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Abstract

A MATLAB program for simulating the colloid-facilitated radionuclide transport in fractured 
rock has been developed. The solution method is based on spatial discretisation of the governing 
partial differential equations and direct numerical integration in time using the MATLAB 
ODE solver ode15s. The model takes into account advection-dispersion transport of a number 
of radionuclides in solute and colloidal phases along a stream line, including retention by 
transversal diffusion into the aqueous rock matrix and chain decay. It would be easy to extend 
the model to allow for physical parameters that vary in space.

The model has been validated by comparisons with results obtained by the SKB program 
FARF�1, using the standard set of FARF�1 test cases, and also with results obtained by the 
COLLAGE II program.

The MATLAB program can certainly be used for detailed studies in a deterministic setting, but 
it can be questioned if stochastic studies of PROPER type are currently a feasible option due to 
the CPU-time requirements of the program. Therefore, the same model was also implemented 
in FORTRAN and designed to be used as ordinary submodels of the PROPER package. In this 
implementation the ODE solver used is one from the ODEPACK suite of Lawrence Livermore 
National Laboratories. This new PROPER submodel is called FARF��.

In order to save computation time in the so called tunnel case, where there is no diffusion in the 
transversal direction, a simplified PROPER submodel called FARF�2 was also developed.

This document is intended to serve both as a detailed description of the physical problem and 
the implementation of the computer codes and as a user guide for the new computer codes and 
PROPER submodels.
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Sammanfattning

Ett MATLAB-program för att simulera kolloidpåverkad transport av radionuklider i sprickigt 
berg har utvecklats. Lösningsmetoden baseras på rumsdiskretisering av de styrande partiella 
differentialekvationerna och direkt numerisk integration i tiden genom användandet av 
MATLABs ODE-lösare ode15s. Modellen tar hänsyn till transport genom advektion och 
dispersion av ett antal radionuklider i kolloidform och löst form längsmed en strömlinje, 
inklusive fördröjning på grund av transversell diffusion in i den vattenförande berggrunden och 
kedjesöderfall. Det skulle vara enkelt att utöka modellen för att tillåta fysikaliska parametrar 
som varierar i rummet.

Modellen har validerats genom jämförelser med resultat från SKB-programmet FARF�1, på de 
standardiserade FARF�1-testfallen, och också med resultat från programmet COLLAGE II.

MATLAB-programmet kan absolut användas för detaljerade studier för deterministiska fall, 
även om det är tveksamt om det i nuläget kan användas för stokastiska studier av PROPER-typ 
på grund av den CPU-tid som erfordras. Därför implementerades samma modell även i 
FORTRAN på ett sätt som gör det möjligt att använda den som en vanlig submodell i PROPER-
paketet. Den ODE-lösare som användes i denna implementation är en ur ODEPACK-sviten från 
Lawrence Livermore National Laboratories. Denna nya PROPER-submodell kallas FARF��.

För att spara beräkningstid i det så kallade tunnelfallet, där diffusion vinkelrätt in i tunnelväggen 
saknas, skapades även en förenklad PROPER-submodell kallad FARF�2.

Detta dokument är avsett både som en detaljerad beskrivning av det fysiska problemet och 
implementeringen av datorprogrammen och som användarmanual för de nya programmen 
och PROPER-submodellerna.
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1	 Introduction

SKB has previously developed a far-field radionuclide migration code called FARF�1 for use 
with the probabilistic PROPER package /Norman and Kjellbert 1990/. This code has been 
in use for a number of years. The model includes advection and dispersion of a number of 
radionuclides along a streamline in fractured rock, with retention due to molecular diffusion into 
the transversal direction taken into account. This model also includes chain decay. The solution 
method is based on analytical solution in the Laplace domain followed by numerical inversion 
of the Laplace transform and convolution with the input function to obtain the output function.

It has recently been suggested that it can be important to take the effect of colloids into account 
when predicting of migration rates of radionuclides in ground water. This has been studied by 
Cvetkovic in /Cvetkovic 200�, Cvetkovic 200�/. A program called COLLAGE II Plus /Hicks 
200�/ has been studied as a starting point for this project. The model behind this code is roughly 
equivalent with the FARF�1 model, but it also includes a transport equations for radionuclides 
sorbed onto colloids. This code has no option to include more than one nuclide in the simu-
lation, hence chain decay can not be simulated. The solution method is very similar to the 
FARF�1 method, with analytic solution in the Laplace domain followed by numerical Laplace 
inversion. One difference is that the COLLAGE II Plus program uses a physical length scale 
in the streamwise direction while FARF�1 employs a coordinate transformation to express the 
problem in terms of groundwater travel time instead. Another difference is that COLLAGE II 
Plus sets a downstream boundary condition for the concentration at a finite distance from the 
measurement point, while FARF�1 sets it to zero only at the limit as ground water travel time 
goes to infinity.

It would probably be possible to extend the FARF�1 solution scheme, using recursive functions 
for the analytic solutions to the transport equations in the Laplace domain, with a colloid phase 
in addition to the solute as long as only unidirectional transfer between the phases is allowed. 
But in this project, another more general approach has been chosen instead. The transport 
equations, including both solute and colloid phases for a number of nuclides, are discretised 
using a finite volume discretisation in both the physical and temperal dimensions. The resulting 
system of ordinary differential equations is then solved using the standard ODE-solver Ode15s 
of MATLAB. This makes it easy to extend the model to allow for physical parameters to vary 
in the streamwise direction, and even to make the model non-linear by letting the physical 
parameters depend on the concentrations.

Another objective of the project was to evaluate the possibility of letting MATLAB be a 
standard tool in the safety analysis process of SKB. As we came to the conclusion that the ODE 
solvers built-in to MATLAB were still too slow for large scale stochastic simulations, we also 
implemented the same model in FORTRAN as a PROPER submodel. In order to do this we had 
to find a replacement for ode15s as ODE solver. The choice fell on LSODE, one of the solvers 
in the ODEPACK suite of solvers from the Lawrence Livermore National Laboratories. This 
new PROPER submodel is called FARF��. Another advantage of this approach is that it is fully 
possible to call a FORTRAN program from MATLAB.

In order to save even more computation time in the so-called tunnel case where the retention 
term is missing, we also developed a simplified PROPER submodel called FARF�2 based on 
the same methodology and ODE solver.
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2	 The	mathematical	model

The finite volume method is, like the finite difference method and the finite element method, 
a numerical scheme used to discretise the system of equations needed to solve, in the present 
implementation, a transport problem. Perhaps the most logical starting point when introducing 
the finite volume method is to start with a conservation law for a scalar quantity ci over an 
arbitrary volume dΩ
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using F  to represent fluxes, over the boundaries, S, of the volume dV and Q for surface 
(index s) and volume sources (index v). This integral representation simply reads that the 
change in the quantity ci in the volume dV corresponds to the flux over the boundaries, S, 
of dV and the amount of the quantity that is generated/destroyed inside the volume or at the 
boundaries. Moreover, applying Gauss’s theorem on Equation 1 yields the differential form of 
the conservation law,
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which corresponds to that used in the FARF�1 /Norman and Kjellbert 1990/ and COLLAGE II 
Plus /Hicks 200�/ codes.

By determining the fluxes, (which, in a diffusive/dispersive case are functions of the concentra-
tion gradient and in an advective case are functions of the concentration and advective velocity) 
and the sources as function of the concentration, a system of equations on the form 

 ( )tcf
t
c i
i

,=
∂
∂

          (�)

may be obtained. Initially, the problem is hence to express sources and fluxes on a form so that 
the conservation law may be written on a form corresponding to Equation �. To do this, the 
conservation law for the sorbed nuclides, the nuclides migrating through the rock matrix and 
those migrating with the colloidal phase must be determined.

2.1	 Implementing	advection	and	dispersion	in	the	stream	tube	
Nuclides solved in (and hence migrating with) the ground-water are both in the FARF�1 and 
in the Collage II Plus code /Hicks 200�/ modelled using the advection-dispersion equation. 
The flux vector F  in Equation 1 is hence written as the sum of an advective, ssA cuF = ,  
and a dispersive component, cDF sD ∇−= , where u s represents the Darcy velocity, Ds the 
dispersion� coefficient and cs the concentration in the solute.

According to the stream tube conceptualisation, (see the manuals for FARF�1 /Norman and 
Kjellbert 1990/ and Collage II Plus /Hicks 200�/ and Figure 2-1) both the advective and the 
dispersive fluxes are defined to be in the direction of the stream tube (the z-direction in the 
current implementation). Moreover, the FARF�1 conceptualisation allows nuclides to migrate 
from the stream-tube into the rock matrix. In the rock matrix it is transported by diffusion in 

� here, dispersion represents also molecular diffusion in the stream-wise direction.
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a transversal direction, which is thought of as radial in the FARF�1 conceptualisation and 
perpendicular to the fracture in the conceptualisation of Collage II Plus. In both cases one ends 
up with the same set of equations.

To encounter for this transverse diffusive flux over the lateral area of the stream tube, ST, a 
surface source term is introduced in Equation 1.

0=∂
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Ω=⋅∫
x

p
ew

S
s x

c
DdadSQ

T

        (�)

Where aw, (in line with the FARF�1 notation) corresponds to the total surface area at the 
interface per volume of mobile liquid. Further, the effect of decay and in growth may be written 
as a volume source term

11 −−+−= iiii
v ccQ λλ          (5)

where λi represents the decay coefficient of nuclide i and c i –1 corresponds to the concentration 
of the mother nuclide. Including these terms in the conservation equation, Equation 1, the 
integral form of the advection-dispersion equation with transverse diffusion and nuclide decay 
may be written

Figure 2-1a. Coordinate system used in the present report to represent the stream tube 
conceptualisation.

Figure 2-1b. Coordinate system used in the present report to represent the Collage II Plus 
conceptualisation.
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where Qcolloid represents the exchange term between the solute and the colloid phase (introduced 
in the subsequent section), SL corresponds to the area in the longitudinal direction. Further, the 
boundary condition at the inlet boundary for Equation 6 may be expressed as
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where b represents the half-width of the fracture, In(t), the time dependent inflow of nuclides 
and η, the fraction of the nuclide inflow that occurs in the solute (as opposed to the colloid) 
phase. The factor 2b is the inlet area per unit length for the fracture, and the relation between 
this parameter and the stream tube area of the FARF�1 conceptualisation is studied in detail 
in section A�.6 below. The same relation can be applied to both inlet and outlet boundary 
conditions.

