P-06-204

Forsmark site investigation

Boremap mapping of telescopic drilled borehole KFM10A

Christin Döse, Eva Samuelsson Geosigma AB

September 2006

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-06-204

Forsmark site investigation

Boremap mapping of telescopic drilled borehole KFM10A

Christin Döse, Eva Samuelsson Geosigma AB

September 2006

Keywords: Geology, Fractures, BIPS, Boremap, Drill core, AP PF 400-06-059.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

This report presents the result from the Boremap mapping of telescopic drilled borehole KFM10A at drill site 10 in the Forsmark candidate area. Drill site 10 (DS 10) is situated in the western part of the tectonic lens that has been selected as a candidate area for deposition of nuclear waste. The borehole was drilled with the bearing 10.4° and the inclination –50.1°. The aims of the drilling were to receive geological data of the rock volumes in the south-western part of a potential nuclear waste repository, and to investigate the important deformation zone ZFMNE00A2, and also to determine the extistense of the two modelled deformation zones, ZFMNW0123 and ZFMNE103.

The dominant rock type in KFM10A is a generally foliated metagranite-granodiorite (~ 76%) followed by massive or lineated pegmatite or pegmatitic granite (~ 12%) and foliated amphibolite (~ 6%). Subordinate rock types are fine- to medium-grained metagranitoid (~ 3.5%), fine-to medium-grained granite (~ 1%), felsic- to intermediate metavolcanic rock (< 1%), aplitic metagranite (< 1%), quartz-dominated hydrothermal veins (< 1%) and calc-silicate rock (< 1%).

The borehole shows fracture frequencies of 2.3 open and partly open fractures/m (crush excluded) and 4.0 sealed fractures/m (sealed fracture networks excluded). The fractures are concentrated to the section 62.85–145 m, where also intersections of vuggy rock and argillization occur. The whole section is generally weakly to moderately oxidized. Other alteration types occur sporadically.

Sammanfattning

Denna rapport redovisar resultatet från Boremapkartering av teleskopborrhålet KFM10A vid borrplats 10 i Forsmark kandidatområde. Borrplats 10 är belägen i den västra delen av den tektoniska linsen, som har valts som kandidatområde för deponering av kärnavfall. Borrhålet är borrat med bäringen 10,4° och inklinationen –50,1°. Syftet med borrningen är att erhålla geologiska data för bergvolymen i den sydvästra delen av ett potentiellt djupförvar, samt att undersöka den viktiga deformationszonen ZFMNE00A2, och existensen av de modellerade deformationszonerna, ZFMNW0123 och ZFMNE103.

Den dominerande bergarten i KFM10A är en generellt folierad metagranit-granodiorit (~ 76 %), följt av pegmatit till pegmatitisk granit (~ 12 %) och folierad amfibolit (~ 6 %). Underordnade bergarter är fin- till medelkornig metagranitoid (~ 3,5 %), fin- till medelkornig granit (~ 1 %), felsisk- till intermediär metavulkanit (< 1 %), aplitisk metagranit (< 1 %), kvartsdominerad hydrotermal gångbergart (< 1 %) och skarn (< 1 %).

Borrhålet uppvisar sprickfrekvenser på 2,3 öppna och delvis öppna sprickor/m (krossar exkluderade) och 4,0 läkta sprickor/m (läkta spricknätverk exkluderade). Sprickorna är koncentrerade till sektionen 62,85–145 m, där även porösa bergarter och leromvandling förekommer. Hela sektionen är generellt svagt till moderat oxiderat. Andra omvandlingstyper förekommer sporadiskt.

Contents

1	Introdu	Introduction							
2	Object	ive and scope	9						
3 3.1	Equipr Descrip 3.1.1	nent tion of equipment and interpretation tools BIPS-image quality	11 11 12						
4 4.1 4.2 4.3 4.4	Execut General Prepara Executi 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 Data ha Noncor 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5	ion I tions on of measurements Fracture definitions Fracture alteration and joint alteration number Mapping of fractures not visible in the BIPS-image Definition of veins and dikes Mineral codes ndling formities Late in-data Core loss Overrepresented fracture mineral Fracture roughness and surface Foliation intensity	13 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 16						
5 5.1 5.2 5.3 5.4 5.5 Refer	Results Rock ty Fracture Sealed Alterati Core di rences	rpe es and crushed sections brittle to ductile deformation on scing and other probably drill induced features	17 17 17 18 19 19 21						
Appe	ndix 1	WellCad-diagram of KFM10A	23						
Appendix 2 Indata: Length reference marks, borehole diameter and borehole length									

1 Introduction

This document reports the data gained by the Boremap mapping of the telescopic drilled borehole KFM10A, which is one of the activities performed within the site investigation at Forsmark. The work was carried out in accordance with activity plan SKB PF 400-06-059. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents.

The borehole KFM10A was drilled from drill site 10 (DS 10) in the western part of the tectonic lens which is of interest for future nuclear waste disposal (Figure 2-1) /1/. The borehole was drilled in order to verify the existence of the deformation zone A2. The drilling of KFM10A was finished on June 1st. The Boremap mapping of the borehole started on June 20th and was finished on August 31st. Some details in the mapping were revised on September 15th.

The geological documentation of core drilled boreholes according to the Boremap method is based on the use of BIPS-images of the borehole wall and the simultaneous study of the drill core. Position, aperture and orientation data of features are based on the adjusted BIPS-image, while other data such as rock type, alteration, fracture mineralogy and surface are observed in the drill core. The Boremap mapping will be used for further 3D-modelling in the Forsmark area.

Activity plan	Number	Version
Boremapkartering av teleskopborrhål KFM10A	AP PF 400-06-059	1.0
Method descriptions	Number	Version
Metodbeskrivning för Boremapkartering	SKB MD 143.006	2.0
Mätsystembeskrivning för Boremap	SKB MD 146.001	1.0
Nomenklatur vid Boremapkartering	SKB MD 143.008	1.0
Instruktion: Regler för bergarters benämningar vid platsundersökningen i Forsmark	SKB MD 132.005	1.0

Table 1-1. Controlling documents for the performance of the activity.

2 Objective and scope

The aim of this activity was to document lithologies, alterations, ductile structures and the occurrence and character of fractures in the bedrock penetrated by the telescopic drilled borehole KFM10A with the Boremap method. The detailed documentation will be used in 3D-modelling of the area.

Figure 2-1. Location of borehole KFM10A, (DS 10).

