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Abstract 

Hydrochemical evaluation is a complex type of work, carried out by specialists. The outcome  
of this work is generally presented as qualitative models and process descriptions of a site.  
To support and help quantify the processes in an objective way, a multivariate mathematical  
tool named M3 (Multivariate Mixing and Mass balance calculations) has been constructed.  
The computer code can be used to trace the origin of the groundwater and calculate the mixing 
portions and mass balances even from ambiguous groundwater data. The groundwater composi-
tion used traditionally to describe the reactions taking place in the bedrock can now be used to 
trace the present and past groundwater flow with increased accuracy.

The M3 code is a groundwater response model, which means that the changes in the 
groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing 
model. The complexity of the measured groundwater data determines the configuration of the 
ideal mixing model. Deviations or similarities with the ideal mixing model are interpreted as 
being due to mixing or reactions. Assumptions concerning important mineral phases altering 
the groundwater or uncertainties associated with thermodynamic constants do not affect the 
modelling because the calculations are solely based on the measured groundwater composition.

M3 uses the opposite approach to that of many standard hydrochemical models. In M3 mixing  
is evaluated and calculated first. The constituents that cannot be described by mixing are 
described by reactions. The M3 model consists of three steps: the first is a standard principal 
component analysis, followed by mixing and finally mass balance calculations. The measured 
groundwater composition can be described in terms of mixing portions in % and the 
sink/sources of an element associated with reactions are reported in mg/l.
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Summary 

This report describes version 3.0 of the code M3 (Multivariate Mixing and Mass balance 
calculations). This method and computer code were developed to trace the mixing and reaction 
processes in the groundwater. The aim of the M3 concept is to decode the complex information 
often hidden in the groundwater analytical data. 

The present report (hereafter Report 1) will focus on the concepts, methods and mathematical 
formulation behind the M3 method. Two accompanying reports cover other aspects:

•	 Verification and Validation, /Gómez et al. 2006/ (hereafter Report 2) gathers a collection 
of validation and verification exercises, designed to test each part of M3 code and to build 
confidence in its methodology.

•	 User’s Guide, /Laaksoharju et al. 2006/ (hereafter Report 3) includes detailed reference to  
the M3 program’s capabilities, installation procedures and all functions and operations 
that the program can perform. It also describes sample cases of how the program is used to 
analyse a test data set.

The M3 method has been tested and modified over several years. The development work has 
been supported by the Swedish Nuclear Fuel and Waste Management Company (SKB). The 
main test site for the model was the underground Äspö Hard Rock Laboratory (HRL), but has 
been also extensively used in the Swedish sites of Forsmark, Simpevarp and Laxemar, and also 
in Canada, Jordan, Gabon and Finland.

The groundwater composition is a result of mixing processes and water-rock interaction. 
Standard groundwater models based on thermodynamic laws may not be applicable in a normal 
temperature groundwater system where equilibrium with many of the bedrock minerals is not 
reached and where biological processes seem to play a central role in the groundwater altering 
process. The major purpose of standard groundwater chemical codes is to describe the measured 
groundwater composition in terms of reactions. The constituents that cannot be described by 
reactions are described by mixing, possibly using a conservative tracer. The M3 model uses an 
opposite approach compared to the standard method. In M3 the mixing processes are evaluated 
and calculated first. This is possible due to the use of a multivariate technique (principal 
component analysis) to construct an ideal mixing model of a site. The constituents that cannot 
be described by mixing are described by reactions.

The M3 model consists of three steps; the first is a standard Principal Component Analysis 
(PCA), followed by mixing and finally mass balance calculations. In order to take into 
consideration as many relevant elements as possible, PCA is used to summarise and simplify 
the groundwater information. The M3 model compares the measured groundwater composition 
of each sample with known borehole-sampled waters or hypothetical extreme waters, called 
here simply end-members. All the measured groundwater samples at a site are compared to 
these end-members. The mixing calculations (i.e. mixing portions as a percentage of each 
selected end-member) determine how much of the observed groundwater composition is due 
to mixing from the selected end-member. The mass balance calculations (reported in terms 
of sinks/sources of groundwater constituents in mg/l or moles) determine how much of the 
measured groundwater constituents is the result of water-rock interaction. Since the calculations 
are relative to the selected end-members, modelling can only describe changes in terms of 
mixing and reactions taking place between the end-members. The results can be used to describe 
the groundwater characteristics both mathematically and quantitatively, rather than qualitatively 
as is often the case in a site description of the groundwater chemistry.
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The M3 method can be used for tracing groundwater evolution, past-present dispersion and 
water-rock interactions. The outcome from the modelling can be reported in non-hydrochemi-
cal terms such as changes in mixing portions or in gain/losses due to mass balance reactions. 
The comparison with hydrogeological models is easier since the results from the M3 model 
can be compared to the results from the hydrodynamic models. The effect on the groundwater 
composition observed from biological reactions such as organic decomposition or sulphate 
reduction can be traced. In groundwater chemical response modelling such as M3 information 
concerning fracture mineralogy, thermodynamic data bases or groundwater flow directions are 
not included. The model concentrates solely on tracing changes in the measured groundwater 
composition which can be interpreted as a result of mixing and reactions.

A comparison of the M3 model’s accuracy using two frequently used statistical tests, univariate 
and linear regression, shows that the prediction error (defined as the difference between the 
predicted concentration and the actual concentration, divided by the actual concentration) of 
the M3 calculations for water conservative constituents such as Cl and δ18O is on average three 
times lower for the data from the Äspö site /Laaksoharju et al. 1999bc/. As with any ground
water models, the validity of the results must be examined carefully using expert knowledge in 
the areas of hydrochemistry, hydrogeology and alternative modelling.

The M3 computer program is a standalone program developed in the MATLAB 7.1 computation 
environment /MATLAB 2005/. The M3 toolbox calculates and displays the results both as 
graphs and numerical data. In addition, it offers the user several ways of examining and 
interpreting data. 
 
Included with M3 is an online version of the reference manual, as well as Matlab libraries 
required to run the program. The M3 program has been tested on Windows 2000 and XP.
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1	 What is M3?

M3 /Laaksoharju et al. 1999c/ is a methodology and associated computer code to trace the 
mixing and reaction processes in a surface water-groundwater system. It was constructed to 
explain how and why we obtain the measured groundwater composition. The M3 method 
consists of 3 steps. The first is a standard principal component analysis, followed by mixing 
and finally by mass balance calculations. 

1.	 A standard multivariate technique, called Principal Component Analysis (PCA) is used for 
cluster analyses of the data by using major elements (e.g. Cl, Ca, Na, Mg, K, SO4, HCO3, 
etc) in combination with stable isotopes (2H, 18O) and radiogenic isotopes (3H). The chosen 
variables are generally relatively easy to analyse with a high analytical accuracy and they are 
known to describe the major groundwater features. Generally, depending on the analytical 
program, there may be other variables than those suggested which can also contain important 
information concerning the evolution of the groundwater at a site. Such variables should 
then be included in the PCA. Other cases, where isotopes are not analysed, may cause 
lower resolution in M3 modelling. The PCA aims to describe as much of the information 
as possible from the variables in the first principal component.

	 The rest of the information is described by the second , third, etc principal components. 
Principal components are linear combinations of the original variables used to summarise 
most of the information in the data. The weights of the different variables in the equations 
are calculated automatically by the PCA. For the first two principal components an x-y 
scatter plot can be drawn (Figure 1-1). There, x is the equation for the first principal 
component and y is the equation for the second principal component. The plot is called 
the PC-plot and is used to visualise the clustering of the data as well as to identify end-
members. Careful examination of the PC-plot can provide additional information as to 
the origin, complexity and relationship of the groundwater system. An end-member can in 
practice be any water; however, a real groundwater (sampled in a borehole) which resembles 
an assumed or modelled end-member is usually selected (Figure 1-1a and b). The number of 
selected end-members should be the minimum required to describe the observations.

2.	 Mixing calculations are used to calculate the mixing contribution of the end-members to the 
observed groundwater composition. The calculated mixing portion can be used to evaluate 
the mixing situation, the origin of the groundwater and possible flow paths (Figure 1-1c).

3.	 Mass balance calculations (deviation calculations) are used to define the sources and sinks 
for different elements which deviate from the ideal mixing model based on the mixing of 
end-members (Figure 1-1d). No deviation from the measured value indicates that mixing can 
explain the element behaviour, whereas source or sink is due to net reactions. The evolution 
caused by water-rock interactions can thus be described.
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1.1	 What M3 can do
M3 is able to:

•	 Perform a principal component analysis on a dataset (each row a sample, each column a 
compositional variable) (Section 3.1). The benefits of using M3 increase when the size of 
the dataset increases.

•	 Plot the results in two and three dimensions using the first two or first three principal 
components as coordinate axes, respectively (PC-plots).

•	 Perform a mixing calculation using two or all the principal components once a set of 
end-members have been defined. This mixing calculation step gives the percentage of each 
end-member in every sample in the dataset (Section 3.2).

•	 Colour-code each sample in a PC-plot with respect to the contribution of each end-member 
to the mixing. 

•	 Calculate, for each sample in the dataset, a “theoretical” composition from the above mixing 
proportions. This “theoretical” composition is that which the sample would have if mixing 
were the only process affecting its composition and if the end-members had been properly 
selected (for the meaning of “properly”, see Section 4.1).

•	 Perform a mass balance calculation by subtracting the real composition of a sample from 
the computed (“theoretical”) composition. Because the computed composition reflects pure 
mixing, the difference between the real and the computed compositions is interpreted by 
M3 as a mass balance, i.e. elements that have been enriched or depleted with respect to 
pure mixing (Section 3.3).

Figure 1-1.  Different steps in the M3 modelling; a) principal component analysis is used to obtain 
the maximum resolution of the data set; b) selection of end-members: the other groundwaters are 
compared to these; black dots are samples outside the mixing polyhedron and thus not explained by 
pure mixing of the selected end-members; c) mixing calculations: the distance in the PC space to the 
end-members e.g. the portions of brine end-member are shown in the figure, using the range from 0 
(no brine end-member) to 1 (pure brine end-member); d) mass balance calculations: the sources and 
sinks of e.g. bicarbonate (HCO3

−, mg/L) are shown which cannot be accounted for by mixing.
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•	 Via the End-member Selection Module (Section 4.1), select the best combination of end-
members for a given dataset. This selection procedure is semi-automatic but the user has 
first to produce a number of end-members (this number could be high) that are believed to 
have been involved in the genesis of every water sample in the dataset.

•	 Via the End-member Variability Module (Section 4.2), give mixing proportion ranges for 
a given sample from ranges in the chemical composition of the selected end-members. 
The ranges in the chemical composition of the end-members are supplied by the user.

1.2	 What M3 can not do
M3 is not able to:

•	 Interpret in terms of reactions the mass balance calculation step. This is left to the user after 
taking into account a wide range of background information on the system being studied.

•	 Separate the effect of a chemical reaction from a pure mixing if the final result of both is 
identical. In other words, if a chemical reaction has the same effect on the composition of 
a water sample (considering only the compositional variables that have been used in M3) 
as a pure mixture of specific end-members, M3 would say that the mass balance is zero 
and therefore, that the sample can be “constructed” only by the mixing of the selected 
end-members. It is up to the users to assess the likelihood of one or the other outcome 
(again, after a careful geochemical and hydrological study of the system).

•	 Guarantee that the selected set of end-members is the best set in absolute terms. It can 
only assure that it is the best out of all the possibilities covered by the extended set of 
end-members included in the End-member Selection Module.

•	 Perform reaction path calculations as many geochemical codes like PHREEQC /Parkhurst 
and Appelo 1999/ or WATEQ4F /Ball and Nordstrom 2001/.

•	 Perform reactive transport calculations.

1.3	 Alternatives to M3
M3 uses an specific methodology to compute mixing proportions. Nevertheless, other 
approaches has been proposed. Here we are interested in those already applied to mixing in 
groundwater systems. The purpose of this section is to let the potential M3 user know that 
alternative approaches to mixing can be tried with the same dataset in order to get a better 
understanding of the uncertainties involved in the calculations.

The chemometric algorithm of Cave and collaborators. This approach to computing mixing 
proportions /Cave and Harmon 1997, Cave and Wragg 1997, Dershowitz et al. 2000/ makes no 
initial assumptions about the nature of the end-members present and considers all the contribu-
tions to chemical variability in the groundwaters. In other words, end-members are not imposed 
from the beginning, but are computed along the way. This is the main difference with the M3 
methodology and should be taken into consideration when end-members are not evident. It has 
been used in Task Force 5 at Äspö URL /Dershowitz et al. 2000/ where its results are compared 
to M3’s.

The basic approach is illustrated in Figures 1-2 and 1-3. Here matrix A is the supplied ground-
water data matrix (each column an input compositional variable, each row a different sample), 
and matrices B and C need to be found. The process for finding matrices B and C is carried out 
in four stages /Dershowitz et al. 2000/:

1.	 PCA and eigenvalue analysis are initially used in the same way as in M3.

2.	 The varimax-rotated loadings matrix /Reyment and Jvreskog 1996, Haan 2002/ from the 
PCA of matrix A, containing the initial groundwater compositions, is used to produce a 
first approximation of matrix B, which contains the mixing proportions.
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3.	 The pseudoinverse method for non-square matrices (Singular Value Decomposition, SVD, 
see footnote 3 in Section 3.1.2) is then applied to matrices A and B to produce a first 
approximation of matrix C, which contains chemical components that contribute to the 
chemical variability in the groundwaters, some of which should correspond approximately 
to end-members.

4.	 Matrices B and C are refined iteratively using the pseudoinverse method until both matrices 
contained estimates of mixing proportions and chemical components compositions that are 
consistent with the groundwater compositions of the original matrix A.

It is important to note that the chemical components obtained from the chemometric  
algorithm are not principal components (they have been rotated to make loadings simpler,  
see Section 3.1.2), but are derived from them. 

The multi-parameter approach of /Rueedi et al. 2005/. /Rueedi et al. 2005/ have set up 
a method to compute mixing ratios based on the simultaneous use of several conservative 
parameters and applying a general mixing theory /e.g. Faure 2004/. No PCA is carried out and 
all non-conservative compositional parameters are excluded.

This approach has its weak point in the selection of end-members. As /Rueedi et al. 2005/ put 
it “this step always involves arbitrariness, which is why it is the least reproducible step of the 
presented approach. Therefore, the selection has to rely on a well-defined decision basis”.

Figure 1-2.  Relationships between matrices in the chemometric approach of Cave and collaborators 
/Cave and Harmon 1997, Cave and Wragg 1997, Dershowitz et al. 2000/.

Figure 1-3.  Summary of the procedure to compute mixing proportions under the chemometric 
approach.
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The approach to estimate mixing ratios and their uncertainties is based on the following 
procedure /Rueedi et al. 2005/:

1.	 Analysis of available data in terms of data quality, measurement techniques and precisions.

2.	 Exclusion of non-conservative parameters.

3.	 Selection of samples representing the end-members based on all available information 
(geology, hydrogeology and spatial distribution of hydrochemistry).

4.	 Estimation of end-member parameters and their uncertainties at each location.

5.	 Correction for other sources influencing the chemical and/or isotopic groundwater signature.

6.	 Calculation of the overall mixing ratios of a sample using the calculated mixing ratios of 
each groundwater parameter.

The method is applicable, in principle, for any number of end-members, but the mathematics 
could get quite involved when more than three end-members are used.

The method of /Carrera et al. 2004/ to compute mixing ratios with uncertain end-
members. Most methods available for computing mixing ratios are based on assuming that 
end-member concentrations are perfectly known, which is rarely the case. Often, end-members 
cannot be sampled, and their concentrations vary in time and space. Still, much information 
about them is contained in the mixtures.

To take advantage of this information, /Carrera et al. 2004/ have developed a maximum 
likelihood method to estimate mixing ratios, while acknowledging uncertainty in end-member 
concentrations. Maximizing the likelihood of concentration measurements with respect to 
both mixing ratios and end-member concentrations leads to a general constrained optimisation 
problem /Carrera and Neuman 1986/. The method has been compared to more traditional 
methods like least squares and linear mixing, outperforming both of them. The method also 
yields improved estimates of end-member concentrations, thus enlarging the potential of 
mixing calculations. 

The proposed algorithm consists of the following four steps /Carrera et al. 2004, 
paragraph [13]/:

1.	 Initialisation, consisting in the definition of initial mixing ratios by conventional least 
squares, assuming that the composition of the end-members is fully known (zero uncertainty).

2.	 Given the initial mixing ratios, maximise the log-likelihood function to estimate, at the 
same time, the expected values of the composition (i.e. concentrations) of the mixed waters 
and of the end-members.

3.	 Given the expected values of mixed water and end-member concentrations, maximise the 
log-likelihood to obtain the mixing ratios.

4.	 Repeat Steps 2 and 3 until convergence.

The log-likelihood function to be maximise is:
 ( ) ( )1

1

1ln
2

ns
t

s s s s s
s

L −

=

 = − − −  
∑ z μ A z μ ,

where zs are vectors containing the concentration of all species in both the samples and the 
end-members (there are ns such vectors, the sum of the number of samples plus the number 
of end-members), µs are vectors with the expected values of zs and A−1 is the inverse of the 
covariance matrix. Of course, µs and A are unknown, and the procedure consists of finding 
those µs and As that maximise the above function. The resulting non-linear system of equations 
is solved iteratively by a Newton-Raphson method.

The authors test the method with two synthetic data sets, one consisting of two end-members 
and two species (species are the chemical variables used to trace mixing, like chlorine or 
deuterium), and the other consisting of three end-members and five species. 
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To simulate the uncertainty in the concentration of end-members, and to check the incidence of 
this uncertainty in the final mixing proportions, deviations from the “true” concentrations are 
introduced in the form of a “noise” term. Two level of noise are tested, a low variance and a 
high variance one.

The results are evaluated in terms of an “improvement index” for end-member concentrations, 
which evaluates the reduction in mean square error of end-member concentrations during 
estimation (an improvement index of 2 means that the error has been reduced by a factor of 
two). In the three-end-member, five-species case, improvement indices of 3 (in the case of only 
four samples) to 8 (in the case of 100 samples) have been obtained. 

These results nicely show that redundancy in both the number of species and the number of 
samples greatly improve the quality of the estimations (this is the basic idea behind the M3 
approach). This methodology has been applied to a real groundwater system by /Vázquez-Suñé 
et al. 1997/.
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2	 Historical development of M3

As already stated, the underlying hypothesis behind M3 is that the origin and evolution of the 
groundwater can be described if the effects of mixing and reactions can be examined separately. 
Starting with the mixing and letting those constituents that cannot be explained by mixing be 
described by reactions, rather than approaching reactions first and allowing mixing to explain 
the constituents, makes modelling simpler since less prerequisite information is needed. A 
simple two component mixing mass balance model was described by /Laaksoharju 1990, 
Smellie and Laaksoharju 1992/ and /Banwart et al. 1992/. The main aim of the model was to 
differentiate in the groundwater between what is due to mixing and what is due to water-rock 
reactions by using one variable e.g. Cl as a conservative tracer. A basic feature of this method 
is the identification of the original source water types that all others are mixed from. These 
original types of waters are called end-members. However, the model seemed to have limita-
tions when tracing a more complex system involving several end-members. The real dynamics 
of the system may thus remain undetected and the processes behind the measured groundwater 
composition could be misinterpreted. Many variables are important for the understanding of 
the transport, mixing processes and reactions taking place in the groundwater system, such as 
Cl, δ18O and δ2H. The information gathered in many variables can best be handled by using 
multivariate techniques.

A new method named M3 (Multivariate Mixing and Mass balance calculations) was developed 
in order to identify with a higher resolution the contribution of the observed groundwater 
composition from mixing and reactions /Laaksoharju et al. 1995/. The method is based on a 
Principal Component Analysis followed by a mixing and mass balance calculation once proper 
end-members have been identified and defined. The novel feature of this method is to use the 
result from the principal component analysis as a basis for calculating the effects of mixing 
and reactions.

The M3 method has been tested and modified over several years on contract from the Swedish 
Nuclear Fuel and Waste Management Company (SKB). The main test site for the model has 
been the underground Äspö Hard Rock Laboratory (HRL), but it has also been used in  
Canada /Smellie and Karlsson 1996/, Jordan /Waber et al. 1998/, Oklo in Gabon /Gurban et al. 
1998/ and Palmottu in Finland /Laaksoharju et al. 1999a/, and most recently in SKB’s Site 
Characterisation Programme /Laaksoharju et al. 2004ab, Laaksoharju 2004/.

The first version of the code (M3 v1.0) appeared in 1995 /Laaksoharju et al. 1995/ but it was 
not until 1999 when the first documented version of M3 (v2.0) was available as an SKB report 
/Laaksoharju et al. 1999b/ and as a paper in Applied Geochemistry /Laaksoharju et al. 1999c/.

The latest version of M3 (v3.0) has enough new features to deserve a thorough update of the 
1999 manual. The added functionality of M3 v3.0 tries also to overcome some criticisms raised 
by specific methodological steps in previous versions, mainly those regarding the use of only 
two principal components to compute mixing proportions /e.g. Dershowitz et al. 2000, Bath and 
Jackson 2002/, and those regarding the selection of end-members /Bath and Jackson 2002/.

Besides the added capabilities, an extra reason to update the documentation is to comply with 
recent QA regulation to be imposed on all codes used in SKB’s Site Investigation programme 
/SKB 2003, 2004, Hicks 2005/. 

/Hicks 2005/ points out that “the results [of the review process of several codes] show that there 
are varying standard of code documentation and testing with some room for improvement in 
certain areas”. Specifically, Hicks’ conclusions for M3 state that “/Laaksoharju et al. 1999b/ 
provide a comprehensive description of how to run M3. However, no details of the implementa-
tion of Principal Component Analysis (PCA) theory and the mass balance calculation method 
have been identified in any of the references reviewed under this project.” To overcome these 
shortcomings in the documentation and testing of M3 is another of the reasons for this revision.
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3	 Mathematical formulation

This section is dedicated to the detailed description of the three basic steps that form the back-
bone of M3. The emphasis here is on the mathematical formulation, but fundamental concepts 
(e.g. end-members) and methods (e.g. mixing and mass balance) are also introduced. The 
first subsection presents the multivariate statistical technique known as Principal Component 
Analysis from where the remaining computations are carried out. This is a rather technical topic 
but jargon and mathematical level have been kept to the bare minimum. The other two subsec-
tions are less demanding mathematically but more so geochemically. If the meaning of PCA is 
already known, skip Section 3.1 and go straight to Section 3.2 (mixing) or 3.3 (mass balance).

3.1	 Principal component analysis
Principal Components Analysis (PCA), the core of M3, is a useful statistical technique that has 
found application in fields such as classification, pattern recognition, and image compression, 
and is a common technique for finding patterns in data of high dimension.

Before getting to a description of PCA, it is first useful to introduce the mathematical and 
statistical concepts that underlie PCA, mainly covariance, eigenvectors and eigenvalues. 
Further information can be found in many mathematics and statistics textbooks /e.g. Griffel 
1989, Bevington and Robinson 1992, Anton 2000, Davis 2002/. What follows is based on the 
text “A tutorial on Principal Components Analysis” by Lindsay I Smith (http://csnet.otago.
ac.nz/cosc453/student_tutorials/ principal_components.pdf). 

3.1.1	 Background mathematics
This section attempts to give some elementary mathematical background that will be required 
to understand the process of PCA. The topics are covered independently of each other, and 
examples given. First we deal with statistical concepts (standard deviation, variance and 
covariance) and then with that part of the algebra of matrices relevant to PCA (eigenvectors and 
eigenvalues). Readers familiar with the fundamentals of PCA can go directly to Section 3.1.2.

Covariace

Covariance is a generalization of the variance (a measure of the spread of the data around 
the mean value) to more than one variable, and defines the degree of correlation (and spread) 
between pairs of variables. 

Variance (and standard deviation) only operates on one variable, so one can only calculate the 
variance for each variable of the data set independently of the other variables. However, it is 
useful to have a similar measure to find out how much the variables vary from the mean with 
respect to each other.

Covariance is such a measure. Covariance is always measured between two variables. If one 
calculates the covariance between one variable and itself, the variance is obtained. So, for a 
3-dimensional data set (x, y, and z variables), one can measure the covariance between the x and 
y variables, the x and z variables, and the y and z variables. Measuring the covariance between x 
and x, or y and y, or z and z would give the variance of the x, y and z variables respectively.

http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
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Table 3-1.  A two-variable dataset and covariance calculation. The dataset consists of 18O 
and 2H delta-values (permil deviations) of 12 groundwater samples from the Scandinavian 
Shield. 

