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Abstract 

The thermoelastic response due to a line heat source of finite length in an infinite medium is 

analyzed. The problem originates from studies of nuclear waste repositories in rock. The idea 

is to deposit canisters containing nuclear waste along boreholes very deep below the ground 

surface. An important concern is that dangerous waste from damaged canisters may eventually 

reach the biosphere by groundwater moving in cracks and fractures in the rock. The stress and 

strain fields are therefore of main interest, since they influence crack formation and crack widths. 

The problem is by superposition reduced to the case of a single, infinite, antisymmetric, 

instantaneous line heat source. The dimensionless problem turns out to depend on the dimen­

sionless radial and axial coordinates only, although the original time-dependent problem contains 

several parameters. 
An exact analytical solution is derived. The solution is surprisingly handy, considering the 

complexity of the initial problem. The radial and axial displacements u and w become: 

u = <l>o [-=erf (-r) - e-P2/(4at) erf (-z )] 
pr v'4at ✓,fat 

4>o ( r ) w = ---;:--erf v'4at 

The stress and strain fields are readily obtained from derivatives of the displacement compo­

nents. These fields are studied and presented in d€tail. Asymptotic behavior, field of principal 

stresses, regions of compression and tension, and largest values of compression and tension of 

the components are given from exact formulas. 
The solution may be used to test numerical models for coupled thermoelastic processes. It 

may also be used in more detailed numerical simulations of the process near the heat sources as 

boundary conditions to account for the three-dimensional global process. 

Sammanfattning 

Den termoelastiska responsen for en andlig linjekalla i en oandlig omgivning analyseras. Pro­

blemet harror fran studier av karnbranslelager i berg. Konceptet innebar att kapslar med karn­

bransle placeras i borrhal mycket djupt ner under markytan. Farligt avfall fran skadade kapslar 

kan potentiellt na biosfaren med grundvatten som strommar i sprickor i berget. Tojnings- och 

spanningsfiilten ar darfor av intresse eftersom dessa paverkar spickbildning och sprickvidd. 

Problemet reduceras genom superposition till fallet med en enskild, oandlig, antisymmetrisk, 

momentan linjekalla. Det dimensionslosa problemet visar sig hero enbart pa de dimensionslosa 

radiella och axiella koordinaterna, trots att det ursprungliga problemet innehaller atskilliga 

parametrar. 
En exakt analytisk losning harleds. Losningen ar forvanansvart hanterlig, om man beaktar 

det ursprungliga problemets komplexitet. De radiella och axiella forskjutningarna u och w blir: 

u = <l>o [-=erf (-r) - e-P2/(4at) erf (-z )] 
p r v'4at v'4at 

Spannings- och tojningsfalten erhalls fran derivator av forskjutningskomponenterna. Dessa falt 

studeras och presenteras i detalj. Asymptotiska beteenden, huvudspanningsfalt, omraden med 

kompression och dragspanning sam.t maximivarden for tryck- och dragspanning anges av exakta 

formler. 
Losningen kan anvandas for att testa numeriska modeller for kopplade termoelastiska pro­

cesser. Den kan ocksa utnyttjas i mer detaljerade numeriska simuleringar av forloppet nara 

varmekallorna som randvillkor for att fa med den mer globala tredimensionella processen. 
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1 Introduction 

Figure lA shows one of the concepts for final storage of nuclear waste studied by The 

Swedish Nuclear and Waste Management Co (SKB. Annual and technical reports, 1980-

94). The canisters containing the nuclear waste are to be placed along deep boreholes in 

hard rock from 2 000 m to 4 000 m depth. Other possibilities are to use boreholes drilled 

from tunnels deep below the ground surface. 
The capsules release heat due to radioactive decay. The nuclear waste repository 

creates a number of line heat sources in the rock mass. The released heat warms the rock 

and induces a thermoelastic stress field. 
The rock mass serves as a protective barrier. In the worst-case scenario, groundwa­

ter may transport nuclear waste all the way from damaged canisters to the biosphere. 

Groundwater flow requires an open fracture and crack system. The stress and strain 

fields are therefore of main interest, since they influence crack closure, opening, formation 

and widths. 
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Figure 1: A: Nuclear waste repository using deep boreholes. B: Finite line heat source 

due to one of the boreholes. C: Instantaneous, infinite, antisymmetric line heat source in 

an infinite elastic medium. 

The purpose of this study is to analyze the thermoelastic process in the rock caused by 

these line heat sources. The process is of interest for very long time-scales. The behavior 

in and around the repository region, but also far away from the canisters, is of interest. 

An exact analytical solution for the time-dependent, three-dimensional process is de­

rived. The solution, which is not valid in the immediate vicinity of single canisters with 

their local complications, is surprisingly simple. 
General references for thermoelasticity is Boley and Weiner (1960) and Parkus (1959). 

General formulas used here are taken from the latter reference. The two-dimensional 

problem for an infinite line heat source may be found in textbooks, for example Timo­

shenko and Goodier (1970). In our literature search, we did not find any solution for the 

finite line heat source or the antisymmetric infinite source. 
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2 Mathematical problem 

The linearly elastic, isotropic, homogeneous medium has infinite extensions in all direc­
tions. The effect of the ground surface boundary 2 000 m above the top of the line sources 
is neglected. The thermoelastic strain and stress fields are caused by the temperature field 

T( x, y, z, t) of an instantaneous line heat source that lies along the z-axis. The basic case 
considered here is what will be called an infinite, antisymmetric line heat source. At 

t = 0, the heat +q0 ( J /m) is released along the positive z-axis (0 < z < oo) and the heat 
-q0 along the negative axis (0 > z > -oo ). See Fig. 1:C. 