3 Equipment

3.1 Description of equipment and interpretation tools

Mapping of BIPS-images and drill core was performed with the software Boremap v. 3.7.5.4. The Boremap software is loaded with the bedrock and mineral standard, used for surface mapping at the Forsmark investigation site, to enable correlation with the surface geology. The Boremap software calculates actual directions (strike and dip) of planar structures penetrated by the borehole (foliations, fractures, fracture zones, rock contacts etc). Data for inclination, bearing and diameter of the borehole, are used as in-data for the calculations (Table 4-2, Appendix 2). The BIPS-image lengths were calibrated (Table 4-1).

Additional software used during mapping are BIPS Image Viewer and MicroSoft Access 2002. The schematic data presentation was made in WellCad v. 4.0.

The following equipment has been used to facilitate the core documentation: folding rule, 10% hydrochloric acid, rock hardness tool, hand lens, paint brush and a tap of water.

Figure 3-1. Geosigma's mapping facilities in Uppsala. When the picture was taken it was still under construction.

3.1.1 BIPS-image quality

The following factors may disturb the mapping:

- blackish coatings probably related to the drilling equipment,
- vertical bleached bands on the borehole walls, from the drill cuttings in suspension,
- light and dark bands at high angle to the borehole related to the automatic aperture of the video camera,
- vertical enlargements of pixels due to stick-slip movement of the camera probe.

The BIPS-image of KFM10A suffers from blackish coatings from the drill rod and dark bands of unknown origin, mostly on the right side of the borehole image. The BIPS-image quality is listed in Table 3-1.

From	То	% visiability	Comment
62.89	66	50	Bad. Center of image diffuse. Camera probably not centralized.
66	71	80	Good. Center of image slightly diffuse. Camera probably not centralized. Also black coatings from drill rod.
71	111.5	60–100	Good. Sporadic blackish coatings from drill rod.
111.5	118.7	50–100	Acceptable. Central part of image dark to black. Could be coating from drill rod or a combination of this and non-centralized camera.
118.7	137.08	70–100	Good. Sporadic dark coatings from drill rod.
137.08	212.60	60–100	Acceptable. Continuous dark strip in the center part of image and in the end of section on the right side of image. Reason unknown. In lower part also dark coatings from drill rod.
212.60	214.88	40	Bad. 60% of image non-visible.
214.88	219.00	60–100	Acceptable. Continuous dark strip on the right side of image. Reason unknown.
219.00	224.40	50	Bad. 50% of image non-visible.
224.40	229.6	60–70	Acceptable. Dark strip on the right side of image.
229.60	258.00	30–60	Bad. Blackish coatings.
258.00	262	70–80	Good. Blackish coatings.
262.00	273.00	40–60	Bad. Blackish coatings.
273.00	277.00	70	Acceptable. Right side of image in dark, probably because the camera has not been centralized.
277.00	298.30	40–60	Bad. Dark right side of image, but with shorter better intervals.
298.30	312.40	70	Acceptable. Dark right side of image.
312.40	324.30	30–50	Bad. But with shorter better intervals.
324.30	394.45	30–70	Acceptable. Dark/Black with shorter better intervals.
394.45	426.10	60–80	Good. Darker right side of image. Over-exposed edges.
426.10	445.00	60–70	Acceptable. Mud on lower side of borehole. Upper side dark due to bad lightning.
445.00	457.00	70	Acceptable, but slightly diffuse image.
457.00	458	0	Bad. Diffuse and mud.
458	475	70	Acceptable, but slightly diffuse image.
475	485.15	30–40	Bad. Mud and diffuse image.
485.15	491.00	40–60	Acceptable. Diffuse image and mud.
491.00	496.32	0–10	Bad. Mud and very diffuse image.
496.32	500.16	0	No BIPS image available.

Table 3-1. BIPS Image Quality.

4 Execution

4.1 General

Boremap mapping of the drill core KFM10A was performed and documented in accordance with the activity plan AP PF 400-06-059 (SKB internal document), following the method description for Boremap mapping SKB, MD 143.006 (v. 2.0) and SKB, MD 143.008 (v. 1.0). The mapping was preceded by an overview geological mapping of the cores by Kenneth Åkerström. All observations are made on ocular inspection, since no other data were available.

The mapping was performed in Geosigma's facilities in Uppsala (Figure 3-1) between June 20th and August 31st in 2006 by Christin Döse and Eva Samuelsson from Geosigma AB. Jan Ehrenborg, Mirab, aided the mapping for a shorter period. The last section of the borehole, ca 4 metres, was mapped without BIPS-image (Table 4-2).

4.2 Preparations

The lengths registered during the BIPS-logging deviates from the true length, which usually increases with depth. Therefore length adjustments were made. The length of the BIPS-image was adjusted with reference to slots cut into the borehole wall approximately every 50th meter and with reference to the end of casing (see Table 4-1).

Geometrical data for the borehole is given in Table 4-2. Background data (Appendix 2) prior to the Boremap mapping included:

- Borehole diameter.
- Reference slots for length adjustments.
- Borehole deviation.

Table 4-1. Length adj	ustments.
-----------------------	-----------

Rec. length (m)	Adj. length (m)	Difference (m)
62.86	62.85	-0.01
100.356	100	-0.356
150.376	150	-0.376
200.39	200	-0.390
250.308	250	-0.308
300.257	300	-0.257
350.09	350	-0.090
399.859	400	+0.141
449.774	450	+0.226

Table 4-2. Borehole data for KFM10A.

Map- ping Nr	Interval	Northing	Easting	Bearing (degrees)	Inclination (degrees)	Diameter (mm)	Borehole length (m)	BIPS-image interval (m)	End of casing
1	62.85–496.32	6698669.43	1631722.67	8.97	-49.14	76		62.00–496.32	62.85
2	496.32-500.16	6698970.07	1631816.39	23.89	-34.3	76	500.16	No image	

4.3 Execution of measurements

4.3.1 Fracture definitions

Definitions of different fracture types and apertures, crush zones and sealed fracture network are found in SKB MD 143.008 (v. 1.0).

Two types of fractures are mapped in Boremap; broken and unbroken. Broken fractures are those that split the core, while unbroken fractures do not split the core. All fractures are described with their fracture minerals and other characteristics, e.g. width, aperture and roughness. Visible aperture is measured down to 1 mm in the BIPS-image. Aperture less than 1 mm, which is impossible to detect in the BIPS-image, are denoted a value of 0.5 mm. If the core pieces do not fit well, the confidence of appearance for the aperture is considered "probable". If the core pieces do fit well, but the fracture surfaces are dull or altered, the confidence of appearance for the aperture is considered "possible".

All fractures with aperture > 0 mm are presented as open in the SICADA database. Unbroken fractures have normally apertures = 0 mm, but some have apertures > 0 mm. These are presented as partly open, and are included in the open fracture category in SICADA. The frequency of open and sealed fractures are calculated and shown in the WellCad-diagram, Appendix 1.