At the output boundary, at z=L, two different boundary conditions have been implemented 
in the FORTRAN version. The first is a homogeneous boundary condition assuming zero 
concentration outside the downstream boundary. The second is a free boundary condition where 
the concentration outside the boundary is calculated using extrapolation and the out-flux is 
given by
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The MATLAB version has only the free boundary condition. The initial condition used in the 
model is that there are no nuclides present at t=0.

2.2	 Implementing	diffusion	in	the	rock	matrix	
In addition to the longitudinal flux, modelled with the advection-dispersion equation, the 
nuclides are also assumed to be transported into the porous rock matrix adjacent to the fracture. 
Inside the matrix, nuclides will diffuse both in the water phase through the porous network and 
through surface diffusion in the solid rock. In the present implementation only transverse flux 
(in the x-direction) is regarded and the diffusive flux, PF  in the porous media is modelled using 
a 1-D Fickian like model

x
cDF p
i

i
aP ∂

∂−=          (9)

where c p
i represents the concentration of species i in the void water and Da corresponds to an 

apparent diffusivity coefficient which accounts for the lumped effect of porosity and sorption. 
Implementing a 2D diffusional model instead of a 1D is straightforward, this has however not 
been conducted since it prevents accurate comparisons with the reference codes. Following 
the methodology used in the FARF�1 code, the apparent diffusivity is related to the effective 
diffusivity 

 
R
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where the retention factor, R, is expressed as
 ρε i

d
ii KR +=          (11)

being a function of the porosity, ε, the sorption coefficient, Kd (from which the concentration in 
the solid phase, csolid, may be determined, c solid = K i

d  c p ) and the bulk density of the rock, ρ. Note 
that this definition differs from the retention coefficient in the Collage II Plus code /Hicks 200�/ 
and hence the definition of the apparent diffusivity. If the conservation equation is applied for a 
diffusive flux F = Fp, Equation 1 may be written
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where the decay has been implemented as a volume source term in a corresponding way as 
in the advection diffusion equation. In the present implementation, the following boundary 
conditions are used
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where L (this time in the x-direction) is the length to a symmetry boundary (half the length to 
the closest stream tube or fracture).

An initial condition of c i 
p = 0 at t = 0 is used for the whole domain.

2.3	 Implementing	colloids
In addition to the solute transport, modelled using the advection-dispersion equation, colloid 
facilitated migration is also regarded as a possible migration mechanism for radionuclides. 
This is modelled in a way corresponding to that of the Collage II Plus code /Hicks 200�/ where 
colloid facilitated migration was added as a source term in the advection-dispersion equation. 
In that implementation, nuclides were assumed to adsorb reversibly to colloids and to migrate 
with the colloids at an advection velocity not necessarily the same as that for solute transport. 
In the Collage II Plus implementation /Hicks 200�/ colloids were assumed to be either mobile 
or immobile (trapped in the fracture) and that there is a linear relation between the fixed and the 
mobile concentrations.

To encounter for the effect of nuclides being sorbed/desorbed onto colloid in the present finite 
volume implementation an additional source term, Qcolloid , was added to the advection-dispersion 
equation (using the same notation as in Collage II Plus)
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where cm corresponds to the concentration of species i sorbed to mobile colloids. k1 and k2 are 
partition coefficients for radionuclides sorbed to mobile and immobile colloids respectively. 
κ1 and κ2 correspond to the rate of sorption-desorption onto mobile and immobile colloids 
respectively, whilst β represents the ratio of immobile to mobile colloids (if β = 0, only mobile 
colloids exists).

In addition to the source term in the advection-dispersion equation, which represents transfer 
between the solute and the colloid phases, another transport equation is needed to model the 
mobile colloids
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where an advective flow rate u m and a dispersion coefficient Dm has been introduced for the 
colloid transport. The inlet boundary condition is implemented in a corresponding way as for 
the solute phase
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where b represents the half width of the fracture, In(t), the time dependent inflow of nuclides 
and η, the fraction of the nuclide inflow that occur in the solute (as opposed to the colloid) 
phase.

At the output boundary, at z=L, two different boundary conditions have been implemented 
in the FORTRAN version. The first is a homogeneous boundary condition assuming zero 
concentration outside the downstream boundary. The second is a free boundary condition, 
where the concentration outside the boundary is calculated using extrapolation and the out-flux 
is given by
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The MATLAB version has only the free boundary condition. As for the solute phase, the initial 
condition is that there are no nuclides present at t=0.

2.4	 The	tunnel	case
For the simplest conceivable model, which is similar to the two-dimensional transport problem 
described above, we use the term “the tunnel case”. In addition to the FARF�1 and FARF�� 
conceptualisations with a two-dimensional geometry, a second advection-dispersion model 
assuming a one-dimensional geometry has also been developed. This model gives much faster 
execution in cases where transversal matrix diffusion can be neglected. 

In the tunnel case, the governing equation can be obtained from (6) by removing the transversal 
equation and the retention term, and scaling the time derivative and right hand side with a 
retention factor depending on the porosity, distribution coefficient and density of the backfill
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If we further assume that the transport properties of the solute and the colloid phase are the 
same, there is no longer any difference between the solute and the colloid phase, and we end up 
with only one equation for the sum of the concentration in both phases
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This is the transport equation implemented in the tunnel model, for brevity called FARF�2. 

The retention factor, Ri, is modelled as

 ρεε idiii KR ,)1( −+=
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2.5	 A	note	on	downstream	boundary	conditions
When using Laplace methods for the solution, as in FARF�1, it is possible to set a boundary 
condition for the concentration as the stream tube length or travel time goes to infinity. This 
possibility no longer exists in a finite volume discretisation where the computational domain 
must be finite. What boundary condition to use downstream in this case is really a modelling 
issue. Therefore, we have implemented two different downstream boundary conditions. One 
approach is that the dilution is so large downstream of a certain model that the concentration 
can be neglected compared to the concentration inside the boundary. Using this assumption is 
equivalent to using the homogeneous downstream boundary condition.

In the presence of colloids we are likely to have two distinct peaks in the solution curve. 
Then it could be a better approximation to use some kind of extrapolation boundary condition 
downstream to allow diffusion from the outside back into the computational domain, a situation 
which could occur between the two peaks long before the time period we are interested in ends. 
This corresponds to using the free boundary condition.

In the PROPER implementation both choices are available.
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3	 Spatial	discretisation	and	
computational	technique

In the present finite volume implementation, the computational domain was subdivided into a 
number (NIxNJ) of hexahedral elements. Each element has a node located in the centre of the 
element in which the concentration of each nuclide is calculated, Figure �-1. As fluxes need 
to be evaluated at the boundaries of an element different interpolation techniques are required 
to estimate these based on the concentration in adjacent nodes. To do this, the computational 
domain is divided into three distinct parts, the stream tube with solute transport (J=1), the 
stream tube with colloidal transport (J=2) and the rock matrix (J>2). The dominating part of the 
computational domain represents hence diffusional transport in the rock matrix. The discretisa-
tion method of the rock matrix transport equation will therefore have large impact of the size 
of the problem and it is important to have as few elements as possible (but not too few) in the 
transverse direction. The second component, I, corresponds to the longitudinal z-direction with 
the inlet boundary at I=1 and the outlet boundary at I=NI. 

After performing the spatial discretisation, a suitable discretisation scheme is required for the 
approximation of the fluxes, described in detail in Appendix �. For the diffusive (in the rock 
matrix) and dispersive fluxes (in the stream tube) a central difference scheme (CDS) has been 
used where the boundary value is estimated using a linear interpolation between the adjacent 
nodes. For the advective discretisation scheme, the cell Peclet number (dz · u s /Ds ), is used to 
choose between the central difference scheme (when dz · u s /Ds ≤ 2) and the first order upwind 
difference scheme (UDS when dz · u s /Ds > 2) which uses the concentration from the closest 
upstream node. In order to reduce the size of the mesh in the transverse direction, a non-
equidistant mesh is used for the spatial discretisation of the rock matrix with smaller elements 
close to the fracture or stream tube. Since the influx is given at the boundary of the nodes with 
I=1, no special procedure is required when estimating the value at these boundaries. However, 
for the outlet boundaries, (when evaluating 

outlet
m

ic  and 
outlet

s
ic  in the stream tube and the 

boundary at x=0 when evaluating 
0=

∂∂
x

p
i xc  for the rock matrix), there are no nodes outside 

of the computational domain. Hence, adjacent nodes (NI-2..NI for the stream tube and J=�..� for 
the rock matrix) are used to extrapolate the value at the boundaries.

Colloid migration 
(stream tube) 

Solute migration 
(stream tube) 

Diffusion 
(rock matrix) 

J

I

x

Figure 3-1. Spatial discretisation with the origin of the transversal coordinate at the interface between 
the stream tube and the rock matrix.
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After choosing a suitable discretisation scheme and carrying out the spatial discretisation, the 
migration problem may be formulated as a system of ordinary differential equation on the form.
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where c1..n represents the concentration in nodes 1 to n (=NIxNJ), A represents a matrix which is 
a function of the chosen schemes and B corresponds to the boundary conditions. This system of 
ordinary differential equations may then be solved using any suitable solver for this particular 
kind of problem. In the present implementation, a Matlab solver called ode15s was used. This 
is an ODE solver suitable for both stiff and non-stiff systems. This solver has, as one of its 
benefits, an adaptive time stepping method which enables for solving problems occurring over 
large timescales.

3.1	 Minimising	the	bandwith	of	the	system	matrix
One important consideration in maximising the computational speed of the computer program 
is to minimise the bandwidth of the system matrix A. In the FORTRAN implementation used 
for the new PROPER submodels we changed the order of the solution variables so that the 
concentrations of the various nuclides in one cell are grouped together. Since it is likely that the 
number of cells in the streamwise direction is larger than the number of cells in the transversal 
direction we also grouped the solution variables for all cells at the same streamwise position 
together at the next level. As a final optimisation of the solution scheme we switched the order 
of the solute and colloid cells. The resulting system matrix is very sparse so it is very favour-
able to use a sparse solver for the linear systems in the ODE solver. This is readily done in 
MATLAB, but in ODEPACK we used a banded solver instead.