The case of a finite line heat source, Fig. l:B, is obtained by superposition of two 
antisymmetric sources. See Section 13 and in particular Eqs. (92-94). This case is not 
dealt with in any detail in this paper. The heat release from the nuclear waste is actually 

a decreasing function of time: q0 = q0 (t). Here, the basic case of instantaneous heat 
release at t = 0 is studied. The thermoelastic solution for any q0 ( t) is readily obtained 
by Duhamel's superposition theorem (Carslaw and Jaeger 1959). The basic formulas are 

given in Section 14, but this further step in the analysis is not dealt with here. 
The finite heat source with the length H introduces an additional variable. The 

considered antisymmetric heat source is the three-dimensional case with the highest degree 

of intrinsic simplicity. It provides the simplest possible solution from which the case of 
any set of finite line sources with time-dependent heat release is solved by superposition. 
An important result will be that the solution in dimensionless form does not contain any 

parameters. It becomes a function of the two dimensionless coordinates only. 
The temperature field of the line heat source T(x, y, z, t), considered at any particular 

time t > 0, induces a displacement field u, a strain field c and a stress field 0-, which are to 

be determined (tensors are written in a larger size). The boundary condition for any heat 

source of finite length is that all these fields vanish at infinity, r = ✓x2 + y 2 + z2 ----,. oo. 
In the case of an infinite line heat source, this condition must be relaxed, since there is 

a thermal influence near the z-axis (p = Jx2 + y2 finite) for z----+ ±oo. This is discussed 

below. The displacement field u satisfies the vector equation (Farkus 1959, Boley and 

Weiner 1960): 

\72 (u) + 1 \7(V. u) = 2a(l + v) \7T 
1 - 2v 1 - 2v 

(1) 

Here, a (1/K) denotes the coefficient of linear thermal expansion. The temperature field 
is, for any t > 0, regular everywhere. It tends to zero far away from the z-axis (p----,. oo ). 

A few thermoelastic problems may be solved by use of a single displacement potential 

<I>(x, y, z; t) (Farkus 1959): 
(2) 

Equation (1) is satisfied if <I> is a solution of 

(3) 

The temperature field is considered at any time t > 0, so <I>(x, y, z; t) depends on the 
spacial coordinates with t as a parameter. 

Boundary conditions for the solution <I>(x, y, z; t) to Eq. (3) need to be specified. The 

problem is antisymmetric with respect to z, since T is an odd function of z. It turns out 
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to be sufficient to require that the solution <I> is an odd function of z and that v7 <I> is finite 

at infinity. This means that <I> becomes zero for z = 0. We choose the condition: 

<I>(x,y,O;t) = 0 (4) 

The mathematical problem is defined by Eqs. (3) and (4). The displacement is ob­

tained by first derivatives of <I>, Eq. (2), while the strain and stress fields are given by 

second derivatives, Eqs. (6) and (9). The solution for the finite line heat source is ob­

tained by superposition of two antisymmetric solutions. It will directly follow from the 

asymptotic expressions that the displacements indeed tend to zero at infinity for the finite 

heat source. 
We will use cylindrical coordinates (p, <p, z) and, occasionally, spherical coordinates 

(r, <p, 0). See Fig. 2. 

z ez 
! 

z ---- eP r = ✓P2 + z2 

r p = ✓x2 + y2 
eo 

sin(0) = p/r 
p 

cos(0) = z/r p 

(fJ 

Figure 2: Cylindrical coordinates p, <p, z and spherical coordinates r, <p, 0. 

3 Thermoelastic equations 

The temperature from the line source is rotationally symmetric with respect to the z­

axis. It is a function of the cylindrical coordinates p and z but independent of the angle 

<p: T = T(p, z; t). The displacement potential, which is the solution of Eq. (3), is also 

independent of <p: <I> = <I>(p, z; t). The displacement u has a radial component u and an 

axial one w: 

o<I> 
u(p, z; t) = op 

o<I> 
w(p, z; t) = oz 

The strain field c expressed in cylindrical coordinates becomes, (Parkus 1959): 

o2<I> 
Epp = [)p2 

o2<I> 
Czz = fJz2 

Epcp = 0 

The volume expansion e is given by: 

4 

1 8<I> 
Ecpcp = --

pop 
fJ2q, 

Epz = 8p8z 

Ezcp = 0 

(5) 

(6) 

(7) 



The stress field CJ is related to the strain field by Hook's law. The thermal expansion 

is allowed for by subtracting o:T from the diagonal strain components and replacing e by 

e - 3o:T. Both e and o:T, Eqs. (7) and (3), are proportional to v'2 <I>, and we get, Farkus 

(1959): 

CJ = ___!?__ ( E - v'2<I> 1) 
1 + I/ 

Here, 1 is the unit tensor. The components of the stress tensor become: 

E 
0-pp = --

1 + v 
a- = ___!?__ (! o<I> _ v2<1>) 

<pep l + 11 p 8 p 

E E o2 <I> 
O'zz = --

1 + v 
0- - ----

pz - l + 11 opfJz 

0-pcp = 0 0-zcp = 0 

The sum of the diagonal stress components become from Eqs. (9) and (7): 

2E 2 
CJ pp+ 0-cpcp + 0-zz = --- v' <I> 

l+v 

4 Temperature in the antisymmetric case 

(8) 

(9) 

(10) 

The temperature field due to the antisymmetric, infinite line heat source is obtained by 

integration of the well-known solution for an instantaneous point heat source along the 

z-axis. We have from Carslaw and Jaeger (1959): 

T( . ) - j 00 q0 sign(s) [- x2 + y2 + (z - s)2 ] d 
x, y, z, t - ( )3/ 2 exp s 

-oo p5 C 41rat 4at 
(11) 

The volumetric heat capacity is p5 c ( J /m3K), and a (m2 /s) denotes the thermal diffusivity 

of the ~olid. 
With the substitution u = ±(s - z)/.J4i-i for s > 0 and s < 0, respectively, we get: 

T(p, z; t) = ~ . _l_ . e_P2 /(4at) erf (-z-) 
1T p5 C 4at .J4i-i 

(12) 

The error function erf(z) and the complementary error function erfc(z) are given by, 

(Abramowitz and Stegun 1979): 

2 r 2 
erf(z) = .Ji Jo e-u du= l - erfc(z) (13) 

The error function increases from O for z = 0 to 1 for z = oo. 