4.3.2 Fracture alteration and joint alteration number

Joint alteration number is mainly related to the thickness of, and the clay content in a fracture /2/. Fractures > 1 mm wide and rich in clay minerals, are usually given joint alteration numbers between 2 and 4. The majority of the broken fractures are very thin to extremely thin and do seldom contain clay minerals. These fractures receive joint alteration numbers between 1 and 2.

A subdivision of fractures with joint alteration numbers between 1 and 2 was introduced to facilitate both the evaluation process for fracture alterations, and the possibility to compare the alterations between different fractures in the boreholes. The subdivision is in accordance with the subdivision introduced by Ehrenborg and Steiskal /3/.

4.3.3 Mapping of fractures not visible in the BIPS-image

Not all fractures are visible in the BIPS-image, and these fractures are oriented using the *guide-line method* /3/, with one modification. The orientation performed in this work is based on the following data:

- Amplitude (measured along the drill core) which is the interval between fracture extremes along the drill core.
- The relation between the rotation of the fracture trace, and a well defined structure visible in both drill core and BIPS-image. This rotation is measured with measuring tape on the drill core.
- Absolute depth relative to a well defined structure visible in both drill core and BIPS-image.

The fractures mapped with the guide-line method are registered in Boremap as "not-visible in BIPS", and can therefore be separated from fractures visible in BIPS.

4.3.4 Definition of veins and dikes

A rock sequence that covers less than 1 m of the drill core is mapped as a "rock occurrence" in Boremap. Rock occurrences that cover more than 1 m of the drill core are mapped as a separate *rock type*.

Mainly two different types of rock occurrences are mapped: veins and dikes. These two are separated by their respectively length in the drill core; veins are set to 0–20 cm and dikes are set to 20–100 cm, if evidence for intrusion is visible in the drill core. If the rock occurrence cannot be classified as a vein or a dyke, the occurrence type is mapped as "unspecified". In Forsmark there are boudinated veins, xenoliths, blobs etc and the occurrence type is usually difficult to determine from the drill core.

4.3.5 Mineral codes

In cases where properties or minerals are not represented in the mineral list, the following mineral codes have been used in the mapping of KFM10A:

- X1 = Bleached fracture walls.
- X2 = Interpreted grouting, which is only observed in the borehole wall and hence in the BIPS-image (not used in this borehole).
- X3 = The drill core is broken at a right angle, and the broken surfaces have a polished appearance. This is caused by rotation of two core pieces along an intermediate fracture wearing away possible mineral filling. It is impossible to decide whether this fracture was open or sealed in situ.
- X4 = Dull fracture surface, no visible fracture mineral.
- X5 = Fresh fracture surface, no detectable fracture mineral.
- X6 = Striated surfaces, probably slickensided.

4.4 Data handling

In order to obtain the best possible data security, the mapping was performed on the Geosigma's network, with regular back-ups on the local drive in accordance with the consultant's quality plan. After each mapping session, a summary report was printed in order to find possible misprints. If misprints were observed, they were corrected before the mapping proceeded. A WellCad-diagram was also plotted before the drill cores were taken away from the roller table. When the mapping was completed, data was checked once more for misprints. Before exporting data to SICADA, borehole lengths, mapping lengths, down-hole deviation measurement data and length adjustments were checked again, as well as by a routine in Boremap, which detects logical errors.

4.5 Nonconformities

4.5.1 Late in-data

Not all necessary in-data were available in the SICADA database, neither when the mapping was performed, nor when this report was written. Lacking technical data were received straight from the persons responsible for drilling and measurements /4/.

BIPS-image is missing for the last section in KFM10A (496.32–500.16 m) and the mapping in this interval is based solely on the drill core. Therefore orientation data is missing; only angle to drill core is registered.

4.5.2 Core loss

Shorter sections with missing core occur mainly in the intervals 76–90 m and 483–486 m. In the latter the exact position of the core losses are quite uncertain. This is because problems during drilling, which resulted in core pieces rotating against each other and therefore cannot be puzzled together, and because there are only few clearly recognized features in both drill core and BIPS-image.

4.5.3 Overrepresented fracture mineral

The frequency of calcite in fractures is overrepresented relative to other minerals, since it is detected by reaction with diluted hydrochloric acid even though it is macroscopically invisible.

4.5.4 Fracture roughness and surface

The estimation of roughness of fractures in this work diverges rather much from the estimations made by Vattenfall Power Consultant. For example, Geosigma considers over half of the fractures as undulating, while the rest are stepped, planar and irregular. The proportion of planar, undulating, stepped and irregular fractures in the mappings of Vattenfall Power Consultant is different. They generally map few undulating fractures and many irregular fractures. This is because the personal interpretation of the definitions of fractures /5/, since the definitions are made for another scale, i.e. tunnels and excavations, and not for boreholes. Work has been started to synchronize the mapping teams.

4.5.5 Foliation intensity

Foliation intensity is not classified with the same scale as that used by Vattenfall Power Consultant. Geosigma's, intensity class "weak," has a much broader spectrum relative to that of Vattenfall Power Consultant. Therefore the change in strain is not as clear in Geosigma's mapping as in Vattenfall Power Consultant's. This will be changed in future. In KFM10A, borehole intervals with foliation intensity that would be classified as medium by Vattenfall Power Consultant are classified as weak by Geosigma, but with fine- to medium grain-size, instead of medium grain-size.

5 Results

The Boremap mapping of KFM10A is stored in SICADA, and it is only these data that shall be used for further interpretation and modelling. The interpreter should be aware of the assumptions mentioned in Chapter 4.

Results from the Boremap mapping are briefly described in this chapter and the graphical presentation of the data is given in Appendix 1 (WellCad-diagram).

5.1 Rock type

The dominant rock type of KFM10A is a foliated metagranite-granodiorite (~ 76%) followed by massive or lineated pegmatite or pegmatitic granite (~ 12%) and foliated amphibolite (~ 6%). Subordinate rock types are fine- to medium-grained metagranitoid (~ 3.5%), fine- to medium grained granite (~ 1%), felsic- to intermediate metavolcanic rock (< 1%), aplitic metagranite (< 1%), quartz-dominated hydrothermal veins (< 1%) and calc-silicate rock (< 1%).

5.2 Fractures and crushed sections

A total amount of 1,825 unbroken and 927 broken fractures were documented in KFM10A (62.85-500.16 m). Observe that the core drilled part of the borehole starts at 62.85 m. Of the unbroken fractures 123 show an aperture, while 51 of the broken fractures are considered artificial and have an aperture = 0. This result in the following interpreted fracture frequencies: 4.0 sealed fractures/m (sealed network excluded), 2.0 open fractures/m (crushed sections excluded) and 0.3 partly open fractures/m.

