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ABSTRACT 

The diffusion of r, Cs+ and Sr2+ in bentonite compacted to a dry density of 1.8 g cm-3 and 

saturated with two ground waters of different ionic strength have been studied experimentally 

using the through diffusion technique. 

The r diffusivity and diffusion porosity were found to be concentration independent in the 

concentration range 10-8 to 10-2 mol dm-3• The diffusion porosity, being only a fraction of the 

water porosity for normal ground waters, is strongly ionic strength dependent due to anion 

exclusion. 

The dependence of the diffusion of Cs+ and Sr2+ on the sorption intensity is accommodated by a 

model encompassing diffusion of the sorbed cations within the electrical double layer next to 

the mineral surface in addition to diffusion in the pore water. 



SAMMANFATTNING 

Rapporten beskriver diffusionsforsok i bentonit kompakterad till tatheten 1.8 g cm-3 och 

jamviktad med NaCl och simulerade grundvattenlosningar. 

Diffusionskonstanter och fordelningskoefficienter (~) har beraknats genom att simulera 

genombrottskurvor och koncentrationsprofiler i bentoniten. 

Diffusionens beroende av losningarnas jonstyrka kan for katjonerna Cs+, Sr2+ bast forklaras av 

en modell som omfattar tva diffusionsmekanismer, diffusion i porvattnet och diffusion av 

sorberade katjoner. 

Jodid-diffusionens jonstyrkeberoende, okande diffusionsporositet med okande jonstyrka, 

forklaras av anjonfortrangning fran sma porer i den vattenmattade bentoniten. 
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SUMMARY AND CONCLUSIONS 

The diffusion of r, Cs+ and Sr2+ in Wyoming MX-80 Na-bentonite, compacted to 1.8 g cm-3 

dry density and saturated with NaCl solutions or synthetic groundwater solutions with 

different ionic strength , was studied experimentally by a through diffusion technique. 

The apparent and effective diffusivity of r were found to be concentration independent in the 

concentration range 10-8 to 10-2 mol dm-3 • The diffusivities are increasing with increasing ionic 

strength of the ground water, due to anion exclusion which is ionic strength dependent. 

The apparent and effective diffusion constant in bentonite equilibrated with saline ground water 

(NASK-solution) were found to be Da= 9.2(+/- l.3)•10-7 and De= 7.0(+/- l.7)•10-8 cm2 s-1, 

respectively. 

The corresponding diffusivities in bentonite equilibrated with granitic ground water (Allard­

solution) are Da = 3.5 • 10-7 , De = 2.1, 10-9 cm2 s-1• 

The distribution coefficients ~ ( cm 3 t 1 ) for Cs+ and Sr2+, calculated by simulation of the 

break through curves and concentration profiles from the diffusion experiments, fall well within 

the range of distribution coefficients observed in batch sorption experiments with bentonite 

suspensions and compacted bentonite and can be calculated for groundwaters with different 

ionic strength I (mol dm-3) using the equations. 

log~ (Sr2+) = 0.6( +/-0.3) - 1.28( +/- 0.06) log I 

log ~(Cs+) = 1.54( +/-0.3) - 0.58( +/- 0.09) log I. 

The observed dependence of the diffusivity of Cs+ and Sr2+ on the distribution coefficient is 

best accommodated by a model based on the assumption of diffusion within the electrical 

double layer next to the mineral surf ace in addition to pore water diffusion i.e. the diffusion 

constants are given by the equations 

Da= EDp/(E+~p)+~pDs /(E+~p) 

De = Da (E + ~ p ). 

