P-06-201

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX11A

Subarea Laxemar

Cristian Enachescu, Stephan Rohs, Philipp Wolf Golder Associates GmbH

September 2006

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-06-201

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX11A

Subarea Laxemar

Cristian Enachescu, Stephan Rohs, Philipp Wolf Golder Associates GmbH

September 2006

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

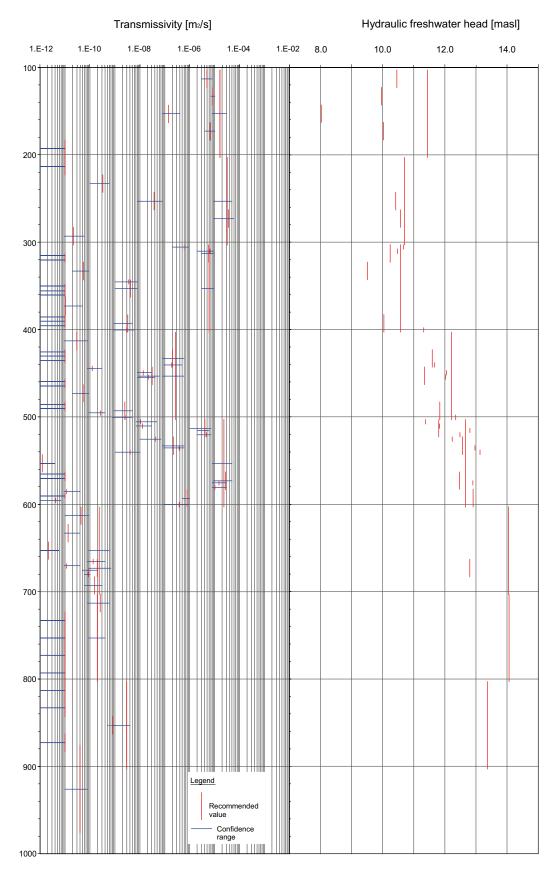
This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic injection tests have been performed in Borehole KLX11A at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar sub-area. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX11A performed between 29th of June and 11th of August 2006.


The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m, 20 m and 5 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 103.00–976.00 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

Sammanfattning

Injektionstester har utförts i borrhål KLX11A i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX11A. Testerna utfördes mellan den 29 juni till den 11 augusti 2006.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m, 20 m och 5 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 103,00–976,00 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (fresh-water head).

Borehole KLX11A – summary of results.

Contents

1	Introduction	11
2	Objective	13
3 3.1 3.2 3.3	Scope of work Borehole Injection tests Control of equipment	15 15 17 20
4	Equipment	21
4.1 4.2 4.3	Description of equipment Sensors Data acquisition system	21 25 26
5	Execution	27
5.1	Preparations	27
5.2	Length correction	27
5.3	Execution of tests/measurements	27
	5.3.1 Test principle	27
5.4	5.3.2 Test procedure Data handling	28 29
5.4 5.5	Analyses and interpretation	29 29
5.5	5.5.1 Analysis software	29
	5.5.2 Analysis approach	30
	5.5.3 Analysis methodology	30
	5.5.4 Flow models used for analysis	31
	5.5.5 Steady state analysis	33
	5.5.6 Calculation of the static formation pressure and equivalent	
	freshwater head	33
	5.5.7 Derivation of the recommended transmissivity and the	33
5.6	confidence range Nonconformities	33 34
6	Results	35
6.1	100 m hydraulic injection tests	35
0.1	6.1.1 Section 103.00–203.00 m, test no. 1, injection	35
	6.1.2 Section 203.00–303.00 m, test no. 1, injection	36
	6.1.3 Section 303.00–403.00 m, test no. 1, injection	37
	6.1.4 Section 403.00–503.00 m, test no. 1, injection	37
	6.1.5 Section 503.00–603.00 m, test no. 1, injection	38
	6.1.6 Section 603.00–703.00 m, test no. 1, injection	39
	6.1.7 Section 703.00–803.00 m, test no. 1, injection	40 41
	 6.1.8 Section 803.00–903.00 m, test no. 1, injection 6.1.9 Section 876.00–976.00 m, test no. 1, pulse injection 	41 42
6.2	20 m hydraulic injection tests	42
0.2	6.2.1 Section 103.00–123.00 m, test no. 1, injection	43
	6.2.2 Section 123.00–143.00 m, test no. 1, injection	43
	6.2.3 Section 143.00–163.00 m, test no. 1, injection	44
	6.2.4 Section 163.00–183.00 m, test no. 1, injection	45
	6.2.5 Section 183.00–203.00 m, test no. 1, injection	46
	6.2.6 Section 203.00–223.00 m, test no. 1, injection	46
	6.2.7 Section 223.00–243.00 m, test no. 1, pulse injection	46
	6.2.8 Section 243.00–263.00 m, test no. 1, injection	47

		Section 263.00–283.00 m, test no. 1, injection	48
	6.2.10	Section 283.00–303.00 m, test no. 1, pulse injection	49
	6.2.11	Section 303.00–323.00 m, test no. 1, injection	50
	6.2.12	Section 323.00–343.00 m, test no. 1, injection	50
	6.2.13	Section 343.00–363.00 m, test no. 1, injection	51
		Section 363.00–383.00 m, test no. 1, pulse injection	52
		Section 383.00–403.00 m, test no. 1, injection	53
		Section 403.00–423.00 m, test no. 1, pulse injection	54
		Section 403.00–423.00 m, test no. 1, pulse injection Section 423.00–443.00 m, test no. 1, injection	54
		Section 443.00–463.00 m, test no. 1, injection	55
		Section 463.00–483.00 m, test no. 1, pulse injection	56
		Section 483.00–503.00 m, test no. 1, injection	57
		Section 503.00–523.00 m, test no. 1, injection	58
	6.2.22	Section 523.00–543.00 m, test no. 1, injection	58
	6.2.23	Section 543.00–563.00 m, test no. 1, pulse injection	59
	6.2.24	Section 563.00–583.00 m, test no. 1, injection	60
	6.2.25	Section 583.00–603.00 m, test no. 1, injection	61
		Section 603.00–623.00 m, test no. 1, pulse injection	62
		Section 623.00–643.00 m, test no. 1, pulse injection	62
		Section 643.00–663.00 m, test no. 1, pulse injection	63
		Section 663.00–683.00 m, test no. 1, injection	64
			65
		Section 683.00–703.00 m, test no. 1, pulse injection	
		Section 703.00–723.00 m, test no. 1, injection	65
		Section 723.00–743.00 m, test no. 1, pulse injection	66
		Section 743.00–763.00 m, test no. 1, pulse injection	67
		Section 763.00–783.00 m, test no. 1, pulse injection	67
	6.2.35	Section 783.00–803.00 m, test no. 1, pulse injection	67
	6.2.36	Section 803.00–823.00 m, test no. 1, injection	68
	6.2.37	Section 823.00-843.00 m, test no. 1, injection	68
		Section 843.00–863.00 m, test no. 1, injection	68
		Section 863.00–883.00 m, test no. 1, injection	69
6.3		vdraulic injection tests	69
0.5	6.3.1	5	69
	6.3.2	, , , , , , , , , , , , , , , , , , , ,	70
	6.3.3		
			71
		Section 318.00–323.00 m, test no. 1, injection	71
	6.3.5	Section 343.00–348.00 m, test no. 1, injection	72
	6.3.6	Section 348.00–353.00 m, test no. 1, injection	73
	6.3.7	Section 353.00–358.00 m, test no. 1, injection	73
	6.3.8	Section 358.00–363.00 m, test no. 1, injection	73
	6.3.9	Section 383.00–388.00 m, test no. 1, injection	74
	6.3.10	Section 388.00–393.00 m, test no. 1, injection	74
	6.3.11	Section 393.00–398.00 m, test no. 1, injection	74
		Section 398.00–403.00 m, test no. 1, injection	75
		Section 423.00–428.00 m, test no. 1, injection	76
		Section 428.00–433.00 m, test no. 1, injection	76
		Section 433.00–438.00 m, test no. 1, injection	76
		Section 438.00–443.00 m, test no. 1, injection	77
			77
		Section 442.00–447.00 m, test no. 1, pulse injection	
		Section 447.00–452.00 m, test no. 1, injection	78 70
		Section 452.00–457.00 m, test no. 1, injection	79
		Section 457.00–462.00 m, test no. 1, injection	80
		Section 462.00–467.00 m, test no. 1, injection	80
		Section 483.00–488.00 m, test no. 1, injection	81
		Section 488.00–493.00 m, test no. 1, injection	81
	6.3.24	Section 493.00–498.00 m, test no. 1, pulse injection	81

	6.3.25	Section 498.00–503.00 m, test no. 1, injection	82
	6.3.26	Section 503.00–508.00 m, test no. 1, injection	83
	6.3.27	Section 508.00–513.00 m, test no. 1, injection	84
	6.3.28	Section 513.00–518.00 m, test no. 1–3, injection	85
	6.3.29	Section 518.00–523.00 m, test no. 1, injection	85
	6.3.30	Section 523.00–528.00 m, test no. 1, injection	86
	6.3.31	Section 528.00–533.00 m, test no. 1, injection	87
	6.3.32	Section 533.00–538.00 m, test no. 1, injection	88
	6.3.33	Section 538.00–543.00 m, test no. 1, injection	88
	6.3.34	Section 563.00–568.00 m, test no. 1, injection	89
		Section 568.00–573.00 m, test no. 1, injection	89
		Section 573.00–578.00 m, test no. 1, injection	90
		Section 578.00–583.00 m, test no. 1, injection	91
		Section 583.00–588.00 m, test no. 1, pulse injection	91
		Section 588.00–593.00 m, test no. 1, pulse injection	92
		Section 593.00–598.00 m, test no. 1, pulse injection	92
		Section 598.00–603.00 m, test no. 1, injection	93
		Section 663.00–668.00 m, test no. 1, injection	94
		Section 668.00–673.00 m, test no. 1, pulse injection	95
		Section 673.00–678.00 m, test no. 1, pulse injection	95
	6.3.45	Section 678.00–683.00 m, test no. 1, pulse injection	96
7	Synthe	esis	99
7.1		ary of results	100
7.2		ation analysis	116
	7.2.1	Comparison of steady state and transient analysis results	116
	7.2.2	Comparison between the matched and theoretical wellbore	
		storage coefficient	116
8	Conclu	isions	119
8.1	Transn	nissivity	119
8.2	Equiva	lent freshwater head	119
8.3	Genera	lized radial flow analysis	120
8.4	Flow re	egimes encountered	121
9	Refere	nces	123

Appendices attached on CD

- Appendix 1 File description table
- Appendix 2 Analysis diagrams

Appendix 3 Test summary sheets

Appendix 4 Nomenclature

Appendix 5 SICADA data tables

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001/, as well as a site-specific program for the investigations in the Simpevarp area /SKB 2005/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out according in borehole KLX11A during 29th of June and 11th of August 2006 following the methodology described in SKB MD 323.001 and in the activity plan AP PS 400-06-072 (SKB controlling documents). Data and results were delivered to the SKB site characterisation database SICADA and are traceable by the activity plan number.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX11A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX11A is situated in the Laxemar area approximately 2.5 km west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from November 2005 to March 2006 at 992.29 m length with an inner diameter of 76 mm and an inclination of -76.43°. The upper 12.05 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208 mm–323 mm.

The work was carried out in accordance with activity plan AP PS 400-06-072. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Activity plan	Number	Version
Hydraulic injection tests in borehole KLX11A	AP PS 400-06-072	1.0
Method descriptions	Number	Version
Hydraulic injection tests	SKB MD 323.001	1.0
Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning	SKB MD 600.004	1.0
Instruktion för längdkalibrering vid undersökningar I kärnborrhål	SKB MD 620.010	1.0
Allmäna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn	SKB SDPO-003	1.0
Miljökontrollprogram Platsundersökningar	SKB SDP-301	1.0
Hantering av primärdata vid platsundersökningar	SKB SDP-508	1.0

Table 1-1. SKB internal controlling documents for the performance of the activity.

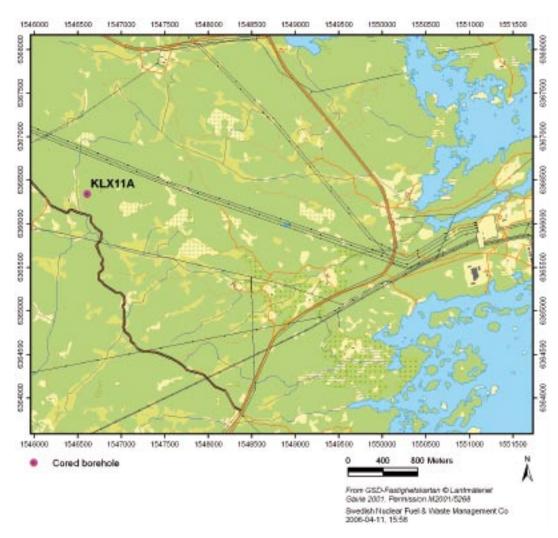


Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX11A.

2 Objective

The objective of the hydrotests in borehole KLX11A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m, 20 m and 5 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

3 Scope of work

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m, 20 m and 5 m test sections, analyses and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

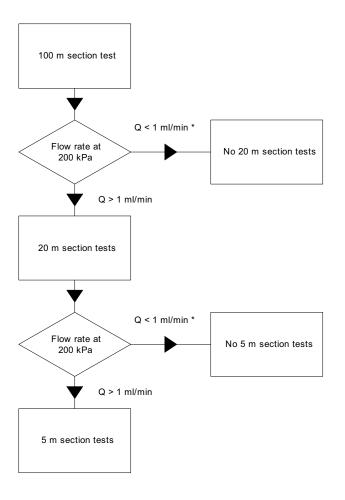
The following hydraulic injection tests were performed between 29th June and 11th August 2006 (Table 3-1).

3.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 3-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 3-2 refers to the final diameter of the drill bit after drilling to full depth.

No. of injection tests*	Interval	Positions	Time/test	Total test time
9	100 m	103.00–976.00 m	125 min	18.75 hrs
39	20 m	103.00–883.00 m	90 min	58.50 hrs
45	5 m	303.00–683.00 m	90 min	67.50 hrs
			Total:	144.75 hrs

Table 3-1. Performed injection tests at borehole KLX11A.


* excluding repeated tests and additional over night pulse injections.

Title	Value				
Borehole length (m):	992.290				
Reference level:	тос				
Drilling Period (s):	From Date	To Date	Secup (m)	Seclow (m)	Drilling Type
	2005-11-01	2005-11-08	0.430	100.060	Percussion drilling
	2005-11-24	2006-03-02	100.060	992.290	Core drilling
Starting point coordinate:	Length (m)	Northing (m)	Easting (m)	Elevation (m.a.s.l.)	Coord System
(centerpoint of TOC)	0.000	6366339.716	1546608.490	27.143	RT90-RHB70 Measured
Angles:	Length (m)	Bearing	Inclination (– = down)		
	0.000	89.840	-76.434	RT90-RHB70 Measured	
Borehole diameter:	Secup (m)	Seclow (m)	Hole Diam (m)		
	0.430	9.600	0.343		
	9.600	12.050	0.248		
	12.050	99.960	0.195		
	99.960	100.060	0.160		
	100.060	101.530	0.086		
	101.530	992.290	0.076		
Core diameter:	Secup (m)	Seclow (m)	Core Diam (m)		
	100.060	100.530	0.072		
	100.530	992.290	0.050		
Casing diameter:	Secup (m)	Seclow (m)	Case In (m)	Case Out (m)	
	0.000	12.050	0.200	0.208	
	0.430	9.600	0.310	0.323	
Grove milling:	Length (m)	Trace detectable	•		
	110.000	YES			
	150.000	YES			
	200.000	YES			
	250.000	YES			
	300.000	YES			
	350.000	YES			
	400.000	YES			
	450.000	YES			
	500.000	YES			
	550.000	YES			
	600.000	YES			
	650.000	YES			
	700.000	YES			
	750.000	YES			
	800.000	YES			
	850.000	YES			
	900.000	YES			
	944.000	YES			
	974.000	YES			
	374.000	123			

Table 3-2. Information about KLX11A (from SICADA 2006-06-07).

3.2 Injection tests

Injection tests were conducted according to the Activity Plan AP PS 400-06-072 and the method description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m test sections between 103.00-976.00 m below ToC, in 20 m test sections between 103.00-883.00 m below ToC and in 5 m test sections between 303.00-683.00 m (see Table 3-3). The initial criteria for performing injection tests in 20 m and 5 m test sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m tests covering the smaller test sections (see Figure 3-1). The measurements were performed with SKBs custom made equipment for hydraulic testing called PSS2.

* eventually tests performed after specific discussion with SKB

Figure 3-1. Flow chart for test sections.

Table 3-3. Tests performed.	
-----------------------------	--

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start Date, Time	Test stop Date, Time
KLX11A	103.00–203.00	3	1	060629 14:32:00	060629 16:40:00
KLX11A	203.00-303.00	3	1	060629 18:03:00	060629 20:21:00
KLX11A	303.00-403.00	3	1	060630 09:15:00	060630 11:12:00
KLX11A	403.00-503.00	3	1	060630 13:11:00	060630 15:20:00
KLX11A	503.00-603.00	3	1	060701 08:47:00	060701 10:50:00
KLX11A	603.00-703.00	3	1	060701 12:14:00	060701 15:43:00
KLX11A	703.00-803.00	3	1	060701 17:09:00	060702 01:32:00
KLX11A	803.00-903.00	3	1	060702 09:11:00	060702 13:33:00
KLX11A	876.00-976.00	4B	1	060702 14:45:00	060702 16:49:00
KLX11A	103.00–123.00	3	1	060704 08:19:00	060704 09:46:00
KLX11A	123.00–143.00	3	1	060704 10:31:00	060704 11:54:00
KLX11A	143.00–163.00	3	1	060704 12:49:00	060704 14:32:00
KLX11A	163.00–183.00	3	1	060704 15:05:00	060704 16:33:00
KLX11A	183.00–203.00	3	1	060704 17:12:00	060704 18:14:00
KLX11A	203.00-223.00	3	1	060704 18:50:00	060704 19:46:00
KLX11A	223.00-243.00	4B	1	060705 08:38:00	060705 10:07:00
KLX11A	243.00–263.00	3	1	060705 10:48:00	060705 12:22:00
KLX11A	263.00-283.00	3	1	060705 13:18:00	060705 14:44:00
KLX11A	283.00-303.00	4B	1	060705 15:25:00	060705 16:51:00
KLX11A	303.00-323.00	3	1	060705 17:25:00	060705 18:49:00
KLX11A	323.00-343.00	3	1	060705 19:21:00	060706 00:42:00
KLX11A	343.00-363.00	3	1	060706 08:48:00	060706 10:30:00
KLX11A	363.00–383.00	4B	1	060706 11:03:00	060706 12:55:00
KLX11A	383.00-403.00	3	1	060706 13:34:00	060706 15:02:00
KLX11A	403.00-423.00	4B	1	060706 15:54:00	060706 17:22:00
KLX11A	423.00-443.00	3	1	060706 17:56:00	060706 19:21:00
KLX11A	443.00-463.00	3	1	060707 08:32:00	060707 10:01:00
KLX11A	463.00-483.00	4B	1	060707 10:33:00	060707 12:34:00
KLX11A	483.00-503.00	3	1	060707 13:12:00	060707 14:44:00
KLX11A	503.00-523.00	3	1	060707 15:12:00	060707 16:39:00
KLX11A	523.00-543.00	3	1	060707 17:07:00	060707 18:30:00
KLX11A	543.00-563.00	4B	1	060707 19:07:00	060708 08:26:00
KLX11A	563.00-583.00	3	1	060708 08:58:00	060708 10:21:00
KLX11A	583.00-603.00	3	1	060708 10:53:00	060708 12:23:00
KLX11A	603.00-623.00	3 4B	1	060708 13:17:00	060708 14:41:00
KLX11A	623.00-643.00	4B	1	060708 15:12:00	060708 16:39:00
KLX11A	643.00-663.00	4B 4B	1	060708 17:12:00	060708 18:34:00
KLX11A	663.00-683.00	4B 3	1	060708 19:06:00	060709 08:39:00
KLX11A	683.00-703.00	3 4B	1	060709 09:11:00	060709 08:39:00
KLX11A	703.00-723.00	4B 3	1	060709 11:08:00	060709 10:40:00
KLX11A	703.00–723.00	3 4B	1	060709 13:58:00	060709 15:13:00
KLX11A	743.00–743.00	4Б 4В	1	060709 15:45:00	060709 16:56:00
KLX11A	763.00–783.00	4В 4В	1	060709 15:45:00	060709 18:10:00
KLX11A	783.00-783.00	4В 4В	1	060709 17:25:00	060709 18:10:00
KLX11A	803.00-823.00	3	1	060710 08:19:00	060710 09:15:00
KLX11A	823.00-843.00	3	1	060710 09:45:00	060710 10:37:00
KLX11A	843.00-863.00	3	1	060710 11:10:00	060710 13:24:00
KLX11A	863.00-883.00	3	1	060710 14:04:00	060710 14:56:00
KLX11A	303.00-308.00	3	1	060712 07:38:00	060712 09:06:00
KLX11A	308.00–313.00	3	1	060712 09:30:00	060712 10:51:00

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start Date, Time	Test stop Date, Time
KLX11A	313.00-318.00	3	1	060712 11:13:00	060712 12:03:00
KLX11A	318.00-323.00	3	1	060712 13:09:00	060712 13:57:00
KLX11A	343.00-348.00	3	1	060712 14:31:00	060712 16:11:00
KLX11A	348.00-353.00	3	1	060712 16:38:00	060712 17:38:00
KLX11A	353.00-358.00	3	1	060712 17:56:00	060712 18:45:00
KLX11A	358.00-363.00	3	1	060713 07:52:00	060713 08:41:00
KLX11A	383.00-388.00	3	1	060713 09:14:00	060713 10:05:00
KLX11A	388.00-393.00	3	1	060713 10:28:00	060713 11:17:00
KLX11A	393.00-398.00	3	1	060713 12:29:00	060713 13:20:00
KLX11A	398.00-403.00	3	1	060713 13:44:00	060713 15:16:00
KLX11A	423.00-428.00	3	1	060713 15:46:00	060713 16:55:00
KLX11A	428.00-433.00	3	1	060713 16:59:00	060713 17:47:00
KLX11A	433.00-438.00	3	1	060714 07:59:00	060714 08:46:00
KLX11A	438.00-443.00	3	1	060714 09:17:00	060714 10:39:00
KLX11A	442.00-447.00	4B	1	060714 11:06:00	060714 12:51:00
KLX11A	447.00-452.00	3	1	060714 13:16:00	060714 14:37:00
KLX11A	452.00-457.00	3	1	060714 15:01:00	060714 16:22:00
KLX11A	457.00-462.00	3	1	060714 16:45:00	060714 17:35:00
KLX11A	462.00-467.00	3	1	060714 18:01:00	060714 18:50:00
KLX11A	483.00-488.00	3	1	060715 08:16:00	060715 09:05:00
KLX11A	488.00-493.00	3	1	060715 09:29:00	060715 10:19:00
KLX11A	493.00-498.00	4B	1	060715 10:47:00	060715 13:39:00
KLX11A	498.00-503.00	3	1	060715 14:04:00	060715 15:29:00
KLX11A	503.00-508.00	3	1	060715 15:53:00	060715 17:47:00
KLX11A	508.00-513.00	3	1	060715 18:09:00	060715 21:14:00
KLX11A	513.00-518.00	3	1	060716 08:05:00	060716 10:33:00
KLX11A	513.00-518.00	3	2	060807 09:04:00	060807 11:01:00
KLX11A	513.00-518.00	3	2 3	060808 15:30:00	060808 17:15:00
KLX11A	518.00-523.00	3	3 1	060808 15:30:00	060808 19:37:00
KLX11A	523.00-528.00	3	1	060809 08:08:00	060809 09:41:00
KLX11A	528.00-533.00	3	1	060809 10:08:00	060809 09.41.00
		3		060809 10:08:00	060809 11:34:00
KLX11A	533.00-538.00		1		
KLX11A	538.00-543.00	3	1	060809 14:40:00	060809 16:19:00
KLX11A	563.00-568.00	3	1	060809 16:59:00	060809 17:53:00
KLX11A	568.00-573.00	3	1	060809 18:17:00	060809 19:11:00
KLX11A	573.00-578.00	3	1	060810 08:06:00	060810 09:34:00
KLX11A	578.00-583.00	3	1	060810 10:02:00	060810 11:28:00
KLX11A	583.00-588.00	4B	1	060810 12:20:00	060810 14:15:00
KLX11A	588.00-593.00	4B	1	060810 14:41:00	060810 16:05:00
KLX11A	593.00-598.00	4B	1	060810 16:33:00	060810 18:19:00
KLX11A	598.00-603.00	3	1	060811 08:01:00	060811 09:26:00
KLX11A	663.00–668.00	3	1	060811 10:29:00	060811 13:01:00
KLX11A	668.00-673.00	4B	1	060811 13:30:00	060811 15:14:00
KLX11A	673.00–678.00	4B	1	060811 15:38:00	060811 17:22:00
KLX11A	678.00–683.00	4B	1	060811 17:45:00	060811 20:53:00

¹⁾ 3: Injection test; 4B: Pulse injection test.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX11A were conducted.

3.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101–123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

4 Equipment

4.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next Figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc. shelfs and drawers for tools and spare parts.

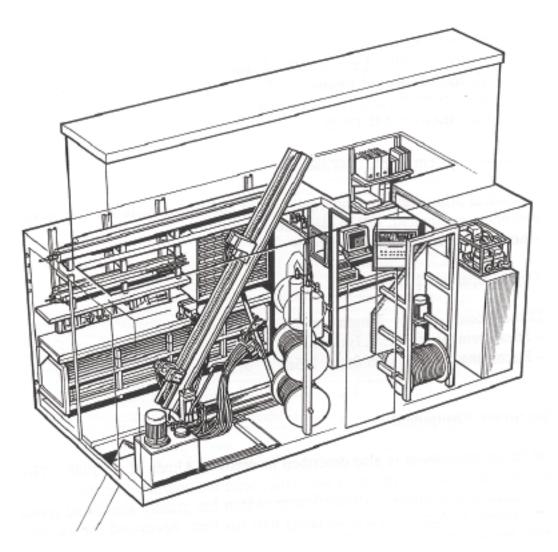


Figure 4-1. A view of the layout and equipment of PSS2.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-6.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 5. Positioner, bottom end of down-in-hole string.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below and
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50 L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 4-2.

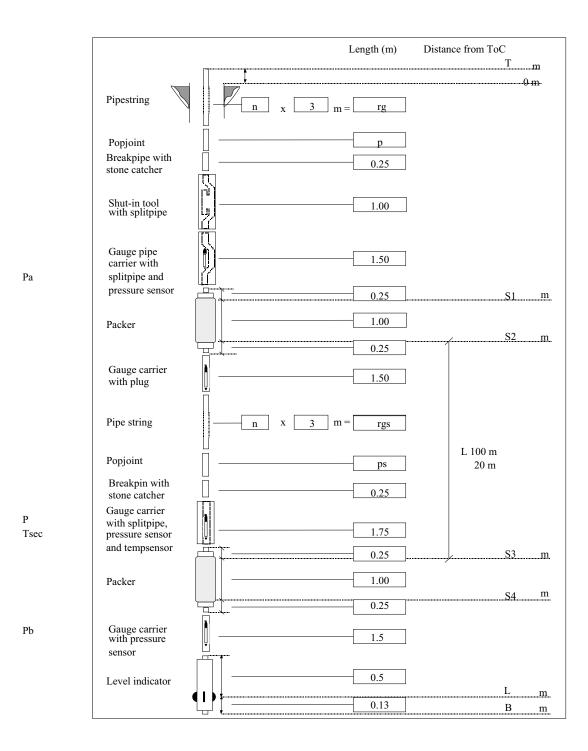
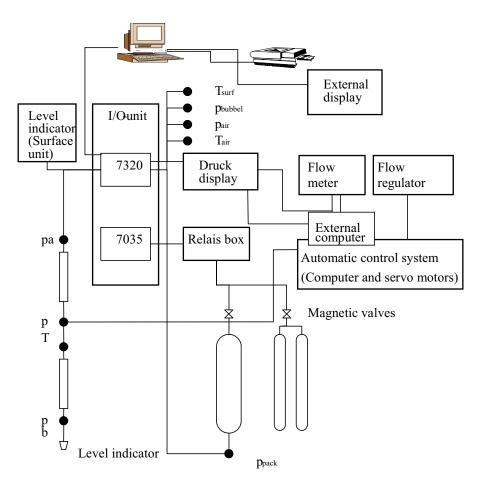


Figure 4-2. Schematic drawing of the down-hole equipment in the PSS2 system.

4.2 Sensors

Keyword	Sensor	Name	Value/Range	Unit	Comments
P _{sec,a,b}	Pressure	Druck PTX 162–1464abs	9–30 4–20 0–13.5 +0.1	VDC mA MPa % of FS	
T _{sec,surf,air}	Temperature	BGI	18–24 4–20 0–32 +0.1	VDC mA °C °C	
Q_{big}	Flow	Micro motion Elite sensor	0–100 +0.1	kg/min %	Massflow
Q_{small}	Flow	Micro motion Elite sensor	0–1.8 +0.1	kg/min %	Massflow
P _{air}	Pressure	Druck PTX 630	9–30 4–20 0–120 +0.1	VDC mA KPa % of FS	
p _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 +0.1	VDC mA MPa % of FS	
P _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2.5 +0.15	VDC mA MPa % of FS	
L	Level indicator				Length correction

Table 4-1. Technical specifications of sensors.


Table 4-2.	Sensor position	s and wellbore storage	e (WBS) controlling factors.
------------	-----------------	------------------------	------------------------------

Borehole	information		Senso	ors	Equipment affecting WBS coefficient			
ID	Test section (m)	Test no	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)	
KLX11A	103.00–203.00	1	pa p T pb L	101.11 202.37 202.20 205.01 206.25	Test section	Signal cable Pump string Packer line	9.1 33 6	
KLX11A	103.00–123.00	1	pa p T pb L	101.11 122.37 122.20 125.01 126.25	Test section	Signal cable Pump string Packer line	9.1 33 6	
KLX11A	303.00–308.00	1	pa p T pb L	301.11 307.37 307.20 310.01 311.25	Test section	Signal cable Pump string Packer line	9.1 33 6	

4.3 Data acquisition system

The data acquisition system in the PSS container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 4-3.

Figure 4-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS.

5 Execution

5.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and desinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Filling tank with water and tracer it with Uranin; take water sample from non tracered and tracered water.
- Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

5.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of this groves are given by SKB in the activity plan (see Table 3-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the testsections to avoid wrong placements and minimize elongation effects of the test string.

5.3 Execution of tests/measurements

5.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

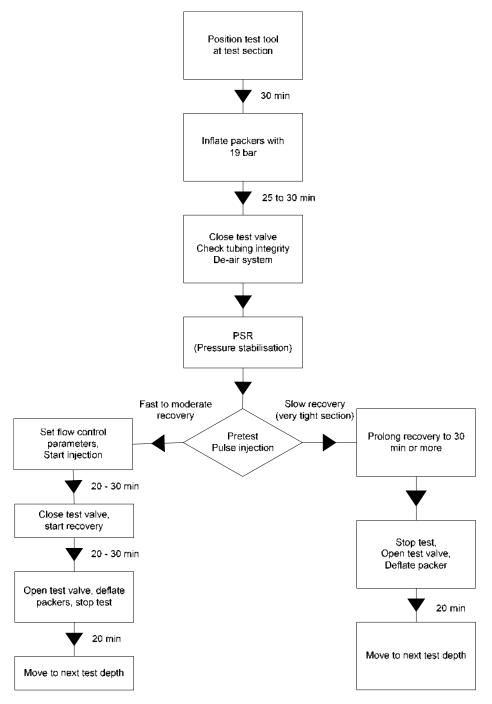


Figure 5-1. Flow chart for test performance.

5.3.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation. The injection tests in KLX11A has been carried out by applying a constant injection pressure of appr. 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section was measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually. In those cases, the constant difference pressure was usually unequal to 200 kPa. In other cases, where the pressure recovery of the pulse injection test took very long, the recovery

was extended and the pulse test was taken for the analysis. No injection test was performed in those sections.

The duration for each phase is presented in Table 5-1.

5.4 Data handling

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent analysis (field and final) of the injection phase (CHi). The synthesised data of the recovery phase (CHir) was used for the field analysis and to receive preliminary results for concistency reviews.

5.5 Analyses and interpretation

The analyses of the tests is divided in two parts. The first part of the analysis consists of a radial flow analysis. For this analysis a flow dimension of 2 (radial flow) was assumed. The second part is a generalized radial flow analysis (GRF) and the flow dimension was evaluated using the slope of the derivative on the log-log plot of the CHi and CHir test phases.

5.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

Table 5-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation in KLX11A.

Approx. 30 min
25 min
10 min
5 min
2 min
2–30 min
5 min
20 to 45 min
20 min or more
10 min
25 min
-

5.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

The generalized radial flow analysis is based on the flow model developed by /Barker 1988/. This flow model allows the modelling of flow dimensions between 1 (linear flow) and 3 (spherical flow).

5.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

Injection Tests

- Assumption of a flow dimension 2 (radial flow) for the radial flow analysis. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
- Non-linear regression in semi-log coordinates (superposition HORNER plot; /Horner 1951/). In this stage of the analysis, the static formation pressure is selected for regression.
- Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot for the generalized radial flow analysis and superposition type curve matching in log-log coordinates.

The test analysis methodology is best explained in /Horne 1990/.

Pulse Injection Tests

A test cycle always started with a pulse injection test whose goal it was to derive a first estimation of the formation transmissivity. If the pressure recovery of this brief injection was very slow, it indicated a very tight section. It is then decided to extend the recovery time and measure the pressure recovery (PI).

During the brief injection phase a small volume is injected (derived from the flowmeter measurements and/or replacement in injection vessel). This injected volume produces the pressure increase of dp. Using a dV/dp approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 5-2 below show an example of a typical pressure versus time evolution for such a tight section.

- Calculation of initial estimates of the model parameters by using the Ramey Plot /Ramey et al. 1975/. This plot is typically not presented in the appendix.
- Assumption of radial flow and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989, Chakrabarty and Enachescu 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the later stages.
- Identification of the flow dimension based on the slope of the derivative and type curve analysis for the generalized radial flow analysis. An Example of the type curves is presented in Figure 5-3

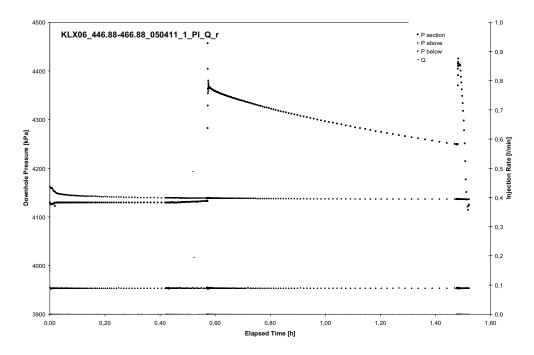


Figure 5-2. Typical pressure versus time plot of a Pulse injection test.

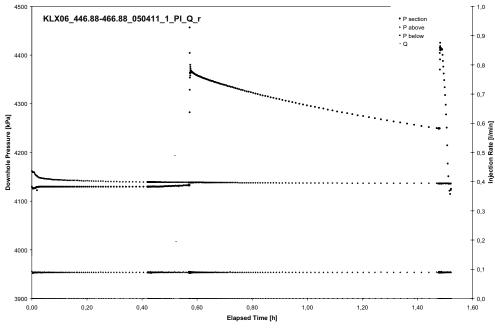


Figure 5-3. Deconvolution type curve set for pulse test analysis.

