to estimate the amplitudes.

These estimated amplitudes are used in step (1-a) for evaluating c,cs = PTy,cs. It can be
written as ¢pes = ¢ — PTP7:67; where ¢ has been pre-computed and all elements in the product
PTP; can be directly extracted from the matrix B.

In the up-date in (1-c) we evaluate J for a number of related sets. We have already computed
Gz and vz in an earlier iteration and we can then find the values for these sets using a recursive
up-date of the Cholesky factor that results in the following up-date equations for obtaining
J(ZPU (m,n)):

J(Z'U (m,n)) =J(T) + o —Ing

(3.13)
+ (p?m,n)y B ZTVI)2/(2q203)7

where z is the solution to Gzz = by, ,,), with b, ,) being a vector of scalar products between
P(m,n) and those p-vectors corresponding to the elements in T'. All these are available in B.
The scalar product p?mm)y is found in ¢z and finally, ¢ = |[p(nn)l|* + 62 — ||z]|?, where the

first term, again, is available in B. The computations in (3.13) involve approximately n, + n2/2
flops.

In the down-dating we calculate 67 as explained earlier and explicitly compute the inverse
Dz = (Bz + %1,,) !, which can be efficiently done using Gz available from an earlier up-date
step. Let d denote the element on the diagonal in Dz corresponding to point (m,n). The
following equations can then be used:

o(m,n)?
I\ (myn)) =J(T) — a — 21ng - A1)

—_— 3.14
2 202d "’ (3.14)

where 6(m, n) is the estimated amplitude at point (m,n).

3.2.4 Simulations and experimental results
Experimental setup

The performance of the proposed algorithm was evaluated using simulated and measured data.
The measurements were performed in immersion and 0.3 mm thin steel wires were used to
simulate point-like targets. A water sound speed of 1480 m/s was assumed in the experiment.
The data was acquired using a circular 2.25 MHz piston transducer with 6 mm radius. The
spatial sampling distance was Az=1 mm and temporal sampling frequency was 25 MHz. The
targets were located at a distance of 120 mm from the transducer and were grouped in three
pairs, in which the targets were separated by a distance of 5, 3 and 1 mm, respectively. This
separation was in the scanning direction x as illustrated in Fig. 3.2.

The considered ROT had the size 5 mm x 70 mm yielding 160 x 70 = 11200 grid points. The
corresponding B-scan had the same size.

The wire targets were chosen to avoid problems with too weak signals when using small point-
like reflectors. However, the use of these violates the point target assumption; the response from
the wires can be approximated by an integral over the points on a line, which corresponds to a
temporal smearing effect of the signals compared to smaller targets. Although we can re-define
our model to include this effect, we chose in this work the approximate but simpler method of
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Figure 3.2: Measurement setup. Wire targets in immersion.

including the smearing directly in the transducer impulse response by measuring this impulse
response as the pulse-echo signal obtained from a wire target in the far field and deconvolving
this measured response with the SIR associated with the on-axis point at the same distance.

Simulation results

Measurements from the above setup were simulated. The SIRs used in the simulations were
obtained using the DREAM toolbox [8] and the transducer impulse response was the same as in
the real data experiments. The scattering amplitudes at the wire positions were set to 3 x 1078
which yielded a peak-to-peak amplitude of 300 quantization levels.! White Gaussian noise of
variance o2 = 100 was added to the simulated data to obtain an SNR of approximately 10 dB.

The results from the simulations are presented in figures 3.3(a) to 3.3(c). Figure 3.3(a)
shows the simulated raw data. Figure 3.3(b) shows the sparse solution obtained with parameters
02 =100, 02 = 107'% and A = 0.01. In figure 3.3(c), a corresponding linear MMSE solution [2]
obtained using eq. (3.10) is shown. To obtain comparable results in the sense that the models
predict approximately the same energy in the images, the prior variance of amplitudes was set
to, 02X = 107! in the linear MMSE solution. Finally, the residual for the sparse solution,
Vres =y — P10y, is displayed in figure 3.3(d).

!The choice of scatterer amplitudes are arbitrary as long as they, in combination with the SIRs and the
transducer impulse response, yield signals of realistic magnitudes. We may choose to up-scale the amplitudes and
down-scale the impulse response the same amount without any effect on the detection results.
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Figure 3.3: Results from simulations

We see in the figures that the sparse algorithm can distinguish the point target pairs that
are separated by 5 mm and 3 mm. The pair of targets that are separated with only 1 mm are
however estimated as a single, but stronger scatterer. As a comparison, the linear MMSE can
well resolve the pair separated with 5 mm well whereas a separation of next pair of targets is
only faintly indicated. No separation of the 1 mm targets can be seen.

Except for the last error, the detection of the positions in the sparse solution is perfect and
the amplitude estimation errors are less than 10% of the true values.

The residual of the sparse solution shows mostly white noise. Most of the energy in the
original data has been accounted for which could be expected since no model errors are present;
the simulated data is generated from the same model used for reconstruction.

The simulation results serve as an example of the performance that can be achieved using
sparse deconvolution in an ideal situation with no model errors present. We note that excellent
resistance to noise and the detection capabilities can be achieved under such circumstances.

Experimental results

The results from processing of the measured data is displayed in figure 3.4(a) to 3.4(c).
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Figure 3.4: Results from experimental data

The wires can be seen as the white spots, corresponding to high positive estimated scattering
amplitudes. Weaker dark indications? near the main echoes are most probably caused by model
errors that, for instance, may stem from slightly inaccurate SIRs or targets that not residing
exactly at the grid positions. As can be seen in the figures, the wires were not positioned on a
perfectly horizontal line. The leftmost wire in the first pair was slightly closer to the transducer
than the other.

Similar to the simulations, the wires that were separated with 5 mm and 3 mm can be
distinguished by the sparse algorithm, but the two wires that were 1 mm apart are estimated as
a single, stronger scatterer. The corresponding linear MMSE solution can now clearly separate
only the wires in the first pair.

In the measured data we can observe additional contributions that can be explained by the
sound paths: transducer-wire-wire-transducer. These contribution appear approximately 3.5 us,
1.8 ps, and 0.8 us after for main echoes, for the wires separated by 5 mm, 3 mm, and 1 mm,
respectively. This agrees fairly well with the predicted values 3.4 us, 2 us, and 0.7 us predicted
by a sound propagation speed of ¢, = 1480 m/s.

To illustrate the updating process, figures 3.5(a) to 3.5(c) show the residual B-scan after
iteration one, three and six when processing the measured data. At each iteration, the estimate
is refined and the residuals are reduced in magnitude. We can note that the residuals for the

2The dark spots have negative amplitudes. Their magnitudes are approximately 1/5 of the main (bright)
echoes.
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measured data contain patterns that are more regular than the residuals for the simulated data.
A probable cause of this is model errors. For a non-perfect model, the strongest contributions
to the residual are expected where we have strong scatterers.
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(a) First iteration. (b) Third iteration.
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(c) Sixth and last iteration.

Figure 3.5: Residual B-scans after a few of the iterations. The algorithm converged in six iterations

Computation time

To illustrate the computation times involved when using the algorithm, we here give the times
required in the processing of the real data. A study showing how the computation time scales
with the number of true scatterers and the image size can be found in [6].

The calculations were performed on a Pentium III with clock frequency of 2 GHz. The ini-
tialization of the matrix B took approximately 10 min. Note that this is a one-time calculation.
When scanning a volume, several B-scans are collected under similar conditions and they all
share the same matrix B. The computation of ¢, see Section 3.2.3, required 3.3 s.

The search required in total 3.5 s, which is approximately the same as the time for calculating
c. The time to perform each of the steps of the search algorithm is detailed in table 3.1. The
five different steps in the method is explained in detail in Section 3.2.3.

It is clear that the updating part of the search dominates the search time. The single most
time consuming operation is calculating the criterion J(I U (m,n)) for all potential candidates
in step lc. Calls to this operation consume a total of 1.94 seconds, or 55% of the total search
time. In this case, approximately 7500 candidate points were evaluated in step lc over the six
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Step | Time [s] | Time [%]
la 0.16 4.6
1b 0.2 5.7
1lc 2.24 63.8
1d 0.7 19.9
2 0.21 6.0

Table 3.1: Computation time for different parts of the search algorithm.

iterations in total.

3.2.5 Conclusions and discussion

We have presented a new 2-d sparse deconvolution algorithm for deconvolution of ultrasonic B-
scans. The simulation results show that the method under ideal conditions combines excellent
resolution and noise suppression properties. The reason is that the available information is
optimally used; we know that only a few significant scatterers are present and we therefore search
for a only few significant scatterers. This also gives the advantage of a reduced computation
time compared to the linear MMSE solution. Although an iterative search is performed, the
computations in each iteration are far less demanding than those found in linear MMSE. For
truly sparse images, the iterative search converges in only a few iterations.

One disadvantage with this method compared to the simpler SAFT methods is the small
size of the images that can be processed and in the present form this method should mainly
be seen as a complement to SAFT based system. Small ROIs can be chosen manually, or
possibly automatically found using some simple method based on SAFT results, so that only
small fractions of the data needs to be processed.

Note however that the overall time for processing the B-scan used in this paper, is approxi-
mately 7 s and this is less than the approximately 10 s that was used to collect the data. Thus
it can for images of this size be implemented for real time processing.

Finally, a evaluation of the algorithm under less ideal premises than those given here should
be performed in the future. Since we are approaching the limits of how much the linear model
can be utilized, we need to take more robust methods under considerations. The challenge is
to develop methods in which model uncertainties are taken into account and that, at the same
time, can be implemented using computationally efficient methods.
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3.3 Frequency domain SAFT

This section is (©2007 IEEE. Reprinted, with permission, from IEEE Transactions on Ultrason-
ics, Ferroelectrics, and Frequency, 2007.

3.3.1 Background

Although advanced synthetic aperture focusing techniques (SAFT) implemented in frequency-
domain have been widely used for many years in radar (synthetic aperture radar, SAR) and
sonar (synthetic aperture sonar, SAS), they are relatively unused in nondestructive evaluation
(NDE) of materials. Instead, simple time-domain SAFT has been applied in NDE for detection
and characterization of defects in thick metal structures, especially in nuclear power plants [1],
[2].

In SAFT the pulse-echo measurements made at a multitude of transmitter /receiver locations
are combined to form a map of the ultrasonic reflectivity of the region of interest (ROI). The
method takes advantage of both spatial and temporal correlations to enhance the resolution
and the signal-to-noise ratio of the resultant images. However, the performance of SAFT in
practical applications, especially in the near field, depends on the particular implementation
of the algorithm as well as on the size of the transducer used in synthetic aperture [3]. Most
SAFT implementations are based on a very simplified model of the imaging system used for
developing radar and sonar applications. They can perform relatively well only provided that
the assumptions that the ROI is located in the far field of the transducer (antenna) used for
creating synthetic array where its specific diffraction effects can be neglected (point-like source
assumption). While this assumption is generally valid for SAR and SAS, it is not always valid in
ultrasonic imaging, especially in the high frequency NDE applications where the transducer can
even be in contact with the inspected structure. Two principal problems may be encountered
in such setup, firstly, transducer’s diffraction effects may impair image quality, and secondly,
sparse spatial sampling used for gathering ultrasonic data may yield artifacts in the resulting
image. The analysis of SAFT performance for finite sized transducers should be of great interest
for its potential users.

Accurate Fourier-based imaging techniques, developed recently in SAR, relate Fourier com-
ponents of the measured SAR signal to the Fourier components of the target to be imaged. The
origin of this approach can be found in the wave equation inversion theory, which is also known
as wavefront reconstruction or holography [6], [13]. The basic principle behind wavefront recon-
struction is the use of Fourier decomposition of the Green’s function (also known as spherical
phase function), which represents the impulse response of an imaging system [6].

In this chapter we propose a frequency-domain SAFT algorithm, which is a modified version
of the wavenumber (w-k) implementations known from SAR and SAS [6], [15], [16]. The algo-
rithm is derived using a model developed in terms of wave equations. The model, which is valid
in the far-field accounts for the beam-pattern of a finite sized transducer used in the synthetic
aperture. Like in the w-k implementations, the proposed algorithm employs the 2D FFT for
transforming data between the time and frequency domains. A formal transform of the polar
coordinate system, natural for ultrasonic transducers, to the Cartesian system suitable for the
presentation of imaging results is used. However, since we intend to use the algorithm in the
range interval where the point source assumption might not be valid we introduce a filter for
compensation of the transducer lobe pattern. We compare the performance of the proposed algo-
rithm to that of the standard time-domain (t-d) SAFT based on DAS operations with emphasis
on the lateral resolution. The resolution and the side lobes of the algorithms are compared in
the analysis and it is shown that the proposed algorithm consistently performs better than the
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standard t-d SAFT.