3.2	 Evaluating	the	retention	term
In order to evaluate the retention term, the x-derivative of the concentration is needed at the 
interface between the fracture/stream tube and the rock matrix. The value is calculated by 
extrapolation from the cells in the rock matrix which are closest to the interface. We have tried 
both a first and second order extrapolation scheme. There is a small systematic difference in 
results, and using the lower order extrapolation gives an effect similar to using a slightly lower 
value for the aspect ratio. Using the lower order extrapolation simplifies calculation of the 
system matrix and makes it sparser. Therefore, we kept the simpler variant in the PROPER 
submodel FARF��.

3.3	 Time	integration	in	the	FORTRAN	implementation
The ODEPACK suite of ODE solvers was developed at the Lawrence Livermore National 
Laboratories in the 80’s and has become the standard choice for anyone who needs a free ODE 
solver written in FORTRAN. We have used LSODE, the most basic solver capable of solving 
both stiff and non-stiff problems in an efficient manner. More information about ODEPACK can 
be found at the Lawrence Livermore website at http://www.llnl.gov/CASC/odepack/.

http://www.llnl.gov/CASC/odepack/
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In PROPER all output time series are handled by the so called “time series manager”. This 
piece of code tries to eliminate all “uninteresting” solution points in order to minimise the 
space needed to store the output time series. This approach used in the time series manager of 
PROPER is not really useful in cases where the solution is not bell shaped in the sense that it 
contains one distinct peak. Nothing has been done in this project to solve this problem. Instead 
we have developed an algorithm which saves solution points in a manner so that the solution 
doesn’t get more destroyed by the time series manager than necessary.
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4	 Validation

The program has been validated by running problem 1, 2, � and 6 from the standard set of 
FARF�1 test cases (the FARF�1 test batch) as documented in /Lindgren et al. 2002/. The simu-
lation results have been compared to results obtained by running FARF�1 and are documented 
below. The results generally show good agreement provided that the mesh resolution is good 
enough.

4.1	 The	FARF31	test	batch
Two different test cases from the FARF�1 test batch have been used to validate the FVFARF 
code. In both examples, chain decay has been used, hence comparisons with the Collage II Plus 
code were not possible. However, in subsection �.2.1, all three codes have been tested using the 
same test case.

4.1.1	 Problem	1
In Figure �-1, problem 1 from the FARF�1 test batch is shown for simulations with FVFARF 
and FARF�1. It can be seen that the agreement between the two codes are good except in the 
initial part of the simulation where there exists some deviation. This deviation is the same as 
that seen in problem 2; in the following section where a discussion about possible reasons for 
this deviation has been carried out.

102                 103                   104                 105                  106                 107                   108                   109                  1010

102

100

10−2

10–4

10–6

10–8

10–10

10–12

10–14

Pu 242
U 238
U 234
Th 230
Ra 226

O
ut

flu
x 

[m
ol

e/
yr

]

Time [yr]

Figure 4-1. Problem 1 from the FARF31 test batch, chain decay. Rings denote results obtained by 
FVFARF and solid lines denote results obtained by FARF31.
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4.1.2	 Problem	2
Figure �-2 shows the results from FARF�1 and FVFARF for problem 2 in the FARF�1 test 
batch. The example includes five different hypothetical nuclides and the test case has been 
designed to give equal results for all nuclides. It can be seen that the agreement between 
the FARF�1 results and the FVFARF results are good in general. However, for small times, 
the same deviation as seen in problem 1 exists. For single nuclide runs, it can be shown that 
the agreement between the two cases increases as the number of elements in the transversal 
direction and the tolerances are adjusted (compare with the agreement for the test case in 
section �.2.1). 
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Figure 4-2. Problem 2 from the FARF31 test batch, a case where the outflux should be the same for all 
nuclides. Rings denote results obtained by FVFARF and solid lines denote results obtained by FARF31.
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4.2	 Comparison	with	COLLAGE	II	PLUS
The program has also been validated by comparisons with test cases inspired by those in the 
COLLAGE II Plus manual /Hicks 200�/. Table �-1 shows the difference in parameters used in 
the test cases based on the conversion procedure described in section A�.6.

4.2.1	 No	colloidal	facilitated	migration
Figure �-� shows the release rate for a test case without colloids. It can be seen that the agree-
ment between the FVFARF, Collage II Plus and FARF�1 is excellent except at large times. The 
reason for the deviation at t > 107 years relates to the treatment of the transversal inner boundary 
where the FARF�1 and the FVFARF uses a maximum penetration depth whilst the Collage II 
Plus model assumes infinite diffusion (by changing the Penetration depth the position where the 
curves starts to deviate can be changed).

Figure 4-3. Comparison between FVFARF, FARF31 and Collage II Plus for case without colloids.
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Table	4-1.	 Input	parameters	used	by	the	FARF31	and	the	Collage	II	Plus	models,	respectively.

FARF	Data Collage	II	Plus	Data
tw 1,000 u 1
Peclet 50 D 50
ε 0.01 ε 0.01
Penetration depth 5 R 675.1
Kd 0.25 L 1,000
De 7.875 ∙ 10–4 b 10–2

Aspec 1
Half life 1015 λ 0
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4.2.2	 Problem	C997
Figure �-� shows the results for a simulation with a slow sorption-desorption rate between 
mobile and immobile colloids. It can be seen that the agreement between the two cases is  
good.

4.2.3	 Problem	C999
Figure �-5 shows the results for a test case with colloids and a fast sorption-desorption rate. 
Also these results are good.
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Figure 4-4. Comparison between FVFARF and Collage II Plus for a case with slow sorption- 
desorption from mobile and immobile colloids (κ1= κ2=10-6 y-1). Radionuclides enter the fracture 
on colloids.
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Figure 4-5.  Comparison between FVFARF and Collage II Plus for case with rapid sorption- 
desorption from mobile colloids (κ1=1 y-1) and slow sorption-desorption from immobile colloids  
(κ2=10–6 y–1). Radionuclides enter the fracture in solute phase.
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4.3	 Colloid	facilitated	migration	in	a	KBS-3	repository
A study of the effects of colloid facilitated migration in a KBS-3 repositery has been made using 
the Collage II Plus program and the results are documented in Chapter 4 of /Klos et al. 2002/. 
These simulations are based on the parameters used in the SR 97 far-field simulations /SKB 
1999/, but colloids have been added to the model.

To validate the FVFARF code we have tried to repeat some of the simulations of the above 
mentioned report. However, the simulations reported in /Klos et al. 2002/ are based on some 
misconceptions of the FARF31 model which must be analysed. Table 4-2 shows the input 
parameters used by SKB and those used by /Klos et al. 2002/.

In the simulations all colloids have been assumed to be fully mobile, i.e. no filtering occurs. 
All radionuclides enter the flow path in the solute phase. The downstream boundary condition 
has been applied right at the end of the flow path. We have concentrated on the case which is 
described in /Klos et al. 2002/ as a worst case. This is a case motivated by future non-saline 
groundwater conditions giving a colloid partition coefficient (k1) of 4.5∙10–3 and a parameter 
scan of the sorption-desorption rate in order to find the worst case. The results from the simula-
tions reported in /Klos et al. 2002/ are plotted with blue colour in figure 4.8 (p. 38) in this report.
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Choosing the parameter values documented in /Klos et al. 2002/ will give a residence time of 
17.7 years and a Peclet number of 5.9·10–2 according to the definition used in FARF�1, contrary 
to what is stated in the report. This means that the advective term will be 170 times weaker 
compared to the dispersive term in the simulation documented in /Klos et al. 2002/ than it was 
in the SR 97 simulation.

Another difference is that Collage II Plus uses a different model than FARF�1 for the retarda-
tion coefficient R. The value used in FARF�1 would be 1.�5·10� compared to the value 2.69·106. 
To compensate for this difference, the matrix diffusion coefficient must be multiplied by a factor 
199. We have chosen to set the flow wetted area to be the inverse of the fracture half width, 
which must also be multiplied by the same factor, see A�.6 for further details.

Figure �-6 below shows the result from the comparison between a FVFARF simulation with 
the parameter values used in /Klos et al. 2002/ and one with the correct parameter values from 
SR 97. The same values of the colloid parameters have been used in both cases. Red colour and 
star markers (�) indicates values from /Klos et al. 2002/, and is the sum of the colloid and solute 
release rate. Blue colour and plus markers (+) indicates correct SR 97 parameter values.

Table	4-2.	 Input	parameters	used	in	SR	97	and	in	/Klos	et	al.	2002/,	respectively.

Parameter SR	97 /Klos	et	al.	2002/ Comment

Residence time (y) 10 16.7

Peclet number (–) 10 5.9∙10–2

Matrix porosity (–) 0.005 0.005 Possible printing error 

Penetration depth (m) 2 N/A

Distribution coeff. (m3 kg–1) 5 5

Matrix diffus. coeff. (m2 y–1) 1.2614∙10–6 1.262∙10–6 = 4∙10–14 (m2 s–1)

Flow wetted area (m–1) 1∙104 N/A ASPEC

Decay constant (y–1) 1.8568∙10–6 1.86∙10–6 Half life: 373 300 (y)

Solute velocity (m y–1) N/A 30

Solute dispersion coeff. (m2 y–1) N/A 1.695

Length of flow path (m) N/A 500

Fracture half width (m) N/A 1∙10–4 Inverse of ASPEC

Colloid velocity multiplier (–) N/A 1.32

Colloid dispersion multiplier (–) N/A 2.8

Colloid partition coefficient (–) N/A 4.5∙10–3 Worst case

Sorption-desorption rate (y–1) N/A 0.8∙10–1 Worst case
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The outflux normalised to the no colloid peak for the worst case simulation is shown in 
Figure �-7. The same scaling and axis limits have been used as in Figure �.8 of /Klos et al. 
2002/ to facilitate a comparison, but note that FVFARF is able to resolve the colloid peak also 
under these extreme conditions. Rings are colloids and diamonds are solute.