5.5.4 Flow models used for analysis

Radial flow analysis

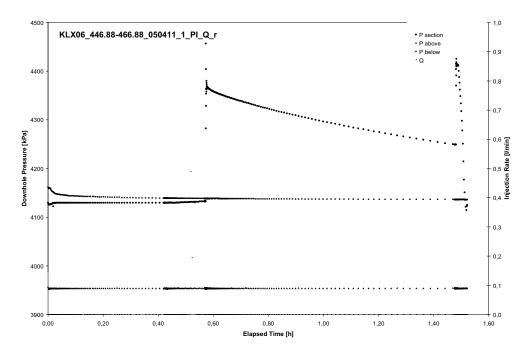
Analyses were performed with the assumption of radial flow. Changes of the slope in the pressure derivative were interpreted as a change of transmissivity at some distance from the borehole. In such cases a composite radial flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred. The chosen flow model (homogeneous or composite) were commented for each tests.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

Generalized radial flow analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.


The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. In several cases the pressure derivative suggests a change of flow dimension at some distance from the test interval. In such cases a composite flow model was used in the analysis. The flow dimension diagnosis was commented for each of the tests.

In following cases no generalized radial flow analysis was performed:

- data quality (no clear flow model identification was possible due to noise in the recorded data),
- no formation flow stabilization was reached (due to low transmissivity and/or short test time),
- flow dimension calculated by the slope of derivative indicates radial flow (no generalized radial flow analysis was needed).

In such cases it was commented for the relevant tests as well.

The analysis with respect to the flow dimension is limited in some cases. Figure 5-4 shows the analysis of a pulse using a flow dimension of 1 (linear flow).

Figure 5-4. Analysis of a pulse injection test with flow dimension 1. (The arrows indicate the change in parameter when moving the data).

The log-log coordinates plotted type curve show a continues upward trend with no change in distance between data and derivative type curve. Vertical movement of the data changes the transmissivity and horizontal movement changes the storativity. It is possible to move the plotted data to nearly every position on the type curve and moving the data transposes transmissivity with storativity and vice versa. This shows that under such circumstances the transmissivity and storativity values are strongly correlated.

5.5.5 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

5.5.6 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using:

- (1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred,
- (2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the extrapolated static formation pressure (p^*), corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drillhole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 5-5 shows the methodology schematically.

The freshwater head in meters above sea level is calculated as following:

$$head = \frac{(p*-p_{atm})}{\rho \cdot g}$$

which is the p* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head h_{iwf} is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p*-p_{atm})}{\rho \cdot g}$$

5.5.7 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

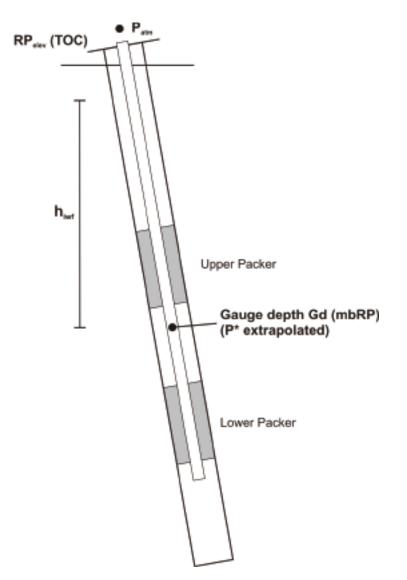


Figure 5-5. Schematic methodologies for calculation of the freshwater head.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmissivity with distance from the borehole (composite model) was diagnosted, the transmissivity of the zone, which was showing the better derivative quality was recommended.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

5.6 Nonconformities

On 16th of July the automatc regulation system stopped to work. This caused a delay and the testing program was continued on the 8th of August.

6 Results

In the following, results of all tests are presented and analysed. Section 6.1 presents the 100 m tests, 6.2 the 20 m tests and 6.3 the 5 m tests. The results are given as general comments to test pereformance, the identified flow regimes (generalized radial flow analysis) and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. The results of the radial flow analysis are summarised in Table 7-1 and Table 7-2 of the Synthesis chapter. Table 7-3 presents the results of the generalized radial flow analysis.

6.1 100 m hydraulic injection tests

In the following, the 100 m section tests conducted in borehole KLX11A are presented and analysed.

6.1.1 Section 103.00–203.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 13.3 L/min at start of the CHi phase to 7.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a slight downward trend at late times. In case of this analysis it was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-1.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-1.

Selected representative parameters

The recommended transmissivity of $1.6 \cdot 10^{-5}$ m²/s was derived from the radial flow analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $3.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,838.6 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.1.2 Section 203.00-303.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 9.4 L/min at start of the CHi phase to 9.1 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The data of CHi phase is a little bit noisy, but amenable for a quantitative analysis. The CHir phase recovered relatively fast, but shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase is a little bit noisy but shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a steep downward trend at middle times consistent with a large positive skin and a slight downward trend at late times. In case of this analysis the late time derivative was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-2.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-2.

Selected representative parameters

The recommended transmissivity of $3.2 \cdot 10^{-5}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,776.6 kPa.

The radial flow analyses of the CHi and CHir phases show relatively good consistency. No further analysis is recommended.

6.1.3 Section 303.00–403.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 195 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5.4 L/min at start of the CHi phase to 3.4 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir Phase. The analysis is presented in Appendix 2-3.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.2. For the analysis of the CHi phase a homogeneous flow model was chosen. The flow dimension displayed during the CHi phase is n = 2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-3.

Selected representative parameters

The recommended transmissivity of $6.0 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-6}$ to $9.0 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,705.2 kPa.

The radial flow analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow models. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

6.1.4 Section 403.00–503.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 204 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system was not able to maintain stable pressure conditions in the interval during the injection and the pressure oscillates by approximately 10 kPa. However, the CHi phase is still amenable for qualitative analysis. The injection rate decreased from 0.15 L/min at start of the CHi phase to 0.07 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir shows a fast recovery but is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test no trend could be observed for the derivative of the CHi phase. This is attributed to the poor data quality. However, the CHi phase was analysed using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows a steep downward trend at middle times, which is consistent with a large positive skin, and a kind of horizontal stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-4.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.7 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-8}$ to $6.0 \cdot 10^{-7}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,705.2 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.1.5 Section 503.00-603.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 215 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 18.0 L/min at start of the CHi phase to 11.5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a slight downward trend at middle and late times. In case

of this analysis it was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-5.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of the both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-5.

Selected representative parameters

The recommended transmissivity of $2.4 \cdot 10^{-5}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $5.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,579.0 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.1.6 Section 603.00–703.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 205 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the pressure decreased during the injection by 6 kPa. The injection rate decreased from 9 mL/min at start of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery phase was measured for 1 h. Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. No flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-6.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show an upward trend indicating a slope above 0 and a flow dimension below 2. For the analysis of the CHi phases

a homogeneous flow model with a flow dimension of n = 1.58 was chosen. Due to the fact that no flow stabilization was reached the CHir phase does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-6.

Selected representative parameters

The recommended transmissivity of $2.3 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-11}$ to $6.0 \cdot 10^{-10}$ m²/s (this range includes the transmissivity from the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,513.4 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.1.7 Section 703.00-803.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 203 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the pressure decreased during the injection by 6 kPa. The injection rate decreased from 10 mL/min at start of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery phase was measured for 6 h over night. Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-7.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show an upward trend. The flow dimension calculated by the slope of the derivative is n = 1.5. For the analysis of the CHi phases a homogeneous flow model was chosen. Due to the fact that no clear flow stabilization was reached the CHir phase does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-7.

Selected representative parameters

The recommended transmissivity of $2.0 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-11}$ to $4.0 \cdot 10^{-10}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,429.3 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.1.8 Section 803.00-903.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 235 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the pressure decreased during the injection by 10 kPa. The injection rate decreased from 19 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery phase was measured for 2 h. Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-8.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show an upward trend. The flow dimension calculated by the slope of the derivative is n = 1.7. For the analysis of the CHi phases a homogeneous flow model was chosen. Due to the fact that no clear flow stabilization was reached the CHir phase does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-8.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-9}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-10}$ to $4.0 \cdot 10^{-9}$ m²/s (this range includes the derived transmissivity of the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 8,333.1 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.1.9 Section 876.00–976.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 12 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 54 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 211 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $2.6 \cdot 10^{-10}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend at early and middle times followed by a downward trend at late times. This downward trend at late times can be attributed to the uncertainty of the initial formation pressure. Due to this uncertainty only the early and middle time data was matched using an infinite acting radial flow model. The analysis is presented in Appendix 2-9.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the pressure derivative at early and middle times is n = 1.33. The PI phase was analysed using a homogeneous flow model. The analysis is presented in Appendix 2-9.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-11}$ to $8.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2 20 m hydraulic injection tests

In the following, the 20 m section tests conducted in borehole KLX11A are presented and analysed.

6.2.1 Section 103.00-123.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.5 L/min at start of the CHi phase to 1.4 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The recorded data of the CHi phase is a little bit noisy, but still amenable for qualitative analyses. The CHir phase shows a relatively fast recovery, but shows no further problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present the CHi phase (although noisy) shows a flat derivative. The relatively fast recovery of the CHir phase adds a little bit uncertainty to the late time derivative of this phase. However, an indication of horizontal stabilization can be observed at late times. Both phases were analysed using a radial infinite acting homogenous flow model. The analysis is presented in Appendix 2-10.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because no clear flow stabilization could be observed. No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $4.9 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase, which was considered to be more reliable. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-6}$ to $8.0 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,092.9 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.2 Section 123.00–143.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 4.3 L/min at start of the CHi phase to 3.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivatives of both phases show a downward trend at late times, which was interpreted as an increase of transmissivity at some distance from the borehole. Both phases were analysed using a two shell composite radial flow model. The analysis is presented in Appendix 2-11.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The changes of slope in the derivatives of both phases are interpreted as a change in flow dimension away from the borehole. The CHi phase was analysed using a two shell composite flow model with n1 = 2.3 and n2 = 2.38 and the CHir phase with a two shell composite flow model with n1 = 2.3 and n2 = 2.40. The analysis is presented in Appendix 2-11.

Selected representative parameters

The recommended transmissivity of $8.1 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-6}$ to $1.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,275.5 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.3 Section 143.00-163.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 207 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.1 L/min at start of the CHi phase to 0.4 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHi phase shows some problems at the beginning of the injection caused by the automatic regulation unit, but the middle and late time data is still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the middle time data of the CHi phase, which shows a kind of horizontal stabilization of the derivative, was matched using a homogeneous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a stabilization at late times, indicating a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-12.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the CHi derivative at middle and late times is n = 2.3. A homogeneous flow model was used to match the CHi phase. No generalized radial flow analysis was performed for the CHir phase. The analysis is presented in Appendix 2-12.

Selected representative parameters

The recommended transmissivity of $1.4 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-8}$ to $4.0 \cdot 10^{-7}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,443.8 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models, but a comparison of the derived transmissivities (CHi and outer zone CHir) in combination with the negative skin of the CHi phase show consistency between both phases. No further analysis is recommended.

6.2.4 Section 163.00–183.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 3.0 L/min at start of the CHi phase to 2.5 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a fast recovery, which adds uncertainty to the derivative analysis. Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivatives of both phases show a clear horizontal stabilization at middle and late times. The fast recovery of the CHir phase adds ambiguity to the middle and late time derivative of this phase. A homogeneous radial flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-13.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a clear horizontal stabilization which is indicative for a flow dimension of 2 (radial flow). For this reason no generalized radial flow analysis was necessary.

Selected representative parameters

The recommended transmissivity of $6.5 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase, because it shows the most clear derivative stabilization. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-6}$ to $1.0 \cdot 10^{-5}$ m²/s. The static pressure

measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,650.5 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.5 Section 183.00–203.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 60 kPa in 30 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

The measured data is presented in Appendix 2-14.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.6 Section 203.00-223.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 106 kPa in 25 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-15.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.7 Section 223.00–243.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 14 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 225 kPa. Using a dV/dP

approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $5.8 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows a downward trend at late times. This downward trend at late times can be attributed to the uncertainty of the initial formation pressure. Due to this uncertainty only the early and middle time data was matched using an infinite acting radial flow model. The analysis is presented in Appendix 2-16.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the pressure derivative at early and middle times is n = 1.79. The PI phase was analysed using a homogeneous flow model. The analysis is presented in Appendix 2-16.

Selected representative parameters

The recommended transmissivity of $3.3 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-10}$ to $6.0 \cdot 10^{-10}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.8 Section 243.00–263.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 213 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.5 L/min at start of the CHi phase to 0.04 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The recorded data of the injection phase is noisy, but amenable for quantitative analysis. The CHir phase shows a fast recovery, which adds uncertainty to the derivative analysis. The phase shows no further problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase is noisy but it shows a relatively flat derivative at middle times. The Chi phase was matched using a homogeneous radial flow model. The derivative of the CHir phase shows a downward trend at late times followed by a kind of flow stabilization at late times. A composite radial flow model with wellbore storage and skin was used to analyse the CHir phase. The analysis is presented in Appendix 2-17.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilisation (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $3.7 \cdot 10^{-8}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-9}$ to $8.0 \cdot 10^{-8}$ m²/s (this range encompasses the transmissivity of the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,401.2 kPa.

The radial flow analyses of the CHi and CHir phases little inconsistency in the derived transmissivities, which is attributed to the noise in the CHi phase and the fast recovery of the CHir phase. No further analysis is recommended.

6.2.9 Section 263.00-283.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 10.8 L/min at start of the CHi phase to 9.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The data of CHi phase is a little bit noisy, but amenable for a quantitative analysis. The CHir phase recovered relatively fast, but shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase is a little bit noisy but shows a relatively flat derivative at late times. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a steep downward trend at middle times consistent with a large positive skin and a kind of horizontal stabilization at late times. In case of this analysis the late time derivative was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-18.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilisation (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $3.6 \cdot 10^{-5}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,589.2 kPa.

The radial flow analyses of the CHi and CHir phases show relatively good consistency. No further analysis is recommended.

6.2.10 Section 283.00-303.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 15 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 237 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $5.6 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend at early and middle times followed by a kind of downward trend at late times, which can be attributed to the uncertainty of the initial formation pressure. In case of the present analysis the continuing upward trend at the beginning of the derivative can be interpreted to the fact that the dimensionless test time is to small and semi-logarithmic asymptotic solution was not achieved (due to the very small transmissivity). The PI phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-19.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend at early and middle times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.49 was used. The analysis is presented in Appendix 2-19.

Selected representative parameters

The recommended transmissivity of $2.2 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-12}$ to $6.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.11 Section 303.00-323.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 224 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 4.5 L/min at start of the CHi phase to 3.9 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The injection phase is a little bit noisy but still amenable for qualitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir Phase. The analysis is presented in Appendix 2-20.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.2. For the analysis of the CHi phases a homogeneous flow model was chosen. The flow dimension displayed during the CHi phase is n = 2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-20.

Selected representative parameters

The recommended transmissivity of $5.8 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-6}$ to $9.0 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,958.2 kPa.

The radial flow analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow models. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

6.2.12 Section 323.00-343.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 218 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no pressure loss occurred during the injection phase. The injection rate was with 4 mL/min at start of the CHi phase and dropped below measurement limit (1 mL/min) after 11 min, indicating a very low interval transmissivity (consistent with the pulse recovery). Due to the very low flow rate the recorded data of the flow rate is very noisy and the results of the CHi phase should be regarded carefully. The CHir phase was measured for 4 h and shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-21.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the very poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $5.5 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-11}$ to $9.0 \cdot 10^{-11}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,137.1 kPa.

No further analysis is recommended.

6.2.13 Section 343.00-363.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 195 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the pressure decreased during the injection by 7 kPa. The injection rate decreased from 87 mL/min at start of the CHi phase to 9 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The injection phase is a little bit noisy but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. The derivative of the CHir phase shows an upward trend at middle times as well but no stabilization at late time, indicating no formation flow stabilization was reached. Both phases are matched using a two shell composite radial flow model. The analysis is presented in Appendix 2-22.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the upward trend at middle times is interpreted as a change of flow dimension. The calculation based on the slope of the derivatives indicates a flow dimension of $n^2 = 1.6$ for the CHi phase as well as for the CHir phase. A two shell composite flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-22.

Selected representative parameters

The recommended transmissivity of $4.3 \cdot 10^{-9}$ m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ to $8.0 \cdot 10^{-9}$ m²/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.14 Section 363.00-383.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 4 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 8 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 217 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $3.6 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. The deconvolved PI pressure derivative shows a slight upward trend at middle and late. However, in case of the present analysis the PI phase was matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-23.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the slight upward trend at middle and late times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.75 was used. The analysis is presented in Appendix 2-23.

Selected representative parameters

The recommended transmissivity of $1.1 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-12}$ to $5.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.15 Section 383.00-403.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 244 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 12 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the very low flow rate the recorded data of the flow rate is very noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-24.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the very poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $3.3 \cdot 10^{-09}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-10}$ to $5.0 \cdot 10^{-09}$ m²/s. The static pressure measured

at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,699.9 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.16 Section 403.00-423.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 16 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 233 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $6.8 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative is noisy at early and middle times, which adds uncertainty to the derivative analysis. However, the PI phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-52.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the flow dimension calculated by the slope of the derivative at early and middle times is n = 1.45. A homogeneous flow model was chosen for the analysis of the PI phase. The analysis is presented in Appendix 2-52.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-12}$ to $8.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.17 Section 423.00-443.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system was not able to maintain stable pressure conditions in the interval during the injection and the pressure oscillates by approximately 5 kPa. However, the CHi phase is still analysable, but the results should be regarded carefully. The injection rate decreased from 80 mL/min at start of the CHi phase to 60 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir shows a fast recovery but is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test no trend could be observed for the derivative of the CHi phase. This is attributed to the poor data quality. However, the CHi phase was analysed using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows a steep downward trend at middle times, which is consistent with a large positive skin, and a kind of horizontal stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-26.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.0 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-8}$ to $6.0 \cdot 10^{-7}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,086.5 kPa.

The radial flow analyses of the CHi and CHir phases show little inconsistency in the derived transmissivity, which can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

6.2.18 Section 443.00-463.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 244 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the pressure decreased during the injection by 9 kPa. The injection rate decreased from 36 mL/min at start of the CHi phase to 30 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relatively fast recovery, which adds uncertainty to the derivative analyses. However, both phases are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a flat derivative which can be interpreted as radial flow. A radial homogeneous flow model was used to analyse the CHi phase. The derivative of the CHir phase shows a unit slope downward trend at middle times, indicating a large positive skin. There is an indication of stabilization in the late time derivative. The CHir phase is matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-27.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. For this reason no generalized radial flow analysis was performed. Due to the fast recovery and no clear flow stabilization of the CHir phase, no generalized radial flow analysis was performed, either. The analysis is presented in Appendix 2-27.

Selected representative parameters

The recommended transmissivity of $3.1 \cdot 10^{-8}$ m²/s was derived from the radial flow analysis of the CHi phase, which shows a better derivative stabilization. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-9}$ to $6.0 \cdot 10^{-8}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,269.7 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency in the derived transmissivities, which is attributed to the fast recovery of the CHir phase. The fast recovery may be caused by non-Darcy flow effects in the formation. No further analysis is recommended.

6.2.19 Section 463.00-483.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 20 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 213 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $6.3 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend at early and middle times followed by a downward trend at late times, which can be attributed to the uncertainty of the initial formation pressure. However, in case of the present analysis the early and middle time derivative of the PI phase was matched using a homogeneous radial flow model. The analysis is presented in Appendix 2-28.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend at early and middle times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.7 was used. The analysis is presented in Appendix 2-28.

Selected representative parameters

The recommended transmissivity of $5.7 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-11}$ to $9.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.20 Section 483.00-503.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 250 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 20 mL/min at start of the CHi phase to 7 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-29.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-9}$ m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-10}$ to $5.0 \cdot 10^{-09}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,645.5 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the poor data quality of the CHi phase. However, regarding the derived transmissivities, both phases show consistency. No further analysis is recommended.

6.2.21 Section 503.00-523.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 4.2 L/min at start of the CHi phase to 3.5 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi and CHir phases show a flat derivative at middle and late times, indicating formation flow stabilization and radial flow. Both phases are analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-30.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of both phases show a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. Therefore no generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $4.1 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ to $7.0 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,830.4 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.22 Section 523.00-543.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 204 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from approx. 110 mL/min at start of the CHi phase to 80 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The start of the CHi phase is noisy and the automatic regulation system needs a while to reach stable pressure conditions. However, the CHi phase is still amenable for qualitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using a homogeneous radial flow model. The derivative of the CHir phase shows a deep downward trend at middle times, which is consistent with a large positive skin. There is an indication of formation flow stabilization at the end. The CHir phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-31.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.2 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-8}$ to $6.0 \cdot 10^{-7}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,023.2 kPa.

Apart from the high skin derived from the CHir phase, the radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.23 Section 543.00–563.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 7 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 2 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 220 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.1 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. The deconvolved PI pressure derivative shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. In this analysis this behaviour is interpreted as decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-32.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend at middle times of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1 (linear flow) was used. The analysis is presented in Appendix 2-32.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-12}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-13}$ to $4.0 \cdot 10^{-12}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.24 Section 563.00-583.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. The pressure in the bottom zone rose by approx. 10 kPa indicating a connection to the test interval. The injection rate decreased from 13.8 L/min at start of the CHi phase to 8.8 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase shows a relatively flat derivative with a slight downward trend. However, an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The derivative of the CHir phase shows a slight downward trend at late times. In case of this analysis it was interpreted as infinite acting radial flow and a homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-33.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi and CHir phase show a slight downward trend indicating a slope below 0 and a flow dimension above 2. For the analysis of the both phases a homogeneous flow model with a flow dimension of n = 2.1 was chosen. The analysis is presented in Appendix 2-33.

Selected representative parameters

The recommended transmissivity of $2.7 \cdot 10^{-5}$ m²/s was derived from the radial flow analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-6}$ to $5.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,392.3 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.25 Section 583.00-603.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.5 L/min at start of the CHi phase to 0.3 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase shows a horizontal stabilization at middle times followed by an upward trend at late times. The CHir response is consistent with the CHi phase. Both phases are matched using a two shell composite radial flow model with decreasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 2-34.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a horizontal stabilization at middle times which is typical for radial flow (n = 2). The following upward trend was interpreted as a change of flow dimension away from the borehole. The calculation of the outer zone flow dimension based on the slope of the derivative is n2 = 1.9 (CHi) and 1.95 (CHir), respectively. Both phases are matched using a two shell composite flow model with a change of flow dimension at some distance from the borehole. The analysis is presented in Appendix 2-34.

Selected representative parameters

The recommended transmissivity of $7.9 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-7}$ to $1 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,581.5 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.2.26 Section 603.00-623.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 243 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $5.5 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the derivative of the PI phase was matched using a homogeneous radial flow model. The analysis is presented in Appendix 2-35.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend of the derivative indicates a slope above 0 and a flow dimension below 2. For the generalized radial flow analysis a homogeneous flow model with n = 1.5 was used. The analysis is presented in Appendix 2-35.

Selected representative parameters

The recommended transmissivity of $4.4 \cdot 10^{-11} \text{ m}^2/\text{s}$ was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-11}$ to $9.0 \cdot 10^{-11} \text{ m}^2/\text{s}$. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.27 Section 623.00–643.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 220 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $6.0 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the PI phase shows an upward trend at middle and late times, interpreted as a decrease of transmissivity at some distance from the borehole. Because the outer zone stabilization was not observed, the derived outer zone transmissivity should be regarded as an upper limit only. The PI phase was matched using a radial composite flow model. The analysis is presented in Appendix 2-36.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test no reliable flow dimension can be calculated by the slope of derivative. No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $1.3 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the PI phase (inner zone). The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-12}$ to $4.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.28 Section 643.00–663.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by 6 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 7 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 218 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $3.1 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows a continuing upward trend, which can be attributed to fact that the dimensionless test time is to small and the semi-logarithmic asymptotic solution was not achieved (due to the small transmissivity). The PI phase was analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-37.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the continuing upward trend indicates a flow dimension of n = 1.6 (interpreted form the slope of derivative). For the generalized radial flow analysis a homogeneous flow model was used. The analysis is presented in Appendix 2-37.

Selected representative parameters

The recommended transmissivity of $2.1 \cdot 10^{-12}$ m²/s was derived from the radial flow analysis of the PI phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-13}$ to $6.0 \cdot 10^{-12}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.29 Section 663.00–683.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a low formation transmissivity. The pulse recovery was measured over night. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. All phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 256 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no large pressure loss occurred during the injection phase. The injection rate decreased from 5 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase (although noisy) shows a upward trend at middle times and a kind of stabilization at late times, indicating a transition to a zone of lower transmissivity. A radial flow composite model was used for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-38.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the no clear flow stabilization. No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.0 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the CHi phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-11}$ to $7.0 \cdot 10^{-10}$ m²/s (this range includes the transmissivity derived from the inner zone transmissivity the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,317.5 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the fact that no flow stabilization was reached during the CHir phase caused by the low transmissivity. No further analysis is recommended.

The conducted over night pulse was analysed using a radial composite flow model with decreasing transmissivity away from the borehole. Due to the uncertainty of the initial formation pressure the results should be regarded carefully. The derived inner zone transmissivity is $1.3 \cdot 10^{-10}$ m²/s. The analysis is presented in Appendix 2-38.

6.2.30 Section 683.00–703.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 12 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 224 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $5.3 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the PI shows an upward trend at middle and late times. This behaviour is interpreted as an decrease of transmissivity at some distance form the borehole. A two shell composite radial flow model was chosen for the analysis of the PI phase. The analysis is presented in Appendix 2-39.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the upward trend of the derivative at middle and late times is interpreted as a change of flow dimension. The flow dimension displayed at the middle and late time is n = 1.87. A composite flow model with a decrease in flow dimension at some distance from the borehole was chosen for the analysis. The analysis is presented in Appendix 2-39.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the Pi phase (outer zone). The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-11}$ to $3.0 \cdot 10^{-10}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.2.31 Section 703.00-723.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no large pressure loss occurred during the injection phase. The injection rate decreased from 30 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is noisy. However, the CHi phase was matched using a radial flow composite model. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-40.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.6 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-11}$ to $6.0 \cdot 10^{-10}$ m²/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.32 Section 723.00-743.00 m, test no. 1, pulse injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 40 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-41.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.33 Section 743.00–763.00 m, test no. 1, pulse injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-42.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.34 Section 763.00–783.00 m, test no. 1, pulse injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 10 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-43.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.35 Section 783.00–803.00 m, test no. 1, pulse injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure increases. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-44.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.36 Section 803.00-823.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 36 kPa in 25 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

The measured data is presented in Appendix 2-45.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.37 Section 823.00-843.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 47 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1E-11 \text{ m}^2/\text{s}$). None of the test phases is analysable.

The measured data is presented in Appendix 2-46.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.2.38 Section 843.00-863.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 240 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the pressure decreased during the injection by 4 kPa. The injection rate decreased from 14 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is noisy. However, the CHi phase was matched using a radial flow composite model. The late time derivative of the CHir phase shows an indication of horizontal stabilization, which can be attributed to radial flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-46.

Generalized Radial Flow Analysis

In case of the present test CHi phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and the insufficient flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $8.2 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-10}$ to $1.0 \cdot 10^{-09}$ m²/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.2.39 Section 863.00-883.00 m, test no. 1, injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 15 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-48.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3 5 m hydraulic injection tests

In the following, the 5 m section tests conducted in borehole KLX11A are presented and analysed.

6.3.1 Section 303.00–308.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a

constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.2 L/min at start of the CHi phase to 0.6 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHi phase shows no problems and is adequate for quantitative analysis. The CHir phase shows a fast recovery, which adds uncertainty to the derivative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present the derivative of the CHi phase shows a slight upward trend. The CHir derivative is very poor due to the very fast recovery. However, a radial homogeneous flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-49.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase indicates a flow dimension of 1.9. For the analysis of the CHi phases a homogeneous flow model was chosen. Due to the poor data quality of the CHir phase no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-49.

Selected representative parameters

The recommended transmissivity of $6.0 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHi phase, which is showing the best data quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-7}$ to $9.0 \cdot 10^{-7}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,822.7 kPa.

The quality of the CHir phase is very poor and leads to inconsistency between the CHi and CHir phase. The fast recovery may be caused by non-Darcy flow effects in the formation. No further analysis recommended.

6.3.2 Section 308.00-313.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The fast recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 3.2 L/min at start of the CHi phase to 3.9 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The automatic rate control functioned well, the recorded flow rate is however a little bit noisy. The CHir phase shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase was matched using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows an upward trend at middle times followed by a horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir Phase. The analysis is presented in Appendix 2-50.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.2. For the analysis of the CHi phases a homogeneous flow model was chosen. The flow dimension displayed during the CHi phase is n = 2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-50.

Selected representative parameters

The recommended transmissivity of $6.5 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-6}$ to $9.0 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,867.5 kPa.

The radial flow analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow models. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

6.3.3 Section 313.00–318.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 47 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-51.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.4 Section 318.00–323.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 118 kPa in 20 minutes. This phenomenon is caused

by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-52.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.5 Section 343.00–348.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However no large pressure loss occurred. The injection rate decreased from 75 mL/min at start of the CHi phase to 10 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The injection phase is a little bit noisy but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase shows an upward trend at middle times followed by a kind of horizontal stabilization at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. The derivative of the CHir phase shows an upward trend at middle times as well but no stabilization at late time, indicating no formation flow stabilization was reached. Both phases are matched using a two shell composite radial flow model. The analysis is presented in Appendix 2-53.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the upward trend at middle times is interpreted as a change of flow dimension. The calculation based on the slope of the derivatives indicates a flow dimension of n2 = 1.68 (CHi phase) and n2 = 1.76 (CHir phase), respectively. A two shell composite flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-53.

Selected representative parameters

The recommended transmissivity of $3.6 \cdot 10^{-9}$ m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ to $8.0 \cdot 10^{-9}$ m²/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.6 Section 348.00–353.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 82 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-54.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.7 Section 353.00–358.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 99 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-55.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.8 Section 358.00–363.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 130 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-56.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.9 Section 383.00–388.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 74 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-57.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.10 Section 388.00-393.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 108 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-58.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.11 Section 393.00-398.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 40 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-59.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.12 Section 398.00–403.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 234 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 7 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the very low flow rate the recorded data of the flow rate is very noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A two shell composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-60.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the very poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $3.0 \cdot 10^{-09}$ m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-10}$ to $6.0 \cdot 10^{-09}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,712.4 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.13 Section 423.00-428.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 60 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-61.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.14 Section 428.00-433.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 82 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-62.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.15 Section 433.00-438.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 200 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-63.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.16 Section 438.00-443.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system functioned relatively well, except for oscillations occurring at the beginning of the phase. However, the CHi phase is still analysable. The injection rate decreased from 75 mL/min at start of the CHi phase to 70 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery).

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test no clear trend could be observed for the derivative of the CHi phase. However, the CHi phase was analysed using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows a horizontal stabilization at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-64.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the CHi derivative is n = 2.2. For the analysis of the CHi phases a homogeneous flow model was chosen. The flow dimension displayed during the CHir phase is n = 2 and no generalized radial flow analysis was performed. The analysis is presented in Appendix 2-64.

Selected representative parameters

The recommended transmissivity of $1.9 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better derivative stabilization. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-8}$ to $5.0 \cdot 10^{-7}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,087.3 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.17 Section 442.00–447.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 10 kPa. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on test depth. During the brief injection phase of the pulse injection a total volume of about 8 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 210 kPa.

Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $3.8 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the strong influence of the packer expansion the pressure before inflation has been assumed to be the initial formation pressure. Therefore the results of the late time derivative (e.g. outer zone transmissivity) should be regarded carefully. In case of the present analysis the PI phase was matched using a radial composite flow model with increasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 2-65.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the downward trend at middle and late times of the derivative is interpreted as change of flow dimension. For the generalized radial flow analysis a composite flow model with n1 = 2 and n2 = 2.23 was used. The analysis is presented in Appendix 2-65.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the Pi phase (inner zone). The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-11}$ to $3.0 \cdot 10^{-10}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.3.18 Section 447.00–452.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system worked relatively well, except some oscillations at the start of the injection. Due to the low flow rate the recorded data is a little bit noisy. However, the CHi phase is adequate for analysis. The injection rate decreased from 18 mL/min at start of the CHi phase to 13 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir shows a fast recovery, which adds uncertainty to the derivative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The response of the CHir phase is consistent with the presence of a large skin, which

in turn, is not consistent with the response observed during the CHi phase. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-66.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase indicates a flow dimension of 2. For this reason no generalized radial flow analysis was performed. The CHir phase does not allow a specific determination of the flow dimension, because of no clear flow stabilization. No generalized radial flow analysis was performed for the CHir phase.

Selected representative parameters

The recommended transmissivity of $1.4 \cdot 10^{-08}$ m²/s was derived from the radial flow analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-09}$ to $3.0 \cdot 10^{-08}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,174.5 kPa.

The radial flow analysis of the CHi and CHir phases show little inconsistency, which can be attributed to the fast recovery of the CHir phase. No further analysis is recommended.

6.3.19 Section 452.00-457.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a relatively low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 208 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system worked relatively well, except some oscillations at the start of the injection. Due to the relatively low flow rate the recorded data is noisy. The injection rate decreased from approx. 22 mL/min at start of the CHi phase to 17 mL/min at the end, indicating a relatively low interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relatively fast recovery, which adds uncertainty to the derivative analyses. However, both phases are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi phase (although noisy) shows a relatively flat derivative which can be interpreted as radial flow. A radial homogeneous flow model was used to analyse the CHi phase. The derivative of the CHir phase shows a unit slope downward trend at middle times, indicating a large positive skin. There is a slight indication of stabilization in the late time derivative. The CHir phase is matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-67.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is a little bit noisy and shows a horizontal stabilization, indicating a flow dimension n = 2. Due to the noise in the data

the interpretation of the flow dimension should be regarded carefully. No generalized radial flow analysis was performed. Due to the fast recovery and no clear flow stabilization of the CHir phase, no generalized radial flow analysis was performed, either. The analysis is presented in Appendix 2-67.

Selected representative parameters

The recommended transmissivity of $2.2 \cdot 10^{-8}$ m²/s was derived from the radial flow analysis of the CHi phase, which shows better data quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-9}$ to $4.0 \cdot 10^{-8}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,220.6 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency in the derived transmissivities, which is attributed to the fast recovery of the CHir phase. The fast recovery may be caused by non-Darcy flow effects in the formation. No further analysis is recommended.

6.3.20 Section 457.00-462.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 170 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-68.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.21 Section 462.00-467.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 108 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-69.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.22 Section 483.00-488.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 90 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-70.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.23 Section 488.00–493.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 90 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-71.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.24 Section 493.00–498.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 10 kPa and drops after approx. 0.5 h. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 3 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 226 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.2 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the deconvoluted PI pressure shows a horizontal stabilization at middle and late times indicating radial flow. An infinite acting homogeneous radial flow model was used for the analysis. The analysis is presented in Appendix 2-72.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension based on the slope of derivative shows a flow dimension of n = 2 (radial flow). Therefore no generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.6 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-11}$ to $4.0 \cdot 10^{-10}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.3.25 Section 498.00-503.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 241 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no pressure loss occurred during the injection phase. The injection rate decreased from 8 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-73.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-9}$ m²/s was derived from the radial flow analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-10}$ to $5.0 \cdot 10^{-09}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,650.5 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the poor data quality of the CHi phase. However, regarding the derived transmissivities, both phases show consistency. No further analysis is recommended.

6.3.26 Section 503.00-508.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 182 kPa. No hydraulic connection to the adjacent zones was observed. The automatic regulation system functioned well, except the oscillations at the beginning of the injection phase. The recorded data is however noisy, but still analysable. The injection rate decreased from approx 25 mL/min at start of the CHi phase to 17 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-74.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi show a slight downward trend. The flow dimension calculated by the slope of the derivative is n = 2.1. Due to the fact that the data of the CHi phase is relatively noisy, the results should be regarded carefully. A homogeneous flow model was chosen for the analysis of the CHi phase. No clear flow stabilization was reached during the CHir phase. This does not allow a specific determination of the flow dimension. The analysis is presented in Appendix 2-74.