The open and sealed fractures are concentrated to the interval 62.85–145 m. In this interval a few fracture apertures range up to 10 mm, and some fractures show moderate to strong alteration on the fracture surfaces. The most frequent fracture minerals are calcite, adularia, hematite, chlorite and clay minerals.

Three crushed borehole sections coincide with the fracture rich section above. They occur at 85.78–85.92 m, 105.83–105.93 m and 144.23–144.25 m, and are oriented 113/67, 122/60 and 094/63 respectively. They contain clay minerals and also calcite or chlorite. The crushed section at the interval 105.83–105.93 m, shows moderate alteration.

Borehole intervals rich in sealed fractures and sealed fracture networks occur at 212–218 m, 275–283 m, 323–328 m and 429–449 m. Minor sections rich in open fractures occur at 431–442 m and 478–488 m. In the latter interval, the interpretation of fractures has been aggravated by problems during drilling, where the drill core pieces have rotated against each other and grinded the rock. Only few fractures in this interval show apertures in BIPS. The most frequent open fracture minerals are calcite, prehnite, chlorite, adularia, quartz, clay minerals and pyrite (Figure 5-1).

Figure 5-1. Typical fracture mineral filling in the interval 478–488 m borehole length.

5.3 Sealed brittle to ductile deformation

The rock types in borehole KFM10A show commonly weak to moderate foliation. The main orientation of the foliation is 143/72, although the foliation is undulating along the borehole (see Appendix 1). The strain trend in the borehole is from relatively high in the upper part of the borehole (Figure 5-2), to low in the lower part of the borehole. In the last 50 m of the borehole, lineation is dominating over foliation, and in the lowermost part lineation is the only clearly visible structure.

64 very thin deformation bands occur throughout the borehole ranging in character from brittleto ductile. Of these, 43 thin deformation bands occur in the interval 62.85–198 m (brittle to ductile), while the rest are concentrated to the intervals 247–282 m (mostly ductile), 342–361 m (ductile) and 416–486 m (mostly brittle).

Figure 5-2. Metagranite to granodiorite showing relatively high strain, 71 m borehole length. Scale 9:10.

5.4 Alteration

The rock in the interval 62.85 - 145 m is generally weak to moderately oxidized, with argillization between 108.80-124.00 m, and recurrent altered vuggy rock between 86.93-118.56 m (Figure 5-3). In the interval 94.31-94.45 m the metagranite-granodiorite becomes poor in biotite, but relatively rich in calcite in the matrix.

Almost the same relation is observed in the oxidized interval 479.47–487.97 m, where argillization occurs between 483.56 and 484.26 m and faintly altered vuggy rock between 483.55–487.78 m.

Albitization is usually observed in the contacts to amphibolites /6/. Other alteration types are sporadic and usually very minor, such as epidotization, chloritization and silicification.

5.5 Core discing and other probably drill induced features

One minor section with core discing is observed at 373.40–373.46 m (Figure 5-4).

Fractures with no visible fracture mineral, very fresh surfaces and visible aperture in the BIPSimage, are relatively common in KFM10A. This kind of fractures can be observed for instance in the interval 94–95 m. They are mapped as open fractures with aperture, but suspicions occur that these fractures are drill induced, especially when two fractures cannot be found in the drill core, even if they have clear apertures in the BIPS-image (107.73 and 108.02 m).

Mechanical crush occur in the interval 431.59-432.50 m.

Figure 5-3. Altered vuggy pegmatite, 112 m borehole length. Scale 5:7.

Figure 5-4. Core discing at 373.40–373.46 m borehole length. Rough scale 1:2.

References

- /1/ SKB, 2005. Preliminary site description, Forsmark area version 1.2. SKB R-05-18. Svensk Kärnbränslehantering AB.
- /2/ Barton N, 2002. Some new Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics & Mining Sciences Vol. 39 (2002), pp 185–216.
- /3/ Ehrenborg J, Steiskal V, 2004. Oskarshamn Site Investigation. Boremap mapping of core drilled boreholes KSH01A and KSH01B. SKB P-04-01. Svensk Kärnbränslehantering AB.
- /4/ Claesson L-Å, Nilsson G, 2006. Forsmark Site Investigation. Drilling of the telescopic borehole KFM10A at drill site 10. SKB P-06-172. Svensk Kärnbränslehantering AB.
- /5/ International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests, 1978. Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. International Journal of Rock Mechanics & Mining Sciences, Vol.15 (1978), pp.319–368.
- /6/ Petersson J, Berglund J, Danielsson P, Skogsmo G, 2005. Forsmark Site Investigation. Petrographic and geochemical characterisitics of bedrock samples from boreholes KFM04A-06A, and a whitened alteration rock. SKB-P-05-156. Svensk Kärnbränslehantering AB.