The chapter is organized as follows; in the next section ( 3.3.2) we present theory starting
from the basic relations defining the resolution and the sampling constrains that apply to the
synthetic aperture setup. This presentation is followed by the models of the imaging system and
the circular transducer that is used in the proposed algorithm. In the Section 3.3.3 results of
the simulations performed for the t-d SAFT and the proposed algorithm are presented and their
performance is compared. Finally, we show experimental results obtained in a simple setup with
wire targets.

3.3.2 Theory
Resolution and spatial sampling in SAFT

Below, we will define spatial resolution of a synthetic aperture in monostatic strip-map mode
(i.e., a linear equally sampled aperture without transducer beam-steering), which is an appro-
priate setup in many ultrasonic applications. There is an important difference between physical
linear arrays and synthetic arrays which results in the synthetic aperture having a resolution
finer than that corresponding to the real linear array of the same length focused in reception.
Assuming that in a physical linear array the transmission results in an illumination of the ROI
and the angle selectivity is performed in a receive beamformer, the differences in phase received
by each element of the array contribute to its beam pattern. In the synthetic aperture, on the
other hand, the same element radiates and receives signals and therefore the round-trip phase
shift is effective in forming the resulting radiation pattern. As an important consequence of
this fact the synthetic aperture has two times finer lateral (cross-range) resolution for the same
aperture length, which can be expressed as

R
2L€ff

Ssap (3.15)

where, A is the wavelength and d34p is the effective half-power beamwidth of the synthetic
aperture with length L.¢; at a distance R, see [17]. The parameter L.ss denotes an effective
aperture length, which is defined as the largest aperture length that, at the distance R contributes
to the SAFT performance in terms of its lateral resolution. It is assumed that the signals received
by all elements of a synthetic aperture are used efficiently if the L.y is no longer than the half-
power lobewidth of the transducer (element) used in the aperture. For a circular transducer
with diameter d the half-power lobewidth at a distance R will be

RX
Lejs ==+ (3.16)

Inserting this expression into (3.15) we get the fundamental relation defining lateral resolution
of synthetic aperture

d
0348 = 5 (3.17)

Thus the resolution obtained from a synthetic aperture is independent of frequency and range
if the effective aperture length is used. Analysis of the support band of the SA signal in the
cross-range direction leads to the condition for spatial sampling step

R
<
ALcyf
Eq. (3.18) reduces to if the effective aperture defined by (3.16) is used for the shortest wavelength

represented in the ultrasonic pulse (see [14], [16] for details). The relations presented above are
correct for monochromatic wave and the targets located on the symmetry axis of the aperture.

A

(3.18)
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Figure 3.6: Geometry of synthetic aperture. At each position {x1, z3,...,zy} of the synthetic aperture
with length L.f; the transducer emits a pulse and receives en echo from a number of targets located in
the range R; at the points O;.

Model of the Imaging System

In this section we present a general model of an imaging system that will enable deriving the
imaging algorithm. The model, which is derived here for circular sources, can easily be general-
ized to other transducer geometries (for instance, rectangular array elements). Let us consider
the synthetic aperture consisting of N transducer positions {x1,x2,...,2x} in the setup shown
in Figure 3.6. The aperture is created when a single transducer (or an array) performs N
pulse-echo measurements at the positions {x1,x2,...,zN}, respectively. The transducer in its
successive positions irradiates the region of interest located in the xz-plane. At each position
the transducer (or the respective array element) emits an acoustic wave and receives an echo
from an object defined by the reflectivity function f(x,y,z) (e.g., including a finite number
of point targets at points O;(x;,0, z;)). The successive transducer positions, located along the
x-axis in the rectangular coordinate system xz are spaced with the pitch A,. The transducer is
excited by an electrical pulse e;(t) and it receives in each respective location {1, x9,...,zx} the
electrical signals s(xg,t) € {s(z1,t), s(x2,t), K, s(zn,t)} that can be presented in the aggregated
form referred to as B-scan image.

Our task is to perform imaging in a predefined region of interest located in front of the
synthetic aperture at the symmetry plane xz, using the signal set s(xg,t), and in particular, to
enhance the lateral resolution in this region. Following the notation used in SAR we will derive
the imaging algorithm for continuous time and space model based on a number of measurements
in the discrete points along the axis x. For each transducer position z; the imaging model can
be defined using the fundamental expression used for SAR imaging [14], [15]

s(xk, t) = //f(a;,z)é <t — iW) dzdz (3.19)

where xy, is transducer’s position, f(x, z) denotes object’s reflectivity function, ¢ is sound velocity
and it is assumed that the transducer emits an impulse §(-).

Eq. (3.19) is valid assuming that the transducer diameter d is small compared to the wave-
length A, in other words the transducer can be regarded as a point source, that is, its specific
diffraction effects can be neglected. This implies that the response of the single point target
takes the form of a hyperbola in the B-scan and the assumptions required for the standard
SAFT based on the DAS operations are fulfilled. Below, we will derive a more realistic trans-
ducer model to the eq. (3.19) including its far-field beam pattern and its electrical frequency
response.
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Figure 3.7: Geometry for calculating the far-field response of a circular transducer.

Transducer Model

Here, we will consider the case when a finite sized transducer is used for the measurements
and its diffraction pattern has to be taken into account. However, our analysis will be confined
to the far-field zone where the Fraunhofer approximation can be used. We start by deriving
an expression defining the signals s(xg,t) for a single circular transducer. This expression will
be then used for the derivation of the synthetic aperture scheme in frequency-domain. Let
us consider a circular piston transducer of radius a in the polar coordinate system shown in
Figure 3.7. Since the same transducer is used for all the measurements we introduce a separate
coordinate system with its origin at the transducer position z;. The incident pressure Pmc(ﬁ, w)
at a general off-axis point Q(Ff) in far-field can be found from

o IFE J (kasin 6)
R kasin 0

Pine(R,w) = —jwprpa (3.20)
where J is the first order Bessel function, p denotes the specific medium density, vg represents
the normal particle velocity at the transducer’s surface, k is the wave number, R is the distance
|R| and @ = d/2 is the transducer radius [18], [19]. Eq. (3.20) consists of three factors: the
first is a frequency dependent coefficient, the second represents a spherical wave, while the third
term, often referred to as the jinc function defines the angular dependence of the amplitude
of this spherical wave. The jinc function indicates the lobe structure of the beam in far-field
characterized by the main central lobe and a number of side lobes. It is worth noting that the
assumptions used by standard SAFT algorithms are valid only for small values of ka when the
main lobe is wide and the amplitude of the spherical wave varies very little with the angle 6.

The point target with an elementary surface s, located in the point Q(ﬁ) will scatter back
the incident pressure wave and the pressure integrated over the transducer surface PT(E,w) is
proportional to the convolution (the multiplication in frequency domain) of the incident pressure
Pine(R,w) and the pressure reflected from the target surface Py, f(ﬁ, w) (see [20] for details)

o—JkR

R2

— Se

Po(R,w) = Pine(R,w)Pref(R,w) = — Zw?(pva?)? jinc?(ka sin 6) (3.21)

Note that (3.21) is valid for a monostatic configuration if the transmission and reception of
the transducer are separated in time and the medium is isotropic. If the transducer is modeled
as a linear electro-mechanical system with electrical frequency responses in transmission and
reception, Hei(w) and H..(w), respectively, the received signal will be a convolution of the
incident pressure and transducer’s electrical characteristics
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S(R,w) = Het(w)Her(w) Pr(R,w) = Po(R, w)He(w) (3.22)

where the joint electrical transducer frequency response is H.(w) and it is assumed that the
pulse u(t) = d(t) is used to excite the transducer. Finally, by inserting (3.21) into (3.22) the
received signal is

o IkR
J72 jinc?(kasin 0)w? He (w) (3.23)

(the minus sign was omitted, see [19] for details). The above expression is a product of four
factors: the first is a constant, the second represents a spherical wave that have propagated to
the target and back, the third defines the diffraction effect of the transducer, and finally, the
fourth denotes the second derivative of the transducer’s electro-mechanical transfer function.

% (pvpa?)?

S(é7w) = 9

An important consequence of (3.23) is that the main lobe width for a finite sized transducer
is limited by the jinc function, which as mentioned above, limits the maximum length of the
synthetic aperture. Verifying the above condition for a given transducer diameter d one should
keep in mind that the jinc has its -3dB lobewidth 0345 = 3.232/ka = \/d. If 345 is small, the
maximum length of a synthetic aperture for a given distance R will be Ly, = RO345 = R)\/d.

Below, we will confine us to the targets located at the symmetry plane of the synthetic
aperture, i.e., we will only consider points O(z,0,2) in the ROI, for those R = /22 + y2.
Then, assuming that distance compensation (1/R) is performed in the receiver, we obtain after
rearranging (eq:SRw2) the response of the transducer located at the position x to a single
scatterer at the point O(z,0, 2)

S(R,w) = S(zp,w) = %(pvoa2)26_jk\/z2+(””_$k)2A(w, ko )w? He(w) (3.24)

where A(w, k) = jinc®(kasinf) = jinc?(kya).

To obtain a signal received by the transducer located at that point, given the real image
of the point scatterers in front of the transducer f(x,z) we have to integrate the transducer’s
response over the whole area

S(zg,w) = aA(ky)w //f x, 2)e IRV @) g gy (3.25)

where « is a constant coefficient.

To perform synthetic aperture imaging in frequency domain we need the 2D Fourier transform
of the signal s(R,t), which means that (3.25) has to be further transformed from the space
coordinate to spatial frequency (referred to as Doppler wavenumber in sonar). It can be shown
that using the principle of stationary phase [6], [7], the 1D Fourier transform of the above
equation along the x-direction can be expressed as

S(@p,w) = aA(ks //f:c 2)e IV —Kize—ikez g gy (3.26)

If we now introduce a new set of coordinates, defined by

Sk (ky) = /4K — k2 (3.27)

and denote H.y = w?H,.(w), we can finally express S(k;,w) as
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S(zp,w) = aA(ky)Heqg(w)F (ky, k) (3.28)

Note that now the coordinates of S(ks,w) and A(ky)H.q(w) and those of F(kg, k) are
different. The coordinate transformation defined by (3.27), which is known as Stolt mapping
will be denoted as S{-} in the sequel.

Imaging Algorithm

The wavenumber reconstruction algorithm presented in [7] and [15] takes the form of a spatio-
temporal matched filter and the Stolt coordinate transform that can be summarized by

Fkp k) =S {ej(\/4’“2_’“3_2’“)”°A*(kw) ;‘d(w)S(km,w)} (3.29)

where ¢ is the distance to the middle of ROI and asterisk denotes a complex conjugate. The
main function of the algorithm (3.29) is compensating the phase shift introduced by the imaging
system (the el term) and transforming the coordinate system (the S~!{-}transform). The term
HY,(w) in (3.29) performs compression of the electrical impulse, and the term is intended to
compensate the effect of angular dependence of the transducer amplitude. Since the latter is
not performed satisfactory by the matched filter (3.29) a modified version using a Wiener filter
for the beam pattern compensation is proposed here

#
F(k‘x, kz) — 8—1 {6](\/4k2_k%—2k)7‘o A(km;lAil({:Zi) n EH;d(w)S(kI’ w)} (330)
The small constant e should limit the filter output outside the support band of A(k;). There
are at least two reasons why the electrical frequency response H.q(w) is not included in the
Wiener filter (3.29), first, it is measured separately with a limited accuracy why the A*(k;) is
calculated analytically. Second, in practical situations the H.4(w) will also include the space-
variant low-pass effect due to the transducer spatial impulse response. Thus the filter used for
the compensation of transducer’s frequency response has to be robust enough to perform well in
the presence of model errors. Both practical experience and the theoretical analysis presented
in [21] show that in such situations the parameter-free matched filter (complex conjugate of the
H.4(w)) is much more robust than the Wiener filter.

The w-k algorithm (referred to as w-k SAFT in the sequel) consists of three main steps:

1. 2D Fourier transform of the acquired data s(xy,t) — S(kg,w),
2. Filtering and change of variables using (3.29), or (3.30) and

3. Inverse 2D Fourier transform F(k,, k.) — f(z, 2).

The w-k SAFT can be easily implemented and fast executed using the existing FFT rou-
tines. It compensates for the transducer’s diffraction distortion as well as its electromechanical
characteristics, which is a great advantage in contrast to the t-d SAFT based on DAS opera-
tions. Note however, that the above applied transducer model is valid in far-field only and in
the near-field the low-pass filtering effect due to the finite lengths of transducer’s SIRs must also
be compensated for, [3]. Although the w-k SAFT was derived above for the monostatic config-
uration the extension to a bistatic or multistatic setup is quite straightforward and consists in
modifying the imaging system model starting from eq. (3.21) where different sound paths are
to be accounted for. This finally results in a modified phase compensation term in eqs (3.29)
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Figure 3.8: Excitation pulse used in simulations and its Fourier transform.

and (3.30). The main disadvantage of the w-k algorithms is the need to interpolate from one
2D sampling grid to another grid defined by the Stolt mapping. Indeed, by virtue of physics
ultrasonic data acquired by a transducer correspond to a curved surface while the real image
traditionally is reconstructed in a rectangular grid. Below, we illustrate the performance of the
w-k SAFT using simulations and we compare it to that of the standard t-d SAFT.