Selected representative parameters

The recommended transmissivity of $1.1 \cdot 10^{-08}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-09}$ to $5.0 \cdot 10^{-08}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,687.3 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.27 Section 508.00-513.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The start of the injection phase was a little bit noisy. The injection rate decreased from 48 mL/min at start of the CHi phase to 16 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recovery was measured 2 h. Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi derivative shows a slight upward trend and an infinite acting homogenous radial flow model was used. The CHir phase shows an upward trend at middle times and an indication of stabilization at late times. This behaviour is interpreted as a change of transmissivity at some distance from the borehole. A two shell composite radial flow model was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-75.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the slight upward trend of the CHi derivative is interpreted as a flow dimension of n = 1.9. A homogenous flow model was used for the analysis of the CHi phase. The derivative of the CHir phase is interpreted as a change of flow dimension at some distance form the borehole. A composite flow model with n1 = 2 and n2 = 1.86 was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-75.

Selected representative parameters

The recommended transmissivity of $1.3 \cdot 10^{-08}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-09}$ to $3.0 \cdot 10^{-08}$ m²/s (this range includes the derived transmissivity from the CHi phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,738.8 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency as far as the flow model concerned which can be attributed to the noise in the early data of the CHi phase. No further analysis is recommended.

6.3.28 Section 513.00-518.00 m, test no. 1-3, injection

Comments to test

Due to a technical problem with the regulation unit the test was repeated. The third test in this interval worked well.

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.7 L/min at start of the CHi phase to 1.2 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivatives of both phases show a clear horizontal stabilization at middle and late times. A homogeneous radial flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-76.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a clear horizontal stabilization which is indicative for a flow dimension of 2 (radial flow). For this reason no generalized radial flow analysis was necessary.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase, because it shows the most clear derivative stabilization. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,794.0 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.29 Section 518.00-523.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5.7 L/min at start of the CHi phase to 3.1 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi and CHir phases show a flat derivative at middle and late times, indicating formation flow stabilization and radial flow. Both phases are analysed using a radial homogeneous flow model. The analysis is presented in Appendix 2-77.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of both phases show a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. Therefore no generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $4.7 \cdot 10^{-6}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-6}$ to $7.0 \cdot 10^{-6}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,837.1 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

6.3.30 Section 523.00-528.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 15 mL/min at start of the CHi phase to 9 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-78.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $4.2 \cdot 10^{-8}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-8}$ to $7.0 \cdot 10^{-8}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,881.0 kPa.

The radial flow analyses of the CHi and CHir phases show little inconsistency regarding the derived transmissivity. This inconsistency can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

6.3.31 Section 528.00-533.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from approx. 700 mL/min at start of the CHi phase to 50 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery).Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the Chi phase (although a little bit noisy) shows a relatively flat derivative. An infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a slight horizontal stabilization at middle times and a downward trend at late times, which is typical for a change of transmissivity away from the borehole. A two shell composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-79.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the CHi phase does not allow a specific determination of the flow dimension and no generalized radial flow analysis was performed for this phase. The calculated flow dimension based on the slope of the CHir derivative shows a flow dimension of n = 3 (spherical). A homogeneous flow model was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-79.

Selected representative parameters

The recommended transmissivity of $6.7 \cdot 10^{-8}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-8}$ to $9.0 \cdot 10^{-8}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,932.1 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models. If further analysis is planned, a total test simulation should help resolving this inconsistency.

6.3.32 Section 533.00-538.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 190 mL/min at start of the CHi phase to 100 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHi phase is a little bit noisy, which can be attributed to the automatic regulation unit which was switching between the injection pump and the injection vessel. The CHir phase shows a relatively fast recovery. Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis both phases are matched using a homogeneous radial flow model. The analysis is presented in Appendix 2-80.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The flow dimension calculated by the slope of the CHi derivative is n = 2.3. A homogeneous flow model was used to match the CHi phase. No generalized radial flow analysis was performed for the CHir phase. The analysis is presented in Appendix 2-80.

Selected representative parameters

The recommended transmissivity of $3.7 \cdot 10^{-7}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-8}$ to $6.0 \cdot 10^{-7}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,980.7 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency, with the exception of the very high skin derived from the CHir phase. No further analysis is recommended.

6.3.33 Section 538.00-543.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 242 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. Because of this, the pressure decreased during the injection by approx. 1 kPa. The injection rate decreased from 8 mL/min at start of the CHi phase to 2 mL/min at the end,

indicating a low interval transmissivity (consistent with the pulse recovery). Because of the low flow rate the recorded data of the flow rate is noisy and the results of the CHi phase should be regarded carefully. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. Due to the poor data quality the CHi phase is not very conclusive. However, in case of the present test an infinite acting homogenous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-81.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the poor data quality (CHi phase) and no flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $4.1 \cdot 10^{-9}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ to $1.0 \cdot 10^{-8}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,028.7 kPa.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.34 Section 563.00-568.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 63 kPa in 25 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-82.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis recommended.

6.3.35 Section 568.00-573.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 60 kPa in 25 minutes. This phenomenon is caused

by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$). None of the test phases is analysable.

The measured data is presented in Appendix 2-83.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.36 Section 573.00-578.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A hydraulic connection between test interval and bottom zone (the pressure rose by 13 kPa during injection) was observed. The automatic regulation unit functioned well. However, the recorded data of the Chi phase is noisy. The injection rate decreased from 5.5 L/min at start of the CHi phase to 4.1 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relative fast recovery. Both phases are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is very noisy. However, a homogeneous radial flow model was used for the analysis of the CHi phase. The CHir phase shows a flat derivative at middle and late times, indicating radial flow. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-84.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase does not allow a specific determination of the flow dimension, because of the poor data quality. The derivative of the CHir phase shows a horizontal stabilization with a slope of 0, indicating a flow dimension n = 2. Therefore no generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-5}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $3.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,350.3 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency, with the exception of a relatively high skin derived from the CHir phase. No further analysis is recommended.

6.3.37 Section 578.00–583.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. The pressure rose by 6 kPa in the bottom zone during the injection indicating a connection to the adjacent zone. The injection rate decreased from 7.5 L/min at start of the CHi phase to 5.6 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relative fast recovery. Both phases are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is relatively flat and a homogeneous radial flow model was used for the analysis of this phase. The CHir phase shows a flat derivative at middle and late times, indicating radial flow. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-85.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present analysis the slope of the derivative of the CHi phase indicates a flow dimension of 2.1. A homogeneous flow model was used for the analysis of the CHi phase. The analysis is presented in Appendix 2-85. No generalized radial flow analysis was performed for the CHir phase.

Selected representative parameters

The recommended transmissivity of $1.0 \cdot 10^{-5}$ m²/s was derived from the radial flow analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $3.0 \cdot 10^{-5}$ m²/s. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,397.7 kPa.

The radial flow analyses of the CHi and CHir phases show good consistency, with the exception of a relatively high skin derived from the CHir phase. No further analysis is recommended.

6.3.38 Section 583.00–588.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 4 kPa. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 3 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 242 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.2 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure was matched using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-86.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension based on the slope of derivative shows a flow dimension of n = 1.4. A homogeneous flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-86.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-12}$ to $4.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.3.39 Section 588.00-593.00 m, test no. 1, pulse injection

Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, no pulse recovery was observed and the pressure stayed stable for approx. 40 minutes. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-87.

Selected representative parameters

Based on the test response the interval transmissivity is lower than $1.0 \cdot 10^{-11}$ m²/s.

No further analysis recommended.

6.3.40 Section 593.00–598.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 5 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 238 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.9 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the PI phase shows an upward trend at early times followed by a kind of stabilization at late times. The PI phase was matched using a radial homogeneous flow model. The analysis is presented in Appendix 2-88.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test no reliable flow dimension can be calculated by the slope of derivative. No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $4.2 \cdot 10^{-12}$ m²/s was derived from the radial flow analysis of the PI phase. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-12}$ to $7.0 \cdot 10^{-12}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.3.41 Section 598.00–603.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from approx 0.5 L/min at start of the CHi phase to 0.3 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the CHi derivative shows a horizontal stabilization at middle times followed by an upward trend at late times. A two shell composite flow model with decreasing transmissivity at some distance from the test interval was used for the analysis of the CHi phase. The response of the CHi phase is consistent with the CHi phase and a two shell composite flow model was used for the analysis as well. The analysis is presented in Appendix 2-89.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the both phases do not allow a reliable calculation of the flow dimension. No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $3.8 \cdot 10^{-07}$ m²/s was derived from the radial flow analysis of the CHi phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-08}$ to $9.0 \cdot 10^{-07}$ m²/s (this range includes the derived transmissivity from the CHir phase). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,583.6 kPa.

The radial flow analyses of the CHi and CHir phases show relative good consistency. No further analysis is recommended.

6.3.42 Section 663.00-668.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The relatively slow recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 232 kPa. No hydraulic connection to the adjacent zones was observed. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. However, no large pressure loss occurred during the injection phase. The injection rate decreased from 5 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy but is still amenable for qualitative analysis. The CHir shows no problems and is adequate for quantitative analysis.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is noisy. However, the CHi phase was matched using a radial flow composite model with decreasing transmissivity away from the borehole. No clear flow stabilization was reached during the CHir phase and the data is still influenced by wellbore effects like wellbore storage and skin. A two shell composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-90.

Generalized Radial Flow Analysis

In case of the present test both phases do not allow a specific determination of the flow dimension, because of the noisy data (CHi phase) and no clear flow stabilization (CHir phase). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $1.3 \cdot 10^{-10}$ m²/s was derived from the radial flow analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-11}$ to $4.0 \cdot 10^{-10}$ m²/s. Due to the low transmissivity no fresh water head was calculated.

The radial flow analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

6.3.43 Section 668.00–673.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 6 kPa. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 4 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 231 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.7 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure was matched using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-91.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension based on the slope of derivative shows a flow dimension of n = 1.6. A homogeneous flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-91.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-12}$ to $4.0 \cdot 10^{-11}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.3.44 Section 673.00–678.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

During the brief injection phase of the pulse injection a total volume of about 3 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 246 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.2 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure show a horizontal stabilization at early times and a short downward trend at middle times followed by a new stabilization at a lower level. This behaviour is consistent with an increase of transmissivity at some distance from the borehole. A two shell composite radial flow model was used for the analysis of the PI phase. The analysis is presented in Appendix 2-91.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculated flow dimension is n = 2 (radial flow). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $9.0 \cdot 10^{-11}$ m²/s was derived from the radial flow analysis of the PI phase (inner zone). The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-11}$ to $2.0 \cdot 10^{-10}$ m²/s. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

6.3.45 Section 678.00-683.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was analysed.

After closing the testvalve the pressure in the test section rose by approx. 4 kPa. This can be explained by prolonged packer expansion in a relatively tight section. During the brief injection phase of the pulse injection a total volume of about 4 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 246 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to $1.5 \cdot 10^{-11}$ m³/Pa. It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity.

Radial Flow Analysis

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present analysis the deconvoluted PI pressure was matched using an infinite acting homogeneous radial flow model. The analysis is presented in Appendix 2-93.

Generalized Radial Flow Analysis

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of this analysis the calculation of the flow dimension shows a flow dimension of n = 2 (radial flow). No generalized radial flow analysis was performed.

Selected representative parameters

The recommended transmissivity of $8.4 \cdot 10^{-11} \text{ m}^2/\text{s}$ was derived from the radial flow analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-11}$ to $1.0 \cdot 10^{-10} \text{ m}^2/\text{s}$. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

7 Synthesis

The synthesis chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

Borehole	Borehole	Date and time	Date and time	ď	ő	t,	Ť.	ď	ä	ď	ą	Te	Test phases measured
(m)	(E)	YYYYMMDD hh:mm	YYYYMMDD hh:mm	(m**3/s)	(m**3/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(c)	marked bold
103.00	203.00	060629 14:32:00	060629 16:40:00	1.31E-04	1.37E-04	1,800	1,800	1,842	1,837	2,035	1,840	9.6	CHi / CHir
203.00	303.00	060629 18:03:00	060629 20:21:00	1.52E–04	1.53E-04	1,800	1,800	2,780	2,776	2,975	2,777	11.1	CHi / CHir
303.00	403.00	060630 09:15:00	060630 11:12:00	5.67E-05	5.83E-05	1,800	1,800	3,714	3,712	3,907	3,713	12.6	CHi / CHir
403.00	503.00	060630 13:11:00	060630 15:20:00	1.17E–06	1.33E-06	1,800	1,800	4,653	4,650	4,854	4,650	14.0	CHi / CHir
503.00	603.00	060701 08:47:00	060701 10:50:00	1.91E–04	1.98E–04	1,800	1,800	5,578	5,580	5,795	5,600	15.6	CHi / CHir
603.00	703.00	060701 12:14:00	060701 15:43:00	3.33E-08	5.00E-08	1,800	3,600	6,514	6,549	6,754	6,586	17.1	CHi / CHir
703.00	803.00	060701 17:09:00	060702 01:32:00	3.33E-08	6.67E-08	1,800	21,600	7,443	7,477	7,680	7,451	18.6	CHi / CHir
803.00	903.00	060702 09:11:00	060702 13:33:00	6.67E–08	1.00E-07	1,800	7,200	8,351	8,354	8,589	8,352	20.1	CHi / CHir
876.00	976.00	060702 14:45:00	060702 16:49:00	NN#	NN#	10	3,978	9,027	9,042	9,253	9,202	21.2	id
103.00	123.00	060704 08:19:00	060704 09:46:00	2.33E–05	2.33E–05	1,200	1,200	1,091	1,093	1,293	1,093	8.4	CHi / CHir
123.00	143.00	060704 10:31:00	060704 11:54:00	6.50E-05	6.67E-05	1,200	1,200	1,279	1,275	1,475	1,275	8.7	CHi / CHir
143.00	163.00	060704 12:49:00	060704 14:32:00	6.67E–06	8.33E-06	1,200	1,800	1,469	1,464	1,671	1,469	8.9	CHi / CHir
163.00	183.00	060704 15:05:00	060704 16:33:00	4.17E–05	4.33E–05	1,200	1,200	1,656	1,648	1,849	1,651	9.2	CHi / CHir
183.00	203.00	060704 17:12:00	060704 18:14:00	NN#	NN#	NN#	NN#	1,844	NN#	NN#	∧N#	9.5	NN#

Table 7-1. General test data from constant head injection tests in KLX11A (for nomenclature see Appendix 4).

7.1 Summary of results

Test phases measured	st phases	q															
Test phase	Analysed test phases	marked bold	NN#	Ŀ	CHi / CHir	CHi / CHir	Ŀ	CHi / CHir	CHi / CHir	CHi / CHir	iq	CHi / CHir	iq	CHi / CHir	CHi / CHir	Ŀ	CHi / CHir
Te		(°c)	9.8	10.0	10.4	10.8	11.1	11.5	11.8	12.1	12.3	12.6	12.9	13.2	13.5	13.8	14.0
₽		(kPa)	NN#	2,255	2,402	2,590	2,958	2,964	3,155	3,443	3,693	3,712	4,062	4,087	4,269	4,572	4,642
ď		(kPa)	NN#	2,458	2,616	2,789	3,034	3,187	3,377	3,551	3,753	3,954	4,141	4,290	4,513	4,698	4,899
ā		(kPa)	NN#	2,233	2,403	2,588	2,797	2,963	3,159	3,356	3,536	3,715	3,908	4,088	4,269	4,485	4,649
ď		(kPa)	2,031	2,216	2,406	2,594	2,781	2,967	3,155	3,339	3,530	3,717	3,903	4,090	4,271	4,461	4,650
ت -		(s)	NN#	2,700	1,200	1,200	2,700	1,200	14,400	1,200	3,960	1,200	2,460	1,200	1,200	4,500	1,200
t.		(s)	∧N#	10	1,200	1,200	10	1,200	660	1,200	10	1,200	10	1,200	1,200	10	1,200
å		(m**3/s)	NN#	NN#	7.00E-07	1.69E–04	NN#	6.83E-05	5.00E-09	3.00E-07	NN#	8.33E-08	NN#	1.00E-06	4.92E-07	NN#	1.33E–07
ð		(m**3/s)	NN#	NN#	6.67E-07	1.65E-04	NN#	6.50E-05	8.33E-09	1.50E-07	NN#	8.33E-08	NN#	1.00E-06	5.00E-07	NN#	1.17E–07
Date and time	for test, stop	ҮҮҮҮММDD hh:mm	060704 19:46:00	060705 10:07:00	060705 12:22:00	060705 14:44:00	060705 16:51:00	060705 18:49:00	060706 00:42:00	060706 10:30:00	060706 12:55:00	060706 15:02:00	060706 17:22:00	060706 19:21:00	060707 10:01:00	060707 12:34:00	060707 14:44:00
Date and time	for test, start	ҮҮҮҮММDD hh:mm	060704 18:50:00	060705 08:38:00	060705 10:48:00	060705 13:18:00	060705 15:25:00	060705 17:25:00	060705 19:21:00	060706 08:48:00	060706 11:03:00	060706 13:34:00	060706 15:54:00	060706 17:56:00	060707 08:32:00	060707 10:33:00	060707 13:12:00
Borehole	seclow	(u)	223.00	243.00	263.00	283.00	303.00	323.00	343.00	363.00	383.00	403.00	423.00	443.00	463.00	483.00	503.00
Borehole	secup	(LL)	203.00	223.00	243.00	263.00	283.00	303.00	323.00	343.00	363.00	383.00	403.00	423.00	443.00	463.00	483.00

Borehole	Borehole	Date and time	Date and time	ď	Q m	₽.	t,	p₀	ā	p _e	₽	Te	Test phases measured
secup	seclow	for test, start	for test, stop										Analysed test phases
(LL)	(L)	YYYYMMDD hh:mm	ҮҮҮҮММDD hh:mm	(m**3/s)	(m**3/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°°)	marked bold
503.00	523.00	060707 15:12:00	060707 16:39:00	5.83E-05	6.17E-05	1,200	1,200	4,838	4,837	5,037	4,838	14.4	CHi / CHir
523.00	543.00	060707 17:07:00	060707 18:30:00	1.33E-06	1.33E-06	1,200	1,200	5,025	5,024	5,228	5,023	14.6	CHi / CHir
543.00	563.00	060707 19:07:00	060708 08:26:00	NN#	NN#	10	45,360	5,211	5,219	5,439	5,349	15.0	Pi
563.00	583.00	060708 08:58:00	060708 10:21:00	1.47E–04	1.52E-04	1,200	1,200	5,395	5,392	5,590	5,394	15.1	CHi / CHir
583.00	603.00	060708 10:53:00	060708 12:23:00	4.33E–06	4.50E-06	1,200	1,200	5,583	5,585	5,786	5,590	15.6	CHi / CHir
603.00	623.00	060708 13:17:00	060708 14:41:00	NN#	NN#	10	2,460	5,772	5,778	6,021	5,930	15.9	Pi
623.00	643.00	060708 15:12:00	060708 16:39:00	NN#	NN#	10	2,460	5,957	5,963	6,183	6,172	16.2	Pi
643.00	663.00	060708 17:11:00	060708 18:34:00	NN#	NN#	10	2,400	6,144	6,153	6,368	6,133	16.5	Pi
663.00	683.00	060708 19:06:00	060709 08:39:00	1.67E–08	3.67E-08	1,200	1,200	6,332	6,327	6,583	6,411	16.8	CHi / CHir
683.00	703.00	060709 09:11:00	060709 10:40:00	NN#	NN#	10	2,520	6,513	6,516	6,740	6,556	17.1	Pi
703.00	723.00	060709 11:08:00	060709 13:27:00	5.00E-08	8.47E-08	1,200	2,400	6,700	6,718	6,928	6,761	17.3	CHi / CHir
723.00	743.00	060709 13:58:00	060709 15:13:00	NN#	NN#	NN#	NN#	6,886	NN#	NN#	∧N#	17.6	NN#
743.00	763.00	060709 15:45:00	060709 16:56:00	NN#	NN#	NN#	NN#	7,070	NN#	∧N#	∧N#	17.9	NN#
763.00	783.00	060709 17:25:00	060709 18:10:00	NN#	NN#	NN#	NN#	7,254	NN#	∧N#	∧N#	18.2	NN#
783.00	803.00	060709 18:43:00	060709 20:01:00	NN#	NN#	NN#	NN#	7,439	NN#	NN#	NN#	18.5	NN#

Test phases measured	Analysed test phases	marked bold	NN#	NN#	CHi / CHir	NN#	CHi / CHir	CHi / CHir	NN#	NN#	CHi / CHir	NN#	NN#	NN#	NN#	NN#	NN#
Te _w T	A	л (°°)	18.8 #	19.1 #	19.5 C	19.8 #	11.1 C	11.3 C	11.4 #	11.5 #	11.8 C	11.9 #	12.0 #	12.0 #	12.4 #	12.5 #	12.5 #
P T		(kPa) ('	#NV	#NV 1	8,013 1	#NV 1	2,823 1	2,871 1	#NV 1	#NV 1	3,312 1	#NV 1	#NV 1	#NV 1	#NV 1	#NV 1	#NV 1
p		(kPa)	NN#	NN#	8,223	NN#	3,024	3,071	NN#	NN#	3,432	NN#	NN#	NN#	NN#	NN#	NN#
ā		(kPa)	∧N#	NN#	7,983	NN#	2,823	2,871	NN#	NN#	3,222	NN#	NN#	NN#	NN#	NN#	NN#
ď		(kPa)	7,623	7,807	7,794	8,180	2,828	2,875	2,925	2,972	3,206	3,252	3,298	3,342	3,576	3,624	3,673
ت -		(s)	NN#	NN#	1,200	NN#	1,200	1,200	NN#	NN#	1,200	NN#	NN#	NN#	NN#	NN#	NN#
t.		(s)	NN#	NN#	1,200	NN#	1,200	1,200	NN#	NN#	1,200	NN#	NN#	NN#	NN#	NN#	NN#
å		(m**3/s)	NN#	NN#	1.05E-07	NN#	1.16E–05	5.61E-05	NN#	NN#	3.33E-07	NN#	NN#	NN#	NN#	NN#	NN#
å		(m**3/s)	NN#	NN#	6.67E-08	NN#	1.06E–05	5.33E-05	NN#	NN#	1.67E–07	NN#	NN#	NN#	NN#	NN#	NN#
Date and time	for test, stop	YYYYMMDD hh:mm	060710 09:15:00	060710 10:37:00	060710 13:24:00	060710 14:56:00	060712 09:06:00	060712 10:51:00	060706 15:02:00	060712 12:03:00	060712 13:57:00	060712 16:11:00	060712 17:38:00	060712 18:45:00	060713 08:41:00	060713 10:05:00	060713 11:17:00
Date and time	for test, start	ҮҮҮҮММDD hh:mm	060710 08:19:00	060710 09:45:00	060710 11:10:00	060710 14:04:00	060712 07:38:00	060712 09:30:00	060712 11:13:00	060712 13:09:00	060712 14:31:00	060712 16:38:00	060712 17:56:00	060713 07:52:00	060713 09:14:00	060713 10:28:00	060713 12:29:00
Borehole	seclow	(m)	823.00	843.00	863.00	883.00	308.00	313.00	318.00	323.00	348.00	353.00	358.00	363.00	388.00	393.00	398.00
Borehole	secup	(m)	803.00	823.00	843.00	863.00	303.00	308.00	313.00	318.00	343.00	348.00	353.00	358.00	383.00	388.00	393.00

Borehole	Borehole	Date and time	Date and time	ď	Q ^m	t,	ţ	b₀	ā	p	₽	Te	Test phases measured
secup	seclow	for test, start	for test, stop										Analysed test phases
(m)	(u)	ҮҮҮҮММDD hh:mm	ҮҮҮҮММDD hh:mm	(m**3/s)	(m**3/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(c)	marked bold
398.00	403.00	060713 13:44:00	060713 13:20:00	8.33E-08	8.33E-08	1,200	1,200	3,718	3,717	3,951	3,715	12.6	CHi / CHir
423.00	428.00	060713 15:46:00	060713 15:16:00	NN#	NN#	NN#	NN#	3,952	NN#	NN#	NN#	13.0	NN#
428.00	433.00	060713 16:59:00	060713 16:55:00	NN#	NN#	∧N#	NN#	3,998	NN#	NN#	NN#	13.0	NN#
433.00	438.00	060714 07:59:00	060713 17:47:00	NN#	NN#	∧N#	NN#	4,043	∧N#	NN#	NN#	13.1	NN#
438.00	443.00	060714 09:17:00	060714 08:46:00	1.17E-06	1.16E–06	1,200	1,200	4,090	4,087	4,288	4,088	13.2	CHi / CHir
442.00	447.00	060714 11:06:00	060714 10:39:00	NN#	NN#	10	3,840	4,133	4,147	4,357	4,150	13.3	Ŀ
447.00	452.00	060714 13:16:00	060714 12:51:00	2.17E-07	2.17E–07	1,200	1,200	4,175	4,176	4,377	4,175	13.3	CHi / CHir
452.00	457.00	060714 15:01:00	060714 14:37:00	2.83E-07	2.95E-07	1,200	1,200	4,224	4,222	4,430	4,221	13.4	CHi / CHir
457.00	462.00	060714 16:45:00	060714 16:22:00	NN#	NN#	∧N#	NN#	4,271	∧N#	NN#	NN#	13.5	NN#
462.00	467.00	060714 18:01:00	060714 17:35:00	NN#	NN#	∧N#	NN#	4,317	NN#	NN#	NN#	13.5	NN#
483.00	488.00	060715 08:16:00	060714 18:50:00	NN#	NN#	NN#	∧N#	4,509	NN#	NN#	NN#	13.8	NN#
488.00	493.00	060715 09:29:00	060715 09:05:00	∧N#	NN#	∧N#	NN#	4,556	NN#	NN#	NN#	13.9	NN#
493.00	498.00	060715 10:47:00	060715 10:19:00	NN#	NN#	10	1500	4,605	4,613	4,839	4,617	14.0	Ŀ
498.00	503.00	060715 14:04:00	060715 13:39:00	8.33E-08	1.00E-07	1,200	1,200	4,655	4,652	4,893	4,652	14.0	CHi / CHir
503.00	508.00	060715 15:53:00	060715 15:29:00	2.83E-07	2.83E–07	1,200	1,200	4,700	4,705	4,887	4,735	14.1	CHi / CHir

Test phases measured	Analysed test phases	marked bold	CHi / CHir			CHi / CHir	CHi / CHir				CHi / CHir						
Test	Anal	mark	CHI	NN#	NN#	CHI	CHI	Ē	NN#	Ē	CHI						
Te		()°	14.2	14.3	14.4	14.5	14.6	14.6	14.7	15.0	15.1	15.2	15.1	15.4	15.4	15.5	15.6
p⊧		(kPa)	4,746	4,794	4,844	4,884	4,931	4,981	5,032	NN#	∧N#	5,351	5,399	5,519	NN#	5,719	5,586
p _p		(kPa)	4,950	4,996	5,042	5,086	5,132	5,180	5,274	∧N#	∧N#	5,550	5,598	5,694	∧N#	5,784	5,782
'n		(kPa)	4,751	4,795	4,842	4,885	4,932	4,981	5,032	NN#	NN#	5,350	5,397	5,452	NN#	5,546	5,582
ď		(kPa)	4,747	4,797	4,844	4,884	4,931	4,983	5,028	5,262	5,308	5,349	5,398	5,447	5,262	5,540	5,582
ţ.		(s)	7,200	1,200	1,200	1,200	1,200	1,200	1,200	NN#	NN#	1,200	1,200	3,888	NN#	3,679	1,200
t,		(s)	1,200	1,200	1,200	1,200	1,200	1,200	1,200	NN#	NN#	1,200	1,200	10	NN#	10	1,200
a "		(m**3/s)	3.12E–07	1.98E–05	5.33E-05	1.43E–07	8.33E-07	1.75E–06	4.50E-08	NN#	NN#	7.02E-05	9.72E–05	NN#	NN#	NN#	4.80E-06
ð		(m**3/s)	2.67E–07	1.93E–05	5.12E-05	1.43E–07	7.83E–07	1.67E–06	3.33E-08	NN#	NN#	6.85E–05	9.33E-05	NN#	NN#	NN#	4.48E-06
Date and time	for test, stop	YYYYMMDD hh:mm	060715 17:47:00	060808 17:15:00	060808 19:37:00	060809 09:41:00	060809 11:34:00	060809 14:16:00	060809 16:19:00	060809 17:53:00	060809 19:11:00	060810 09:34:00	060810 11:28:00	060810 14:15:00	060810 16:05:00	060810 18:19:00	060811
Date and time	for test, start	YYYYMMDD hh:mm	060715 18:09:00	060808 15:30:00	060808 17:47:00	060809 08:08:00	060809 10:08:00	060809 12:48:00	060809 14:40:00	060809 16:59:00	060809 18:17:00	060810 08:06:00	060810 10:02:00	060810 12:20:00	060810 14:41:00	060810 16:33:00	060811
Borehole	seclow	(L)	513.00	518.00	523.00	528.00	533.00	538.00	543.00	568.00	573.00	578.00	583.00	588.00	593.00	598.00	603.00
Borehole	secup	(m)	508.00	513.00	518.00	523.00	528.00	533.00	538.00	563.00	568.00	573.00	578.00	583.00	588.00	593.00	598.00

Borehole secup	Borehole Borehole secup seclow	Date and time for test, start	Date and time for test, stop	ď	Q	t,	ت ه	å	ā	ď	å	Te	Test phases measured Analysed test phases
(m)	(u)	YYYYMMDD hh:mm	YYYYMMDD hh:mm	(m**3/s)	(m**3/s) (s)	(s)	(s)	(kPa)	(kPa)	(kPa) (kPa) (kPa) (kPa)	(kPa)	(ວ.)	_
663.00	668.00	060811 10:29:00	060811 13:01:00	1.67E–08	2.50E-08 1,200 1,200	1,200	1,200	6,188	6,196	6,188 6,196 6,428 6,261	6,261	16.5	CHi / CHir
668.00	673.00	060811 13:30:00	060811 15:14:00	NN#	NN#	10	3,582	6,237	6,237 6,245 6,458	6,458	6,366	16.6	id
673.00	678.00	060811 15:38:00	060811 17:22:00	NN#	NN#	10	3,693	6,283	62,88	6,534	6,296	16.7	id
678.00	683.00	060811 17:45:00	060811 20:53:00	NN#	NN#	10	9,105	6,329	6,332	6,329 6,332 6,578 6,338	6,338	16.8	Pi

#NV: Not analysed. CHi: Constant Head injection phase. CHir: Recovery phase following the constant head injection phase. Pi: Pulse injection phase.

Interval position	position	Stationary flow																
		parameters	Ś	Flow regime	gime	Formation	parameters										Static conditions	ditions
dn	wo	Q/s	MT	Perturb.	. Recovery	ц.	T ₂₂	T _{s1}	T_{s_2}	Ļ	T _{TMIN}	TTMAX	ပ	~	dt,	dt_2	*d	h _{wif}
m btoc	m btoc	m²/s	m²/s	Phase	Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	I	min	min	kРа	m.a.s.l.
103.00	203.00	6.51E-06	8.47E-06	2	WBS2	1.6E-05	NN#	2.5E-05	NN#	1.6E-05	8.0E-06	3.0E-05	3.1E-09	6.7	0.73	21.10	1,838.6	11.45
203.00	303.00	7.48E–06	9.74E-06	2	WBS2	2.4E-05	NN#	3.2E-05	NN#	3.2E-05	9.0E-06	5.0E-05	2.3E-09	19.1	0.40	5.27	2,776.6	10.70
303.00	403.00	2.85E-06	3.71E-06	7	WBS22	6.9E-06	NN#	1.1E-05	6.0E-06	6.0E-06	3.0E-06	9.0E-06	4.4E-10	14.2	1.78	9.33	3,705.2	10.58
403.00	503.00	5.61E-08	7.31E-08	2	WBS2	2.1E-07	NN#	2.7E-07	NN#	2.7E-07	8.0E-08	6.0E-07	2.4E-10	20.2	NN#	NN#	4,649.1	12.21
503.00	603.00	8.72E-06	1.14E-05	2	WBS2	1.9E-05	NN#	2.4E-05	NN#	2.4E-05	8.0E-06	5.0E-05	3.3E-09	7.4	0.68	22.28	5,579.0	12.66
603.00	703.00	1.60E–09	2.08E-09	2	WBS2	5.3E-10	NN#	2.3E-10	NN#	2.3E-10	9.0E-11	6.0E-10	1.9E–10	-1.9	NN#	NN#	6,513.4	14.05
703.00	803.00	1.61E-09	2.10E-09	2	WBS2	2.9E-10	NN#	2.0E-10	NN#	2.0E-10	9.0E-11	4.0E-10	2.4E-10	-2.7	NN#	NN#	7,429.3	14.06
803.00	903.00	3.62E-09	2.78E-09	2	WBS2	9.8E-10	NN#	2.9E-09	NN#	2.9E-09	8.0E-10	4.0E-09	3.1E-10	1.7	NN#	NN#	8,333.1	13.37
876.00	976.00	NN#	NN#	NN#	2	NN#	NN#	4.0E-11	NN#	4.0E-11	1.0E-11	8.0E-11	2.6E-10	-1.5	NN#	NN#	NN#	NN#
103.00	123.00	1.14E-06	1.20E-06	2	WBS2	2.1E-06	NN#	4.9E-06	NN#	4.9E-06	3.0E-06	8.0E-06	6.3E-10	19.7	0.61	6.73	1,092.9	10.46
123.00	143.00	3.19E-06	3.34E-06	22	WBS22	9.4E-06	1.5E-05	8.1E-06	2.8E-05	8.1E-06	7.0E-06	1.0E-05	1.2E-09	7.9	0.47	1.60	1,275.5	9.97
143.00	163.00	3.16E-07	3.31E-07	2	WBS22	3.3E-07	NN#	6.6E-07	1.4E-07	1.4E-07	8.0E-08	4.0E-07	9.5E-11	1.1	6.49	27.49	1,443.8	8.03
163.00	183.00	2.03E-06	2.13E-06	2	WBS2	6.5E-06	NN#	7.2E-06	NN#	6.5E-06	4.0E-06	1.0E-05	6.7E-10	10.9	0.49	16.72	1,650.5	10.02
183.00	203.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
203.00	223.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
223.00	243.00	NN#	NN#	NN#	2	NN#	NN#	3.3E-10	NN#	3.3E-10	1.0E-10	6.0E-10	5.8E-11	0.1	1.13	22.45	NN#	NN#
243.00	263.00	3.07E-08	3.21E-08	7	WBS22	6.1E-08	NN#	3.7E-08	1.4E-07	3.7E-08	8.0E-09	8.0E-08	5.9E-11	4.8	NN#	NN#	2,401.2	10.42
263.00	283.00	8.05E-06	8.42E-06	2	WBS2	2.4E-05	NN#	3.6E-05	NN#	3.6E-05	9.0E-06	6.0E-05	3.2E-09	19.0	0.55	5.08	2,589.2	10.58
283.00	303.00	NN#	NN#	NN#	2	NN#	NN#	2.2E-11	NN#	2.2E-11	9.0E-12	6.0E-11	5.6E-11	-0.7	NN#	NN#	NN#	NN#
303.00	323.00	2.85E–06	2.98E-06	7	WBS22	6.4E-06	NN#	1.1E-05	5.8E-06	5.8E-06	3.0E-06	9.0E-06	4.8E-10	14.1	0.31	7.93	2,958.2	10.24
323.00	343.00	1.50E-10	1.57E-10	2	WBS2	9.2E-11	NN#	5.5E-11	NN#	5.5E-11	2.0E-11	9.0E-11	1.2E-11	1.0	NN#	NN#	3,137.1	9.51
343.00	363.00	7.55E-09	7.89E–09	22	WBS22	3.9E-09	1.7E-09	4.3E-09	2.6E-09	4.3E-09	1.0E-09	8.0E-09	2.5E-10	-3.4	NN#	NN#	NN#	NN#
363.00	383.00	NN#	NN#	NN#	2	NN#	NN#	1.1E-11	NN#	1.1E–11	9.0E-12	5.0E-11	3.6E-11	0.0	15.64	60.85	NN#	NN#
383.00	403.00	3.42E-09	3.58E-09	2	WBS2	2.8E-09	NN#	3.3E-09	NN#	3.3E-09	9.0E-10	5.0E-09	6.1E-11	2.5	NN#	NN#	3,699.9	10.04
403.00	423.00	NN#	NN#	NN#	2	NN#	NN#	2.9E-11	NN#	2.9E-11	9.0E-12	8.0E-11	6.8E-11	-1.0	NN#	NN#	NN#	NN#
423.00	443.00	4.86E–08	5.08E-08	2	WBS2	4.2E-08	NN#	2.0E-07	NN#	2.0E-07	8.0E-08	6.0E-07	4.6E–11	21.1	1.40	6.06	4,086.5	11.59
443.00	463.00	2.01E-08	2.10E-08	2	WBS2	3.1E-08	NN#	1.2E-07	NN#	3.1E-08	9.0E-09	6.0E-08	5.0E-11	5.0	0.38	17.02	4,269.7	11.35
463.00	483.00	NN#	NN#	NN#	2	NN#	NN#	5.7E-11	NN#	5.7E-11	2.0E-11	9.0E-11	6.3E-11	-0.3	9.04	32.95	NN#	NN#
483.00	503.00	4.58E-09	4.79E-09	2	WBS22	4.3E-09	NN#	2.5E-09	4.1E-08	2.5E-09	9.0E-10	5.0E-09	6.0E-11	0.2	NN#	NN#	4,645.5	11.84

Table 7-2. Results from radial flow analysis of constant head tests in KLX11A (for nomenclature see Appendix 4).