The temperature field of the antisymmetric, infinite line heat source may be written 

in the following way: 

T p z· t = -- · - · T -- --qo l ( p z ) 
( ' ' ) ?rp5 C 4at a .J4i-i' .J4i-i (14) 
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The field is, except for scale factors, given by the dimensionless temperature field Ta(p', z') 
with the dimensionless coordinates of Eq. ( 19): 

(15) 

There is a single two-dimensional temperature field Ta(p', z') for which the problem is to 

be solved. The dependence on time t involves scale factors only. 
The dimensionless temperature field Ta(P', z') is shown in Fig. 3. The temperature is 

an odd function of z', and it vanishes for z' = 0: 

(16) 

For large z', Ta behaves as e-(/)2 • We have the following asymptotic expressions: 

Ta (p', z') '.:::::' e-(p')2 
( 1 - J z' e-(z')2) for large z' (17) 

Ta(P',z') '.:::::' ~ (1 - (p') 2 - (z~)2) for small p', z' (18) 

5 Dimensionless formulation 

The length y'4ai is a measure of the thermal influence range from the line heat source at 

time t. This length, which is the only one occurring in the antisymmetric problem except 

the coordinates p and z, is used for the dimensionless coordinates: 

I p 
p = v'4ai 

I z 
z =--

v'4ai 
The dimensionless gradient and Laplace operators become: 

\7 = _1_\7' 
y'4£d 

\72 = _l_(v'')2 
4at 

(19) 

(20) 

The displacement potential <I> satisfies Eq. (3) with T given by Eq. (14). Inserting the 

dimensionless Laplace operator, we get: 

_1_ (v7')2 <I> = 1 + v . aqo . _1_ Ta(p', z') 
4at 1 - v 7r PsC 4at 

(21) 

The time factor 4at cancels. The displacement <I> becomes a function of p' and z' only: 

<I>(p, z, t) = <I>o · <I>a(P', z') (22) 

The scale factor <I>0 (m2) is given in Eq. (27). 
The dimensionless displacement potential <I> a (p', z') for the antisymmetric, infinite heat 

source is the solution of: 
(23) 

The factor 2 on the right-hand side is introduced in order to avoid a numerical factor in 

<Pa, Eq. (37). 
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The displacement u may now be written in the following form, Eq. (2): 

<I>a ( I ') 
U = r:,::; · Ua p , Z 

v4at 
(24) 

Here, ua(P', z') is the dimensionless displacement. All functions with subscript a depend 
only on the dimensionless coordinates p' and z'. 

The volume expansion e, Eq. (7), involves second derivatives (and 1/p times o<I>/op). 
This gives the scale factor <I>a/(4at). From Eqs. (6) we get the same factor for the strain 
field. This factor is multiplied by E / (l + v) for the stress field, Eq. (9): 

e = <I>a • (V')2<I> 
4ai a 

<I>a ( I ') E=-·E p z 
4at a ' 

Fa ( , ') O'=-·O'ap,z 
4at 

(25) 

Here, Ea(P', z') and CJ' a(P', z') denote the dimensionless strain and stress tensors. The 
stress scale factor Fa (N) is given in Eq. (27). The components of the two tensors in the 

cylindrical coordinates are given by Eqs. (29) and (30). 
The multiplicative scale factors, all with subscript a, for displacement potential, dis­

placement, strain, and stress, respectively, are: 

<I>a 
<I>a 

y4cd 
(m) <I>a 

4at 

The two scale constants <I>a and Fa are defined by: 

<I>a = 1 + v . o:qo 
1 - ZJ 21rpsc 

(-) 
Fa 
4at 

(26) 

(27) 

The dimensionless displacements in the p' - and z' -directions are given by the partial 

derivatives of <I>a, Eq. (24): 

( 
f ') 0<I> a 

Wa p 'z = oz' (28) 

The dimensionless strain components are now given by, Eqs. (6), (22), (19) and (25): 

a 1 o<I>a 
c =---

'P'P p' op' 

a 02 <I> a a O a 0 
cpz = Op'oz' cP'-P = Ez<p = (29) 

The dimensionless stress components are, Eqs. (9), (25) and(23): 

a a 
(jpz = cpz (30) 

The sum of the diagonal components becomes from Eqs. (29), (23) and (30): 

(31) 

These dimensionless equations correspond to the original equations (7) and (10), respec­
tively. 
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6 Displacement potential <I> a 

The displacement potential '1>a(p', z') satisfies Eq. (23), which together with Eq. (15) gives: 

(32) 

The solution '1>a(P',z') is according to Eqs. (4) and (16) an odd function of z', so that it 

vanishes for z' = 0: 
'1>a(p', 0) = 0 (33) 

A solution is readily obtained by taking the derivative of Eq. (32) with respect to z' 

for constant p': 

(34) 

Here, r' is the dimensionless radial distance in spherical coordinates. The right-hand side, 

and hence aif.! al fJz', is a function of r' only. The Laplace operator, with radial variation 

only, gives: 

(35) 

Integration gives: 

( Oi!?a) = _ erf(r') +A+ B = _ erf ( j(p')2 + (z') 2
) 

oz' p' r' r' j(p')2 + (z')2 
(36) 

Here, A and B are integration constants. The solution is regular at r' = 0, which means 

that B is zero, since erf(r')/r' is regular for r' = 0. The constant A corresponds to a 

constant displacement in the z-direction. This part will vanish for the finite line heat 

source, which involves a difference of two antisymmetric cases. It is therefore of no 

importance, and we put A to zero. Equation (36) gives a particular solution to Eq. (32). 

To this any solution to the homogeneous equation 'v2if.! = 0 may be added. Separation of 

variables gives solutions such as ef3z' J0 (/3p'), but these solutions are discarded, since the 

gradient is infinite for infinite exponents. 
The dimensionless displacement potential for the infinite, antisymmetric line heat 

source is now by integration from s = 0 to s = z', with if.!a(P', 0) equal to zero according 

to Eq. (33): 

(37) 

The expression is valid for all p' and z'. 
The displacement potential cl> a (p', z') is without difficulty calculated numerically from 

Eq. (37). The result is shown in Fig. 4. The potential is an odd function of z'. The values 
on the axes are, Eqs. (33) and (37): 

if.!a(O,z') = - rz' erf(s) ds 
Jo s (38) 
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The behavior along the z'-axis is shown in Fig. 5. The potential -<I>a(0, z') increases 
towards infinity as ln(z') for large positive z'. Asymptotic expressions for small, Eq. 
(117), and for large z', Eq. (115), are also shown. 