Data Covariance
δ18O  
 (‰ dev)

δ2H  
(‰ dev)

δ18O δ2H 18 18( O O)δ − δi
2 2( H H)δ − δi

18 18 2 2( O O)( H H)δ − δ δ − δi i

–11.9 –83.4 –11.9 –83.4 –1.45 –4.73 6.85
–9.7 –75.7 –9.7 –75.7 0.753 2.97 2.23

–10.2 –78.4 –10.2 –78.4 0.253 0.267 0.0673
–7.4 –61.5 –7.4 –61.5 3.05 17.2 52.4

–13.6 –99.4 –13.6 –99.4 –3.18 –20.7 65.9
–11.5 –89.4 –11.5 –89.4 –1.05 –10.7 11.2
–10.0 –73.4 –10.0 –73.4 0.453 5.27 2.38
–12.3 –90.6 –12.3 –90.6 –1.85 –11.9 22.0
–11.1 –76.1 –11.1 –76.1 –0.647 2.57 –1.66

–8.5 –64.8 –8.5 –64.8 1.95 13.9 27.1
–10.6 –82.0 –10.6 –82.0 –0.147 –3.33 0.492

–8.6 –69.3 –8.6 –69.3 1.85 9.37 17.4
Total –125.4 –944.0 206.36
Mean –10.45 –78.67 17.20

The formula for covariance is very similar to that for variance, 

( )( )1var( )
1

=
− −

=
−

∑n
i ii

x x x x
x

n
,								        (3-1)

the only difference being the replacement of the x’s for the y’s in the second set of brackets: 

( )( )1cov( , )
1

=
− −

=
−

∑n
i ii

x x y y
x y

n
,							       (3-2)

which can also be written in terms of random variables X and Y as

( )( )cov( , ) = 〈 − 〈 〉 − 〈 〉 〉X Y X X Y Y 							       (3-3)

In Equations (3-1) and (3-1) x is the mean of variable x and y is the mean of variable y, and in 
Equation (3-3) 〈·〉 is the expected value of the random variable. From Equations (3-2) or (3-3) it 
is easily deduced that cov(x, y) = cov (y, x), a property that will be useful when the covariance 
matrix is introduced in the next section.

An example dataset would clarify the meaning of the covariance. Table 3-1 gives the deuterium 
and 18O delta-values (‰) for ten groundwater samples from the Scandinavian Shield. There are 
two variables, δ2H and δ18O, and the lower part of Table 3-1 gives the steps needed to compute 
the covariance between both variables, cov (δ18O,δ2H) = 17.20.

What does this tell us? The exact value is not as important as its sign (ie. positive or negative). 
If the value is positive, as it is here, it indicates that both variables increase together, meaning 
that, in general, as the deuterium delta value increases, so does the 18O delta-value. If the value 
is negative, then as one variable increases the other decreases. And if the covariance is zero, it 
indicates that the two variables are independent of each other.

The result that the delta-value of 18O increases as the delta-value of 2H increases can be easily 
seen by drawing a graph of the data, as in Figure 3-1. However, the advantage of being able to 
visualize data is only available in 2 and 3 dimensions (as it would be clear when dealing in M3 
with multi-dimensional data). Since the covariance value can be calculated between any two 
variables in a data set, this technique is often used to find relationships between variables in 
high-dimensional data sets where visualisation is difficult.
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The covariance matrix

As already seen, covariance is always measured between two variables. If we have a dataset 
with more than two variables, there is more than one covariance measurement that can be 
calculated. For example, from a three-variable dataset (variables x, y, z) one can calculate 
cov(x, y), cov(x, z), and cov(y, z) . In fact, for an n-variable dataset, one can calculate n!/2(n–2)! 
different covariance values. These covariance values are usually arranged into a matrix, called 
the covariance matrix:

( )( )Tcov( ) = 〈 − 〈 〉 − 〈 〉 〉X X X X X 								       (3-4)

where X is a column vector of n random variables. Covariance matrix cov (X) is an n×n matrix 
containing as elements the covariance of a pair of variables of the dataset. For example, for a 
dataset with three variables x, y and z, the covariance matrix will be written as:

cov( , ) cov( , ) cov( , )
cov( ) cov( , ) cov( , ) cov( , )

cov( , ) cov( , ) cov( , )

 
 =  
  

x x x y x z
y x y y y z
z x z y z z

X ,						      (3-5)

with X = (x,y,z)T and cov(a,b) computed from Equation (3-2).

Some points to note: Down the main diagonal, the covariance value is between one of the vari-
ables and itself, i.e. the diagonal contains the variance of the variables of the dataset. The other 
point is that since cov(a,b = cov(b,a), the covariance matrix is a real square symmetric matrix.

Eigenvectors

A general result of matrix algebra is that one can multiply two matrices together, provided 
they have compatible sizes. Eigenvectors are a special case of this. Consider the following two 
multiplications between a matrix and a vector:

2 3 1 11
2 1 3 5

2 3 3 12 3
4

2 1 2 8 2

     
× =     

     
       

× = = ×       
       

								      

(3-6)

Figure 3-1.  Plot of the covariance data from Table 3-1 showing the positive relationship between δ 18O 
and δ 2H.
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In the first example, the resulting vector is not an integer multiple of the original vector, but in 
the second example, the resulting vector is exactly 4 times the starting vector. This is because a 
vector can be thought of as a point in 2-dimensional space. The vector (3,2)T (from the second 
example above)� represents an arrow pointing from the origin, (0,0)T, to the point (3,2)T. The 
other matrix, the square one, can be thought of as a transformation matrix. If one multiplies this 
matrix on the left of a vector, the answer is another vector that is transformed (rotated, rescaled, 
reflected) from its original position.

It is the nature of the transformation that the eigenvectors arise from. Imagine a transformation 
matrix that, when multiplied on the left, reflects a vector through the line y = x (i.e. y = x is 
the “mirror plane” of the transformation). It is easy to see that if a vector lies on the line y = x, 
it would be reflected onto itself. This vector (and all multiples of it, because it would not 
matter how long the vector is), would be an eigenvector (from the German eigen, itself) of the 
transformation matrix.

Eigenvector have several interesting properties. First of all, they can only be found for square 
matrices. But not every square matrix has eigenvectors. And, given an n×n matrix that does have 
eigenvectors, there are n of them. Given a 3×3 matrix, there are 3 eigenvectors. 

Another of their properties is that even if an eigenvector is scaled by a certain amount before 
multiplying it, the same multiple of it is found as a result:

2 3 3 12 3
4

2 1 2 8 2
       

× = = ×       
       

3 6
2

2 4

2 3 6 24 6
4

2 1 4 16 4

   
× =   

   
       

× = = ×       
       

							       (3-7)

This is because if one scales a vector by a certain amount, the vector would be longer, but its 
direction would remain unchanged. 

Lastly, all the eigenvectors of a matrix are orthogonal, i.e. at right angles to each other, no 
matter how many dimensions (variables) are involved. This is important because it means that 
one can express the data in terms of these orthogonal eigenvectors, instead of expressing them 
in terms of the original axes (one axis for each variable in the dataset). This is one of the key 
operations behind PCA.

Another important thing to know is that eigenvectors are always normalised to have a length 
of one. This is because the length of a vector does not affect whether it is an eigenvector or not, 
whereas the direction does. So, in order to keep eigenvectors standard, they are usually scaled 
to give them a length of one. Following the example above, (3,2)T is an eigenvector, and its 
length is

( )2 23 2 13+ = 								        (3-8)

So we divide the original vector by 13 to give it a length of 1:
3 3/ 13 0.832

13
2 0.5552 / 13

    
÷ = =         

							      (3-9)

�  Interchanging rows with columns in a vector or a matrix gives the transpose of the vector or matrix. 
This operation is designated with the superindex T after the vector or matrix. The transpose of vector  

3

2
 
  

 is vector (3,2)T.
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For small square matrices, eigenvectors (and eigenvalues; see below) are found by solving 
the characteristic equation │C–λI│ = 0, where C is the data matrix (the covariance matrix 
in our case), I is the unit matrix (a matrix with diagonal entries equal to one and off-diagonal 
entries all zero), and λ are the eigenvalues. This equation is a determinant that expands into a 
polynomial of degree n (the number of rows or columns of the data matrix). For bigger matrices, 
special numerical iterative methods are used. The most common and general technique is called 
Singular Value Decomposition (SVD), which consists in factorising the covariance matrix 
into three matrices: a diagonal matrix containing the square roots of the eigenvalues, and two 
orthogonal matrices containing the eigenvectors. See /Griffel 1989/ for a technical introduction 
to the subject and /Press et al. 1992/ or /Davis 2002/ for a more practical one. /Anton 2000/ also 
gives good advice on eigenvectors in general, how to find them, and orthogonality. There are 
also many ready-to-use numerical routines to find the eigenvectors of a matrix. A useful maths 
package, called newmat, is available at http://webnz.com/robert/. 

Eigenvalues

Eigenvalues are closely related to eigenvectors; in fact, Equations (3-6) and (3-7) have an 
example of one eigenvalue. Notice how, in both examples, the amount by which the original 
vector was scaled after multiplication by the square matrix was the same. In this example, the 
value was 4. This number, 4, is the eigenvalue associated with eigenvector (3/√13, 2√13)T . No 
matter what multiple of the eigenvector we took before we multiplied it by the square matrix, 
we would always get 4 times the scaled vector as our result (as in Equation 3-7). So one can see 
that eigenvectors and eigenvalues always come in pairs. When one uses a programming library 
to calculate eigenvectors, the eigenvalues associated to each eigenvector are calculated as well.

3.1.2	 Steps in PCA
PCA is a way of identifying patterns in data, and expressing the data in such a way as to 
highlight their similarities and differences. Since patterns in data can be hard to find in data of 
high dimension, where the luxury of graphical representation is not available, PCA is a powerful 
tool for analysing data.

The other main advantage of PCA (also exploited in M3) is that once these patterns in the data 
are found, one can ”compress” the data by reducing the number of dimensions, without much 
loss of information. This is extremely useful when trying to graphically summarise the most 
important information.

Following /Lindsay 2000/, PCA can be decomposed into six basic steps:

Step 1: Get the data. To keep things simple, a two-dimensional example dataset will be used. 
Two dimensions give the opportunity of plotting the results to show what the PCA analysis 
is doing at each step. The data used are 1,550 analysis of deuterium and 18O delta-values of 
groundwater samples from the Scandinavian Shield. They can be found in Appendix A and are 
plotted in Figure 3-2 colour-coded according to the Cl content of each sample (the Cl content 
is also listed in Appendix A). The two-variable data set can be arranged into a matrix X formed 
by two-columns: column 1 contains the δ10O values and column 2 the δ2H values.

Step 2: Normalise each variable of the dataset. For PCA to work properly, the variables 
should be normalised (or “reduced”), by subtracting the mean and dividing by the standard 
deviation. This operation is carried out separately for each variable in the dataset. If the dataset 
consists of two variables, xi and yi (in our example x is the 18O delta-value and y is the 2H delta-
value, and i runs from 1 to 1,550) the reduced variables x′ and y′ are:

−′ =
σ
i

i
x

x xx 									         (3-10a)

and

http://webnz.com/robert/
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−′ =
σ
i

i
y

y yy , 									         (3-10b)

where, as before, x and y are mean values and σx and σy are the standard deviation of each 
variable. The normalised or reduced variables are plotted in the right panel of Figure 3-2. Notice 
that now both variables have zero mean (values are centred around zero) and the axes limits 
have changed to reflect the one-standard deviation normalisation.

Step 3: Calculate the covariance matrix. This is done in exactly the same way as mentioned 
in section 3.1.1. Since the dataset is 2-dimensional, the covariance matrix is a 2×2 matrix. 
The result is

18 2 1.000 0.937
cov( O, H)

0.937 1.000
 

δ δ =  
 

.						      (3-11)

So, since the non-diagonal elements in this covariance matrix are positive, we should expect 
that both the x and y variables increase together. Notice also that the variance of both variables 
(diagonal terms) is one, as expected, because we are working with normalised variables, whose 
standard deviation (and therefore variance) is one. The off-diagonal value is the covariance 
of δ18O and δ2H. Because this value is close to one, it means that both variables are highly 
correlated.

Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix. Since the 
covariance matrix is square, we can calculate the eigenvectors and eigenvalues for this matrix 
(solving the characteristic equation, as explained in the previous section). These are rather 
important, as they give us useful information about the data (as will soon be clear). In the 
meantime, here are the eigenvectors and eigenvalues:

1.000 0
0 0.032

 
=  

 
D 								        (3-12)

0.7071 0.7071
0.7071 0.7071

 
=  − 

V 								       (3-13)

Matrix D is diagonal (n×n) and has the eigenvalues in the main diagonal. Matrix V (n×n) has 
each eigenvector as a column vector, i.e. (0.7071, 0.7071)T is the first eigenvector and (0.7071, 
−0.7071)T is the second eigenvector. V is usually called the matrix of basis vectors.

It is important to notice that these eigenvectors are both unit eigenvectors i.e. their lengths are 
both 1. This is very important for PCA; most maths packages, when asked for eigenvectors, 
give unit eigenvectors.

So what do they mean? Looking at the plot of the data in Figure 3-3 it can be seen that the 
dataset has quite a strong pattern. As expected from the covariance matrix, the two variables 
do indeed increase together. On top of the data, both eigenvectors have been plotted as diagonal 
dashed lines. As stated in the eigenvector section, they are perpendicular to each other. But, 
more importantly, they provide information about the patterns in the data. One of the eigen
vectors (labelled “eigenvector 1” in Figure 3-3) goes through the middle of the elongated cluster 
of points, like drawing the best-fit line. This eigenvector shows how the two variables δ18O and 
δ2H are related along that line. The second eigenvector gives the other less important pattern 
in the data, that all the points roughly follow the main line (eigenvector 1), but have some 
dispersion above and below it. This dispersion is captured by the second eigenvector.

So, by this process of taking the eigenvectors of the covariance matrix, we are able to find lines 
that characterise the data.
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Step 5: Choosing components and forming a reduced matrix of basis vectors. Here is where 
the notion of reduced dimensionality enters. If one looks at the eigenvectors and eigenvalues 
from the previous section, it will be noticed that they have quite different values. In fact, it turns 
out that the eigenvector with the highest eigenvalue is the principal component of the dataset. 
In the jargon of PCA the eigenvalues are called principal components (PCs) and organized 
in order of decreasing size of the corresponding eigenvalue: the eigenvector with the largest 
eigenvalue is called the first principal component (usually abbreviated PC1), the eigenvector 
with the second largest eigenvalue is called the second principal component (PC2), and so on.

In our example, the eigenvector with the largest eigenvalue (D11 = 1.000) was the one that 
pointed down the middle of the elongated cluster of points of the dataset. It is the most signifi-
cant relationship between the variables of the dataset. In general, once eigenvectors are found 
from the covariance matrix, the next step is to order them by eigenvalue, highest to lowest. 
This gives the (principal) components in order of significance. 

Figure 3-2.  Plot of the data from Table 3-3. The plot on the left is for the original data and the plot 
on the right for the normalized data (zero mean and a standard deviation equal to one). Data points 
are colour-coded for Cl content as in Figure 3-1.

Figure 3-3.  A plot of the normalised data with the eigenvectors of the covariance matrix overlaid 
on top (dashed lines). Data points are colour-coded for Cl content as in Figure 3-1.
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Now, one can decide to ignore the principal components of lesser significance. Some informa-
tion is lost, but if the eigenvalues are small, the loss is not very big. If some components are left 
out, the final dataset will have fewer dimensions than the original. To be more precise, if one 
originally has n variables in the dataset, n eigenvectors and eigenvalues are obtained. If one then 
chooses to keep only the first p eigenvectors, the final dataset will have only p dimensions.

What needs to be done next is to form a reduced matrix of basis vectors, W, which is a subset of 
matrix V. This is constructed by taking the eigenvectors that one wants to keep from the matrix 
of eigenvectors, and forming a matrix with the eigenvectors as column vectors:

W = (V1, V2,…,Vp)								        (3-14)

where V1 is the first column (first eigenvector) in matrix V, and Vp is the last eigenvector form 
matrix V that is retained in the reduced matrix W. W is a n×p matrix.

Given the example set of data above, and the fact that it has 2 eigenvectors, there are two 
choices. We can either form a reduced matrix with both of the eigenvectors (p = 2),

0.7071 0.7071
0.7071 0.7071

 
=  − 

W ,							       (3-15)

or we can choose to leave out the smaller, less significant component (associated to eigenvalue 
D22 = 0.032) and only have a single column (p = 1):

0.7071
0.7071

 
=  

 
W .									         (3-16)

We shall see the result of each of these in the next section.

Step 6: Deriving the new dataset with reduced dimensionality. This is the final step in PCA, 
and is also the easiest. Once the principal components (eigenvectors) that we wish to keep have 
been chosen and the reduced matrix of basis vectors formed, we simply take the transpose of 
this matrix and multiply it on the left of the matrix containing the original (normalised) dataset, 
also transposed:

ZT = WTX′T									         (3-17)

where WT is the transpose of the matrix with the eigenvectors in the columns so that the 
eigenvectors are now in the rows, with the most significant eigenvector at the top, and X′T is 
the transpose of the normalised data matrix, i.e. the data items are in each column, with each 
row holding a separate variable. The final data are in matrix Z, with data items in rows and 
variables in columns (of course, ZT, the result of the above matrix operation, has the variables 
in rows and data items in columns). Because W is an n×p matrix and X′ an m×n matrix (where 
m is the number of data items in each variable of the dataset), Z will be an m×p matrix. 

This operation gives us the original data solely in terms of the eigenvectors we have chosen. 
The original dataset has two axes, x and y, so the data were written in terms of them. It is 
possible to express data in terms of any two axes. If these axes are perpendicular the expression 
will be the most efficient. This is why it is so important that eigenvectors are always perpen-
dicular to each other. We have changed the data from being in terms of the axes (variables) 
x and y, and now they are in terms of two eigenvectors. When the new dataset has a reduced 
dimensionality, i.e. some of the eigenvectors have been left out, the new dataset is expressed 
only in terms of the vectors that we decided to keep.

To show this on the example dataset, matrix operation (3-17) has been performed using both 
eigenvectors (Equation 3-15), and the result plotted in Figure 3-4 to show how the new data 
relate to the principal components. In this case, where we have kept all the eigenvectors, the plot 
is basically the original data, rotated so that the eigenvectors are the axes. This is understandable 
since we have lost no information in this operation.
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The other transformation we can make is by taking only the eigenvector with the largest eigen
value, Equation (3-16). The matrix resulting from this new operation has dimensions m×1, i.e. 
is a column vector and is one-dimensional. If one compares this dataset with the one resulting 
from using both eigenvectors, it will be clear that this dataset is exactly the first column of the 
other. So, if we were to plot these data, they would be one-dimensional, and would be points 
on a line in exactly the x positions of the points in the plot in Figure 3-4. We have effectively 
thrown away the other axis entirely, which is the other eigenvector.

So what have we done up to here? Basically we have transformed our data so that they are 
expressed in terms of the real patterns between them, where the patterns are the lines that most 
closely describe the relationships between the data. This is helpful because the data points are 
now classified as a combination of the contributions from each of those lines (the eigenvectors). 
Initially we had the simple x (δ18O) and y (δ2H) axes. This is fine, but the x and y values of each 
data point don’t really tell us exactly how that point relates to the rest of the data. Now, after the 
PCA, the values of the data points tell us exactly where they lie with respect to the trend lines 
(ie. above/below). In the case of the transformation using both eigenvectors, we have simply 
altered the data so that they are now expressed in terms of the eigenvectors instead of the usual 
axes. But the single-eigenvector decomposition has removed the contribution due to the smaller 
eigenvector and left us with data that are only in terms of the other.

3.1.3	 Getting the old data back
Only if we take all the eigenvectors in our transformation (Equation 3-17) will we get back 
exactly the original data. If we reduce the number of eigenvectors in the final transformation, 
the retrieved data will lose some information. In the case of using all eigenvectors, we can 
recover the original data left-multiplying both sides of Equation (3-17) by the inverse of WT,

X′T = (WT)–1 ZT.									        (3-18)

When we take all the eigenvectors in the reduced matrix of basis vectors W, it turns out that 
the inverse of the reduced matrix is actually equal to its transpose because in this case (and 
only in this case), matrix W is an orthogonal matrix (a square matrix with all its column vectors 
orthogonal and of unit length). This makes the return trip to the original data much easier, 
because the above equation then becomes

Figure 3-4.  Plot of the new data points after rotation using eigenvectors. Data points are colour-coded 
for Cl content as in Figure 3-1.
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X′T = WZT									         (3-19)

But, to actually get the original data back, we need to multiply each data item by the standard 
deviation of the variable and add on the mean. So, for completeness,

′= σ + 〈 〉i i i iX X X 1,                  i = 1, ..., n						      (3-20)

where 〈 〉iX  and σi are the mean and standard deviation of the original variable i, and 1 is an 
m×1 column matrix with all entries equal to one. 

If W is a subset of V (i.e. not all the eigenvectors are used) the return trip is, in theory, not 
so easy because then W is not square and the inverse of a rectangular matrix is not defined. 
In practice, however, Equation (3-19) (not Equation 3-18!) can also be used in the general 
case to recover the original data. The derivation can be found in most books on PCA or matrix 
algebra under the Karhunen-Loéve Transformation (KLT) heading /e.g. Gershenfeld 1999/. 

It is not very useful to perform the data re-creation using the complete reduced matrix W, 
because in this case W = V and the result is exactly the data we started with. However, it is very 
instructive to do this with the reduced matrix when not all eigenvectors are included to show 
how information has been lost. Figure 3-5 shows this plot for the example dataset. Comparing 
it to the original dataset as plotted in Figure 3-2 it becomes obvious how, while the variation 
along the principal eigenvector has been kept, the variation along the other component (the 
other eigenvector that has been left out) has gone.

3.1.4	 The meaning of each principal component in a PCA
One problem with using PCA to replace n variables by p principal components, rather than 
the alternative strategy of replacing the n variables by a subset of p of the original variables, 
is interpretation. 

Figure 3-5.  Reconstruction of the data using only the first eigenvector. Data points are colour-coded 
for Cl content as in Figure 3-1.
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A common question that arises when performing a principal component analysis is What is the 
meaning of each principal component? Or, if the results are graphically plotted (in one, two or 
three dimensions), What is the meaning of each axis?�

The answer is simple: each principal component (or eigenvector, or axis) is a linear combination 
of the original variables of the dataset. Because all principal components are orthogonal, this 
is the same as saying that the new axes (the eigenvectors) are obtained from the old axes 
(the original variables) by a simple rotation. For the example in the previous section the two 
principal components (PC) are:

PC1 = 0.7071x + 0.7071y

PC2 = 0.7071x − 0.7071y. 							     
(3-21)

As can be seen in Figure 3-3, this transformation is a rotation of the axes (dashed lines) 
with respect to the original ones. PC1 and PC2 are thus the coordinates of a point in the new 
coordinate system, expressed in terms of the old coordinates (x and y).

As each principal component is a linear combination of all n variables, to interpret a principal 
component we need to decide which original variables are important, and which are not, in 
defining that principal component. In PCA the elements of an eigenvector (its components in 
maths jargon) are called weights or loadings�. In Equation (3-21) the weights of the first princi-
pal component are 0.7071 and 0.7071, and those of the second principal component 0.7071 and 
−0.7071. If a weight of a PC is very small (compared to one, as they are normalized), it means 
that the contribution of that original variable to the PC is also small. In other words: the PC is 
independent (or almost) of that variable.

An important point to bear in mind is that a PCA does not change the relative position of the 
data points. The only transformation on the data is a rigid-body rotation, thus maintaining 
unchanged the distances (in the data space, of course, not in the real 3-dimensional space) 
between points. If the distance ratio between two points is 4.5 in the original coordinates, it 
would still be 4.5 in the rotated coordinate system (the one with each eigenvector as an axis).

3.1.5	 How much variance is contained in each principal component?
As commented above, PCA is primarily a dimension-reduction technique, which takes observa-
tions on n correlated variables and replaces them by uncorrelated variables. These uncorrelated 
variables, the principal components, are linear combinations of the original variables, which 
successively account for as much as possible of the variation in the original variables. Typically 
a number p is chosen (p < n) such that by using only the first p PCs instead of the n variables 
will mean only a small loss of variation. 

This “variation” is measured by the magnitude of the eigenvalue associated to each eigenvector. 
The magnitude of the eigenvalue gives the contribution of that eigenvector to the overall 
variance of the dataset. In our example, the first eigenvalue has a magnitude of 1 and the second 
of 0.032 (Equation 3-12), in other words, the second eigenvalue is about 30 times smaller than 
the first. 