3.3.3 Simulations

The simulations were performed for the synthetic aperture created from the measurements made
by circular transducers with various diameters d for a point target located in water at different
distances z; from the aperture. Time domain simulations were used and the spatial impulse
responses of circular transducers in the simulations were calculated from analytical solutions
[22]. Standard pixel-driven t-d SAFT implementation was used in the simulations. In this
implementation the theoretical hyperbolas (a binary pattern) corresponding to the respective
ranges are shifted across the processed RF 2D data and the values of pixels where the hyperbola
crossed the data are summed. A linear interpolation was used to compensate the effects of
discretization. This implementation can be thought of as a spatially-variant matched filter
employing the theoretical response of the point target received by a point transducer with an
unlimited bandwidth. The output of the matched filter applied to a real RF ultrasonic signal,
due to the oscillatory character of the transducer response can take both positive and negative
values.

The w-k SAFT was implemented according to (3.30), which means that the beam pattern
compensation was used in all results presented below, except Figure 3.13 comparing the res-
olution of different algorithms. Contrary to the t-d SAFT, which processed RF signals, the
w-k SAFT was implemented on complex-valued quadrature demodulated signals. To facilitate
comparisons with the w-k SAFT the envelopes (calculated using Hilbert transform) of the t-d
SAFT results are presented in figures below, except Figure 3.9 and Figure 3.15 where the rec-
tified amplitudes are presented. The lateral resolution of both algorithms is compared using
projection of the cross-range beam profiles on the transducer plane (the zy plane). The range
resolution is illustrated by the envelopes of the center A-scans at =0 in the B-scans.

The apertures used for the t-d SAFT included the number of elements calculated for each
target distance and each transducer diameter according to (3.16), given a constant pitch A, <
%. The transducers were excited by the broadband pulse shown in Figure 3.8 with its center
frequency at 1.5 MHz.

The first simulation shown in Figure 3.9 and 3.10 was performed for a circular transducer
with diameter 4 mm and a point target located at 40 mm. The aperture used for t-d SAFT
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Figure 3.9: Plots of the normalized ampitudes obtained for the point target located at distance 40 mm
from aperture after processing with t-d SAFT (left) and the w-k SAFT (right). Note that the absolute
value of the t-d SAFT result is presented.
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Figure 3.10: Beam projections obtained from B-scans shown in Figure 3.9 in dB. Upper: lateral profile
obtained from the t-d SAFT (left) and the w-k SAFT (right). Note the values of 3dB resolution (beam
width) printed above the respective panels. Lower: envelope of the center A-scan at x=0 in the B-scan
obtained from the t-d SAFT (left) and the w-k SAFT (right). The dotted line represents the enevelope
of the original A-scan (raw data).

consisted of 20 elements, spatial sampling was 0.5 mm, and the proposed w-k SAFT processed
the ROI = € [-30,30], z € [25,55] (only a small center part of the ROI is shown in Figure 3.9).
From Figure 3.9 and 3.10 it can be seen that the lateral resolution of w-k SAFT is much better
that that of t-d SAFT (the -3dB beam profile widths z34p evaluated using interpolation with
second order polynomial were respectively, 1.4 mm and 2.0 mm). The w-k SAFT profile has its
side lobes at the level less than -60 dB while the t-d SAFT profile is characterized by broad side
artifacts seen in Figure 3.9 and clearly pronounced as a broad lobe in Figure 3.10 (upper part).

The temporal resolution of both algorithms can be evaluated from the lower part of Fig-
ure 3.10 where envelopes of A-scans at x = 0 in the respective B-scans are plotted for t-d SAFT
and the w-k SAFT (the corresponding A-scan profile from the raw data is also plotted as a
reference). It is apparent that the w-k SAFT results in a much better temporal resolution than
that obtained from t-d SAFT (the respective x3yp is smaller). From Figure 3.10 can be seen
that the range profile obtained from t-d SAFT has essentially the same width as the raw data,
while the w-k SAFT yields much smaller profile decreasing to approximately -120 dB.
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Figure 3.11: Beam projections obtained after processing simulated data from the same setup as that
in Figure 3.10 but corrupted by Gaussian noise. Upper: lateral profile obtained from the t-d SAFT (left)
and the w-k SAFT (right). Note printed values of 2345 (3 dB beam width) as a measure of resolution.
Lower envelope of the center A-scan at = 0 in the B-scan obtained from the t-d SAFT (left) and the
w-k SAFT (right), dotted line represents the original B-scan profile (raw data).

To evaluate robustness of both algorithms in the presence of measurement noise the same
experiment was repeated again but white zero-mean Gaussian noise was added to the (raw)
simulated data. The profiles presented in Figure 3.11 show that the lateral profile width z34p
is essentially unchanged and the ratio of the main lobe amplitude to the noise level is similar
for both algorithms, approx. 25 dB (for the corresponding noise ratio approx. 20 dB in the
raw data). The range profile for the w-k SAFT is much better than that for t-d SAFT. The
maximum signal to noise ratio is approx. 30 dB higher.

The lateral resolution of both algorithms for different transducer sizes (but the same electrical
impulse response shown in Figure 3.8) for a target located at a distance 100 mm can be compared
in Figure 3.12 (the -3dB profile width of the raw B-scan is plotted as a reference). Figure 3.12
can be seen that the resolution of both algorithms decreases proportionally (the x34p increases)
to the transducer diameter. However, the w-k SAFT has the superior resolution, which is better
than that predicted by (3.17).

For large transducer diameters, d > 10 mm for the distance 100 mm shown in Figure 3.12, the
application of the synthetic aperture does not yield improvements in resolution. It is apparent
that for large transducers, as the angular information in the target response decreases, the use
of t-d SAFT algorithms does not result in significant improvement of resolution. In other words,
the transducer lobe becomes so narrow that processing consecutive A-scans does not improve
the lateral resolution. Note that this is a direct proof of the general rule according to which
synthetic aperture can be effective only if the point source assumption is fulfilled.

In Figure 3.13, the resolution obtained with t-d SAFT and the w-k SAFT are presented as
a function of target distance for transducer diameter d = 4 mm. The results obtained for the
w-k SAFT without aperture compensation, eq. (3.29) are plotted besides those obtained for the
proposed algorithm with Wiener filter, eq. (3.30). All three algorithms keep constant resolution
as predicted by 3.17. However, while the resolution of t-d SAFT is approx. equal to d/2 the
resolution of the w-k SAFT is higher (smaller z345). The difference between t-d SAFT and the
w-k SAFT implementation is approximately 30% (taking t-d SAFT’s resolution as a reference).
The effect of beam pattern compensation using Wiener filter (eq. 3.30) is clearly pronounced,
the respective x3gp of the w-k SAFT with compensation is approximately 5% smaller for all
distances.

Summarizing, the simulations have shown that the w-k SAFT offers a clear performance
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Figure 3.12: Lateral resolution (the x3gp) as a function of transducer diameter for the t-d SAFT and
the w-k SAFT for target distance 100 mm. The 3dB profile width of the ultrasonic data (B-scan) is
plotted for reference.
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Figure 3.13: Lateral resolution in terms of the profile width x345 as a function of target distance for
the t-d SAFT and the w-k SAFT, respectively without and with aperture compensation for transducer
diameter d = 4mm.
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Figure 3.14: Simulation results obtained in the experimental setup for 3 targets spaced 30 mm from
each other (the middle target at the distance 251mm from SA). Upper panel: lateral profile obtained
using t-d SAFT (left) and the w-k SAFT with lobe compensation (right). Lower panel: range profiles
obtained for the middle target using the t-d SAFT (left) and the w-k SAFT (right), dotted line represents
the original B-scan profile (raw data).

improvement comparing with the t-d SAFT in terms of resolution and lower side lobes. An
additional improvement is obtained by introducing beam pattern compensation in the w-k SAFT
(eq. 3.30).

3.3.4 Experiment

To verify the performance of the compared algorithms, a simple experiment was carried out in
a water tank. The measurements were performed using a planar 0.375” 2.25 MHz immersion
transducer V325-SU from Panametrics. Three steel wires of diam. 0.2 mm immersed in water,
respectively at the distance z; = 221, 251 and 280 mm from the aperture were used as targets.
The transducer was moved in 1 mm steps and the ultrasonic data was acquired with sampling
frequency 80 MHz and digitized using an 8-bit AD converter.

The experimental setup was simulated using the software tools used for the simulations
presented in the former section. The simulation results are summarized in Figure 3.14 where
lateral profiles are presented in the upper panels and the temporal resolution is illustrated by the
graphs in the lower panel. The lateral resolution z3gp estimated using interpolation of profiles
with the second order polynomial was respectively, 4.9 mm for t-d SAFT and 3.3 mm for the w-k
SAFT with lobe compensation. The resolution was similar for all 3 targets spaced 60 mm from
each other. The side lobe level was respectively -20 dB for t-d SAFT and -40 dB for the w-k
SAFT. Also the temporal resolution of the w-k SAFT was much better that that of t-d SAFT
(cf. lower panel of Figure 3.14).

The results obtained from the ultrasonic measurements performed in the simulated setup
are presented in Figure 3.15. The B-scans and lateral profiles are shown respectively for raw
data (upper panel), the t-d SAFT processed data (middle panel) and the data processed using
the w-k SAFT with lobe amplitude compensation (lower panel). Amplitudes of the raw data
were distance-compensated after the acquisition. Both t-d SAFT and the w-k SAFT yield clear
improvement of the lateral resolution, the values estimated in the same way as in the simulations
are respectively, 4.6 mm for SAFT and 3.6 mm for the w-k SAFT. Both values are very close to
those obtained in simulations.The t-d SAFT has well pronounced sidelobes both at the B-scan
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Figure 3.15: Results obtained in the experimental setup for 3 immersed targets spaced 30 mm in range
(the middle target at the distance 251mm from the SA). Upper panel: B-scan (left) and lateral profile
obtained from raw data (right). Middle panel: B-scan (left) ant the lateral profile obtained using the
t-d SAFT (right). Lower panel: B-scan (left) and the lateral profiles obtained for the w-k SAFT with
lobe compensation (right). Note that the B-scans of raw data and the t-d SAFT result are rectified. For
better presentaion of the background noise level pixel amplitude in the B-scan images was compressed

using the square root function.

42



and at the cross-range profile at the level of -15 dB. The sidelobes of the w-k SAFT cannot be
seen in the B-scan with linear amplitude coding but the corresponding value read out of the

profile is approx. -32 dB. The amplitudes of all targets are well preserved both by the t-d SAFT
and by the w-k SAFT.

The origin of the sidelobes present in the t-d SAFT imaging can be understood if the re-
sponses in the t-d SAFT imaging result, shown in Figure 3.9 and 3.15 are analyzed closer. It
can be seen that the main lobe corresponding to each target has a kind of ”"wings” at its both
sides. The "wings” originate form the simplified implementation of t-d SAFT which does not
account for the transducer electrical impulse response. Indeed, when a single pixel thick hyper-
bola is shifted across the processed B-scan (see the description of the t-d SAFT implementation
in the introduction to Section 3.3.3) a number of overlapping points will be detected due to
the finite width of the transducer response and this effect is particularly well pronounced in the
neighborhood of the main peak corresponding to the target position. The w-k SAFT does not
have this drawback since the transducer’s electrical frequency response is included in the model
of the imaging setup.

In summary, the experimental result is in good agreement with the simulated one and it
confirms the superior performance of the proposed w-k SAFT.

3.3.5 Conclusions

The w-k SAFT for synthetic aperture imaging proposed in the paper is based on the frequency
domain model of the imaging system. The algorithm performs the 2D FFT transform of the
measured ultrasonic data followed by the 2D matched filter and the Stolt coordinate transform.
The result is transformed back to time-space domain using inverse FF'T. Wiener filter based on
the far-field model of transducer beam pattern is proposed for the compensation of the main
lobe amplitude variation.

The simulated results revealed that the w-k SAFT offers a clear performance improvement
comparing with the standard time-domain SAFT in terms of the improved both range resolution
and lateral resolution as well as lower side lobes in the images of point targets. The lateral
resolution of the w-k SAFT in a wide range of target distances is approximately 30% better that
the theoretical limit equal to half diameter of the transducer used in the synthetic aperture.

The transducer beam pattern compensation based on the Wiener filter concept yields a
clear, constant for all target distances, improvement of the lateral resolution. The monostatic
configuration presented in the paper can easily be replaced by a bistatic or multistatic setup.
Similarly, the transducer model, which was derived here for the circular sources, can easily be
generalized to other transducer geometries, for instance, rectangular array elements. When doing
so one should bear in mind, however, that SAFT requires half of the pitch used in conventional
array systems.
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3.4 Fast computation of a symmetric matrix product

One of the most time consuming steps in the both the ESAFT algorithm and the sparse de-
convolution method presented above in this chapter is the multiplication of the spatial impulse
response matrix P with its transpose: B = PTP. P contains a great deal of symmetry that
arises from the linear imaging model used in these methods. This symmetry could be exploited
to speed up the calculation of B. In this section a simple scheme to exploit available symmetry
in P is presented. Details on how P is constructed and structured is given in section 3.4.1, the
algorithm itself is presented in section 3.4.2. In section 3.4.3 computation times for several data
sets of different sizes are presented to evaluate the performance of the suggested method.