As Figure �-7 shows, the results are similar but not identical. One remaining difference 
between the FVFARF and the Collage II Plus programs is that FVFARF uses extrapolation of 
concentration as boundary condition at the downstream boundary, while Collage II Plus sets the 
concentration to zero. Setting the concentration to zero is probably a better assumption at such a 
low Peclet number, and this model difference probably accounts for the remaining differences in 
results between the Collage II Plus and the FVFARF programs.
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Figure 4-6. Comparison between total outfluxes based on the parameter values used in /Klos et al. 
2002/ and the parameter values used in SR 97. FVFARF has been used in both simulations. Red colour 
and star markers denote parameter values used by Klos et al. Blue colour and plus markers denote 
SKB parameter values.
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4.4	 A	test	case	for	the	tunnel	model
A test case (called test case 7) suitable for testing FARF�2 has been constructed. It contains one 
fictitious nuclide, and the following input data are used:

Stream tube length (m) 200
Darcy velocity (m/y) 1
Dispersion coefficient (m2/y) 0.001
Porosity (1) 1
Sorption coefficient (m3/kg) 1
Half life (y) 1∙1010

The input function is a square pulse of unit height and a length of �00 years. The input data 
correspond to a travel time of 200 years and a Peclet number of 2·105, so the solution should be 
a unit pulse which is 200 years delayed and somewhat diffused at the edges. The result from a 
run with FARF�2 standalone is showed in Figure �-8.

Running FARF�� on corresponding input data gives the same result as can be easily verified.

Figure 4-7. Outflux of solute and colloid phases normalised to the no-colloids peak. Ring markers 
denote colloid phase and diamond markers denote solute phase.
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4.5	 A	test	case	for	FARF33
A test case (called test case 8) suitable for testing FARF�� has also been constructed. Input data 
are the same as in example 7 with the following additions:

Apect ratio (m–1) 10
Penetration depth (m) 1
Diffusivity (m2/y) 1∙10–6

The same input function gives a completely different solution, as shown in Figure �-9.

4.6	 A	test	case	for	testing	colloids
Since the transport equations for both solute and colloid phases are linear, a superposition of 
solutions is also a solution. This can be used to construct a test case for colloids (called test 
case 9) based on test cases 7 and 8. Input data are the same as in example 8 with the following 
additional colloid parameters:

Solute injection fraction (ETA) (1) 0.95
Ratio of immobile colloids (BETA) (1) 0
Partition coefficients (1) 0
Rate of sorption-desorption (y–1) 0

This means that 95% of the radionuclide enters the domain in the solute phase and the other 
5% sorbed to colloids, and that no transfer between the phases can occur. The solution to this 
problem is shown in Figure �-10.

The solution shown in Figure �-10 is a superposition of the solutions to test cases 7 and 8.

Figure 4-8. Solution to test case 7 as calculated by FARF32 standalone on PC. 
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Figure 4-9. Solution to test case 8 as calculated by FARF33 standalone on PC. 

Figure 4-10. Solution to test case 9 as calculated by FARF33 standalone on PC. 
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5	 Conclusions	and	suggestions

Colloid-facilitated radionuclide transport in fractured rock, including retention and chain 
decay, can be simulated using the developed MATLAB program. The spatial resolution of 
the computational grid must be of the order 100 by 100 to replicate results obtained by other 
simulation codes based on Laplace transforms. For a decay chain including five nuclides, this 
gives a system matrix of rank 50,000 by 50,000. The system matrix becomes very sparse and 
block-diagonally banded due to the difference operators used. It is fully feasible to solve a 
problem of this size on an ordinary PC, if computation times in the order of 10 minutes are 
accepted. Instead it is the required memory which puts a limit on the problem size.

It is important that the computational grid is large enough in the transversal direction in order 
to obtain accurate results. Based on a few experiments, we suggest a rule of thumb for the 
necessary size of the computational domain as:

100
max,

2
max ≥

stopi TD
L

 

where Lmax is the distance to the outer boundary, T stop is the end time of the simulation, and 
Di,max is the maximum diffusion coefficient for any nuclide in the simulation. At the same time 
it is important that the grid is not too coarse near the stream tube, to avoid underestimating the 
transfer of concentration from the solute phase to the pore water. This can be a problem if the 
diffusion coefficients vary strongly between the nuclides. One remedy could be to use different 
grid spacing in the transversal direction for different nuclides and use interpolation to evaluate 
the source term coming from radioactive decay. Another remedy could be to use a higher order 
discretisation scheme in the transversal direction.
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Appendix	1

A1	 A	user’s	guide	for	the	programs
A1.1	 Using	the	FVFARF	program
The MATLAB program FVFARF consists of the following thirteen m-files:

Table	A1-1.	 A	list	of	the	FVFARF	m-files.

File	name Comment

FVFARF_create_mesh.m

FVFARF_func.m The ODE-function

FVFARF.m The main function

FVFARF_input.m

FVFARF_interpolate_ts.m

FVFARF_output.m

FVFARF_read.m

FVFARF_read_colpar.m

FVFARF_read_par.m

FVFARF_read_ts.m

FVFARF_set_par.m

FVFARF_setup.m

FVFARF_setup_system.m

All m-files are listed in Appendix 2. They must reside somewhere in the MATLAB-path in order 
to use the program.

Four input files are needed to supply the program with input data. They should all be saved in 
the same directory and named in.dat, in.par, in.ts and in.col. The first three have the same syntax 
as the corresponding files for the stand alone version of FARF�1 /Lindgren et al. 2002/. The 
fourth one, in.col, contains additional parameters needed to describe colloid behaviour and some 
numerical parameters. Comment lines and blank lines are allowed in all input files. Comment 
lines begin with a hashmark character (#).

Table	A1-2.	 A	list	of	the	FVFARF	input	files.

in.dat contains mainly nuclide data

in.par contains mainly transport and physical parameters

in.ts contains the input time series

in.col contains colloid and numerical parameters
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The program is started by calling the main function from the MATLAB-prompt with a directory 
name as argument. All input files should reside in the directory used as argument. For example:

>> [T,C]=FVFARF(‘C:\SKB\Kolloider\Harald\Problem2’);
Calling ode15s!
1485 successful steps
35 failed attempts
2591 function evaluations
2 partial derivatives
256 LU decompositions
2582 solutions of linear systems

elapsed_time =

    8.9430

Warning: Negative data ignored.
> In C:\MATLAB6p5p1\toolbox\matlab\graph2d\ylabel.m at line 27
  In C:\SKB\Kolloider\Harald\FVFARF.m at line 200
Warning: Negative data ignored.
> In C:\MATLAB6p5p1\toolbox\matlab\graph2d\xlabel.m at line 27
  In C:\SKB\Kolloider\Harald\FVFARF.m at line 201
>>

If output arguments are given ([T,C] in the example above), they will contain the output time 
series on return. Some diagnostic messages are printed as can be seen in the example above. 
The output time series are plotted in a log-log diagram in a separate window, which may look as 
follows:

102                 103                   104                 105                  106                 107                   108                   109                  1010

 100

10–5

10–10

10–15

O
ut

flu
x 

[m
ol

e/
yr

]

Time [yr]



�5

If the simulation contains more than one nuclide, the corresponding output time series will be 
plotted using different colours.

A1.1.1	 The	input	file	in.dat
The data specified is first some general data for the simulation assigned by keywords followed 
by the definitions of the radionuclides and chains. The following keywords and values are 
allowed:

Keyword Value Description

PRINT ON

OFF

DEBUG

Not used

CASENAME casename Not used

DIFFUSIVITY SINGLE

ELEMENT_SPECIFIC

Variable used to control if one single diffusion 
coefficient is used or if chemical element 
specific diffusion coefficients are used.

The second part of the file includes the definition of the radionuclides and chains. One line for 
each nuclide has to be specified:

Variable Value	type Unit Description

CHNAM String (–) Name of nuclide.

THALF Real (a) Half-life of nuclide.

IDAUGH Integer (–) Set to 1 if nuclide has a daughter, and to 0 otherwise.

ISOURC Integer (–) Set to 1 if there is an input time series for this nuclide, 
and to 0 otherwise.

If a nuclide has a daughter nuclide, IDAUGH should be set to 1, and the definition of that 
daughter nuclide has to follow immediately after the mother nuclide.

Here is an example of the input file in.dat: 

#
# Problem 1 for Farf31 stand-alone 1.2
# File: in.dat                01/09/21
#
# Print option
PRINT ON
# Effective diffusivity
DIFFUSIVITY ELEMENT_SPECIFIC
#
CASENAME farf
# Nuclide Thalf     Daughter Source
Pu242     379000    1        1
U238      4.51E+09  1        1
U234      247000    1        1
Th230     80000     1        1
Ra226     1600      0        1
#
# Daughter = 1
# The following nuclide is daughter
#
# Source = 1
# Has a source curve as input 
#
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A1.1.2	 The	input	file	in.par
The following is a list of the input parameters read from the file in.par. The parameter values are 
assigned with keywords and can be specified in arbitrary order.

Keyword Unit Description

TW (a) Groundwater travel time.

PECLET (–) Longitudinal dispersion Peclet number.

ASPEC (1/m) Surface sorption area per unit of liquid volume.

F (a/m) =TW∙ASPEC. Optional parameter to be specified instead of TW or ASPEC.

EPS (–) Matrix porosity.

DE (m²/a) Effective matrix diffusion coefficient. Only given if DIFFUSIVITY is defined as 
SINGLE in the file in.dat.

PENDEP (m) Maximum depth of diffusive penetration in the transversal direction.

KDR_XX (m³/kg) Distribution (sorption) coefficient for chemical element XX (not nuclide).

DE_XX (m²/a) Effective matrix diffusion coefficient for chemical element XX (not nuclide). Only 
given if DIFFUSIVITY is defined as ELEMENT_SPECIFIC in the file in.dat.

For the last two keywords, XX denotes the first two letters of the name of the chemical element. 
One line should be given for each chemical element in the simulation. Note that for a chemical 
element with only one letter also the first digit must be given, for example U2 for uranium.