Appendix 1

WellCad-diagram of KFM10A

Title	e LEGEN	D FOR I	FORSMARK	KF	M10A		
S		ite orehole lot Date gned data	FORSMARK KFM10A 2006-10-02 21:14:08				
ROCKTY	PE FORSMARK			ROCK AL	TERATION TYPE	MINERA	L
	Granite, fine- to medi	ium-grained		****	Oxidized		Epidote
	Pegmatite, pegmatitie	: granite		XXXX	Chloritisized		Hematite
	Granitoid, metamorp	hic		****	Epidotisized		Calcite
	Granite, granodiorite	and tonalite, me	tamorphic, fine- to medium-grained	*****	Weathered		Chlorite
	Granite, metamorphi	c, aplitic		*****	Tectonized		Quartz
	Granite to granodiori	ite, metamorphic	, medium-grained	XXXX	Sericitisized		Pyrrhotite
	Granodiorite, metam	orphic		*****	Quartz dissolution		Unknown
	Tonalite to granodior	ite, metamorphic	с 	*****	Silicification		Pyrite
	Diorite, quarts diorite	e and gabbro, me	etamorphic	8888	Argillization		Clay Minerals
	Amphibalita	amorphic			Albitization		Laumontite
	Cale silicate reel: (el:			00000	Carbonatization		Prehmite
	Magnetite mineraliza	tion associated w	rith cale-silicate rock (skarn)		Saussuritization		Asphalt
	Sulphide mineralizati	on	in care-sineare rock (sharin)	00000000	Steatifization		Oxidized walls
	Felsic to intermediate	volcanic rock. n	aetamorphic		Laumontitization		
	Mafic volcanic rock,	metamorphic	x		Fract zone alteration		
	Sedimentary rock, m	etamorphic		100000000	Fract zone aneration		
STRUCT	URE	STRUCTU	IRE ORIENTATION	ROCK AL	LTERATION INTENSITY	FRACTU	RE ALTERATION
00	Cataclastic	c	Cataelastic		No intensity	•	Slightly Altered
1/11	Schistose				Faint		B
* + + *	Gneissic	o e	Bedded		Weak	4	Madavataly Alternet
	Mylonitic				Medium	•	Adderately Addred
\approx	Ductile Shear Zone	d	Insirriz		Strong	~	TE-11-Alternal
[]]]	Brittle-Ductile Zone	•	Jueissi.	ROUGHN	NESS	0	Highly Altered
\sim	Veined	_ .	abietees		Planar	~	
	Banded	• .3	cuistose		Undulating	•	Completely Altered
	Massive	_			Stepped	/	
	Foliated	E E	Srittle-Ductile Shear Zone		Irregular	ø	Gouge
20	Brecciated	_/		SURFAC	E	/	
TEXTUR	Lineated	• I	Juctile Shear Zone		Rough	ø	Fresh
	Hornfelsed	./			Smooth		
	Porphyritic	🎸 I	ineated		Slickensided		
22	Ophitic	,		_			
	Equigranular	о́ в	Banded	CRUSH	ALTERATION	FRACTUR	RE DIRECTION
000	Augen-Bearing				Slightly Altered	STRUKT	URE ORIENTATION
·.·	Unequigranular	v ک	leined		Moderately Altered	Dip Din	ection 0 - 360° 0/360°
$\overline{\cdot}$	Metamorphic				Highly Altered		
GRAINS	IZE	🗹 E	Brecciated		Completiey Altered		\rightarrow
	Aphanitic				Fresh	270°-	
	Fine-grained	, é F	oliated		11001		
	Fine to medium grain	ied					
	Medium to coarse gra	aineti 🥑 M	Aylonitic				180°
	Coarse-grained		-			Dip 0 -	90 -
	wretinned.amet						

Indata: Length reference marks, borehole diameter and borehole length

Reference Mark T – Reference mark in drillhole.

KFM10A, 2006-06-05 13:00:00-2006-06-15 13:07:00 (150.000-750.000 m).

Bhlen (m)	Rotation Speed (rpm)	Start Flow (I/h)	Stop Flow (I/h)	Stop Pressure	Cutter Diameter (mm)	Cutter Time (s)	Trace Detectable	Comment (bar)
100.00	400.00	600	400	32.0	45	JA/		100.01/100.11
150.00	400.00	600	400	32.0	52	JA/		150.11/150.21
200.00	400.00	600	400	32.0	53	JA/		200.32/200.42
250.00	400.00	600	400	32.0	52	JA/		250.47/250.57
300.00	400.00	600	400	32.0	64	JA/		300.47/300.57
350.00	400.00	600	400	32.0	68	JA/		350.57/350.67
400.00	400.00	600	400	32.0	74	JA/		400.79/400.89
450.00	400.00	600	400	34.0	115	JA/		450.97/451.07

Printout from SICADA 2006-09-20 13:31:32.

Hole Diam T – Drilling: Borehole diameter.

KFM10A, 2006-03-14 15:15:00-2006-06-01 12:25:00 (60.730-500.160 m).

Sub Secup (m)	Sub Seclow (m)	Hole Diam (m)	Comment
60.730	62.680	0.0860	
62.680	500.160	0.0758	

Printout from SICADA 2007-02-01 16:19:55.

Maxibor T – Borehole deviation: Maxibor.

KFM10A, 2006-06-06 08:00:00-2006-06-06 16:00:00 (0.000-498.000 m).

Length (m)	Northing (m)	Easting (m)	Elevation (m)	Coord system	Inclinatior (degrees)	Bearing (degrees)	Local A (m)	Local B (m)	Local C (m)	Extra-pol flag
0.00	6698629.17	1631715.90	-4.51	RT90-RHB70	-50.05	10.42				
3.00	6698631.07	1631716.25	-2.21	RT90-RHB70	-50.05	10.42	0.0000	0.0000	0.0000	
6.00	6698632.96	1631716.60	0.09	RT90-RHB70	-49.89	10.24	1.9300	0.0000	0.0000	
9.00	6698634.86	1631716.94	2.39	RT90-RHB70	-49.85	10.13	3.8600	-0.0100	0.0100	
12.00	6698636.77	1631717.28	4.68	RT90-RHB70	-49.81	10.05	5.7900	-0.0200	0.0200	
15.00	6698638.67	1631717.62	6.97	RT90-RHB70	-49.66	9.86	7.7300	-0.0300	0.0300	
18.00	6698640.59	1631717.95	9.26	RT90-RHB70	-49.53	9.67	9.6700	-0.0500	0.0500	
21.00	6698642.51	1631718.28	11.54	RT90-RHB70	-49.54	9.59	11.6200	-0.0700	0.0800	
24.00	6698644.43	1631718.60	13.82	RT90-RHB70	-49.68	9.58	13.5600	-0.1000	0.1000	
27.00	6698646.34	1631718.93	16.11	RT90-RHB70	-49.70	9.56	15.5100	-0.1300	0.1200	
30.00	6698648.25	1631719.25	18.40	RT90-RHB70	-49.60	9.50	17.4500	-0.1600	0.1400	
33.00	6698650.17	1631719.57	20.68	RT90-RHB70	-49.52	9.46	19.3900	-0.1900	0.1700	
36.00	6698652.09	1631719.89	22.97	RT90-RHB70	-49.55	9.43	21.3400	-0.2200	0.1900	
39.00	6698654.01	1631720.21	25.25	RT90-RHB70	-49.57	9.35	23.2800	-0.2600	0.2200	
42.00	6698655.93	1631720.52	27.53	RT90-RHB70	-49.52	9.17	25.2300	-0.2900	0.2400	
45.00	6698657.86	1631720.83	29.81	RT90-RHB70	-49.45	9.09	27.1800	-0.3300	0.2700	
48.00	6698659.78	1631721.14	32.09	RT90-RHB70	-49.39	9.16	29.1300	-0.3800	0.3000	