7 Displacement field 

A simple way to obtain the radial displacement Ua is to use Eq. (37) after the substitution 

s = p'v. We have: 

Ua = _ _!!,_ [ rz'/p' erf (p'Jl + v2) dv] 
8p' Jo Jl + v2 

(39) 

The factor Jl + v 2 cancels after derivation in the integral, and we get after straightforward 
calculations: 

1 [z' ( ')2 l Ua = - - erf(r') - e- P erf(z') 
p' r' 

( 40) 

Derivation of Eq. (37) with respect to z' gives directly: 

erf ( r') 
Wa = -

r' 
( 41) 

The displacement ua(P', z'), Eq. (40), is an odd function of z'. In order to determine 
the behavior for p' = 0, we consider the function within the brackets in Eq. (40). The 
series expansion in p' for fixed z' becomes: 

z' erf(r')-e-(P')2 erf(z') = O+p'•O+(p'/· [erf(z') (1- - 1-) + - 1-e-(z')2
] + ... (42) 

r' 2(z')2 ~z' 

The function on the left-hand side and its first derivative with respect to p' vanish for 

p' = 0. The radial displacement near p' = 0 becomes from Eqs. ( 42) and ( 40): 

( 43) 

Here, e2 (z') denotes the function within the brackets in Eq. (42). It is given below by 

Eq. (53). 
From Eqs. ( 40) and ( 43) we get that Ua is zero on both axis: 

Ua(P', 0) = 0 

In the limit z' = oo, we get from Eq. ( 40): 

ua(0, z') = 0 (44) 

( 45) 

This function together with asymptotic expressions is shown in Fig. 6. The function 

assumes the maximum 0.6382 for p' = 1.1209. The radial displacement field ua(P', z') is 
shown in Fig. 7. 

The displacement wa(P', z'), Eq. (41), in the z-direction depends of the radius r' 

only. The function erf(r')/r' together with asymptotic behavior is shown in Fig. 8. The 
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curves of constant Wa are circles in the (p', z')-plane. The largest vertical ( downward) 

displacement 2/ y'7r = 1.128 occurs at r' = 0. 
The displacement vector field Ua may from Eqs. (5), ( 40) and ( 41) be written in the 

following way: 

Ua = ;, ( erf(r') ee - e-(p')2 erf(z') eP) 

Here, e0 is the unit vector in the 0-direction, Fig. 2: 

ee = cos( 0) ep - sin( 0) e2 

The displacement vector field is shown in Fig. 9. 

8 Strain field 

( 46) 

( 47) 

The components of the strain tensor Ea are given by second-order derivatives of <I>a, 
Eqs. (29), or first order derivatives of the displacement components Ua and wa, Eqs. (28). 
We get with straightforward derivations from Eqs. ( 40) and ( 41 ): 

z' 1 [ 2r' ( ')2] 1 [z' ( ')2 l ( ')2 
ea = -- · -- erf(r') - -e- r - -- - erf(r') - e- P erf(z') + 2e- P erf(z') 

PP r' ( r') 2 -Ji (p') 2 r' 

c~'° = ~ [z' erf(r') - e-(p')2 erf(z')] 
(p') r' 

E = - · -- erf r - -e a Z
1 1 [ ( ') 2r' -(r')2] 

zz r' (r'/ ,/'ii 

c = - • -- erf r - -e a p' 1 [ ( ') 2r' -(r')2] 
pz r' (r')2 ft (49) 

These four strain components are shown in Fig. 10. 
The last two strain components differ only by the factors z' and p'. They may be 

written, Fig. 2: 
c:2 = cos(0) e1(r') (50) 

Here, the function e1 (r') is given by: 

e1 r = -- er£ r - -e-( ') 1 [ ( ') 2r' (r')2] 
(r'/ ft 

(51) 

This function is shown in Fig. 11. It attains the maximum 0.428 at r'=0.97. Asymptotes 

for large and small r' are shown. 
The strain c:'° in the rotational direction c.p is zero on the p'-axis. It is directly related 

to Ua, Eqs. (28-29): 

(52) 

The expressions for c:cp have p' in the denominator, so values for p' = 0 are not directly 

obtainable. But from Eq. ( 43) we have after division by p' for p' = 0: 

E:~cp(O, z') = e2(z') 
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(53) 

The function e2 (z') is shown in Fig. 12. The limit of infinite z' is of interest. We have in 

accordance with (83): 

(54) 

This function is shown by curve II in Fig. 14. 
The expression for €~Pin Eqs. ( 49) is somewhat more complicated than the other three 

expressions. But we have from Eq. (31): 

(55) 

The values on the axes become: 

(56) 

For the second equation, we have used Eq. (55) ( or the fact that c~P and c:"' must be 
equal on the z'-axis ). 

The strain component €~P is the derivative of ua(P', z') with respect top', Eqs. (28-29). 

The vertical curve €~P = 0 in Fig. 10, top left, corresponds to the maximum (Bua/ ap't, = 0 
in Fig. 7. 

9 Stress field 

The components of stress field are directly obtained from the strain components and Ta, 

Eqs. (30). Using Eqs. ( 49) and (15), we get: 

a (Jpp - - • -- erf r - -e- - -- - erf r - e- er z z' l [ ( ') 2r' (r')2] 1 [z' ( ') (p')2 f( ')] 
r' (r1)2 ft (p') 2 r' 

- 1- [z' erf(r') - e-(p')2 erf(z')] - 2e-(P')2 erf(z') 
(p')2 r' 

z' 1 [ , 2r' (r')2] ( ')2 1 - • - erf(r) - -e- - 2e- P erf(z) 
r' (r1)2 ft 

- · -- erf r - -e-p' l [ ( ') 2r' (r')2] 
r' (r1 )2 ft 

These four non-vanishing components of the stress tensor are shown in Fig. 13. 