3.4.1 Model of the imaging system

Both the ESAFT method, presented in [12], and the sparse 2D deconvolution method presented
in section 3.2 use a similar linear model of the imaging system. Consider the measurement
setup shown in Figure 3.1. The region of interest (ROI) that is imaged is denoted by O. The
ROI that is divided into M x N image elements is located in the zz-plane with y = 0. Every
element o(m,n) in the image O is a scalar representing the scattering strength of a target in
the position (m,n). Measurements from L positions of a transducer moving parallel to the
x-axis are available in discrete-time form. The measurement set consists of L A-scans, each
containing K samples. It is common, but not necessary, that K = M and L = N so that
there is one image element for each sample in the measurements. Another common sampling
of the image is choosing N = nL and M = K /& where n and £ are integer constants. That is:
For each transducer position, estimate n columns of image elements and for each £ samples in
the measured data, estimate one row of image elements. Let the K x 1 vector y; denote the
noise-free A-scan response at position 1;, which can be expressed as a sum of echoes from all
scatterers in the ROI. Let p;(m,n) denote the K x 1 vector that consist of the combined time
discreet electrical and spatial impulse response of a scatterer at position (m,n) and a transducer
at position [. Calculating the SIRs of a transducer naturally requires information about its
geometry and focusing, but even for complicated geometries the SIRs can be calculated using
numerical methods.

By neglecting multiple scattering effects, an A-scan can be modeled as a superposition of the
contributions from all scatterers in the ROI. Using the notation developed above, the A-scan

can be written as
N-1M-1

v = Z Z pi(m,n)o(m,n). (3.31)

n=0 m=0

The L vectors yy, ...,yr—1 can now be stacked on each other to form a KL x 1 vector, y. In
a similar way a M N x 1 vector, o is formed by stacking all elements in O. Form the size K x M
matrices

Pun = @i(l,n)...pi(M,n)) (3.32)

for all combinations of transducer positions [ and columns in O. Unless the transducer geometry
or focusing changes from one measurement position to the next, it will always hold that P ,) =
P(i4an+a), Where a is some integer constant. This means that we can use the short notation
P; where n = [ —n. Now the complete SIR matrix P can be constructed. If the simple relation

44



L = N holds, P can be written as:

Py P ... Py
P, Py ... Pn_o
P= , _ , (3.33)
P.nit1 Poyi2 oo Py

If N = nL, then only every n block row in equation (3.33) should be included. We will
assume that L = N in the rest of this section. This does not imply a loss of generality, but it
will simplify the notation considerably.

The matrix P contains all the combined electrical and spatial impulse responses for all
combinations of points (m,n) in the image and all transducer positions /. Using this matrix, it
is possible to write the model in the compact notation

y =Po+e, (3.34)

where e is additive measurement noise. See [22, 24] for details concerning the impulse responses,
the structure of P and other details of this model.

In both the ESAFT algorithm and in the sparse 2D deconvolution algorithm the matrix
B = PTP needs to be computed. Direct calculation of a matrix product of this size require
(M N)?(K L) multiplications. Since M N and KL typically are in the range 3.000 - 15.000 this
operation can take quite some execution time to complete, it is not uncommon for this step to
take in the order of up to 15 minutes.

3.4.2 Calculation of B

Please note that that in equation (3.33) there is only a few blocks Pj; that are repeated in
several places in P. This structure in P can be exploited in the calculation of B = PTP. The
more symmetric the imaging system is, the more symmetries will be available in P. In many
applications, the spatial impulse responses are identical for observation points equally far off the
central axis of the transducer but in different directions and P; = P_;.

Consider the matrix B. It can be divided into N x N blocks, each M x M elements in size.
Each block can be written as a sum of L products of blocks from two block columns of P:

q=i—L,r=j—L
Bi,= Y PP (3.35)

q=i,r=j

Since each block B; ; requires L block products, there is a total of N 2L products to be
calculated. But since there are only 2N — 1 different blocks in P there is less than 4N? different
block products P P, possible. Also, since PT' P, = PZTPn only a total of 2N? different block
matrix products actually have to be calculated, the rest can be found from a simple transpose.
In the common case that P; = P_j;, mentioned above, then the total number of different blocks
is only N, thus reducing the number of unique block products to less than N2. The following
scheme exploits this symmetry in the calculations:

For each valid combination of ¢ and r:

(a) Calculate By = P P,.
(b) For each block element B; ; in B
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If the newly calculated By, is a term in the sum making up this element, let
Bij=Bi; + B

(c) Calculate B, = B:‘;.

(d) For each block element B; ; in B

If the newly calculated B, is a term in the sum making up this element, let
Bi,j = Bi,j + qu.

In this algorithm, each matrix multiplication is only calculated once, then added to all the
blocks B; ; where it applies. Each block product PqT P, requires M2K operations, so this scheme
requires M?N?2K operation, reducing the total amount of multiplications with a factor L.

3.4.3 Simulations

The presented algorithm was tested for several different sizes of the image. Only the simplest
case where K = M, N = L and a transducer symmetric around the z-axis is considered. All
calculations were performed on a Pentium IIT with clock frequency of 2 GHz and 4 GB of RAM
memory. B = PTP was calculated both directly in MATLAB and with the method presented
here, implemented also in MATLAB.

Accuracy

To verify that the new method finds the correct value, B was calculated using both methods
for an example imaging geometry. An histogram of both B and the difference between the two
methods is shown in figure 3.16.
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Figure 3.16: Histograms for B and the error.

As is shown in the histograms, the difference between the two methods are very small, and
are due to problems with numerical precision.

Calculation time

In table 3.2, the computation time for calculation B using both methods for some different image
sizes is presented. It is evident that the new method requires far less computations than the
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’ Size ‘ N ‘ M ‘ L ‘ K ‘ Comp time (Matlab) ‘ Comp time (New) ‘

1260 x 1260 | 21 | 60 | 21 | 60 1.25s 0.65s
2790 x 2790 | 31| 90 | 31| 90 13.2s 2.79s
4920 x 4920 | 41 | 120 | 41 | 120 75.5s 8.76s
7650 x 7650 | 51 | 150 | 51 | 150 283.6s 25.3s
10980 x 10980 | 61 | 180 | 61 | 180 906.45s 61.8s

Table 3.2: Computation times as function of size of B.

direct approach. Computation times also grow with image size as expected from section 3.4.2.
The computation time is not reduced as much as a factor L, as there is some overhead for
repeatedly accessing memory for different sections of B.

Conclusions

A method to reduce the computational load when performing one of the steps in the ESAFT
algorithm is presented. The method exploits known structures and symmetries in the SIR matrix
P. Simulations show a substantially decreased computation time for most common symmetries
found in the SIR matrix P.
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Chapter 4

Three-Dimensional Ultrasound
Imaging

by Tomas Olofsson
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4.1 Introduction

Three-dimensional (3D) ultrasonic imaging has in the recent years become an important area of
research. The main development has taken place in medicine, with a long tradition of 3D imaging
in computerized tomography and magnetic resonance imaging, and 3D ultrasonic imaging is a
natural next step for extending the possibilities for the clinician to monitor the human organs [1].
The ultimate goal is real-time 3D ultrasonic imaging that would help monitoring the movements
and thus the physiological functionality of organs. The 3D technology is however still in the
early stages of its development and few examples of clinical applications have been reported so
far.

3D ultrasonic imaging also has a great potential in certain nondestructive testing (NDT)
applications. One such application is the inspection of friction stirred welds (FSWs), in which a
variety of flaws can be encountered, and 3D imaging would here be very useful for the inspection
reliability. Unlike traditional 2D imaging, where cross-sections of the inspected volume are
displayed and where the inspector must mentally reconstruct the involved volumetric structures,
3D images have the advantage of being seen from whatever angle the inspector may desire.
3D ultrasonic imaging is a natural continuation of our previous research focused on the high
resolution imaging material flaws using ultrasound.

An important distinction between medical and NDT applications, such as FSW inspection, is
that the latter typically do not involve moving structures and real-time requirements are there-
fore typically not as critical in NDT as they are in medicine; the speed at which the data can be
acquired and presented is mainly a matter of avoiding bottle-necks in the production/inspection-
line or a matter of making the inspection convenient for the operator. We may therefore expect
that NDT imaging application will require less advanced equipment than those that are consid-
ered for 3D medical imaging and much of the equipment existing today can be used. However,
an increase in computer demands compared to the systems used today is also to be expected.

3D ultrasonic imaging can generally be divided into three interrelated modular steps il-
lustrated in Fig. 4.1: Data acquisition, 3D reconstruction, and 3D visualization. The data
acquisition must ensure that sufficient information is gathered for faithfully reconstructing the
inspected volume. Once the reconstruction has been performed, the user can choose an appro-
priate visualization mode to view the data.

Data acquisition —>| 3Dreconstruction [—>| 3D Visualization

Figure 4.1: The modular steps in a 3D visualization system

Several possible methods exist for each of the above mentioned steps and the choices should
be based on design specifications that may involve system complexity, acquisition time, recon-
struction time, image resolution etc. The choices of data acquisition and reconstruction methods
are intimately related and in Sections 4.2, 4.3, and 4.4, acquisition methods are described along
with their corresponding reconstruction methods. In the first of these sections, traditional line-
by-line imaging techniques are introduced and later extended to 3D imaging. In Section 4.3
various methods based on the so-called synthetic aperture (SA) technique are described to-
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gether with some accompanying methods for improving the signal-to-noise ratio (SNR). Section
4.4 briefly describes techniques related to tomography. In Section 4.5, the different possible
visualization modes are described and, finally, in Section 4.6, a discussion on which methods of
3D ultrasonic imaging that can be suitable for the inspection of FSWs is given.

4.2 Data acquisition and reconstruction

3D ultrasonic imaging involves a geometrical conversion from the received data to a 3D coordi-
nate system. The basic property that makes an ultrasonic transducer particularly suitable for
3D imaging is that it can measure the distance between the transducer and a scatterer through
the time delay between transmission and echo reception. For this to be possible without po-
sitioning ambiguities, the data must be acquired from points that span a plane in front of the
inspected volume, cf. triangulation.

The entity to be reconstructed is often considered to be the refiectivity as a function of
position in space, o(r).! The simplifying assumptions that are usually made are that objects
in the region of interest can be synthesized by a set of point-like scatterers having different
reflectivity (strengths) and that the mapping between the received data and o(r) is linear.
These approximations are valid under weak scattering, where the medium is assumed to be
homogeneous with only small variations, but can be questioned otherwise. In particular, the
linearity assumption is clearly violated whenever the reflectivity at some region is strong enough
to completely shadow a region beneath. Then, regardless of the strength of any scatterer in this
shadowed region, these scatterers’ contributions to the received data will be zero.

For stationary objects, which is the typical case in NDT, the data does not need to be
acquired simultaneously from all points on the plane and scanning can be used instead to obtain
the necessary data. At one extreme, the data can be acquired using a single transducer that is
mechanically scanned over the surface.? This, however, may require too much time to cover the
volume of interest. At the other extreme, dense 2D ultrasonic arrays consisting of on the order
of 10* elements can potentially be used. Since such arrays could provide us with a great amount
of data at each reception, it would be possible to shorten the acquisition time significantly by
using such arrays and, if flexibility and performance in terms of acquisitions speed, resolution etc
are the primary design criteria, 2D arrays are generally the optimal choices in most applications.

We should note, however, that the conditions under which ultrasonic array systems operate
are technically quite demanding. Sampling frequencies at 50 MHz and higher are not uncommon
and, as mentioned above, the number of array elements can be quite large. Full waveform acqui-
sition at all elements is therefore generally not feasible for large 2D arrays® because the involved
circuitry (cabling and leads) then becomes difficult to manufacture and the array cumbersome
to use.

A number of methods exist aiming at overcoming these technical difficulties and to obtain an
acceptable compromise between performance and equipment cost. This compromise can consist
in that only one or a few rows of the array are actively used at a time. Another alternative
method is to use so-called sparse arrays. In such arrays, the distance between the elements is
larger than half the wave length, A/2, which is required to avoid so-called grating lobes, see
below.

'Note however that in the majority of the publications in the research field, the entity of interest in the
reconstruction is not clearly defined or mentioned at all.

2This is the mono-static case of synthetic aperture imaging described in Section 4.3.

3The largest fully sampled 2D array with full steering flexibility at transmission found in this literature study
consists of 1024 elements [2].
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The above mentioned technical compromises are discussed in the sequel. However, since
much of the work on 3D ultrasonic imaging has gradually evolved from 2D imaging using 1D
arrays, we here begin with a brief description of such arrays.