Another, more complicated, example will clarify this affirmation. Recall first that there are as 
many eigenvectors as original variables (because the covariance matrix is a n×n square matrix, 
where n is the number of variables). 

�  As we have already seen in a previous section, each eigenvector can be thought of as an orthogonal axis 
in a p-dimensional space.
�  Do not confuse loadings with scores. Scores are the elements of the matrix XV, i.e. the matrix version 
of Equation (3-21).
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Table 3-6 summarises the results of a real example carried out with 1,080 water samples from 
the Scandinavian Shield /Laaksoharju 2005/. Ten compositional variables were used, so the 
covariance matrix has ten rows and ten columns, and ten is the number of eigenvectors. In its 
first column Table 3-6 gives the eigenvalues associated with the ten eigenvectors, the biggest 
first and the smallest last. The second column expresses the relative size as a percentage of 
the total. It is obtained by dividing each entry in column one by its sum total (10,839.771), 
and multiplying the result by 100 (e.g. first row is 4,589/10,839.771×100 = 42.33%). The last 
column in Table 3-6 is the cumulative variance of the first p eigenvalues. 

If we decide to retain only the first p principal components, the variance explained once the 
dimension-reduction step has been taken is given by the cumulative percentage from the first 
up to the pth eigenvalue. If, in the example in Table 3-6, we decide to work only with the first 
two principal components, they would explain 66.1% of the overall variance of the dataset, the 
remaining 43.9% having been lost during the dimension-reduction procedure. The amount of 
variance explained by the retained principal components should always be indicated. This is 
important and will be put into geochemical perspective in Section 3.2. 

3.2	 Mixing calculations
Once the PCA is done, the real geochemical calculations start. The main goal of M3 is to know 
the contribution of several end-members (selected a priori on independent geochemical and 
hydrological grounds) to the chemical composition of each water sample in the dataset, based 
upon a number of compositional and/or physical-chemical variables (e.g. pH, Eh, concentration 
of selected elements and isotopes, etc). For this purpose, a key step in M3 methodology is the 
selection of a set of end-members that would act as end-members for mixing. In other words, 
at that point M3 assumes that the sole process that has contributed to the final chemical compo-
sition of each water sample is mixing. M3 tries to estimate mixing proportions by conservative 
mixing of all the input variables. In that respect, all compositional variables included in the PCA 
are treated equally, without distinguishing between conservative and non-conservative variables.

This is an important point to bear in mind, because all mass balance calculations (and hence 
all chemical reactions inferred from them) depend on differences between the composition 
predicted by mixing (all variables treated as conservative) and the real composition of the 
sample.

Table 3-6.  Variance explained by each eigenvector in a real dataset with 1,080 water 
samples from the Scandinavian Shield.

Eigenvalue As % Cumulative % 

4,589 42.33 42.33 
2,577 23.77 66.10 
1,225 11.30 77.41 
1,089 10.05 87.46 
776.3 7.161 94.62 
305.8 2.821 97.44 
156.5 1.443 98.88 
61.92 0.5712 99.45 
52.34 0.4829 99.94 
6.911 0.6375E–1 100.0 
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Two different routines to compute mixing proportions are implemented in M3: (1) two-principal 
component mixing, and (2) hyperspace mixing. The first routine assumes that the first two 
principal components accumulate enough information to compute mixing proportions and thus 
all mathematical manipulations are performed in two dimensions. The second routine makes 
no assumption regarding how the variance is partitioned among the principal components and 
uses all of them to compute mixing proportions. Two-principal component mixing is simpler but 
can give significant errors (Section 3.2.2); hyperspace mixing is more complex but has a zero a 
priori error (Section 3.3.3). 

3.2.1	 End-members
The concept of end-member is a cornerstone in M3 methodology. How many end-members are 
to be used and their particular chemical and isotopic composition is something that in principle 
lies outside M3 methodology and should be decided (also in principle) by expert judgment 
after a careful geochemical and hydrological study of the system. However, this version of M3 
includes a pseudo-automatic procedure to select the proper set of end-members for a given 
dataset which is based on a geometrical property that applies only to the hyperspace mixing 
routine described in section 3.2.3. The procedure is described in Section 4.1 under the heading 
“End-member Selection Module”, to where the reader is referred for details.

All the measured groundwater composition is compared to some well-sampled and analysed 
groundwater of the site or to a hypothetical (modelled) extreme water. In both cases these waters 
are called in this report end-members (but see /Laaksoharju et al. 1999bc/ for a more detailed 
terminology)�. The M3 method compares the measured groundwater composition of each 
sample to the selected end-member composition. The modelling is therefore always relative to 
the selected end-member composition just as a measured altitude is relative to a chosen fixed 
point. As already stated, an end-member can be a modelled or sampled (extreme) groundwater 
e.g. glacial melt water, ancient sea water, brine water or rain water, dilute shallow groundwater 
or sea water.

As a general rule, the number and type of end-members to be selected in the modelling depend 
on the aim of the modelling and the complexity of the site. The groundwater data used in the 
modelling determines the minimum number of end-members needed to describe the observed 
groundwater composition. 

Once the end-members have been chosen, they are included in the dataset and the PCA is 
performed. The inclusion of the end-members in the PC analysis could introduce a bias if (1) 
the end-members have a chemical composition radically different from the waters in the dataset; 
(2) there are very few water samples in the dataset; or (3) the statistical uncertainties affecting 
the samples of the dataset and of the end-members are different. Case (1) should never occur 
in a system dominated by mixing (if it were the case, it would mean that the end-members had 
been incorrectly selected); case (2) is not compatible with M3 philosophy, whose purpose is 
always the joint analysis of a large dataset (for very small datasets, other methods not based 
on multivariate statistics are more suitable); finally, case (3) is not realistic when both the 
end-members and the dataset belong to the same category (in this case, groundwaters). But if 
in a particular example one or more of the above-mentioned possibilities are expected, the PCA 
should be performed without the end-members and then compute the PC coordinates of the 
end-members (PC scores) by means of the eigenvectors, as explained in Section 3.1.2. Report 2 
(Verification and Validation) includes a test case to quantify this bias. 

�  The name “end-member” has been preferred because it has no genetic connotation as how it has been 
defined or selected. Also, in this way other non-hydrological applications of M3 can be better described 
in a neutral manner.



30

3.2.2	 Two-principal component mixing
This is the standard way mixing proportions were calculated in all previous versions of M3 
/Laaksoharju et al. 1999bc/, and is kept here to be backward-compatible with previous versions 
of the code. The user should be well aware of the limitations of the two-principal component 
mixing algorithm when using M3 v3.0.

As its name suggests, only the first two principal components are used for such mixing 
calculation. The consequences of this dimension-reduction step are double: (1) on the good side, 
everything can be done on a two-dimensional plot, simplifying visualization and interpretations; 
(2) on the bad side, the computed mixing proportions are not unique (in the mathematical sense) 
when more than three end-members are used; for more than three end-members a trick has to be 
utilised (see below) that introduces an intrinsic error into the mixing proportions; the magnitude 
of that error depends on the position of the sample in the PC-plot, but can be high. It is up to the 
user to select which method, but this section and the next give some recommendations in that 
direction.

Let us use a specific example to explain how mixing proportions are computed with the 
two-principal component mixing routine. Figure 3-6 is a PC-plot for a real dataset where five 
end-members have been used: Litorina, Sea Sediment, Rain, Glacial, and Brine. These five 
end-members are joined by lines, forming a convex polygon.� If the polygon is not convex, one 
or more of the end-members have to be changed/deleted to make it convex in order to have the 
possibility of having complete binary mixing between any two end-members. 

�  A planar polygon is convex if it contains all the line segments connecting any pair of its points. All the 
internal angles of a planar convex polygon are less than 180 degrees. 

Figure 3-6.  Procedure to compute mixing proportions in two-principal component mixing. End-
members are joined by lines forming a polygon. Each water sample belongs to a triangle defined by 
two end-members and the barycentre of the polygon. The triangular coordinates of sample s give the 
mixing proportions in the triangle. To get the mixing proportions in the polygon, the contribution of 
the barycentre to the final mixing proportions has to be added. See text for details.
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Next, the polygon is divided into triangles using its barycentre as a fictitious end-member. 
This is done because on a plane three is the maximum number of coordinates that can uniquely 
define a point (we shall comment on the importance of this limitation later). A point on a 
plane can be defined by two numbers using Cartesian coordinates and by three numbers using 
triangular coordinates. But it is not possible to use more than three numbers to define a point on 
a plane without ambiguity. 

The coordinates of the barycentre are very easy to obtain. Denoting the PC coordinates by (x, y) 
the barycentre (BC) is the point satisfying

1 1

1 1,
n n

BC i BC i
i i

x x y y
n n= =

= =∑ ∑ ,							       (3-22)

where n is the number of end-members and (xi, yi) are the PC coordinates of the end-members. 
In our example n = 5.

Once the barycentre is known and the lines joining it with the end-members are drawn (see 
Figure 3-1), each sample in the dataset will belong to one and only one of the triangles that 
cover the polygon. Each triangle (there are n of them) has as vertices two real end-members 
and the fictitious barycentre end-member. The triangular coordinates of any sample will give 
us the mixing proportions we are looking for. 

The selected sample in Figure 3-6 falls in the triangle Litorina-Sea Sediment-BC. Denoting by 
′ξi the uncorrected mixing proportions of the sample (i = Lit, Sed, BC), these are:

Lit

Sed

BC

0.2,

0.3,

0.5,

′′ξ = =
′
′′ξ = =
′
′′ξ = =
′

sa
aa
sb
bb
sc
cc

									        (3-23)

where the bar means the length of the corresponding segment. The three triangular coordinates 
give the mixing proportions in the triangle, but not in the polygon, which is what we want. 
To know the latter we should make a strong assumption regarding the mixing proportions of the 
fictitious barycentre end-member. What is the composition of this particular point, expressed 
as a percentage of each of the real end-members? There is no definite answer, and here lies the 
non-uniqueness of the mixing proportions computed with the two-principal component mixing 
algorithm. Only when there are three end-members is the answer unique, because in this case 
we do not even need the barycentre to compute the mixing proportions. But for four or more 
end-members a specific composition has to be assumed for the barycentre. The simplest ansatz 
is that the barycentre is a mixture in equal proportions of all the end-members:

Lit Rain Sed Gl Br BC
1
5

′′ ′′ ′′ ′′ ′′ ′ξ = ξ = ξ = ξ = ξ = ξ ,						      (3-24)

where BC′ξ  is given by Equation (3-29). In our example BC′ξ  = 0.5, and so Lit′′ξ  = Rain′′ξ  = Sed′′ξ  = Gl′′ξ  
= Br′′ξ  = 0.1. We use the notation i′′ξ  to indicate that this quantity is a correction to be added to i′ξ  
(the mixing proportions in the triangle) to obtain the final mixing proportion in the polygon, i.e.

i i i′ ′′ξ = ξ + ξ ,									         (3-25)

where ξi are the final mixing proportions. The correction i′′ξ  is applied equally to all end-
members. On the other hand, i′ξ  is non-zero only for the two end-members that form the triangle 
inside which the sample falls. For the other n−2 end-members i′ξ  is zero and so

BC
1

i i n
′′ ′ξ = ξ = ξ 		  for n−2 end-members.					     (3-26)
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This last equation says that n−2 of the computed mixing proportions are numerically identical. 
In our example ξLit and ξSed have independent values, but ξRain, ξGl and ξBr all have the same value:

Lit Lit Lit 0.2 0.1 0.3,′ ′′ξ = ξ + ξ = + =

Sed Sed Sed 0.3 0.1 0.4,′ ′′ξ = ξ + ξ = + =

Rain BC1/ 5 0.1′ξ = ξ = ,

Gl BC1/ 5 0.1′ξ = ξ = ,

Br BC1/ 5 0.1′ξ = ξ = .

						      (3-27)

The fact that n−2 mixing proportions are identical is a general property for any sample when 
the two-principal component mixing routine is used. The reason, as already explained, is our 
assumption that the barycentre is an even mixture of all end-members. /Laaksoharju and Wallin 
1997/ have tested an alternative way of computing the mixing proportions without a barycentre, 
but the results do not improve on the procedure explained here. The barycentre method is the 
one implemented in version 3 of the M3 code.

Table 3-7 shows part of the output of a mixing calculation using the two-principal component 
mixing routine. As in the example above the same five end-members have been used (Sea 
Sediment, Litorina, Brine, Glacial and Rain 1960). Note that each sample has three identical 
mixing proportions, shaded in grey in the table, and that the three identical end-members change 
depending on the position of the sample in the PCA polygon (e.g. the first sample has a 10.2% 
of Litorina, Brine and Glacial, Sample #5 has an 8% of Sea Sediment, Litorina and Brine, and 
Sample #8 has a 9.4% of Sea Sediment, Litorina and Rain60).

How does this non-uniqueness affect the computed mixing proportions? To assess the accuracy 
of the two-principal component mixing, a synthetic dataset has been created. 1,000 samples 
were generated by mixing a random amount of the four end-members Brine (Br), Glacial (Gl), 
Litorina (Lit), and Rain60 (R60), as shown in Figure 3-7. 

Each end-member is defined by a set of compositional variables (Na, K, Ca, Mg, HCO3, Cl, 
SO4, deuterium, tritium, and 18O in the example), as Table 3-8 summarises for this particular 
example.

To construct a synthetic sample, a randomly generated mixing proportion is assigned to it using 
a random number generator. A random number uniformly distributed between 0 and 1 is drawn 
for each end-member (four random numbers for the example above, one each for Brine, Glacial, 

Figure 3-7.  Procedure to generate synthetic samples with known proportions of each end-member. 
The example shows a case with four end-members. Each one has a particular chemical composition 
(Table 3-8) which is then multiplied by the randomly generated mixing proportion and summed up to 
build the chemical composition of the synthetic sample.

Sample 1: 3.3% Br
24.4% Gl
40.9% Lit
31.4% R60

% 
selected
at random}

Na
2254 93.4 728.6 236.7 309.6 5110 262.1 -73.5 0.14 -9.6

K Ca Mg HCO3 Cl SO4 D Tr O18Na
2254 93.4 728.6 236.7 309.6 5110 262.1 -73.5 0.14 -9.6

K Ca Mg HCO3 Cl SO4 D Tr O18

Four end-members:
Brine, Glacial, Littorina, Rain60
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Litorina and Rain60). These are then added together and each one divided by the sum and 
multiplied by 100 to get a percentage. In the example shown in Figure 3-7 the mixing propor-
tions are Brine = 3.3%, Glacial = 24.4%, Litorina = 40.9%, and Rain60 = 31.4%, obtained from 
the random numbers 0.05596, 0.40965, 0.68667, and 0.52717 (sum = 1.67939).

Once a mixing proportion has been assigned, the composition of the synthetic sample is com-
puted by multiplying each end-member’s compositional variable by the corresponding mixing 
proportion and summing up the contribution of all end-members. For example, the amount of 
Na in the synthetic sample of Figure 3-2 is

Br Gl Lit R60
Sample

Na 3.3% Na 24.4% Na 40.9% Na 31.4%Na 2254 mg/L
100

× + × + × + ×= =      (3-28)

The remaining compositional variables are obtained in the same way.

Finally, these synthetic samples are fed into M3’s two-principal component mixing routine 
to compute the mixing proportions. Figures 3-8 and 3-9 plot the results for a 1,000 synthetic 
dataset. Each graph depicts the mixing proportion of a specific end-member (Brine, Glacial, 
Litorina and Rain60) colour-coded as a percentage of its proportion in every sample, from red 
(low mixing proportion) to blue (high mixing proportion). Figure 3-8 gives the real mixing 
proportions and Figure 3-9 the ones computed by M3. 

Brine and Litorina mixing proportions are well resolved by M3 (compare the left hand side 
graphs in Figure 3-8 and 3-9), but the results for Glacial and Rain60 are less consistent. This is 
so because Glacial and Rain60 are the two end-members with lower concentrations of all the 
compositional variables and are thus most sensible to the real composition of the barycentre.

Table 3-7.  Output of the two-principal component mixing routine to show that three of the 
mixing proportions of each sample are identical (shaded cells), reflecting the assumption 
made on the composition of the barycentre.

Sample # Sea Sed. Litorina Brine Glacial Rain60

1 0.507 0.102 0.102 0.102 0.187
2 0.121 0.057 0.057 0.057 0.708
3 0.176 0.034 0.034 0.034 0.723
4 0.080 0.080 0.080 0.170 0.589
5 0.122 0.122 0.122 0.500 0.134
6 0.094 0.094 0.257 0.462 0.094
7 0.112 0.112 0.211 0.453 0.112
8 0.060 0.060 0.060 0.124 0.695

Table 3-8.  Composition of the four end-members waters used to generate the samples of 
the synthetic dataset. 

End-
member

Na  
(mg/l)

K  
(mg/l)

Ca  
(mg/l)

Mg  
(mg/l)

HCO3 
(mg/l)

Cl  
(mg/l)

SO4 
(mg/l)

D  
(dev)

Tritium 
(TU)

18O  
(dev)

Brine 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 0 –8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 0 –21
Litorina 3,674 134 151 448 93 6,500 890 –38 0 –4.7
Rain 60 0.4 0.29 0.24 0.1 12.2 0.23 1.4 –80 2,000 –10.5
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Figure 3-8.  1,000 synthetic samples on a PC-plot colour-coded with respect to the real mixing 
proportion of each end-member (Brine, Glacial, Litorina, and Rain60).

Figure 3-9.  The same synthetic samples as in Figure 3-8, but colour-coded with respect to the 
calculated proportion of each end-member. M3’s two-principal component mixing routine has been  
used to compute the mixing ratios.
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A way to summarise the accuracy of the computed mixing proportions is by defining a 
generalised standard deviation between the real and computed mixing proportions:

2 2 2 2
Real M3 Real M3 Real M3 Real M3StDev (Br Br ) (Gl Gl ) (Lit Lit ) (R60 R60 )= − + − + − + −      (3-29)

In this expression BrReal refers to the known mixing proportion and BrM3 to the one calculated by 
M3’s two-principal component mixing routine. In Figure 3-10, where the results are graphically 
presented, each of the 1,000 samples is colour-coded with respect to the standard deviation. 
Maximum deviation is of the order of 85% and the mean standard deviation for the 1,000 sam-
ples is 17%, comparable to the variance not explained by the first two principal components 
used in the two-principal component mixing algorithm (the sum of the variance of the first two 
principal components in this example is 81%).

3.2.3	 Hyperspace mixing
This new addition to M3 capabilities has a very simple rationale: instead of using only two 
of the principal components to calculate the mixing proportions, as with previous versions of 
M3, it calculates them by using all principal components. This is equivalent to saying that the 
mixing proportions are computed in a space with n-1 dimensions, where n is the number of 
end-members. Working in hyperspace has the advantage of avoiding the uncertainties derived 
from the projection of the coordinates onto a plane before calculating the mixing ratios. This 
uncertainty grows with the number of end-members and can be high when working with end-
members which plot close together on the plane defined by the first two principal components 
(the plane used by the two-principal component mixing routine to perform the calculations), 
as has been made clear in Figures 3-8 and 3-10 in the previous section.

The mixing proportions are calculated from the principal component coordinates. The whole 
procedure is a simple coordinate transformation, from a n-1 Cartesian coordinate system 
(principal component coordinates) to a hyper-tetrahedral coordinate system (mixing proportion 
coordinates).

Figure 3-11 shows how to compute the mixing proportions from the principal component coor-
dinates for a 2D example (three end-members). The mixing proportions are denoted (ξ1, ξ2, ξ3), 
and the PCA coordinates as (x¸y). In Figure 3-6 the red circle marks the location of the sample 

Figure 3-10.  Deviation of computed mixing proportions from real ones for 1,000 synthetic samples. 
M3’s two-principal component mixing routine has been used for the calculations.
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whose mixing proportions we want to compute. From this circle we draw straight lines to the 
three vertices of the triangle. This operation subdivides the total triangle into three sub-triangles 
(one coloured in blue) whose areas are A1, A2, A3. 

The area of the total triangle is A = A1+A2+A3. From the knowledge of these areas it is straight-
forward to compute the mixing proportion coordinates, which are the ratio of the area of each 
sub-triangle to the total area (see the expressions in Figure 3-6). When coding this procedure, 
the required operations boil down to the computation of the determinant of a 3×3 coordinate 
matrix (one determinant for each coordinate):
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where ξ1, ξ2, ξ3 are the mixing proportions, (x, y) are the PCA coordinates of the point whose 
mixing proportions are being calculated, and (xi, yi) are the PCA coordinates of the end-mem-
bers. 

For four end-members the polyhedron is a tetrahedron with four vertices, and the expressions 
for the mixing proportions are:

1 1 1

2 2 2
1 2

3 3 3 3 3 3

4 4 4 4 4 4

1 1
1 11 1, ,
1 16 6
1 1

x y z x y z
x y z x y z
x y z x y zA A
x y z x y z

ξ = ξ =

1 1 1 1 1 1

2 2 2 2 2 2
3 4

3 3 3

4 4 4

1 1
1 11 1, .
1 16 6
1 1

x y z x y z
x y z x y z
x y z x y zA A
x y z x y z

ξ = ξ =

				    (3-31)

Figure 3-11.  Calculation of the mixing proportion coordinates from the Principal Component Analysis 
(PCA) coordinates.
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The generalization of this procedure to any number of end-members is straightforward and the 
matrix whose determinant is to be computed is in general a d+1×d+1 coordinate matrix, where 
d is the dimensionality of the PCA space and d+1 is the number of end-members:
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						     (3-32)

and similar expressions for coordinates ξ2, ξ3, ..., ξd+1. The meaning of each row and column of 
the determinant is explained in Figure 3-12.

To assess the ability of this routine to compute mixing proportions the same synthetic dataset 
employed to test the two-principal component mixing routine has been used. Figure 3-13 plots 
the results. This figure can be visually compared to Figure 3-8, which plots the real mixing 
proportions. 

As was already done for the two-principal component mixing routine, we calculate the overall 
standard deviation using Equation (3-29).Maximum deviation for the hyperspace mixing routine 
is of the order of 2×10−5 percent and the mean standard deviation for the 1,000 samples is 
7×10−6 percent (to be compared with maximum deviation of 85% and mean deviation of 17% 
for the two-principal component mixing routine), as Figure 3-14 shows. This value is equal 
to the precision of the calculation (six significant digits for a single-precision real number in 
its computer representation), so we can conclude that, as expected, the n-principal component 
mixing routine has zero error when computing mixing proportions of synthetic samples. 

3.2.4	 Allowance parameter
Any mixing calculation performed on a real, complex groundwater system, even in the ideal 
case of pure mixing (i.e. a groundwater system where the composition of the water is due only 
to dispersive mixing of several end-members), has several sources of uncertainty that contribute 
to the final accuracy of the computed mixing proportions. Among these sources, the most 

Figure 3-12. Meaning of the rows and columns of the determinant used to compute the proportion of 
the first end-member in a sample. The proportions of the other end-members are computed by moving 
the sample’s coordinates to the appropriate row (to the second row when computing the mixing pro-
portion of the second end-member, to the third row when computing the mixing proportion of the third 
end-member, and so on).
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Figure 3-13. The same synthetic samples as in Figure 3-8, but colour-coded with respect to the cal-
culated proportion of each end-member. M3’s hyperspace components mixing routine has been used to 
compute the mixing ratios.

Figure 3-14.  Deviation of computed mixing proportions from real ones for 1,000 synthetic samples. 
M3’s hyperspace mixing routine has been used for the calculations. The graph on the left uses the same 
0–100% scale as Figure 3-10 to facilitate comparison. The graph on the right has a colour scale from 
0 to 2×10−5 percent to better appreciate how deviations are spread on the PCA plane. 
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important are /Gómez et al. 2006/: (1) the number and composition of the water end-members 
that contribute to the chemical composition of the groundwater; (2) the spatial and/or temporal 
chemical variability of each end-member (end-members need not be spatially homogeneous or 
temporally constant); (3) the feasible chemical reactions that could contribute to the evolution of 
the groundwater system after each mixing event; (4) the conservative versus non-conservative 
behaviour of specific elements during mixing; and (5) analytical uncertainties.
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When performing a mixing calculation (for which purpose a set of end-members has to be 
selected), some of the samples in the dataset could fall outside the mixing hyper-polyhedron, 
meaning that they cannot be explained by pure mixing of the chosen end-members for which-
ever of the 5 reasons pointed out in the previous paragraph. From this set of ”outsiders”, some 
samples will fall far from the ”walls” of the mixing hyper-polyhedron as they simply cannot 
be explained as a mixture of the selected end-members (case 1 above), but others will fall just 
outside the hyper-polyhedron, very close to any of its walls. These samples are not explained 
by mixing, but the reason in this case is almost certainly not the first one above, but any of the 
other uncertainties (2 to 5). In this case it is not unreasonable to “move” these samples to the 
nearest hyper-polyhedron wall and include them in the mixing calculations. 