(57) 

The first three components CJ;p, CJ:'° and CJ!z are odd functions of z', while CJ;z is even 
in z'. The component CJ;P assumes negative values and CJ;z positive values for z' > 0. 
The second and third components CJ:'° and CJ:z are negative near the positive z'-axis 
(compression) and positive (tension) in a region outside p' = l. 

Let us further consider the first three components J;p, CJ:'° and CJ:z· They are all zero 
on the p'-axis. On the z'-axis, we have from Eqs. (30), (56) and (15): 

J;p(0, z') = e2 (z') - 2 erf(z') = -e3 (z') 

From Eqs. (30), (53), and (15) we have in the same way: 

11 
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(59) 

It should be noted that CY~P and CY:"' must be equal for p' = 0. The function e3(z') is given 
by, Eqs. (53) and (58): 

(60) 

This function is shown in Fig. 12. It is an odd function of z'. The maximum is of interest 
since it gives the largest compression for CY;P and a-:"': 

e3,max = 1.141 for z' = 1.51 

From Eqs. (57), (51) and (53) we get: 

(61) 

(62) 

The compression increases along the positive z'-axis from zero to +2 for z' = oo. There 
is a local maximum 0-~2 = 0.064 at the point p' = 2.2, z' = 1.5. See Fig. 13 bottom, left. 

The behavior on the z'-axis is summarized in Fig. 12. We have from the above 
equations: 

(63) 

The behavior for large z' is of interest. For z' = oo, we have from Eqs. (57): 

(64) 

These three functions of p' are shown in Fig. 14. The component o-:"'(p', oo) ( curve III) is 
zero for p' = 1.121. The stress is negative for O < p' < 1.121 and positive for p' > 1.121 in 
accordance with Fig. 13, top left. There is a stress maximum CY:"' = 0.218 for p' = 1.793, 
z' = oo. 

We have obtained the following maxima and minima in z' > 0 for the first three 
components: 

O"a rm·n = -1.14 for p' = 0, z' = 1.51 
PP, 

CYa rm·n = -1.14 for p' = 0, z' = 1.51 
<p<p, 

CY:cp,max = 0.218 for p' = 1.79, z' = oo 

CY;z,min = -2 for p' = 0, z' = oo 

o-:z,max = 0.064 for p' = 2.2, z' = l.5 (65) 

The shear stress 0-;2 = c~2 , Fig. 13 (bottom right), has a different character. It is an 
even function of z' and zero on the z'-axis. We have from Eq. (50): 
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The function e1(r'), Eq. (51), is shown in Fig. 11. On the p'-axis, a~z is equal to e1 (p'). 
The maximum of e1 gives the maximum shear stress: 

a;z,max = 0.428 for p' = 0.97, z' = 0 (67) 

With the use of e1 (r'), E~'{J(p', z') and Ta(P', z'), the stress components, Eqs. (57), may 
be written in the following more compact form: 

a 
O" pp 

a a '{J'{J 
a 

azz 
a 

apz 

- cos( 0) · e1 ( r') - E~'P (p', z') 

E~'{J(p', z') - 2Ta(P', z') 

cos(0) · e1(r') - 2Ta(P', z') 
sin( 0) · e1 ( r') (68) 

The function e1 ( r'), Eq. ( 51 ), is shown in Fig. 11, the dimensionless temperature Ta (p', z'), 
Eq. (15), in Fig. 3, and E~'{J(p',z'), Eq. (49) in Fig. 10 (top right). 

10 Principal stresses 

The dimensionless principal stresses, denoted af, o-2 and o-;, are readily computed from 
the expressions (57). The shear stresses for cp-surfaces, o-P'{J and O"z<.p, are zero, Eq. (9). 
Thus, o-:'P is a principal stress: 

(69) 

Figure 13, top right, shows this stress field. The three stress components in the (p', z')­
plane determine the other two principal stresses. The well known formula for the normal 
stresses is: 

(70) 

Here, o-~ has the plus sign before the square root. The stress components o-;P and o-;z are 
odd functions of z', while o-;z is even in z'. Then we have from Eq. (70): 

a( 1 ') a( t ') 0-2 p,z =-0-1 p,-z (71) 

Let 01 denote the angle between the first principal stress direction and the z' -axis. We 
have: 

(72) 

Figure 15 shows the principal stresses in the (p', z')-plane. The plane is divided into 
three areas by the dashed lines. There is compression in both principal directions in the 
upper area, and tension in both directions in the lower area. In the intermediate area in 
a sector around the p'-axis, there is compression in the direction top-left to bottom-right. 
This principal compression decreases from the upper dashed line down to the lower one, 
where the compression becomes zero. In the other principal direction from bottom-right 
to top-left there is tension in the intermediate area. This tension decreases from the lower 
dashed line to zero on the upper line. 

The shear stress a;z is zero on the z'-axis. The two principal stresses and the angle to 
the z'-axis become from Eqs. (63) and (71) for z > 0: 

z' > 0 
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cr~(O,z') = cr;P(O,z') = -e3(z') 

01(O,z') = 0 

On the p'-axis we have, Eq. (66) with 0 = 1r /2: 

This gives 

z' > 0 

(73) 

(74) 

(75) 

The dashed curves in Fig. 15, where one of the principal stresses are zero, are deter­

mined by the condition: 

(76) 

The behavior for small r' is discussed in Appendix 2. The dashed curves follow the lines 

z' = ±p' /2 for small r', Eq. (122). 