4.2.1 2D imaging using 1D arrays

The 1D arrays used for 2D imaging vary in shape and complexity. At transmission there are
two distinctly different levels of flexibility of which the first is illustrated in Fig. 4.2 below:

e Phased arrays allow for focused and steered beams by the application of appropriate
individual time delays, or a focal law, to the excitation impulses at transmission and at
the received signals. These delays correspond to differences in sound propagation time
between the elements and the focal point. The beam patterns can be further shaped by
apodization (also known as tapering or shading), which means that the transmission from
the nth element is weighted by a separate factor, a,,. The phased arrays are presently the
ones most commonly used for imaging.

o Array using arbitrary waveform excitation, individual for each element. These allows for
the most flexible wave field generation. They can simulate, as a simple special case, the
operation of phased arrays and multiple focal zones can be created in one transmission by
superimposing the excitations associated with separate focal laws.

Figure 4.2: Illustration of line-by-line 2D image acquisition using phased arrays. Individual delays are
applied to the elements to create simultaneous focusing and steering. The distance between the lines
(1-3) and the array elements illustrate the delays applied to the excitation pulses at the array elements
for the three steering angles.

The by far dominating strategy used when designing traditional ultrasonic imaging (2D)
systems has been to create narrow beams so that the echo contributions from different scatter
positions are as well resolved as possible already in the raw data format. The images are obtained
line by line by steering the beam sequentially in different directions using phased arrays, along
with focusing at some depth. The beam is steered both at transmission, as illustrated in Fig.
4.2, and at reception, using the delay and sum (DAS) technique as illustrated in Fig. 4.3.
The focusing and steering at transmission and reception essentially mimic the behavior of an
acoustical lens or a curved, geometrically focused aperture.
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Figure 4.3: Tllustration of receive focusing using the delay and sum (DAS) technique. The contributions
from the focal point are summed coherently after given a separate apodization weight.

Beside the delays used in the focal laws, the critical parameters determining the shape of the
beam pattern are the number of elements, N, the width of the elements, w, and the distance
between the elements, d, and the apodization weights, aq, ..., an, one for each element. These
weights determine how strongly each element contributes to the transmitted signal. Or, at
reception, how much gain is applied to the separate received signals.

For a linear phased array, these parameters uniquely determine the array’s aperture function,
a(&) which describes the excitation strength as a function of position. This aperture function,
in turn, determines the beam pattern. Note that we may have a different transmit aperture
function, ar(§), from the receive aperture function, ar(&).

z P(s)

] e

Figure 4.4: Coordinate system for relating the aperture function, a(z/\) = a(§) to the beam pattern,
P(s).

Consider the transmission of a continuous wave with excitation frequency, fy, yielding a wave
length \ = ¢/ fy, with ¢ being the wave propagation speed. In the far field, the continuous wave
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transmit beam pattern Pr(s) is given by the Fourier transform

o0

Pr(s) = / ar(€)ems de (4.1)
—0o0

where £ = x/\ is the element location measured in wavelengths, s = sin(¢) with the angle ¢

defined in Fig. 4.4.

The receive beam pattern is similarly given by the Fourier transform of the receive aperture
ar(§) and the round-trip, or pulse-echo, beam pattern is given by

Prr(s) = Pr(s)Pr(s). (4.2)

Below, some of the basic features of array beam patterns are illustrated. In the examples, the
considered medium is water having a sound speed of 1500 m/s. The elements are rectangular
with a length, L, that is assumed to be much larger than their widths, w, and we can then
neglect any effect on the beam pattern caused by L.

Fig. 4.2.1 shows beam patterns for single element transducers of different widths. The
aperture functions are "box functions” having sinc-functions as their corresponding Fourier
transform. Elements with widths that are much smaller than the wave length produce almost
spherical waves whereas larger elements create more narrow beams. Side lobes are clearly seen
for the 1 mm element.

0.2 mm
— — —1mm
—-—-2mm
4 mm

270

Figure 4.5: Beam patterns for single rectangular elements of different widths. The medium is water
having an approximate sound speed of 1500 m/s and the frequency is 3 MHz which yields a wavelength
A =0.5 mm.

The physical parameters w and d become fixed at the manufacturing and the user can only
control the delays and the apodization weights. If a focal point has been chosen, the delays are
given by purely geometrical considerations and, essentially, the only real choice becomes that of
finding appropriate weights. By using uniform apodization, i.e. a; = ... = ay = 1, the beams
become maximally narrow, but this comes at the cost of relatively strong so-called side lobes,
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next to the main lobe. Contributions from scatterers in the side lobe directions create artifacts
in the images and it is therefore desirable to reduce these lobes.

The side lobes can be suppressed by using appropriate apodization weights. Most of the large
number of apodization windows that have been proposed in the literature give extra weight to
the central elements, resulting in an aperture that is effectively smaller than the full aperture.*
Fig. 4.6, shows a comparison between the beam patterns of a 16 element array with uniform
apodization and one with apodization weights given by a so-called Hanning window.

Uniform apodization Hanning apodization

o
©
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o
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0.6
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0.4
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o
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0.2

o
o

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
element number element number

(a) (b)

270 270
() (d)

Figure 4.6: Illustration of the effect of apodization on beam patterns. (a) uniform weights (b) Hanning
weights. (c) Beam pattern for uniform apodization. The main beam is maximally narrow but there are
also strong side side lobes. (d) Beam pattern of the same array but with Hanning apodization. Now the
main lobe is wider but the side lobes are much suppressed.

As seen in the figure, the suppression of the side lobe comes at the expense of a wider
beam which results in worse resolution. Furthermore, apodization is typically implemented by
dampers so the output power can only be decreased by applying it.

Other disturbances are the grating lobes that occur if the distance between the transducer
elements, d is larger than half the wave length, A\/2, i.e., if the array is under sampled. This
phenomenon is in close analogy with frequency aliasing that occur when a time signal is sampled
at rate less than two times the maximum frequency found in the signal, the so-called Nyquist
frequency.

40Of course, at one extreme only the central element is given any weight at all and the aperture than becomes
identical to a single element aperture with beam patterns illustrated in Fig. 4.2.1
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Figure 4.7: Beam patterns for arrays consisting of 16 rectangular elements. The medium is water
having an approximate sound speed of 1500 m/s. (a) Beam patterns for array with very small width
elements (w = 0.1 mm) separated by d = 1 mm. The patterns are shown for three frequencies: 0.75
MHz (A = 2 mm), 1.5 MHz (A = 1 mm), and 3 MHz (A = 0.5 mm). For the two latter frequencies,
the element separation is larger than A/2 and as a result, grating lobes occur for these frequencies. (b)
Same parameters as in (a) except that a wider element with w = 0.8 mm is used. The grating lobes are
suppressed due to the directivity of the elements.

Grating lobes are often present in practical array system used for imaging because the prob-
lems of producing small enough array elements are considered to be greater than the benefit of
avoiding these lobes.® Often the arrays are only slightly under-sampled, thus causing only one
or at most two grating lobes at angles that are relatively far from the main lobe.

If the steering angle is small, such grating lobes will be suppressed as a result of finite
size of the elements, w, which causes a directivity to the beam itself, see Fig. 4.7(b). The
overall beam pattern, P(¢) for an array with equally spaced elements is the product of the
beam pattern of a w-width single element, P, (¢), and the pattern, Py(¢), of an N element
array with infinitesimally small elements.® In cases where the distance d is large, w can also be
made almost equally large, thus yielding single element beam patterns that are fairly small at
the angles at the angles where the grating lobes occur. For large steering angles, this does not
necessarily hold. Note however that the angles of the grating lobes depend on frequency and
grating lobes associated with wide band excitation are therefore ”smeared” over an interval of
angles in contrast to the main lobe which is in the same direction for all frequencies.

Except for one important difference, the focal laws used at transmission and reception are
generally the same. The difference is that, at reception, as the echoes arrive back from the
object, the delays can be modified in real time to ensure that the positions that instantaneously
contribute to the signals are always in focus. This so-called dynamic focusing technique can be
implemented in hardware and it is regularly used in ultrasonic arrays. Systems using dynamic

5This holds when the medium is water which is relevant if the inspection is to be performed in immersion. If
contact testing is considered, the wavelengths of interest become larger because of the greater wave propagation
speed in solids.

5This can be realized by noting that this aperture can be written as a convolution between a ”box” of width w
and a ”spike train” consisting of N spikes. Since the overall beam pattern is the Fourier transform of the aperture
function, the convolution translates to a product between the beam patterns.
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focusing often transmit unfocused beams (steering only) and the focusing is performed in re-
ception only. In this way the resolution becomes approximately uniform in depth. Dynamical
focusing can only be obtained by electrical means or by using post processing provided that the
signals from all elements have been stored; it cannot be achieved using geometric focusing.

The acquisition rate can be increased by reconstructing a few image lines at each reception.
The transmit beams used in such systems are relatively wide and a set of delay-and-sum circuits
are used to reconstruct several image lines in parallel using the Ezxplososcan processing technique
[3]. This processing technique is illustrated in Fig. 4.8 below.

correction
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Figure 4.8: Tllustration of the Explososcan parallel processing technique. (a) At transmit, a relatively
wide beam is steered in direction ¢p. At receive, a number of slightly different focal laws corresponding
to directions ¢ + Adq, ..., o7 + A¢y, are applied in parallel to create a set of image lines from one
transmission. (b) In the implementation, a common focal law identical to the transmit focal law (system
focus) is applied to all lines. Separate steering is subsequently applied, in parallel, to obtain the four
different lines. The steering corresponds to the image lines’ deviations from the transmit beam direction.
These steering laws can be implemented with a simpler technique (tapped delay lines) than the system
focus.

4.2.2 3D imaging using mechanically scanned 1D arrays

In practice, provided that mechanical scanning is acceptable for the application, the dominating
method to acquire 3D data is to use a combination of mechanical scanning and electrical scanning
using 1D arrays of the same type that are used for ordinary 2D imaging. The data volume is
obtained slice by slice, with the slices obtained as described in Section 4.2.1. The obvious
advantage of this approach to collect the data is that it minimizes the need for advanced post
processing.

In medicine, the arrays are often hand-held and the scanning is performed manually. The
3D reconstruction requires that precise positioning information accompanies the received data
and for hand-held devices the solutions involve either triangulation using acoustical devises or
magnetic sensors [1]. In NDT applications, it is more common to use mechanical scanning and
the transducer’s position is usually accessible from the scanner quite easily.

The 3D acquisition is illustrated in Fig. 4.9. One image plane is acquired at each scanning
position. To obtain well separated planes, i.e. to obtain a good elevation focus, the elements
in the array are geometrically focused at some range, f. At distances closer than f, the wave
have not converged and further away the waves are diverging. Thus, outside a certain range
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interval, the elevation resolution is usually poor. This problem can be addressed using more
flexible arrays as described in the following section.
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Figure 4.9: Traditional scanning of a volume plane by plane using a 1D array. (a) The array is
mechanically scanned acquiring one plane at each position. The image from one plane is obtained
by electronically steering a beam in a number of angles. (b) The separation between the planes is
accomplished by using elements that are geometrically focused in elevation.

1.25D-1.75D arrays

The 1D arrays consist of a set of narrow strips with widths w and length L. The strips are
curved to create the geometrical focus. More flexible arrays are required to for addressing the
elevation focus issue mentioned above. This can be done by cutting the strips to get a number of
rows of elements and connecting the elements in these rows to separate cables. The connections
can be done in a number of ways. Following a nomenclature in Wild et al, [4] and that has been
adapted by several authors, the commonly used array structures are referred to as 1D, 1.25D,
1.5D, 1.75D, and 2D arrays and they are defined as follows:

e 1D: Elevation aperture is fixed, and geometrically focused at a fixed range (as described
earlier).

e 1.25D: Elevation aperture is variable, but focusing remains static.

e 1.5D: Elevation aperture, apodization, and focusing are dynamically variable, but sym-
metric about the centerline of the array.

e 1.75D: A 1.5D array without the symmetry constraint. Elements are large (several wave-
lengths) in elevation, so very little steering is possible.

e 2D: Elevation geometry and performance are comparable to azimuth, with full electronic
apodization, focusing, and steering.

A common theme for the 1.XD arrays is that the elements are fewer and larger in the scanning
direction than in azimuth. In this way the total number of elements may become feasible and
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some of the practical manufacturing and handling problems of 2D arrays mentioned earlier can
be avoided.

The use of 1.25D arrays is one of the simplest methods to extend the range interval in which
the elevation resolution is satisfactory. The idea is based on the following observation: Suppose
that two strip elements, A and B, have the same focal range, f, but different lengths (apertures),
Ly and L, with Ly < L. Then B has a better elevation resolution than A at ranges beyond
a point just before f, whereas the opposite holds at shorter ranges. The measurements from
both A and B can be blended to extend the range interval with good resolution.