Length (m)	Northing (m)	Easting (m)	Elevation (m)	Coord system	Inclination (degrees)	Bearing (degrees)	Local A (m)	Local B (m)	Local C (m)	Extra-pol flag
51.00	6698661.71	1631721.45	34.37	RT90-RHB70	-49.37	9.17	31.0800	-0.4200	0.3400	
54.00	6698663.64	1631721.77	36.65	RT90-RHB70	-49.45	8.98	33.0300	-0.4700	0.3700	
57.00	6698665.56	1631722.07	38.93	RT90-RHB70	-49.41	8.89	34.9800	-0.5100	0.4000	
60.00	6698667.49	1631722.37	41.21	RT90-RHB70	-49.25	8.89	36.9300	-0.5700	0.4400	
63.00	6698669.43	1631722.67	43.48	RT90-RHB70	-49.14	8.97	38.8900	-0.6200	0.4800	
66.00	6698671.37	1631722.98	45.75	RT90-RHB70	-49.06	9.10	40.8500	-0.6700	0.5200	
69.00	6698673.31	1631723.29	48.01	RT90-RHB70	-49.00	9.23	42.8200	-0.7100	0.5800	
72.00	6698675.25	1631723.61	50.28	RT90-RHB70	-48.92	9.33	44.7800	-0.7500	0.6300	
75.00	6698677.19	1631723.93	52.54	RT90-RHB70	-48.83	9.45	46.7500	-0.7900	0.6900	
78.00	6698679.14	1631724.25	54.80	RT90-RHB70	-48.76	9.61	48.7300	-0.8300	0.7500	
81.00	6698681.09	1631724.58	57.05	RT90-RHB70	-48.68	9.78	50.7100	-0.8500	0.8200	
84.00	6698683.04	1631724.92	59.31	RT90-RHB70	-48.62	9.95	52.6900	-0.8800	0.8900	
87.00	6698685.00	1631725.26	61.56	RT90-RHB70	-48.54	10.12	54.6700	-0.8900	0.9700	
90.00	6698686.95	1631725.61	63.81	RT90-RHB70	-48.48	10.28	56.6600	-0.9000	1.0400	
93.00	6698688.91	1631725.96	66.05	RT90-RHB70	-48.43	10.38	58.6400	-0.9100	1.1300	
96.00	6698690.87	1631726.32	68.30	RT90-RHB70	-48.40	10.38	60.6400	-0.9100	1.2100	
99.00	6698692.83	1631726.68	70.54	RT90-RHB70	-48.33	10.42	62.6300	-0.9100	1.3000	
102.00	6698694.79	1631727.04	72.78	RT90-RHB70	-48.26	10.49	64.6200	-0.9100	1.3900	
105.00	6698696.75	1631727.41	75.02	RT90-RHB70	-48.20	10.59	66.6200	-0.9100	1.4800	
108.00	6698698.72	1631727.77	77.26	RT90-RHB70	-48.12	10.71	68.6200	-0.9000	1.5800	
111.00	6698700.69	1631728.15	79.49	RT90-RHB70	-48.02	10.83	70.6200	-0.8900	1.6800	
114.00	6698702.66	1631728.52	81.72	RT90-RHB70	-47.91	10.93	72.6300	-0.8800	1.7900	
117.00	6698704.63	1631728.90	83.95	RT90-RHB70	-47.76	11.05	74.6400	-0.8600	1.9000	
120.00	6698706.61	1631729.29	86.17	RT90-RHB70	-47.64	11.10	76.6600	-0.8400	2.0200	
123.00	6698708.59	1631729.68	88.38	RT90-RHB70	-47.56	11.12	78.6800	-0.8100	2.1400	
126.00	6698710.58	1631730.07	90.60	RT90-RHB70	-47.49	11.19	80.7000	-0.7900	2.2700	
129.00	6698712.57	1631730.46	92.81	RT90-RHB70	-47.41	11.29	82.7300	-0.7600	2.4100	
132.00	6698714.56	1631730.86	95.02	RT90-RHB70	-47.35	11.40	84.7600	-0.7300	2.5500	
135.00	6698716.55	1631731.26	97.22	RT90-RHB70	-47.24	11.54	86.7900	-0.7000	2.6900	
138.00	6698718.55	1631731.67	99.43	RT90-RHB70	-47.14	11.65	88.8300	-0.6600	2.8300	
141.00	6698720.55	1631732.08	101.63	RT90-RHB70	-47.08	11.76	90.8700	-0.6100	2.9900	
144.00	6698722.55	1631732.50	103.82	RT90-RHB70	-47.02	11.89	92.9100	-0.5600	3.1400	
147.00	6698724.55	1631732.92	106.02	RT90-RHB70	-46.95	12.01	94.9500	-0.5100	3.3000	
150.00	6698726.55	1631733.35	108.21	RT90-RHB70	-46.89	12.08	97.0000	-0.4500	3.4600	
153.00	6698728.56	1631733.77	110.40	RT90-RHB70	-46.85	12.18	99.0500	-0.4000	3.6200	
156.00	6698730.56	1631734.21	112.59	RT90-RHB70	-46.80	12.31	101.1000	-0.3300	3.7900	
159.00	6698732.57	1631734.65	114.78	RT90-RHB70	-46.73	12.44	103.1500	-0.2600	3.9600	
162.00	6698734.58	1631735.09	116.96	RT90-RHB70	-46.64	12.59	105.2100	-0.1900	4.1300	
165.00	6698736.59	1631735.54	119.14	RT90-RHB70	-46.53	12.77	107.2700	-0.1100	4.3100	
168.00	6698738.60	1631735.99	121.32	RT90-RHB70	-46.42	12.95	109.3300	-0.0300	4.4900	
171.00	6698740.61	1631736.46	123.49	RT90-RHB70	-46.31	13.10	111.3900	0.0600	4.6800	
174.00	6698742.63	1631736.93	125.66	RT90-RHB70	-46.21	13.26	113.4600	0.1600	4.8800	
177.00	6698744.65	1631737.40	127.83	RT90-RHB70	-46.09	13.43	115.5400	0.2600	5.0700	
180.00	6698746.68	1631737.89	129.99	RT90-RHB70	-45.97	13.61	117.6200	0.3700	5.2800	
183.00	6698748.70	1631738.38	132.15	RT90-RHB70	-45.85	13.77	119.7000	0.4900	5.4900	
186.00	6698750.73	1631738.87	134.30	RT90-RHB70	-45.74	13.92	121.7800	0.6100	5.7100	
189.00	6698752.77	1631739.38	136.45	RT90-RHB70	-45.63	14.06	123.8700	0.7400	5.9300	
192.00	6698754.80	1631739.89	138.59	RT90-RHB70	-45.55	14.19	125.9700	0.8700	6.1600	
195.00	6698756.84	1631740.40	140.73	RT90-RHB70	-45.46	14.32	128.0600	1.0100	6.3900	
198.00	6698758.88	1631740.92	142.87	RT90-RHB70	-45.36	14.44	130.1600	1.1500	6.6300	