This procedure is implemented in M3 through the so-called Allowance Parameter. The allow-
ance parameter, as its name suggests, allows for samples near the mixing hyper-polyhedron 
(but outside it) to be moved to the nearest wall. Essentially, the procedure is the following: 
Any sample inside the mixing hyper-polyhedron has all its PC coordinates positive; on the other 
hand, any sample outside the mixing hyper-polyhedron has at least one PC coordinate negative. 
If the negative PC coordinate is small compared to one, it means that its distance to a wall is 
small. So, setting the allowance parameter to, say, 0.05, would move to the nearest wall all the 
samples whose distance is less than 5% in terms of mixing proportions. 

An example would clarify the meaning of the allowance parameter. Figure 3-15 shows a ficti-
tious dataset (black dots) and four end-members (red circles), together with the mixing polygon 
projected onto the PC1-PC2 plane (shaded area). Four lines, each one parallel to one of the sides 
(projected wall) of the polygon, are drawn whose distance to the actual walls of the polygon is 
5% in terms of mixing proportions. All the samples inside the blue extension of the polygon will 
be moved to the wall of the polygon if an allowance parameter of 0.05 is set in M3. Practically, 
this is carried out by setting to zero the negative mixing proportions of all samples with an 
absolute value equal or less than 0.05 and normalising to one the rest of the mixing proportions. 
For example, if a sample outside the mixing polyhedron has mixing proportions (0.500, 0.400, 
0.120, −0.020), it would be reset to (0.490, 0.392, 0.118, 0.000). When a sample is moved to 
the wall of the mixing hyper-polyhedron by the allowance parameter, at least one of its mixing 
proportions is always zero.

Figure 3-15.  A fictitious dataset with four end-members projected onto the PC1-PC2 plane. The red 
circles are the end-members and define a polygon (shaded area) which includes all the samples than 
can be explained by the mixing of the four end-members. The blue extension of the polygon includes 
the samples that will be moved to the edges of the polygon if an allowance parameter different from 
zero is set in M3.
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M3 permits any value of the allowance parameter between 0 and 1, but allowance parameters 
greater than, say, 0.05 (5% in terms of mixing proportions) must be used with great care. 
A safe procedure is to repeat the calculations with a variable allowance parameter from zero to 
5% in steps of 1% and check the coverage (i.e. the number of samples inside the mixing hyper-
polyhedron) for each run. If the coverage differs only slightly between the runs with 0% and 5% 
allowance parameter, it would mean that most samples outside the mixing hyper-polyhedron 
are actually far from its walls. If, on the other hand, the coverage changes quickly when the 
allowance parameter is increased from 0 to 1%, and from 1 to 2%, but then the change becomes 
slower, it would mean that many samples are located very close to the walls of the mixing 
hyper-polyhedron and that they can safely be moved to the walls. 

Finally, an allowance parameter of exactly zero is not recommended either, because rounding 
errors could translate during calculations into very small but negative mixing proportions for 
some samples. In summary, an allowance parameter in the range 0.01–0.05 (1–5%) is safest 
and therefore preferred. 

3.3	 Mass balance calculations
This section describes the calculations that M3 performs to estimate the compositional 
characteristics of each sample that can not be explained by pure conservative mixing.

In M3 mass balance calculations are always performed after mixing proportions have been 
computed. The meaning of this is the following: M3 assumes that mixing is the leading process 
(first order process) and tries to explain most of the chemical composition of the samples by 
conservative mixing. As already stated, all compositional variables included in the PCA are 
treated equally, without distinguishing between conservative and non-conservative variables. 
Once mixing proportions have been computed, M3 calculates the composition that a sample 
would have if mixing were the one and only process contributing to the chemical composition 
of the sample. This is done in the following straightforward way. For every sample:

•	 Take the mixing proportions computed in the previous step, ξi (i = 1, ..., n, where n is the 
number of end-members).

•	 Take the composition of each end-member ( i
jc , i = 1, ..., n; j = 1, ..., m; where n is the 

number of end-members and m the number of original variables). With this terminology Litt
Nac  

would be the Na content in the Litorina end-member and Br
18Oc  the content of 18O in the Brine 

end-member.

•	 Compute the expression

	 Sample

1

ˆ
n

i
j j i

i
c c

=

= ×ξ∑ .								        (3-33)

This gives the “theoretical” composition of each sample, The word “theoretical” should be 
understood as “the composition of the sample in the case of pure conservative mixing between 
the chosen end-members”. A particular case of the general expression (3-33) has already been 
used in Equation (3-28) to calculate the Na content of a synthetic sample.

•	 Subtract the real composition from the theoretical one, variable by variable, to get the 
absolute mass balance M:

	 Sample Sample Sampleˆj j jM c c= − ,							       (3-34)

	 where Sample
jc  is the measured content of compositional variable j and Sampleˆ jc  is the computed 

one assuming pure conservative mixing. 
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Mass balance is carried out for each compositional variable j, not for the whole sample, i.e. a 
mass balance is computed for Na, another mass balance for Ca, and so on for all j compositional 
variables. Equation (3-34) gives the absolute mass balance, expressed in the same units as the 
measured variable (i.e. mg/L for concentrations of major elements), but M3 can also compute 
relative mass balances, m, just by dividing Equation (3-34) by the measured content of each 
compositional variable:

Sample Sample
Sample

Sample

ˆ
100j j

j
j

c c
m

c
−

= × .							       (3-35)

The relative mass balance is expressed as a percentage deviation with respect to the actual 
value. For example, if a sample has a measured Na content of 2,500 mg/L and the predicted Na 
content is 2,000 mg/L, the absolute mass balance is +500 mg/L (the plus sign meaning that the 
actual Na content is higher than the computed one), and the relative mass balance +20%.

As in the previous section on mixing calculations, we have used the same synthetic dataset 
to compute absolute and relative mass balances from the mixing proportions delivered by the 
two-principal component and hyperspace mixing routines. Results for the absolute mass balance 
are shown in Figure 3-16. Chlorine has been selected because in real samples it should behave 
conservatively in most systems, and so its concentration depends only on mixing and not on 
reactions. In this way, mass balance should give values close to zero. For the synthetic dataset 
used here, mass balance should be exactly zero if mixing proportions have been correctly com-
puted, as all the samples were created by pure conservative mixing of the four end-members.

As Figure 3-16 shows, this is correct for the mass balance calculated from the hyperspace 
mixing proportions, where the maximum absolute deviation is of the order of 0.008 mg/L, 
but not the case for the mass balance calculated by means of the two-principal component 
mixing proportions, which have maximum deviations of the order of 650 mg/L. 

If we take a look at the relative deviations (Figure 3-17), the picture is similar, with a maximum 
relative deviation of 49% and an average of 2% for the two-principal component mixing 
(left-hand graph) and of 0.0001% (average of 2.2×10−6) for hyperspace mixing (right-hand 
graph). The quoted deviations for the hyperspace mixing routine are below numerical error 
(i.e. differences are due to numerical rounding error when subtracting two numbers that are 
close to the machine precision). 

Figure 3-16.  Absolute mass balance for Cl using the synthetic dataset. The graph on the left is for the 
two-principal component mixing routine, and the one on the right for the hyperspace mixing routine. 
Notice the change in colour bar scale from (–650 mg/L, +650 mg/L) in the left graph to (–0.008 mg/L, 
+0.008 mg/L) in the right graph, a difference of almost five orders of magnitude.
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Figure 3-17.  Relative mass balance for Cl using the synthetic dataset. The graph on the left is for 
the two-principal component mixing routine, and the one on the right for the hyperspace mixing 
routine. Scale bar is common to both graphs. Black dots are samples with a relative deviation of less 
than 0.1%.
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4	 Modules

This section is dedicated to explain two extensions of M3 intended to facilitate two of the most 
critical steps in the whole M3 methodology, namely: (1) how to decide which end-members 
to use, given a dataset; and (2) what is the precision of the computed mixing proportions, 
given a correctly-selected but compositionally-variable set of end-members (i.e. the proper 
end-members have been selected but these are defined by a compositional range instead of by 
a specific composition). 

The first question is addressed by the End-member Selection Module (ESM). The ESM 
(Section 4.1) accepts as an input a fairly large number (< 15 for practical purposes) of potential 
end-members and gives as an output the number of explained samples for each combination of 
potential end-members. The “best” combination of end-members is the one that can explain, 
only by mixing, the largest number of samples in the dataset. This module can be accessed 
through the Calculations/End-members/Select End-members menu, clicking on the “Test” 
button after having selected the end-members. 

The second questions is taken by the End-member Variability Module (EVM), described in 
Section 4.2. The EVM accepts as an input a range of compositions for each end-member (the 
end-members have been already selected, either by expert judgment or with the help of the 
ESM) and construct from every range an input probability distribution (in terms of composi-
tions), which is propagated through the PCA and converted into an output probability for the 
mixing proportions. This module is accessed directly via the EVM menu item in M3.

4.1	 End-member selection module (ESM)
If the end-members have been correctly chosen for the given dataset, all samples should 
plot inside the n−1-dimensional hyper-volume defined by the n end-members. This is a 
generalization of the property of triangular coordinates: any point inside the triangle has 
all three triangular coordinates positive, and any point outside the triangle has, at least, one 
negative coordinate. With this rule in mind, it is very simple to know which samples are inside 
the hyper-volume defined by the n end-members: those with all their mixing proportions 
positive. Only these samples can be “explained” by pure conservative mixing of the selected 
end-members. The closer the number of explained samples is to the total number of samples, 
the better the combination is (in the sense that more samples can be explained as a mixing of 
the selected end-members). In other words, a set of end-members are properly selected for an 
specific dataset when most of the waters in the dataset are inside the mixing hyper-tetrahedron.

How many combinations of end-members are probed? M3 performs a systematic search of 
combinations, starting from two end-members and ending with the maximum number of 
end-members included as input potential end-members. The total number of combinations 
grows rapidly with this maximum number, and that is why 15 is a practical upper limit. From 
combinatorial theory, the number C of combinations of n elements taken r at a time is

!( , )
( )! !

n nC n r
r n r r

 
≡ =  − 

.							       (4-1)

In our case, n is the maximum number of potential end-members, and r is the number of 
end-members of any particular combination, which goes from 2 to n. So, the total number of 
combinations of n end-members taken from two at a time to n at a time is then

2

!( )
( )! !

n

r

nC n
n r r=

=
−∑ .								        (4-2)
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Table 4-1 gives the number of combinations starting with 2 end-members and ending with 15. 
Each entry in the table gives the result of Equation (4-1) for the selected n (column) and r (row). 
For example, there are 56 combinations of 8 end-members taken 5 at a time, i.e, there are 56 
combinations containing five end-members when the number of input potential end-members 
is 8. The “Total” entry in each column gives the result of Equation (4-2), i.e. the total number 
of combinations of n potential end-members when all the subsets from two to n end-members 
are included. This number of combinations (bottom row in Table 4-1) is the one M3 tries when 
selecting n potential end-members from the start.

Table 4-2 is an example of the output of the ESM for 119 samples from the Forsmark area 
/Laaksoharju 2005/. Each row is a combination of end-members selected from the set of poten-
tial end-members formed by Brine, Litorina, Glacial, Rain60, Lake Water, Sea Sediment, and 
Baltic Sea. In this particular example n = 7, so we have a total of 120 possible combinations: 
21 of them are combinations of two end-members; 35 are combinations of 3 end-members; 
another 35 are combinations of 4 end-members; 21 more are combinations of 5 end-members; 
7 are combinations of 6 end-members and finally there is just one combination of all the seven 
potential end-members. The last column of Table 4-2 is the total number of samples, out of 119, 
with all the mixing proportions positive (i.e. the number of samples that plot inside the hyper-
tetrahedron in n−1-dimensional space; for the special case of two end-members, “inside” means 
“between the two end-members”; for example, the combination Brine + Glacial explains all 
119 samples because all samples fall on the line segment (1-dimensional) between end-members 
Brine and Glacial and none to the left of Glacial or to the right of Brine; on the other hand, 
the combination Brine + Glacial + Litorina explains only 4 samples all 115 remaining waters 
are outside the two-dimensional triangle whose vertices are the end-members Brine, Glacial 
and Litorina; there is no contradiction in having fewer samples explained when one extra 
end-member is added, as the resulting geometrical construct “lives” in one more dimension). 

Table 4-1.  Number of combinations of end-members. Each column is for a maximum 
number of potential end-members and each row for the actual number of end-members 
included in the computation.

r n
2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1 3 6 10 15 21 28  36  45  55  66  78  91  105
3 1 4 10 20 35 56  84 120 165 220  286  364  455
4 1  5 15 35 70 126 210 330 495  715 1,001 1,365
5  1  6 21 56 126 252 462 792 1,287 2,002 3,003
6  1  7 28  84 210 462 924 1,716 3,003 5,005
7  1  8  36 120 330 792 1,716 3,432 6,435
8  1  9  45 165 495 1,287 3,003 6,435
9  1  10  55 220  715 2,002 5,005

10  1  11  66  286 1,001 3,003
11  1  12  78  364 1,365
12  1  13  91  455
13  1  14  105
14  1  15
15  1
Total 1 4 11 26 57 120 247 502 1,013 2,036 4,083 8,178 16,369 32,752
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From the table is simple to select the “most promising” combinations, in the sense that they are 
the combinations of end-members that are able to explain, only by mixing, the highest percent-
age of samples. In the example below, combinations #38 (Glacial + Litorina + Lake Water) 
and #45 (Glacial + Lake Water + Baltic) are the best combinations with three end-members; 
and combinations #58 (Brine + Glacial + Litorina + Lake Water) and #65 (Brine + Glacial + 
Lake Water + Baltic) the best with four end-members. With five end-members only combination 
#101 (Brine + Glacial + Lake Water + Sea Sediment + Baltic) is rather good, explaining 95 out 
of 119 samples (80%). No combination with 6 or 7 end-members is able to explain more than 
45% of the samples. Of course, the final selection of end-members will be based also on inde
pendent geochemical and hydrochemical arguments pertaining the specific site.

Table 4-2.  Number of samples than can be “explained” by each possible combination of 
end-members, from two to seven end-members. Samples from Forsmark 1.2 Local Model, 
119 samples /Laaksoharju 2005/.

1 Brine Glacial – – – – – 119
2 Brine Litorina – – – – – 0
3 Brine Rain60 – – – – – 119
4 Brine Lake Water – – – – – 52
5 Brine Sediment – – – – – 31
6 Brine Baltic – – – – – 0
7 Glacial Litorina – – – – – 119
8 Glacial Rain60 – – – – – 18
9 Glacial Lake Water – – – – – 86

10 Glacial Sediment – – – – – 115
11 Glacial Baltic – – – – – 119
12 Litorina Rain60 – – – – – 119
13 Litorina Lake Water – – – – – 49
14 Litorina Sediment – – – – – 26
15 Litorina Baltic – – – – – 0
16 Rain60 Lake Water – – – – – 72
17 Rain60 Sediment – – – – – 115
18 Rain60 Baltic – – – – – 119
19 Lake Water Sediment – – – – – 41
20 Lake Water Baltic – – – – – 49
21 Sediment Baltic – – – – – 29
22 Brine Glacial Litorina – – – – 4
23 Brine Glacial Rain60 – – – – 48
24 Brine Glacial Lake Water – – – – 92
25 Brine Glacial Sediment – – – – 4
26 Brine Glacial Baltic – – – – 34
27 Brine Litorina Rain60 – – – – 66
28 Brine Litorina Lake Water – – – – 30
29 Brine Litorina Sediment – – – – 4
30 Brine Litorina Baltic – – – – 0
31 Brine Rain60 Lake Water – – – – 58
32 Brine Rain60 Sediment – – – – 33
33 Brine Rain60 Baltic – – – – 64
34 Brine Lake Water Sediment – – – – 5
35 Brine Lake Water Baltic – – – – 30
36 Brine Sediment Baltic – – – – 29
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37 Glacial Litorina Rain60 – – – – 84
38 Glacial Litorina Lake Water – – – – 115
39 Glacial Litorina Sediment – – – – 0
40 Glacial Litorina Baltic – – – – 25
41 Glacial Rain60 Lake Water – – – – 54
42 Glacial Rain60 Sediment – – – – 54
43 Glacial Rain60 Baltic – – – – 84
47 Litorina Rain60 Lake Water – – – – 36
48 Litorina Rain60 Sediment – – – – 38
49 Litorina Rain60 Baltic – – – – 1
50 Litorina Lake Water Sediment – – – – 30
51 Litorina Lake Water Baltic – – – – 1
52 Litorina Sediment Baltic – – – – 0
53 Rain60 Lake Water Sediment – – – – 48
54 Rain60 Lake Water Baltic – – – – 36
55 Rain60 Sediment Baltic – – – – 37
56 Lake Water Sediment Baltic – – – – 30
57 Brine Glacial Litorina Rain60 – – – 79
58 Brine Glacial Litorina Lake Water – – – 116
59 Brine Glacial Litorina Sediment – – – 1
60 Brine Glacial Litorina Baltic – – – 1
61 Brine Glacial Rain60 Lake Water – – – 16
62 Brine Glacial Rain60 Sediment – – – 50
63 Brine Glacial Rain60 Baltic – – – 65
64 Brine Glacial Lake Water Sediment – – – 88
65 Brine Glacial Lake Water Baltic – – – 116
66 Brine Glacial Sediment Baltic – – – 2
67 Brine Litorina Rain60 Lake Water – – – 47
68 Brine Litorina Rain60 Sediment – – – 51
69 Brine Litorina Rain60 Baltic – – – 3
70 Brine Litorina Lake Water Sediment – – – 34
71 Brine Litorina Lake Water Baltic – – – 1
72 Brine Litorina Sediment Baltic – – – 1
73 Brine Rain60 Lake Water Sediment – – – 56
74 Brine Rain60 Lake Water Baltic – – – 51
75 Brine Rain60 Sediment Baltic – – – 45
76 Brine Lake Water Sediment Baltic – – – 34
77 Glacial Litorina Rain60 Lake Water – – – 68
78 Glacial Litorina Rain60 Sediment – – – 2
79 Glacial Litorina Rain60 Baltic – – – 0
80 Glacial Litorina Lake Water Sediment – – – 18
81 Glacial Litorina Lake Water Baltic – – – 61
82 Glacial Litorina Sediment Baltic – – – 0
83 Glacial Rain60 Lake Water Sediment – – – 40
84 Glacial Rain60 Lake Water Baltic – – – 69
85 Glacial Rain60 Sediment Baltic – – – 12
86 Glacial Lake Water Sediment Baltic – – – 58
87 Litorina Rain60 Lake Water Sediment – – – 30
88 Litorina Rain60 Lake Water Baltic – – – 1
89 Litorina Rain60 Sediment Baltic – – – 0
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90 Litorina Lake Water Sediment Baltic – – – 2
91 Rain60 Lake Water Sediment Baltic – – – 29
92 Brine Glacial Litorina Rain60 Lake Water – – 81
93 Brine Glacial Litorina Rain60 Sediment – – 8
94 Brine Glacial Litorina Rain60 Baltic – – 1
95 Brine Glacial Litorina Lake Water Sediment – – 29
96 Brine Glacial Litorina Lake Water Baltic – – 48
97 Brine Glacial Litorina Sediment Baltic – – 3
98 Brine Glacial Rain60 Lake Water Sediment – – 40
99 Brine Glacial Rain60 Lake Water Baltic – – 74

100 Brine Glacial Rain60 Sediment Baltic – – 23
101 Brine Glacial Lake Water Sediment Baltic – – 95
102 Brine Litorina Rain60 Lake Water Sediment – – 31
103 Brine Litorina Rain60 Lake Water Baltic – – 1
104 Brine Litorina Rain60 Sediment Baltic – – 0
105 Brine Litorina Lake Water Sediment Baltic – – 2
106 Brine Rain60 Lake Water Sediment Baltic – – 30
107 Glacial Litorina Rain60 Lake Water Sediment – – 33
108 Glacial Litorina Rain60 Lake Water Baltic – – 27
109 Glacial Litorina Rain60 Sediment Baltic – – 0
110 Glacial Litorina Lake Water Sediment Baltic – – 19
111 Glacial Rain60 Lake Water Sediment Baltic – – 32
112 Litorina Rain60 Lake Water Sediment Baltic – – 1
113 Brine Glacial Litorina Rain60 Lake Water Sediment – 36
114 Brine Glacial Litorina Rain60 Lake Water Baltic – 13
115 Brine Glacial Litorina Rain60 Sediment Baltic – 2
116 Brine Glacial Litorina Lake Water Sediment Baltic – 31
117 Brine Glacial Rain60 Lake Water Sediment Baltic – 57
118 Brine Litorina Rain60 Lake Water Sediment Baltic – 1
119 Glacial Litorina Rain60 Lake Water Sediment Baltic – 1
120 Brine Glacial Litorina Rain60 Lake Water Sediment Baltic 2

4.2	 End-member variability module (EVM)
A procedure has been developed an implemented in M3 v3.0 to assess the impact of the com-
positional variability of water end-members on the calculated mixing proportions. This section 
describes the procedure and the results obtained using Laxemar 1.2 data set (Local Model, 356 
superficial and groundwaters, /Laaksoharju 2005/).

4.2.1	 Motivation
The calculation of water mixing proportions by means of a PCA analysis is a well established 
and useful practice when dealing with a big number of samples /Laaksoharju and Skårman 
1995ab, Smellie and Karlsson 1996, Laaksoharju and Wallin 1997, Gurban et al. 1998, 
Laaksoharju et al. 1995, 1999abcd, 2000, 2004, Laaksoharju 2004/. However, this type of 
analysis has the drawback of a priori selecting a set of end-members, whose number and 
composition are fixed in advance. A preliminary exploratory analysis can, in principle, identify 
the end-members to be used, but this selection, mainly based on expert judgment, is always 
tricky and, in many cases, difficult to justify /Bath and Jackson 2002, Svensson et al. 2002/. 
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The selection is even more critical when the mixing proportions coming out of the PCA analysis 
are to be used by hydrogeologists to “transport” them spatially through the system (using flow 
lines) or through time (to predict future changes in water composition).

4.2.2	 General procedure
In order to overcome these difficulties, the EVM takes into account the intrinsic compositional 
variability of the end-members. The procedure starts from a pre-selected number of end-
members, i.e. no attempt is made here to define which end-members to be use in the analysis 
(the selection could be made by expert judgment or using the ESM described in Section 4.1), 
and has the following steps (Figure 4-1):

1.	 Define the compositional variability of the end-members. This can be done by defining 
compositional ranges for each input compositional variable.

2.	 Construct a probability density function for each compositional variable. This probability 
density functions are called input probabilities.

3.	 Generate, according to the chosen input probabilities, a large number of end-member 
compositions.

4.	 For each run one of the calculated end-member composition is used to compute the mixing 
proportions of selected samples.

5.	 After all runs have been finished, mixing proportions for each sample are binned to construct 
the output probability distributions.

What follows is a brief summary of each step.

Definition of the compositional range for the selected end-members 

Each end-member is characterized by two samples, real or synthetic, that represent the 
maximum variability expected for that end-member. The selection is made by expert judgment, 
taking into account all the geochemical and hydrological knowledge of the system. Note that 
this is not the same as selecting, by expert judgment, a fixed composition for the end-member, 
as the standard PCA analysis does. Here expert judgment selects a range of compositions, relax-
ing in this way the requirement of knowing the exact composition of each end-member to be 
used in the mixing calculations. Table 4-3 summarises the ranges that have been defined for the 
end-members in the modelling of the Local Model of Laxemar 1.2 dataset /Laaksoharju 2005/.

Figure 4-1.  Flowchart of the procedure implemented to assess the impact that the compositional 
variability of end-members has on mixing proportions.

Assume a probability distribution ( pdf ) 
Lognormal (concentrations)

Normal ( δ2H and δ18 O) 

Generate, according to the chosen pdf , a big 
number of end -member compositions 

0 → detection limit
Range → 99 th percentile 

10,000 runs 

For each run, compute mixing ratios for 
selected samples 

KLX02, KSH01A  

Bin mixing proportions to construct output 
probability distribution (histogram) 

Define compositional range for end-members
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The extreme values for each end-member have been selected in the following way:

•	 Brine 1 corresponds to the most saline sample found in Laxemar and is characterised by 
a very high sulphate content.

•	 Brine 2 corresponds to the sample KRA/860/2 (from Finland) which is considered the most 
saline sample in Finland and is characterised by a low sulphate content.