By using the water porosity, 0.32 for bentonite compacted to the dry density p = 1.8 g cm-3 , 

the pore water and surface diffusivities were found to be Dp= 8, 10-6, Ds = 6.10-9 and 

Dp = 3, 10-6 , Ds = 1, 10-7 cm2 s-1 for Cs+ and Sr2+ respectively. 
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The Sr2+ and Cs+ diffusivities in bentonite compacted to dry density 1.8 cm-3 and equilibrated 

with granite (Allard) and saline ground water are accordingly 

Water Ionic strength Sr 2+ Cs+ 

Da De Da De 
cm2s-1 cm2s-1 cm2s-1 cm2s-1 

Allard 0.018 1.2, 10-7 6.7,10-5 1.0.10-8 6.4,10-6 

NASK 0.218 1.0.10-7 6.0, 10-6 2.3-10-8 3.5, 10-6 

V 



1. INTRODUCTION 

Characteristic features of the clay to be used as buffer material in repositories for spent nuclear 

fuel are low permeability, high sorptivity and long term stability. The low permeability of 

compacted bentonite prevents material transport by hydraulic flow and makes diffusion the 

principal mechanism for transport of corrosive solutes to the surface of the waste canister and 

migration of radionuclides released on failure of a waste canister. 

The diffusive transport of solutes through compacted bentonite is governed by the geometrical 

microstructure of the pore network i.e. the parameters porosity, tortuosity, constrictivity, and 

the interaction between the three components diffusing solute, water and clay. Despite 

extensive studies several of the processes involved are not, due to the complicated 

microstructure of the bentonite, fully understood. The- diffusion of some sorbing solutes e.g. 

the cations Na+, Cs+ and Sr2+ has repeatedly been reported to be faster than predicted from a 

model based on diffusion in the aqueous phase and immobilisation by sorption on the solid 

phase. Diffusion within the electrical double layer next to the mineral surf ace, referred to 

surface diffusion, or less sorption, i.e. a lower K.i value in the compacted than in freely 

expanded clay, have been offered to explain the experimental results. Van Schaik et al (1966), 

Rasmuson and Neretnieks (1983), Torstenfelt (1983), Eriksen and Jacobsson (1981,1984), 

Soudek et al (1984), Jahnke and Radke (1987), Muurinen et al (1985,1987, 1990,1994), 

Cheung (1989), Cook (1989), Choi et al (1992), Berry and Bond (1992), Kim et al (1993). 

To shed some light on surface diffusion, if it exists, in bentonite clay and its relative importance 

to the function of bentonite as a barrier to radionuclide diffusion, we have studied the diffusive 

transport of Sr2+ and Cs+ in compacted bentonite using a through diffusion technique. Apparent 

diffusivity and transport K.i are, in each experiment, obtained by computer simulation of the 

experimentally measured cumulative flux through a plug of compacted bentonite and the 

concentration profile within the bentonite. Due to the particular interest in Cs+ and r which can 

possibly be released from a damaged spent fuel canister we have also studied the diffusion of 

these ions in the concentration range 10-2 to 10-8 mol dm-3. 

2. EXPERIMENTAL 

2.1 Materials 

The bentonite used in this investigation is the American Colloid Co. type MX-80 (Wyoming 

Na-bentonite). The bentonite (MX-80) has a clay content(< 2µm) of approximately 85% and a 

montmorillonite content of 80-90 wt% of this fraction. The remaining silt fraction contains 

quartz, feldspar and some micas, sulphides and oxides (Pusch and Karnland 1986). Two 

different synthetic groundwater solutions (Allard and NASK) were used in the diffusion 

experiments, see Table 1. 
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Table 1 

Composition of ground water solutions used in the sorption and diffusion experiments. 

NASK Allard 

NaCl 140mM NaHCO3 2mM 

KHCO3 2mM CaCh 0.45mM 

CaCh 20mM KCl 0.lmM 

MgSO4 4mM NaSiO4 0.2mM 

pH 7.7 MgSO4 0.lmM 

Ionic strength 0.218 MgCh 0.78 mM 
NaCl l0mM 
pH 8 - 8.2 
Ionic strength 0.0182 

Simulated ground waters and NaCl solutions with different concentration were used to vary 

the ionic strength in the sorption experiments. The solutions were prepared from analytical 

grade chemicals and Millipore deionized, triple distilled water. The radionuclides used, 134Cs 

(Amersham) and 85Sr, 1251 (DuPont Scandinavia) were purchased in aqueous solution. Tracer 

solutions were prepared by adding small aliquots of the stock solution to the solutions used in 

the experiments. The overall diffusant concentration was obtained by adding small volumes of 

standardized inactive solutions. 