Here is an example of the input file in.par:

#
# Problem 1 for Farf31 stand-alone 1.2
# File: in.par                01/09/21
#

# New optional parameter F=TW*ASPEC

F      1.e5
# Groundwater travel time
TW     10000.
# Peclet number
PECLET 4000.0
# Specific surface
#ASPEC  1000.
# Diffusion porosity of rock
EPS    0.005
# Depth of penetration
PENDEP 2.0
# Chemical element information:
# Kd value(s)
KDR_Pu 1. 
KDR_U2 1.
KDR_Th 1.
KDR_Ra 1.
# Diffusion coefficient(s)
DE_Pu 3.e-6
DE_Pu 3.e-6
DE_U2 3.e-5
DE_Th 3.e-6
DE_Ra 3.e-6
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A1.1.3	 The	input	file	in.ts
The input file in.ts contains the definitions of the input time series as time-value-pairs. The 
series must be given in the same order as in the definition of nuclides in the file in.dat. Each 
time series starts with the name of the nuclide on the first line, and thereafter the time series 
given as pairs of time and input value.

Here is an example of the input file in.ts:

Pu242
1.0E2   1.0E-0
1.0E9   1.0E-0
U238
1.0E2   1.0E-0
1.0E9   1.0E-0
U234
1.0E2   1.0E-0
1.0E9   1.0E-0
Th230
1.0E2   1.0E-0
1.0E9   1.0E-0
Ra226
1.0E2   1.0E-0
1.0E9   1.0E-0

A1.1.4	 The	input	file	in.col
The input file in.col contains some additional parameters needed for the colloid model and some 
numerical parameters. The following is a list of the input parameters read from the file in.par. 
The parameter values are assigned with keywords and can be specified in arbitrary order.

Keyword Unit Description

TSTART (a) Start time for the simulation.

TSTOP (a) Stop time for the simulation.

ABSTOL (–) Absolute tolerance for the time integration.

RELTOL (–) Relative tolerance for the time integration.

NI (–) Number of grid points in the longitudinal (streamwise) direction.

NJ (–) Number of grid points in the transversal direction.

STRETCHING (–) Parameter for the stretching of the grid in the transversal direction.

PHI (–) Rock matrix porosity value for the COLLAGE retension model. Only used 
if FARFPOROSITY is set to 0.

ETA (–) Fraction of injected inventory in solute phase.

BETA (–) Fraction of immobile colloids.

K1 (–) Partition coefficient for radionuclides sorbing onto mobile colloids.

K2 (–) Partition coefficient for radionuclides sorbing onto immobile colloids.

KAPPA1 1/a Rate of sorption-desorption of mobile colloids.

KAPPA2 1/a Rate of sorption-desorption of immobile colloids.

FARFPOROSITY (–) Set this parameter to 0 if the COLLAGE retention model should be used, 
and to 1 if the FARF retension model should be used.
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Here is an example of the input file in.col:

#
# Problem 1 for FVFARF stand-alone 1.2
# File: in.col                04/01/07
#

# Start time for time integration
TSTART 100.
# Stop time for time integration
TSTOP 9.9e9
# Absolute tolerance for time integration
AbsTol 1e-12
# Relative tolerance for time integration
RelTol 1e-6
# Number of points in streamwise direction
NI 30
# Number of points in transversal direction
NJ 5
# Transverse stretching parameter
STRETCHING 1.3333333333333
# Rock matrix porosity
phi 0.0
# Solute injection fraction
eta 1.0
# Immobile colloid fraction
beta 0.0
# Colloid transfer parameters
k1 0.0
k2 0.0
kappa1 0.0
kappa2 0.0
# If FARFporosity is set to 1 the porosity model of FARF is used
# If FARFporosity is set to 0 the porosity model of COLLAGE is used
FARFporosity 1.0

A1.2	 Using	the	new	PROPER	submodels	FARF32	and	FARF33
Some adjustments were made to the FVFARF program to make it fit into the PROPER simula-
tion environment as two new submodels, FARF�2 and FARF��. FARF�2 is intended for the 
tunnel case, i.e. a situation where the radionuclide transport occurs in a one-dimensional tunnel 
in the rock matrix without diffusion into the solid rock. FARF�� contains all functionality of 
FARF�1 and adds on colloid transport. Both submodels exist both as standalone programs and 
as submodels linked into the PROPER monitor.

A1.2.1	 The	parameter	file	for	FARF32
FARF�2 takes the following input data as stochastic parameters:

Keyword Unit Description

L (m) Length of flow path.

U_XX (m/a) Darcy velocity for element XX (not nuclide) in tunnel.

DL_XX (m²/a) Longitudinal dispersion coefficient for chemical element XX (not 
nuclide) in tunnel.

EPS (–) Porosity of tunnel filling.

KDR_XX (m³/kg) Distribution (sorption) coefficient for element XX (not nuclide) in 
tunnel filling.



�9

The standard mass density set in the prm-file is used in the calculation of the retention factor. In 
the version of the submodel linked into PROPER, these stochastic parameters are given in the 
same order as listed in the table.

A1.2.2	 The	parameter	file	for	FARF33
In FARF�� we have kept the traditional input parameters of FARF�1 and added a few new 
stochastic parameters for the colloid transport. The new parameters are:

Keyword Unit Description

ETA (–) Solute injection fraction.

BETA (–) Fraction of immobile colloids.

K1 (–) Partition coefficient for radionuclides sorbing onto mobile colloids.

K2 (–) Partition coefficient for radionuclides sorbing onto immobile colloids.

KAPPA1 (a–1) Rate of sorption-desorption of mobile colloids.

KAPPA2 (a–1) Rate of sorption-desorption of immobile colloids.

In the version of the submodel linked into PROPER, these stochastic parameters are given after 
all other parameters in the same order as listed in the table.

A1.2.3	 Additions	to	the	prm-file
In order to control the time steps and tolerance of the ODEPACK solver and some other 
features of the solution scheme, a number of new keywords were defined as numerically related 
parameters in the prm-file:

Keyword Unit Description

TSTART (a) Start time for the solution.

TSTOP (a) Stop time for the solution.

TSTEP (a) Initial time step.

STPMIN (a) Minimum time step.

STPMAX (a) Maximum time step.

RELTOL (–) Relative tolerance.

ABSTOL (mole/m3) Absolute tolerance.

NI (–) Number of cells in the streamwise direction.

NJ (–) Number of cells in the transversal direction.

STRETCHING (–) Stretching factor for the mesh in the transversal direction.

LUDS on/off Use UDS if the keyword is present and CDS otherwise.

LFREE on/off Use the free downstream boundary condistion if the keyword is 
present and the homogeneous one otherwise.

ICOLL 0 or 1 One means that colloids should be present in the simulation and 
zero means that there should be no colloids in the simulation.

Most of these parameters have default values.
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Appendix	2

A2	 Code	listing
A2.1	 FVFARF.m
function [T,out]=FVFARF(dirnam)
%FVFARF This is the main function for the finite volume FARF program
%
% FVFARF(dirnam) Main function for the finite volume FARF program. It
% takes a directory name as argument and reads the input files from that
% directory.
%

%
% Create file names
%
infile=fullfile(dirnam,’in.dat’);
parfile=fullfile(dirnam,’in.par’);
tsfile=fullfile(dirnam,’in.ts’);
colfile=fullfile(dirnam,’in.col’);

%
% Read all input data files and create nuclides
%
[nuclides,single]=FVFARF_read(infile);
[parameters,elements]=FVFARF_read_par(parfile);
colpar=FVFARF_read_colpar(colfile);
nuclides=FVFARF_set_par(nuclides,single,parameters,elements);
nuclides=FVFARF_read_ts(nuclides,tsfile);
NK=size(nuclides,1);
ix=find(strncmpi(parameters(:,1),’PECLET’,6));
if isempty(ix)
    error(‘Peclet number missing in input data.’);
end
pe=parameters{ix,2};
ix=find(strncmpi(parameters(:,1),’TW’,2));
ix1=find(strncmpi(parameters(:,1),’ASPEC’,5));
ix2=find(strncmpi(parameters(:,1),’F’,1));
if ~isempty(ix) & ~isempty(ix1) & ~isempty(ix2)
    error(‘Too many parameters in input.’);
end
if isempty(ix2)
    tw=parameters{ix,2};
    aw=parameters{ix1,2};
elseif isempty(ix1)
    tw=parameters{ix,2};
    f=parameters{ix2,2};
    aw=f/tw;
else
    aw=parameters{ix1,2};
    f=parameters{ix2,2};
    tw=f/aw;
end
ix=find(strncmpi(parameters(:,1),’EPS’,3));
if isempty(ix)
    error(‘Matrix porosity missing in input data.’);
end
eps=parameters{ix,2};

%
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% Create mesh
%
ix=find(strncmpi(colpar(:,1),’NI’,2));
if isempty(ix)
    error(‘Mesh size (NI) missing in input data.’);
end
NI=colpar{ix,2};
ix=find(strncmpi(colpar(:,1),’NJ’,2));
if isempty(ix)
    error(‘Mesh size (NJ) missing in input data.’);
end
NJ=colpar{ix,2};
% Set L to an arbitrary number, e.g. 1.0
L=1.0;
ix=find(strncmpi(parameters(:,1),’PENDEP’,6));
if isempty(ix)
    error(‘Penetration depth missing in input data.’);
end
XMAX=parameters{ix,2};
ix=find(strncmpi(colpar(:,1),’STRETCHING’,10));
if isempty(ix)
    error(‘Mesh stretching factor (STRETCHING) missing in input data.’);
end
re=colpar{ix,2};
[dz,dx]=FVFARF_create_mesh(NI,NJ,L,XMAX,re);