•	 Glacial 1 corresponds to a glacial melt water present in the system several thousand 
years ago.

•	 Glacial 2 corresponds to a modern glacial melt water (different values for stable isotopes).

•	 Litorina 1 corresponds to the theoretical composition of the Litorina Sea, so it represents an 
old Baltic sea water.

•	 Litorina 2 corresponds to the present Baltic waters. 

•	 Rain 1 corresponds to an old winter rain with no tritium and very low values for the stable 
isotopes.

•	 Rain 2 corresponds to the summer rain in the sixties with the maximum tritium and the 
highest values for the stable isotopes.

•	 DGW 1 corresponds to a sample from the Bockholmen subarea (borehole HBH05) which 
is representative of a diluted granitic groundwater.

•	 DGW 2 corresponds to a sample from the Äspö subarea (borehole HAS05) which is 
representative of a diluted granitic groundwater. Together with the DGW 1 cover the whole 
range of chemical and isotopic compositions of very shallow granitic groundwaters, below 
the overburden.

Mixing calculations have been carried out in Laxemar 1.2 with four end-members: Brine + 
Glacial + Litorina + Rain when dealing with the whole data set (superficial and groundwaters, 
356 samples), and Brine + Glacial + Litorina + Dilute Groundwater when dealing only with the 
groundwaters (158 samples).

Construction of the input probabilities 

For the definition of the probability density functions (pdfs) that characterize the compositional 
variation of each end-member the EVM adopts the following two assumptions: (1) all 
compositional variables follow a log-normal distribution; and (2) the ranges listed on Table 4-3 
are equated to the 1st and 99th percentiles of the chosen probability function, which means 
that M3 allows for end-member compositions outside the reported range in Table 4-3 (with 

Table 4-3.  Compositional ranges of the end-members used in Laxemar 1.2 PCA mixing 
modelling /Laaksoharju 2005/.

End-member Na 
(mg/l)

K 
(mg/l)

Ca 
(mg/l)

Mg 
(mg/l)

HCO3 
(mg/l)

Cl 
(mg/l)

SO4 
(mg/l)

2H 
(dev)

3H  
(TU)

18O 
(dev)

Brine 1 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 0.00 –8.9
Brine 2 9,540 28 18,000 130 8.2 45,200 8.4 –49.5 0 –9.3
Glacial 1 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 0.00 –21
Glacial 2 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –125 0 –17
Litorina 1 3,674 134 151 448 93 6,500 890 –38 0.00 –4.7
Litorina 2 1,960 95 93.7 234 90 3,760 325 –53.3 0.00 –5.9
Rain 1 0 0 0 0 0 0 0 –125 0 –17
Rain 2 0 0 0 0 0 0 0 –44 168 –6.9
DGW 1 19.2 3 38.5 3.8 162 12 21.5 –68.4 11.913 –9.9
DGW 2 237 4 25 6 370 119 118 –73.8 0.775 –9.9
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a probability of 1%). The log-normal distribution has been chosen because compositional 
variables are skewed non-negative physical quantities /Mishra 2002/. For example, Na in 
the Brine end-member (Table 4-3) has a lower Na content of 8,500 mg/L and an upper Na 
content of 9,540 mg/L. The value of 8,500 mg/L is equated to the 1st percentile and the value 
of 9,540 mg/L to the 99th percentile. The mean µ and standard deviation σ of the log-normally 
distributed Na content are /Mishra 2002/.
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where α and β are the mean and standard deviation of the log-transformed variable; in other 
words, α and β are the mean and standard deviation of the normally distributed variable ln(x) 
. Parameters α and β can be computed from the ranges in Table 4-2. For Na in the Brine end-
member we have:

2
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In the latter equation the factor 2×2.576 is the number of standard deviations needed to include 
99% of the area under a normal distribution, from the 1st to the 99th percentiles (i.e. 99% of the 
area under the normal distribution falls between α−2.576β and α+2.576β). The area under a 
normal distribution is computed by means of the error function, erf(x),
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2
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and it can be shown that erf (2.576) = 0.9900. Figure 4-2 shows this in graphical form for a 
Gaussian distribution of zero mean and standard deviation of one. 

Figure 4-2.  Normalised Gaussian distribution (zero mean and standard deviation of one) showing how 
the area under the curve is related to the distance from the mean, in unit of the standard deviation. 
99% of the area is located between the 1st and the 99th percentiles (vertical lines). The first percentile is 
at a distance of 2.576σ to the left of the mean and the 99th percentile a distance of 2.576σ to the right 
of the mean.
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For the example given above, α = 9.1055, β = 0.022446 and, therefore, µ = 9,007.0 mg/L and 
σ = 202.2 mg/L (see the Brine pdf in the first panel of Figure 4-3). These are the two parameters 
that are needed to define the log-normal probability density function
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2
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2
1)( x

x
xf ,						      (4-6)

where x can have only positive values (0 < x < + ∞).

Once a probability function has been chosen and the statistical meaning of the empirical 
compositional range defined (in this case, it is equated to the 1st and 99th percentiles), the input 
probability functions are completely characterized. They are shown in graphical format in 
Figure 4-3. This figure plots the pdfs for all ten compositional variables used in the PCA mixing 
analysis: seven chemical species (Na, K, Ca, Mg, HCO3, Cl, and SO4), two stable isotopes (2H 
and 18O), and 3H. The probability density functions have been constructed binning 10,000 values 
for each compositional variable and normalizing to ensure that the area under each curve is 
one. In the particular case of an end-member with identical upper and lower bounds for a 
compositional variable, the resulting probability density function is a delta function centred in 
the corresponding value (e.g. the δ18O value for DGW in Table 4-3 is –9.9 for both the lower 
and upper limits; obviously, all realizations of this compositional variable will result in a δ18O 
value of –9.9 for the end-member DGW).

The concentrations of Na, K, Ca, Mg, HCO3, Cl, SO4 and 3H have been approximated by a pdf 
as explained above. However, δ2H and δ18O pose a particular problem because they are delta-
values, calculated as the ratio of two concentrations and then normalized with respect to  
a reference concentration, which means that they can have both positive and negative values. 
This is incompatible with a lognormal distribution, which is only defined for positive real 
numbers. Instead, a Gaussian distribution has been used for δ2H and δ18O, which is reasonable 
as their distribution is not skewed. The Gaussian or normal pdf has the form:
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where µ and σ are the mean and standard deviation of the normally-distributed variable x. 
Random variable x can take on any real value (−∞ < x < +∞). For example, the mean and 
standard deviation of δ18O in the Rain end-member are µ = (−17−6.9)/2 = –11.95‰ and σ = 
|−17−(−6.9)|/(2×2.576) = 1.96‰, and are shown in the last panel in Figure 4-3. Obviously, it is  
a symmetric distribution (to be compared to the positively-skewed log-normal distributions in 
the other panels).

Generation of end-member compositions 

Once the input probability density functions are defined, the EVM generates a large number 
of compositions for each end-member. These compositions are randomly sampled from the 
corresponding pdf and fed into the PCA analysis. Figure 4-4 is a PC1-PC2 plot of the Laxemar 
1.2 groundwater dataset (158 samples), where 10,000 compositions have been generated using 
end-members Brine + Glacial + Litorina + Dilute Groundwater. The end-member compositions 
are plotted in different colours while the position of the samples are indicated by a black dot. 
For the log-normal compositional variables (all input variables except 2H and 18O) the procedure 
to generate a log-normal random deviate is the following: (1) generate a random (Gaussian) 
deviate y with mean α and standard deviation β; (2) compute x = ey; then x is a log-normal 
deviate with mean µ (Equation 4-3) and standard deviation σ (Equation 4-4). Basically, once 
each new realization of the composition of the end-members is produced, a principal component 
analysis of all the samples in the dataset (plus the end-members) is carried out and the PC 
coordinates of every water sample in the dataset saved into a file. Because the end-members are 
slightly different each time the PCA is carried out, the PC coordinates of the samples are also 
slightly different each time, and this is why each water sample is represented in Figure 4-4 not 
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by one dot, but by as many dots as different compositions of the end-members were generated 
(actually, in Figure 4-4 only one of every 10 dots is plotted so as not to clutter the graph with 
black dots; for the coloured dots, corresponding to the end-members, all 10,000 realizations 
are plotted).

The last point that has been taken into account to generate the random input compositional 
values for the end-members is the known correlation that exists between 2H and 18O delta-values 
in non-saline waters (Figure 4-5). In practice this means that M3 gives a random value to 18O 
according to its input pdf and then computes the 2H delta-value using the regression quoted in 
Figure 4-5. This regression is a weighted least-squared fit to 1,660 superficial and groundwater 
samples from the Baltic Shield. To the predicted deuterium value M3 adds a random Gaussian 
deviate of ±3.5 per mil, which is the dispersion of deuterium values around the best-fit line 
(inset in Figure 4-5). The EVM uses this method for fresh and brackish waters, but not for 
brines (Cl > 25,000 mg/L), as they do not follow the regression line but plot above it, inside the 
blue ellipse in Figure 4-5. For these waters the values of 2H and 18O coming out of the random 
sampling of the input pdfs are used directly.

Computation of mixing proportions

Once the PCA coordinates of each sample are known, the EVM computes their mixing 
proportions by means of one of the two mixing routines implemented in M3 (the two-principal 
component or the hyperspace mixing routines). The procedure has been described Section 3.2.

Construction of the output probability densities

Each M3 run gives, for each sample, a set of mixing proportions. For example, run #234 gives, 
say, the following mixing proportions for sample #15: Brine = 11.3%, Glacial = 58.6%, Litorina 
= 12.1%, and Dilute Groundwater = 18.0%. In other words, the 10,000 runs, each with a 
different composition for the end-members, give 10,000 different mixing proportions for sample 
#15 (and of course for any other selected sample). In this way M3 can assess how the variability 

Figure 4-4.  PC-plot for Laxemar 1.2 Local Model data set (only groundwaters, 158 samples). Each 
end-member is represented by 10,000 compositions (coloured dots) taken from a pdf defined by a 
predefined compositional range. Black dots correspond to the samples. These plots are like the super
position of 10,000 individual PC-plots, each computed with a different set of compositions for the end-
members.
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in the composition of the end-members is propagated to the calculated mixing proportions. 
If the computed mixing proportions for a particular sample have a very broad variability (let’s 
say, from 10% to 80% of the glacial end-member), it would mean that mixing proportions are 
very sensitive to changes in the composition of the end-members, casting serious doubts on 
the mixing results. If, on the other hand, mixing proportions for a sample concentrate around 
particular values, it would mean that they are not too sensitive to changes in end-member 
composition, thereby strengthening the case for a robust result.

Figure 4-6 shows the output pdfs for three selected groundwater samples from borehole 
KSH01A (Simpevarp area). As can immediately be appreciated, the range of mixing proportions 
for each of the selected samples is quite narrow, considering the a priori compositional vari-
ability of the end-members. This is a strong indication that the computed mixing proportions 
are indeed a robust estimator of the mixing behaviour of the waters.

Table 4-4 shows the mean and standard deviation of the mixing proportions for the three 
selected samples. The maximum deviation is ±3% (i.e. approximately 68% of the calculated 
mixing proportions are inside a bracket of width 6%) and the average deviation 2% (i.e. the 
average of 12 standard deviations: three samples times four end-members each).

The important conclusion that can be drawn from the above results is that, once the number 
and type of end-members are known, the inclusion of the compositional variability of the 
end-members in the PCA analysis gives a robust estimation of the mixing proportions, in the 
sense that the output probability functions are narrow, predicting mixing proportions tightly 
concentrated around a mean value. The bonus of this analysis, apart from the robustness itself, 
resides in the statistical bracketing of the variability of the mixing proportions, which is a 
fundamental issue when “exporting” these results for hydrogeological modelling.

Figure 4-5.  δ2H–δ18O plot of 1,660 groundwater and superficial samples of the Baltic Shield. The red 
line is a weighted least square fit to the data assuming a δ2H error equal to the detection limit (2‰). 
The blue lines are the ± 1σ bounds (68.3% of the data points fall between the blue lines). The inset 
shows, for a slice centred around δ18O = −10 (green vertical dashed lines), the dispersion of the data 
points, which is ± 3.5‰ in terms of the standard deviation. M3 assumes that δ18O values are exact 
(no error in the horizontal axis). This correlation is applied to all samples with a Cl content less than 
25,000 mg/L.
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Table 4-4.  Mean and standard deviation for the mixing proportions of the selected samples 
from boreholes KLX02 and KSH01A. 

Brine (%) Glacial (%) Litorina (%) Dilute Gw (%)
Sample Mean Std Mean Std Mean Std Mean Std

Simpevarp

KSH01A

5263   9.1 1.2 51.2 2.8 17.2 1.6 22.5 2.9
5268 11.5 1.2 57.0 3.0 14.7 1.4 16.8 2.9
5288 24.2 1.2 45.4 2.5   9.2 1.4 21.2 2.6

Figure 4-6.  Mixing proportions for three samples from borehole KSH01A (Simpevarp area). End-
members used for the calculations are Brine + Glacial + Litorina + Dilute Groundwater. For the 
PCA analysis only groundwater samples from Laxemar 1.2 iteration were used (158 samples).
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5	 Confidence building

The concept of confidence building is central to the reliable use of any piece of software, either 
very simple or extremely complex. All developers, users and decision makers will agree on this. 
But the agreement usually ends here, because the definition of “confidence building” is, to put 
it mildly, a thorny matter.

There is a huge amount of literature on verification, validation, and confidence building in 
connection with the Performance Assessment (PA) of deep geological repositories of high level 
radioactive wastes, including several PAs carried out by SKB or SKI like Project-90 /SKI 1991, 
NEA/OECD 1992/, SKB-91 /SKB 1992/, SITE-94 /SKI 1996ab/, and SR 97 /SKB 1999ab/. 
Although the opinions expressed there are diverse, they can be grouped into two extreme sides: 
(1) confidence building can demonstrate that a piece of software is sound and delivers what it 
says; and (2) confidence building can never demonstrate that a piece of software is sound and 
would deliver what it says. Of course, between these two opposite views, there are opinions 
that try to go straight to the point and which are much more useful from a practical viewpoint. 
As /Zuidema 1995/ put it in GEOVAL’94 (italics are ours):

	 “Absolute truth is not known, so we cannot of course provide a model which provides this. 
In practice, models will be used to support regulatory and legal decisions, and this will not 
change no matter how loudly and often it is proclaimed that it cannot be demonstrated that 
models represent the truth. Thus, our task should be to stop debating the impossibility of 
model validation in such an absolute sense, and to develop procedures whereby all involved 
parties can be reasonably assured that models are appropriate and are being used correctly 
to meet the needs of the problem at hand. Certainty cannot be achieved, we must and should 
be satisfied with engineering confidence – often it will be sufficient to provide confidence in 
our ability to bound the outcome of a specific phenomenon”.

The very name “confidence building” is a later addition to the PA jargon which tries to 
acknowledge the intrinsic difficulties in demonstrating the soundness of any computer program. 
Before that, “validation” was the trigger word, and the discussion centred around the feasibility 
of validating a computer code /Greenwood 1989, Tsang 1991, Konikov and Bredehoeft 1992, 
Bredehoeft and Konikov 1993, McCombie and McKinley 1993, Bair 1994, Oreskes et al. 1994, 
Leijnse and Hassanizadeh 1994, Molnia 1996, Sargent 1999, Bredehoeft 2005/. The general 
conclusion was that a 100% validation was not possible, even recommendable, when the codes 
were asked to predict processes and whole-system behaviour in and around the repository in 
time spans of thousands of years. To soften up the implications that the word “validation” had, 
the term “confidence building” was coined for the process of gaining confidence in the work-
ings of a computer program. Actually, the sentence written in italics in /Zuidema 1995/ citation 
could be used as a working definition of confidence building. 

Figure 5-1 summarises the actions involved in confidence building, from the most basic step 
(verification) to more complex ones (validation, certification, etc). Some steps are intrinsic to 
the computer code, but others, the most critical, depend also on the specific application at hand 
and cannot be carried out without a complete specification of the system, the problem to be 
solved, and the time and space framework where the code should seek an answer.

Here and in Report 2, the first two steps in the confidence building process have been 
formalised in terms of a series of verification and validation experiments. No attempt has been 
made to devise certification procedures, but in Report 2 further details on the “More” step of 
the confidence building process are included. 

In this report the verification and validation exercises are collected as two tables indicating the 
type of exercise and what the exercise tries to “verify” or “validate”. The complete exercise can 
be found in Report 2.
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5.1	 Verification of M3
The verification cases performed can be found in Report 2 and are summarised in Table 5-1. 
The cases tested show both “good results” and “bad results”, mainly to test when the two-
principal component mixing routine (Section 3.2.2) should be used and when not. “Good result” 
cases are those where the comparison with the corresponding analytical solution, or another 
model study, is satisfactory; the potential M3 user is referred to Report 2 to study the details.

A few words may however be needed to explain the objectives when selecting the test cases 
and the way the comparisons have been carried out.

•	 The test cases should include all the parts of the M3 methodology (PCA, mixing, mass 
balance, ESM and EVM).

•	 Each test should focus on a particular algorithm or module.

•	 Synthetic datasets have been used in many tests as this is the best way to validate the results 
when dealing with mixing proportions and mass balance calculations. 

Some verification studies are straightforward and test a specific algorithm, and other are more 
elaborate because they try to test longer pieces of the code.

Figure 5-1.  Processes and actions involved in confidence building /Svensson et al. 2004/.
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Table 5-1.  Summary of the verification tests that can be found in Report 2.

Group Case Comments

A.	 Principal Component 
Analysis

A1.	 Eigenvectors, eigenvalues 
and PC loadings.

Test of the mathematical routine that 
performs the Principal Component 
Analysis.

B.	 Mixing proportions B1.	 Mixing proportions when 
end-members are fully 
known.

B1.1.	Mixing proportions with the 
two-principal component 
mixing routine.

B1.2.	Mixing proportions with the 
hyper-space mixing routine. 

Test of the calculation of the mixing 
proportions from the PCA coordinates. 
Synthetic samples are used in all test 
cases. 

Both the two-principal component and 
hyper-space mixing routines are tested.

C.	 Mass balance C1.	 Test of absolute and relative 
deviations using synthetic 
samples.

Test of the mass balance calculations. 
As these deviations depend on the mixing 
routine used, they are tested with the 
output of both mixing routines (see group B 
tests).

D.	 End-member Selection 
Module

D1.	 Test of the combinations 
generating routine.

D2.	 Test of ESM using as end-
members the same used 
to create the samples.

The main aim of this exercises is to test 
the routine that generates all the possible 
combinations of end-members. 

E.	 End-member Variability 
Module

E1.	 Test of random number 
generator.

E2.	 Construction of input 
probability distributions.

E2.1.	When lower and upper 
ranges are identical.

E2.2.	When lower and upper 
ranges are different.

This is a complex module that has to be 
tested by parts, starting with the random 
number generation routine, following 
with the input probability distributions 
and ending with the output probability 
distributions.

F.	 Comparison with other 
analytical and numerical 
solutions of pure mixing 
problems.

F1.	 Linear mixing (no 
redundancy).

F2.	 Linear least squares 
(redundancy).

F3.	 PHREEQC in the pure 
mixing mode.

This set of test will verify that M3 is able to 
solve pure mixing problems.
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5.2	 Validation of M3
Table 5-2.  Summary of the validation tests that can be found in Report 2.

Group Case Comments

A.	 Stability of mixing 
proportions

A1.	 Stability check 1: dependence 
of mixing proportions on the 
number of samples in the 
dataset.

A1.1.	Only synthetic samples.

A1.2.	One synthetic sample 
inserted in a real-sample 
dataset.

A2.	 Stability check 2: dependence 
of mixing proportions on the 
number of input variables.

A2.1.	Only synthetic samples.

A2.2.	One synthetic sample 
inserted in a real-sample 
dataset.

A2.3.	Special case: Only 
conservative elements.

A3.	 Stability check 3: dependence 
of mixing props on the 
inclusion/exclusion of end-
members.

Synthetic samples are used in A1.1 
and A1.2, and a real data set with one 
synthetic sample inserted in cases A1.2 
and A2.2.

In case A2.3 only conservative elements 
are included among the variables. It is 
important to test the resolution of the 
method when only conservative elements 
are included. 

Stability check 3 tries to quantify the error 
introduced in the mixing proportions when 
the end-members are included in the 
dataset prior to the principal component 
analysis.

B.	 End-member Variability 
Module

B1.	 Output probability 
distributions.

B1.1.	When lower and upper 
ranges are identical.

B2.2.	When lower and upper 
ranges are different.

B2.	 Testing mass balance in the 
case of variable end-member 
composition.

This test will verify the effect of end-
member compositional variability on 
the calculated mixing proportions. This 
variability could be intrinsic or due to 
analytical and/or sampling errors.

C.	 End-member Selection 
Module

C1.	 Test of ESM using as end-
members others than the 
ones used to generate the 
samples.

This test will verify the stability of 
the mixing proportions against a 
misidentification of end-members: 
i.e. what would happen to the mixing 
proportions in the case of an erroneous 
selection of end-members (both in 
number and type). 

D.	 Analysis of reactions D1.	 Test of absolute and relative 
deviations using one synthetic 
sample in a real dataset.

D1.1.	With conservative and non-
conservative elements.

D1.2.	Only with conservative 
elements.

This tests will verify the meaning of the 
deviations between real and computed 
elemental concentrations and whether 
this deviations could be used to identify 
chemical reactions and in which 
circumstances.

E.	 Cross-check against 
other codes

E1.	 Solve a mixing+reaction 
problem with M3 and 
PHREEQC.

This test will verify how the computed 
mixing proportions deviate from the real 
mixing proportions as the importance of 
chemical reactions is increased.

F.	 Cross-check against 
other methods to 
compute mixing ratios 
and reactions

This tests will verify the capability of M3 to 
solve real, complex groundwater mixing 
problems by comparing its results with 
those obtained by other authors using 
alternative approaches.

G.	 Ability to solve 
non-aqueous mixing 
problems 

This tests will verify the capability of M3 to 
solve mixing problems outside the realm of 
water hydrogeochemistry.
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6	 An example with M3

To become familiar with the M3 method and to give an idea of the type of results M3 delivers, 
we shall use a real multi-dimensional dataset consisting of groundwater samples from the 
Scandinavian Shield. This is a dataset of 169 water samples from the Laxemar area, near Äspö, 
Sweden, used by /Laaksoharju et al. 2004a/ in iteration 1.2 of SKB’s Site Investigation Program 
at Laxemar. A subset of the dataset is reproduced in Table 6-1 to see the type of information 
used in the input file.

As we are interested in groundwater mixing, only these type of water samples have been 
included in the dataset. All superficial waters (streams, lakes, seawater, precipitation) have 
been deleted. The input variables consist of ten compositional and isotopic parameters: the 
concentration in mg/L of Na, K, Ca, Mg, HCO3, Cl, and SO4; the concentration of 3H in tritium 
units; and the deviation of 2H and 18O in ‰ (delta values). Notice that among these input 
variables are conservative and non-conservative ones, i.e. some would behave as conservative 
during mixing, but most of them will not. It is up to the user to decide which set of input vari-
ables best describe the system, but running M3 with different sets of input variables is a good 
idea to asses the impact of these on the mixing proportions and mass balances.

Table 6-1.  Excerpt of the dataset (Laxemar 1.2 Regional Model, 169 samples).