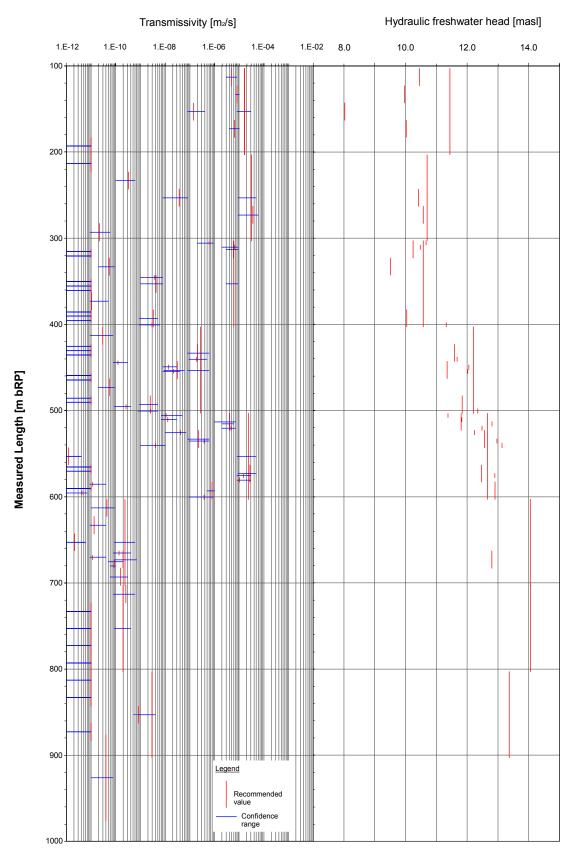
		parameters	ŝ	Flow regime	dimp	- 1											:	
				20.1	200	Formation p	parameters										Static conditions	Iditions
dn	low	Q/S	TM	Perturb.	Recovery	T #	T ₂₂	T _s ,	T _{s2}	Ľ	T _{TMIN}	T _{TMAX}	U	~	dt,	dt2	*d	h _{wif}
m btoc	m btoc	m²/s	m²/s	Phase		m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	· I	min	min	kPa	m.a.s.l.
503.00	523.00	2.86E-06	2.99E-06	2	WBS2	6.0E-06	NN#	4.1E-06	NN#	4.1E-06	1.0E-06	7.0E-06	1.2E-09	1.0	0.92	14.08	4,830.4	11.80
523.00	543.00	6.41E-08	6.71E-08	2	WBS2	9.6E-08	NN#	2.2E-07	NN#	2.2E-07	8.0E-08	6.0E-07	8.5E-11	15.0	2.05	14.05	5,023.2	12.57
543.00	563.00	NN#	NN#	NN#	22	NN#	NN#	1.2E–12	3.0E-13	1.2E-12	7.0E-13	4.0E-12	1.1E–11	-0.4	NN#	NN#	NN#	NN#
563.00	583.00	7.27E–06	7.60E-06	2	WBS2	2.0E-05	NN#	2.7E-05	NN#	2.7E-05	9.0E-06	5.0E-05	1.6E–09	13.5	0.45	17.96	5,392.3	12.47
583.00	603.00	2.11E-07	2.21E-07	22	WBS22	5.4E-07	1.9E07	7.9E-07	2.5E-07	7.9E-07	5.0E-07	1.0E-06	1.6E–10	14.7	NN#	NN#	5,581.5	12.91
603.00	623.00	NN#	NN#	NN#	2	NN#	NN#	4.4E–11	NN#	4.4E–11	1.0E-11	9.0E-11	5.5E-11	-0.7	2.90	35.22	NN#	NN#
623.00	643.00	NN#	NN#	NN#	2	NN#	NN#	1.3E–11	1.8E–12	1.3E–11	9.0E-12	4.0E-11	6.0E-11	-1.5	∧N#	NN#	NN#	NN#
643.00	663.00	NN#	NN#	NN#	2	NN#	NN#	2.1E-12	NN#	2.1E–12	9.0E-13	6.0E-12	3.1E-11	-1.0	∧N#	NN#	NN#	NN#
663.00	683.00	6.39E-10	6.68E-10	22	WBS2	6.5E-10	2.0E-10	6.3E-11	NN#	2.0E-10	9.0E-11	7.0E-10	4.6E–11	-1.6	2.68	15.04	6,317.5	12.80
683.00	703.00	NN#	NN#	NN#	22	NN#	NN#	2.6E-10	1.5E-10	1.5E-10	6.0E-11	3.0E-10	5.3E-11	-0.1	NN#	NN#	NN#	NN#
703.00	723.00	2.34E-09	2.44E-09	2	WBS2	1.85E–10	NN#	2.6E-10	NN#	2.6E-10	8.0E-11	6.0E-10	1.4E–10	-3.1	NN#	NN#	NN#	NN#
723.00	743.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
743.00	763.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
763.00	783.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
783.00	803.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	∧N#	NN#	NN#	NN#
803.00	823.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	∧N#	NN#	NN#	NN#
823.00	843.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	∧N#	NN#	NN#	NN#
843.00	863.00	2.73E–09	2.85E-09	2	WBS2	8.5E-10	NN#	8.2E-10	NN#	8.2E-10	5.0E-10	1.0E-09	8.8E-11	-2.3	∧N#	NN#	NN#	NN#
863.00	883.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
303.00	308.00	5.16E–07	4.26E-07	2	WBS2	6.00E-07	NN#	2.4E–06	NN#	6.0E-07	2.0E-07	9.0E-07	3.62E-11	0.3	0.50	17.83	2,822.7	10.66
308.00	313.00	2.62E-06	2.16E-06	2	WBS22	6.96E–06	NN#	1.3E-05	6.46E-06	6.5E-06	2.0E-06	9.0E-06	3.46E-10	20.1	3.33	12.15	2,867.5	10.5
313.00	318.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	∧N#	NN#	NN#	NN#
318.00	323.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
343.00	348.00	7.79E–09	6.43E-09	22	WBS22	6.32E-09	2.2E–09	3.6E-09	2.08E-09	3.6E-09	1.0E-09	8.0E-09	1.29E-10	-3.6	∧N#	NN#	NN#	NN#
348.00	353.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
353.00	358.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
358.00	363.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
383.00	388.00	NN#	NN#	∧N#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
388.00	393.00	NN#	NN#	∧N#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#
393.00	398.00	NN#	NN#	∧N#	NN#	NN#	NN#	NN#	NN#	1.0E–11	1.0E-13	1.0E-11	NN#	NN#	∧N#	NN#	NN#	NN#

Interval _F	Interval position	Stationary flow	flow	Transier	Transient analysis													
		parameters	S	Flow regime	jime	Formation	parameters										Static conditions	ditions
dn	low	Q/S	μ	Perturb.	Recovery	T ₁₁	T_{t_2}	T _{s1}	T_{s_2}	T,	T _{TMIN}	T _{TMAX}	ပ	~	dt,	dt_2	p*	h _{wif}
m btoc	m btoc	m²/s	m²/s	Phase	Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	I	min	min	kPa	m.a.s.l.
398.00	403.00	3.49E-09	2.88E-09	2	WBS22	3.3E-09	NN#	3.0E-09	2.0E-08	3.0E-09	9.0E-10	6.0E-09	2.0E-11	3.1	NN#	NN#	3,712.4	11.32
423.00	428.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	NN#	NN#	NN#	NN#
428.00	433.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
433.00	438.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
438.00	443.00	5.69E-08	4.70E-08	2	WBS2	1.4E-07	NN#	1.9E-07	NN#	1.9E-07	9.0E-08	5.0E-07	2.4E-11	15.7	0.88	7.93	4,087.3	11.68
442.00	447.00	NN#	NN#	NN#	22	NN#	NN#	1.2E-10	3.2E-10	1.2E-10	8.0E-11	3.0E-10	3.8E-11	0.2	0.95	5.33	NN#	NN#
447.00	452.00	8.78E-09	1.06E-08	2	WBS2	1.4E-08	NN#	6.3E-08	NN#	1.4E–08	8.0E-09	3.0E-08	1.3E-11	3.5	1.95	13.05	4,174.5	12.05
452.00	457.00	1.34E-08	1.10E-08	2	WBS2	2.2E-08	NN#	8.2E-08	NN#	2.2E-08	8.0E-09	4.0E-08	1.1E-11	5.4	2.28	15.33	4,220.6	12.02
457.00	462.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
462.00	467.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
483.00	488.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
488.00	493.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
493.00	498.00	NN#	NN#	NN#	2	NN#	NN#	2.6E-10	NN#	2.6E-10	9.0E-11	4.0E-10	1.2E-11	1.0	0.47	23.02	NN#	NN#
498.00	503.00	3.90E-10	2.80E-09	7	WBS22	3.8E-09	NN#	2.5E-09	1.8E-08	2.5E–09	8.0E-10	5.0E-09	2.2E-11	1.6	NN#	NN#	4,650.5	12.35
503.00	508.00	1.53E-08	1.26E–08	2	WBS2	1.4E-08	NN#	1.1E-08	NN#	1.1E-08	7.0E-09	5.0E-08	7.7E-10	1.2	NN#	NN#	4,687.3	11.38
508.00	513.00	1.31E-08	1.09E-08	7	WBS22	7.1E-09	NN#	1.3E-08	6.3E-09	1.3E–08	7.0E-09	3.0E-08	1.8E-11	-0.3	0.70	2.08	4,738.0	11.83
513.00	518.00	9.44E07	7.79E–07	2	WBS2	1.5E-06	NN#	4.0E-06	NN#	4.0E-06	2.0E-06	6.0E-06	4.9E-10	19.9	1.15	8.73	4,794.0	12.81
518.00	523.00	2.51E-06	2.07E-06	2	WBS2	5.4E-06	NN#	4.7E-06	NN#	4.7E-06	2.0E-06	7.0E-06	1.2E-09	3.3	1.04	9.11	4,837.1	12.49
523.00	528.00	7.00E-09	5.77E-09	2	WBS2	9.1E-09	NN#	4.2E-08	NN#	4.2E-08	1.0E-08	7.0E-08	4.6E-11	32.6	NN#	NN#	4,881.0	12.24
528.00	533.00	3.84E-08	3.17E-08	2	WBS22	6.7E-08	NN#	6.8E-08	6.8E-07	6.7E-08	3.0E-08	9.0E08	2.3E-11	5.0	1.09	11.33	4,932.1	12.73
533.00	538.00	8.22E-08	6.78E-08	7	WBS2	1.7E-07	NN#	3.7E-07	NN#	3.7E-07	9.0E-08	6.0E-07	3.0E-11	21.3	NN#	NN#	4,980.7	12.96
538.00	543.00	1.35E-09	1.12E-09	2	WBS2	1.1E-09	NN#	4.1E-09	NN#	4.1E-09	1.0E-09	1.0E-08	1.9E-11	10.0	NN#	NN#	5,028.7	13.13
563.00	568.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	NN#	NN#	NN#	NN#	NN#
568.00	573.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E-11	1.0E-13	1.0E-11	NN#	∧N#	NN#	NN#	NN#	NN#
573.00	578.00	3.36E-06	2.77E–06	7	WBS2	9.7E-06	NN#	1.5E-05	NN#	1.5E–05	8.0E-06	3.0E-05	7.7E-10	19.7	0.53	8.47	5,350.3	12.90
578.00	583.00	4.56E-06	3.76E-06	2	WBS2	1.0E-05	NN#	2.1E-05	NN#	1.0E-05	8.0E-06	3.0E-05	1.4E–09	5.6	0.88	15.88	5,397.7	13.02
583.00	588.00	NN#	NN#	NN#	2	NN#	NN#	1.2E-11	NN#	1.2E-11	9.0E-12	4.0E–11	1.2E-11	-0.7	NN#	NN#	NN#	NN#
588.00	593.00	NN#	NN#	NN#	NN#	NN#	NN#	NN#	NN#	1.0E–11	1.0E–13	1.0E–11	NN#	NN#	NN#	NN#	NN#	NN#
593.00	598.00	NN#	NN#	NN#	2	NN#	NN#	4.2E-12	NN#	4.2E-12	1.0E-12	7.0E-12	1.9E-11	0.0	NN#	NN#	NN#	NN#
598.00	603.00	2.20E-07	1.82E-07	22	WBS22	3.8E-07	1.9E-07	8.7E-07	2.9E-07	3.8E-07	9.0E-08	9.0E-07	1.2E-10	3.9	0.83	4.65	5,583.6	13.12

Interval	position	Interval position Stationary flow		Transien	Transient analysis													
		parameters	ŝ	Flow regime		Formation	Formation parameters										Static conditions	Jditions
dn	low Q/s	Q/s	ΤM	Perturb.	Perturb. Recovery T _{rt}	T _H	T ₁₂	T _{s1}	T _{s2}	T,	TTMIN	TTMAX	U	\$	dt,	dt_2	*d	h _{wif}
m btoc	n btoc m btoc m²/s	m²/s	m²/s	Phase	Phase Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	ı	min	min	kPa	m.a.s.l.
663.00	668.00	7.05E-10	663.00 668.00 7.05E-10 5.82E-10 22	22	WBS22 1.0E-10	1.0E-10	3.9E-11	1.3E-10	5.4E-11	<u>3.9E-11 1.3E-10 5.4E-11 1.3E-10</u>		4.0E-10	8.0E-11 4.0E-10 3.9E-11 -2.8 #NV	-2.8	NN#	NN#	NN#	NN#
668.00	668.00 673.00 #NV	NN#	NN#	NN#	2	NN#	NN#	1.2E-11 #NV		1.2E-11	9.0E-12	4.0E–11	9.0E-12 4.0E-11 1.7E-11 0.3	0.3	6.71	42.07	NN#	NN#
673.00	678.00	NN#	NN#	NN#	2	NN#	NN#	9.0E-11	9.0E-11 1.1E-10	9.0E-11	5.0E-11		2.0E-10 1.2E-11	0.1	2.36	8.90	NN#	NN#
678.00	683.00	NN#	NN#	NN#	2	NN#	NN#	8.4E-11	NN#	8.4E11	6.0E-11	1.0E-10	1.5E-11 -0.3		1.95	16.97	NN#	NN#
Notes																		

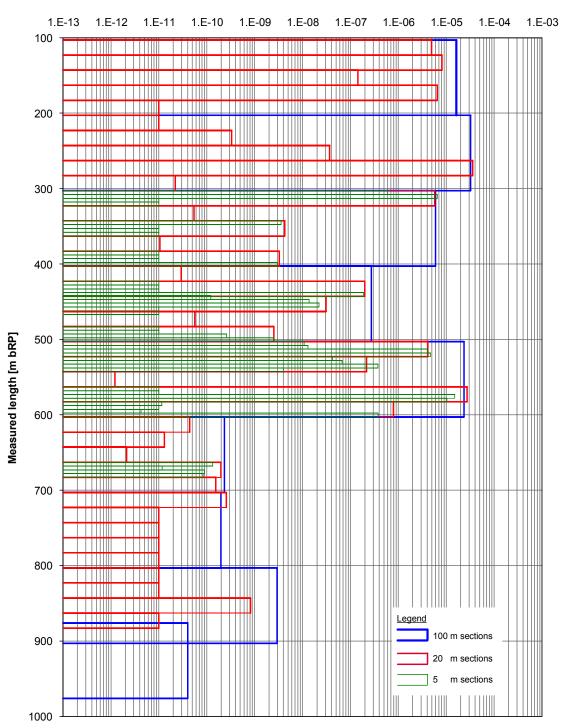
- T1 and T2 refer to the transmissivity(s) derived from the analysis while using the recommended flow model. In case a homogeneous flow model was recommended only one T value is reported, in case a two zones composite model was recommended both T1 and T2 are given. T_{τ} denotes the recommended transmissivity. _
- The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHIR phase using straight line or type-curve extrapolation. 2
- The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used. ო

Table 7-3. Results from generalized radial flow analysis of constant head tests in KLX11A (for nomenclature see Appendix 4).


Interval	position	Stationary parameter			sient a regim	nalysis e		Formatio	on parame	ters		
up	low	Q/s	тм	Pertu		Recovery	Phase	T _f	Ts	Τ _τ	С	ξ
m btoc	m btoc	m²/s	m²/s	Phas n₁	e n₂	n ₁	n₂	m²/s	m²/s	m²/s	m³/Pa	-
103.00	203.00	6.51E-06	8.47E-06	2.1	#NV	WBS2.1	#NV	6.2E-06	7.4E-06	6.2E-06	3.2E-09	2.3
203.00	303.00	7.48E-06	9.74E-06	2.1	#NV	WBS 2.1	#NV	8.7E–06	8.1E–06	8.1E–06	2.0E-09	5.8
303.00	403.00	2.85E-06	3.71E–06	2.2	#NV	#NV	#NV	1.5E–06	#NV	1.5E–06	4.4E-10	0.0
403.00	503.00	5.61E–08	7.31E–08	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
503.00	603.00	8.72E-06	1.14E–05	2.1	#NV	WBS 2.1	#NV	7.7E–06	9.0E-06	9.0E-06	3.6E-09	2.2
603.00	703.00	1.60E–09	2.08E-09	1.58	#NV	#NV	#NV	1.6E–09	#NV	1.6E–09	1.9E–10	-1.7
703.00	803.00	1.61E–09	2.10E-09	1.5	#NV	#NV	#NV	6.0E–10	#NV	6.0E–10	2.4E–10	-3.2
803.00	903.00	3.62E-09	2.78E-09	1.7	#NV	#NV	#NV	1.8E–09	#NV	1.8E–09	3.1E–10	-2.1
876.00	976.00	#NV	#NV	#NV	#NV	WBS 1.33	#NV	#NV	6.2E–10	6.2E–10	2.6E–10	-0.6
103.00	123.00	1.14E–06	1.20E-06	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
123.00	143.00	3.19E-06	3.34E-06	2.3		WBS 2.3	WBS 2.4	1.2E-06	1.2E-06	1.2E–06	1.1E–09	0.0
143.00	163.00	3.16E-07	3.31E-07	2.3	#NV		#NV	6.7E–08	#NV	6.7E-08	9.5E-11	-3.5
163.00	183.00	2.03E-06	2.13E-06	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
183.00	203.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
203.00	223.00	#NV	#NV	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
223.00	243.00	#NV	#NV	#NV	#NV	1.79	#NV	#NV	8.5E–10	8.5E–10	5.8E–11	0.8
243.00	263.00	3.07E-08	3.21E–08	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
243.00	283.00	8.05E-06	8.42E-06	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
283.00	303.00		#NV	#NV	#NV	1.49	#NV	#NV	1.0E–10	1.0E–10	5.6E–11	-4.9
303.00		2.85E-06	2.98E-06	#INV 2.3	#NV		#NV	9.7E–07	#NV	9.7E-07	4.8E–10	-4.9
				2.3 #NV					#NV		4.8E-10 #NV	-1.0 #NV
323.00		1.50E-10	1.57E-10		#NV		#NV	#NV 4.0E–09		#NV		
343.00		7.55E-09	7.89E-09	2	1.6	WBS 2	WBS 1.6		4.3E-09	4.3E-09	2.5E-10	-3.4
363.00	383.00	#NV	#NV	#NV	#NV	1.75	#NV	#NV	3.2E–11	3.2E–11	3.6E-11	0.7
383.00	403.00	3.42E-09	3.58E-09	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
403.00	423.00		#NV	#NV	#NV	1.45	#NV	#NV	1.8E–10	1.8E–10	6.8E–11	0.6
423.00	443.00	4.86E-08	5.08E-08	#NV		#NV	#NV	#NV	#NV	#NV	#NV	#NV
443.00	463.00	2.01E-08	2.10E-08	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
463.00	483.00	#NV	#NV	#NV	#NV		#NV	#NV	1.6E–10	1.6E–10	6.25E-11	
483.00	503.00	4.58E-09	4.79E-09	#NV		#NV	#NV	#NV	#NV	#NV	#NV	#NV
503.00	523.00	2.86E-06	2.99E-06	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
523.00		6.41E–08	6.71E–08	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
	563.00		#NV	#NV	#NV		#NV	#NV		1.7E–11		0.1
			7.60E–06			WBS 2.1	#NV			8.2E–06		5.8
		2.11E–07	2.21E–07	2	1.9	WBS 2				7.9E–07		14.7
603.00	623.00	#NV	#NV	#NV	#NV	1.5	#NV	#NV	1.1E–09	1.1E–09	5.5E–11	1.9
	643.00		#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV	#NV
643.00	663.00	#NV	#NV	#NV	#NV	1.6	#NV	#NV	5.3E–12	5.3E–12	3.1E–11	-0.9
663.00	683.00	6.39E-10	6.68E–10	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
683.00	703.00	#NV	#NV	#NV	#NV	2	1.87	#NV	2.6E-10	2.6E–10	5.3E–11	-1.3
703.00	723.00	2.34E-09	2.44E-09	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
723.00	743.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
743.00	763.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
763.00	783.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
783.00	803.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
803.00	823.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
823.00	843.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
843.00	863.00	2.73E-09	2.85E-09	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
	883.00		#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV	#NV
		5.16E–07		1.9		#NV	#NV	1.47E-06			3.62E-11	
				2.2		#NV	#NV	1.49E-06		1.49E-06		

Interval position Stationary flow parameters				Transient analysis Flow regime				Formation parameters				
up	low	Q/s	тм	Perturb. Phase		Recovery	Phase	T _f	Ts	Τ _τ	С	ξ
m btoc	m btoc	m²/s	m²/s	n ₁	n ₂	n₁	n₂	m²/s	m²/s	m²/s	m³/Pa	-
313.00	318.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
318.00	323.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
343.00	348.00	7.79E–09	6.43E-09	2	1.68	WBS 2	WBS 1.76	6.30E-09	3.6E–09	3.6E–09	1.29E-10	-3.6
348.00	353.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
353.00	358.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
358.00	363.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
383.00	388.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
388.00	393.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
393.00	398.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
398.00	403.00	3.49E-09	2.88E-09	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
423.00	428.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
428.00	433.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
433.00	438.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
438.00	443.00	5.69E-08	4.70E-08	2.2	#NV	#NV	#NV	2.8E-08	#NV	2.8E-08	2.4E–11	1.59
442.00	447.00	#NV	#NV	#NV	#NV	2	2.23	#NV	1.2E–10	1.2E–10	3.8E–11	0.2
447.00	452.00	8.78E-09	1.06E-08	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
452.00	457.00	1.34E-08	1.10E-08	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
457.00	462.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
462.00	467.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
483.00	488.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
488.00	493.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
493.00	498.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
498.00	503.00	3.90E-10	2.80E-09	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
503.00	508.00	1.53E–08	1.26E-08	2.1	#NV	#NV	#NV	7.9E–09	#NV	7.9E–09	7.7E–10	0.1
508.00	513.00	1.31E–08	1.09E-08	1.9	#NV	WBS 2	WBS 1.86	61.2E–08	1.3E–08	1.3E–08	1.8E–11	-0.3
513.00	518.00	9.44E-07	7.79E–07	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
518.00	523.00	2.51E-06	2.07E-06	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
523.00	528.00	7.00E-09	5.77E-09	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
528.00	533.00	3.84E-08	3.17E-08	#NV	#NV	3	#NV	#NV	3.14E-09	3.14E-09	9.5E–12	0.81
533.00	538.00	8.22E-08	6.78E-08	2.3	#NV	#NV	#NV	2.8E-08	#NV	2.8E-08	#NV	0.45
538.00	543.00	1.35E–09	1.12E–09	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
563.00	568.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
568.00	573.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
573.00	578.00	3.36E-06	2.77E-06	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
578.00	583.00	4.56E-06	3.76E-06	2.1	#NV	#NV	#NV	4.2E-06	#NV	4.15E-06	#NV	1.41
583.00	588.00	#NV	#NV	#NV	#NV	1.4	#NV	#NV	2.55E-10	2.6E-10	2.6E-10	0.63
588.00	593.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
593.00	598.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
598.00	603.00	2.20E-07	1.82E-07	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
663.00	668.00	7.05E-10	5.82E-10	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV
668.00	673.00	#NV	#NV	#NV	#NV	1.6	#NV	#NV	5.67E–11	5.7E–11	1.7E–11	0.9
673.00	678.00		#NV	#NV	#NV		#NV	#NV	#NV	#NV	#NV	#NV
678.00	683.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV

Notes


1 n1 and n2 refer to the transmissivity(s) derived from the analysis while using the recommended flow model. In case a homogeneous flow model was recommended only one n value is reported, in case a two zones composite model was recommended both n1 and n2 are given.

2 The flow regime description refers to the genaralized radial flow analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only a n1 value is used a homogeneous flow model was used in the analysis, if a value is given for n1 and n2 two shell composite model was used.

The Figures 7-1 to 7-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.

Figure 7-1. Results summary – profiles of transmissivity and equivalent freshwater head, transmissivities derived from injectiontests, freshwater head extrapolated.

Transmissivity [m²/s]

Figure 7-2. Results summary – profile of transmissivity.

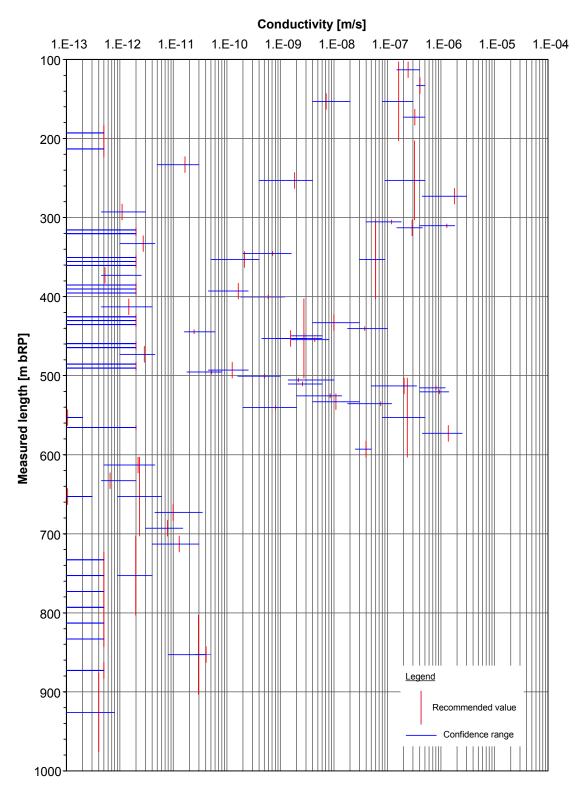


Figure 7-3. Results summary – profile of hydraulic conductivity.

7.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

7.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see Figure 7-4).

The correlation analysis shows that the steady state derived transmissivities differ by less than one order of magnitude from the transmissivities derived from the transient analysis.

7.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to an unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval. The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). A minimum value for the test zone compressibility is given by the water compressibility which is approx. $5 \cdot 10^{-10}$ 1/Pa. For the calculation of the theoretical wellbore storage coefficient a test zone compressibility of $7 \cdot 10^{-10}$ 1/Pa was used. The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

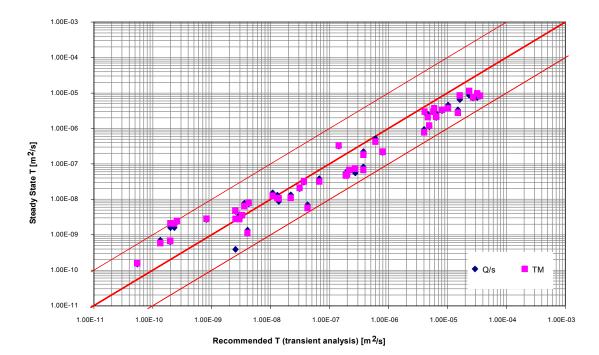


Figure 7-5 presents a cross-plot of the matched and theoretical wellbore storage coefficients.

Figure 7-4. Correlation analysis of transmissivities derived by steady state and transient methods.

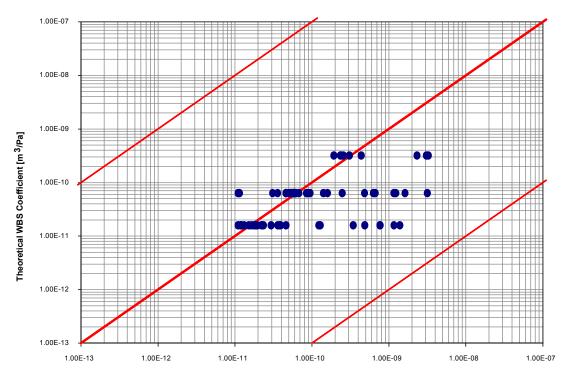


Figure 7-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients are up to one orders of magnitude larger than the theoretical values for the 100 m Tests and up to two orders of magnitude larger for the 20 m and 5 m tests. This phenomenon was already observed at the previous boreholes. A two orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by two orders of magnitude does not seem probable. The discrepancy can be more likely explained by increased compressibility of the packer system. In order to better understand this phenomenon, a series of tool compressibility tests should be conducted in order to measure the tool compressibility and to assess to what extent the system behaves elastically.

8 Conclusions

8.1 Transmissivity

Figure 7-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 5.5.7.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

In few cases the tests were not analysable because the compliance phase following the packer inflation was to long or because the conducted preliminary pulse did not recover. Both responses are indicative for a very low interval transmissivity and a transmissivity value of $1 \cdot 10^{-11}$ m²/s was recommended (regarded as the upper limit of the confidence range).

If the conducted preliminary pulse injection (PI) showed a slow recovery the pulse test was prolonged and no further injection test was performed. The pulse test was used for a quantitative analysis. The recommended transmissivities of the pulse tests range between $1.2 \cdot 10^{-12}$ m²/s and $3.3 \cdot 10^{-10}$ m²/s.

The recommended transmissivities derived from the conducted injection tests (CHi and CHir) range between $2.0 \cdot 10^{-10}$ m²/s and $2.7 \cdot 10^{-5}$ m²/s.

The transmissivity profiles in Figures 7-1 and 7-2 show two distinct zones. The first zone between 100 m and 600 m shows all in all a relatively high and medium transmissisivity (except some sections with a transmissivity below $3 \cdot 10^{-9}$ m²/s). The average transmissivity in this zone is $2.9 \cdot 10^{-6}$ m²/s. The second zone between 600 m and 980 m shows relatively low transmissivities and the average transmissivity is $2.5 \cdot 10^{-10}$ m²/s.

A few 20 m and 5 m sections show larger transmissivities than the appropriate longer interval. The differences are relatively small and are covered by the confidence range.

8.2 Equivalent freshwater head

Figure 7-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 5.5.6.

The head profile shows a freshwater head that is slightly increasing with depth. The freshwater head ranges from 8.0 m to 14.1 m. This increase can be explained by higher salinity of the water down in the borehole.

The uncertainty related to the derived freshwater heads is dependent on the test section transmissivity. Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities.

8.3 Generalized radial flow analysis

In addition to the radial flow analysis a generalized radial flow analysis was performed. The generalized radial flow analysis is based on the flow model developed by /Barker 1988/ and allows the modelling of flow dimensions between 1 (linear flow) and 3 (spherical flow). Figure 8-1 presents the statistical distribution of the derived flow dimension with respect to the interval length.

The statistical distribution chart contains only the tests that were analysable with the GRF and tests with clear radial flow (n = 2). Tests with insufficent data quality e.g. noise or no clear flow stabilization were not counted in the chart. No value (e.g. below measurement limit) tests are also not included in the statistic. The basis for the chart is,

- 100 m section: 8 number of tests "with a flow dimension".
- 20 m section: 18 number of tests "with a flow dimension".
- 5 m section: 20 number of tests "with a flow dimension".

This totals 46 tests out of 93 tests have a value.

The figure shows that the most of the generalized radial flow analyses result in a flow dimension below n = 2. This behaviour indicates that sub-cylindrical flow prevails.

The general expectation is that the length of the test section would influence the derived flow dimension in the sense that a longer test interval would rather tend to display cylindrical flow geometry when compared with a shorter test section. Due to the fact that a shorter test section (e.g. 5 m) would act more like a selective source than a longer interval (e.g. 100 m) the assumption is that a short interval would rather show linear flow (only one fracture influences the response) or by spherical flow (due to the short length of the test section the occurrence of vertical flow components becomes more probable). Comparing this hypothesis with the results of the generalized radial flow analysis it can be seen that a clear relationship between interval length and derived flow dimension does not exist. This may be attributed to the relatively small amount of evaluated tests.

In addition, given the data quality (i.e. relatively short duration of the individual test phases) there is considerable uncertainty in the derived flow dimension.

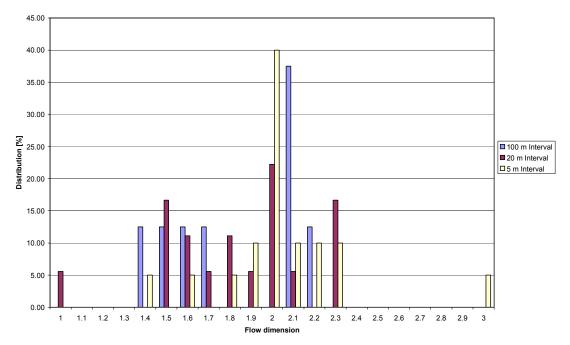


Figure 8-1. Statistical distribution of the derived flow dimension.

8.4 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity or a change in flow dimension with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with low transmissivities (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests.

9 References

Barker J A, 1988. A generalized radial flow model for hydraulic tests in fractured rock. Water Resour. Res. 24(10), 1796–1804.

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation, pp. 293–302.

Chakrabarty C, Enachescu C, 1997. Using the Devolution Approach for Slug Test Analysis: Theory and Application. Ground Water Sept.-Oct. 1997, pp. 797–806

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc. Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp. 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. Transactions, American Geophysical Union, Volume 33, No 4, pp. 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp. 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. Water Resour. Res. v. 25, no. 7, pp. 1591–1602.

Puigdomenech I, 2001. Hydrochemical stability of groundwaters surrounding a spent nuclear fuel repository in a 100,000 year perspective. SKB TR-01-28, Svensk Kärnbränslehantering AB.

Ramey H J Jr, Agarwal R G, Martin R G I, 1975. Analysis of "Slug Test" or DST flow Period data. J. Can. Pet. Tec. September 1975.