%
% Setup the system matrix for the ODE. Read COLLAGE parameters first.
%
us=L/tw;
Ds=us^2*tw/pe;
b=1/aw;
ix=find(strncmpi(colpar(:,1),’PHI’,3));
if isempty(ix)
    error(‘Rock matrix porosity (PHI) missing in input data.’);
end
phi=colpar{ix,2};
% Set velocity and diffusivity equal for solute and colloid fraction
um=us;
Dm=Ds;
ix=find(strncmpi(colpar(:,1),’ETA’,3));
if isempty(ix)
    error(‘Solute injection fraction (ETA) missing in input data.’);
end
eta=colpar{ix,2};
ix=find(strncmpi(colpar(:,1),’KAPPA1’,6));
if isempty(ix)
    error(‘Transfer coefficient (KAPPA1) missing in input data.’);
end
kappa1=colpar{ix,2};
ix=find(strncmpi(colpar(:,1),’KAPPA2’,6));
if isempty(ix)
    error(‘Transfer coefficient (KAPPA2) missing in input data.’);
end
kappa2=colpar{ix,2};
ix=find(strncmpi(colpar(:,1),’K1’,2));
if isempty(ix)
    error(‘Transfer coefficient (K1) missing in input data.’);
end
k1=colpar{ix,2};
ix=find(strncmpi(colpar(:,1),’K2’,2));
if isempty(ix)
    error(‘Transfer coefficient (K2) missing in input data.’);
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end
k2=colpar{ix,2};
ix=find(strncmpi(colpar(:,1),’BETA’,4));
if isempty(ix)
    error(‘Immobility fraction (BETA) missing in input data.’);
end
beta=colpar{ix,2};
ix=find(strncmpi(colpar(:,1),’FARFPOROSITY’,12));
if isempty(ix)
    error(‘Porosity model missing in input data.’);
end
FARFporosity=colpar{ix,2};
[A,B,LSCHEME]=FVFARF_setup_system(nuclides,NI,NJ,dz,dx,us,um,Ds,Dm,phi,b,eps
,kappa1,kappa2,k1,k2,beta,eta,FARFporosity);

%
% Allocate space for the solution and setup the initial condition
%
C=zeros(NI*NJ*NK,1);
y0=zeros(NI*NJ*NK,1);

%
% Set a sparsity pattern for the Jacobian
%
SJ = A~=0;
options = odeset(‘JPattern’,SJ);

%
% Set statistics on
%
options = odeset(options,’Stats’,’on’);

%
% Set RelTol
%
ix=find(strncmpi(colpar(:,1),’RELTOL’,6));
if isempty(ix)
    reltol=1e-6;
else
    reltol=colpar{ix,2};
end
options = odeset(options,’RelTol’,reltol);

%
% Set AbsTol
%
ix=find(strncmpi(colpar(:,1),’ABSTOL’,6));
if isempty(ix)
    abstol=1e-12;
else
    abstol=colpar{ix,2};
end
options = odeset(options,’AbsTol’,abstol);

%
% Solve the ODE using ode15s
%
ix=find(strncmpi(colpar(:,1),’TSTART’,6));
if isempty(ix)
    TSTART=0;
else
    TSTART=colpar{ix,2};
end
ix=find(strncmpi(colpar(:,1),’TSTOP’,5));
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if isempty(ix)
    error(‘Stop time (TSTOP) missing in input data.’);
else
    TSTOP=colpar{ix,2};
end
disp(‘Calling ode15s!’);
tic;[T,C]=ode15s(@FVFARF_func,[TSTART TSTOP],y0,options,A,B,nuclides);toc;

%
% Calculate the output funtion for each nuclideand plot it
%
colors={‘b’,’g’,’r’,’c’,’m’,’y’,’k’};
NT=size(T,1);
for K=1:NK
    out=FVFARF_output(LSCHEME,NT,NI,NJ,K,C,dz,us,um,Ds,Dm,b);
    loglog(T,out,colors{K});
    hold on
end
ylabel(‘Outflux [mole/yr]’)
xlabel(‘Time [yr]’)
grid on
axis([ 1e2 1e10 1e-15 1e0])

A2.2	 FVFARF_create_mesh.m
function [dz,dx]=FVFARF_create_mesh(NI,NJ,L,XMAX,re)
%FVFARF_create_mesh Discretize the computational domain for FVFARF
%
% FVFARF_create_mesh(NI,NJ) creates a mesh with NJ points in the transverse
% direction and NI points in the longitudinal direction. The physical size 
is 
% L in the longitudinal direction and XMAX in the transverse direction. The 
% stretching factor re is used in the transverse direction.
%

dz=L/NI;

dx(1)=0;
dx(2)=0;
dx(3)=1;
for J=4:NJ
    dx(J)=dx(J-1)*re;
end
dx=dx/sum(dx)*XMAX;

A2.3	 FVFARF_func.m
function dy=FVFARF_func(t,y,A,B,nuclides)
dy=A*y+FVFARF_input(t,B,nuclides);

A2.4	 FVFARF_input.m
function term=FVFARF_input(t,B,nuclides)
%FVFARF_input Calculates the constant term of the FVFARF system function
%
% FVFARF_input(t,B,nulides) calculates the constant term of the FVFARF
% system function based on the time t, the RHS vector B and a cell array of
% nuclides which contains the input time series definition for all
% nuclides.
%
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%
% Initialize output
%
term=zeros(size(B));

%
% Get information about which nuclides have input functions
%
isource=[nuclides{:,4}];

%
% Get time series values for all nuclides
%
NK=size(nuclides,1);
NINJ=size(B,1)/NK;
ix=1;
for i=1:NK
    value=isource(i)*FVFARF_interpolate_ts(t,nuclides{i,7});
    term(ix)=term(ix)+B(ix)*value;
    term(ix+1)=term(ix+1)+B(ix+1)*value;
    ix=ix+NINJ;
end

A2.5	 FVFARF_interpolate_ts.m
function y=FVFARF_interpolate_ts(t,ts)
%FVFARF_interpolate_ts Evaluate a timeseries at a specific time
%
% FVFARF_interpolate_ts(t,ts) evaluates the timeseries ts at time t using
% linear interpolation. If t is outside the definition of ts, zero is
% returned.
%

y=interp1(ts(:,1),ts(:,2),t,’linear’,0.0);

%
% Actually, the implementation below is clearly faster, so we keep it here,
% but commented. It relies on that the time series is sorted.
%
% ix=find(ts(:,1)>t);
% if isempty(ix)
%     %
%     % This is the case when t is beyond the definition of ts
%     %
%     y=0;
% elseif ix(1)==1
%     %
%     % This is the case when t is before the definition of ts
%     %
%     y=0;
% else
%     %
%     % This is the ordinary case
%     %
%     ix2=ix(1);
%     ix1=ix2-1;
%     t2=ts(ix2,1);
%     y2=ts(ix2,2);
%     t1=ts(ix1,1);
%     y1=ts(ix1,2);
%     y=y1+(t-t1)/(t2-t1)*(y2-y1);
% end
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A2.6	 FVFARF_output.m
function out=FVFARF_output(LSCHEME,NT,NI,NJ,K,C,dz,us,um,Ds,Dm,b);
%FVFARF_output Calculate the output function of the FVFARF program
%
% FVFARF_output(LSCHEME,NT,NI,NJ,K,C,dz,us,um,Ds,Dm,b) calculates the
% output function of the FVFARF program by integrating the outflux of a
% nuclide in time at the outlet of the stream tube. The output function is
% the sum of solved nuclide and colloid transportes nuclide at the outlet.
%

%
% Loop over all time points in solution time series
%
for it=1:NT
    %
    % Calculate cell indices at the outlet
    %
    I=NI;
    J=1;
    P=(K-1)*NI*NJ+(I-1)*NJ+J;
    W=P-NJ;
    NW=W+1;
    WW=P-2*NJ;
    NWW=WW+1;
    N=P+1;
    E=P+NJ;
    %
    % Switch over longitudinal discretization schemes
    %
    switch LSCHEME
        case ’CDS’
            OUT_s=2*b*(us*(15/8*C(it,P)-5/4*C(it,W)+3/8*C(it,WW))- 
Ds/dz*(2*C(it,P)-3*C(it,W)+C(it,WW)));
            OUT_m=2*b*(um*(15/8*C(it,N)-5/4*C(it,NW)+3/8*C(it,NWW))- 
Dm/dz*(2*C(it,N)-3*C(it,NW)+C(it,NWW)));
        case ’UDS’
            OUT_s=2*b*(C(it,P)*us-Ds/dz*(2*C(it,P)-3*C(it,W)+C(it,WW)));
            OUT_m=2*b*(C(it,N)*um-Dm/dz*(2*C(it,N)-3*C(it,NW)+C(it,NWW)));
    end
    %
    % Sum solved and colloid transported concentration
    %
    out(it)=OUT_s+OUT_m;
end

A2.7	 FVFARF_read.m
function [nuclides,single] = FVFARF_read(filename)
%FVFARF_read Read an ordinary FARF31 input file (in.dat)
%
% FVFARF_read(filename) reads an ordinary FARF31 data file for the stand
% alone version and returns a cell array of nuclides plus an idicator for
% element specific diffusivity
%

%
% Initialize return values
%
n=0;
nuclides={};
single=0;
%
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% Open input file
%
fid=fopen(filename,’rt’);
if fid==-1
    error(‘Could not open file.’);
end
%
% Read and parse all lines
%
while 1
    line=fgetl(fid);
    if ~ischar(line)
        break;
    end
    [token,rem]=strtok(line);
    %
    % Discard comment lines and empty lines
    %
    if ~(isempty(token)) & ~(token(1)==’#’)
        switch upper(token)
            case {‘PRINT’}
            case {‘CASENAME’}
            case {‘DIFFUSIVITY’}
                if findstr(upper(rem),’SINGLE’)
                    single=1;
                end
            otherwise
                %
                % Add this nuclide to the array of nuclides
                %
                n=n+1;
                nuclides(n,1)={token};
                %
                % Extract half life of nuclide
                %
                [token,rem]=strtok(rem);
                nuclides(n,2)={str2double(token)};
                %
                % Check if this nuclide has a daughter
                %
                [token,rem]=strtok(rem);
                nuclides(n,3)={str2num(token)};
                %
                % Check if this nuclide has input
                %
                [token,rem]=strtok(rem);
                nuclides(n,4)={str2num(token)};
        end
    end
end
%
% Close input file
%
fclose(fid);