The idea is illustrated in Fig. 4.10(a) for a 1.25D array consisting of five rows. Activating
all segments gives the narrowest beam at the focal point and further away. Closer to the array,
the smaller apertures that are obtained by disconnecting one or both of the switches give more
narrow beams than using the full aperture. Note that due to the electrical disturbances that
occur when switching between the different states, the measurements require as many transmit-
receive cycles per beam as there are states (three in this example).

acoustical
lens

I

zone 1 1zon92 zone 3
" focal depth () L[] B
(a) 1.25D array (b) 1.5D array (c) 1.75D array

Figure 4.10: Ilustration of 1.25D, 1.5D, and 1.75D arrays. (a) The elements of the 1.25D array use no
electrical focusing but improve the resolution in the near field by reducing the aperture size, something
that is controlled by the switches. The smallest aperture yields the narrowest beam in zone 1, the
medium aperture in zone 2 and the full aperture yields the narrowest beam in zone 3. (b) Individually
delayed excitation can be applied to element pairs in a 1.5D array. The focus is restricted to lie along
the symmetry axis whereas in (c) the 1.75D array, separate access is given to all elements thus allowing
also for steering.

In Fig 4.10(b) a 1.5D array is illustrated. It allows for the separate excitation of the element
pairs that are found symmetrically around the central element. By applying time delays to
these, a focal law can be used to control the elevation focus. Dynamical focusing can be used
to accompany the dynamical focusing used in azimuth.

The extension from 1.5D to 1.75D arrays is obtained by removing the connection between
the symmetrical pairs which allows for applying separate delays to all elements and, thus, steer
the beam. The flexibility of steering in the elevation direction is still somewhat limited due to
the relatively long strips used.

4.2.3 2D arrays with restricted access to the elements and sparse arrays

The arrays mentioned above are all less flexible in elevation focusing compared to azimuth
and typically have worse resolution in this direction. To obtain equal focusing properties and
enabling electrical scanning in both directions, 2D arrays are required. These are manufactured
with elements of the same size and number in both directions but the complexity is usually
reduced by using switches that activate only a small subset of the available array elements
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during transmission and/or reception. In this way the need for massive data transfer using a
large number of cables is reduced.

The use of different apertures at transmission and reception provides flexible means to shape
the beams. The received beam can be designed to compensate for shortcomings of the transmit
beam. For instance, if the transmit beam has strong grating lobes in a certain direction, the
receive beam can be designed to canceling the lobe by placing a null in this direction. This
technique was used by von Ramm et al. [5] for 1D arrays and later adopted to 2D arrays by
Smith et al. [6, 7].

There is an endless number of transmit- and receive element configurations that can be used
and search for the optimal choice is a open research field. One relatively simple configuration
that illustrates the concept is the so-called Mills cross, see Fig. 4.11. It was used in [6, 7] in
which one of the first developed real time 3D ultrasonic imaging prototypes is described.
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Figure 4.11: Two versions of the Mills cross technique. (a) At transmission, one column of the array
is activated. This results in a beam that is narrow in azimuth but wide in elevation. At reception, a
row is used for focusing and steering in elevation. The combined result is a beam that is narrow in both
elevation and azimuth. (b) A version of the Mills cross that further improves the beam patterns. This
version was used in [6].

An important tool when designing combinations of transmit and receive beams using reduced
set of elements is the concept of effective aperture [8]. The combination of transmission and re-
ception gives rise to an overall round-trip beam pattern. The effective aperture is a hypothetical
receive aperture that would yield this round-trip beam pattern if the transmit aperture was a
point source [9)].

Recall Prr(s) in eq. (4.2) in Section 4.2.1. We can define the effective aperture, ag(§), as
the aperture that has Ppr(s) as its Fourier transform. Since products in the Fourier domain
translate to convolutions in the spatial domain, we have that the effective aperture is given by
the spatial convolution between the transmit- and the receive apertures.

ag(§) = ar(§) x ar(§). (4.3)

The concept of effective apertures is readily extended to 2D arrays and is useful in the design
of beamformers.

The presence of grating lobes described earlier is one of the problems that can be treated
by a suitable combination of transmit and receive apertures. We saw in Fig. 4.7 that strong
contributions could be seen at one or a few angles away from the intended steering angle and the
position of these lobes are determined by the separation between the elements. Between these
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maxima, there were also a number of minima (zeros). In [5], von Ramm et al. suggested the use
of different spacing of elements at transmission and reception, making it possible to place the
zeros of the receive beam pattern to destructively interfere with the grating lobes in the transmit
pattern, and thus obtaining a round-trip beam pattern that are almost free from grating lobes.

Sparse arrays

The condition for avoiding grating lobes in an array is that the inter-element spacing, d, is less
than A/2. Arrays of a certain size that have fewer elements than required by this condition are
said to be "sparse”. Some arrays are manufactured to be sparse. However, effectively sparse
arrays can also be simulated using dense arrays, if they actively use only subsets of the elements
in which the spacing between active element do not fulfill the condition.

The design of sparse arrays follows the same line as described above: An effective aperture
corresponding to a desired round-trip beam pattern is calculated. The goal is then to fit a
combination of transmit and receive apertures to this effective aperture under some constraints
that may involve minimum spacing between the elements or maximum number of elements. The
optimization problems are difficult and there are rarely any simple closed form solutions to these
problems. However, some practically useful design strategies have been proposed:

e Randomly placed elements [10]. A main theme for all strategies is to destroy the periodic
patterns in the array layout to avoid strong grating lobes and a random layout is of course
unlikely to create any significant periodic patterns.

e Rectangular interpolation [11]. One of the apertures is given a periodic sparse pattern
with one element followed by gaps of ¢—1 element. The other aperture periodically repeat
groups of ¢ elements followed by ¢ missing, see an example in Fig. 4.12.

e Vernier interpolation [11]. The array can be designed by analogy with the linear vernier
scale. If one aperture has spacing pd, with p being an integer, and the other has a spacing
of (p—1)d, then the spacing of the effective aperture becomes d. The integer p determines
the sparsity of the array. One example with p =5 is given in Fig. 4.13

e Synthetic aperture [11]. Here the transmit elements are individually excited and the
backscattered energy is recorded and stored for each receive element. A beam can be
synthesized off-line by appropriately delayed and weighted signals from every transmitter-
receiver combination. Synthetic aperture techniques are discussed more in Section 4.3.
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Figure 4.12: Tllustration of the rectangular interpolation design strategy for a 1D array.
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Figure 4.13: Illustration of the Vernier interpolation design strategy for a 1D array.

The beam patterns can be further shaped by using appropriate apodization to reduce the
size of remaining side- and grating lobes.

For 2D arrays, the apertures depend on both x and y and have far more degrees of freedom
than the 1D apertures. Thus, the optimization of 2D transmit-, receive aperture is computa-
tionally more demanding than for 1D arrays. However, the problem can be greatly simplified
by restricting the apertures to be separable, i.e., requiring that

ar(z,y) = ar(z)ar(y)  and  ag(z,y) = ar(z)ar(y). (4.4)
As a consequence, the effective aperture ag(x,y) also becomes separable

ap(z,y) = ap(r)ap(y), (4.5)
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and the problem can then be reduced to that of optimizing 1D apertures using for instance the
strategies described above. The separable apertures tend to produce beam patterns containing
7squarish” artifacts. These can be suppressed to some extent by applying radially symmetric
apodization weights.

4.3 Diffuse excitation and synthetic aperture imaging

One drawback with the traditional line-by-line approach is the relatively long time that is often
required for covering the volume of interest. This is because the data acquisition rate is limited by
wave propagation velocity in the object. We saw earlier in Section 4.2.1 that several image lines
can be obtained from a single transmission (Explososcan). In synthetic aperture (SA) imaging
this idea is elaborated further. In SA, transmissions that excite larger parts of the volume,
so-called diffuse excitation, are used and the reconstruction consists in applying separate focal
laws for each point in the object. Delay line implementations, as in Explososcan, cannot be used
for the reconstructions of regions insonified by very wide beam since these implementations rely
on approximations that hold only in a relatively small angle interval around the transmit beam
(around 0.4 rad). Instead, SA requires that signals are sampled from the elements and and
stored separately and the receive beamforming is performed off-line.

SA imaging was invented in radar more than 50 years ago. There, a small wide beam
antenna, typically mounted on an aircraft, transmitted and received at positions along a line
and the contributions from each scattering position were coherently summed. The SA technique
was adopted to ultrasonic applications in the mid-seventies [12-14] and is still today an active
research area. Radar most often involve a single scanned antenna, the so-called mono-static
case, whereas arrays are routinely used in ultrasound (multi-static case). As a consequence, a
number of different techniques have evolved in ultrasonics. They can be categorized as follows:

e Synthetic receive aperture (SRA)[15, 16]. This rather tedious method was developed for
low complexity hardware that was designed to acquire data from only one receive element
at a time. If N,, denotes the number of receive elements, one image line is created in
N, transmissions/receptions. At each transmission, the beam is steered in the desired
image line direction and the data is recorded at one receive element each time. From the
recorded data, the scatterer positions along the line are restored by coherently summing
their contributions.

e Synthetic transmit aperture (STA)[17]. STA can be used with arrays that acquire simul-
taneously all receive channels. One entire image plane is reconstructed from Ng, trans-
missions, where one transmit element is used each time. Low resolution images are re-
constructed from each transmission and these are summed after the Ny, transmissions to
form a final high resolution image.

e Synthetic transmit and receive apertures (STA/SRA). In its basic form one transmission
per array element is performed and reception is performed using a number of elements,
but not all.

Most modern arrays systems allow for simultaneous acquisition from several elements. Since
the reconstruction quality always will benefit from more data, there are no reasons to use SRA
unless the hardware have such restriction. The same comment holds also for the SRA-part in
the combination STA/SRA; if the system allows for the reception from all element, then this
should be used otherwise information will be thrown away. Below we therefore only consider
STA but before we describe this technique, let us consider the mono-static case to understand
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some of the basic properties of general SA. The presentation below which describes SA for 2D
imaging follows relatively closely that by Nikolov [18].

Consider an array with elements on the z-axis. A small element at position x; transmits
almost cylindrical waves and a point scatterer at coordinates (x,, zp) reflects the wave back to
the same element.

array elements

traveled —

distance \

8 (xp,zp)

point scatterer

Figure 4.14: The coordinate system used in the presentation.

We transmit at time ¢ = 0. The round-trip delay between transmission and reception of the
back-scattered wave is

tylai) = 2\ [+ (@i — )2 (4.6)

If the electrical impulse response of the element is A(t) and the scatterer is in the far field and
has strength o,, then the received signal is

22 + (2i — xp)?
y(t,x;) = oph [t —2 . (4.7)

C

For a collection of scatterers in the medium, we have the superposition of contributions

22+ (2, — xp)?

y(t, x;) Z oph | t —2 ! . (4.8)

c

The reconstruction in SA is basically an off-line imitation of the DAS concept used in phased
arrays. The differences are that the data has been recorded and stored in memory and, for the
mono-static SA case, that the appropriate time delays to obtain coherent summation is twice
that used in the phased array. The reason for this additional factor two is that we now consider
the round-trip delays and not only the delays associated with the forward- or backward sound
path.”

The reconstruction of the object function at (z,, z,) is performed as

o(xp, 2p) Zy tp(zi), zi), (4.9)

"This factor two is the one appearing in eqgs. (4.6)-(4.8).
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where ¢,(z;) is the round-trip delay in eq. (4.6) and y(t, ;) is a pre-processed version of the
received signal y(t,z;). The pre-processing may involve a deconvolution filter to remove the
smearing effects of the electrical impulse response or, more commonly, a filter matched to the
transducer impulse response:

G(tp(xi), i) = y(tp(ws), xi) * h(—t). (4.10)

The most important feature of the matched filter processing, which can be seen as robust version
of deconvolution, is that it restores the phase of the signals so that the peak occurs correctly at
time t,(x;).

Since y(t,x;) is a discretely sampled signal and since eq. (4.9) prescribes summation of a
continuous function, interpolation is required to implement (4.9) correctly.

Several implementations of the reconstruction exist. For instance, it can be performed in the
spatial Fourier domain [19] with the advantages of faster computations and that the interpolation
mentioned above becomes a natural part of the algorithm.

If the single element is scanned over a large synthetic aperture it can been shown that the
later resolution is depth independent and is determined only by the width, w, of the element:

5, < 2. (4.11)
2

If the aperture size is taken into account, something which is more realistic, the mono-static
SA produces images of resolution that is not identical but not far from the images obtained
from phased arrays. This should be expected since the technique essentially tries to imitate
phased array processing. Differences occur in that the resolution of SA is somewhat better but
with slightly larger side lobe levels. However, by introducing suitable apodization weights in
eq. (4.9), these differences can be made rather small. The main difference remaining is that
the condition for avoiding grating lobes in mono-static SA is that d < \/4 instead of the usual
d < \/2 condition that apply for phased arrays.