SKB, **2002.** Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering AB.

SKB, 2006. Programme for further investigations of bedrock, soil, water and environment in Laxemar subarea. Oskarshamn site investigation. SKB R-06-29, Svensk Kärnbränslehantering AB.

Borehole: KLX11A

APPENDIX 1

File Description Table

Borehole: KLX11A

APPENDIX 2

Analysis diagrams

Borehole: KLX11A

APPENDIX 3

Test Summary Sheets

Borehole: KLX11 A

APPENDIX 4

Nomenclature

Character	SICADA designation	Explanation	Dimension	Unit
Variables,			•	
A _w		Horizontal area of water surface in open borehole, not	[L ²]	m ²
		including area of signal cables, etc.		
b		Aquifer thickness (Thickness of 2D formation)	[L]	m
В		Width of channel	[L]	m
L		Corrected borehole length	[L]	m
L ₀		Uncorrected borehole length	ĨLĨ	m
L _p		Point of application for a measuring section based on its	[L]	m
P		centre point or centre of gravity for distribution of		
		transmissivity in the measuring section.		
L _w		Test section length.	[L]	m
dĽ		Step length, Positive Flow Log - overlapping flow logging.		m
42		(step length, PFL)	[-]	
r		Radius	[L]	m
r _w		Borehole, well or soil pipe radius in test section.	[L]	m
		Effective borehole, well or soil pipe radius in test section.		
r _{we}		(Consideration taken to skin factor)	[L]	m
<u></u>			FL 1	
r _s		Distance from test section to observation section, the	[L]	m
-		shortest distance.	<u>[]</u>	
r _t		Distance from test section to observation section, the	[L]	m
		interpreted shortest distance via conductive structures.		
r _D		Dimensionless radius, r _D =r/r _w	-	-
Z		Level above reference point	[L]	m
Zr		Level for reference point on borehole	[L]	m
Z _{wu}		Level for test section (section that is being flowed), upper	[L]	m
		limitation		
Z _{wl}		Level for test section (section that is being flowed), lower	[L]	m
		limitation		
Z _{ws}		Level for sensor that measures response in test section	[L]	m
		(section that is flowed)		
Z _{ou}		Level for observation section, upper limitation	[L]	m
Z _{ol}		Level for observation section, lower limitation		m
Z _{os}		Level for sensor that measures response in observation		m
-0S		section	[-]	
E		Evaporation:	$[L^{3}/(T L^{2})]$	mm/y,
L				mm/d,
		bydrological bydgot:	гі ³ /ті	m ³ /s
ET		hydrological budget: Evapotranspiration	[L ³ /T] [L ³ /(T L ²)]	
		Evapolianspiration		mm/y,
			ri 3/ 1	mm/d,
<u> </u>		hydrological budget:	[L ³ /T] [L ³ /(T L ²)]	m ³ /s
Р		Precipitation	[L /(I L ⁻)]	mm/y,
			ri 3/ 7 7	mm/d,
		hydrological budget:	$[L^{3}/T]$	m³/s
R		Groundwater recharge	$[L^{3}/(T L^{2})]$	mm/y,
				mm/d,
		hydrological budget:	[L ³ /T] [L ³ /(T L ²)]	m³/s
D		Groundwater discharge	[L³/(T L²)]	mm/y,
			2	mm/d,
		hydrological budget:	[L ³ /T]	m ³ /s
Q _R		Run-off rate	[L ³ /T]	m³/s
Q _p		Pumping rate	[L ³ /T]	m³/s
Q		Infiltration rate	[L ³ /T]	m³/s
		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$	[L ³ /T]	m³/s
Q		(Flow rate) $(Q_1 - Q_0)$	[- · ·]	
Q			L	
		Flow in test section during undisturbed conditions (flow	[]] ³ /T]	m°/e
Q Q ₀		Flow in test section during undisturbed conditions (flow	[L ³ /T]	m³/s
		Flow in test section during undisturbed conditions (flow logging). Flow in test section immediately before stop of flow.	[L ³ /T]	m³/s m³/s

Character SICADA designation		Explanation	Dimension	Unit
Q _m		Arithmetical mean flow during perturbation phase.	[L ³ /T]	m³/s
Q ₁		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m ³ /s
Q ₂		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s
ΣQ	SumQ	Cumulative volumetric flow along borehole	[L ³ /T]	m ³ /s
ΣQ_0	SumQ0	Cumulative volumetric flow along borehole, undisturbed conditions (ie, not pumped)	[L ³ /T]	m³/s
ΣQ_1	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q_{p1}	[L ³ /T]	m³/s
ΣQ_2	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q_{p2}	[L ³ /T]	m³/s
ΣQ_{C1}	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma Q_1 - \Sigma Q_0$	[L ³ /T]	m³/s
ΣQ_{C2}	SumQC2	Corrected cumulative volumetric flow along borehole, $\Sigma Q_2 - \Sigma Q_0$	[L ³ /T]	m³/s
q		Volumetric flow per flow passage area (Specific discharge (Darcy velocity, Darcy flux, Filtration velocity)).	([L ³ /T*L ²]	m/s
V		Volume	[L ³]	m ³
V _w		Water volume in test section.	$[L^3]$	m ³
V _p		Total water volume injected/pumped during perturbation phase.	[L ³]	m ³
V		Velocity	$([L^{3}/T^{*}L^{2}])$	m/s
Va		Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));. $v_a=q/n_e$	([L ³ /T*L ²]	m/s
t		Time	[T]	hour,mi n,s
to		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as p_p).	[T]	S
t _F		Duration of recovery phase (from p_p to p_F).	[T]	S
t_1 , t_2 etc		Times for various phases during a hydro test.	[T]	hour,mi n,s
dt		Running time from start of flow phase and recovery phase respectively.	[T]	S
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D		$t_D = T \cdot t / (S \cdot r_w^2)$. Dimensionless time	-	-
р		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa
p _a		Atmospheric pressure	$[M/(LT)^2]$	kPa
p _t		Absolute pressure; pt=pa+pg	$[M/(LT)^2]$	kPa
pg		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	[M/(LT) ²]	kPa
p ₀		Initial pressure before test begins, prior to packer expansion.	[M/(LT) ²]	kPa
p _i		Pressure in measuring section before start of flow.	$[M/(LT)^2]$	kPa
p _f		Pressure during perturbation phase.	$[M/(LT)^2]$	kPa
p _s		Pressure during recovery.	$[M/(LT)^2]$	kPa
pp		Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
p _F		Pressure in measuring section at end of recovery.	$[M/(LT)^2]$	kPa
p _D		$p_D = 2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure	-	-
dp		Pressure difference, drawdown of pressure surface between two points of time.	[M/(LT) ²]	kPa

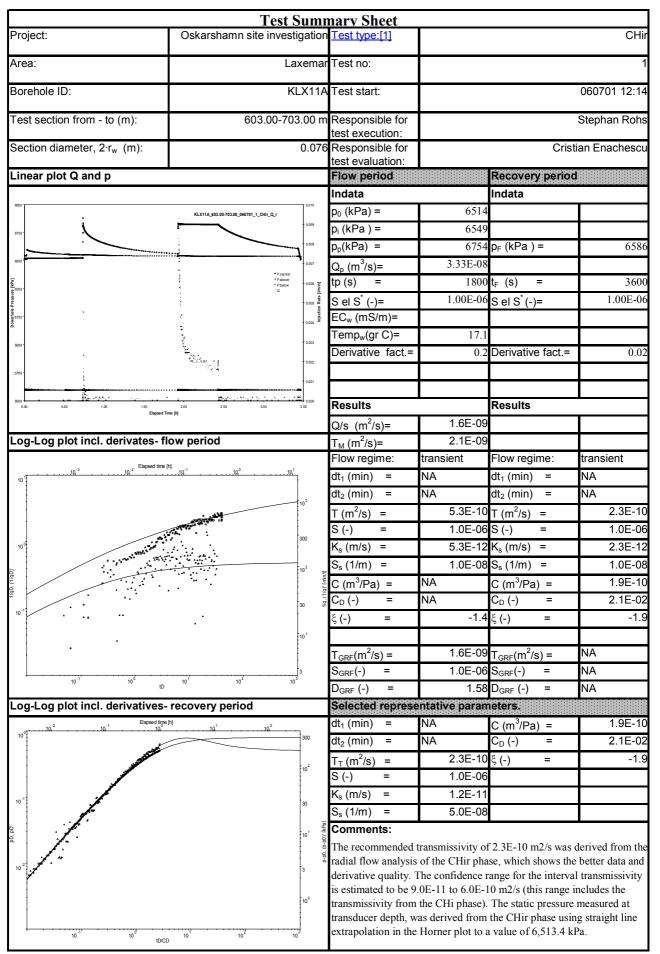
Character	Character SICADA Explanation designation		Dimension	Unit
dp _f		$dp_f = p_i - p_f$ or $p_f = p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive.	[M/(LT) ²]	kPa
dp _s		$dp_s = p_s - p_p$ or $p_p = p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	[M/(LT) ²]	kPa
dp _p	$dp_p = p_i - p_p \text{ or } = p_p - p_i$, maximal pressure [increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.		[M/(LT) ²]	kPa
dp _F		$dp_F = p_p - p_F$ or $p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	[M/(LT) ²]	kPa
Н		Total head; (potential relative a reference level) (indication of h for phase as for p). $H=h_e+h_p+h_v$	[L]	m
h		Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head); (indication of h for phase as for p). $h=h_e+h_p$	[L]	m
h _e		Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p		Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v		Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S		Drawdown; Drawdown from undisturbed level (same as dh_p , positive)	[L]	m
Sp		Drawdown in measuring section before flow stop.	[L] [L]	m
h ₀		Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i		Level above reference level in measuring section before start of flow.	[L]	m
h _f		Level above reference level during perturbation phase.	[L]	m
h _s		Level above reference level during recovery phase.	[L]	m
h _p		Level above reference level in measuring section before flow stop.	[L]	m
h _F		Level above reference level in measuring section at end of recovery.	[L]	m
dh		Level difference, drawdown of water level between two points of time.	[L]	m
dh _f		$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh_f usually expressed positive.	[L]	m
dh _s		$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p		$dh_p = h_i - h_p$ or $= h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F		$dh_F = h_p - h_F \text{ or } = h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w		Temperature in the test section (taken from temperature logging). Temperature		°C
Te _{w0}		Temperature in the test section during undisturbed conditions (taken from temperature logging).		°C

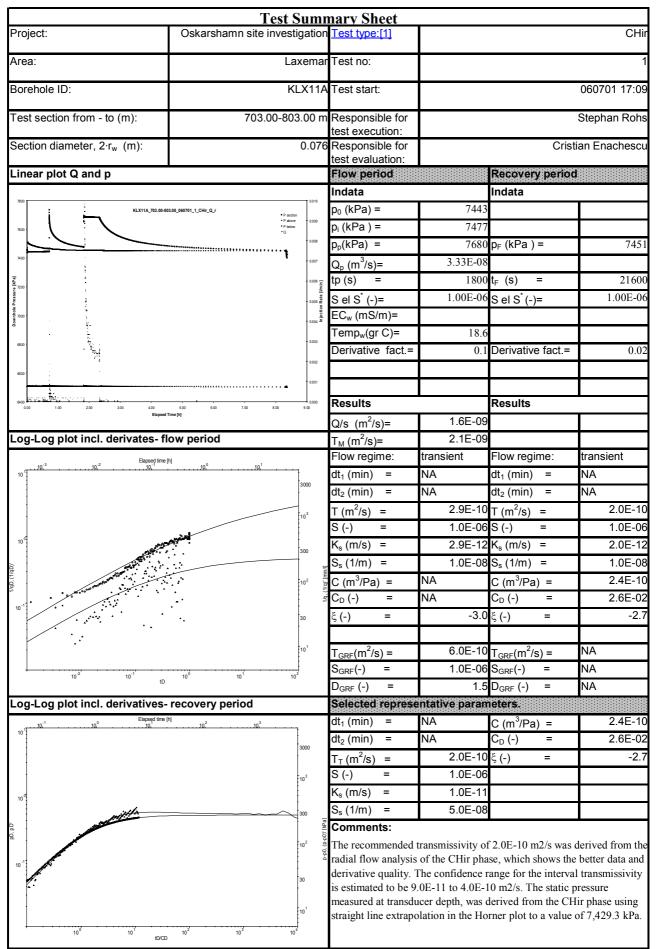
Character	designation			
Te _o	Ŭ	Temperature in the observation section (taken from temperature logging). Temperature		°C
ECw		Electrical conductivity of water in test section.		mS/m
EC _{w0}		Electrical conductivity of water in test section during		mS/m
		undisturbed conditions.		
EC₀		Electrical conductivity of water in observation section		mS/m
TDS _w		Total salinity of water in the test section.	$[M/L^3]$	mg/L
TDS _{w0}		Total salinity of water in the test section during undisturbed conditions.	[M/L ³]	mg/L
TDS₀		Total salinity of water in the observation section.	$[M/L^3]$	mg/L
g		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to gravity)	[L/T ²]	m/s ²
π	pi	Constant (approx 3.1416).	[-]	
r		Residual. $r = p_c p_m$, $r = h_c h_m$, etc. Difference between measured data (p_m , h_m , etc) and estimated data (p_c , h_c , etc)		
ME				
		Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN}), x: measured variable considered.		
MAE		Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n} r_i $		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured variable considered.		
RMS		Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_i^2\right)^{0.5}$		
NRMS		Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN}), x: measured variable considered.		
SDR		Standard deviation of residual.		
		$SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
SEMR		Standard error of mean residual. $SEMR = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
Parameters	s			
Q/s		Specific capacity $s=dp_p$ or $s=s_p=h_0-h_p$ (open borehole)	$[L^2/T]$	m²/s
D		Interpreted flow dimension according to Barker, 1988.	[-]	-
dt ₁		Time of starting for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dt ₂		End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dt _L		Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ		Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L ³ /T]	m³/s
Т		Transmissivity	[L ² /T]	m²/s
Тм	1	Transmissivity according to Moye (1967)	[L ² /T]	m²/s
T _Q		Evaluation based on Q/s and regression curve between Q/s and T, as example see Rhén et al (1997) p. 190.	[L ² /T]	m²/s
Ts	1	Transmissivity evaluated from slug test	[L ² /T]	m²/s

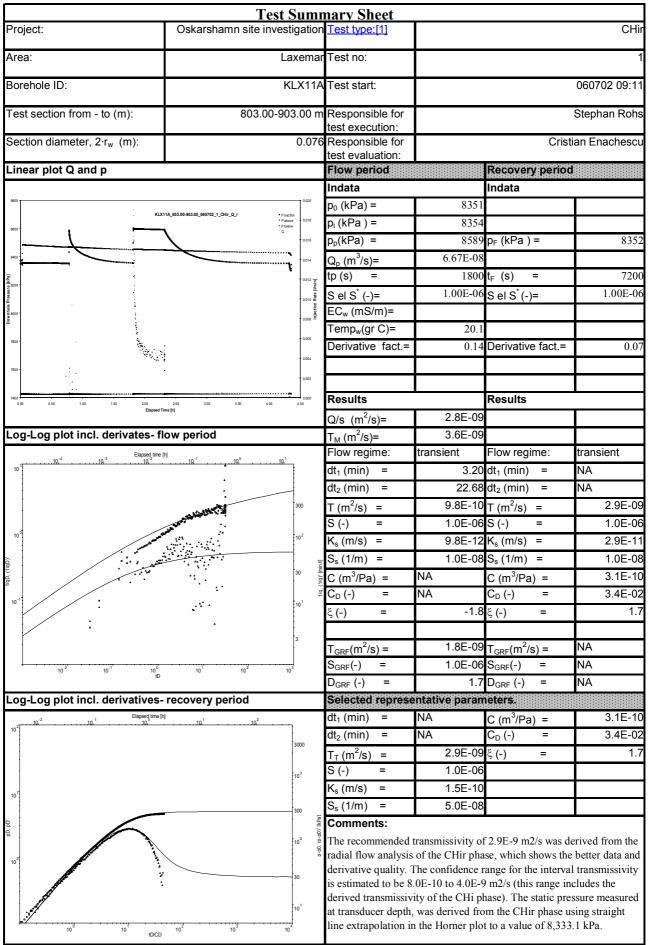
Character	SICADA designation	Explanation	Dimension	Unit	
Meter		Transmissivity evaluated from PFL-Difference Flow Meter	[L ² /T]	m²/s	
T _I		Transmissivity evaluated from Impeller flow log	$[L^2/T]$	m²/s	
T _{Sf} , T _{Lf}		Transient evaluation based on semi-log or log-log	$[L^2/T]$	m²/s	
017 21		diagram for perturbation phase in injection or pumping.			
T _{Ss} , T _{Ls}		Transient evaluation based on semi-log or log-log	$[L^2/T]$	m²/s	
		diagram for recovery phase in injection or pumping.			
Τ _T		Transient evaluation (log-log or lin-log). Judged best	$[L^2/T]$	m²/s	
		evaluation of T_{Sf} , T_{Lf} , T_{Ss} , T_{Ls}			
T _{NLR}		Evaluation based on non-linear regression.	$[L^2/T]$	m²/s	
T _{Tot}		Judged most representative transmissivity for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[L ² /T]	m²/s	
<	1	Hydraulic conductivity	[L/T]	m/s	
κ K _s	1	Hydraulic conductivity based on spherical flow model	[L/T]	m/s	
Ks Km	1	Hydraulic conductivity matrix, intact rock	[L/T]	m/s	
<u>vm</u> (Intrinsic permeability	$[L^2]$	m ²	
kb		Permeability-thickness product: kb=k·b		m ³	
			_ <u></u>		
SB		Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one- dimensional structure	[L]	m	
SB*		Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m	
S		Storage coefficient, (Storativity)	[-]	-	
S*		Assumed storage coefficient	[-]	-	
S S* S _y		Theoretical specific yield of water (Specific yield; unconfined storage. Defined as total porosity (n) minus retention capacity (S_r)	[-]	-	
S _{ya}		Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. S_{ya} = S_y (often called S_y in literature)	[-]	-	
Sr		Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.	[-]	-	
S _f S _m		Fracture storage coefficient	[-]	-	
S _m		Matrix storage coefficient	[-]	-	
S _{NLR}		Storage coefficient, evaluation based on non-linear regression	[-]	-	
S _{Tot}		Judged most representative storage coefficient for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[-]	-	
\$		Specific storage coefficient: confined storage	[1/]]	1/m	
S _s		Specific storage coefficient; confined storage.	[1/L] [1/L]		
S _s *		Assumed specific storage coefficient; confined storage.		1/m	
Cf		Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. $c_f=b'/K'$ where b' is thickness of the aquitard and K' its hydraulic conductivity across the aquitard.	[T]	S	
		Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents	[L]	m	
L _f		characteristics of the aquifer.	[^{1-]}		

Character	SICADA designation	Explanation	Dimension	Unit
<u>چ</u> * C	Skin	Assumed skin factor	[-]	-
Č		Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m³/Pa
C _D		$C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$, Dimensionless wellbore storage coefficient	[-]	-
ω	Stor-ratio	ω= S _f /(S _f + S _m), storage ratio (Storativity ratio); the ratio of storage coefficient between that of the fracture and total storage.	[-]	-
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
T _{GRF}		Transmissivity interpreted using the GRF method	[L ² /T]	m²/s
S _{GRF}		Storage coefficient interpreted using the GRF method	[1/L]	1/m
D_{GRF}		Flow dimension interpreted using the GRF method	[-]	-
C _w		Water compressibility; corresponding to β in hydrogeological literature.	[(LT ²)/M]	1/Pa
Cr		Pore-volume compressibility, (rock compressibility); Corresponding to α/n in hydrogeological literature.	[(LT ²)/M]	1/Pa
Ct		$c_t = c_r + c_w$, total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in c_t if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included)	[(LT ²)/M]	1/Pa
nc _t		Porosity-compressibility factor: $nc_t = n \cdot c_t$	[(LT ²)/M]	1/Pa
nc _t b		Porosity-compressibility-thickness product: $nc_tb = n \cdot c_t b$	$[(L^2T^2)/M]$	m/Pa
n		Total porosity	-	-
n _e		Kinematic porosity, (Effective porosity)	-	-
e		Transport aperture. $e = n_e b$	[L]	m
ρ	Density	Density	$[M/L^3]$	$kg/(m^3)$
ρ _w	Density-w	Fluid density in measurement section during pumping/injection	[M/L ³]	kg/(m ³)
ρο	Density-o	Fluid density in observation section	$[M/L^3]$	$kg/(m^3)$
$ ho_{sp}$	Density-sp	Fluid density in standpipes from measurement section	$[M/L^3]$	$kg/(m^3)$
μ	my	Dynamic viscosity	[M/LT]	Pas
μ _w	my	Dynamic viscosity (Fluid density in measurement section during pumping/injection)	[M/LT]	Pa s
FCT		Fluid coefficient for intrinsic permeability, transference of k to K; K=FC _T ·k; FC _T = $\rho_w \cdot g/\mu_w$	[1/LT]	1/(ms)
FCs		Fluid coefficient for porosity-compressibility, transference of c_t to S_s ; S_s =FC _S ·n· c_t ; FC _S = ρ_w ·g	[M/T ² L ²]	Pa/m
Index on K	, T and S	· · · · · · · · · · · · · · · · · · ·		
S		S: semi-log		
L		L: log-log		
f		Pump phase or injection phase, designation following S or L (withdrawal)		
S		Recovery phase, designation following S or L (recovery)		
NLR		NLR: Non-linear regression. Performed on the entire test sequence, perturbation and recovery		
М		Моуе		
GRF		Generalised Radial Flow according to Barker (1988)		
m		Matrix		
f		Fracture		
Т		Judged best evaluation based on transient evaluation.		

Character	designation			
Tot	Ŭ	Judged most representative parameter for particular test		
		section and (in certain cases) evaluation time with		
		respect to available data (made by SKB at a later stage).		
b		Bloch property in a numerical groundwater flow model		
е		Effective property (constant) within a domain in a		
		numerical groundwater flow model.		
Index on p	and Q	· · · · · ·		
0		Initial condition, undisturbed condition in open holes		
i		Natural, "undisturbed" condition of formation parameter		
f		Pump phase or injection phase (withdrawal, flowing		
		phase)		
s		Recovery, shut-in phase		
р	1	Pressure or flow in measuring section at end of		
•		perturbation period		
F		Pressure in measuring section at end of recovery period.		
m		Arithmetical mean value		
С		Estimated value. The index is placed last if index for		
		"where" and "what" are used. Simulated value		
m		Measured value. The index is placed last if index for		
		"where" and "what" are used. Measured value		
Some misc	ellaneous inde	exes on p and h		
W		Test section (final difference pressure during flow phase		
		in test section can be expressed dp _{wp} ; First index shows		
		"where" and second index shows "what")		
0		Observation section (final difference pressure during flow		
		phase in observation section can be expressed dpop;		
		First index shows "where" and second index shows		
		"what")		
f		Fresh-water head. Water is normally pumped up from		
		section to measuring hoses where pressure and level are		
		observed. Density of the water is therefore approximately		
		the same as that of the measuring section. Measured		
		groundwater level is therefore normally represented by		
		what is defined as point-water head. If pressure at the		
		measuring level is recalculated to a level for a column of		
		water with density of fresh water above the measuring		
		point it is referred to as fresh-water head and h is		
		indicated last by an f. Observation section (final level		
		during flow phase in observation section can be		
		expressed h _{opf} ; the first index shows "where" and the		
		second index shows "what" and the last one		
		"recalculation")		


	Tes	<u>st Sumn</u>	nary Sheet	-		
Project:	Oskarshamn site inv	estigation	Test type:[1]			CHir
Area:		Laxemar	Test no:			
Borehole ID:	KLX11A T		Test start:			060629 14:32
Test section from - to (m):	103.00-	-203.00 m	Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for		Crist	ian Enachescu
		0101.0	test evaluation:		0	
near plot Q and p			Flow period		Recovery period	
			Indata		Indata	
200	KLX11A_103.00-203.00_060629_1_CHir_Q_r	P section	p ₀ (kPa) =	1842		
2200		• P above • 18 • P below • Q	p _i (kPa) =	1837		
2000	······	- 16	p _p (kPa) =	2035	p _F (kPa) =	1840
		- 14	Q _p (m ³ /s)=	1.31E-04		
ब्र 1800 - ऑ		12 E	tp (s) =	1800	t _F (s) =	1800
		12 [u] u] 10 B	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
		n)ection	EC _w (mS/m)=			
č 1400.		5	Temp _w (gr C)=	9.6		
1200 -		6	Derivative fact.=	0.1	Derivative fact.=	0.04
1000		2				
800 0.00 0.50 100 Flam	1.50 2.00	0 2.50	Results		Results	
			Q/s (m ² /s)=	6.5E-06		
_og-Log plot incl. derivates- f	low period		T _M (m²/s)=	8.5E-06		
.3 Elapsed tim	e [h] _1 _0		Flow regime:	transient	Flow regime:	transient
10 ²	10,	·	dt ₁ (min) =	0.73	dt ₁ (min) =	0.94
		:	dt ₂ (min) =	21.10	dt_2 (min) =	27.40
. <u> </u>			T (m²/s) =	1.6E-05	T (m ² /s) =	2.5E-05
101	.	10 ⁻¹	S (-) =	1.0E-06	S (-) =	1.0E-06
	:		$K_s (m/s) =$	1.6E-07	$K_s(m/s) =$	2.5E-07
	. •	10 ⁻² 5	$S_{s}(1/m) =$	1.0E-08	$S_{s}(1/m) =$	1.0E-08
		10 ⁻² [(/uim] ,(b/t)	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	3.1E-09
		1/q, (1k	$C_{D}(-) =$	NA	$C_{D}(-) =$	3.4E-01
10'1	•	10 ⁻³	ξ(-) =		ξ(-) =	13.2
10						
	•		$T_{GRF}(m^2/s) =$	6.2E-06	T _{GRF} (m ² /s) =	7.4E-06
10 ¹¹ 10 ¹²	10 ¹³		S _{GRF} (-) =	1.0E-06	S _{GRF} (-) =	1.0E-06
		10	D _{GRF} (-) =	2.1	D _{GRF} (-) =	2.1
Log-Log plot incl. derivatives			Selected represe	intative paran	neters.	
Elapsed time	e [h] • • • • • • • • 10, ⁻¹ • • • • • • • 10, ⁰ •		dt ₁ (min) =	0.73	C (m³/Pa) =	3.1E-09
10 ²			dt ₂ (min) =		C _D (-) =	3.4E-01
		300	$T_{T}(m^{2}/s) =$	1.6E-05	ξ(-) =	6.7
			S (-) =	1.0E-06		
101		10 ²	K _s (m/s) =	8.0E-07		
			S _s (1/m) =	5.0E-08		
		06 J	Comments:			
		(0d-d) 0d-d	The recommended	transmissivity o	f 1.6E-5 m2/s was de	erived from the
	in the second	101	radial flow analysis	of the CHi phas	se, which shows the	better data and
	**************************************				ange for the interva	
	and the second sec	3			m2/s. The static prea om the CHir phase u	
			-		t to a value of 1,838	
10 ⁷ 10 ²	10 ³ 10 ⁴	10 ⁵ 10 ⁰		romer pio		
tD/C	n					


	Test S	umr	nary Sheet			
Project:	Oskarshamn site investiç	gation	Test type:[1]			CHi
Area:	Lax	kemar	Test no:			
Borehole ID:	KL	X11A	Test start:			060629 18:03
Test section from - to (m):	203.00-303	.00 m	Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for		Crist	ian Enachescu
inear plot Q and p			test evaluation: Flow period		Recovery period	
			Indata		Indata	
3300	1A_203.00-303.00_060629_1_CHir_Q_r	20	p₀ (kPa) =	2780	indutu	
3100	P sector P above P above P below	n 18	p _i (kPa) =	2776		
2900	- Q	16	$p_p(kPa) =$		p _F (kPa) =	277
		14	$Q_{p} (m^{3}/s) =$	1.52E-04		_,,
2700 ·			$\frac{Q_p(\Pi/s)}{tp(s)} =$		t _F (s) =	180
		10 II IIIII	S el S [*] (-)=		t⊧ (0) S el S [*] (-)=	1.00E-0
2000	K	10 22 00 10 00 00 00 00 00 00 00 00 00 00 00	EC _w (mS/m)=	1.002.00	5 el 5 (- <i>)</i> -	1.001 0
2100	•	- 8 Ē	Temp _w (gr C)=	11.1		
2100		6	Derivative fact.=		Derivative fact.=	0.0
1900		4		0.02		0.0
1700	:	2				
0.00 0.50 1.00 Elapsed T	1.50 2.00 ime [h]	2.50	Results		Results	
			Q/s (m^{2}/s)=	7.5E-06		
.og-Log plot incl. derivates- flo			T _M (m²/s)=	9.7E-06		
Elapsed time [h]	⁻² 10, ⁻¹ 10, ⁰	ł	Flow regime:	transient	Flow regime:	transient
		0.3	dt_1 (min) =		dt ₁ (min) =	0.4
			dt_2 (min) =		dt_2 (min) =	5.2
• • • • • • • • • • • • • • • • • • •	60000000000000000000000000000000000000	10 ⁻¹	$T(m^{2}/s) =$	2.4E-05	$T(m^{2}/s) =$	3.2E-0
101			S (-) =	1.0E-06	S (-) =	1.0E-0
	ŧ	0.03	$K_{s} (m/s) =$	2.4E-07	K _s (m/s) =	3.2E-0
		[/um]	$S_{s}(1/m) =$	1.0E-08	S _s (1/m) =	1.0E-0
	· · ·	10 ⁻² (b)	C (m³/Pa) =	NA	C (m³/Pa) =	2.3E-0
100		4	C _D (-) =	NA	C _D (-) =	2.6E-0
		0.003	ξ(-) =	18.7	ξ(-) =	19.
		10 ⁻³	T _{GRF} (m ² /s) =	8.7E-06	T _{GRF} (m ² /s) =	8.1E-0
10 ¹³ 10 ¹⁴ 10 ¹⁵ tD	10 ¹⁶ 10 ¹⁷ 10 ¹⁸		$S_{GRF}(-) =$	1.0E-06		1.0E-0
U U			$D_{GRF}(-) =$		$D_{GRF}(-) =$	2.
.og-Log plot incl. derivatives-	recovery period		Selected represe			
10. ⁻⁴ 10 ⁻³ Elapsed time [h]			dt_1 (min) =	·····	C (m ³ /Pa) =	2.3E-0
10 ²		•	dt_2 (min) =		$C_{D}(-) =$	2.6E-0
		300	$T_T (m^2/s) =$	3.2E-05		19.
·			S(-) =	1.0E-06		
		10 ²	$K_{s}(m/s) =$	1.6E-06		
101			$S_{s}(1/m) =$	5.0E-08		
		.30 [KPa]	Comments:	0.0L-00		
• • • •] ,(0d-d)		tranomiacivity -	f 2 7E 5 m 7/2 m 2	arized from the
		10 ¹ d			f 3.2E-5 m2/s was do use, which shows the	
10	And the second				ange for the interva	
	•	3	is estimated to be 9.	.0E-6 to 6.0E-5	m2/s. The static pres	ssure measured
		ſ	-		om the CHir phase u	
10 10	•••••	10 ⁰	line extrapolation in	n the Horner plo	t to a value of 2,776	.0 KPa.
	10 ³ 10 ⁴ 10 [°]					


	Test Sum	mary Sheet			
Project:	Oskarshamn site investigatio				CHi
Area:	Laxema	ar Test no:			1
Borehole ID:	KLX11	A Test start:			060630 09:15
Test section from - to (m):	303.00-403.00 r	n Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.07	6 Responsible for		Crist	ian Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	
					•
	10	Indata	271	Indata	1
3900 · KLX11A_303.00-403.00_060630_1_CHir_Q_r	P section P above 9	p ₀ (kPa) =	3714		
	- P below 	p _i (kPa) =	3712		
3700	8	p _p (kPa) =	3907	p _F (kPa) =	371
3500	7	$Q_{p} (m^{3}/s) =$	5.67E-05		
	6 <u>=</u>	tp (a) =	1800	t _F (s) =	180
3300	+6 [] 	S el S [*] (-)=		S el S [*] (-)=	1.00E-0
2000		$EC_w (mS/m) =$		()	
3100	4	Temp _w (gr C)=	12.6		
2900	. 3	Derivative fact.=		Derivative fact.=	0.0
2700	2		0.07	Derivative lact	0.0
	1				
0.00 0.20 0.40 0.60 0.80 1.0 Elapsed 1) 1.20 1.40 1.80 1.80 2.00 ime [h]	Results		Results	I.
		Q/s $(m^2/s)=$	2.9E-06		
.og-Log plot incl. derivates- flo	ow period	T _M (m ² /s)=	3.7E-06		
Elapsed time (h] 	Flow regime:	transient	Flow regime:	transient
10 ² 10 ² 10 ² 10 ²	······································	dt ₁ (min) =	0.52	dt ₁ (min) =	1.7
	10 ⁰	dt_2 (min) =	23.00	dt_2 (min) =	9.3
		$T(m^2/s) =$		$T(m^2/s) =$	6.0E-0
	0.3	S (-) =	1.0E-06		1.0E-0
101	•	$K_{s}(m/s) =$		K _s (m/s) =	6.0E-0
	▲ 10 ⁻¹	- ()			
-		$S_s(1/m) =$		$S_{s}(1/m) =$	1.0E-0
	0.03	¹ / ₂ C (m ³ /Pa) =	NA	C (m³/Pa) =	4.4E-1
10		^o ^b C _D (-) =	NA	C _D (-) =	4.8E-0
	10-2	ξ(-) =	6.8	ξ(-) =	14.:
		2		2	
	0.003	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	NA
10 ¹⁰ 10 ¹¹ tD	10 ¹² 10 ¹³ 10 ¹⁴	$S_{GRF}(-) =$	1.0E-06		NA
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	NA
.og-Log plot incl. derivatives-	recovery period	Selected represe	intative paran	neters.	
Elapsed time [h]	10 ⁻² 10 ⁻¹ 10 ⁰	dt ₁ (min) =	1.78	0 (iii /i ŭ)	4.4E-1
10 ²		dt_2 (min) =	9.33	$C_{D}(-) =$	4.8E-0
	300	$T_{T}(m^{2}/s) =$	6.0E-06	ξ(-) =	14.
aa as as accounter	300	S (-) =	1.0E-06		1
	10 ²	$K_s (m/s) =$	3.0E-07		1
101	10	$S_{s}(1/m) =$	5.0E-07		
		Comments:	5.0L-00	1	
	30	.0			. 10 -
	·			$f 6.0E-6 m^2/s was d$	
10 .	101	Tradial flow analysis			
	and the second sec			The confidence range $\sum_{k=0}^{\infty} \frac{1}{k} \sum_{k=0}^{\infty} \frac{1}{k} \sum_{$	
1	3			E-6 to 9.0E-6 m2/s. pth, was derived from	
	~				
	1	nhase licing straight			
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵	phase using straight 3,705.2 kPa.	. Inte extrapolati	on in the normer pic	of to a value of