A2.8	 FVFARF_read_colpar.m
function par=FVFARF_read_colpar(filename)
%FVFARF_read_colpar Read a colloid parameter file for FVFARF (in.col)
%
% FVFARF_read_colpar(filename) reads a colloid parameter file for
% FVFARF. It returns a cell array of parameter data.
%
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%
% Initialize return values
%
n=0;
par={};
%
% Open input file
%
fid=fopen(filename,’rt’);
if fid==-1
    error(‘Could not open file.’);
end
%
% Read and parse all lines
%
while 1
    line=fgetl(fid);
    if ~ischar(line)
        break;
    end
    [token,rem]=strtok(line);
    %
    % Discard comment lines and empty lines
    %
    if ~(isempty(token)) & ~(token(1)==’#’)
        switch upper(token)
            case {‘TSTART’ ‘TSTOP’ ‘ABSTOL’ ‘RELTOL’ ‘NI’ ‘NJ’ ‘STRETCHING’ 
‘PHI’ ‘ETA’ ‘BETA’ ‘K1’ ‘K2’ ‘KAPPA1’ ‘KAPPA2’ ‘FARFPOROSITY’}
                %
                % Add this parameter to the array of parameters
                %
                n=n+1;
                par(n,1)={token};
                %
                % Extract parameter value
                %
                [token,rem]=strtok(rem);
                par(n,2)={str2double(token)};
            otherwise
                error(’Unknown keyword found in colloid parameter file. 
(%s)’, upper(token));
        end
    end
end
%
% Close input file
%
fclose(fid);

A2.9	 FVFARF_read_par.m
function [par,el]=FVFARF_read_par(filename)
%FVFARF_read_par Read an ordinary FARF31 parameter file (in.par)
%
% FCFARF_read_par(filename) reads an ordinary FARF31 parameter file for
% the stand alone version. It returns a cell array of parameter data.
%

%
% Initialize return values
%
n=0;
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par={};
ne=0;
el={};
%
% Open input file
%
fid=fopen(filename,’rt’);
if fid==-1
    error(‘Could not open file.’);
end
%
% Read and parse all lines
%
while 1
    line=fgetl(fid);
    if ~ischar(line)
        break;
    end
    [token,rem]=strtok(line);
    %
    % Discard comment lines and empty lines
    %
    if ~(isempty(token)) & ~(token(1)==’#’)
        switch upper(token)
            case {‘F’ ‘TW’ ‘PECLET’ ‘ASPEC’ ‘EPS’ ‘DE’ ‘PENDEP’}
                %
                % Add this parameter to the array of parameters
                %
                n=n+1;
                par(n,1)={token};
                %
                % Extract parameter value
                %
                [token,rem]=strtok(rem);
                par(n,2)={str2double(token)};
            otherwise
                if strncmpi(token,’KDR_’,4)
                    elnam=token(5:end);
                    if ne>0
                        ix=find(strncmpi(el(:,1),elnam,2));
                        if isempty(ix)
                            ne=ne+1;
                            ix=ne;
                        end
                    else
                        ne=ne+1;
                        ix=ne;
                    end
                    el(ix,1)={elnam};
                    el(ix,2)={str2double(rem)};
                elseif strncmpi(token,’DE_’,3)
                    elnam=token(4:end);
                    if ne>0
                        ix=find(strncmpi(el(:,1),elnam,2));
                        if isempty(ix)
                            ne=ne+1;
                            ix=ne;
                        end
                    else
                        ne=ne+1;
                        ix=ne;
                    end
                    el(ix,1)={elnam};
                    el(ix,3)={str2double(rem)};
                end
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        end
    end
end
%
% Close input file
%
fclose(fid);

A2.10	 FVFARF_read_ts.m
function nuclides = FVFARF_read_ts(n,filename)
%FVFARF_read Read an ordinary FARF31 timeseries file (in.ts)
%
% FVFARF_read_ts(filename) reads an ordinary FARF31 timeseriea file for the 
stand
% alone version and fills a cell array of nuclides with time series data
%

%
% Initialize return values
%
nuclides=n;
ix=[];
ts=[];
len=0;
%
% Open input file
%
fid=fopen(filename,’rt’);
if fid==-1
    error(‘Could not open file.’);
end
%
% Read and parse all lines
%
while 1
    line=fgetl(fid);
    if ~ischar(line)
        break;
    end
    [token,rem]=strtok(line);
    %
    % Discard comment lines and empty lines
    %
    if ~(isempty(token)) & ~(token(1)==’#’) 
        %
        % Check if this is a nuclide header
        %
        if isnan(str2double(token))
            %
            % Add the time series to the current nuclide
            %
            if ~(isempty(ix))
                nuclides(ix,7)={ts};
                ix=[];
                ts=[];
                len=0;
            end
            ix=find(strcmpi(nuclides(:,1),token));
        else
            len=len+1;
            ts(len,1)=str2double(token);
            [token,rem]=strtok(rem);
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            ts(len,2)=str2double(token);
        end
    end
end
%
% Add the time series to the current nuclide
%
if ~(isempty(ix))
    nuclides(ix,7)={ts};
    ix=[];
    ts=[];
    len=0;
end
%
% Close input file
%
fclose(fid);

A2.11	 FVFARF_set_par.m
function nuclides=FVFARF_set_par(n,s,par,el)
%FVFARF_set_par Set physical parameters of each nuclide 
%
% FVFARF_set_par(n,s,par,el) sets the distribution coefficient Kd and the 
% effective diffusion coefficient of each nuclide in a cell array of 
nuclides n, 
% based on the contents of the data structures created by reading the input 
and 
% parameter files, i.e. the cell arrays, par and el.
%

%
% Initialize nuclides
%
nuclides=n;

%
% Set the distribution coefficient for each nuclide
%
for i=1:size(nuclides,1)
    ix=find(strncmpi(el(:,1),nuclides(i,1),2));
    if isempty(ix)
        error(‘Could not find element data in input.’)
    else
        nuclides(i,5)=el(ix,2);
    end
end

%
% Check if a single diffusion coefficient should be used
%
if s
    ix=find(strncmpi(par(:,1),’DE’,2));
    if isempty(ix)
        error(‘Could not find single diffusivity in input.’);
    else
        de=par(ix,2);
        for i=1:size(nuclides,1)
            nuclides(i,6)=de;
        end
    end
else
    %
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    % Set the nuclide specific diffusion coefficient for each nuclide
    %
    for i=1:size(nuclides,1)
        ix=find(strncmpi(el(:,1),nuclides(i,1),2));
        if isempty(ix)
            error(‘Could not find element data in input.’)
        else
            nuclides(i,6)=el(ix,3);
        end
    end
end

A2.12	 FVFARF_setup.m
function [A,B] =  
FVFARF_setup(NI,NJ,dx,dz,us,um,Ds,Dm,Dp,phi,b,R,kappa1,kappa2,k1,k2,beta,LAM
BDA,COMPIN,eta,LSCHEME)
%FVFARF_SETUP Set up the system matrix for one nuclide of FVFARF
%
% FVFARF_setup(NI,NJ) sets up the system matrix and the right hand side
% for the ODE generated by discretizing the FVFARF equations in space.
% NI is the number of points in the streamwise direction
% NJ is the number of points in the direction perpendicular to the stream
% tube (i.e. into the rock matrix)

%
% Create output variables
%
A = zeros(NI*NJ,NI*NJ);
B = zeros(NI*NJ,1);
%
% Outermost loop in the J direction (perpendicular)
%
for J=1:NJ
    %
    % Innermost loop in the I direction (streamwise)
    %
    for I=1:NI
        %
        % Calculate all indices we need in this cell
        % P is the cell itself
        % N means one cell further from the stream tube
        % S means one cell closer to the stream tube
        % W means one cell closer to the inlet
        % E means one cell closer to the outlet
        % Double and triple indices means a distance of 2 and 3 cells
        % respectively
        %
        P=(I-1)*NJ+J;
        W=P-NJ;
        WW=P-2*NJ;
        S=P-1;
        SS=P-2;
        N=P+1;
        NN=P+2;
        NNN=P+3;
        E=P+NJ;
        EE=P+2*NJ;
        %
        % Switch between the stream tube and the rock matrix
        %
        switch J
            %
            % J=1 is the index for the solution transport
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            %
            case 1
                %
                % Switch between upwind differences and central differences
                %
                switch LSCHEME
                    % Upwind
                    case ’UDS’
                        %
                        % Switch between inflow, outflow and ordinary case
                        %
                        switch I
                            case 1
                                %INFLOW BOUNDARY
                                %CONVECTIVE SCHEME UDS
                                A(P,P)=A(P,P)-us/dz-Ds/dz^2;
                                A(P,E)=A(P,E)+Ds/dz^2;
                                B(1)=COMPIN*eta/dz/2/b;
                            case NI
                                %OUTFLOW BOUNDARY
                                %CONVECTIVE SCHEME UDS
                                A(P,P)=A(P,P)-us/dz+Ds/dz^2;
                                A(P,W)=A(P,W)+us/dz-2*Ds/dz^2;
                                A(P,WW)=A(P,WW)+Ds/dz^2;
                            otherwise
                                %CONVECTIVE SCHEME UDS
                                A(P,P)=A(P,P)-us/dz-2*Ds/dz^2;
                                A(P,W)=A(P,W)+us/dz+Ds/dz^2;
                                A(P,E)=A(P,E)+Ds/dz^2;
                        end
                        %Central
                    case ‘CDS’
                        %
                        % Switch between inflow, outflow and ordinary case
                        %
                        switch I
                            case 1
                                %INFLOW BOUNDARY
                                A(P,P)=A(P,P)-us/dz/2-Ds/dz^2;
                                A(P,E)=A(P,E)-us/dz/2+Ds/dz^2;
                                B(1)=COMPIN*eta/2/b/dz;
                            case NI
                                %OUTFLOW BOUNDARY
                                A(P,P)=A(P,P)-11/8*us/dz+Ds/dz^2;
                                A(P,W)=A(P,W)+7/4*us/dz-2*Ds/dz^2;
                                A(P,WW)=A(P,WW)-3/8*us/dz+Ds/dz^2;
                            otherwise
                                A(P,P)=A(P,P)-2*Ds/dz^2;
                                A(P,W)=A(P,W)+us/dz/2+Ds/dz^2;
                                A(P,E)=A(P,E)-us/dz/2+Ds/dz^2;
                        end
                        
                end
                
                %ADD TRANSVERSE TERM
                A(P,P)=A(P,P)-phi*Dp/b*(8/3/dx(3));
                A(P,NN)=A(P,NN)+phi*Dp/b*(8/3/dx(3)+2/3/(dx(3)+dx(4)));
                A(P,NNN)=A(P,NNN)-phi*Dp/b*(2/3/(dx(3)+dx(4)));
                %ADD DECAY
                A(P,P)=A(P,P)-LAMBDA;
                %ADD COLLOID TERM
                A(P,P)=A(P,P)-(kappa1*k1+kappa2*k2);  %P represents  
nuclides in solution
                A(P,N)=A(P,N)+(kappa1+beta*kappa2); %in this case North is 
the mobile colloids