Length (m)	Northing (m)	Easting (m)	Elevation (m)	Coord system	Inclination (degrees)	Bearing (degrees)	Local A (m)	Local B (m)	Local C (m)	Extra-pol flag
201.00	6698760.92	1631741.45	145.01	RT90-RHB70	-45.26	14.51	132.2700	1.3000	6.8700	
204.00	6698762.96	1631741.98	147.14	RT90-RHB70	-45.17	14.61	134.3700	1.4500	7.1100	
207.00	6698765.01	1631742.51	149.26	RT90-RHB70	-45.07	14.76	136.4800	1.6000	7.3700	
210.00	6698767.06	1631743.05	151.39	RT90-RHB70	-44.94	14.91	138.5900	1.7600	7.6200	
213.00	6698769.11	1631743.60	153.51	RT90-RHB70	-44.82	15.06	140.7100	1.9300	7.8800	
216.00	6698771.16	1631744.15	155.62	RT90-RHB70	-44.70	15.19	142.8300	2.1000	8.1500	
219.00	6698773.22	1631744.71	157.73	RT90-RHB70	-44.59	15.28	144.9600	2.2800	8.4200	
222.00	6698775.28	1631745.27	159.84	RT90-RHB70	-44.48	15.40	147.0900	2.4600	8.7000	
225.00	6698777.35	1631745.84	161.94	RT90-RHB70	-44.31	15.53	149.2200	2.6500	8.9900	
228.00	6698779.41	1631746.41	164.04	RT90-RHB70	-44.19	15.61	151.3600	2.8400	9.2800	
231.00	6698781.49	1631746.99	166.13	RT90-RHB70	-44.16	15.67	153.5000	3.0300	9.5800	
234.00	6698783.56	1631747.57	168.22	RT90-RHB70	-44.16	15.72	155.6400	3.2300	9.8800	
237.00	6698785.63	1631748.16	170.31	RT90-RHB70	-44.14	15.81	157.7800	3.4300	10.1800	
240.00	6698787.70	1631748.74	172.40	RT90-RHB70	-44.09	15.85	159.9300	3.6300	10.4900	
243.00	6698789.77	1631749.33	174.48	RT90-RHB70	-44.04	15.93	162.0700	3.8300	10.7900	
246.00	6698791.85	1631749.92	176.57	RT90-RHB70	-43.98	16.05	164.2200	4.0400	11.1000	
249.00	6698793.92	1631750.52	178.65	RT90-RHB70	-43.87	16.17	166.3700	4.2500	11.4100	
252.00	6698796.00	1631751.12	180.73	RT90-RHB70	-43.74	16.28	168.5200	4.4700	11.7200	
255.00	6698798.08	1631751.73	182.81	RT90-RHB70	-43.64	16.39	170.6800	4.6900	12.0400	
258.00	6698800.16	1631752.34	184.88	RT90-RHB70	-43.53	16.51	172.8400	4.9200	12.3700	
261.00	6698802.25	1631752.96	186.94	RT90-RHB70	-43.41	16.65	175.0000	5.1500	12.7000	
264.00	6698804.34	1631753.59	189.00	RT90-RHB70	-43.29	16.80	177.1600	5.3800	13.0400	
267.00	6698806.43	1631754.22	191.06	RT90-RHB70	-43.17	16.93	179.3300	5.6300	13.3800	
270.00	6698808.52	1631754.86	193.11	RT90-RHB70	-43.07	17.06	181.5100	5.8700	13.7300	
273.00	6698810.62	1631755.50	195.16	RT90-RHB70	-42.96	17.19	183.6900	6.1300	14.0800	
276.00	6698812.71	1631756.15	197.21	RT90-RHB70	-42.85	17.30	185.8700	6.3900	14.4400	
279.00	6698814.81	1631756.80	199.25	RT90-RHB70	-42.73	17.43	188.0500	6.6500	14.8000	
282.00	6698816.92	1631757.46	201.28	RT90-RHB70	-42.56	17.53	190.2400	6.9200	15.1700	
285.00	6698819.02	1631758.13	203.31	RT90-RHB70	-42.40	17.64	192.4300	7.1900	15.5500	
288.00	6698821.13	1631758.80	205.33	RT90-RHB70	-42.27	17.75	194.6300	7.4700	15.9400	
291.00	6698823.25	1631759.47	207.35	RT90-RHB70	-42.15	17.85	196.8300	7.7500	16.3300	
294.00	6698825.37	1631760.16	209.36	RT90-RHB70	-42.04	17.94	199.0300	8.0400	16.7300	
297.00	6698827.49	1631760.84	211.37	RT90-RHB70	-41.93	18.04	201.2400	8.3300	17.1300	
300.00	6698829.61	1631761.53	213.38	RT90-RHB70	-41.79	18.15	203.4600	8.6300	17.5400	
303.00	6698831.73	1631762.23	215.38	RT90-RHB70	-41.67	18.25	205.6700	8.9300	17.9500	
306.00	6698833.86	1631762.93	217.37	RT90-RHB70	-41.54	18.38	207.8900	9.2400	18.3800	
309.00	6698835.99	1631763.64	219.36	RT90-RHB70	-41.40	18.49	210.1200	9.5500	18.8000	
312.00	6698838.13	1631764.35	221.35	RT90-RHB70	-41.26	18.57	212.3400	9.8600	19.2400	
315.00	6698840.26	1631765.07	223.32	RT90-RHB70	-41.15	18.67	214.5800	10.1800	19.6800	
318.00	6698842.40	1631765.80	225.30	RT90-RHB70	-41.02	18.75	216.8100	10.5100	20,1200	
321.00	6698844.55	1631766.52	227.27	RT90-RHB70	-40.92	18.88	219.0500	10.8300	20.5800	
324.00	6698846.69	1631767.26	229.23	RT90-RHB70	-40.81	19.02	221,2900	11.1700	21.0300	
327.00	6698848 84	1631768.00	231 19	RT90-RHB70	-40 70	19 14	223 5400	11 5100	21 5000	
330.00	6698850.99	1631768 74	233 15	RT90-RHB70	-40.60	19.28	225 7900	11 8500	21,9600	
333.00	6698853 14	1631769 49	235 10	RT90-RHB70	-40 46	19.37	228 0400	12,2000	22 4300	
336.00	6698855 29	1631770 25	237 05	RT90-RHB70	-40.35	19.49	230 2900	12,5600	22 9100	
339.00	6698857 45	1631771 01	238 99	RT90-RHB70	-40 23	19.60	232 5500	12,9200	23 4000	
342 00	6698859 60	1631771 78	240.93	RT90-RHB70	_40 14	19 71	234 8100	13 2800	23 8900	
345.00	6698861 76	1631772.56	242 86	RT90-RHB70	-40 01	19.83	237 0700	13 6500	24 3800	
348.00	6698863.92	1631773.34	244.79	RT90-RHB70	-39.90	19.93	239.3400	14.0300	24.8800	