Sample  
#

Na  
(mg/l)

K  
(mg/l)

Ca  
(mg/l)

Mg  
(mg/l)

HCO3 
(mg/l)

Cl  
(mg/l)

SO4  
(mg/l)

δ2H  
‰

3H  
(TU)

δ18º  
‰

4116 498 13.8 60.4 16.9 440 529.8 201.81 –64.2 3.7 –9.5
4167 64.6 9.5 62 14 310 15.7 18.66 –79.6 12 –11.8
4399 169 6.68 27.6 6.9 390 72 44.65 –84.5 14.4 –11.7
4964 1,560 35.6 640 168 161 3,898.8 286.47 –77.3 2.2 –10.1
4464 447 19.1 92.9 27 418 585.8 155.56 –81.2 5.7 –11.1
4535 1,150 32.6 572 139 173 2,694.1 319.35 –72.8 1.2 –9.4
4522 2,210 67.8 754 287 115 5,421.7 533.97 –66.1 0.8 –8.4
8335 274 5.6 41.1 7.5 465 181 85.1 –80.6 12.1 –11.1
4965 1,610 21.6 945 173 161 4,466.4 410.22 –73.2 1.9 –9.5
8038 482 5.63 550 32.6 261 1,658.5 90.04 –91.4 2.5 –12.4
8020 783 6.34 779 63 176 2,617.1 173.5 –93.6 0.8 –12.6
8129 1,010 15.8 555 102 231 2,560 263 –77.4 1.1 –10.8
8095 276 9.27 176 25.5 332 545 104 –79.8 0.8 –11.5
8127 466 12.7 175 32.9 366 857 159 –77.5 1.9 –11.1
8164 282 5.93 32.7 8.1 450 178 106 –81.9 5.6 –10.8
8246 399 12.7 42.2 13.5 461 415 109 –80 7.8 –10.9
8247 1,870 48.4 893 242 137 4,950 543 –64.5 0.8 –8.5
4538 1,740 25.6 874 142 61 4,562.8 315.65 –88.2 0.8 –11.6
4724 2,000 29.2 934 204 99 5,329.5 546.97 –69.3 0.8 –8.8
4398 168 6.46 34.2 7.8 378 84.4 53.92 –82.1 11.2 –11.4
8100 366 9.74 139 31 353 642 89.6 –80.9 0.8 –11.6
8272 1,820 21.4 1,140 198 93 5,380 434 –75.6 0.8 –10.2
8016 2,040 34.2 934 226 125 5,410 498 –67 2.4 –8.8
8012 2,110 47.6 925 223 101 5,450 495 –69.4 2 –9.1
8017 2,070 26.8 985 202 91 5,430 472 –70.8 0.8 –9.4
8273 1,660 14.3 1,440 52.7 22 5,430 197 –84.3 0.8 –11.6
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6.1	 Selection of the end-members (ESM)
After deciding which and how many input variables to use, the next step is selecting the 
potential end-members to run the ESM. In our example, eight potential end-members were 
included in the input data file (Table 6-2), which means that a total of 247 combinations are 
possible. Because we know that at least three end-members are involved, we do not include the 
28 combinations of only two end-members. That leaves 219 combinations of three (56), four 
(70), five (56), six (28), seven (8) and eight (1) end-members.

Table 6-3 collects all combinations able to explain more than 50% of the 169 samples. The rest 
of the combinations have been filtered out because they are not able to explain by mixing even 
half of the samples in the dataset.

In Table 6-3 the first column gives the combination number, the next eight columns give the 
end-members used in each particular run of M3. The second last column gives the actual 
number of samples inside the hyper-volume defined in n-1 dimensional space by the n selected 
end-members (where n runs from 3 to 8) and last column gives the percentage of samples 
explained. Samples inside this hyper-volume are the only ones that can be explained by pure 
conservative mixing of the given end-members. The more samples inside the hyper-volume, 
the more successful is the chosen combination in explaining the dataset. Combinations #61 
(dark orange shading in Table 6-3) and #62 (light orange) are the most successful ones, able 
to explain 99.4% of the samples (i.e. all samples except one). We are interested in the mixing 
behaviour of the groundwaters. Combination #62 includes a superficial end-member (precipita-
tion water) but Combination #61 includes none superficial end-member, so we decided to keep 
the latter in detriment of the former. 

Notice that the best combination of three end-members with no precipitation end-member 
explains 98.2% of the samples (Br + Gl + DGw). This is a high percentage and we could have 
decided to retain that combination, but we know from the geological evolution of the site that 
some waters should have the signature of the Litorina Sea (the ancient Baltic Sea) and thus 
this end-member should be included. That is why we did not select the three-end-member 
combination Brine + Glacial + DiluteGW. 

Among the five-end-members combinations none is able to explain more than 85.8% of the 
samples. And with more than five end-members, none explains more than 50% and are not 
shown in the filtered output (the best combination of 6 end-members explains 27.2% of the 
samples; the best one with seven end-members explains 6.5% of the samples, and the only 
eight-end-member combination explains just 2.4% of the samples). We see that the “quality” 
of the combination of end-members drops rapidly when more than 5 end-members are used, 
suggesting that five end-members is the likely maximum number of end-members involved 
in the mixing of the groundwaters in the Laxemar area. This datum in itself is not enough to 
rule out other combinations of end-members, but is a strong indication supporting combination 
Brine + Glacial + Litorina + DiluteGW as a good candidate to be used in all following M3 
calculations. 

The sole output of the ESM is of course insufficient to decide which set of end-members is to 
be used with M3, but combined with the geological, hydrological and geochemical knowledge 
of the system it could be converted into a powerful decision tool. 
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Table 6-2.  Potential end-members.

Na 
(mg/L)

K  
(mg/L)

Ca 
(mg/L)

Mg 
(mg/L)

HCO3 
(mg/L)

Cl 
(mg/L)

SO4 
(mg/L)

δ2H  
‰

3H 
(TU)

δ18º  
‰

Brine 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 0 –8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 0 –21
Litorina Sea 3,674 134 151 448 93 6,500 890 –38 0 –4.7
Sea Sediment 2,144 91.8 103 258 793 3,383 53.1 –61 0 –7
Baltic Sea 1,960 95 234 93.7 90 3,760 325 –53.3 20 –5.9
Lake Water 21 3.21 30.3 5.9 110 45.8 16.18 –44.3 7.6 –4.5
Rain 1960* 0.4 0.29 0.24 0.1 12.2 0.23 1.4 –80 168 –10.5
Dilute GW 237 4 25 6 370 119 118 –73.8 –9.9

* Age corrected tritium to 2004 datum.

Table 6-3.  Output of the End-member Selection Module. It has been filtered to show only 
those combinations explaining more than 50% of the samples in the dataset. 

Comb 
#

EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 Samples 
explained

%

2 Brine Glacial Rain60* – – – – – 168 99.4%
3 Brine Glacial SeaSed – – – – – 88 52.1%
4 Brine Glacial Baltic – – – – – 88 52.1%
5 Brine Glacial LakeWater – – – – – 141 83.4%
6 Brine Glacial DiluteGW – – – – – 166 98.2%

22 Glacial Litorina Rain60* – – – – – 139 82.2%
25 Glacial Litorina LakeWater – – – – – 91 53.8%
26 Glacial Litorina DiluteGW – – – – – 136 80.5%
28 Glacial Rain60* Baltic – – – – – 133 78.7%
57 Brine Glacial Litorina Rain60* – – – – 167 98.8%
60 Brine Glacial Litorina LakeWater – – – – 144 85.2%
61 Brine Glacial Litorina DiluteGW – – – – 168 99.4%
62 Brine Glacial Rain60* SeaSed – – – – 168 99.4%
64 Brine Glacial Rain60* LakeWater – – – – 86 50.9%
67 Brine Glacial SeaSed LakeWater – – – – 127 75.1%
68 Brine Glacial SeaSed DiluteGW – – – – 159 94.1%
69 Brine Glacial Baltic LakeWater – – – – 118 69.8%
70 Brine Glacial Baltic DiluteGW – – – – 141 83.4%

129 Brine Glacial Litorina Rain60* LakeWater – – – 145 85.8%
130 Brine Glacial Litorina Rain60* DiluteGW – – – 139 82.2%
134 Brine Glacial Litorina Baltic LakeWater – – – 87 51.5%
138 Brine Glacial Rain60* SeaSed LakeWater – – – 133 78.7%
139 Brine Glacial Rain60* SeaSed DiluteGW – – – 129 76.3%
140 Brine Glacial Rain60* Baltic LakeWater – – – 108 63.9%
141 Brine Glacial Rain60* Baltic DiluteGW – – – 94 55.6%
143 Brine Glacial SeaSed Baltic LakeWater – – – 98 58.0%
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6.2	 Principal components analysis and plot
Once the proper set of end-members have been selected, all remaining computations are carried 
out with it. For that purpose, the chosen end-members are included in the input data file and 
the PCA performed. Figure 6-1 shows the graphical visualization of the principal components 
and the position of each sample with respect to these coordinate axes. The upper graph is a 3D 
representation in the PC1-PC2-PC3 space, and the lower graph is the standard M3 PC-plot, with 
the first principal component (PC1) as the horizontal axis and the second principal component 
(PC2) as the vertical axis. 

Figure 6-1.  PC-plot of the Laxemar 1.2 dataset. The upper graph is a 3D visualization with the first 
three principal components as axes, and the lower graph is the standard M3 PC-plot with PC1 and 
PC2 as coordinate axes. Each sample is represented by a black dot and the end-members (Brine, 
Glacial, Litorina and Dilute GW) by a red dot. The 3D graph includes the projection of each sample 
onto the PC1-PC2, PC1-PC3 and PC2-PC3 planes (in red, blue, and green respectively). The PC1-PC2 
projection is of course identical to the lower graph.
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As we are using 10 input variables, the covariance matrix has dimension 10×10 and there are 
also ten eigenvectors (principal components) and ten eigenvalues (Section 3.1.2). Table 6-4 
collects the first seven eigenvectors (principal components) and Table 6-5 all the eigenvalues 
in order of decreasing variance. As for the principal components, the first one, which contains 
45.84% of the variance has the form:

3
2 3 18

4

PC1 0.4502 Na 0.2848 K 0.4376 Ca 0.0638 Mg 0.3156 HCO

0.4481 Cl 0.4253 SO 0.1712 H 0.0974 H 0.0219 Na O.

= × + × + × + × − × +

× + × + × − × + ×

It is not easy to interpret this principal components in terms of the original variables, as each 
one is a lineal combination of all the original input variables, some with positive loadings 
(e.g. Na, K, or deuterium for PC1), and some with negative loadings (HCO3 and tritium for 
PC1). This is why in M3 methodology no attempt is made to undertake such an interpretation 
and in the graphs the axes are simply labelled PC1, PC2 and so forth.

The last column in Table 6-5 gives the cumulative variance (as a percentage) contained in the 
first k eigenvalues. The first two principal components contain 65.65% of the variance in the 
dataset. This is an important number to take into consideration when using the two-principal 
component mixing routine (Section 3.2.2). If the cumulative variance for the first two principal 
components is low (say, less than 70%), the amount of information lost during the compression 
is high and the computed mixing proportions could have significant errors. In this case, the 
hyperspace mixing routine is the only reliable way to compute the mixing proportions.

Table 6-4.  First seven eigenvectors (principal components). Each column shows the 
loadings of an specific input variable.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Na 0.4502 –6.10E–2 –3.49E–2 8.03E–2 –8.77E–3 0.227 –0.1403
K 0.2848 0.5254 –6.36E–2 –6.54E–2 –0.1206 0.3179 0.2205
Ca 0.4376 –0.1428 0.1741 1.90E–2 9.76E–2 0.3169 2.07E–2
Mg 6.38E–2 0.5956 –0.3086 –9.50E–2 –0.448 –7.20E–2 –1.29E–2
HCO3 –0.3156 6.48E–2 0.5372 –0.2369 –8.89E–2 0.3216 0.5894
Cl 0.4481 –0.1112 0.1177 2.91E–2 6.26E–2 0.26 1.23E–3
SO4 0.4253 –9.34E–3 –1.12E–2 –6.19E–2 0.1768 –0.666 0.5804
2H 0.1712 0.1804 0.6809 –0.2887 –0.2047 –0.3439 –0.4698
3H –9.74E–2 0.5318 0.1148 0.1222 0.7946 1.79E–2 –0.1351
18O 2.19E–2 –0.1144 –0.2998 –0.906 0.2425 9.31E–2 –8.88E–2

Table 6-5.  Eigenvalues in order of decreasing variance.

Eigenvalue  
#

Variance As  
percentage

Cumul. 
percentage

1 793.3 45.85 45.85
2 342.5 19.80 65.65
3 237.1 13.70 79.36
4 171.2 9.894 89.25
5 98.35 5.685 94.94
6 38.67 2.235 97.17
7 25.38 1.467 98.64
8 13.20 0.7633 99.40
9 9.677 0.5593 99.96

10 0.6971 0.4029E–1 100.0
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6.3	 Mixing proportions
The next step in the M3 methodology is the computation of the mixing proportions. In this step 
each sample is expressed in terms of the contribution of the chosen end-members to its composi-
tion. As we are using four end-members (Brine, Glacial, Litorina and Dilute GW), each sample 
will be characterize by four numbers: the percentage of Brine, Glacial, Litorina and Dilute GW 
necessary to reproduce its chemical composition if pure conservative mixing were the only 
process affecting the chemical variability of the sample.

In the previous section we saw that the two first principal components contain only 66% of the 
variance in the dataset. As this is a low figure, we have use the hyperspace mixing routine to 
compute the mixing proportions. Figure 6-2 shows the results. The graphs are PC-plots with 
PC1 and PC2 as coordinate axes. Each one plots the mixing proportions of a end-member 
colour-coded from 0% (red) to 100% (dark blue). Black circles are for samples outside the 
mixing hyper-volume (i.e. samples that cannot be explained by pure conservative mixing of 
the selected end-members). In this particular case there is only one non-explained sample, near 
the Dilute GW end-member. The end-members are marked by a black square (Brine, Glacial, 
Litorina, and Dilute GW).

Figure 6-2.  Mixing proportions for the four end-members (Brine, Glacial, Litorina and Dilute GW) 
computed with the hyperspace mixing routine. Labelled black squares identify the end-members and 
black circles those samples not explained by mixing (there is only one, near the Dilute GW end-
member).
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6.4	 Mass balance
After the mixing proportions have been computed we are in the position of reconstructing the 
chemical composition of each sample (“theoretical composition” in Section 3.3). From this 
theoretical composition and the measured one M3 computes a mass balance for each input 
variable (and each sample) as formalised in Equations (3-40) and (3-41). Again, the best way to 
visualise the results for the whole dataset is by means of PC-plots. In this case the colour code 
indicates the difference (in relative percentage, see Equation 3-41) between the measured and 
theoretical concentrations of an specific input variable. Figure 6-3 shows the results for three 
conservative input variables: chlorine, oxygen-18 and deuterium. Deviation greater than 100% 
are coloured in grey. Again, a black circle marks a sample outside the mixing hyper-volume. 

Figure 6-3.  Mass balance expressed as a relative deviation from the measured composition for three 
conservative input variables: chlorine, 18O and 2H. Mass balance has been calculated from theoretical 
compositions computed with the hyperspace mixing routine. Black squares identify the end-members; 
black circles those samples outside the mixing hyper-volume; and grey circles samples with a relative 
deviation greater than 100%.
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6.5	 End-member variability: uncertainty in mixing ratios
Up to now, all M3 calculations have been carried out assuming that end-members are fully 
known, both in number and in chemical composition. But this is a rather strong assumption in 
most real cases. The number of end-members that contribute to the mixing must commonly be 
deduced by independent geological, hydrological and geochemical arguments. But the composi-
tion of each end-member can vary in time and/or space, and this variability would certainly 
affect the computed mixing proportions and hence mass balance calculations. It is therefore 
very important to assess how the intrinsic compositional variability of the chosen end-members 
affects the mixing proportions. For that purpose the End-member Variability Module (see 
Section 4.2 for a review of this module) was implemented in M3 v3.0.

The EVM accepts as input a range of compositions for each end-member and construct from 
every range an input probability distribution (in terms of compositions), which is propagated 
through the PCA and converted into an output probability for the mixing proportions. In other 
words, the PCA and mixing calculation routines are run a large number of times, each one with 
a different composition for the chosen end-members. The composition of the end-members is 
selected in each run at random from the input probability distribution. This input probability 
distribution has been previously constructed from the compositional range of each input variable 
in each end-member (i.e. if we are using ten input variables and four end-members, we will 
have 40 input probability distributions: one for the Na content in Brine end-member, another 
for the Ca content in Litorina, and so on).

Each M3 run will give a set of mixing proportions for every sample. The EVM then constructs 
a histogram from the m runs (where m is a large number, of the order of 103–106), which sum-
marises the variability in the mixing proportions due to the initial variability in the composition 
of the end-members. In that way the user can measure in a quantitative way how uncertainties in 
composition propagate through the different calculations and are converted into uncertainties in 
the computed mixing proportions.

Figure 4-2 in Section 4.2 shows the input probability distributions for the Laxemar example. 
Table 4-7 collects the compositional ranges that characterise each end-member (Brine, Glacial, 
Litorina, and Dilute GW), and Figure 4-6 plots the output probability distributions in term of 
mixing proportions. Also, the upper graph in Figure 4-4 shows how the compositional vari-
ability of the end-members affects its position on a PC-plot and the position of each sample.

As was commented on in Section 4.2, Figure 4-6 shows that the mixing proportion probabilities 
are in all cases very narrow, indicating that the whole procedure is indeed quite robust with 
regard to initial compositional uncertainties.
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7	 Conclusions

M3 version 3 is a PCA computer code to calculate mixing proportions of a large groundwater 
dataset from input compositional variables and a group of end-members. Once the mixing 
proportions have been computed, deviations from the actual composition of each sample are 
calculated by mass balance. These deviations can be interpreted in terms of chemical reactions  
if additional knowledge of the system under consideration is obtained. 

Mixing proportions in M3 v.3 can be calculated by two different methods, called 2-principal 
component mixing and n-principal component mixing or hyperspace mixing. Two-principal 
component mixing is the method implemented in all previous versions of M3 and only uses the 
information contained in the first two principal components to compute the mixing proportions. 
When more than three end-members are used, the 2-principal component mixing method does 
not give a unique set of mixing proportions for each sample, and an approximation has to be 
used in order to select one set among the infinite number of sets. This limits the accuracy of the 
computed mixing proportions.

Hyperspace mixing (also called n-principal component mixing) is new to this version of M3 
and utilises all the principal components to compute the mixing proportions. For each sample, 
the computed mixing proportions are unique and so is the preferred method for more than three 
end-members.

M3 v.3 has two built-in modules aimed at reducing uncertainties in the computed mixing pro-
portions. The End-member Selection Module (ESM) can facilitate the selection of end-members 
for a given groundwater system. The ESM gives the percentage (coverage) of samples in a 
dataset that can be explained by pure mixing of the chosen end-members. The bigger the cover-
age, the better is the selected set of end-members in explaining, by pure mixing, the chemistry 
of the samples. At any rate, the output of the ESM must be backed up by a detailed hydrological 
and hydro-geochemical study of the groundwater system under study.

The End-member Variability Module (EVM) tries to take into account the intrinsic composi-
tional variability that the chosen end-members can have. In a given groundwater system, even 
if the only important process shaping it is mixing, the end-members that mix to give a final 
mixed water can vary in space and/or time. The EVM accepts as input a range of compositions 
for each end-member (instead of a fixed composition, as in the standard M3 calculations) and 
calculates that range of mixing proportions for each sample in the dataset that is compatible 
with the input variability. The range of mixing proportions is converted at the output into a prob-
ability distribution of mixing proportions (one for each sample). 

Before using M3 it is essential to acknowledge its aptitudes and limitations. There are things 
M3 is good at, and things that are beyond its capabilities. Showing these capabilities and 
limitations is the main goal of this Report. But it is only one of three volumes that together serve 
as the basic reference to M3 version 3. Report 2 concentrates on verification and validation 
issues, and Report 3 is the User’s Guide. Both of them should be consulted before running M3. 
No computer code should be used without first knowing what the code actually does, but in 
the case of M3 this is specially true, as the outputs of M3 are not straightforward to interpret 
without a detailed geochemical knowledge of the studied groundwater system. The four basic 
requirements that must be fulfilled for the successful use of M3 are:

1.	 A large number of groundwater samples (> 100).

2.	 Mixing must be the first order process controlling the chemistry of the groundwater system.

3.	 Chemical reactions must account for only a small fraction of the chemical variability.

4.	 End-members must be deduced first by independent methods.
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Appendix A

Stable isotopes of 1,550 groundwater samples from the 
Scandinavian Shield

δ18O   δ2H Cl (mg/L)

–11.07 –67.2 23,800
–9.0 –70.3 22,000
–9.0 –70.3 22,000

–12.0 –85.3 16,140
–12.3 –87.5 15,870
–12.3 –88.1 15,860
–12.2 –94.1 15,700
–12.2 –87.2 15,680
–12.4 –87.6 15,400
–12.5 –89.0 15,400
–11.4 –83.2 15,130
–11.4 –83.2 15,130
–11.1 –76.7 14,973.6
–12.2 –81.1 14,920.4
–12.4 –83.8 14,820
–11.4 –83.2 14,810
–10.7 –72.9 14,800
–10.7 –72.9 14,800
–10.7 –73.3 14,800
–12.3 –82.9 14,551.1
–11.9 –86.4 14,500
–11.4 –83.5 14,220
–12.2 –88.1 13,970
–12.2 –89.1 13,920
–11.81 –76.9 13,500
–10.4 –73.3 13,400
–12.7 –90.8 13,300
–12.2 –103.8 13,300
–12.4 –84.0 13,265.6
–12.0 –86.5 13,140
–10.4 –75.8 13,070
–11.0 –82.9 12,930
–12.6 –86.1 12,883
–13.0 –89.6 12,804.7
–11.9 –85.7 12,800
–10.4 –75.2 12,590
–11.7 –82.6 12,500
–10.3 –90.3 12,470
–10.5 –75.3 12,460
–12.5 –91.2 12,450
–11.5 –84.5 12,430
–10.2 –75.9 12,400
–10.5 –75.6 12,390
–10.5 –75.9 12,380

δ18O   δ2H Cl (mg/L)

–10.5 –75.4 12,360
–13.0 –88.6 12,351.8
–10.5 –75.9 12,320
–10.4 –75.1 12,320
–12.7 –96.4 12,300
–12.7 –96.4 12,300
–11.27 –73.43 12,300
–11.6 –91.0 12,300
–12.4 –84.9 12,279.7
–13.6 –91.6 12,160
–13.2 –90.6 12,083.3
–12.5 –88.5 12,054
–10.0 –73.0 12,000
–12.8 –91.9 11,720
–8.7 –64.4 11,500

–12.5 –91.1 11,480
–11.0 –82.2 11,480
–11.0 –82.2 11,480
–12.8 –94.8 11,460
–12.9 –95.2 11,430
–12.8 –94.7 11,400
–12.8 –92.3 11,360
–12.7 –102.4 11,300
–13.0 –95.3 11,283.1
–13.1 –96.8 11,100
–12.4 –89.5 11,100
–13.1 –96.8 11,100
–13.0 –96.8 11,100
–13.0 –96.8 11,100
–12.8 –95.3 11,097.8
–12.4 –97.7 10,730
–11.9 –89.3 10,600
–13.7 –92.2 10,565
–13.1 –91.9 10,425
–13.6 –99.7 10,200
–9.1 –69.5 10,000

–14.1 –97.0 10,000
–14.1 –95.8 9,990
–13.6 –98.4 9,950
–13.6 –99.9 9,890
–13.6 –99.1 9,890
–13.5 –98.6 9,740
–13.5 –97.4 9,720
–13.6 –98.5 9,690

δ18O   δ2H Cl (mg/L)

–11.8 –89.3 9,500
–11.8 –89.3 9,500
–11.4 –80.6 9,350
–12.7 –92.1 8,875.7
–10.9 –75.8 8,800
–12.6 –91.2 8,755.1
–11.9 –86.2 8,749.8
–13.3 –95.8 8,662.9
–12.7 –95.1 8,630
–12.0 –86.1 8,590
–11.2 –81.2 8,500
–11.1 –80.4 8,400
–12.3 –85.4 8,335
–12.9 –93.4 8,262.3
–11.1 –87.6 8,130
–12.5 –91.5 8,130
–13.0 –99.7 8,080
–13.0 –99.7 8,080
–11.3 –81.5 8,040
–12.27 –84.5 8,030
–12.1 –89.0 7,996.4
–11.7 –82.8 7,979.3
–12.4 –93.3 7,900
–12.4 –105.5 7,860
–12.8 –93.8 7,803.2
–10.9 –77.5 7,771.3
–11.2 –78.1 7,741.2
–11.1 –81.2 7,580
–11.0 –78.0 7,530
–11.5 –86.9 7,510
–12.9 –95.6 7,290
–12.5 –90.3 7,270
–11.7 –86.2 7,230
–10.4 –78.9 7,130
–10.1 –76.7 7,080
–11.2 –81.3 7,040
–10.3 –74.6 7,030
–10.5 –83.2 7,010
–12.4 –89.1 6,960
–12.4 –90.2 6,950
–10.6 –80.3 6,940
–10.1 –78.1 6,930
–10.9 –78.3 6,915.1
–10.3 –82.1 6,900
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δ18O   δ2H Cl (mg/L)

–10.9 –78.4 6,819.4
–10.5 –81.8 6,710
–10.1 –87.1 6,690
–12.5 –79.4 6,670
–10.1 –79.2 6,630
–11.2 –85.1 6,610
–10.3 –75.1 6,580
–10.6 –82.0 6,560
–9.7 –75.7 6,550