Even in its basic mono-static form, SA competes favorably in terms of acquisition speed with
phased arrays covering the same aperture. Mono-static SA requires Ny, transmissions to form
an image and phased arrays require N; lines to create the same image. An approximate formula
[20] for this number that is determined by the lateral resolution of the system is N; > 1.5Ny,.
Thus, SA completes one image frame in about 67% of the time used by an equivalent phased
array.

4.3.1 Synthetic transmit aperture (STA)

In STA, one element transmits and the reception of the backscattered wave is performed using
all elements. The process is repeated, with a new transmit element for each acquisition until
all elements have transmitted, resulting in overall N;, transmissions. The full waveforms are
sampled from the receiving elements and stored.

Because of the small size of the transmitting elements, the entire volume is insonified at
each transmission. Thus, scattering information from the entire volume is provided at a single
transmission and, in principle, the received data can be used to reconstruct this entire volume.
This results in Ny, reconstructed images of comparatively low resolution. To form the final
high-resolution image, these low-resolution images are added.

DAS is again used for the reconstruction of the low resolution images but with different time
delays than in eq. (4.6). If the array’s center is at (0,0), the beamforming applied to reconstruct
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(xp, 2p) is given by
Nre

& =" aijfis(t — 75) (4.12)
=1

where g;;(t) is the received signal® at element at x; resulting from a transmission at an element
at z;, and a;; is the apodization. The delays are given by [18]

1 1 2
(1) = g\/(ffp —x)?2+ 22+ E\/(xp — )2 + 22 — E\/m' (4.13)

The high-resolution image is obtained by a summation

Ntz

or=> . (4.14)
=1

Nikolov and Jensen have described how to produce a fast stream of high resolution images
while still only using the above mentioned reduced set of transmit elements [18]. The tech-
nique recursively uses data obtained for the N, latest transmitted elements. The elements are
transmitted in a cyclic scheme that repeats the transmission from a certain element every Ny, th
transmission. The method is useful when the inspected objects involve moving structures since
it gives the possibility to track fast movements in large regions of interest but it is of limited
interest when the object is stationary.

The images obtained using STA have about the same resolution as those obtained by phased
arrays having the same aperture. Furthermore, STA opens up for the possibility to significantly
reduce the acquisition time, which is directly proportional to the number of firings. Full size
images can be created even if only a subset of the available elements are used. By appropriate
design of the receive aperture we can maintain the same effective aperture as an equivalent
phased array and, thus, maintain the same resolution.

Lockwood and Foster [21] have described an STA setup that uses only five transmissions to
form high resolution images at very high rates. An analysis of the method showed that the price
paid for reducing the acquisition time is poor SNR. The STA processing involves accumulation
of several measurements whereas phased arrays require only one measurement per reconstructed
line. Assuming that all Ny, transmit elements are used in STA and that the same noise level is
present in both STA and phased array measurements, STA will accumulate up to a noise level
that is v/N;; times the one found in phased array measurement. The situation becomes even
worse if fewer than Ny, elements are used (sparse STA), see [21] for details.

4.3.2 Increasing the SNR in systems that are using diffuse excitation

As seen above, one drawback with diffuse excitation is related to the weak signals compared to
focused beams. To improve the SNR of the signals, the transmitted energy must be increased.
The obvious way to do this is to increase the amplitude of the signal. In medicine, a large
increase of the output levels have been prevented by concerns about possible tissue damage. In
NDT application, this should be a minor concern. However, ultrasound systems always have an
upper limit on how much power that can be delivered by the elements, a limit that may depend
on nonlinearities in the transducer or properties of the electrical system supporting the array.

Even when such an upper amplitude limit has been reached, a further increase in the trans-
mitted energy can still be done either by distributing this energy spatially or temporally or

8The signals may be pre-processed as mentioned earlier for the mono-static SA.
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combinations thereof. Spatial distribution of the energy can be achieved by simulating one
single strong element using several elements. This simulated element is called a virtual source.
Temporal distribution can be achieved using so-called pulse compression techniques. These two
techniques are described in more detail below.

Virtual sources

Virtual sources [21-23] can be created using either a geometrical focused transducer or an
electronically focused array at transmission. At the focal point, the waves travel through ap-
proximately the same point and, thus, the focal point can be regarded as a strong point source.

One advantage of virtual sources over the pulse compression techniques described below, is
that it does not rely on the use of arbitrary excitation waveforms meaning that ordinary phased
arrays can be used and the electronics used at transmission can be kept simple. A disadvantage
is that the model is over-simplified. The wave-field propagating from the focal point is not
identical to the field from a point source and the conditions required in SA are violated, see [24].

Spatial encoding for STA measurements

Ciao et al. [25] have described a method for increasing the transmitted power in STA mea-
surements by firing several elements at the same time. Consider a sparse STA using a set of
M transmit elements. Instead of sequentially transmitting one of these elements at a time, as
in ordinary STA, M different transmissions are used and in all these transmission all members
in the set M are active. Different weights are given the transmissions each of the M times.
Altogether there are M? weights that can be organized into a matrix Qs as

qu1 - Q1M
Qu = : : , (4.15)
qm1 o MM

where ¢;; is the weight applied to element j at transmission ¢. These weights must be chosen so
that Qs becomes invertible.

Let r;;(t) denote the received signals at element j at the ith transmission. Furthermore, let us
form the column vector r;(t) = (r1;,...,rarj(t)), of samples received by element j. Since these
signals are nothing but weighted sums of the signals y;;(t) that were used in the beamformer in
STA, see eq. (4.12), we can write r;(t) as (encoding)

55 (t) = Quiy; (1) (4.16)

where y;(t) = (y15, .-, ya;(t))7, i.e., a column vector consisting of the samples received at time
t by receiver j during M single element firings. Since Qs is invertible we can decode y;(t) as

yi(t) = Qy/rj(t) (4.17)
and from these signals we can proceed with the STA beamforming as described earlier.

By choosing Qj; to be a so-called Hadamard matrix, the decoding becomes particularly
simple. The element in Hadamard matrices are either +1 or —1 and the inverse is simply a scaled
version of the transposed matrix: QX; = ﬁQ}\F/l Both encoding and decoding thus involve only
phase shifts (and sums in the decoding step), something that simplifies the implementations.

The above described spatial encoding gives an SNR improvement of M2 compared to
ordinary STA. In summary, the spatial encoding can give us back the loss in SNR caused
by the accumulation of noise over several measurements in STA compared the phased array
measurements and this gives the user better means to trade between acquisition time and SNR.
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Coded excitation and pulse compression

A third way of improving the SNR is to distribute the energy over time, instead of over space as
for virtual sources and spatial encoding. This is done by exciting the elements with long input
signals. This idea is described below.

The pulses transmitted in an ultrasonic imaging system can often be fairly well approximated
as a sine wave of frequency, fp, that is weighted with an envelope function (time-window) of
duration T yielding a bandwidth of approximately B ~ 1/T. Since a high bandwidth, B, is
desirable for good axial resolution, 7' is usually made quite short. This is usually achieved by
damping the oscillations of the piezo-electric crystal and it results in a transmitted wave that
carries little energy.

If the system allows for arbitrary waveform excitation, the duration 7' can be extended while
still maintaining the bandwidth. One simple method of doing this is by using frequency swept
signals; the bandwidth of such a signal is determined by the start- and stop frequencies and the
duration is determined by the rate of the sweep. Since this rate can be chosen arbitrarily small,
the duration 7' can be made arbitrarily long. Thus, it is possible to transmit long duration
signals that have wide frequency bands.

Pulses can be described using their so-called time-bandwidth product, T'B, which for the
first mentioned pulse is close to one and for the frequency swept signal may be much larger than
one. Signals sharing the property that their time-bandwidth product are significantly larger
than one are called pulse compression signals. Compared to a system using a certain signal with
TB =~ 1, a system using a signal with the same B but with a larger T'B can potentially gain in
SNR with a factor T'B [26].

The use of long duration pulses introduces a problem of poor axial resolution. This problem
is solved by recovering (compressing) the received signals. This compression is made by filters
that are matched to the excitation signals. See appendix 4.6 for details on pulse compression
and how the matched filtering is performed.

4.4 Tomographic methods

Tomographic methods seek to reconstruct the interior of objects by illuminating these from all
angles and measuring the projection of the objects in different planes. In classical computerized
tomography using X-rays, it can be assumed that the involved beams are very narrow and that
they travel along straight lines. A fundamental problem of using ultrasound for tomography
is that the sound is refracted and diffracted to a much higher extent than X-rays. Diffraction
tomography (DT) is a version of tomography that takes the whole wave fronts into account in the
reconstruction and therefore is better suited for ultrasound measurements. DT come in several
versions of which reflection DT is perhaps the most relevant for most applications.

In its basic form, DT uses planar harmonic waves at transmission and the measurements
are performed at a series of positions enclosing the object of interest.” This particular setup
allows for rather simple Fourier domain reconstruction methods but is unfortunately in many
application rather impractical for a number of reasons: First, the use of only a single frequency at
the reconstruction leads to comparatively poor resolution images and wide-band excitation has
been proposed to solve this problem [27, 28]. Second, the requirement of plane wave excitation
is difficult to realize with transducers of finite size and this requirement has been relaxed so that
DT can be adopted to more practical array setups [29]. Third, the geometry of the objects may

9For 2D objects, the enclosing is a closed curve and for 3D objects, the enclosing is a closed surface.
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not allow for the access from all angles and for this reason DT for limited angle coverage has
been proposed [30, 31].

We should note that DT and DAS based techniques have historically evolved much in parallel.
The theoretical framework of DT has generally been expressed in the Fourier domain and,
although the rather theoretically advanced material has been well understood by physicists, it
has perhaps not been as easily grasped by practically oriented researchers. Furthermore, some
of the underlying assumptions of DT, such as those mentioned in the above paragraph, may
have been too restrictive for a practitioner to accept. It is interesting to note that as DT has
developed to be more practically oriented, the differences between DT and DAS based methods
have become small. See for instance [32] and [28] where the authors point out how the Fourier
based techniques can be well approximated using DAS when broadband signals are considered.

4.4.1 Limited diffraction beams

The last few years there has been an increased interest in so-called limited diffraction beams
(LTBs) [33]. Methods that use LTBs and that resemble diffraction tomography have been
developed.

LDBs are beams for which the wave fronts are constant as the wave propagates through the
medium, a property that makes them suitable for use in imaging systems since the spatial invari-
ance allows for using Fourier techniques in the reconstruction. Theoretically, limited diffraction
beams can only be produced with an infinite aperture but they can be approximated using a
finite aperture over a large depth of field.

For harmonic excitation, i.e., single frequency excitation, LDBs can be produced relatively
simply using annular arrays. In this case the beams are created by applying a set of suitable
apodization weights. Note that annular arrays require mechanical 2D scanning and the data
acquisition therefore in its basic form is quite inefficient for 3D imaging. However, because of
the flexibility of 2D arrays to simulate the behavior of essentially any kind of transducer, LDBs
can also be produced by such arrays.

High resolution imaging systems generally require the use of broadband excitation. The
apodization weights for creating the above mentioned harmonic beams are frequency dependent
and, as a consequence, broadband LDBs require that the elements can be excited using separate
waveforms. See for instance [34] for an example of individual excitation signals for a 10 ring
elements in an annular array to create so-called X-waves.' LDBs cannot be created using 1D
arrays but it has recently been shown how good approximations of such beams can be produced
using 1.75D arrays with 10 rows or more [35].

An interesting application of limited diffraction beams is found in [36] and [37] where high
frame rate 2D and 3D imaging using LDBs is described. In the proposed technique, a planar
broadband wave pulse is transmitted and signals are acquired at all receiving elements on a 2D
array. The LDBs are formed off-line using the stored data, very much similar to SA techniques,
and images can be reconstructed using only one transmission. One difference between the
technique using LDBs and SA is that SA is essentially based on excitation of small elements
yielding diverging beams which results in poor SNR whereas the use of planar waves in the
former gives a stronger excitation and a higher SNR is thus possible.

10The name comes from the X-shape of the propagating wave front.
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4.5 Visual presentation

Provided that the acquisition and the reconstruction of o(r) have been performed properly, the
last step in 3D ultrasonic imaging is the visual presentation. There is no single obvious way
of displaying 3D data on a 2D screen and different methods have been proposed. The three
dominating methods for presenting 3D data volumes are (i) multi-planar rendering (ii) surface
based rendering (iil) volume rendering [38]. These methods are discussed in some detail in the
following subsections. The user has to choose a method that is appropriate for the application
at hand.

All the above mentioned methods are computationally more demanding than ordinary 2D
image presentations. The data volumes that are involved to create the images are often large,
which requires both fast data transfer and fast computations. There is also usually a minimum
frame rate required if the system is to be considered practical by the user. For instance, he or she
may want to rotate the data cube in a continuously moving manner to understand which objects
are connected etc. A frame rate of less than 10 frames/s is often considered as inconvenient by
an operator. Thus, even if the involved computations used in the visualization may be more
rudimentary then those used in the reconstruction, the latter may still be computations that
require the largest computational power.