	Test S	umr	nary Sheet			
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir
Area:	Lax	emar	Test no:			
Borehole ID:	KLX11A		Test start:			060630 13:11
Test section from - to (m):	403.00-503.	00 m	Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):	(0.076	test execution: Responsible for		Crist	ian Enachescu
····· ··· ··· ··· ··· ··· ··· ··· ···			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	1
			Indata		Indata	
5100 KLX11A_403.00-503.00_060630_1_CHir_Q_r		0.6	p ₀ (kPa) =	4653		
4000	P section A P above P below O		p _i (kPa) =	4650		
	11 million and a construction of the construct		p _p (kPa) =	4854	p _F (kPa) =	4650
			$Q_{p} (m^{3}/s) =$	1.17E-06		
z 4500 ·	÷	0.4	tp(s) =	1800	t _F (s) =	180
	•	te (//mini	S el S [*] (-)=		S el S [*] (-)=	1.00E-0
4300	· · ·	ection R	EC _w (mS/m)=			
4100 -	•	Ē 0.2	Temp _w (gr C)=	14.0		
3900	<u>.</u>	0.2	Derivative fact.=		Derivative fact.=	0.0
anno.				0.07		010
3700						
3500		0.0	Results		Results	
0.00 0.50 1.00 Elapse	1.50 2.00 d Time [h]		$Q/s (m^2/s)=$	5.6E-08		
.og-Log plot incl. derivates- f	low period		T_{M} (m ² /s)=	7.3E-08		
	-		Flow regime:	transient	Flow regime:	transient
10, ²⁴ Elapsed time			dt_1 (min) =	NA	dt_1 (min) =	NA
		30	$dt_2 (min) =$	NA	$dt_1(min) =$ $dt_2(min) =$	NA
					$T (m^2/s) =$	2.7E-0
	• • • • • • • • • • •	10 ¹	T (m ² /s) = S (-) =		· · · /	1.0E-0
10 ¹			- ()	1.0E-06		2.7E-0
	•	3			· •§ (····· •)	
•		[min/l]	$S_{s}(1/m) =$		$S_{s}(1/m) =$	1.0E-0
		10 ⁰ (b/L)	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	2.4E-1
10 ⁰		4	C _D (-) =	NA	C _D (-) =	2.6E-02
· · · · ·		0.3	ξ(-) =	8.5	ξ(-) =	20.2
	· · ·					
		10 ⁻¹	$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
10 ¹⁰ 10 ¹¹ tD	10 ¹² 10 ¹³ 10 ¹⁴		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA
.og-Log plot incl. derivatives	recovery period		Selected represe	·····	ieters.	
Elapsed time	[h]		dt_1 (min) =	NA	C (m³/Pa) =	2.4E-1
10 ²			dt_2 (min) =	NA	C _D (-) =	2.6E-02
	1	300	$T_T (m^2/s) =$	2.7E-07	ξ(-) =	20.2
			S (-) =	1.0E-06		
1 Statement	•	10 ²	$K_s (m/s) =$	1.4E-08		
0 ¹			S _s (1/m) =	5.0E-08		
	a la	[KPa] 05	Comments:			
1		(0d-d)	The recommended	transmissivity o	f 2.7•10-7 m2/s was	derived from
100	million .	10 ¹ d	the radial flow analy			
	and a second		and derivative quali			
		3	transmissivity is est			
			pressure measured a		oth, was derived from on in the Horner plo	
10 ^d 10 ^t		10 ⁰	3,705.2 kPa.	i mie exitapoiau	on in the riother pic	
	10 ² 10 ³ 10 ⁴					

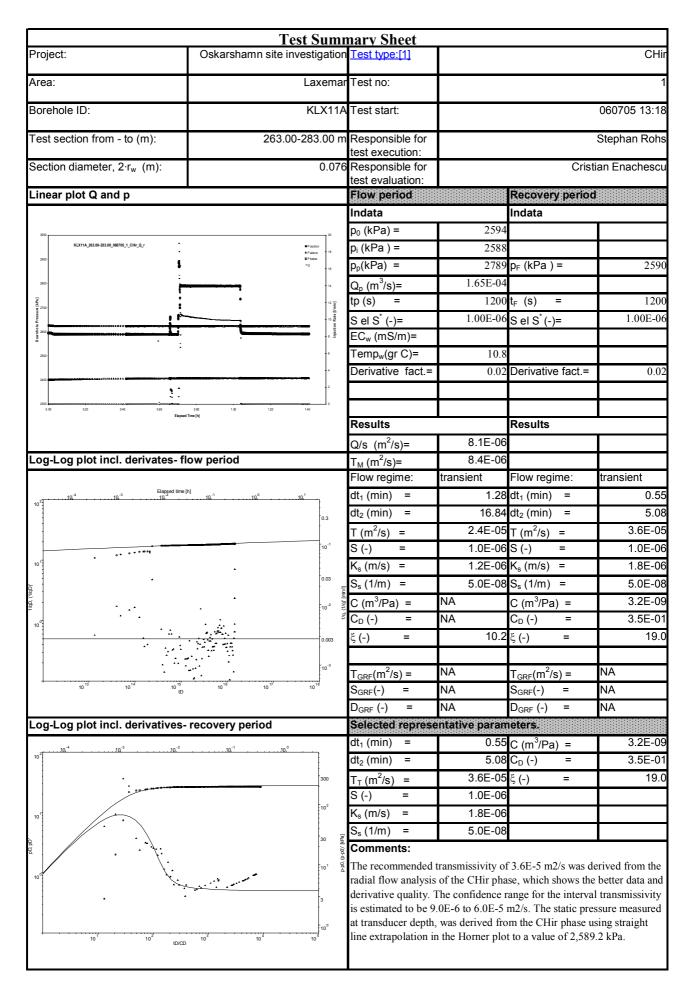
	Test S	umr	nary Sheet			
Project:	Oskarshamn site investiç					CHir
Area:	Laxemar		Test no:			
Borehole ID:	KLX11A		Test start:			060701 08:47
Test section from - to (m):	503.00-603	.00 m	Responsible for test execution:			Stephan Rohs
Section diameter, $2 \cdot r_w$ (m):		0.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata	<u>,,,,,,,,,,,,,,,,,,,,,,</u> ,,,,,,,,,,,,,,	Indata	
6800		20	p ₀ (kPa) =	5578		
KLX11A_503.00-603.00_060701_1_CHir_Q_r	P sector P above P below	n 18	p _i (kPa) =	5580		
5700 V	· 0	16	$p_p(kPa) =$		p _F (kPa) =	5600
800			$Q_p (m^3/s) =$	1.91E-04		2000
_		14	$\frac{d_p (m/s)}{tp (s)} =$		t _F (s) =	1800
2015 500 - 500 -		¹² [uim/] e			⊈ (0) S el S [*] (-)=	1.00E-06
Red 3000-		10 Late	S el S [*] (-)= EC _w (mS/m)=	1.00E-00	୦ ୧୮୦ (-)=	1.00E-00
8		s in	$EC_w (mS/m) =$ Temp _w (gr C)=	15 (
4900 -		6		15.6		0.00
		4	Derivative fact.=	0.02	Derivative fact.=	0.05
4700		2				
4500 0.00 0.50 1.00 Elapsed	1.50 2.00	0	Results		Results	-
			Q/s (m ² /s)=	8.7E-06		
Log-Log plot incl. derivates- fl	ow period		T _M (m ² /s)=	1.1E-05		
10, ⁻³ Elapsed time (t	h] 10, ⁻¹		Flow regime:	transient	Flow regime:	transient
10 ²			dt_1 (min) =		dt ₁ (min) =	0.68
	·	0.3	dt_2 (min) =	26.70	dt ₂ (min) =	22.28
			$T(m^{2}/s) =$	1.9E-05	T (m²/s) =	2.4E-05
0.0 ⁶ \$13100 0000-0000		10 ⁻¹	S (-) =	1.0E-06	S (-) =	1.0E-06
101			$K_s (m/s) =$	1.9E-07	$K_s (m/s) =$	2.4E-07
Ē		0.03	$S_{s}(1/m) =$	1.0E-08	S _s (1/m) =	1.0E-08
		; ; (1/q)' [mir	C (m ³ /Pa) =	NA	C (m³/Pa) =	3.3E-09
	•	10 ⁻² (1)	$C_{D}(-) =$	NA	$C_{D}(-) =$	3.6E-01
10 ⁰			ξ(-) =		ξ(-) =	7.4
		0.003	5()		5()	
	. *.*		$T_{GRF}(m^2/s) =$	7.7E-06	T _{GRF} (m ² /s) =	9.0E-06
· · · · · · · · · · · · · · · · · · ·		10 ⁻³	$S_{GRF}(-) =$	1.0E-06		1.0E-06
10 ⁹ 10 ¹⁰ tD	10 ¹¹ 10 ¹² 10 ¹³		$D_{GRF}(-) =$		$D_{GRF}(-) =$	2.1
Log-Log plot incl. derivatives-	recovery period		Selected represe			
Elanced time [h]			dt_1 (min) =		C (m ³ /Pa) =	3.3E-09
10 ² 10 ⁻⁴	· · · · · 10. · · · · · · · · · · · · · · · · · · ·	03	dt_2 (min) =		C (m /Pa) = C _D (-) =	3.6E-01
	ť	-	$T_{T} (m^2/s) =$	2.4E-05		5.0E-01 7.4
	1.0	00	$I_{T}(m^{-}/s) =$ S(-) =	2.4E-03 1.0E-06		7.4
د میں میں میں میں میں میں میں میں میں میں			$S(-) = K_s(m/s) =$	1.0E-06		
101	11	0 ²				
		Pal	S _s (1/m) = Comments:	5.0E-08		
	3	с р-р0, (р-р0)' [kPa				
• •	-	o-p0, (p			f 2.4E-5 m2/s was de se, which shows the	
10 ⁰¹	• • • • • • • • • • • • • • • • • • •	0 ¹			ange for the interval	
	Sand and a second a s				m2/s. The static pres	
•						
•	·		at transducer depth,		om the CHir phase us	
			at transducer depth,		om the CHir phase us t to a value of 5,579	

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Р
Area:	Laxemar	Test no:			
Borehole ID:	KLX11A	Test start:			060702 14:45
Test section from - to (m):	876.00-976.00 m	Pesponsible for			Stephan Rohs
rest section nom - to (m).	870.00-970.00 m	test execution:			Stephan Kons
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Crist	tian Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	4
		Indata		Indata	
9600	0.005	p ₀ (kPa) =	9027	indata	
		p ₀ (kPa) = p _i (kPa) =	9027		
9400 - *	KLX11A_876.00-976.00_060702_1_PI_Q_r	$p_i(kPa) =$ $p_p(kPa) =$		p _F (kPa) =	020
9200				р _ғ (кра) –	920
<u>i</u>		$Q_p (m^3/s) =$	NA	1 ()	207
	10003 E	tp (s) =		t _F (s) =	397
8800 -	- 0.002 - 0.0022 - 0.002 -	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0
	0.002	EC _w (mS/m)=			
		Temp _w (gr C)=	21.2		
8400 -	Paction Pabove Pbelow 0.001	Derivative fact.=	NA	Derivative fact.=	0.0
8200	· 0				
8000		Results		Results	
0.00 0.50 1.00 Elapsed Ti	1.50 2.00		NA	Results	
.og-Log plot incl. derivates- fl	aw pariod	$Q/s (m^2/s) =$	NA		
Log-Log plot filet. derivates- fi	ow period	T _M (m²/s)= Flow regime:	transient	Flow regime:	transiant
		-		=	transient
		dt_1 (min) =	NA	$dt_1 (min) =$	NA
		dt_2 (min) =	NA	$dt_2 (min) =$	NA
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	4.0E-1
		S (-) =	Na	S (-) =	1.0E-0
		K _s (m/s) =	NA	K _s (m/s) =	4.0E-1
Not A1	nalysed	$S_{s}(1/m) =$	NA	S _s (1/m) =	1.0E-0
	laijood	C (m ³ /Pa) =	NA	C (m³/Pa) =	2.6E-1
		C _D (-) =	NA	C _D (-) =	2.8E-0
		ξ(-) =	NA	ξ(-) =	-1.
		2		2	
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	6.2E-1
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-0
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	1.3
-og-Log plot incl. derivatives-		Selected represe			-
Elapsed time	10^{-1}_{-1} ,, 10^{0}_{-1} ,, 10^{1}_{-1}	dt_1 (min) =	NA	C (m ³ /Pa) =	2.6E-1
		dt_2 (min) =	NA	C _D (-) =	2.8E-0
	101	T _T (m²/s) =	4.0E-11		-1.
		S (-) =	1.0E-06		
10 ⁰	3	$K_s (m/s) =$	2.0E-12		
معرومین ا	, st	$S_{s}(1/m) =$	5.0E-08		
	10 ⁰ B	Comments:			
	anvolute			f 4.0E-11 m2/s was	
· · · · · · · · · · · · · · · · · · ·	•••• 8		s of the Pi phase.	The confidence rar	
10 ⁻¹	0.3				
10 ⁻¹		interval transmissiv			
10 ⁻¹	· · · · · · · · · · · · · · · · · · ·	interval transmissiv 1.0E-11 to 8.0E-11	m2/s. The static	to be pressure could not	be extrapolated
10 ¹⁰	•	interval transmissiv	m2/s. The static		be extrapolated

	Test Su	ımr	nary Sheet	•				
Project:	Oskarshamn site investig	ation	Test type:[1]			CHi		
Area:	Laxe	emar	Test no:					
Borehole ID:	KL>	(11A	Test start:		060704 08:1			
Test section from - to (m):	103.00-123.00 m F		Responsible for			Stephan Rohs		
			test execution:					
Section diameter, $2 \cdot r_w$ (m):	C	0.076	Responsible for test evaluation:		Crist	ian Enachescu		
Linear plot Q and p			Flow period		Recovery period			
			Indata		Indata			
1400 KLX11A_103.00-123.00_060704_1_CHir_Q_r		5	p ₀ (kPa) =	1091				
KEXTIX_103.00123.00_000704_1_0111_0_1	P sector Pabove Pabove Pelow	1	p _i (kPa) =	1093				
1300	. o	4	p _p (kPa) =	1293	p _F (kPa) =	1093		
1200	:		Q _p (m ³ /s)=	2.33E-05				
•••	:	3 2	tp (s) =	1200	t _F (s) =	120		
de Areasura (Pestalana)		Rate [l/m	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0		
4 99 00 00 00 00 00 00 00 00 00 00 00 00		Injection	EC _w (mS/m)=					
۵ ۱000 ·		-	Temp _w (gr C)=	8.4				
			Derivative fact.=		Derivative fact.=	0.0		
900		1						
	880 1.00 1.20 1.40	0	Results		Results			
	a mis (ii		$Q/s (m^2/s)=$	1.1E-06				
.og-Log plot incl. derivates- f	ow period		$T_{\rm M} (m^2/s) =$	1.2E-06				
	-		Flow regime:		Flow regime:	transient		
Elapsed tin	ie [h] 	r	dt_1 (min) =		dt_1 (min) =	0.6		
		[$dt_1(mn) =$ $dt_2(min) =$		$dt_1(min) =$ $dt_2(min) =$	6.7		
		3	. ,		2	4.9E-0		
		100	T (m ² /s) = S (-) =	2.2E-00 1.0E-06				
10 ¹ .	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0()			1.0E-0		
	•	0.3	$K_s(m/s) =$		$K_s(m/s) =$	2.5E-0		
		l/uim	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-0		
		(0/L)	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	6.3E-1		
10 [°] .		÷ , ,		NA	C _D (-) =	7.0E-02		
	· · · · ·	0.03	ξ(-) =	4.7	ξ(-) =	19.8		
•	and the second secon	Ī	T (2())	NA	- (2)	NA		
	·····	10 ⁻²	$T_{GRF}(m^2/s) = S_{GRF}(-) =$	NA	$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$	NA		
10 ⁷ 10 ⁸ t	10 ^d 10 ¹⁰ 10 ¹	7	- 614 ()	NA		NA		
.og-Log plot incl. derivatives-	racovary pariod		D _{GRF} (-) = Selected represe		= 01(1 ()			
			dt_1 (min) =			6.3E-10		
10 ⁻⁵ Elapsed time [n]		$dt_1(min) = dt_2(min) =$		C (m ³ /Pa) = C _D (-) =	7.0E-02		
	-		_ , ,		- 0 ()			
1	30	0	$T_{T}(m^{2}/s) =$	4.9E-06		19.8		
	and the second se	2	S (-) =	1.0E-06				
10 1	10		$K_s (m/s) =$	2.5E-07				
	~··	a]	$S_{s}(1/m) =$	5.0E-08				
	-\'	pO) [kP	Comments:					
	10	т р-р0, (р-р0)' [kPa]			f 4.9E-6 m2/s was d			
10"		4			se, which was consi e for the interval tran			
					2/s. The static pressu			
	3				the CHir phase usin			
	10	0	-		a value of 1,092.9 kl			

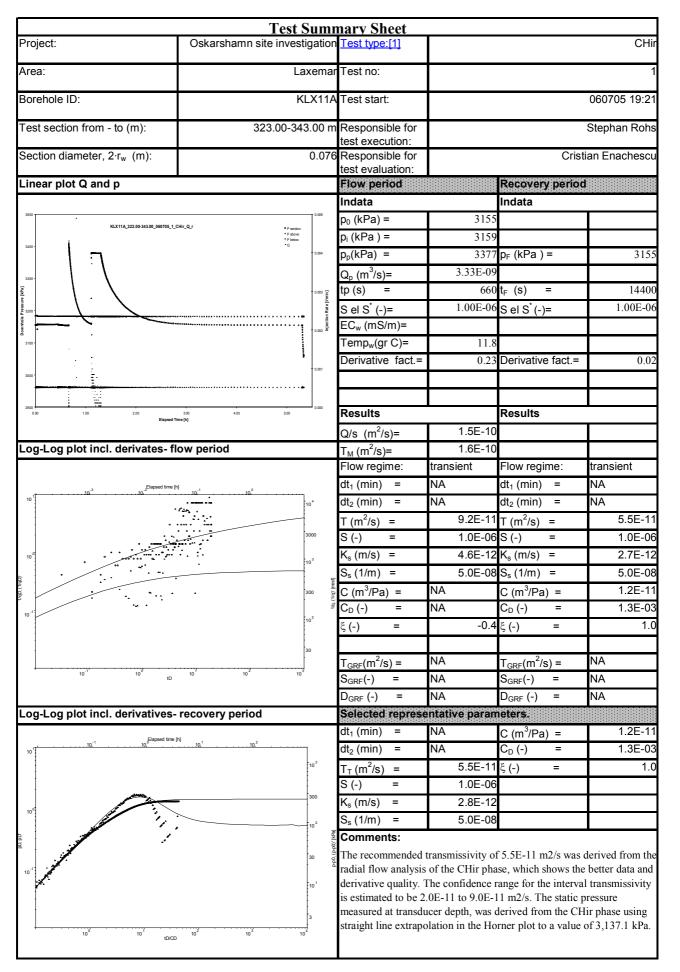
	Test Sumr	nary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			CHir		
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX11A	Test start:		060704 10:3			
Test section from - to (m):	123.00-143.00 m	Pesponsible for			Stephan Rohs		
		test execution:			•		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Cris	tian Enachescu		
Linear plot Q and p		Flow period		Recovery period	d		
		Indata		Indata			
1600	10	p ₀ (kPa) =	1279				
KLX11A_123.00-143.00_060704_1_CHir_Q_r	• P sector • P above • P below	p _i (kPa) =	1275				
1500	·Q 8	p _p (kPa) =	1475	p _F (kPa) =	1275		
	•	Q _p (m ³ /s)=	6.50E-05				
9400		tp (s) =	1200	t _F (s) =	1200		
1300	and the second se	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
1900 		EC _w (mS/m)=					
1200	-4 ⁻	Temp _w (gr C)=	8.7				
	- 3	Derivative fact.=	0.13	Derivative fact.=	0.0		
1100	²						
	. ¹						
1000 0.20 0.40 0.60	0.80 1.00 1.20 1.40	Results		Results			
Elapsed Ti	me [h]	Q/s (m²/s)=	3.2E-06		T		
.og-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	3.3E-06				
	• • • • •	Flow regime:	transient	Flow regime:	transient		
10, ⁻⁵ 10, ⁻⁴ 10, ⁻³ Elapsed time	[h] . ² 10 ^{.1}	dt_1 (min) =		dt_1 (min) =	0.47		
102	• [10 ⁰	dt_2 (min) =		$dt_2 (min) =$	1.60		
		2		2	8.1E-06		
	0.3	T (m²/s) = S (-) =	1.0E-06		1.0E-06		
10 1	•			$S(-) = K_s(m/s) =$	4.1E-07		
	• 10 ⁻¹	3 (-7					
		$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-08		
	0.03 E	$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	1.2E-09		
10 ^{°°}	10 ⁻²	C _D (-) =	NA	C _D (-) =	1.4E-0 ⁻		
	A A A A A A A A A A A A A A A A A A A	ξ(-) =	10.2	ξ(-) =	7.9		
	0.003	<u>^</u>		<u>^</u>			
10 ¹² 10 ¹³ 10 ¹⁴	10 ¹⁶ 10 ¹⁶ 10 ¹⁷	$T_{GRF}(m^2/s) =$		T _{GRF} (m²/s) =	1.2E-06		
10 ¹² 10 ¹³ 10 ¹⁴ tD	10 10 10	S _{GRF} (-) =	1.0E-06		1.0E-06		
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	2.3		
.og-Log plot incl. derivatives-	recovery period	Selected represe			_		
4 .3 Elapsed time	[h]	dt ₁ (min) =		C (m³/Pa) =	1.2E-09		
10 ²	10 ³	dt_2 (min) =		C _D (-) =	1.4E-01		
		$T_{T}(m^{2}/s) =$	8.1E-06		7.9		
· · · · · · · · · · · · · · · · · · ·		S (-) =	1.0E-06				
10	10 ²	$K_s (m/s) =$	4.1E-07				
	•	S _s (1/m) =	5.0E-08				
10°	10 ⁻¹⁰	Comments:					
100		The recommended					
	а а	radial flow analysis					
10 ⁻¹	10 [°]	better data and deri transmissivity is est					
		pressure measured					
		-		on in the Horner pl			
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵	phase using suaign	t nne extrapolati	on in the morner pr	or to a value of		

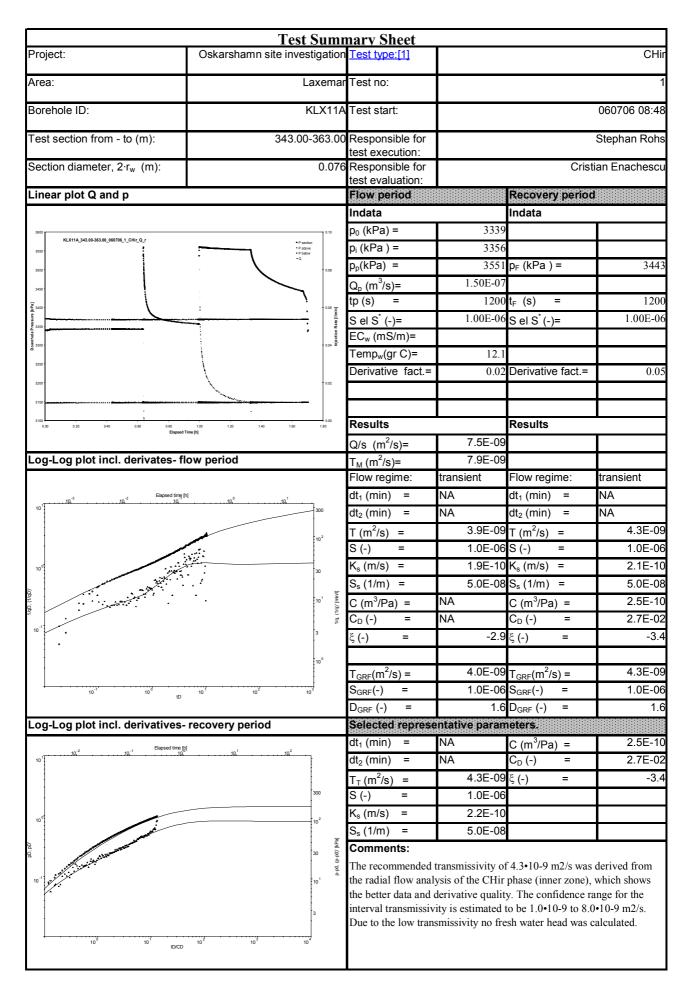
	Test Sum	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHi	
Area:	Laxemar	Test no:			,	
Borehole ID:	KLX11A	Test start:			060704 12:49	
Test section from - to (m):	143.00-163.00 m	Responsible for test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	tian Enachescu	
incer plot Q and p		test evaluation:		M ERICAL STREET		
Linear plot Q and p		Flow period		Recovery period	1	
1800	2.0	Indata p ₀ (kPa) =	1469	Indata	T	
KLX11A_143	.00-163.00_060704_1_CHir_Q_r + P section + P above + P below	р ₀ (кРа) – p _i (kРа) =				
1700	• P below · Q	• • •	1464		140	
	1.5	p _p (kPa) =		p _F (kPa) =	146	
1600 -	i i	$Q_p (m^3/s) =$	6.67E-06		<u> </u>	
100	Ling and	tp (s) =		t _F (s) =	180	
1500	1.0 E G D D D D D D D D D D D D D D D D D D	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0	
		EC _w (mS/m)=				
⁴⁰⁰	ч́., 10.5	Temp _w (gr C)=	8.9			
1300 -	<u>.</u>	Derivative fact.=	0.02	Derivative fact.=	0.0	
1200						
0.00 0.20 0.40 0.60 0.80 Elapsed T	1.00 1.20 1.40 1.60 1.80 ime [h]	Results		Results		
		Q/s (m ² /s)=	3.2E-07			
_og-Log plot incl. derivates- fl	ow period	T _M (m²/s)=	3.3E-07			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time	وراماً	dt ₁ (min) =	2.41	dt ₁ (min) =	6.4	
		dt ₂ (min) =	19.31	dt ₂ (min) =	27.4	
	3	T (m²/s) =	1.5E-07	T (m²/s) =	1.4E-0	
		S (-) =	1.0E-06		1.0E-0	
10	10 ⁰	$K_s (m/s) =$		$K_s (m/s) =$	7.0E-0	
	0.3 2	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-0	
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	9.5E-1	
				$C_D(-) =$	1.0E-0	
10-1	· ·	ξ(-) =		ξ(-) =	1.	
	0.03	() د	0.0	· () د		
		T _{GRF} (m ² /s) =	6 7E-08	T _{GRF} (m²/s) =	NA	
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³	$S_{GRF}(-) =$	1.0E-06	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	NA	
.og-Log plot incl. derivatives-	recovery period	Selected represe				
		dt_1 (min) =	6.49		9.5E-1	
10 ²		$dt_1(min) =$ $dt_2(min) =$		C (m ³ /Pa) = C _D (-) =	9.3L-1 1.0E-0	
	10 ³		1.4E-07		1.0E-0	
		$T_T (m^2/s) =$	1.4E-07 1.0E-06		· · ·	
	300	9()			ļ	
10 ¹		$K_s(m/s) =$	7.0E-09			
	10 ²	$S_{s}(1/m) =$	5.0E-08			
	100	Comments:				
	30 S	The recommended t				
10 10		radial flow analysis better data and deriv				
		transmissivity is est				
	3	pressure measured a				
	-	-	-			
10 ^d 10 ^d ±D/CD	10^2 10^3 10^4	phase using straight	. nne extrapolati	on in the normer pic	of to a value of	

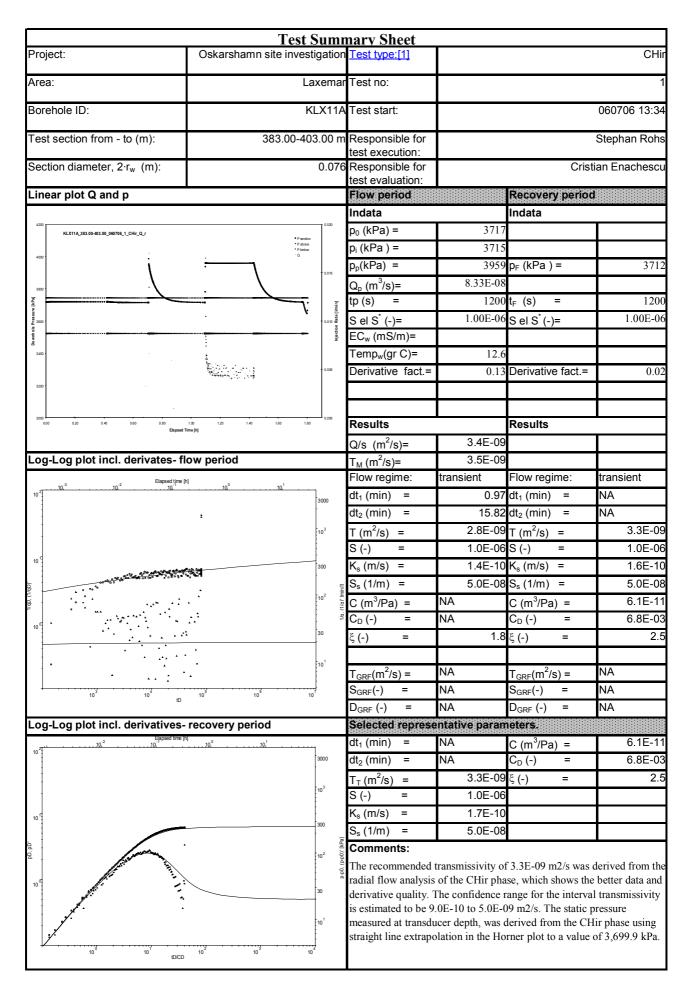

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxema	r Test no:			
Borehole ID:	KLX11/	Test start:			060704 15:05
Test section from - to (m):	163.00-183.00 n	n Responsible for			Stephan Rohs
Section diameter 2.r. (m):	0.07	test execution: 8 Responsible for		Criet	ian Enachescu
Section diameter, $2 \cdot r_w$ (m):	0.07	test evaluation:		Clist	Ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
		p ₀ (kPa) =	1656		
1000 KLX11A_163.00-183.00_060704_1_CHir_Q_r	⁵ ●P section	p _i (kPa) =	1648		
1950	P above ■ P balow ■ 0	p _p (kPa) =	1849	p _F (kPa) =	165
1900	•	$Q_{p} (m^{3}/s) =$	4.17E-05		
759	•	$\frac{dp}{dp}$ (m/s) =	1200	t _F (s) =	120
120 U U U U U U U U U U U U U U U U U U U		S el S [*] (-)=		S el S [*] (-)=	1.00E-0
a 14 150		EC _w (mS/m)=			
2 100	- - ² ^E	Temp _w (gr C)=	9.2		
1950		Derivative fact.=	7.1	Derivative fact.=	0.0
50 40			0.11		0.0
1400	0.00 1.00 1.20 1.40	Deculto		Results	
					1
		Q/s (m^{2}/s)=	2.0E-06		
.og-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	2.1E-06		
.5 _4 ⊟apsęd time [hì	Flow regime:	transient	Flow regime:	transient
10 ² Hapsed time [10^{-1} 10^{-2} 10^{-1} 10^{0}	$dt_1 (min) =$		dt_1 (min) =	0.4
	100	dt_2 (min) =		dt_2 (min) =	9.6
		T (m ² /s) =		T (m²/s) =	7.2E-0
	0.3	S (-) =	1.0E-06		1.0E-0
10		K_{s} (m/s) =	3.2E-07	$K_s (m/s) =$	3.6E-0
	10 ⁻¹	_s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-0
		C (m ³ /Pa) =	NA	C (m³/Pa) =	6.6E-1
10 0	0.03	² C _D (-) =	NA	C _D (-) =	7.2E-0
· · ·	10 ⁻²	ξ(-) =	10.9	ξ(-) =	14.
		T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA
10 ¹² 10 ¹³ 10 ¹⁴ tD	10 ¹⁵ 10 ¹⁶ 10 ¹⁷	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
.og-Log plot incl. derivatives-	recovery period	Selected represe	entative paran		I
• • •		dt_1 (min) =		C (m ³ /Pa) =	6.6E-1
Elapsed time [h]		dt_2 (min) =		$C_{D}(-) =$	7.2E-0
	i i i	$T_{T} (m^{2}/s) =$	6.5E-06		10.
	300	S(-) =	1.0E-06		10.
		$K_{s} (m/s) =$	3.3E-07		
101	10 ²	$S_{s}(1/m) =$	5.0E-08		
	: 	$S_s(1/11) =$	J.UE-00		
	30	The recommendation	tronominai-it-	F65E6m2/a	arized from 4
	• • •	radial flow analysis		f 6.5E-6 m2/s was de se, because it shows	
10				ence range for the in	
	3	transmissivity is est	timated to be 4.0	E-6 to 1.0E-5 m2/s.	The static
				oth, was derived from	
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵ 10 ⁰		t line extrapolati	on in the Horner plo	ot to a value of
10 10 tD/CD	10 ³ 10 ⁴ 10 ^{5 10}	1,650.5 kPa.			

	nary Sheet				
Oskarshamn site investigation	Test type:[1]			CHi	
	Test no:				
KLX11A	Test start:			060704 17:12	
183.00-203.00 m	Responsible for			Stephan Roh	
	test execution:			-	
0.076			Crist	ian Enachescu	
			Recovery period		
			• • • • • • • • • • • • • • • • • • • •		
• 10		1844			
P secton P above 9 P below		NA			
-Q 8	$p_p(kPa) =$	NA	p _F (kPa) =	NA	
7		NA	,		
••••••••••••••••••••••••••••••••••••••	tp(s) =	NA	t _F (s) =	NA	
• ži. • star • 5 -	S el S [*] (-)=	NA	S el S [*] (-)=	NA	
4 19 - 4 12	EC _w (mS/m)=		()		
3	Temp _w (gr C)=	9.5			
2	Derivative fact.=	NA	Derivative fact.=	NA	
- 1					
0.60 0.80 1.00 1.20 ed Time (h)	Results		Results		
	Q/s (m^{2}/s)=	NA			
low period	T _M (m ² /s)=	NA			
	Flow regime:	transient	Flow regime:	transient	
	dt_1 (min) =	NA	dt ₁ (min) =	NA	
	dt_2 (min) =	NA	dt_2 (min) =	NA	
	$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	NA	
	S (-) =	NA	S (-) =	NA	
		NA		NA	
nalvsed			. ,	NA	
harysea	C (m³/Pa) =	NA	C (m³/Pa) =	NA	
	C _D (-) =	NA	C _D (-) =	NA	
	ξ(-) =	NA	ξ(-) =	NA	
	2		2		
				NA	
				NA	
				NA	
- recovery period				NA	
	, <i>,</i>			NA NA	
				NA NA	
			ς(-) =		
narysed		snonse (prolong	ed nacker complian	ce) the interval	
				cej une interval	
	Laxemar KLX11A 183.00-203.00 m 0.076	LaxemarTest no:KLX11ATest no:KLX11ATest start:183.00-203.00 mResponsible for test evaluation:Flow periodIndata $p_0(kPa) =$ q_0 (m ³ /s)= $p_1(kPa) =$ q_0 (m ³ /s)= $p_1(kPa) =$ q_0 (m ³ /s)= $p_1(kPa) =$ $p_2(kPa) =$ q_0 (m ³ /s)= $p_1(kPa) =$ $p_2(kPa) =$ q_0 (m ³ /s)= $p_1(kPa) =$ $p_1(kPa) =$ $p_2(kPa) =$ $p_1(kPa) =$ $p_2(kPa) =$ $p_2(kPa) =$ q_0 (m ³ /s)= $p_1(kPa) =$ $p_2(kPa) =$ $p_1(m) m^3/s) =$	LaxemarTest no:KLX11ATest start:183.00-203.00Responsible for test execution:0.076Responsible for test evaluation:Flow periodIndata $p_0(kPa) =$ $p_0(kPa) =$ NA $p_0(kPa) =$	Test no:KLX11ATest start:183.00-203.00 mResponsible for test execution:Crist0.076 Responsible for test evaluation:Flow periodIndataIndataIndata 0.076 Responsible for test evaluation:Recovery periodIndataIndataIndataIndata 0.076 Responsible for test evaluation:Recovery periodIndataIndataIndataIndata 0.076 Responsible for test evaluation:Recovery periodIndata <t< td=""></t<>	