–10.1 –77.9 6,550
–10.1 –77.3 6,540
–4.7 –38.0 6,500

–12.6 –93.4 6,425.9
–9.9 –91.8 6,420

–12.3 –97.2 6,410
–11.5 –84.5 6,403.7
–12.1 –91.2 6,390
–10.1 –78.6 6,390
–13.3 –98.6 6,370
–13.3 –100.4 6,350
–13.8 –99.1 6,342.5
–14.0 –99.8 6,335.5
–13.4 –100.2 6322.2
–10.8 –84.3 6,300
–14.0 –100.0 6,298.2
–9.9 –78.0 6,296.5

–12.1 –89.8 6,290
–11.3 –84.8 6,270
–10.3 –79.0 6,240
–13.4 –99.5 6,230
–10.5 –85.7 6,220
–10.4 –80.4 6,210
–11.5 –85.5 6,207.3
–10.6 –89.0 6,200
–9.8 –76.1 6,190
–9.8 –77.8 6,180
–8.2 –70.8 6,150
–8.2 –70.8 6,150

–10.3 –79.9 6,110
–10.8 –78.9 6,110
–13.4 –100.2 6,100
–11.7 –87.2 6,064.5
–11.9 –89.2 6,062.5
–12.1 –94.2 6,060
–9.8 –77.5 6,050
–9.4 –76.4 6,000.8
–9.6 –74.4 6,000

–10.0 –78.1 5,990
–10.5 –81.2 5,990
–10.2 –78.2 5,990

δ18O   δ2H Cl (mg/L)

–10.8 –78.5 5,985.4
–14.1 –102.5 5,982.3
–7.4 –69.2 5,970
–9.7 –75.9 5,970
–7.4 –69.2 5,970

–13.8 –98.9 5,970
–9.9 –76.4 5,950
–9.4 –74.3 5,940
–9.4 –82.5 5,930

–10.7 –77.6 5,921.5
–9.5 –74.0 5,920.6
–9.6 –74.8 5,910

–10.9 –90.1 5,890
–13.3 –103.4 5,880
–13.3 –103.4 5,880
–9.8 –85.9 5,870

–11.7 –86.9 5,865
–11.7 –86.9 5,865
–10.6 –78.5 5,854.2
–10.3 –75.9 5,849.7
–11.9 –92.3 5,840
–11.9 –92.3 5,840
–9.3 –74.1 5,830
–9.5 –74.1 5,830

–10.5 –78.3 5,815.5
–11.1 –85.1 5,790
–10.2 –74.9 5,751.4
–10.4 –75.8 5,750.5
–10.7 –97.3 5,750
–9.7 –74.7 5,750

–11.0 –84.7 5,730
–9.6 –74.3 5,690

–10.1 –73.9 5,687.5
–10.2 –73.7 5,684
–9.2 –77.8 5,680
–9.2 –77.8 5,680
–9.7 –75.7 5,680
–9.1 –68.3 5,680
–9.2 –77.7 5,670
–9.6 –74.7 5,660

–11.5 –84.9 5,653
–12.2 –88 5,650
–10.0 –88.2 5,640
–13.01 –98.2 5,590.1
–9.0 –84.4 5,580

–10.8 –83.5 5,570
–9.5 –76.2 5,570
–9.6 –81.0 5,570
–9.5 –74.5 5,560
–9.1 –70.6 5,550

δ18O   δ2H Cl (mg/L)

–10.0 –73.4 5,547.5
–9.5 –73.4 5,540
–9.3 –71.1 5,540
–9.6 –75.1 5540
–9.5 –73.4 5,540
–9.6 –72.7 5,530
–9.7 –73.5 5,530
–9.0 –70.7 5,510

–13.0 –98.0 5,507.6
–11.81 –88.7 5,500
–11.1 –82.8 5,498.8
–9.6 –70.4 5,490

–13.0 –97.8 5,489.9
–11.6 –85.7 5,489
–9.0 –70.9 5,480

–11.8 –84.3 5,470
–12.4 –91.6 5,470
–7.5 –57.6 5,470
–9.1 –69.4 5,450

–12.8 –99.9 5,440
–12.8 –99.9 5,440
–11.7 –85.5 5,440
–9.2 –69.1 5,440

–13.8 –98.1 5,439.4
–13.0 –97.5 5,436.7
–9.4 –70.8 5,430

–11.6 –84.3 5,430
–8.4 –66.1 5,421.7
–9.1 –69.5 5,420
–9.4 –74.7 5,420

–10.1 –77.7 5,420
–9.4 –81.5 5,410
–8.8 –67.0 5,410
–8.8 –79.0 5,410
–9.0 –70.9 5,410
–9.6 –76.9 5,400

–11.7 –89.3 5,400
–11.7 –89.3 5,400
–8.7 –66.5 5,400
–8.8 –66.5 5,400
–9.8 –70.5 5,380
–8.5 –71.3 5,380

–11.6 –84.4 5,380
–11.6 –83.4 5,380
–10.2 –75.6 5,380
–12.7 –99.8 5,360
–12.7 –99.8 5,360
–10.7 –82.6 5,360
–9.2 –71.7 5,360
–9.1 –72.9 5,350
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δ18O   δ2H Cl (mg/L)

–9.1 –72.9 5,350
–12.3 –100.6 5,340
–12.3 –100.6 5,340
–9.9 –72.6 5,336.6

–12.9 –93.6 5,333.9
–9.1 –78.4 5,330
–8.8 –69.3 5,329.5
–9.1 –71.0 5,310
–8.5 –65.2 5,282.5
–8.8 –69.2 5,270
–8.8 –69.1 5,258.4
–9.5 –75.8 5,250
–8.8 –69.6 5,220.5

–10.4 –82.7 5,220
–11.75 –89.0 5,200
–8.8 –69.4 5,197.4
–9.6 –72.3 5,190
–8.8 –70.2 5,186.8

–13.3 –104.9 5,180
–8.9 –72.1 5,180

–13.3 –104.9 5,180
–12.7 –95.1 5,166.4
–8.4 –65.6 5,162.8
–7.8 –63.7 5,160

–13.1 –103.1 5,160
–8.8 –69.3 5,153.1

–10.3 –81.4 5,150
–8.8 –69.3 5,140.7
–8.9 –75.4 5,140

–11.9 –83.4 5,138
–10.2 –78.4 5,119.4
–12.34 –87.14 5,100
–11.1 –87.4 5,100
–8.8 –73.0 5,091.1

–10.2 –78.4 5,091.1
–10.2 –76.9 5,084
–9.2 –73.7 5,080
–9.2 –68.8 5,075.8
–7.2 –69.3 5,070
–9.1 –72.6 5,060
–8.9 –68.8 5,041.4
–9.7 –76.5 5,010
–9.7 –76.5 5,010
–9.0 –70.0 5,000

–12.0 –84.4 4,986.5
–10.1 –78.8 4,970
–10.3 –83.2 4,960.5
–8.5 –64.5 4,950
–9.6 –71.9 4,940
–9.2 –73.9 4,940

δ18O   δ2H Cl (mg/L)

–11.2 –83.5 4,940
–9.9 –77.0 4,920.9

–11.1 –81.9 4,910
–8.8 –70.2 4,890

–11.3 –85.9 4,890
–9.5 –70.8 4,888.1
–9.5 –71.8 4,880
–9.2 –72.1 4,880
–8.6 –76.3 4,880

–10.0 –75.5 4,878.3
–8.7 –69.7 4,870

–13.3 –102.1 4,870
–8.9 –69.4 4,860
–8.7 –73.5 4,830

–11.2 –85.6 4,828
–9.1 –74.1 4,810
–9.2 –73.5 4,784.7
–9.4 –68.7 4,779.1
–9.6 –79.7 4,770
–9.6 –79.7 4,770
–7.5 –59.2 4,770
–9.5 –70.5 4,767.5
–8.5 –70.4 4,760
–9.2 –71.0 4,746.4
–9.4 –68.4 4,744.5

–10.9 –79.1 4,730
–11.6 –85.1 4,730
–10.3 –86.8 4,720
–9.6 –71.6 4,706.4

–11.3 –84.4 4,700
–11.3 –84.4 4,700
–9.3 –74.3 4,690

–11.8 –98.8 4,680
–10.2 –78.2 4,652.5
–11.8 –88.0 4,650
–8.5 –69.1 4,620

–11.2 –86.6 4,610
–9.2 –67.5 4,608.5
–8.5 –67.2 4,600

–10.6 –86.1 4,600
–9.2 –69.7 4,600

–13.6 –109.6 4,600
–9.2 –69.7 4,600

–13.6 –109.6 4,600
–7.7 –58.2 4,600
–7.6 –57.5 4,600
–8.7 –67.6 4,590
–8.6 –65.1 4,580

–11.6 –88.9 4,567.2
–11.6 –88.2 4,562.8

δ18O   δ2H Cl (mg/L)

–11.5 –86.7 4,546.8
–11.5 –87.3 4,541.2
–11.2 –90.1 4,520
–10.0 –80 4,510
–9.6 –74.9 4,505

–10.2 –78.1 4,503.4
–10.0 –73.5 4,500
–9.5 –72.4 4,500
–7.9 –63.4 4,500

–13.3 –100.3 4,500
–9.5 –72.4 4,500

–11.6 –88.9 4,494.6
–8.6 –69.3 4,480
–9.4 –70.2 4,470
–9.5 –73.2 4,466.4
–8.8 –64.4 4,462.1
–8.6 –74.4 4,460
–8.7 –73.2 4,460
–8.6 –72.4 4,460
–8.7 –71.8 4,460

–10.0 –81.9 4,430
–9.3 –70.4 4,424.5
–9.3 –68.4 4,389.1
–7.3 –52.0 4,350
–7.3 –57.6 4,350

–10.3 –75.0 4,340.3
–8.9 –69.0 4,340
–9.1 –67.3 4,325.3

–12.3 –87.8 4,311.1
–10.3 –77.3 4,300
–11.1 –81.2 4,300
–11.7 –86.2 4,300
–10.3 –77.3 4,300
–11.1 –81.2 4,300
–8.3 –66.8 4,290
–8.7 –63.5 4,288
–8.1 –65.0 4,270
–9.1 –67.9 4,260

–14.6 –107.6 4,260
–11.7 –93.6 4,250
–8.8 –63.7 4,250
–9.4 –83.0 4,240
–8.4 –69.7 4,240
–8.4 –69.7 4,240

–14.2 –107.1 4,230
–8.7 –63.1 4,227.8
–7.7 –64.5 4,220
–7.7 –64.5 4,220

–11.4 –90.7 4,220
–8.0 –66.4 4,210
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δ18O   δ2H Cl (mg/L)

–9.4 –73.9 4,210
–8.0 –66.4 4,210

–12.4 –90.8 4,200
–8.8 –64.8 4,200

–12.4 –90.8 4,200
–7.9 –72.4 4,200
–9.7 –76.3 4,180
–9.7 –77.1 4,170
–9.4 –78.1 4,170

–12.0 –96.8 4,160
–11.2 –86.1 4,158.6
–9.9 –79.4 4,150
–7.9 –67.7 4,150
–7.5 –66.0 4,150
–8.5 –68.8 4,140

–12.0 –95.0 4,140
–6.6 –50.1 4,140
–8.0 –70.7 4,140

–11.1 –84.8 4,125.6
–7.6 –62.9 4,110
–7.6 –62.9 4,110
–8.9 –66.8 4,100
–7.5 –56.0 4,087.9
–6.7 –54.6 4,084.2
–8.3 –68.0 4,080

–11.5 –89.2 4,078.2
–9.3 –69.6 4,072.7
–8.0 –67.4 4,070
–8.0 –67.4 4,070

–14.7 –110.9 4,060
–8.0 –65.3 4,060
–9.0 –67.5 4,050.5

–10.3 –86.4 4,040
–9.2 –74.3 4,020
–8.1 –65.1 4,020
–8.1 –64.2 4,020
–7.9 –70.1 4,020
–8.9 –65.5 4,011.9

–11.6 –89.1 4,000
–11.6 –89.1 4,000
–12.8 –103.9 3,990
–7.3 –58.1 3,984.1
–7.9 –71.3 3,980
–8.8 –64.3 3,977.8
–7.9 –71.2 3,970
–8.7 –66.0 3,960
–7.8 –70.6 3,940
–8.2 –65.7 3,930

–11.7 –86.1 3,922.9
–13.1 –103.6 3,920

δ18O   δ2H Cl (mg/L)

–7.4 –65.3 3,920
–9.4 –55.8 3,919.3
–8.8 –66 3,910

–11.5 –93.2 3,910
–7.9 –71.1 3,910
–7.8 –72.5 3,910
–9.6 –78.0 3,900

–12.2 –91.5 3,900
–8.5 –68.5 3,900

–12.2 –91.5 3,900
–10.1 –77.3 3,898.8
–8.1 –68.7 3,890
–8.3 –73.0 3,890
–7.4 –64.6 3,890

–12.7 –117.1 3,880
–8.7 –64.4 3,876.1

–10.8 –80.9 3,870
–10.8 –80.9 3,870
–6.8 –54.5 3,850.2
–8.1 –65.9 3,850
–8.6 –64.2 3,841.3
–7.7 –71.9 3,840
–6.9 –55.2 3,830.7
–8.1 –72.2 3,830
–7.7 –73.4 3,830

–11.4 –80.1 3,826.3
–13.9 –108.9 3,820
–8.2 –65.3 3,820

–13.9 –108.9 3,820
–7.4 –61.9 3,820
–9.2 –68.9 3,810
–8.9 –72.9 3,809.8

–12.8 –98.3 3,800
–10.0 –74.0 3,800
–10.0 –74.0 3,800
–6.8 –55.4 3,792.6
–7.4 –64.4 3,790

–12.4 –88.6 3,781.9
–7.0 –57.2 3,780
–8.8 –69.8 3,780

–12.7 –100.1 3,780
–8.2 –65.2 3770
–8.8 –66.2 3770
–7.6 –73.7 3760
–5.9 –53.3 3760
–6.8 –56.8 3757
–6.9 –57.2 3746.3

–10.3 –79.2 3744.2
–7.4 –72.8 3,730
–7.6 –63 3,730

δ18O   δ2H Cl (mg/L)

–7.1 –56.1 3,727.5
–7.4 –61.5 3,720
–6.9 –57.0 3,706.3
–7.1 –57.3 3,690.3
–8.6 –64.9 3,690
–7.1 –56.2 3,689.2
–7.1 –55.6 3,682.1
–6.7 –53.6 3,680
–8.9 –73.7 3,680
–7.1 –57.9 3,674
–9.1 –72.0 3,670
–7.4 –69.5 3,670
–7.2 –56.9 3,665.1
–7.6 –71.4 3,650
–6.7 –56.9 3,650
–7.1 –55.3 3,642.8

–10.2 –78.1 3,640.7
–8.3 –65.0 3,640

–10.4 –75.9 3,640
–7.5 –70.0 3,640
–7.3 –60.2 3,630

–10.9 –94.3 3,630
–10.9 –94.3 3,630
–6.7 –58.7 3,630
–7.0 –77.0 3,630
–8.5 –64.2 3,630
–6.5 –52.3 3,620

–13.6 –113.0 3,620
–7.2 –55.7 3,618.7
–7.4 –59.0 3,610
–7.0 –54.1 3,610
–7.3 –59.6 3,570
–8.5 –64.2 3,570
–9.1 –73.0 3,570
–7.4 –59.2 3,560
–9.7 –79.2 3,560
–7.1 –56.2 3,541.8
–7.3 –61.5 3,538.4
–7.0 –54.9 3,532.5
–9.6 –77.5 3,530
–7.5 –74.2 3,530
–9.7 –80.1 3,530
–7.0 –52.5 3,530
–6.9 –54.8 3,529.2
–8.2 –63.0 3,528.3
–9.0 –75.2 3,510
–7.2 –56.9 3,497.8
–7.1 –55.2 3,491.8
–7.2 –55.8 3,491.2
–6.8 –57.0 3,490
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δ18O   δ2H Cl (mg/L)

–6.9 –59.0 3,490
–7.5 –71.3 3,490
–7.2 –56.7 3,484.7
–7.7 –64.3 3,480
–7.4 –59.6 3,480
–8.5 –63.0 3,474.4
–8.2 –65.8 3,470
–7.4 –60.4 3,470
–7.5 –59.8 3,450
–7.4 –63.7 3,450

–10.9 –86.0 3,450
–7.2 –56.2 3,449.2

–11.7 –83.0 3,445.3
–6.8 –56.8 3,441.4
–7.2 –57.6 3,434.5
–7.5 –62.4 3,420

–12.4 –92.1 3,420
–10.1 –82.5 3,420
–8.2 –64.6 3,420

–12.4 –92.1 3,420
–7.5 –59.0 3,419.9
–7.0 –67.8 3,410
–7.9 –60.5 3,410

–12.1 –90.6 3,400
–10.5 –86.0 3,400
–7.9 –62.8 3,400

–12.1 –90.6 3,400
–7.7 –63.1 3,390
–7.0 –61.0 3,383
–6.0 –50.7 3,380
–7.2 –59.5 3,380
–7.5 –60.9 3,380
–6.9 –55.4 3,369.7
–8.0 –64.6 3,360
–7.3 –60.7 3,350
–7.5 –60.7 3,340

–13.9 –110.0 3,331
–6.8 –54.4 3,325.1
–7.1 –54.9 3,313.8
–6.9 –59.1 3,300.3
–9.8 –75.7 3,300
–9.5 –75.1 3,300
–8.2 –66.0 3,290
–6.9 –57.7 3,286.8
–8.6 –63.8 3,281.5
–6.9 –56.9 3,263.8
–8.5 –66.3 3,260

–13.3 –94.9 3,250
–8.3 –63.4 3,250
–7.2 –62.8 3,250

δ18O   δ2H Cl (mg/L)

–8.6 –64.3 3,250
–8.2 –62.6 3,250
–7.1 –56.3 3,247.1
–7.4 –59.9 3,246.4
–7.3 –61.6 3,240
–7.5 –61.4 3,230
–7.3 –67.5 3,230

–10.6 –78.5 3,200
–7.6 –61.1 3,200
–8.7 –68.7 3,180
–7.1 –54.5 3,169.5
–8.3 –68.1 3,160
–8.1 –61.5 3,160
–8.3 –63.3 3,150
–7.1 –59.8 3,140
–7.4 –63.6 3,120
–7.2 –58.6 3,120
–7.6 –61.2 3,110
–8.6 –66.9 3,110
–7.2 –58.1 3,110
–7.7 –68 3,100
–7.3 –60.3 3,100

–10.3 –79.6 3,093.6
–9.2 –68.8 3,086.2
–7.0 –59.5 3,080
–7.8 –63.6 3,080
–6.9 –62 3,080
–8.5 –65.9 3,070
–8.1 –63.8 3,060
–7.4 –60.7 3,060
–7.3 –58.1 3,050

–13.0 –99.6 3,030
–7.6 –60.7 3,030
–7.6 –57.4 3,030

–13.0 –99.6 3,030
–7.1 –58.8 3,030
–7.7 –58 3,020.2
–7.5 –60.9 3,020
–7.0 –56.3 3,020
–7.0 –59.4 3,020
–7.0 –59.6 3,015.6
–7.1 –58.5 3,010
–7.9 –74.1 3,003.6
–8.1 –62.1 3,000

–13.0 –96.7 3,000
–7.1 –56.9 2,991.5
–7.1 –57.7 2,990
–7.1 –57.8 2,980
–7.3 –57.5 2,963.9

–11.1 –81.5 2,960

δ18O   δ2H Cl (mg/L)

–7.2 –58.5 2,960
–8.9 –71.9 2,960

–14.5 –118.1 2,950
–14.5 –118.1 2,950
–8.3 –63.9 2,946.1
–7.0 –58.6 2,940
–8.7 –70.3 2,940

–14.4 –111.6 2,940
–7.0 –72.9 2,930
–7.9 –58.9 2,919.2
–7.8 –59.8 2,915.3
–7.0 –57.9 2,910
–8.3 –64.8 2,910
–8.6 –67.0 2,910
–7.6 –56.9 2,901.1
–8.0 –66.4 2,900
–7.6 –57.9 2,893.7

–12.3 –92.5 2,880
–7.0 –58.9 2,870

–11.2 –79.1 2,865.7
–6.9 –58.4 2,860
–7.5 –59.1 2,860
–7.1 –57.1 2,860

–14.6 –115.3 2,850
–10.79 –77.63 2,850
–14.6 –115.3 2,850
–7.2 –57.3 2,850
–8.2 –64.5 2,840.7
–8.3 –68.2 2,840
–7.4 –56.1 2,833.4
–8.1 –64.8 2,808.5

–11.59 –84.0 2,800
–12.1 –92.1 2,800
–12.1 –92.1 2,800
–8.2 –68.1 2,800
–8.0 –63.4 2,800

–10.8 –83.8 2,790
–10.8 –76.5 2,790
–8.4 –73.6 2,790
–8.2 –65.1 2,786.8
–7.3 –73.5 2,780
–7.0 –66.7 2,780
–8.5 –61.8 2,770
–8.1 –63.6 2,770
–8.2 –65.6 2,770
–7.5 –56.3 2,763.9

–13.6 –103.4 2,760
–8.1 –62.4 2,760

–12.8 –98.7 2,760
–13.13 –96.9 2,760
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δ18O   δ2H Cl (mg/L)

–8.0 –62.1 2,757.2
–8.2 –65.1 2,751.9
–8.1 –61.0 2,740.5

–12.0 –90.2 2,730
–8.5 –65.8 2,730

–14.4 –111.5 2,730
–8.5 –65.8 2,730
–7.3 –58.9 2,730
–8.5 –65.1 2,723.5
–8.0 –61.1 2,720

–14.5 –111.7 2,720
–7.1 –57.1 2,720
–7.6 –58.2 2,720
–7.2 –59.1 2,720
–8.3 –65.6 2,710

–12.8 –94.9 2,700
–12.8 –94.9 2,700
–15.0 –112.2 2,700
–9.4 –72.8 2,694.1
–7.3 –60.9 2,690

–14.4 –112.4 2,690
–8.3 –64.1 2,685.6

–15.0 –110.9 2,681
–6.9 –57.2 2,680
–7.6 –58.3 2,676.7
–7.1 –57.0 2,674.9
–8.5 –77.7 2,670
–8.1 –64.1 2,670
–7.1 –60.0 2,669.3
–8.3 –64.1 2,667.1
–8.1 –65.3 2,660
–8.3 –66.4 2,660
–8.2 –61.6 2,656.8
–7.7 –58.3 2,650
–8.1 –61.8 2,636
–7.9 –65.9 2,630
–9.9 –75.5 2,630
–8.5 –66.4 2,630

–14.5 –126.2 2,630
–8.2 –61.3 2,627.6
–7.8 –65.1 2,627.4

–12.6 –93.7 2,622.1
–12.6 –93.6 2,617.1
–8.1 –66.1 2,615.6
–8.5 –60.9 2,613.2
–8.0 –65.7 2,612.9
–8.1 –61.6 2,610.2
–8.4 –61.4 2,610
–8.3 –65.8 2,610
–8.4 –62.6 2,591.5

δ18O   δ2H Cl (mg/L)

–8.3 –61.2 2,590
–7.8 –60.1 2,582.4
–8.2 –61.6 2,573.1

–10.8 –77.4 2,560
–8.2 –62.5 2,555.1
–8.6 –67.2 2,540
–7.2 –70.3 2,530
–7.6 –64.1 2,522.8
–8.1 –60.9 2,520.9
–8.3 –67.5 2,520.4
–8.2 –64.0 2,520
–8.4 –67.1 2,510
–7.9 –72.5 2,509.5
–7.6 –63.7 2,507.5

–11.4 –93.3 2,500
–8.0 –60.2 2,494.6
–8.5 –62.4 2,476.4
–8.5 –64.1 2,464.7

–11.2 –87.1 2,460
–11.2 –87.1 2,460
–12.0 –94.0 2,450
–13.39 –96.9 2,450
–8.3 –61.6 2,449.8
–8.2 –67.5 2,437.6
–8.5 –63.5 2,427.3

–12.0 –90.3 2,400
–8.7 –65.2 2,365
–9.7 –78.5 2,340
–8.7 –67.5 2,340
–8.7 –67.5 2,340

–10.6 –76.4 2,330
–10.9 –77.6 2,300
–9.6 –75.1 2,290

–10.5 –78.9 2,290
–9.5 –77.3 2,239.9
–8.7 –64.8 2,204.5
–9.6 –78.2 2,192.2

–10.0 –74.8 2,180
–11.9 –92.2 2,160
–10.4 –80.1 2,150
–10.4 –80.0 2,130
–10.3 –79.8 2,110
–8.4 –63.0 2,100.9
–8.0 –61.5 2,098.5

–11.5 –89.9 2,050
–10.3 –80.6 2,040
–10.3 –80 2,020
–10.4 –81.3 1,990
–10.9 –80.3 1,970
–8.1 –60.7 1,952.9