11 Asymptotic behavior 

We are interested in the behavior of the solution for larger', and in particular for large z' 

and moderate p' near the z'-axis where the line heat source lies. The asymptotic behavior 

of the displacement potential <I>a for large radius r' is dealt with in more detail in Appendix 

1. 
Eqs. ( 40-41) for the displacements can be simplified for large r'. The error function 

erf(r') is close to unity ( erf(2)=0.995, erf(l.4)=0.95). For r' > 2, we have with good 

accuracy: 

erf(r') '.:::::'. 1 

( ')2 I ( ')2 ( ')2 e- P [1 - erf(z )] '.:::::'. 0 or e- P erf(z') '.:::::'. e- P (r'>2, z'>O) (77) 

The equation in the second line is directly valid for z' > 2. But p' becomes large for small 

z' ( and r' > 2). Then the exponential is small. 
With these approximations, the displacement becomes: 

Ua '.:::::'. - - - e- P 1 [ z' ( ')2] 
p' r' 

The strain components, Eqs. ( 49), become: 

1 
w ~-­

a - r' 

, 1 [ , l a Z Z ,2 ,2 
c '.:::::'. - -- - -- - - e-(p) + 2e-(P) 

PP ( r')3 (p1)2 r' 

(r' > 2) (78) 

ea '.:::::'. _l_ [z' - e-(p')2] ea ~ _j_ (r' > 2, z' > 0) (79) 
cpcp (p1 )2 r' pz - ( r')3 

The stress components, Eqs. (57), become in the same approximation: 

Z 1 I 2 
(Ta ~ -- - 2e-(P) 

zz - (r')3 
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p' 
era ~ --

pz - (,')3 ( ,' > 2, z' > 0) (80) 

The limit z' = oo is also of interest. It gives the two-dimensional behavior around an 
infinite line heat source. In this limit we have: 

z' 
- = 1 
r' 

r' = oo erf( z') = 1 (z' = oo) (81) 

With these approximations, the displacement becomes, in accordance with Eq. ( 45): 

Ua = ;, [1 - e-(p'J2
] Wa = 0 (z' = oo) (82) 

The strain components, Eqs. ( 49), become: 

Ea = --1- [1 - e-(p'J2 ] + 2e-(P')2 

PP (p')2 

a __ 1 [ _ -(p')2] E'P'P - 2 1 e 
(p') 

(z' = oo) (83) 

The stress components, Eqs. (57), for the limit z' = oo are given previously in Eqs. (64). 
The three nonzero stress components are shown in Fig. 14. It may be noted that the 
same functions occur in Eqs. (64) for stresses and Eqs. (83) for strains. The three curves 
in Fig. 14 show: 

curve I: 

curve II: -cr;P(p', oo) = E~'P(p', oo) 

curve III: -cr~'P(p',oo) = E~P(p',oo) (84) 

The limit z' = oo gives the two-dimensional radial solution from an infinite line source 
with the (dimensionless) temperature, Eq. (15): 

(85) 

Let us verify this. The (plane) radial displacement potential <P'(p') is the solution of Eq. 
(23): 

(V')2<P' = ~~ (p'd<P') = 2e-(P')2 
p' dp' dp' 

(86) 

The solution is regular at p' = 0, and we get after two integrations: 

(87) 

Here, E1 denotes the exponential integral, Eq. (110). The derivative d<P'/dp' gives the 
displacement ua in accordance with Eq. (82). Second derivatives, Eqs. (29-30), give the 
strain and stress in accordance with Eqs. ( 83) and ( 64). 

Far away from the line source, p' > 2 and ,' > 2, we can neglect the exponential in 
(p') 2 • The displacement (78) is simplified to: 

z' 
U ~­a -

p'r' 
(p',z' > 2) (88) 

15 



The strain and stress become equal, since Ta and ('v') 2 <I>a are zero in this approximation, 
and we have from Eqs. (79-80): 

z' 
a ~ "'a ~ O'zz - '--zz - --3 

( r') 

12 Development with time 

(p', r' > 2) (89) 

The original displacement field u(p, z, t) (m) becomes from Eqs. (24), (19), ( 40) and ( 41 ): 

u(p,z,t) = <I>o [-=-erf (-r-)- e-P2/(4at)erf (-z-)] 
p r ✓,fat v4at 

w(p, z, t) = - ~o erf ( J4at) (90) 

The original stress components (Pa) become from Eqs. (57), (25) and (19): 

CTpp(p, z, t) = 

C!'zz(P, z, t) 

O'pz(p, z, t) = 

13 Finite line source 

We will in this section briefly consider the finite line heat source. The heat source lies 
along the z-axis in the finite interval z_ < z < z+. The heat q0 ( J /m) is released at t = 0. 
See Fig. lB. The total amount of released heat is (z+ - z_) q0 (J). This heat source may 
be obtained from two superimposed infinite antisymmetric cases. The first one has the 
strength q0 /2 ( J /m) and its center at z = z_. The other one has the strength -q0 /2 
(J/m) and the center at z = z+. The heat release along the z-axis at t = 0 becomes: 

{ 
0 z > z+ qo . qo . 

2 · s1gn(z - z_) - 2 · s1gn(z - z+) = q0 z_ < z < z+ 
0 z < z_ 

(92) 
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The temperature for an infinite antisymmetric line source is given by Eq. (14). By 
superposition we have for the finite line source: 

T(p,z,t) = i ·~::c. 4~t. [Ta ( k, z~ )-Ta (k, z;2i) l (93) 

The displacement potential is the solution of Eq. (3) with T given by the above ex­
pression with its two parts. We get by superposition: 

(94) 

Here, z~ and z:.. are the dimensionless top and bottom positions of the line source. 
The displacement vector, and the strain and stress tensors, are readily obtained by the 

above type of superposition. For example, we have for the dimensionless stress tensor: 

'( 1 t t t ) 1 [ a( t I 1 ) a( t I I )] u p , z ; z+, z_ = 2 u p , z - z_ - u p , z - z+ (95) 

The four nonzero components of the dimensionless stress tensor ua (p', z') are given by 
Eqs. (57). For example, we have for the £7;2 -component: 

, ( , , . , , ) _ 1 { z' - z:_ [ f( , ) 2r:.. -(r'..J2] 
0-22 p, z, z+, z_ - 2 (r'.'...)3 er r _ - ,jie 

- \r~):',_ [erf(r',_) - ,e-(•\J'] -2,-(,')' [erf(z' - z~) - erf(z' - z',_)]} (96) 

Here, the dimensionless distances to top and bottom of the line source are: 

(97) 

We now choose z = 0 as the midpoint of the line source with the length H: 

Z+ = H/2 z_ = -H/2 z~ = ±H'(t) H'() H t =2~ (98) 

Then the dimensionless stress field CJ1 depends on the dimensionless coordinates p' and z' 
and on the dimensionless half length H' of the line source: 

(99) 

Figure 16 shows the four nonzero components for the particular case H' = 10. This 
means that His twenty times larger than the thermal range~' Eq. (98). 