2.2 Diffusion experiments 

The diffusion cell, made of PEEK, is shown schematically in Figure 1. Bentonite was statically 

compacted in the diffusion cylinder (internal diameter 10 mm and 5 mm long) to a dry density 

of 1.8 kg dm·3. The diffusion cylinder and endplates containing in and outlet channels fitted 

with metallic filters (0.82 mm thick) were assembled and the clay equilibrated with the aqueous 

solution for at least three weeks by pumping solution from reservoirs through the end plate 

channels, see Figure 2. After water saturation a small volume of diffusant solution, containing 

the tracer and inactive carrier required to give the chosen diffusant concentration, was added 

to the reservoir at the inlet side of the diffusion cell. The activity of the solutions in inlet and 

outlet reservoirs were monitored by y-spectrometry on small sample volumes using a 

germanium detector and multichannel analyzer. The volume of the inlet reservoir was sufficient 

to keep the concentration nearly constant (within a few percent) throughout the experiments. 

At the end of the Cs+ and Sr2+ experiments the diffusion cell was dismantled and the bentonite 

sliced into thin sections. Each section was weighed and the activity measured by y-counting. 

The diffusion properties of the filters were measured in separate through diffusion experiments, 

using a package of five filters, and the filter porosity was measured by weighing dry and water 

saturated filters. 
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2.3 Sorption 

Sorption was measured in batch experiments with 0.1 g bentonite and 20 cm3 spiked diffusant 
solutions. 

3. DATA EVALUATION 

3.1 Iodide diffusion 

The filters, being thin (0.82 mm) and with porosity (0.26) comparable to the water porosity of 
the compacted bentonite (0.32), were judged to have but a slight effect on the diffusion of 
iodide through the diffusion cell. The effective and apparent diffusion constants were therefore 
evaluated using equations (1) and (2) respectively (Eriksen and Jacobsson 1984). 

De = J L / A[Co-Ct] 

Da=L2 /6te 

De effective diffusion constant (cm2 s-1 ) 

Da apparent diffusion constant (cm2 s-1 ) 

J flux through the diffusion cell (Bq s-1 ) 

L thickness of the bentonite plug (cm) 

A surface area perpendicular to the diffusion direction (cm2 ) 

C0 concentration in the inlet reservoir (const) (Bq cm-3 ) 

C concentration in the outlet reservoir 

(1) 

(2) 

te time lag, the point where the asymptote of the break through curve 

intercepts the time axis (See Figure 3) 

3.2 Cesium and strontium diffusion. 

For sorbing diffusants, e.g. Cs+ and Sr2+, evaluation of diffusion parameters using Equations 1 
and 2 will be strongly influenced by the presence of filters in the diffusion cell. In evaluating the 
experimental diffusion data for Cs+ and Sr2+ an analysis of the complete diffusion system, as 
represented schematically in Figure 4 is required. 
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Inlet filter Bentonite Outlet filter 

Co Df D Df C~O 
tf E tf 

C1 C2 C3 
R 

-F 0 L L+F 

Figure 4 

Schematic representation of the barriers in the diffusion cell. 

The diffusive transport through the inlet filter (-F < x < 0 ) is given by equation (3) 

J = -A cfDf (aC1 / ax) 

and the boundary conditions 

C(-F, t) = Co 

cf filter porosity 

Df apparent diffusion constant in filter (cm2 s-1 ) 

F filter thickness (cm) 

C1 concentration in filter ( Bq cm-3 ) 

Co concentration in inlet solution (Bq cm-3 ) 

(3) 

The diffusive transport through the compacted bentonite (0 < x < L) is given by equation (4) 

(4) 

R capacity (retardation) factor defined as the ratio of the overall concentration of diffusant 

in the compacted bentonite to the concentration in the solution accessible for diffusion 

(R=c +p ~/£) 