δ18O   δ2H Cl (mg/L)

–9.9 –81.1 1,920
–8.8 –68.0 1,917.3
–8.8 –68.2 1,916.1

–11.8 –87.9 1,900
–10.0 –80.0 1,900
–9.9 –81.9 1,880

–12.2 –87.5 1,850
–10.28 –74.79 1,850
–9.9 –80.2 1,840

–10.9 –77.0 1,830.1
–9.4 –73.3 1,810
–9.8 –80.1 1,800

–10.1 –73.2 1,800
–9.9 –72.7 1,790
–9.5 –73.5 1,778

–10.8 –81.0 1,776.9
–9.4 –66.6 1,760
–9.7 –80.0 1,750

–11.4 –83.4 1,740
–9.9 –73.2 1,740
–9.9 –74.6 1,740
–9.8 –72.2 1,720

–10.0 –75.9 1,710
–9.7 –75.5 1,701.6

–12.2 –94.5 1,700
–9.9 –72.8 1,690
–9.9 –67.9 1,690
–9.9 –74.6 1,690
–9.9 –74.6 1,680

–12.4 –91.4 1,658.5
–10.0 –70.8 1,650
–11.2 –81.2 1,650
–9.8 –77.8 1,634.2

–11.7 –89.9 1,598.3
–10.7 –85.5 1,560
–11.0 –84.0 1,560
–11.9 –89.2 1,500
–11.9 –89.2 1,500
–11.72 –85.7 1,500
–12.3 –90.3 1,421.7
–10.8 –80.1 1,300
–10.6 –77.8 1,298.6
–9.5 –68.0 1,280

–10.1 –76.3 1,270
–11.0 –76.8 1,270
–9.8 –76.1 1,260

–10.6 –82.3 1,250
–15.8 –124.8 1,220
–15.8 –124.8 1,220
–10.2 –80.6 1,170
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δ18O   δ2H Cl (mg/L)

–8.8 –67.5 1,170
–11.78 –85.37 1,160
–10.4 –77.4 1,160
–9.3 –71.3 1,145.3

–10.0 –76.0 1,140
–10.0 –76.0 1,140
–10.4 –79.7 1,130
–10.2 –77.5 1,130
–10.9 –81.3 1,130
–10.7 –82.6 1,120
–10.6 –82.2 1,120
–10.7 –82.4 1,120
–11.1 –80.5 1,114.1
–10.3 –81.1 1,110
–10.6 –79.9 1,108.3
–10.3 –78.3 1,080
–10.4 –80.2 1,070
–9.6 –73.4 1,060.6

–10.3 –75.8 1,056
–10.2 –81.9 1,040
–7.9 –68.2 1,040

–10.4 –80.5 1,040
–9.3 –72.5 1,040

–10.9 –77.6 1,030
–10.7 –75.6 1,028.1
–10.5 –78.9 1,020
–9.9 –79.4 1,020

–10.4 –77.3 1,010
–9.8 –81.1 1,010
–9.8 –80.3 1,000

–10.5 –85.3 1,000
–9.9 –79.9 970
–9.5 –86.9 947
–9.5 –87.0 938
–9.7 –78.5 934
–9.8 –72.4 932

–10.7 –79.3 932
–10.3 –81.0 924
–9.7 –69.0 922.8

–11.5 –89.4 918
–11.5 –83.2 915
–10.1 –71.3 910.6
–10.7 –77.2 910
–10.7 –77.2 910
–10.1 –75.2 901
–9.4 –74.7 900

–10.1 –76.4 895
–10.1 –75.8 895
–10.7 –81.4 895
–9.6 –75.5 890

δ18O   δ2H Cl (mg/L)

–9.1 –72.3 888
–11.2 –78.1 887
–10.2 –76.7 878
–10.1 –82.3 876
–9.7 –72.4 876
–9.2 –89.1 874

–10.3 –74.8 870
–11.1 –77.5 857
–9.4 –72.3 856.7

–10.2 –77.8 843
–9.8 –71.9 840
–9.6 –77.0 840
–9.8 –72.9 835

–10.0 –72.4 830
–9.6 –80.8 827
–9.8 –72.9 823
–9.3 –80.1 818
–9.8 –76.9 812

–10.1 –77.6 805
–10.9 –80.3 797.4
–10.1 –69.6 792
–9.7 –69.2 789

–11.3 –78.8 785
–10.95 –76.64 780
–9.9 –68.1 780

–10.1 –72.9 760
–9.7 –73.8 739
–9.6 –76.7 737
–9.6 –75.0 733.5

–10.1 –73.7 729
–9.9 –72.0 710

–11.1 –77.4 697
–11.4 –85.6 690
–9.6 –74.1 665

–11.7 –90.0 665
–9.9 –75.1 662
–9.7 –72.4 654
–9.4 –64.6 651.1
–9.9 –73.9 646
–9.9 –74.1 645
–9.9 –73.1 644.4
–9.7 –86.9 643

–11.6 –80.9 642
–9.7 –80.5 628

–11.7 –82.2 612
–9.9 –70.1 610

–10.9 –80.5 608
–11.1 –81.2 585.8
–11.7 –82.1 584
–10.6 –78.6 575

δ18O   δ2H Cl (mg/L)

–10.8 –76.4 574
–9.8 –75.3 560
–9.9 –78.3 560

–11.9 –89.0 555
–11.2 –83.9 555
–11.9 –89.0 555
–10.9 –78.7 548
–11.5 –79.8 545
–11.1 –83.4 543
–10.5 –75.5 530
–9.5 –64.2 529.8
–9.9 –71.0 519
–9.8 –74.3 510

–10.7 –76.2 509
–11.0 –84.8 508
–11.0 –84.8 508
–11.6 –81.1 503.3
–9.8 –71.4 484

–11.5 –82.1 482
–9.9 –75.1 476

–11.2 –82.6 476
–10.4 –73.2 474.5
–10.0 –73.5 440
–10.8 –78.0 440
–10.7 –82.7 438.4
–12.8 –97.2 435
–10.8 –81.1 431.7
–10.9 –79.2 430
–11.1 –78.4 430
–10.9 –80.0 415
–9.9 –74.1 415

–11.1 –78.4 413
–12.8 –90.7 396
–10.8 –76.3 392.4
–11.7 –84.6 389.4
–11.8 –88.0 380
–11.1 –80.3 371.1
–10.5 –85.6 369
–7.6 –67.4 332.7

–10.0 –73.9 329.3
–8.0 –65.7 307
–7.6 –68.0 303.6

–10.9 –90.6 300.6
–7.6 –65.6 290

–11.0 –82.4 289.4
–10.2 –73.3 280
–10.7 –79.0 280
–10.7 –79.0 280
–10.7 –79.0 280
–7.6 –67.5 276.7
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δ18O   δ2H Cl (mg/L)

–10.9 –77.7 275
–12.2 –87.3 266
–10.7 –79.0 260
–13.81 –100.8 260
–11.1 –84.0 259.4
–10.8 –79.3 250
–9.9 –75.3 250

–10.2 –77.1 230
–10.1 –76.8 230
–10.1 –76.5 229
–10.0 –77.2 228
–10.2 –77.8 227
–10.0 –76.3 225
–10.0 –76.5 225
–10.1 –77.3 224
–10.2 –76.9 221
–10.0 –73.0 220
–10.0 –76.5 215
–10.5 –76.0 215
–11.2 –82.9 215
–11.0 –83.5 211.6
–10.0 –76.8 211
–10.8 –79.7 210
–10.8 –79.7 210
–12.3 –82.1 198
–11.0 –80.9 189.1
–12.2 –80.9 187
–10.8 –82.9 184.8
–10.8 –82.8 182
–11.1 –80.6 181
–10.8 –82.8 178.8
–10.8 –81.9 178
–13.63 –99.4 178
–10.7 –84.8 176.7
–11.8 –87.0 173
–10.2 –73.9 168
–10.8 –76.6 162.5
–11.7 –84.8 160
–10.5 –75.1 146
–11.0 –80.7 145.7
–6.0 –60.6 136.2

–10.2 –75.0 133
–10.5 –78.6 133
–11.3 –83.0 133
–6.3 –62.6 127.2

–11.9 –83.7 127
–11.8 –95.2 126.2
–11.4 –83.0 124
–10.3 –76.3 123
–9.8 –68.7 123

δ18O   δ2H Cl (mg/L)

–9.9 –73.8 119
–8.4 –63.0 117.8
–6.8 –63.5 116.5
–6.7 –64.3 116.1

–11.9 –83.5 113.1
–5.5 –50.1 111.7

–10.4 –76.1 109.0
–9.3 –69.0 109.0

–13.0 –99.6 109.0
–5.9 –53.4 108.9

–10.1 –73.5 108.0
–9.2 –70.6 107.7
–9.9 –79.7 106.0
–6.0 –53.8 101.6

–11.9 –84.0 100.3
–12.2 –84.7 99.8
–6.0 –52.3 98.1

–12.0 –87.0 96.7
–7.9 –64.4 95.9
–7.4 –62.2 90.8
–6.3 –55.8 88.9

–11.4 –82.1 84.4
–8.4 –66.9 84.2

–10.0 –79.3 83.4
–6.4 –54.8 83.2

–11.7 –84.6 81.4
–10.8 –77.4 78.8
–11.7 –85.4 76.4
–11.3 –85.0 75.0
–11.5 –85.0 75.0
–11.4 –85.0 75.0
–11.5 –81.0 74.0
–10.2 –73.3 73.0
–10.3 –73.4 73.0
–10.9 –85.0 72.0
–11.7 –84.5 72.0
–11.7 –83.9 71.4
–10.19 –80.8 69.4
–10.8 –73.8 68.3
–12.7 –92.4 68.1
–6.7 –62.1 66.4

–11.52 –83.0 66
–11.9 –89.4 63.3
–9.9 –71.2 63

–11.4 –83.0 63
–12.3 –86.2 62.3
–11.9 –86.5 61.9
–11.97 –88.2 61
–11.46 –82.1 60
–11.69 –83.9 60

δ18O   δ2H Cl (mg/L)

–11.9 –89.6 59.7
–10.3 –73.4 59.3
–12.0 –85.9 57.5
–11.7 –79.0 57.1
–12.7 –92.5 56.4
–10.7 –76.1 55.1
–10.6 –78.0 53.1
–11.8 –82.3 51.5
–12.0 –82.2 50.3
–5.1 –57.0 49.4
–7.2 –61.9 49.3

–12.1 –85.2 48.6
–12.0 –88.2 48.4
–13.9 –101.5 48.0
–10.5 –73.4 47.5
–12.0 –89.2 47.0
–10.4 –83.0 47.0
–4.9 –46.2 46.8
–8.4 –68.4 46.1

–10.0 –77.4 46.0
–4.5 –44.3 45.8
–6.1 –51.7 45.7

–10.4 –83.0 45.0
–10.4 –83.0 44.0
–10.4 –83.0 44.0
–12.2 –84.4 42.5
–10.8 –79.0 42.3
–9.9 –71.0 41.0

–10.9 –79.0 40.9
–12.5 –85.8 40.7
–11.7 –87.4 40.6
–12.1 –88.5 40.6
–5.8 –63.8 38.9
–9.7 –71.0 38.0
–5.6 –51.5 37.7

–11.6 –87.0 37.0
–10.0 –69.0 37.0
–10.2 –70.1 36.0
–10.0 –77.8 35.4
–10.0 –82.2 35.4
–10.1 –81.2 35.4
–10.4 –80.3 34.6
–5.8 –65.3 34.1
–9.3 –75.1 33.6

–10.1 –75.9 33.5
–6.3 –62.5 33.5

–11.83 –85.3 33.0
–10.2 –77.0 33.0
–12.0 –83.3 32.5
–11.6 –85.6 32.1
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δ18O   δ2H Cl (mg/L)

–9.4 –71.1 30.1
–10.7 –85.9 30.0
–10.7 –85.9 30.0
–8.1 –62.4 29.9

–13.0 –97.4 29.0
–9.2 –74.0 28.8

–12.6 –89.1 28.1
–8.9 –70.2 27.9
–4.6 –46.3 27.8

–10.7 –73.7 26.9
–5.0 –63.2 26.6
–9.6 –71.5 26.2

–10.1 –78.5 26.0
–11.8 –86.2 25.9
–9.8 –72.3 25.8

–10.9 –75.7 25.7
–9.9 –71.1 25.6

–10.2 –73.9 25.5
–10.4 –77.0 25.0
–11.87 –85.0 25.0
–10.4 –77.0 25.0
–10.4 –77.0 25.0
–13.2 –94.9 24.1
–11.3 –79.8 24.0
–11.9 –81.4 23.5
–13.2 –97.5 23.0
–10.4 –77.0 23.0
–11.6 –87.0 23.0
–10.7 –76.3 22.6
–13.7 –100.0 22.2
–10.0 –73.4 22.0
–12.8 –100.3 22.0
–10.7 –80.4 21.2
–10.8 –78.1 21.0
–10.2 –85.5 20.5
–9.8 –71.5 20.4
–8.8 –59.0 20.0
–8.8 –65.1 19.9
–9.7 –71.8 19.8

–11.1 –83.7 19.7
–10.6 –75.9 19.6
–10.0 –74.9 19.2
–8.7 –67.7 19.2
–9.3 –69.7 19.1
–9.7 –72.9 19.1
–9.7 –79.1 19.0

–12.2 –90.1 18.9
–11.9 –85.2 18.7
–9.0 –82.3 18.6
–9.0 –72.8 18.6

δ18O   δ2H Cl (mg/L)

–11.9 –88.3 18.4
–12.3 –90.6 18.3
–10.9 –81.0 18.1
–11.7 –82.5 18.1
–11.6 –88.0 18.0
–9.4 –72.3 18.0
–9.7 –76.3 17.9

–12.9 –96.0 17.8
–11.0 –80.2 17.8
–11.8 –85.1 17.8
–11.5 –84.9 17.7
–10.1 –78.7 17.7
–11.4 –79.8 17.7
–9.5 –74.4 17.5

–12.3 –86.3 17.1
–11.8 –85.2 17.1
–9.3 –68.7 17.0

–10.52 –77.1 17.0
–9.4 –72.8 16.3

–11.63 –82.1 16.0
–10.4 –77.7 15.8
–13.2 –102.6 15.8
–11.8 –79.6 15.7
–10.8 –77.5 15.7
–11.2 –77.4 15.5
–11.3 –82.9 15.5
–11.3 –82.9 15.5
–9.3 –69.5 15.3

–10.0 –72.4 15.2
–10.5 –76.4 15.1
–10.3 –78.0 15.0
–11.3 –84.1 15.0
–10.3 –78.0 15.0
–9.8 –67.1 15.0

–10.3 –78.0 15.0
–10.3 –78.0 15.0
–10.5 –77.4 14.9
–10.6 –76.4 14.9
–8.2 –63.5 14.6
–6.7 –54.4 14.4
–8.5 –64.9 14.2

–11.6 –83.5 14.1
–7.1 –55.7 14.1

–11.4 –81.9 14.0
–9.8 –71.8 14.0

–10.1 –72.2 13.9
–14.5 –108.0 13.8
–10.9 –80.8 13.7
–11.3 –80.3 13.6
–11.6 –81.7 13.5

δ18O   δ2H Cl (mg/L)

–8.8 –79.9 13.5
–9.7 –70.4 13.5

–10.9 –78.0 13.4
–12.0 –85.1 13.4
–11.4 –77.6 13.3
–10.4 –77.8 13.2
–12.1 –91.4 13.2
–11.9 –86.1 13.1
–11.88 –81.7 13.0
–10.8 –77.1 13.0
–10.0 –71.3 12.9
–9.4 –71.7 12.8
–9.8 –75.5 12.8
–9.9 –74.9 12.7

–10.4 –73.3 12.7
–9.6 –72.7 12.6
–9.4 –78.2 12.5

–11.5 –85.0 12.5
–9.5 –62.5 12.4
–7.5 –62.6 12.3
–7.5 –62.6 12.3

–11.8 –83.1 12.2
–10.6 –77.0 12.1
–10.7 –74.2 12.0
–10.7 –83.5 12.0
–9.0 –69.0 12.0
–9.9 –68.4 12.0
–8.9 –69.3 12.0
–9.4 –77.0 12.0

–10.8 –75.8 11.8
–11.9 –86.3 11.8
–11.9 –85.2 11.8
–10.9 –77.5 11.8
–11.9 –86.5 11.7
–9.5 –75.8 11.7
–8.7 –65.4 11.6

–11.2 –77.6 11.5
–10.1 –76.2 11.4
–8.8 –67.3 11.3
–9.2 –70.5 11.3
–9.6 –75.3 11.2
–8.3 –64.2 11.2

–11.3 –76.5 11.2
–11.0 –80.1 11.2
–10.8 –80.0 11.0
–12.8 –93.1 11.0
–11.0 –79.0 11.0
–11.6 –88.0 11.0
–9.3 –72.0 10.9

–11.9 –86.0 10.9
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δ18O   δ2H Cl (mg/L)

–8.1 –62.9 10.8
–10.0 –76.5 10.7
–9.3 –72.3 10.7
–8.0 –64.9 10.6
–8.0 –63.9 10.6

–10.5 –75.5 10.6
–10.8 –78.6 10.5
–8.1 –67.8 10.5
–9.8 –68.5 10.4
–7.9 –63.6 10.4
–9.7 –68.6 10.3

–12.7 –90.4 10.3
–12.7 –90.4 10.3
–9.2 –68.4 10.3
–8.1 –67.3 10.2

–12.3 –84.8 10.2
–12.6 –94.8 10.0
–9.2 –74.0 9.9
–9.2 –66.0 9.9
–7.3 –61.5 9.8

–13.2 –94.9 9.7
–9.1 –69.8 9.6
–8.9 –70.8 9.6

–11.9 –88.6 9.6
–11.7 –88.8 9.5
–12.0 –90.0 9.4
–7.2 –61.8 9.3

–11.0 –82.5 9.3
–9.1 –65.6 9.2
–7.3 –62.0 9.2

–11.57 –82.6 9.0
–13.2 –95.3 9.0
–10.6 –76.3 8.9
–12.7 –93.8 8.9
–11.6 –81.4 8.9
–10.7 –75.1 8.8
–9.6 –81.9 8.8

–11.4 –79.3 8.8
–11.79 –83.9 8.7
–10.7 –73.7 8.7
–11.5 –78.1 8.5
–11.0 –83.1 8.5
–11.3 –81.6 8.5
–11.74 –83.4 8.4
–12.2 –87.3 8.3
–8.8 –73.8 8.3
–8.5 –61.6 8.3

–12.9 –93.1 8.2
–7.9 –63.2 8.2

–12.1 –88.3 8.2

δ18O   δ2H Cl (mg/L)

–7.9 –63.3 8.2
–12.4 –94.6 8.17
–11.2 –76.0 8.1
–13.0 –95.0 8.0
–11.69 –84.7 8.0
–10.1 –72.3 8.0
–12.55 –89.7 7.9
–10.0 –75.6 7.8
–13.6 –99.3 7.8
–10.0 –76.0 7.7
–12.8 –99.3 7.6
–11.3 –80.4 7.6
–12.7 –90.1 7.6
–11.4 –84.6 7.5
–11.3 –77.2 7.5
–13.3 –94.2 7.4
–12.0 –84.3 7.4
–12.8 –87.8 7.4
–10.5 –72.1 7.4
–9.9 –72.9 7.3

–11.6 –78.8 7.3
–12.9 –98.4 7.2
–12.1 –87.5 7.2
–12.3 –85.9 7.2
–11.5 –81.5 7.0
–10.7 –78.6 7.0
–11.2 –86.2 7.0
–13.1 –95.4 7.0
–11.3 –82.0 6.6
–10.4 –86.6 6.56
–11.6 –83.5 6.5
–11.4 –77.2 6.4
–11.48 –81.9 6.4
–10.9 –78.8 6.3
–11.8 –87.9 6.2
–9.6 –77.8 6.2

–13.6 –99.3 6.2
–9.8 –69.7 6.1

–11.5 –81.8 6.0
–11.2 –76.7 6.0
–13.4 –99.9 6.0
–9.7 –68.9 6.0

–11.0 –78.3 6.0
–9.6 –74.4 5.9

–11.9 –89.2 5.9
–8.0 –66.9 5.9

–10.9 –80.0 5.8
–11.2 –77.8 5.8
–14.0 –105.8 5.8
–11.4 –81.8 5.8

δ18O   δ2H Cl (mg/L)

–11.5 –79.3 5.7
–10.6 –77.0 5.7
–12.7 –90.0 5.7
–10.7 –77.8 5.7
–10.8 –81.2 5.7
–11.3 –80.4 5.6
–7.1 –61.5 5.5

–12.68 –91.4 5.4
–7.4 –62.6 5.4

–11.2 –79.4 5.3
–10.3 –84.4 5.2
–11.1 –76.1 5.2
–11.9 –86.0 5.1
–10.7 –75.8 5.1
–11.5 –79.1 5.1
–9.8 –77.3 5.1

–10.0 –75.6 5.0
–11.45 –81.6 5.0
–11.79 –84.0 5.0
–12.44 –89.5 5.0
–10.0 –75.6 4.8
–11.9 –86.8 4.8
–12.55 –90.9 4.8
–12.8 –87.8 4.8
–10.6 –81.6 4.7
–12.57 –90.1 4.7
–13.0 –94.9 4.68
–12.73 –92.7 4.6
–11.88 –84.4 4.6
–12.4 –93.2 4.5
–13.1 –96.1 4.5
–10.2 –81.3 4.5
–6.4 –62.9 4.4

–11.57 –83.8 4.4
–12.7 –94.4 4.3
–6.7 –57.9 4.3
–7.0 –72.4 4.2
–7.1 –65.3 4.2

–11.9 –81.3 4.2
–7.1 –72.3 4.1
–6.9 –58.5 4.1

–12.62 –90.4 4.1
–8.7 –71.5 4.1

–11.22 –79.3 4.0
–10.94 –77.8 4.0
–11.36 –80.3 4.0
–9.8 –77.5 3.9
–8.8 –71.9 3.9

–11.7 –86.7 3.8
–11.47 –82.7 3.7



85

δ18O   δ2H Cl (mg/L)

–11.6 –78.1 3.6
–9.5 –75.2 3.6

–12.4 –92.2 3.53
–12.7 –95.3 3.5
–12.0 –89.7 3.5
–13.1 –99.4 3.3
–12.1 –86.2 3.2
–13.8 –104.5 3.1
–9.5 –77.7 3.1
–9.7 –67.9 3.1

–11.39 –81.2 3.0
–11.33 –80.3 3.0
–12.0 –85.9 3.0
–11.23 –80.2 3.0
–11.12 –81.5 3.0
–7.6 –67.4 3.0

–12.9 –92.2 2.4
–11.4 –86.2 2.3
–12.5 –90.0 2.3
–12.4 –94.0 2.24
–12.4 –94.9 2.22
–12.94 –94.1 2.2
–12.8 –94.1 2.2
–13.0 –95.0 2.1
–13.1 –94.3 2.1
–12.6 –90.6 2.1
–12.6 –90.4 2.05
–13.1 –97.9 2.0
–12.6 –96.9 1.93
–12.6 –96.4 1.77
–12.7 –97.9 1.77
–13.0 –94.9 1.7
–12.8 –91.3 1.68
–12.93 –93.4 1.5
–11.2 –78.5 1.5
–12.8 –97.2 1.5
–12.4 –96.0 1.48
–12.5 –96.0 1.48
–12.4 –92.7 1.46
–12.7 –96.5 1.4
–12.8 –92.4 1.38
–11.1 –84.4 1.3
–12.8 –93.9 1.21
–12.5 –94.6 1.2
–15.5 –116.9 1.2
–12.8 –95.8 1.14
–12.7 –93.3 1.09
–10.9 –80.6 1.0
–11.24 –80.1 1.0
–11.34 –80.7 1.0

δ18O   δ2H Cl (mg/L)

–12.9 –96.4 0.88
–12.2 –95.9 0.86
–13.8 –109.3 0.8
–13.1 –96.6 0.77
–12.2 –93.7 0.76
–13.2 –102.1 0.75
–13.7 –100.7 0.75
–13.5 –102.8 0.74
–12.9 –96.5 0.74
–8.5 –64.8 0.7

–11.7 –88.6 0.7
–13.5 –102.2 0.65
–12.7 –95.5 0.59
–13.7 –104.9 0.58
–13.7 –106.2 0.54
–13.3 –96.2 0.54
–13.4 –105.4 0.53
–12.7 –94.8 0.47
–12.3 –95.9 0.43
–10.5 –80.0 0.23
–10.5 –80.0 0.23
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