Length (m)	Northing (m)	Easting (m)	Elevation (m)	Coord system	Inclination (degrees)	Bearing (degrees)	Local A (m)	Local B (m)	Local C (m)	Extra-pol flag
351.00	6698866.09	1631774.12	246.72	RT90-RHB70	-39.79	20.01	241.6100	14.4100	25.3800	
354.00	6698868.25	1631774.91	248.64	RT90-RHB70	-39.68	20.13	243.8800	14.7900	25.8900	
357.00	6698870.42	1631775.70	250.55	RT90-RHB70	-39.54	20.24	246.1600	15.1800	26.4100	
360.00	6698872.59	1631776.50	252.46	RT90-RHB70	-39.42	20.31	248.4400	15.5800	26.9300	
363.00	6698874.77	1631777.31	254.37	RT90-RHB70	-39.32	20.35	250.7200	15.9800	27.4500	
366.00	6698876.94	1631778.12	256.27	RT90-RHB70	-39.23	20.41	253.0100	16.3800	27.9900	
369.00	6698879.12	1631778.93	258.16	RT90-RHB70	-39.11	20.54	255.3000	16.7800	28.5200	
372.00	6698881.30	1631779.74	260.06	RT90-RHB70	-39.00	20.66	257.5900	17.1900	29.0600	
375.00	6698883.48	1631780.57	261.94	RT90-RHB70	-38.87	20.80	259.8800	17.6000	29.6100	
378.00	6698885.66	1631781.39	263.83	RT90-RHB70	-38.75	20.95	262.1800	18.0200	30.1600	
381.00	6698887.85	1631782.23	265.70	RT90-RHB70	-38.65	21.09	264.4800	18.4500	30.7200	
384.00	6698890.04	1631783.07	267.58	RT90-RHB70	-38.55	21.21	266.7800	18.8900	31.2800	
387.00	6698892.22	1631783.92	269.45	RT90-RHB70	-38.46	21.31	269.0900	19.3200	31.8500	
390.00	6698894.41	1631784.78	271.31	RT90-RHB70	-38.37	21.44	271.4000	19.7700	32.4200	
393.00	6698896.60	1631785.64	273.18	RT90-RHB70	-38.24	21.56	273.7000	20.2200	32.9900	
396.00	6698898.79	1631786.50	275.03	RT90-RHB70	-38.08	21.64	276.0200	20.6700	33.5700	
399.00	6698900.99	1631787.37	276.88	RT90-RHB70	-38.00	21.72	278.3300	21.1300	34.1600	
402.00	6698903.18	1631788.25	278.73	RT90-RHB70	-37.91	21.84	280.6500	21.6000	34.7500	
405.00	6698905.38	1631789.13	280.57	RT90-RHB70	-37.83	21.95	282.9700	22.0600	35.3500	
408.00	6698907.58	1631790.01	282.41	RT90-RHB70	-37.73	22.05	285.2900	22.5400	35.9500	
411.00	6698909.78	1631790.91	284.25	RT90-RHB70	-37.61	22.11	287.6200	23.0200	36.5500	
414.00	6698911.98	1631791.80	286.08	RT90-RHB70	-37.50	22.14	289.9400	23.5000	37.1600	
417.00	6698914.18	1631792.70	287.91	RT90-RHB70	-37.41	22.18	292.2700	23.9800	37.7700	
420.00	6698916.39	1631793.60	289.73	RT90-RHB70	-37.30	22.25	294.6100	24.4700	38.3900	
423.00	6698918.60	1631794.50	291.55	RT90-RHB70	-37.20	22.30	296.9400	24.9600	39.0100	
426.00	6698920.81	1631795.41	293.36	RT90-RHB70	-37.10	22.34	299.2800	25.4500	39.6400	
429.00	6698923.02	1631796.32	295.17	RT90-RHB70	-37.01	22.40	301.6200	25.9400	40.2700	
432.00	6698925.24	1631797.23	296.98	RT90-RHB70	-36.90	22.50	303.9700	26.4400	40.9100	
435.00	6698927.46	1631/98.15	298.78	RI90-RHB70	-36.76	22.55	306.3100	26.9400	41.5500	
438.00	6698929.67	1631/99.07	300.57	RI90-RHB70	-36.62	22.61	308.6600	27.4500	42.2000	
441.00	6698931.90	1631799.99	302.36	RI90-RHB70	-36.46	22.67	311.0100	27.9600	42.8600	
444.00	6698934.12	1631800.93	304.14	RI90-RHB70	-36.33	22.75	313.3700	28.4700	43.5200	
447.00	6698936.35	1631801.86	305.92	RI90-RHB70	-36.20	22.84	315.7300	28.9800	44.1900	
450.00	6698938.58	1631802.80	307.69	RT90-RHB70	-36.07	22.92	318.1000	29.5000	44.8600	
453.00	0098940.82	1031803.74	309.46		-35.93	23.00	320.4700	30.0300	45.5400	
456.00	0098943.05	1031804.09	311.22		-35.80	23.00	322.8400	30.5600	46.2300	
459.00	0098945.29	1031805.05	312.98		-35.00	23.13	325.2100	31.0900	46.9200	
462.00	0098947.53	1031800.00	314.72		-35.55	23.17	327.5900	31.6300	47.6200	
465.00	0098949.78	1031807.50	310.47		-35.44	23.23	329.9700	32.1700	48.3300	
408.00	6609054.0Z	1031808.53	318.21		-35.32	23.28	332.3500	32.7100	49.0400	
471.00	0098954.27	1031809.50	319.94		-35.18	23.35	334.7400	33.2500	49.7500	
477.00	0090900.02	1631010.47	321.01		-30.00 34.05	23.42	330 5000	34 2500	50.4800	
411.00	00909081.03	1631011.44	325.39		-34.95	23.51	341 0200	34.3500	51.2000	
400.00	0090901.03	1631012.42	320.11		-04.04	23.09 23.66	341.9200	34.9100	51.9400	
403.00	0090903.29	1624044 40	J20.8J		-34.72	∠J.00	344.3100	35.47UU	52.0700	
400.00	0090903.00	1631014.40	320.34		-34.02	23.13	340.100	30.0400	53.4200	
403.00	0090907.01	1631016.39	330.24		-04.01	23.04 23.00	351 5200	30.0100	54.1000	
402.00	6608074 60	1631919 40	225 22		-34.39	23.09	356 3/00	38 3400	56 4400	
+30.00	0090914.00	1031010.40	000.02		-04.21	20.99	550.5400	50.5400	50.4400	

Printout from SICADA 2006-06-19 10:26:46.