5�

                %
                % J=2 is the index for the colloid transport
                %
            case 2
                %
                % Switch between upwind differences and central differences
                %
                switch LSCHEME
                    % Upwind
                    case ‘UDS’
                        %
                        % Switch between inflow, outflow and ordinary case
                        %
                        switch I
                            case 1
                                %INFLOW BOUNDARY
                                %CONVECTIVE SCHEME UDS
                                A(P,P)=A(P,P)-um/(1+beta)/dz- 
Dm/(1+beta)/dz^2;
                                A(P,E)=A(P,E)+Dm/(1+beta)/dz^2;
                                B(2)=COMPIN*(1-eta)/(1+beta)/dz/2/b;
                            case NI
                                %OUTFLOW BOUNDARY
                                %CONVECTIVE SCHEME UDS
                                A(P,P)=A(P,P)- 
um/(1+beta)/dz+Dm/(1+beta)/dz^2;
                                A(P,W)=A(P,W)+um/(1+beta)/dz- 
2*Dm/(1+beta)/dz^2;
                                A(P,WW)=A(P,WW)+Dm/(1+beta)/dz^2;
                            otherwise
                                %CONVECTIVE SCHEME UDS
                                A(P,P)=A(P,P)-um/(1+beta)/dz- 
2*Dm/(1+beta)/dz^2;
A(P,W)=A(P,W)+um/(1+beta)/dz+Dm/(1+beta)/dz^2;
                                A(P,E)=A(P,E)+Dm/(1+beta)/dz^2;
                        end
                        %Central
                    case ’CDS’
                        %
                        % Switch between inflow, outflow and ordinary case
                        %
                        switch I
                            case 1
                                %INFLOW BOUNDARY
                                A(P,P)=A(P,P)-um/(1+beta)/dz/2- 
Dm/(1+beta)/dz^2;
                                A(P,E)=A(P,E)- 
um/(1+beta)/dz/2+Dm/(1+beta)/dz^2;
                                B(2)=COMPIN*(1-eta)/(1+beta)/2/b/dz;
                            case NI
                                %OUTFLOW BOUNDARY
                                A(P,P)=A(P,P)- 
11/8*um/(1+beta)/dz+Dm/(1+beta)/dz^2;
                                A(P,W)=A(P,W)+7/4*um/(1+beta)/dz-
2*Dm/(1+beta)/dz^2;
                                A(P,WW)=A(P,WW)- 
3/8*um/(1+beta)/dz+Dm/(1+beta)/dz^2;
                            otherwise
                                A(P,P)=A(P,P)-2*Dm/dz^2/(1+beta);

A(P,W)=A(P,W)+um/(1+beta)/dz/2+Dm/dz^2/(1+beta);
                                A(P,E)=A(P,E)- 
um/(1+beta)/dz/2+Dm/dz^2/(1+beta);
                        end



55

                        
                end
                %ADD DECAY
                A(P,P)=A(P,P)-LAMBDA;
                %ADD COLLOID TERM
                A(P,P)=A(P,P)-(kappa1+beta*kappa2)/(1+beta);
                A(P,S)=A(P,S)+(kappa1*k1+kappa2*k2)/(1+beta);
                %
                % All other J values for diffusion in the rock matrix
                %
            otherwise
                %
                % Switch between cells next to the stream tube, interior
                % cells and cells at the outer boundary
                %
                switch J
                    case 3
                        %South boundary
                        A(P,P)=A(P,P)- 
8/3*Dp/R/dx(J)*(1/(dx(J)+dx(J+1))+1/dx(J));
                        A(P,N)=A(P,N)+8/3*Dp/R/dx(J)/(dx(J)+dx(J+1));
                        A(P,SS)=A(P,SS)+8/3*Dp/R/dx(J)/(dx(J)) ;
                    case NJ
                        A(P,P)=A(P,P)-Dp/R/dx(J)*2/(dx(J)+dx(J-1));
                        A(P,S)=A(P,S)+Dp/R/dx(J)*2/(dx(J)+dx(J-1));
                    otherwise
                        A(P,P)=A(P,P)- 
Dp/R/dx(J)*(2/(dx(J)+dx(J+1))+2/(dx(J)+dx(J-1)));
                        A(P,S)=A(P,S)+Dp/R/dx(J)*2/(dx(J)+dx(J-1));
                        A(P,N)=A(P,N)+Dp/R/dx(J)*2/(dx(J)+dx(J+1));
                end
                %ADD DECAY
                A(P,P)=A(P,P)-LAMBDA;
        end
        %
        % End swich over J cell locations
        %
    end
    %
    % End I loop
    %
end
%
% End J loop

A2.13	 FVFARF_setup_system.m
function [A,B,LSCHEME]=FVFARF_setup_system(nuclides,NI,NJ,dz,dx,us,um,Ds,Dm,
phi,b,eps,kappa1,kappa2,k1,k2,beta,eta,FARFporosity)
%FVFARF_setup_system Set up the system matrix of the FVFARF system
%
% FVFARF_setup_system(A,B,nuclides) sets up the sysem matrix A and the RHS
% B of the FVFARF system based on a cell array of nuclide data.
%

%
% Allocate space for the system matrix and the RHS
%
NK=size(nuclides,1);
A=zeros(NI*NJ*NK,NI*NJ*NK);
B=zeros(NI*NJ*NK,1);

%
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% Select discetization schemes
%
if (dz*us/Ds)>2
    LSCHEME=’UDS’;
else
    LSCHEME=’CDS’;
end

%
% Calculate decay constant LAMBDA for all nuclides
%
thalf=[nuclides{:,2}];
LAMBDA=log(2)./thalf;

%
% Setup daughter vector
%
daughter=[nuclides{:,3}];

%
% Calculate retardation factor for all nuclides
%
Kd=[nuclides{:,5}];
if FARFporosity>0
    % This is the ordinary FARF model for the retardation factor
    R=eps+Kd*2700.0;
else
    % This is the COLLAGE model for the retardation factor 
    R=1.0+Kd*2700.0*(1.0-phi)/phi
end

%
% Calculate effective matrix diffusivity for all nuclides
%
Dp=[nuclides{:,6}];

%
% Setup the system matrix and right hand side of the ODE. Loop over
% nuclides:
%
for K=1:NK
    %
    % Setup the nuclide specific system matrix and RHS
    %
    [AA,BB] =  
FVFARF_setup(NI,NJ,dx,dz,us,um,Ds,Dm,Dp(K),phi,b,R(K),kappa1,kappa2,k1,k2,be
ta,LAMBDA(K),1.0,eta,LSCHEME);
    %
    % Add the contribution in its correct place
    %
    rc1=NI*NJ*(K-1)+1;
    rc2=rc1+NI*NJ-1;
    A(rc1:rc2,rc1:rc2)=AA;
    B(rc1:rc2)=BB;
    %
    % Add source terms for decay of mother nuclide
    %
    if K>1
        c1=NI*NJ*(K-2)+1;
        c2=c1+NI*NJ-1;
        A(rc1:rc2,c1:c2)=A(rc1:rc2,c1:c2)+daughter(K-1)*LAMBDA(K-
1)*eye(NI*NJ)*R(K-1)/R(K);
    end
end
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Appendix	3

A3	 Discretisation	techniques
A3.1	 Computational	domain
When discretising a cell P, the compass notation, Figure A�-1, is used to denote neighbouring 
cells. Upper case indices denote that the property is evaluated at the centre of the node while 
lower case indices denote properties evaluated at the boundary. Δ is used to denote the size 
of an element while δ denotes the distance between nodes (this distinction is relevant for 
non-equidistant meshes).

J

I

∆z

∆x

δxS
cEcWW cW

cN

cS

cP

cNN

δxN

Figure A3-1. Notations used when accessing properties in the computational domain.
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A3.2	 Discretisation	of	the	advection	–	dispersion	equation
Start with the conservation equation
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A3.2.1	 Inlet	boundary
At the inlet, the flux at the western boundary is given
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A3.2.3	 Outflow
The outflow from the stream tube from the solute phase is expressed as
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A3.3	 Matrix	diffusion
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A3.3.1	 Outer	boundary	in	the	transverse	direction
At the outer in the transverse boundary a symmetry boundary condition is used
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A3.4	 Mobile	colloids
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Applying Gauss’s theorem and perform discretisation analogous to the advection-dispersion 
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β
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A3.4.1	 Inlet	boundary
Analogous to the advection-dispersion equation
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A3.4.2	 Outlet	boundary
Analogous to the advection-dispersion equation
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A3.4.3	 Outflow
Analogous to the advection-dispersion equation
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A3.5	 Source	term	discretisation
The different source terms Q are discretised and added to their respective equations

A3.5.1	 Decay
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A3.5.2	 Sink	for	transverse	flux	in	the	advection-dispersion	equation
The term for the transverse flux of the transport equation is 
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A3.5.3	 Colloidal	exchange
The exchange term in the advection-dispersion equation
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A3.6	 Comparison	between	the	variables	used	in	the	FARF31	code	and	the	
Collage	II	Plus	code

Advection-dispersion equation used in the COLLAGE II code
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Identification of variables in the transverse diffusion equation
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Hence, the two codes use a different definition for the diffusivities and FARF diffusivities 
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Identifying variables in the sink for transverse diffusion in the advection-dispersion equation 
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