C2 concentration in pore solution (Bq cm -3 ). 
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At the boundary between the inlet filter and the compacted bentonite we have the following 

conditions 

C1 (0,t) = C2 ( O,t) 

tf Df (dC1 / ax )x=o = £ Da R (dC2 I dt )x=0 (no storage in the boundary) 

The corresponding transport equation and boundary conditions for the outlet filter are given by 

J = -A tf Df (dC3 / dx) 

C2 (L,t) = C3 (L,t) 

£ Da R (dC2 f dx)x=L = tf Dt (dC3 f dx-) x=L 

C3 (L+F, t) =0 

(5) 

The accumulated flow of diffusant through the outlet filter Q(t) is given by the flux through the 

boundary x = L+ F integrated from time zero to t 

t 

Q(t) = A tf Dt f (dC3 (x,t) I dX)x=L+F dt 
0 

(6) 

An analytical solution to equation (6), defining the break through curve, can be obtained by the 

Laplace transform method (Put 1991). However, to make use of all the experimental data i.e. 

the accumulated flow and the concentration profile within the compacted bentonite, we have 

chosen to use a finite difference based simulation code (ANADIFF). The code ANADIFF 

calculates the apparent diffusion coefficient Da and the sorption coefficient for transport ~ . In 

the simulations A, Et, £, Dt, Co, F, L and p are kept constant while Da and ~ are varied. 

4. RESULTS AND DISCUSSION 

4.1 Iodide 

Measured apparent and effective diffusion constants for r in compacted (pdry = 1.8 g cm-3) 

NASK-water equilibrated bentonite are given in Table 2 together with corresponding diffusion 

constants measured in an earlier study with Allard-water saturated bentonite. As can be seen, 

there in no concentration dependence within the concentration range 10-2 to 10-6 mol dm-3 for 

the NASK-water equilibrated bentonite. In Allard-water saturated bentonite the apparent and 

effective diffusion constants are approximately 2-3 and 30 times respectively smaller than the 

corresponding diffusion constants in Allard-water saturated bentonite. 

Neglecting possible slight sorption effects the r transport can be assumed to take place by pore 

water diffusion only. The relation between the apparent and effective diffusion constant is thus 

given by De= Da £ P. The calculated diffusion porosities (Ep) are given in Table 2. 
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Table 2. 

Diffusion constants and porosities for r in compacted bentonite (pdry = 1.8 g cm-3) equilibrated 
with NASK and Allard ground water solutions. 

Solution r-conc 
mol dm-3 

NASK 10-2 
10-3 
10-4 
10-6 

Allard* 10-8 

* Eriksen and Jacobsson (1984) 

Da 
crn2 s-1 

8.6-10-7 

1.1-10-6 
8.7-10-7 

8.6-10-7 

3_5.10-7 

De 
crn2 s-1 

5_3.10-8 
6.s.10-8 
9.4.10-8 
6.8-10-8 

2.1.10-9 

0.06 
0.06 
0.11 
0.08 

0.006 

The variations in diffusivity and diffusion porosity can be explained by the difference in ionic 
strength of the ground water solutions used (Allard 0.018 and NASK 0.218 mol dm-3) and 
anion exclusion from the small pores. Increasing the iodide concentration in Allard water to 
10-2 mol dm-3 may thus be expected to give a small increase in the apparent and effective 
diffusion constants as well as diffusion porosity given in Table 2 due to the increase in ionic 
strength on addition of iodide to the solution. 

4.2. Cesium and strontium 

Typical experimental and simulated accumulated flux and concentration profile plots are shown 

in Figures 5 a, b and 6 a, b. Apparent diffusion constants and diffusion ~ values obtained by 
simulation calculations are given in Table 3. 

6 



Table 3 

Apparent diffusivities and distribution coefficients for Cs+ and Sr2+ in compacted bentonite 

(pc1ry = 1.8 g cm-3) equilibrated with Allard and NASK groundwater solutions. 