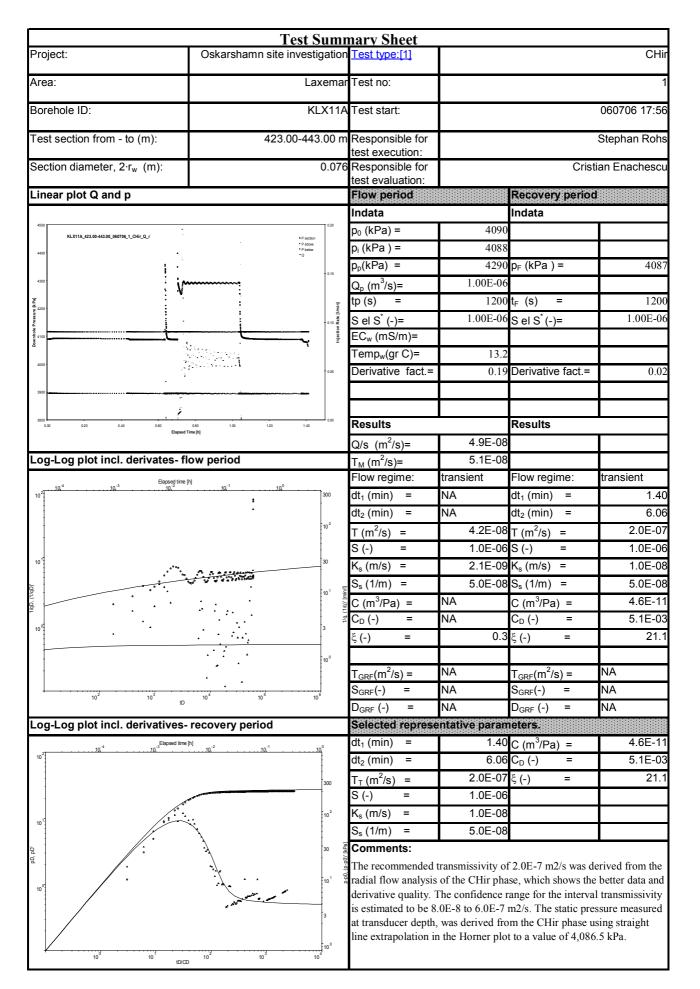
	Test S	umn	nary Sheet					
Project:	Oskarshamn site investig	ation	Test type:[1]			СН		
Area:	Lax	emar	Test no:					
Borehole ID:	KL	X11A	Test start:		060704 18:5			
Test section from - to (m):	203.00-223.00 m					Stephan Roh		
Section diameter, 2·r _w (m):			test execution: Responsible for		Criet	ian Enachesc		
Section diameter, 21 _w (m).	(5.070	test evaluation:		Clist			
Linear plot Q and p			Flow period		Recovery period			
· · ·			Indata		Indata			
	10 autor	10	p₀ (kPa) =	2031				
KLX11A_203.00-223.00_060704_1_CHir_Q_r 2250 -	• P secton • P above • P below • O	- 9	p _i (kPa) =	NA				
2200	F.	- 8	$p_p(kPa) =$	NA	p _F (kPa) =	NA		
2150		7	$Q_p (m^3/s) =$	NA		11/1		
J 2100		·6 2	$Q_p (m/s) =$ tp (s) =	NA	t _F (s) =	NA		
		cate ()/min		NA		NA		
	?	n o o Injection Rate ((/min)	S el S [*] (-)=	11/1	S el S [*] (-)=	11171		
		4 =	EC _w (mS/m)=	0.0		┣───		
1950 -		- 3	Temp _w (gr C)=	9.8				
1900 -		- 2	Derivative fact.=	NA	Derivative fact.=	NA		
1850		- 1						
1800 0.10 0.20 0.30 0.40 0.50	0.60 0.70 0.80 0.90	0						
Elapse d Ti	ime [h]		Results		Results			
			Q/s (m ² /s)=	NA				
_og-Log plot incl. derivates- flo	ow period		T _M (m ² /s)=	NA				
			Flow regime:	transient	Flow regime:	transient		
			dt ₁ (min) =	NA	dt ₁ (min) =	NA		
		dt ₂ (min) =	NA	dt ₂ (min) =	NA			
			T (m²/s) =	NA	$T(m^{2}/s) =$	NA		
			S (-) =	NA	S (-) =	NA		
			$K_s (m/s) =$	NA	$K_s (m/s) =$	NA		
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA		
Not An	alysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA		
			$\frac{C_{D}(-)}{C_{D}(-)} =$	NA	$C_{D}(-) =$	NA		
			ξ(-) =	NA	ξ(-) =	NA		
			»()) د ا			
			T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA		
			$S_{GRF}(m/s) =$ $S_{GRF}(-) =$	NA	$I_{GRF}(m / s) =$ $S_{GRF}(-) =$	NA		
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA		
_og-Log plot incl. derivatives-	recovery pariod		Selected represe					
-og-Log plot mol. derivatives-						ΝΔ		
					ς(-) =	INA		
						┣────		
						┣────		
				NA				
Not An	alysed							
Not Analysed		$\begin{array}{llllllllllllllllllllllllllllllllllll$	NA NA NA NA NA Sponse (prolong	$C (m3/Pa) = C_D (-) = \xi (-) =$ $\xi (-) = 0$ ged packer complian	NA NA NA ce) the in			


	Test Su	Imi	nary Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			Р
Area:	Laxe	emar	Test no:			1
Borehole ID:	KLX11A		Test start:			060705 08:38
Test section from - to (m):	ection from - to (m): 223.00-243.00 m		Responsible for			Stephan Rohs
			test execution:			<u> </u>
Section diameter, $2 \cdot r_w$ (m):	0	.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	·····
2500 KLX11A_223.00-243.00_060705_1_Pi_Q_r		5	p ₀ (kPa) =	2216		
KCXTIX_223.00243.00_000105_1_f[_d_1	P section P above P below		p _i (kPa) =	2233		
2400	••	4	p _p (kPa) =	2458	p _F (kPa) =	225
•			$Q_{p} (m^{3}/s) =$	NA		
	***************************************	3 🗉	tp(s) =	10	t _F (s) =	2700
Ted 1		Injection Rate [/min]	S el S [*] (-)=		S el S [*] (-)=	1.00E-00
0 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m		Injection	EC _w (mS/m)=			
2100 ·			Temp _w (gr C)=	10.0		
·			Derivative fact.=		Derivative fact.=	0.02
2000 -		1				
1900	0.80 1.00 1.20 1.40 1 Time [h]	1 0	Results		Results	
			Q/s (m^{2}/s)=	NA		
og-Log plot incl. derivates- flow period			$T{M} (m^{2}/s) =$	NA		
	-		Flow regime:	transient	Flow regime:	transient
			dt_1 (min) =	NA	dt_1 (min) =	1.1
			dt_2 (min) =	NA	dt_2 (min) =	22.4
			$T(m^2/s) =$	NA	$T(m^2/s) =$	3.3E-1
			S (-) =	NA	S (-) =	1.0E-0
			$\frac{K_s(m/s)}{K_s(m/s)} =$	NA	$K_s (m/s) =$	1.6E-1
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-0
Not Ar	nalysed		$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	5.8E-1
			$C_{D}(-) =$		$C_{D}(-) =$	6.4E-0
			$\xi(-) =$	NA	ξ(-) =	0.12 0.1
			∽ ([_]) _		יש (⁻) –	0.
			$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	8.5E-1
			$I_{GRF}(m/s) =$ $S_{GRF}(-) =$	NA	$I_{GRF}(m/s) =$ $S_{GRF}(-) =$	1.0E-06
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.79
Log-Log plot incl. derivatives-	recovery period		Selected represe			I
			dt_1 (min) =	·····	C (m ³ /Pa) =	5.8E-1
Elapsed time	² [ⁿ] ,		dt_2 (min) =		C (m /Pa) = C _D (-) =	6.4E-0
				3.3E-10		0.42-0
		3	$T_T (m^2/s) =$ S (-) =	1.0E-06		0.
		10 ⁰	$S(-) = K_s(m/s) =$	1.0E-00 1.7E-11		
10 1			$S_{s}(11/s) = S_{s}(1/m) =$	5.0E-08		
2 2		0.3 Diressni	$S_s(1/11) =$ Comments:	J.UE-00		
• • • • • • • • • • • • • • • • • • •		moluteo		tranomiccivity	3 3E 10 m 2/2	darized from 44
10 ^d		10 ⁻¹			The confidence ran	
	- Alter - Alte				to be $1.0E-10$ to 6.0	
		0.03	static pressure could		lated due to the very	
		10 ⁻²	transmissivity.			
10 [°] 10 ¹ tD	10 ⁴ 10 ³ 10 ⁴					

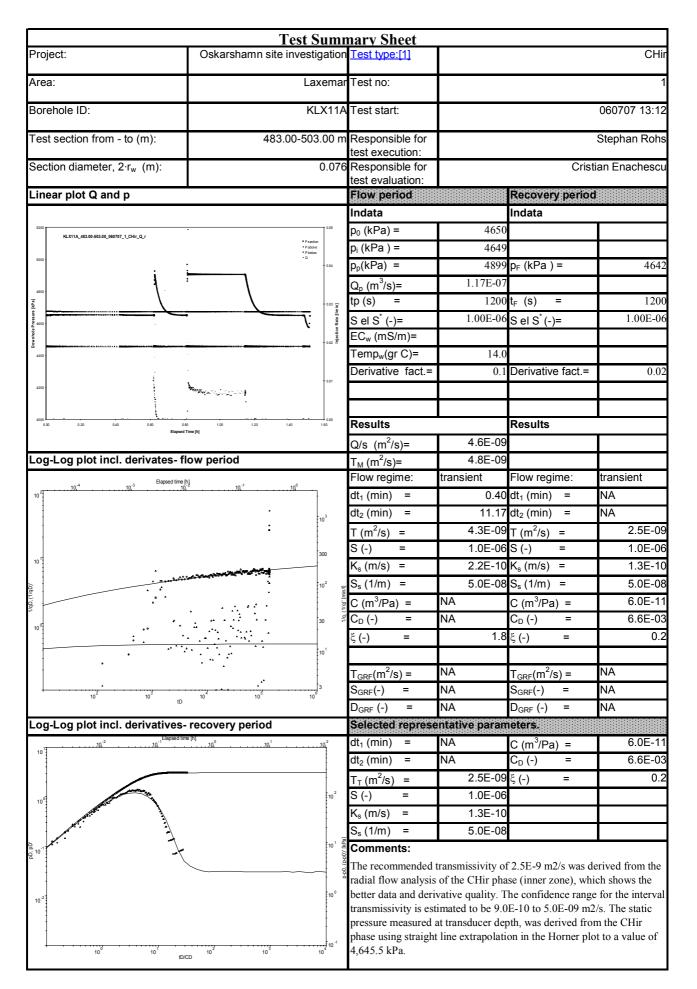

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Develope ID:		Taatata			000705 40:40
Borehole ID:	KLX11A	Test start:			060705 10:48
Test section from - to (m):	243.00-263.00 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	tian Enachescu
. ,		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	1
		Indata		Indata	
2700	KLX11A_243.00-263.00_060705_1_CHir_Q_r • P section	p ₀ (kPa) =	2406		
2850	Pabove 0.18 Pbolow O	p _i (kPa) =	2403		
2800	0.16	p _p (kPa) =	2616	p _F (kPa) =	2402
2550	0.14	Q _p (m ³ /s)=	6.67E-07		
s 2500 -	0.12 2	tp(s) =	1200	t _F (s) =	1200
9 8 9 9 9 9		S el S [*] (-)=		S el S [*] (-)=	1.00E-06
	ection	EC _w (mS/m)=	1.002.00	3 8 3 (-)-	1.002.00
§ 2400	<u>ده</u> ده ۲	Temp _w (gr C)=	10.4		<u> </u>
2350	0.06				0.0/
2300 -	0.04	Derivative fact.=	0.08	Derivative fact.=	0.02
	- 0.02				
2200 0.00 0.20 0.40 0.60 0	80 1.00 1.20 1.40 1.60	.			
	Time (h)	Results	I	Results	
		Q/s (m²/s)=	3.1E-08		
Log-Log plot incl. derivates- f	low period	T _M (m²/s)=	3.2E-08		
		Flow regime:	transient	Flow regime:	transient
10 ²		dt ₁ (min) =	1.85	dt ₁ (min) =	NA
	10 ²	dt ₂ (min) =	14.54	dt_2 (min) =	NA
		T (m²/s) =	6.1E-08	T (m²/s) =	3.7E-08
	30	S (-) =	1.0E-06		1.0E-06
10 ¹ •••••		$K_s (m/s) =$		$K_s (m/s) =$	1.8E-09
	10 ¹	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-08
	a), [jiii]		5.0L-00		5.9E-12
201	3 th	C (m³/Pa) =		C (m ³ /Pa) =	
10 ⁰		C _D (-) =	NA	$C_D(-) =$	6.4E-03
	10 ⁰	ξ(-) =	6.5	ξ(-) =	4.8
•		T _{GRF} (m ² /s) =	NA	T _{GRF} (m²/s) =	NA
10 ⁶ 10 ⁹ tD	10 ¹⁰ 10 ¹¹ 10 ¹²	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			NA	$D_{GRF}(-) =$	NA
and an platingly derivatives	receiver period	D _{GRF} (-) = Selected represe			
Log-Log plot incl. derivatives	- recovery period				
10, ⁻⁴ 10, ⁻³ 10, ⁻²	ne [h] 10 ⁻¹ 10 ⁰	dt_1 (min) =	NA	C (m ³ /Pa) =	5.9E-11
10 ²	v,,,,,,,	dt_2 (min) =	NA	$C_D(-) =$	6.4E-03
	10 ³	$T_{T} (m^{2}/s) =$	3.7E-08		4.8
		S (-) =	1.0E-06		
10 ¹		$K_s (m/s) =$	1.9E-09		
a state and a state of the stat	10 ²	S _s (1/m) =	5.0E-08		
	e da	Comments:	-	-	-
	(00-00)	The recommended	transmissivity o	f 3.7E-8 m2/s was d	erived from the
	10 ¹ 00 d	radial flow analysis	of the CHir pha	se, which shows the	e better data and
		derivative quality.	The confidence	ange for the interva	l transmissivity
10-1				a	.1
10-1		is estimated to be 8			
10 ⁻¹	100	transmissivity of the	e CHi phase). T	he static pressure m	easured at
10 ⁰ 10 ¹	co ^{10²} 10 ³ 10 ⁴		e CHi phase). The cHi phase of the cHi phase of the children o	he static pressure m the CHir phase usir	easured at ng straight line


	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	on <u>Test type:[1]</u>			Pi
Area:	Laxem	ar Test no:			1
Borehole ID:	KLX11	A Test start:			060705 15:25
Test section from - to (m):	283.00-303.00	m Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.07	6 Responsible for		Crist	ian Enachescu
linear plat O and p		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
3100	5	Indata	2501	Indata	1
KLX11A_283.00-303.00_060705_1_Pi_Q_r	• P section • P above	p ₀ (kPa) =	2781		
3000	• P below • Q	p _i (kPa) =	2797		
	4	p _p (kPa) =		p _F (kPa) =	2958
2900 -		$Q_{p} (m^{3}/s) =$	NA		
त ५ १	3 ਵ	tp (s) =		t _F (s) =	2700
		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-00
2 2 2 2 2 2 2	- - 2 5	EC _w (mS/m)=			
2700 -		Temp _w (gr C)=	11.1		
2600 -	- 1	Derivative fact.=	NA	Derivative fact.=	0.00
· .					
2500	080 1.00 1.20 1.40	Results		Results	
		Q/s $(m^{2}/s)=$	NA		
Log-Log plot incl. derivates-	flow period	$T_{\rm M} (m^2/s) =$	NA		
	· ·	Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	NA	dt_1 (min) =	NA
		dt_2 (min) =	NA	dt_2 (min) =	NA
		$T(m^2/s) =$	NA	$T(m^2/s) =$	2.2E-11
		S (-) =	NA	S (-) =	1.0E-06
		$K_{s}(m/s) =$	NA	$S(-) = K_s(m/s) =$	1.1E-12
			NA		
Not A	Analysed	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-08
		$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	5.6E-1
		C _D (-) =		C _D (-) =	6.2E-03
		ξ(-) =	NA	ξ(-) =	-0.7
		T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	1.0E-10
			NA	$S_{GRF}(-) =$	1.0E-06
		$S_{GRF}(-) =$			4.40
			NA	D _{GRF} (-) =	1.48
Log-Log plot incl. derivatives	- recovery period		NA		1.4
		D _{GRF} (-) =	NA	neters.	
Log-Log plot incl. derivatives			NA entative paran	n eters. C (m³/Pa) =	5.6E-11
_10, ⁻³		$\begin{array}{llllllllllllllllllllllllllllllllllll$	NA entative paran NA NA	neters. C (m ³ /Pa) = C _D (-) =	5.6E-1 6.2E-03
_10, ⁻³		$\begin{array}{llllllllllllllllllllllllllllllllllll$	NA entative paran NA NA 2.2E-11	eters. C (m ³ /Pa) = C _D (-) = ξ (-) =	5.6E-11 6.2E-03
10 ¹ 10 ² Elipsed i	ime [h]	$\begin{array}{ccc} D_{GRF} (-) & = & \\ \hline \textbf{Selected represe} \\ dt_1 (min) & = & \\ dt_2 (min) & = & \\ \hline \textbf{T}_T (m^2/s) & = & \\ \hline \textbf{S} (-) & = & \\ \end{array}$	NA entative paran NA NA 2.2E-11 1.0E-06	eters. C (m ³ /Pa) = C _D (-) = ξ (-) =	5.6E-1 6.2E-03
10, ⁻³ Elapsed ti		$\begin{array}{c} \hline D{GRF} (-) & = \\ \hline \textbf{Selected represe} \\ dt_1 (min) & = \\ dt_2 (min) & = \\ \hline T_T (m^2/s) & = \\ \hline \textbf{S} (-) & = \\ \hline \textbf{K}_s (m/s) & = \\ \hline \end{array}$	NA ntative paran NA NA 2.2E-11 1.0E-06 1.1E-12	eters. C (m ³ /Pa) = C _D (-) = ξ (-) =	5.6E-1 6.2E-03
10 ¹ 10 ¹ 10 ¹	me [h] <u>JD</u> ⁰ <u>JD</u> ¹ 3 10 ⁰		NA entative paran NA NA 2.2E-11 1.0E-06	eters. C (m ³ /Pa) = C _D (-) = ξ (-) =	5.6E-1 6.2E-03
10 ¹ 10 ¹ 10 ¹	ime [h]	$ \begin{array}{ c c c c c c c } \hline D_{GRF}(-) & = & \\ \hline \hline D_{GRF}(-) & = & \\ \hline \hline Selected repress \\ \hline dt_1(min) & = & \\ \hline dt_2(min) & = & \\ \hline \hline dt_2(min) & = & \\ \hline \hline T_T(m^2/s) & = & \\ \hline S(-) & = & \\ \hline S(-) & = & \\ \hline \hline S(-) & = & \\ \hline \hline S(-) & = & \\ \hline S(-) & = & \\ \hline \hline S(-) & = & \\ \hline S(-)$	NA entative paran NA NA 2.2E-11 1.0E-06 1.1E-12 5.0E-08	eters. C (m³/Pa) = C _D (-) = ξ (-) =	5.6E-1 ⁻ 6.2E-00 -0.1
10 ⁻¹ 10 ⁻¹ 10 ²	me [h] <u>JD</u> ⁰ <u>JD</u> ¹ 3 10 ⁰	$\begin{array}{ c c c c c c c c }\hline D_{GRF}(-) & = & \\\hline \hline D_{GRF}(-) & = & \\\hline \hline Selected repress \\ \hline dt_1(min) & = & \\\hline dt_2(min) & = & \\\hline \hline T_T(m^2/s) & = & \\\hline S(-) & = & \\\hline \hline S(-) & = & \\ \hline S(-) & = & \\\hline \hline S(-) & = & \\ \hline S(-) & = & \\\hline \hline S(-) & = \\ \hline S(-)$	NA ntative paran NA NA 2.2E-11 1.0E-06 1.1E-12 5.0E-08 transmissivity o	eters. C (m ³ /Pa) = C _D (-) = ξ (-) = ξ (-) = f 2.2E-11 m2/s was	5.6E-1 6.2E-0 -0.
10 10 10 10 10 10 10 10 10 10	ime [h] <u>JD</u> ¹ JD	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NA Intative paran NA NA 2.2E-11 1.0E-06 1.1E-12 5.0E-08 transmissivity of s of the Pi phase.	eters. C (m ³ /Pa) = C _D (-) = ξ (-) = ξ (-) = f 2.2E-11 m2/s was The confidence rar	5.6E-1 6.2E-0 -0.
10 10 10 10 10 10 10 10 10 10	ime [h] <u>JD</u> ¹ JD	$\begin{array}{c} \hline D_{GRF}\left(-\right) &= \\ \hline \textbf{Selected repress}\\ \hline \textbf{dt}_1\left(\text{min}\right) &= \\ \hline \textbf{dt}_2\left(\text{min}\right) &= \\ \hline \textbf{T}_T\left(\text{m}^2/\text{s}\right) &= \\ \hline \textbf{S}\left(-\right) &= \\ \hline \textbf{K}_s\left(\text{m/s}\right) &= \\ \hline \textbf{S}_s\left(1/\text{m}\right) &= \\ \hline \textbf{Comments:}\\ \hline The recommended radial flow analysis interval transmissive of the transmissive of transmissive of the transmissive of transmissic of transmissive of transmissive of tra$	NA Intative paran NA NA 2.2E-11 1.0E-06 1.1E-12 5.0E-08 transmissivity of s of the Pi phase. vity is estimated	eters. C (m ³ /Pa) = C _D (-) = ξ (-) = ξ (-) = f 2.2E-11 m2/s was The confidence rar	5.6E-1 ⁻ 6.2E-03 -0.7 derived from the ge for the
	ime [h] <u>10</u> 10 ¹ 10 ⁰ 0.3 10 ¹	$\begin{array}{c} \hline D_{GRF}\left(-\right) &= \\ \hline \textbf{Selected repress}\\ \hline \textbf{dt}_1\left(\text{min}\right) &= \\ \hline \textbf{dt}_2\left(\text{min}\right) &= \\ \hline \textbf{T}_T\left(\text{m}^2/\text{s}\right) &= \\ \hline \textbf{S}\left(-\right) &= \\ \hline \textbf{K}_s\left(\text{m/s}\right) &= \\ \hline \textbf{S}_s\left(1/\text{m}\right) &= \\ \hline \textbf{Comments:}\\ \hline The recommended radial flow analysis interval transmissive of the transmissive of transmissive of the transmissive of transmissic of transmissive of transmissive of tra$	NA entative paran NA NA 2.2E-11 1.0E-06 1.1E-12 5.0E-08 transmissivity of s of the Pi phase. vity is estimated m2/s. The static	f 2.2E-11 m2/s was The confidence rar to be	ge for the

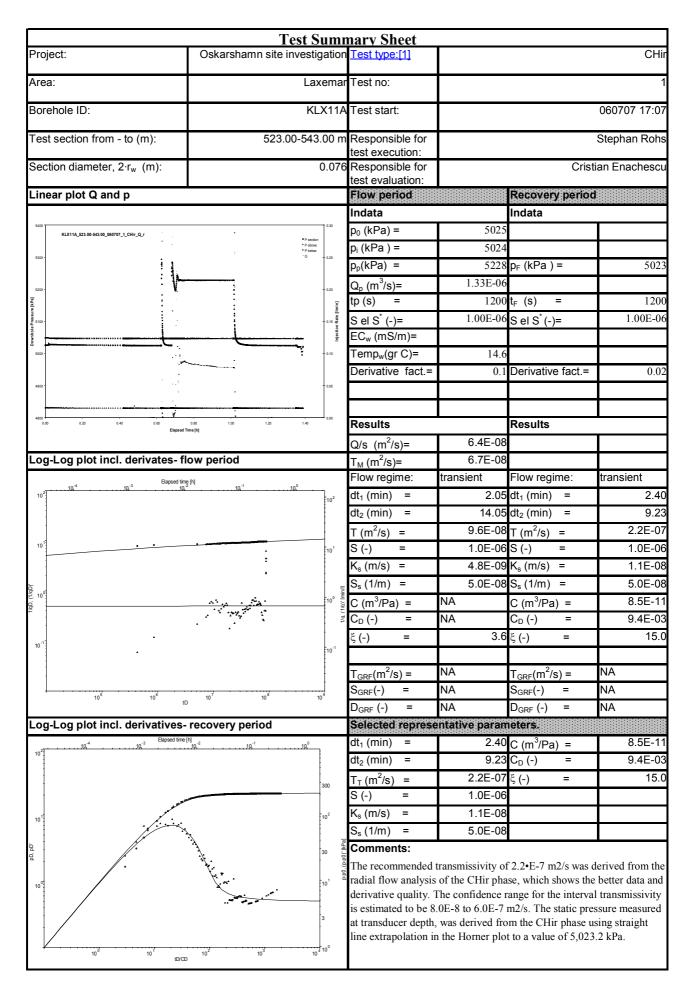
	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX11A	Test start:			060705 17:25
Test section from - to (m):	303.00-323.00 m				Stephan Rohs
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for		Criet	ian Enachescu
	0.070	test evaluation:		Clist	Ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata	*****	Indata	
3300	5	p ₀ (kPa) =	2967		
×	P action Apple P above P below O	p _i (kPa) =	2963		
3200		p _p (kPa) =	3187	p _F (kPa) =	2964
3100		$Q_{p} (m^{3}/s) =$	6.50E-05		
	³ इ	tp(s) =	1200	t _F (s) =	1200
	Rate [1m]	S el S [*] (-)=		S el S [*] (-)=	1.00E-06
	bjection Reference	$EC_w (mS/m) =$			
2900		Temp _w (gr C)=	11.5		
		Derivative fact.=		Derivative fact.=	0.1
2800	- 1		0.02		0.1
2700 0.40 0.60 -	0.80 1.00 1.20 1.40	Results		Results	
Elapsed	fime [h]		2.8E-06		1
.og-Log plot incl. derivates- fl	aw pariod	$Q/s (m^2/s) =$	3.0E-06		
Log-Log plot men derivates- m	ow period	T _M (m²/s)= Flow regime:			transiant
-3 -2 Eapsed time	[h] ₀ 1		transient	Flow regime:	transient
10 ² 10	101010	dt_1 (min) =		$dt_1 (min) =$	0.3
	10 ⁰	dt_2 (min) =		$dt_2 (min) =$	7.93
	l l	$T(m^{2}/s) =$		$T(m^2/s) =$	5.8E-06
10 ¹	0.3	S (-) =	1.0E-06		1.0E-0
0	-10 ⁻¹	$K_s (m/s) =$		K _s (m/s) =	2.9E-0
	The second se	$S_{s}(1/m) =$		S _s (1/m) =	5.0E-08
	0.03	C (m³/Pa) =	NA	C (m³/Pa) =	4.8E-10
10	·•	C _D (-) =	NA	C _D (-) =	5.3E-02
	10 ⁻²	ξ(-) =	5.8	ξ(-) =	14.1
	- 0.003	$T_{GRF}(m^2/s) =$	9 7E-07	T _{GRF} (m ² /s) =	NA
10 ¹⁰ 10 ¹¹ tD	10 ⁴² 10 ⁴³ 10 ⁴⁴	$S_{GRF}(-) =$	1.0E-06		NA
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	NA
.og-Log plot incl. derivatives-	recovery period	Selected represe			
		dt_1 (min) =			4.8E-10
Elapsed time [102]	¹ μ. ⁻²			C (m ³ /Pa) =	4.8E-10 5.3E-02
		dt_2 (min) =		$C_D(-) =$	
· ·	300	$T_{T}(m^{2}/s) =$	5.8E-06	, <i>,</i> ,	14.1
		S (-) =	1.0E-06		
101	10 ²	$K_s (m/s) =$	2.9E-07		
	- - 	$S_{s}(1/m) =$	5.0E-08		
	- [Reg] 300 (100-0) 00-0 00-0	Comments:			
100	10 ¹	The recommended			
10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A REAL PROPERTY OF THE PROPERT			se (outer zone), whi	
	3	transmissivity is est		he confidence range E-6 to 9 0E-6 m2/s	
1	l l			oth, was derived from	
10 ¹ 10 ² tD/CD	10 ³ 10 ⁴ 10 ⁵ 10 ⁰			on in the Horner plo	



	<u> </u>	<u>mary Sheet</u>			
Project:	Oskarshamn site investigation	n <u>Test type:[1]</u>			Р
Area:	Laxema	r Test no:			
Borehole ID:	KLX11/	A Test start:	060706 11:0		
Test section from - to (m):	363.00-383.00 n	n Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):	0.07	test execution: 6 Responsible for		Criet	ian Enachescu
Section diameter, $2^{-1}w$ (iii).	0.07	test evaluation:		Clist	
Linear plot Q and p		Flow period		Recovery period	
		Indata	•.•.•.•.•.•.•.•.•.•.•.•.•.•	Indata	•_•_•_•
3900 -	0.002	p ₀ (kPa) =	3530		
KLX11A_363.00-3	* P section 83.00_060706_1_PI_Q_r * P above * P below	p _i (kPa) =	3536		
3800 -	••	$p_p(kPa) =$		p _F (kPa) =	369
:		$Q_{p} (m^{3}/s) =$	NA	pr (a)	50,
3700		$\frac{Q_p (M/s)}{tp (s)} =$		t _F (s) =	396
5000	9 1000 - 1000 -				1.00E-0
3600	• 0.001 &	$S \in S^*(-)=$	1.00E-00	S el S [*] (-)=	1.00E-0
•	:	EC _w (mS/m)=	10.0		
3500 -		Temp _w (gr C)=	12.3		
		Derivative fact.=	NA	Derivative fact.=	0.0
 	·····				
3300 0.00 0.20 0.40 0.60 0.80 1.00 Elapsed Ti		Results		Results	
		Q/s (m ² /s)=	NA		
og-Log plot incl. derivates- fl	ow period	$T{M} (m^{2}/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
		dt ₁ (min) =	NA	dt ₁ (min) =	15.6
		dt_2 (min) =	NA	dt_2 (min) =	60.8
		$T(m^{2}/s) =$	NA	T (m²/s) =	1.1E-1
		S (-) =	NA	S (-) =	1.0E-0
		$K_s (m/s) =$	NA	$K_s (m/s) =$	5.3E-1
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-0
Not Ar	nalysed	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	3.6E-1
		· ,		· · · ·	4.0E-0
		- 0 ()	NA NA	- 0 ()	4.0Ľ-0 0.
		ξ(-) =	INA	ξ(-) =	0.
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	3.2E-1
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-0
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.7
.og-Log plot incl. derivatives-	recovery period	Selected represe			
		dt_1 (min) =		C (m ³ /Pa) =	3.6E-1
10 ¹		$dt_2 (min) =$	60.85	$C_{D}(-) =$	4.0E-0
	10	$T_{T} (m^{2}/s) =$	1.1E-11		4.0Ľ-0 0.
			1.0E-06		0.
		- ()			
10 ⁰	100	$K_s (m/s) =$	5.5E-13		
in the second states	- toppet	$S_{s}(1/m) =$	5.0E-08		
· · · · · · · · · · · · · · · · · · ·		Comments:			
	0.3			f 1.1E-11 m2/s was	
10-1	10-1	radial flow analysis interval transmissiv		The confidence ran	ige for the
· .	10	9.0E-12 to 5.0E-11			be extrapolated
· · ·		due to the very low		r courd not	
	0.03	-	-		



	Test S	umr	nary Sheet			
Project:	Oskarshamn site investig	ation	Test type:[1]			Р
Area:	Lax	emar	Test no:			1
Borehole ID:	KL	X11A	Test start:			060706 15:54
Test section from - to (m):	403.00-423.00 m R		Pesponsible for			Stephan Rohs
	te		test execution:			-
Section diameter, 2·r _w (m):	(0.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
F			Indata		Indata	
4200		0.002	p ₀ (kPa) =	3903		
KLX11A_403.00-423.00_060706_1_PI_Q_r 4150 -	P section Patove		p _i (kPa) =	3908		
4100 -	• P below • Q		$p_p(kPa) =$		p _F (kPa) =	4062
4050 -				NA	p _F (Ki u)	400.
ب پ 4000 -	:	-	$\frac{Q_{p} (m^{3}/s)}{tp (s)} =$		t _F (s) =	2458
କୁ 4000 କାର୍ଯ୍ୟ ଅନ୍ୟ ଅନ୍ୟ ଅନ୍ୟ		Sate [/mi				1.00E-06
		Injection Rate [//min]	$S el S^{*}(-)=$	1.00E-06	S el S [*] (-)=	1.00E-0
	i	_	EC _w (mS/m)=	12.0		
3850 -			Temp _w (gr C)=	12.9		
3800			Derivative fact.=	NA	Derivative fact.=	0.02
3750						
3700 0.00 0.20 0.40 0.60 Elapse	0.80 1.00 1.20 1.40 ed Time [h]	L 0.000	Results		Results	
			Q/s (m ² /s)=	NA		
og-Log plot incl. derivates-	flow period		$T{\rm M} (m^2/s) =$	NA		
			Flow regime:	transient	Flow regime:	transient
			dt_1 (min) =	NA	dt_1 (min) =	NA
			dt_2 (min) =	NA	dt_2 (min) =	NA
			$T(m^2/s) =$	NA	$T(m^2/s) =$	2.9E-1
			S (-) =	NA	S (-) =	1.0E-06
			$K_s (m/s) =$	NA	K _s (m/s) =	1.5E-12
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-08
Not A	nalysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	6.8E-1
			$C_{D}(-) =$		$C_{D}(-) =$	7.5E-0
			ξ(-) =	NA	ξ(-) =	7.5⊑-0. -1.
			ς(-) –		ς(-) –	-1.
			$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	1.8E-1
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-0
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.4
_og-Log plot incl. derivatives	- recovery period		Selected represe			1
Eaned ti			dt_1 (min) =	NA	C (m ³ /Pa) =	6.8E-1
10 ¹		2	$dt_2 (min) =$	NA	$C (m /Pa) = C_D (-) =$	7.5E-0
		-		2.9E-11		7.5⊑-0. -1.(
		3	$T_T (m^2/s) =$ S (-) =	1.0E-06		-1.0
			$K_{s}(m/s) =$	1.5E-12		
10 ^d		10 ⁰	$S_{s}(1/m) =$	5.0E-08		
and the second s	1 	ssur	Comments:	5.0⊑-00		
and the second sec	- / /	voluted pr		, , .	20E 11 2/	1 : 10 4
a second a s		convoli	The recommended radial flow analysis			
10-1		10 ⁻¹	interval transmissiv			
			static pressure could			
1 .		0.03	transmissivity.	r ·		
•		•				