14 Time-dependent heat source 

Let sign(z)q0 q'(t) (W /m) be a time-dependent antisymmetric heat source along the z-axis. 
The variation in time is given by the dimensionless function q'(t). The temperature is 
obtained from Duhamel's superposition theorem (Carslaw and Jaeger 1959) as an integral 
of the instantaneous heat source solution, Eq. (14 ): 

T( ) 1t '( ') q0 l ( p z ) d , p,z,t = qt •--•----•Ta ----;:::===,---;:::=== t 
o ~PsC 4a(t - t') J4a(t - t') J4a(t - t') 

(100) 
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Here, Ta(P', z') is given by Eq. (15). The displacement potential is in the same way given 
by: 

<l>(p, z, t) = <Po it q'(t') <Pa ( ✓ p , ✓ z ) dt' (101) 
o 4a(t-t') 4a(t-t') 

Here, <Pa is given by Eq. (37). 
The displacement, strain and stress components are obtained in the same way. For 

the stress tensor we have, Eq. (25) and (19): 

( ) it '( ') F0 ( p z ) , a p, z, t = q t ---- a a ---;====, --;:::::=== dt 
o 4a(t - t') J4a(t - t') J4a(t - t') 

(102) 

The components of CJ' a(P', z') are given by Eqs. (57). Alternatively, we can use the explicit 
expressions in Eqs. (91). The stress is taken for the time t - t', multiplied by q'(t'), and 
integrated in t'. The complete expression for CTzz, for example, becomes from Eq. (91): 

CTzz(p,z,t) = ltq'(t')Fo{!_ [erf ( r )-~ r e-r2
/(4a(t-t'))l 

o r3 J4a(t - t') .Ji J4a(t - t') 

- 2 e_P2/(4a(t-t'))erf ( z ) } dt' (103) 
4a(t - t') J4a(t - t') 

15 Summary of main formulas 

The temperature field from the instantaneous, infinite, antisymmetric line heat source, 
Fig. lC, is given by Eq. (12). The displacement field with a radial and an axial component 
is given by Eq. (90). The four non-zero components of the stress field are given by Eqs. 
(91). The scale factors <1> 0 and F0 are defined in Eqs. (27). The dimensionless strain field 
is given by Eqs. ( 49). 

The solution for a finite line heat source, Fig lB, is obtained by a straight- forward 
superposition of two infinite, antisymmetric solutions. See Eqs. (93), (95) and (99). 
The solution for a time-dependent line heat source is obtained by an integration in time 
involving the instantaneous solutions. See Eqs. (100-103). 
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Nomenclature 

a thermal diffusivity (m2 /s) 
cps volumetric heat capacity (J/m3K) 
e volume expansion, Eq. (7) (-) 
e unit vector (in the direction of the index), see Fig 2 (-) 
erf error function, Eq. (13) (-) 
erfc complementary error function, Eq. (13) (-) 
E Young's modulus (Pa) 

Ei(x) exponential integral, Eq. (108) (-) 
Fo scale factor for stress, Eqs. (27) and (25) (N) 
H length of line heat source (m) 
H' dimensionless half length of line heat source, Eq. (96) (-) 
qo heat release per unit length at t = 0 (J/m) 
q'( t) time dependence of heat release (-) 
r = J x2 + y2 + z2 , radial distance (m) 
t time (s) 
T temperature (K) 
u displacement in p-direction (m) 
u displacement vector (m) 
w displacement in z-direction (m) 
x,y,z Cartesian coordinates (m) 
z' = z / ..J4at, dimensionless z-coordinate (-) 
a coefficient of linear thermal expansion (1/K) 

'Y = 0.5772 .. , Euler's constant (-) 
E strain tensor (-) 
0 angle to z-axis in spherical coordinates (-) 
1/ Poisson 's ratio (-) 
p = J x 2 + y2 , distance to z-axis (m) 
p' = p / ../4at, dimensionless distance to z-axis (-) 
(J stress tensor (Pa) 
(Ja dimensionless stress tensor for the antisymmetric heat source (-) 
CJ' dimensionless stress tensor for the finite line heat source (-) 
cp angular coordinate in cylindrical coordinate system (-) 
4? displacement potential (m2) 

4?o scale factor for displacement potential, Eq. (27) (m2) 

A prime indicates that the quantity is dimensionless. The index a in Ta, 4>a, Ua, CJ a, 

a;P, etc. refers to the case of an infinite antisymmetric line heat source. These quantities 

are dimensionless, and they depend only on the dimensionless coordinates p' and z'. 
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Figures 3-16 
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Figure 3: Dimensionless temperature field Ta(p', z'), Eq. (15), due to the instantaneous, 
antisymmetric, infinite line heat source along the z'-axis. 
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Figure 4: Dimensionless displacement potential -<Da(P',z') for the antisymmetric infinite 

line heat source, Eq. (37). 
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Figure 5: Values of -<Pa along the z'-axis. 
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Figure 6: Radial displacement ua(P',oo) for large z', Eq. (45). 
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Figure 7: Displacement component ua(P',z') in the p-direction, Eq. (40). 
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Figure 8: The function erf(r')/r' which gives wa, Eq. (41). 
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Figure 9: Dimensionless displacement field ua(P', z'), Eqs.(40-41). The largest vector with 

the magnitude 1.13 occurs at p' = 0, z' = 0. 
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Figure 10: The strain field components c:~P' c::'P, c:~2 and c:~2 , Eqs. ( 49). 
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Figure 11: The function e1 ( r'), Eq. ( 51). 
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Figure 12: The functions 2e2 (z'), e2(z'), Eq. (53), and e3 (z), Eq. (60). They give the 
stress behavior on the z'-axis, Eqs. (63). 
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Figure 13: The stress field components o-;P, o-:~, o-~z and o-;z, Eqs. (57). 