Because of this, 3D visualization has earlier only been considered for advanced applications.
The cost of professional graphical visualization systems, such as Silicon Graphics work stations,
have prevented a use of 3D visualization for many systems. However, in recent years the high
competition in the gaming industry has resulted in dramatic improvements in the graphical
processing units (GPUs) used in PC’s and the performance of the most advanced GPUs is
quickly approaching that of professional visualization systems. Several examples of advanced
scientific 3D visualization applications using relatively low cost GPUs have been reported lately.

The GPUs can perform highly parallelized computation to speed up these calculations but
usually these are performed at a low precision. They also have a relatively limited repertoire.
One of the most useful operations is that of calculating the projections of surfaces, and displaying
the pixels in textures that are placed on polygon modules in 3D. Such textures are commonly
used when creating scenes in computer games. The illusion of semi-transparency can be obtained
by combining more than one texture and projecting weighted sums of these textures on the
screen. This feature has been used to implement the volume rendering visualization, which is
the most advanced mode listed above.

We begin, however, with describing the simplest of these modes, multi-planar rendering,
which is an extension of the traditional B-scan mode used both in medicine and NDT.

4.5.1 Multi-planar rendering

In multi-planar rendering, two or more cross-sections of the reconstructed volume are displayed
as images attached on planes. If the planes can be moved around quickly and flexibly, this rela-
tively simple display mode can help the inspector in mentally reconstructing the 3D structures.
The idea is illustrated in Fig. 4.15 below. The data in the illustration was obtained by simu-
lations of measurements from a 1D phased array acquiring data in the traditional line-by-line
fashion with the same focal law in both transmission and reception. The data from the yz-plane
was obtained by rotating the array by 90°.
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Figure 4.15: Tllustration of multi-planar display. Two cross-sections (B-scans) are displayed on two or
more planes. The orientation of the planes in the display correspond to the planes that the data were
acquired from. Three views of the same data set which was obtained from simulations of a phased array.
One strong contribution coming from a point at coordinates (—2,1, 80) is indicated with arrows in (b)
and (c)

Two basic operations are required in multi-planar rendering: (i) Interpolation, in which the
values at the grid points are mapped to values at the points on the planes and (ii) projection
which maps the 3D positions to the proper point on the screen. The color at the screen are
the interpolated intensity values. Note that the interpolation makes possible the visualization
of planes in directions other than the scanning directions.

The well developed technique of attaching textures on surfaces mentioned above can be used
rather straightforwardly to solve this problem. Since only a small fraction of the data volume
is required in the interpolation, the multi-planar visualization method is the fastest of the three
mentioned above.

One disadvantage is that the technique still require the operator to mentally create a map
of the objects. The connectivity may be difficult to grasp since he or she is able to see a only a
very small fraction of the data volume at one time.

4.5.2 Surface based rendering

Surface rendering is an indirect method of obtaining an image from a volume data set. In surface
based rendering the data volume is displayed as one or several contour surfaces. The technique
relies on the fact that humans are better at perceiving isolated than diffuse objects.
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The contours that are shown to the user can either be obtained by a detection procedure
or by calculating so-called iso-surfaces which can be seen as the 3D analogue of 2D contour
mapping, such as the isobars that are often shown in weather forecasts. If the 3D reconstruction
resulted in the function o(r), the iso-surfaces are defined by the equation o(r) = k, where k is a
constant.

The data are given at discrete points and interpolation can be used to find the points on
the edges between these points that satisfy o(r) = k. The surfaces are built from geometrical
primitives, such as polygons or quadratic surfaces, and these primitives are fitted to the crossing
points. The obtained iso-surfaces can then be projected into displayable images using standard
computer graphics techniques.

Surface rendering suffers from the problem of having to make a binary decision; either a
surface passes through a voxel or not. As a consequence, these method often exhibit spurious
surfaces or erroneous holes in existing surfaces. This is particularly true for noisy data for which
the desired features are difficult to detect and the technique is best suited for imaging well
defined object.

In medical imaging, surface based rendering has been used with success only in a few appli-
cations. The main application using surface based rendering is imaging of the fetus. Since the
baby is surrounded by water, the reflections from the skin are relatively easy to detect. Adding
a skin imitating texture on this surface in the display can give a quite realistic impression of the
fetus, which helps perceiving details such as facial expressions.

4.5.3 Volume rendering

Instead of mapping geometric primitives onto the data, volume rendering provides a method of
directly displaying the data without any intermediate surface representations. It does this by
projecting the data directly onto an image screen in a process which involves both viewing and
shading the data. This allows it to both retain the details of the internal information on the
data, and avoid making any assumptions about the underlying structure of the data.

Volume rendering is based on an optical model, in which the density is thought of as a glowing
transluctant gel. If a volume element (voxel) is associated with a large value, the brighter its is,
but it then also becomes less transparent. This method of visualizing semi-transparent object
is known as alpha blending. The intensity that is accumulated along a line is projected on the
screen, see Fig. 4.16.
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Figure 4.16: Illustration of ray casting used in volume rendering. Each pixel on the screen is associated
to a ray (two such are shown in the figure). Each volume element contributes to the values through its
”glowing” intensity and its opacity.

For data cubes with very few but very bright voxels, the so-called maximum intensity projec-
tion can be a suitable simple alternative to the volume rendering. In this method the maximum
intensity voxels are located along the ray and only this value is projected.

4.5.4 Hardware for volume rendering

The following GPUs have been reported to have sufficient computing power and flexibility to
provide real time volume rendering of relatively large data cubes:

e NVIDIA NV40: In [39] this GPU was tested on data cubes of size 512 x 512 x 360 and
for this size the frame rate under interaction was above 10 frames per second (fps). For a
smaller data set of size 256 x 256 x 109 the speed was close to 20 fps.

e NVIDIA GeForce 6800.

4.6 3D ultrasonic imaging for FSW inspection

In this final section we briefly point out some aspects that may potentially be important when
choosing an appropriate technique for 3D imaging of FSW welds.

There are a number of factors that differ from medical imaging. Some of the most important
of these are the following;:

e F'SW inspection does not involve moving structures. Thus, there are no requirements
that the data from a large volume must be acquired at a speed necessary to track any
movements in the structure.

e The inspected object is relatively large compared to any realistic array aperture size.

74



e The scattering object in FSW inspection will have a relatively large density contrast com-
pared to those found in medical applications.

o Wave propagation in solids involve two important wave modes: longitudinal and transver-
sal modes as opposed to the single longitudinal (pressure) mode in medical imaging. These
two modes have different propagation speed. The propagation of the longitudinal mode
is approximately 4600 m/s which is approximately three times larger than in water. The
propagation of the transversal mode that is about half that of the longitudinal, yield about
half the wave length for a certain frequency.

The first two factors speak in favor for the mechanical scanning as a practical alternative for
the acquisition. A consequence of the third factor is that all parts of the region of interest must
be insonified from a fairly large angle interval. Otherwise, there is a risk that some region of
interest may lie in the shadow of strong reflectors.

There are a number of consequences of the differences in sound speed and presence of differ-
ent wave modes mentioned in factor four: first, the presence of a second wave mode complicates
somewhat the use of DAS. Focusing laws for both modes would require different delays corre-
sponding to the longitudinal and the transversal sound speed. The second issue concerns ana-
lyzing the data due to the transversal mode which can result at the interfaces. The transversal
mode that results in a lower propagation speed has the advantage of yielding shorter wavelengths
and, thus, better possibilities of obtaining high resolution. However, in most applications, arrays
are optimized for longitudinal waves and the transversal mode is normally much weaker than
the longitudinal one.

Appendix: Details on pulse compression

Below, the concept of pulse compression mentioned in Section 4.3.2 is illustrated. We consider
the case of pulse-echo measurements using a single transducer that have an electro-mechanical
impulse responses h!" (k) and hZ¢(k) in transmit and receive, respectively. The different steps
can be described mathematically as follows: The transmitted pulse, ps.(k), is the convolution
between the excitation (pulse compression) signal, z(k), and hl" (k)

pir(k) = @(k) = hel,, (k). (4.18)

We assume here that the number of sample in z(k) is L.

The back-propagating echo from a point scatterer, pre.(k), is a replica of p.(k) delayed
with the two-way travel time between the transducer and the scatterer, A, and scaled with an
amplitude o. The electrically acquired signal is modeled as a convolution between this incoming
wave and hLS(k):

Drec(k) = 0 pi (k) * hot (k) * 6(k — A). (4.19)

The output is obtained by applying a matched filter to the received signal,
Yz (k) = prec(k) * x(L — k) = 0 hem(k) * ci(k) x 0(k — A). (4.20)

where ¢, (k) £ z(k) * (L — k) is the autocorrelation function, delayed L samples, and hep, (k) =
hem (k) = B (k).

The signal y, (k) in (4.20) should be compared with the signal, yo(k), that we obtain using
an excitation that is the standard impulse at £ = 0 with an amplitude aeg.:

yo(k) = hi" (k) * hLEC(k) * x(k) x (L — k) * 6(k — A) = 0 - aepchem (k) * 5(k — A). (4.21)
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The expressions in (4.21) and (4.20) differ by a convolution factor ¢, (k) and if ¢, (k) can be
well approximated by a delta function, the signals y,(k) and yo(k) will differ only in the time
delay L and a scaling factor. So, obviously, if the goal is to simulate signals obtained with a
strong impulsive, z(k) should be chosen so that ¢, (k) closely resembles a delta function.

A common example of a pulse compression signal is the linear frequency modulated (FM)
sinusoid [40-43], often called the chirp signal. Fig. 4.17 illustrates pulse compression steps in
eqs. (4.18)-(4.20) with z(k) being a chirp signal. We note that the waveform of the output from
the matched filter, shown in Fig. 4.17(e), fairly well resembles the signal simulated under the
assumption of impulsive excitation shown in Fig. 4.17(f).

1 1
0.5 0.5
0 — 0
-0.5 -0.5
-1 -1
100 200 300 400 500 100 200 300 400 500
(@) (b)
20
200
10
0 0
-10
-200
-20
100 200 300 400 500 100 200 300 400 500
(©) (d)
5000 10
0 0
-5000 -10
100 200 300 400 500 100 200 300 400 500

(e) ®

Figure 4.17: Illustration of pulse compression using chirp excitation. (a) A linear chirp of length
L = 200 is used for exciting the transducer element. This element has an electro-mechanical impulse
response shown in (b). (¢) The transmitted pulse is the convolution between the chirp and h(k). (d)
The received signal is a the transmitted pulse convolved with the backward electro-mechanical impulse
response. (e) the output from a matched filter applied to the received signal. (f) The signal that would
be received with an impulsive excitation. The main differences between the signals in (e) and (f) are the
strength and a time shift of L = 200.

In [26], Misaridis and Jensen compared a number of alternative excitation signals for pulse
compression. Their conclusion was that chirp signals are the most robust to the frequency
dependent attenuation that is present in most practical ultrasonic imaging applications.

There are however several important alternatives to chirp signals. Examples of such are
so-called Barker codes which are bipolar sequences b; = +/ — 1 of length L > 2 such that the
autocorrelation sequence cp(l) = 3, bib;q fulfils ¢,(1) = L for I = 0 and |ep(1)] < 1 for I # 0.
Below, one of the Barker codes of length 13 is displayed with its corresponding autocorrelation
function.
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Figure 4.18: One of the Barker codes of length 13 (a) and its autocorrelation function (b).

Bipolar sequences are attractive because they are robust to static non-linearities in the
amplifier used at transmission [44]. Unfortunately there are known Barker only up to length 13.
Therefore, these are not good candidates if very long signals are required.

No finite time excitation signal has the property that ¢, (k) = Kd(k— L), i.e., it is impossible
to exactly simulate the behavior of a strong impulsive excitation. However, it is possible if we
allow using two transmissions in the compression. The technique relies on so-called Golay codes
[44, 45] and is described below.

Golay codes

Golay codes come in pairs that have the property that their autocorrelation functions sum to a
delta function. Let g1 (k) and g2(k) be two bipolar sequences of length L and let ¢1 (k) and co(k)
denote their respective autocorrelation sequences defined as

L

i) = gil = k)gi(k). (4.22)

=1
A Golay pair, g1(k) and go2(k), has the property that

2L ifl=0

0 else. (4.23)

c1(l) + ea(l) = {

This property can be used for distortion-less pulse compression as follows: Transmit at different
times two separate pulses using ¢1(k) and g2(k) for the excitation. The output from applying
matched filters at received signals from each reception can be written as (cf. eq. (4.20))

Yi(k) = hem (k) x ci(k) x0- 6(k — A) (4.24)
and by combining (4.23) and (4.24), we obtain the sum
y(k) = y1(k) + y2(k) = hem (k) * (c1(k) + c2(k)) * 0 - 0(k — A) = L 0 hem (k) + 6(k — A) (4.25)

In contrast to the pulse compression described earlier, the obtained signal y(k) is exactly a scaled
and time-delayed replica of yo(k).
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