Solution 

NASK 

Allard 

Ion 

l+ Sr 

Cone. 
moldm-3 

10-4 
10-6 

10-2 
10-4 
10-6 
10-8 

10-2 
10-4 
10-6 
10-8 

Da ~ 
cm2 s-1 cm3 g-1 

1.05.10-7 11 
1.4 . 10-7 8.5 

5.0• 10-8 40.5 
2.6-10-8 46.6 
3.2.10-8 46.8 
2.0. 10-8 80 

2.0. 10-8 85 
0.8. 10-8 270 
1.4.10-8 270 
1.1.10-8 450 

Distribution coefficients for Cs+ and sr2+ measured in batch experiments using bentonite 

suspended in Na Cl solutions and ground waters with different ionic strength (I) are shown in 

Log ~ versus Log I plots in Figures 7 and 8 respectively. In the strontium plot (Figure 8) we 

have included data from ionic-strength dependence studies by Muurinen (1994) and Oscarson 

(1984). 

We have also plotted the ~-values obtained by simulation of the diffusion break through 

curves and concentration profiles in the solid phase into Figures 7 and 8. Inspection of the 

plots in Figures 7 and 8 reveals that the diffusion ~-values fall well within the range of 

distribution coefficients obtained in batch sorption experiments. The assumption of lower ~­

values for diffusitive transport in compacted bentonite than for sorption in suspensions is 

therefore not borne out in this study. 

The apparent diffusion constants for Cs+ and Sr2+ are, together with data from earlier studies 

by Muurinen (1994) and Eriksen and Jacobsson (1984), shown in Log Da versus Log~ plots 

in Figures 9 and 10, respectively. Inspection of these plots shows that in the ~ interval 10 to 

1000 the apparent Cs+ diffusivity decreases by approximately one order of magnitude whereas 

the apparent Sr2+ diffusivity is virtually constant. This is clearly not in accordance with a 

diffusion model for porous media encompassing diffusion in the pore water and complete 

immobilization of sorbed species, yielding equation (7) 

(7) 

where Dp is the pore diffusion constant, Da the apparent diffusion constant, ~ the distribution 

coefficient and p the dry bulk density of the porous medium. According to equation (7) the 

apparent diffusivity should decrease nearly linearly with increasing~- Instead assuming 

diffusion of sorbed cations to take place and to be Fickian, equation (7) can be modified to 

read 
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where Ds is the sutface diffusivity. 
The effective diffusivity is given by equation (9) 

De = Da ( £ + K.i P ) (9) 

Fitted Da and De curves calculated using equations (8) and (9) are plotted into Figures 9 and 
10. As can be seen, good fits to experimental data were obtained using Dp = s·10-6, Ds = 6"10-9 

cm2 s·1 for Cs+ and Dp = 3"10-6 and D.= i-10-7 cm2 s·1 for Sr2+. These surface diffusivities are in 
fair agreement with results obtained by Muurinen (1994) and Choi et al (1992). 

It should be pointed out that our calculations are based on the water porosity of the bentonite 
(£ ± 0.32). It may be argued that the diffusion porosity is smaller than the water porosity, but 
we have presently not sufficient information on the ionic strength dependent diffusion porosity. 
The different diffusion constants for Cs+ and Sr2+ are summarized in Table 4. 

Table 4 
Diffusion constants for Cs+ and Sr2+ in aqueous solution and compacted bentonite. 

Ion Dw Dp Ds 
cm 2 s-1 cm2 s-1 cm2 s-1 

2.l • 10-S 8.0. 10-6 6.0.10·9 

0.78-10-5 3.0• 10-6 1.0.10·1 

The ratio Dp IDw is found to be the same for both ions indicating that the overall effect of 
tortuosity and constrictivity is the same. 

The ionic strength dependence of the distribution coefficients clearly points at ion exchange as 
the main sorption mechanism. The Cs+ ion, having a larger radius than Sr2+, is very weakly 
solvated and may be expected to be more specifically bound closer to the solid surf ace and 
thereby less mobile than the strongly solvated Sr2+ which is separated from the surface by at 
least one molecule of water. 
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