26 



0 2 3 
p' 

Figure 14: Stress components for z' 
-a-:1/!(p', oo), Eqs. (64). 
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Figure 15: Principal stresses in the (p', z')-plane. There is compression in both directions 
in the top area. On the dotted lines, one of the principal stresses changes sign. 
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Appendix 1. Behavior for large radius 

We are interested in the behavior of <I>a for large r', and in particular for large z' and 

moderate p' near the z'-axis where the line heat source lies. 
The integral in Eq. (37) may be rewritten to the following form: 

(
r' + z') 1cot(0) erfc (,' sin(0)✓1 + v2) 

<I> a (p', z') = - ln -- + _ ___;__-===------'- dv 
p' o ✓1 + v 2 

(104) 

Here, erf( .. ) has been replaced by 1 - erfc( .. ) in Eq. (37). The logarithm is obtained by 

integration of 1/ J(p') 2 + s2. Finally, sis substituted by p'v, p' = r' sin 0, in the remaining 

integral. The behavior for large r' and fixed 0 is readily obtained from Eq. (104). The 

complementary error function erfc(r') tends strongly to zero for larger'. So we have: 

(r' + z') <I>a~-ln p' =ln[tan(0/2)] for larger', 0 =J 0, 1r (105) 

The values 0 = 0 and 0 = 1r, i.e. the z'-axis, have to be excluded because of the factor 

sin( 0) in the argument of erfc. It should be noted that p' becomes large in the above 

asymptotic expression. The expression is not valid for large z' and small p'. 

In order to investigate the asymptotic behavior near the z'-axis, we return to integra­

tion in s in the integral of Eq. (104) with the substitution s = p'v. We integrate from 

zero to infinity in s and subtract the integral from z' to infinity: 

, , • 1 [ ('' + lz'I) 100 erfc ( J(p') 2 + s2) 100 erfc ( ✓(p') 2 + s2) l 
<I> a (p , z ) = sign ( z ) - ln + ds - J ds 

p' o J(p')2 + s2 lz'I (p')2 + s2 

(106) 

The factor sign(z') accounts for negative z'~values. 
The first integral, denoted I(p'), depends on p' only: 

(107) 

We again make the substitutions= p'v, p' > 0. The derivative with respect top' becomes: 

dl = rx:i l (-1)_2_e-(P'l 2 (1+v2 J v'l + v2 dv = -~e-(p')2 (108) 
dp' Jo ✓1 + v2 y'i p' 

The integral I(p') is zero for p' = oo ( and infinite for p' = 0). So we have ( using the 

substitution s 2 = v ): 
2 

I(p') = 1~ e~s ds = 0.5E1 ( (p') 2) (109) 

Here, E1 (x) is the exponential integral, Abramowitz and Stegun (1970): 

(110) 
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The last integral in Eq. (106) tends to zero for large p' and for large /z'/. We have the 

following general asymptotic expression for large r': 

<I>a(p', z') ~ sign(z') [- ln(r' + /z'/) + ln(p') + 0.5E1 ((p') 2)] (r' > 2) (111) 

For large p', the expression is equal to Eq. (105), since E1(x) behaves as exp(-x)/x for 

large x. The error in the approximation is given by last integral in Eq. (106). An estimate 

of this error is: 

This estimate is valid for any z' and p'. 

Near the line heat source, i.e. for small p' (and large /z'/), we have: 

- ln(r' + /z'/) ~ - ln(2/z'/) - ~ (p') 2 (p' < 0.5, /z'/ > 2) 
4 z' 

0.5E1 ( (p1 ) 2 ) + ln(p') ~ -~ + (p~)2 (p' < 0.5) (113) 

Here, 1 = 0.5772 ... is Euler's constant. A series expansion of E1 is used in the second 

equation. Equation (111) becomes for small p' and large /z'J: 

<I>. (p', z') cs sign( z') [- ln(21 z'I) - ') /2 + (pt - H ::)'] (p' < 0.5, /z'/ > 2) (114) 

In particular, we have for p' = 0: 

<I>a(0, z') ~ sign(z') [- ln(2/z'/) - 1 /2] (lz'I > 2) (115) 

This asymptotic expression is shown in Fig. 6. 
The derivatives of the approximate expression for <I>a(P', z'), Eq. (111), give the asymp­

totic displacement components of Eqs. (78). The asymptotic expressions given in Section 

11 follow from Eq. (111 ). 

Appendix 2. Behavior for small radius 

The behavior for small r' is also of interest. A series expansion of erf ( J(p') 2 + s 2) m 

Eq. (37) gives: 

or 

<l>.(p', z') = - 5, { [1 - (p')'/ 82 + ( (p')'1; s') 2 + .. ·] ds (116) 
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The first derivatives of <I>a(P', z') give the displacement components: 

u ~ 4p' z' (1 - 3(p')2 + ( z')2) 
a 3ft 5 

Second derivatives of <I>a(P', z') give the strain, Eqs. (29): 

a 4z' ( 3(p')2 + (z')2) 
ccpcp ~ 3ft 1 - 5 

a 4z' ( 3(p')2 + 3(z')2) 
Czz ~ 3ft 1 - 5 

The temperature Ta becomes: 

The stress components become from Eqs. (30): 

(,' < 0.5) 

(118) 

(,' < 0.5) 

(119) 

(120) 

a~- 8z' ( 1 _ 3(p')2+2(z')2) 
()"pp - 3ft 5 

era ~ _ 8z' (l _ 6(p') 2 + 2(z') 2
) 

<pep 3ft 5 

O"a ~ -~ (1 - 6(p')2 + (z')2) 
zz - 3ft 5 

The first-order term of the normal stresses becomes, Eq. ( 71): 

O"a ~ __ 8_ (z' - p') 
1 - 3ft 2 

a 8 I 
(f ~ ---z 

3 - 3ft 
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