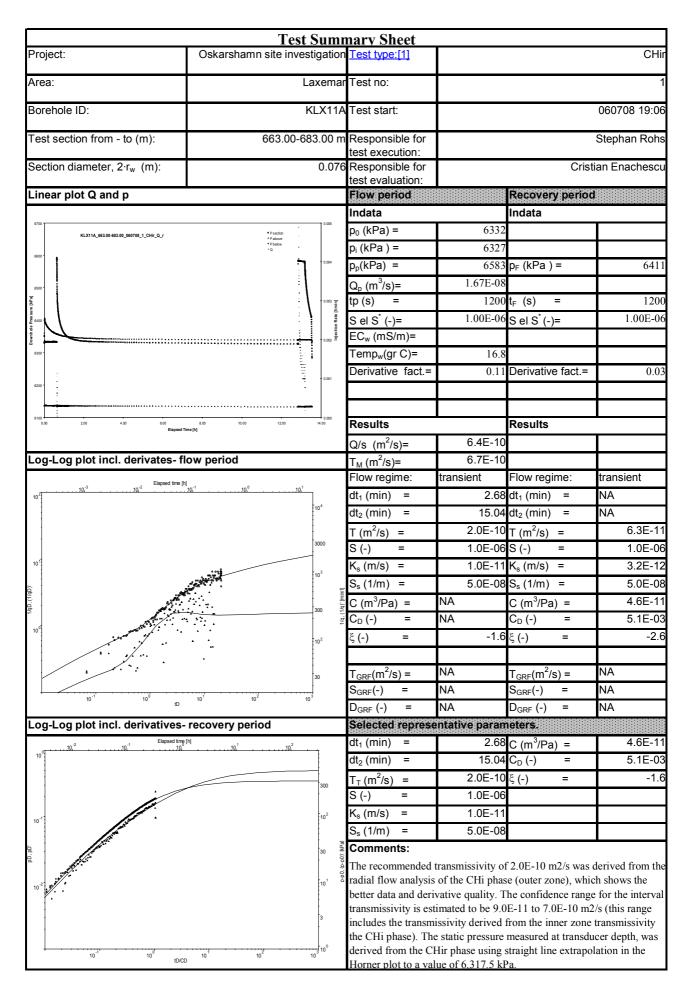


	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX11A	Test start:	060707 08:3		
Test section from - to (m):	443.00-463.00 m	Pooponsible for			Stephan Rohs
		test execution:			
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:		Crist	tian Enachescu
Linear plot Q and p		Flow period		Recovery period	1
		Indata		Indata	T, , , , , , , , , , , , , , , , , , ,
4600	0.05	p ₀ (kPa) =	4271	induita	
KLX11A_443.00-463.00_060707_1_CHir_Q_r	P section Pabove Poblow	p _i (kPa) =	4269		
4500	· P DEDW · Q 0.04	$p_p(kPa) =$		p _F (kPa) =	4269
			5.00E-07	р⊦ (кга) –	4205
400- 		$Q_{p} (m^{3}/s) =$		t _r (s) =	120(
		(C)		€F (0)	1200
2 4300		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
	۳	EC _w (mS/m)=			
4200		Temp _w (gr C)=	13.5		
4100	0.01	Derivative fact.=	0.04	Derivative fact.=	0.03
4000 0.00 0.20 0.40 0.60 0.1 Elapsed Time		Results		Results	
		Q/s $(m^{2}/s)=$	2.0E-08		
Log-Log plot incl. derivates- flo	w period	T _м (m²/s)=	2.1E-08		
Elapşed time (h	1	Flow regime:	transient	Flow regime:	transient
10 ²	<u>, 10,⁻¹ , 10,⁰ , 10</u>	dt ₁ (min) =	0.38	dt ₁ (min) =	NA
		dt_2 (min) =		dt_2 (min) =	NA
	10 ²	$T(m^2/s) =$		$T(m^2/s) =$	1.2E-07
10 ¹		S (-) =	1.0E-06		1.0E-06
	•	$K_s (m/s) =$		K _s (m/s) =	5.9E-09
:	10 ¹	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-08
			00⊑-08		5.0E-11
		C (m ³ /Pa) = C _D (-) =		C (m ³ /Pa) =	
	10° ≈	- 5 ()	NA	$C_{D}(-) =$	5.6E-03
10'1	· · · · ·	ξ(-) =	5.0	ξ(-) =	32.5
	10 -1	$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
	10 ⁸ 10 ⁹ 10 ¹⁰	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
10 ⁶ 10 ⁷ tD	10 ⁸ 10 ⁹ 10 ¹⁰	$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives- r	ecovery period	Selected represe	entative paran		
		dt ₁ (min) =		C (m ³ /Pa) =	5.0E-11
Elapsed time [h]	-2 10, ⁻¹	dt_2 (min) =		$C_{D}(-) =$	5.6E-03
	300	2	3.1E-08		5.0
		$T_T (m^2/s) =$ S (-) =	1.0E-06		5.0
i de si de	10 ²				
10	in the second second	$K_s (m/s) =$	1.6E-09		
	30 👼	$S_{s}(1/m) =$	5.0E-08		
	**************************************	Comments:			
		The recommended			
100	•	radial flow analysis		se, which shows a be for the interval tran	
	3			2/s. The static press	
	3	transducer depth, w			
	100			a value of $4,269.7$ k	

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			P
Area:	Laxema	ar Test no:			
Borehole ID:	KLX11	A Test start:			060707 10:33
Test section from - to (m):	463 00-483 00 1	n Responsible for			Stephan Roh
	a section from - to (m): 463.00-483.00 m				·
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for test evaluation:		Crist	ian Enachesci
Linear plot Q and p	1	Flow period		Recovery period	
• • • • •		Indata		Indata	
4800	0.003	p ₀ (kPa) =	4461	indutu	
KLX11A_463.00-483	.00_060707_1_PI_Q_r	p ₀ (kPa) =	4485		
4700	<u> </u>				455
		p _p (kPa) =		p _F (kPa) =	457
	0.002	Q _p (m ³ /s)=	NA		
		tp (s) =		t _F (s) =	447
4500	and the second sec	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0
		EC _w (mS/m)=			
4400 .	• P section 0.001	Temp _w (gr C)=	13.8		
	Pabove Pbelow O	Derivative fact.=	NA	Derivative fact.=	0.0
4300					
4200				D	
0.00 0.50 1.00 Elapsed	1.50 2.00 Time [h]	Results	1	Results	
		Q/s (m ² /s)=	NA		
.og-Log plot incl. derivates- f	low period	$T_{M} (m^{2}/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	NA	dt ₁ (min) =	9.0
		dt_2 (min) =	NA	dt ₂ (min) =	32.9
		$T(m^2/s) =$	NA	$T(m^2/s) =$	5.7E-1
		S (-) =	NA	S (-) =	1.0E-0
		$K_s (m/s) =$	NA	K _s (m/s) =	2.8E-1
Not A	nalysed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-0
	5	$C (m^3/Pa) =$	NA	C (m ³ /Pa) =	6.3E-1
		C _D (-) =	NA	C _D (-) =	6.9E-0
		ξ(-) =	NA	ξ(-) =	-0.
		T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	1.6E-1
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-0
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.02 0
ag Lag plat incl. derivatives	receiver, paried				
og-Log plot incl. derivatives-		Selected represe			
Elapsed tim	e [h] 10 ^{,-1}	dt_1 (min) =		C (m ³ /Pa) =	6.3E-1
	3	dt_2 (min) =		C _D (-) =	6.9E-0
		$T_{T}(m^{2}/s) =$	5.7E-11		-0.
	100	S (-) =	1.0E-06		
	Contraction of the second s	$K_s (m/s) =$	2.9E-12		
10 °	0.3	$S_{s}(1/m) =$	5.0E-08		
شميبير منفنع ا	a lifette and and a second	Comments:			
· · · · · · · · · · · · · · · · · · ·	10'1	pa	transmissivity of	f 5.7E-11 m2/s was	derived from th
	10			The confidence ran	
10-1	Į	interval transmissiv			50 101 ult
	0.03			pressure could not	be extrapolated
•	10 ⁻²	due to the very low			1
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³				

	Test Sumr	nary Sheet				
Project:	Oskarshamn site investigation				CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX11A	Test start:			060707 15:12	
Test section from - to (m):	503.00-523.00 m	Responsible for test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu	
		test evaluation:				
Linear plot Q and p		Flow period		Recovery period		
5100 T	f6	Indata	4020	Indata		
KLX11A_503.00-523.00_060707_1_CHir_Q_r	P sector Pabove	p ₀ (kPa) =	4838			
	Peleiw Q 5	p _i (kPa) =	4837			
5000 -		p _p (kPa) =		p _F (kPa) =	4838	
· · · · · · · · · · · · · · · · · · ·	•	Q _p (m ³ /s)=	5.83E-05			
	[umm]	tp (s) =		t _F (s) =	1200	
	Ity eet on R tee [7 min]	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
5 5 4800	Inject	EC _w (mS/m)=				
· · · · · · · · · · · · · · · · · · ·	. 2	Temp _w (gr C)=	14.4			
4700		Derivative fact.=	0.04	Derivative fact.=	0.02	
·	+ 1					
4600		Results		Results		
Elapsed T	ime [h]	Q/s (m ² /s)=	2.9E-06			
Log-Log plot incl. derivates- flo	ow period	C/3 (m ² /s)=	3.0E-06			
	-	Flow regime:	transient	Flow regime:	transient	
Hapsed time 10 ²	<u> </u>	dt_1 (min) =		dt_1 (min) =	0.92	
	10 ⁰	dt_2 (min) =		dt_2 (min) =	14.08	
		2		$T(m^2/s) =$	4.1E-06	
	0.3	T (m²/s) = S (-) =	1.0E-06		1.0E-06	
10 1	0.3	$S(-) = K_s(m/s) =$		$K_{s}(m/s) =$	2.1E-07	
	:			$S_{s}(1/m) =$	5.0E-08	
		es ()	5.0E-08			
	ू 0.03 ए	$C (m^{3}/Pa) =$		$C (m^{3}/Pa) =$	1.2E-09	
10.0	4.1.1	.,	NA	C _D (-) =	1.3E-01	
۵۰ ما با با ماه مدر . معالمه مربع ماه م	10'2	ξ(-) =	5.0	ξ(-) =	1.0	
		2		2		
	• [0.003	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
10 ⁹ 10 ¹⁰ tD	10 ¹¹ 10 ¹² 10 ¹³	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
	<u> </u>	$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-		Selected represe				
10 ²		dt_1 (min) =		C (m ³ /Pa) =	1.2E-09	
		$dt_2 (min) =$		C _D (-) =	1.3E-01	
	10 ³	$T_{T} (m^{2}/s) =$	4.1E-06		1.0	
		S (-) =	1.0E-06			
10 1	300	$K_s (m/s) =$	2.1E-07			
1		$S_{s}(1/m) =$	5.0E-08			
n		Comments:				
	10 ⁴ (2) - (2)			f 4.1E-6 m2/s was de		
10 ¹⁷	30			se, which shows the		
	A state of the sta			ange for the interva m2/s. The static pre-		
	10 ¹			m2/s. The static pre-		
				t to a value of 4,830		
10 ^d 10 ⁱ	3 10 ² 10 ³ 10 ⁴	-				
10 10 tD/CD	10 10					

	Test S	umn	<u>nary Sheet</u>	-		
Project:	Oskarshamn site investig	gation	Test type:[1]			Р
Area:	Lax	emar	Test no:			
Borehole ID:	KL	X11A	Test start:			060707 19:07
Test section from - to (m):	543.00-563	.00 m	Responsible for			Stephan Rohs
		0.070	test execution:		Orist	
Section diameter, 2·r _w (m):		0.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	1
			Indata		Indata	•_•_•_•
550		0.003	p₀ (kPa) =	5211		
KLX11A_543.00-563.00_060707_1_Pi_Q_r	P section P above		p _i (kPa) =	5219		
540	■ P below • Q		p _p (kPa) =	5439	p _F (kPa) =	534
5350 -			$Q_{p} (m^{3}/s) =$	NA	,	
	i i	0.002 T	tp(s) =	10	t _F (s) =	4536
	•	a Rato ()/min	S el S [*] (-)=		S el S [*] (-)=	1.00E-0
	•••••••••••••••••••••••••••••••••••••••	Inje ctio n	EC _w (mS/m)=		0 0 0 (-)-	
550		0.001	Temp _w (gr C)=	15.0		
5100 -			Derivative fact.=		Derivative fact.=	0.0
5050			20			
500 200 400 6.00		0.000				
Bapsed	fime (b)		Results		Results	
			Q/s (m ² /s)=	NA		
.og-Log plot incl. derivates- fl	ow period		$T_{M} (m^{2}/s) =$	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	NA
			dt ₂ (min) =	NA	dt ₂ (min) =	NA
			T (m²/s) =	NA	T (m²/s) =	1.2E-1
			S (-) =	NA	S (-) =	1.0E-0
			$K_s (m/s) =$	NA	$K_s (m/s) =$	6.1E-1
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-0
Not A	nalysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.1E-1
			$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	1.2E-0
			ξ(-) =	NA	ξ(-) =	-0.
) x ()) د ا	
			T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	1.7E-1
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-0
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.
.og-Log plot incl. derivatives-	recovery period		Selected represe			l
Elaosed tim	e [h]		dt_1 (min) =	NA	C (m ³ /Pa) =	1.1E-1
10 ¹	······································	7	dt_2 (min) =	NA	$C_{D}(-) =$	1.2E-0
		-	$T_T (m^2/s) =$	1.2E-12		-0.
		-10 ¹	S(-) =	1.0E-06		-0.
		-	$K_{s}(m/s) =$	6.0E-14		
10 ⁰		3				
Less and Less	A for the second	ressur	S _s (1/m) = Comments:	5.0E-08		
100 mm + + + + + + + + + + + + + + + + +	/•	10 ⁰ luted p		4	C1 OF 10	domina 1.0 d
		Deconv	The recommended radial flow analysis		1.2E-12 m2/s was The confidence rar	
· · · · · · · · · · · · · · · · · · ·		1				50 101 uie
10 ¹¹		0.3	interval transmissiv	ity is estimated	to be	
10 ⁻¹		0.3	interval transmissiv 7.0E-13 to 4.0E-12	m2/s. The static		be extrapolated
10 ⁻¹		0.3		m2/s. The static		be extrapolated


	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxema	Test no:			1
Borehole ID:	KLX11A	Test start:	060708 08:5		
Test section from - to (m):	563 00-583 00 r	Responsible for			Stephan Rohs
		test execution:			
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p		Flow period	-	Recovery period	1
		Indata		Indata	·····
5700 KLX11A_563.00-583.00_060708_1_CHir_Q_r		p₀ (kPa) =	5395		
5500	P section 14 P above P below	p _i (kPa) =	5392		
		$p_p(kPa) =$	5590	p _F (kPa) =	5394
5500		$Q_{p} (m^{3}/s) =$	1.47E-04		
		$\frac{d_p (m/s)}{tp (s)} =$		t _F (s) =	1200
	8 8 PE	S el S [*] (-)=		s el S [*] (-)=	1.00E-06
500 - 3	a bisction Reference	EC _w (mS/m)=	1.002-00	S el S (-)=	1.002-00
	-6 =	Temp _w (gr C)=	15.1		
5200 	4	Derivative fact.=		Derivative fact.=	0.1
5100	2	Derivative lact	0.03		0.1
5000 0.20 0.40 0.60 0.0	0 1.00 1.20 1.40				
0.00 0.20 0.40 0.60 0.8 Elapsed Time		Results		Results	
		Q/s (m ² /s)=	7.3E-06		
-og-Log plot incl. derivates- flow	<i>w</i> period	T _M (m ² /s)=	7.6E-06		
Elapsed time [h]	² 10 ⁻¹ 10 ⁰	Flow regime:	transient	Flow regime:	transient
10 ²		dt_1 (min) =		dt_1 (min) =	0.45
	0.3	dt_2 (min) =		dt_2 (min) =	17.96
		T (m²/s) =		T (m²/s) =	2.7E-05
0 0 0 00 6564W 0000	10 ⁻¹	S (-) =	1.0E-06	S (-) =	1.0E-06
10		$K_s (m/s) =$	9.8E-07	$K_s (m/s) =$	1.4E-06
	0.03	S _s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-08
•	1 1 1 1	C (m³/Pa) =	NA	C (m³/Pa) =	1.6E-09
· · · · · · · · · · · · · · · · · · ·	10 ⁻²	^t C _D (-) =	NA	C _D (-) =	1.8E-01
10	A state washe with	ξ(-) =	8.7	ξ(-) =	13.5
	0.003				
•		$T_{GRF}(m^2/s) =$	7.0E-06	T _{GRF} (m ² /s) =	8.2E-06
11 12 13	10-3	$S_{GRF}(-) =$	1.0E-06		1.0E-06
10 ¹¹ 10 ¹² 10 ¹³ tD	10 ¹⁴ 10 ¹⁵ 10 ¹⁶	$D_{GRF}(-) =$		$D_{GRF}(-) =$	2.1
Log-Log plot incl. derivatives- re	ecovery period	Selected represe			
Elenand time [h]		dt_1 (min) =	0.45		1.6E-09
10 ² Edused whe (11)	<u> </u>	dt_2 (min) =		$C_{D}(-) =$	1.8E-01
			2.7E-05		13.5
	300	$T_T (m^2/s) =$ S (-) =	1.0E-06		13.0
		- ()			
10	1 0 ²	$K_s (m/s) =$	1.4E-06		
	: 	$S_{s}(1/m) =$	5.0E-08		
	30	Comments:			
	4 4	The recommended			
10.0	10 ¹	radial flow analysis		se, which shows the range for the interva	
A				m2/s. The static pre	
•	3	at transducer depth.			
		line extrapolation in			
10 ¹ 10 ²		-	•		
tD/CD	10				

	Test Sur	mma	ry Sheet			
Project:	Oskarshamn site investigati	tion <u>Te</u>	est type:[1]			CHi
Area:	Laxen	narTe	est no:			1
Borehole ID:	KLX1	1A Te	est start:			060708 10:53
Test costion from to (m):	F03 00 603 00		ononcible for			Ctanhan Daha
Test section from - to (m):	583.00-603.00		sponsible for st execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.0		esponsible for st evaluation:		Crist	ian Enachescu
Linear plot Q and p			ow period	I	Recovery period	
			data		Indata	
5900	1.0 KLX11A_583.00-603.00_060708_1_CHir_Q_r		(kPa) =	5583		
		p _i ((kPa) =	5585		
5500	0.8		(kPa) =	5786	p _F (kPa) =	559
	• P section • P above		(m ³ /s)=	4.33E-06		
5700 · · · ·	• P below • Q	4.00	(s) =		t _F (s) =	120
5000			el S [*] (-)=		S el S [*] (-)=	1.00E-0
			C _w (mS/m)=	1.002.00	3 el 3 (- <i>)</i> -	1.002.0
5500	0.4		emp _w (gr C)=	15.6		
			erivative fact.=		Derivative fact.=	0.0
5400	02			0.1		0.0
5300 0.00 0.20 0.40 0.60 Elapsed Tim	0.00 1.00 1.20 1.40 (h)	Re	sults		Results	
		Q/:	s (m²/s)=	2.1E-07		
_og-Log plot incl. derivates- flo	w period	Τ _M	₁ (m²/s)=	2.2E-07		
.4 .3 Elapsed time [h]] .1 0	Flo	ow regime:	transient	Flow regime:	transient
10 2 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	<u> </u>	dt ₁	(min) =	1.01	dt ₁ (min) =	NA
	101	dt ₂	2 (min) =	4.52	dt ₂ (min) =	NA
			(m²/s) =	5.4E-07	T (m²/s) =	7.9E-0
- 6*		S (, ,	1.0E-06		1.0E-0
10 1	3		(m/s) =		$K_s (m/s) =$	4.0E-0
****	10 [°]	-	(1/m) =		$S_{s}(1/m) =$	5.0E-0
	•	, ii	(m ³ /Pa) =	NA	C (m ³ /Pa) =	1.6E-1
· · ·		5	· ,		$C_D(-) =$	1.8E-0
10 ^d	an in the standard and the second	ξ(·			ξ(-) =	14.
	10 ⁻¹		-) –	0.1	ج (⁻) ح	
· · · · ·		T	_{RF} (m ² /s) =	5 4F-07	T _{GRF} (m ² /s) =	7.9E-0
· · · · · · · · · · · · · · · · · · ·	0.03		$_{\rm RF}(-) =$	1.0E-06		1.0E-0
10 ^{10'} 10 ^{11'} tD	10 ¹² 10 ¹³ 10 ¹⁴		$_{BRF}(-) =$		$D_{GRF}(-) =$	1.9
_og-Log plot incl. derivatives- r	ecovery period		lected represe			1.0,
Log-Log plot mci. denvatives- i			$(\min) =$	NA		1.6E-10
10 ²			$(\min) =$ (min) =	NA	C (m ³ /Pa) =	1.8E-0
					$C_D(-) =$	
	300		$(m^2/s) =$	7.9E-07		14.
and the second		S (1.0E-06		
10	10 ²		(m/s) =	4.0E-08		
			(1/m) =	5.0E-08		
	30	2	omments:			
	i i i i i i i i i i i i i i i i i i i		e recommended	transmissivity of	7.9E-7 m2/s was d	erived from the
10 ⁰	10 ¹				se (inner zone), whi	
	·.•				he confidence range E-7 to 1.0E-6 m2/s.	
	3				oth, was derived from the state of the state	
					on in the Horner plo	
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵		581.5 kPa.	T	provide the provid	
tD/CD	10 10					

	Test S	umn	nary Sheet			
Project:	Oskarshamn site investig	ation	Test type:[1]			Р
Area:	Lax	emar	Test no:			
Borehole ID:	KLX11A T		Test start:			060708 13:17
Test section from - to (m):	603.00-623.00 m R		Responsible for			Stephan Rohs
			test execution:			·
Section diameter, $2 \cdot r_w$ (m):	(0.076	Responsible for test evaluation:		Crist	ian Enachescı
Linear plot Q and p			Flow period		Recovery period	
• •			Indata		Indata	
6100		0.003	p ₀ (kPa) =	5772		
ĸLx	11A_603.00-623.00_060708_1_Pi_Q_r		p _i (kPa) =	5778		
6000 ·			p _p (kPa) =		p _F (kPa) =	593
				NA	ρ _F (Ki α) –	575
5900 -		0.002	$Q_{p} (m^{3}/s) =$		t _r (s) =	246
600	:	[// min]	(C)		(C)	246
5800	•	injection Rate [//m in]	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0
	*	Inject	EC _w (mS/m)=			
5700	P section	0.001	Temp _w (gr C)=	15.9		
	• P above • P below • Q		Derivative fact.=	NA	Derivative fact.=	0.0
5600 1						
5500 0.00 0.20 0.40 0.60	0.80 1.00 120 1.40	0.000	Results		Results	
Elapsed Ti	ime (h)		Q/s $(m^{2}/s)=$	NA		
.og-Log plot incl. derivates- fl	ow period		$T_{M} (m^{2}/s) =$	NA		
	-		Flow regime:	transient	Flow regime:	transient
			dt_1 (min) =	NA	dt_1 (min) =	2.9
			dt_2 (min) =	NA	dt_2 (min) =	35.2
			$T(m^2/s) =$	NA	$T(m^2/s) =$	4.4E-1
			S (-) =	NA	S (-) =	1.0E-0
			$K_s (m/s) =$	NA	K _s (m/s) =	2.2E-1
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	5.0E-0
Not Ai	nalysed			NA		5.5E-1
			C (m ³ /Pa) =		C (m³/Pa) =	
			C _D (-) =	NA	C _D (-) =	6.1E-0
			ξ(-) =	NA	ξ(-) =	-0.
			T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	1.0E-0
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E+0
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.
.og-Log plot incl. derivatives-	recovery period		Selected represe			1
		a ¹	dt ₁ (min) =		C (m ³ /Pa) =	5.5E-1
10 ¹	·····µ · · · · · · · · · · · · · · · ·	1	dt_2 (min) =		$C_{D}(-) =$	6.1E-0
	_	3	,	4.4E-11		-0.
			$T_T (m^2/s) =$ S (-) =	4.4L-11 1.0E-06		-0.
		10 [°]	5()			
100			$K_s (m/s) =$	2.2E-12		
in the state of th	A A A A A A A A A A A A A A A A A A A	0.3 Inse	$S_{s}(1/m) =$	5.0E-08		
	*	uted pr	Comments:			
		10 ⁻¹	The recommended			
10-1			the radial flow anal			range for the
ľ		0.03	interval transmissiv 1.0•10-11 to 9.0•10			not he
+			extrapolated due to			
					- ·	
		10 ⁻²	1			

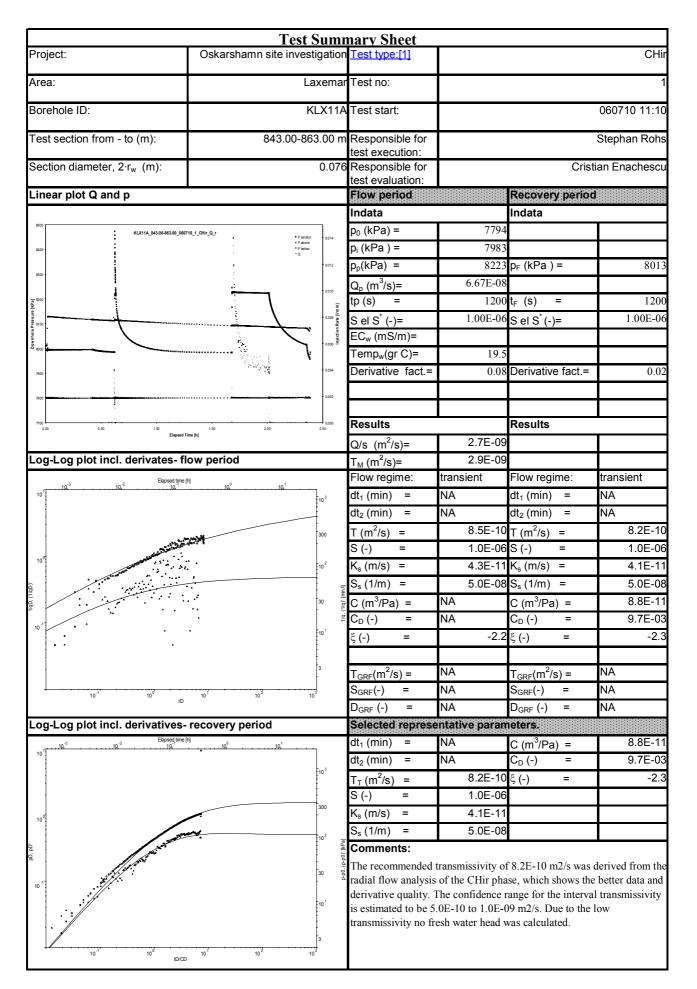
	Test Su	ımn	nary Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			Р
Area:	Laxe	emar	Test no:			1
Borehole ID:	KL>	(11A	Test start:			060708 15:12
Test section from - to (m):	623.00-643.0)0 m	Responsible for			Stephan Rohs
			test execution:			-
Section diameter, $2 \cdot r_w$ (m):	0	.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
• •			Indata		Indata	
6300 KLX11A_623.00-643.00_060708_1_Pi_Q_r]	0.003	p ₀ (kPa) =	5957	indulu	
KLX11A_623.00-643.00_060708_1_M_Q_Y			p _i (kPa) =	5963		
6200 ·			$p_p(kPa) =$		p _F (kPa) =	617
				NA	p _F (Ki a) −	017.
6100 ·		0.002	$\frac{Q_p (m^3/s)}{tp (s)} =$		t _F (s) =	246
	:	te [Vmin]				1.00E-0
6000		injection Rate [//min]	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0
		-	EC _w (mS/m)=			
8900 -	•0	0.001	Temp _w (gr C)=	16.2		
6800 ·	• P above • P below • Q		Derivative fact.=	NA	Derivative fact.=	0.2
0.00 0.20 0.40 0.60 Elapsed Tr	0.80 1.00 1.20 1.40	0.000	Results		Results	
			Q/s (m ² /s)=	NA		
_og-Log plot incl. derivates- fl	ow period		T _M (m ² /s)=	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	NA
			dt ₂ (min) =	NA	dt ₂ (min) =	NA
			T (m²/s) =	NA	T (m²/s) =	1.3E-1
			S (-) =	NA	S (-) =	1.0E-0
			$K_s (m/s) =$	NA	K _s (m/s) =	6.6E-1
			S _s (1/m) =	NA	S _s (1/m) =	5.0E-0
Not Ai	nalysed		C (m³/Pa) =	NA	C (m³/Pa) =	6.0E-1
			$C_{D}(-) =$	NA	$C_{D}(-) =$	6.6E-0
			ξ(-) =	NA	ξ(-) =	-1.
			T _{GRF} (m ² /s) =	NA	T _{GRF} (m²/s) =	NA
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
.og-Log plot incl. derivatives-	recovery period		Selected represe			
Elaosed time			dt ₁ (min) =	NA	C (m ³ /Pa) =	6.0E-1
10 ¹ 10 ¹³			dt_2 (min) =	NA	$C_{D}(-) =$	6.6E-0
	AND CONTRACTOR OF CONTRACTOR OFONTO O	10 ¹	$T_{T}(m^{2}/s) =$	1.3E-11		-1.
	and the second s		S(-) =	1.0E-06		
	· see	3	K _s (m/s) =	6.5E-13		
10°			$S_{s}(1/m) =$	5.0E-08		
and the second se		10 ⁰ Inse	$S_{s}(1/11) =$ Comments:	5.0E-08		
and the second sec	ł	huted p.		tronomicai-it-	F1 2E 11 m2/	dorived from (1
A Start		0.3 Deconvo	The recommended tradial flow analysis			
10 ⁻¹			for the interval trans			
· · · · · · · · · · · · · · · · · · ·		10 ⁻¹	m2/s. The static pre			
			transmissivity.			
<u> </u>		0.03				

KL) 643.00-663.	emar X11A 00 m	Test type:[1] Test no: Test start:			P 1
KL) 643.00-663.	X11A 00 m				1
643.00-663.	00 m	Test start:			
					060708 17:10
(Responsible for			Stephan Rohs
(test execution: Responsible for		Criet	ian Enachescu
		test evaluation:		Char	
		Flow period		Recovery period	
		Indata		Indata	
• P section	0.003	p₀ (kPa) =	6144		
Pabove Pbelow Q		p _i (kPa) =	6153		1
		p _p (kPa) =	6368	p _F (kPa) =	613
	0.002	Q _n (m ³ /s)=	NA		1
		tp (s) =	10	t _F (s) =	240
•	Rate [//n	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0
	njection				
	0.001		16.5		
				Derivative fact.=	0.0
	0.000	Posults		Poculte	
a]			ΝΑ	Results	1
w pariod					
w period				Elow rogimo:	transiont
		=			transient
				· · · ·	NA
		, ,		. ,	NA
		. ,		, ,	2.1E-1
					1.0E-0
					1.1E-1
lvsed					5.0E-0
		,		. ,	3.1E-1
					3.4E-0
		ξ(-) =	NA	ξ(-) =	-1.
		T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	5.3E-1
		S _{GRF} (-) =	NA	S _{GRF} (-) =	1.0E-0
		D _{GRF} (-) =	NA	D _{GRF} (-) =	1.
ecovery period		Selected represe	entative param	ieters.	
. 10 ⁻¹ 10 ⁰ 10 ¹		dt ₁ (min) =	NA	C (m³/Pa) =	3.1E-1
		dt ₂ (min) =	NA	$C_{D}(-) =$	3.4E-0
	30	$T_{T}(m^{2}/s) =$	2.1E-12	ξ(-) =	-1.
		S (-) =			1
	10 ¹		1.1E-13		1
	α pressu				
Cidit Me	oluted		transmissivity of	2.1E-12 m2/s was	derived from th
· stirler,					
		interval transmissiv	vity is estimated t	to be	-
	0.3			pressure could not	be extrapolated
		due to the very low	transmissivity.		
	10-1				
	w period	Period Period	$P_{p}(kPa) = \frac{P_{p}(kPa)}{P_{p}(kPa)} = \frac{Q_{p}(m^{3}/s) = \frac{P_{p}(kPa)}{P_{p}(kPa)} = \frac$	$P_{p}(kPa) = 6153$ $P_{p}(kPa) = 6368$ $Q_{a}(m^{3}/s) = NA$ $P_{b}(kPa) = 100$ $Set S'(-) = 1.00E-06$ $EC_{w}(mS/m) = 1$ $Temp_{w}(gr C) = 1.6.5$ $Derivative fact = NA$ $Q/s (m^{2}/s) = NA$ $Results$ $Results$ $Results$ $Q/s (m^{2}/s) = NA$ $Results$ $Results$ $Results$ $Q/s (m^{2}/s) = NA$ $Results$ $Results$ $Results$ $Results$ $Q/s (m^{2}/s) = NA$ $Results$ R	$P_{p}(RPa) = 6153$ $P_{p}(RPa) = 6368 p_{F}(RPa) = 0$ $Q_{0}(m^{3}s) = NA$ $P_{0}(R) = 100 t_{F}(s) = 100 t_{$

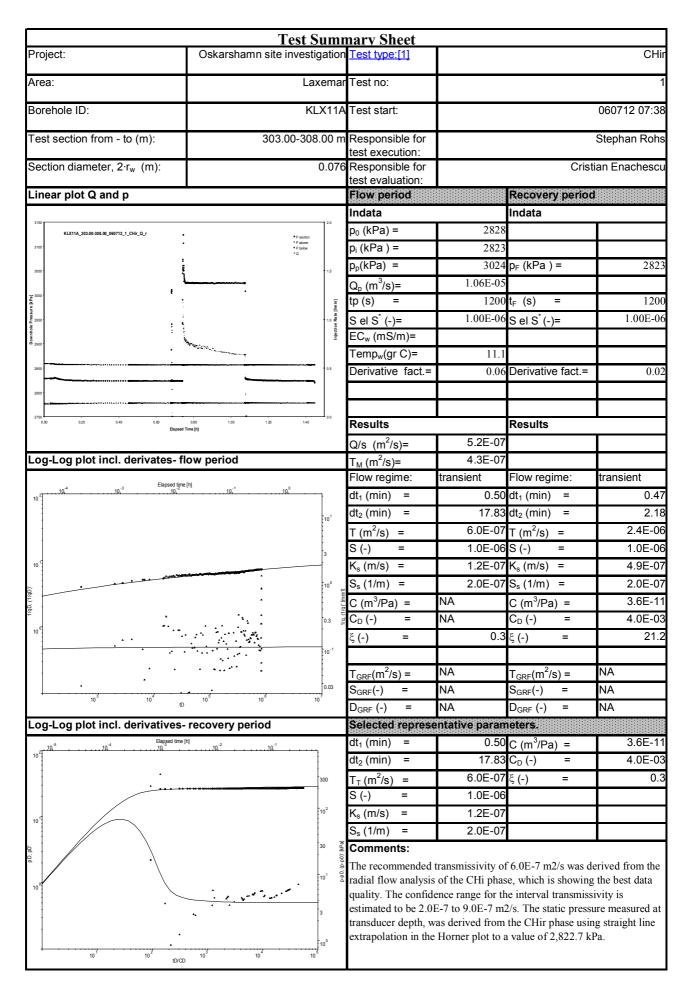
		<u>nmary Sheet</u>	-			
Project:	Oskarshamn site investigat	ion <u>Test type:[1]</u>			Р	
Area:	Laxen	nar Test no:				
Borehole ID:	KLX1	1A Test start:		060709 09:11		
Test section from - to (m):	683.00-703.00) m Responsible for			Stephan Rohs	
Section diameter, 2·r _w (m):	0.0	test execution: 076 Responsible for		Cris	tian Enachescu	
		test evaluation:				
Linear plot Q and p		Flow period		Recovery period	þ	
8800 -		Indata		Indata		
KLX11A_683.00-703.00_060709_1_Pi_Q_r	. 0.00	p ₀ (kPa) =	6513			
6750		p _i (kPa) =	6516			
6700		p _p (kPa) =	6740	p _F (kPa) =	655	
eeso -	P section P above 0.002	$Q_{p} (m^{3}/s) =$	NA			
E 6600 -	· P below · Q	tn (s) =	10	t _F (s) =	252	
911 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0	
	;	$\frac{(p(s)) - (p(s))}{S \text{ el } S^{*}(-) =}$ $EC_{w} (mS/m) =$		00.0()		
	•	T a a a a b b b b b b b c b c b c b c b c c c c c c c c c c	17.1		1	
6450 -		Derivative fact.	= NA	Derivative fact.=	0.0	
6400						
6350		Results		Results		
0.00 0.20 0.40 0.60 0 Elapsed Tim	1.80 1.00 1.20 1.40 e [h]		NA	Results	1	
an lon ploting, derivator, fla	w pariod	$Q/s (m^2/s) =$	NA			
Log-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	_		transiant	
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		dt_2 (min) =	NA	$dt_2 (min) =$	NA	
		T (m²/s) =	NA	T (m²/s) =	1.5E-1	
		S (-) =	NA	S (-) =	1.0E-0	
		$K_s (m/s) =$	NA	$K_{s}(m/s) =$	7.5E-1	
Not An	alved	S _s (1/m) =	NA	S _s (1/m) =	5.0E-0	
Not All	arysea	C (m ³ /Pa) =	NA	C (m³/Pa) =	5.3E-1	
		C _D (-) =	NA	C _D (-) =	5.9E-0	
		ξ(-) =	NA	ξ(-) =	-0.	
		$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	2.6E-1	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-0	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.8	
Log-Log plot incl. derivatives-	recovery period	Selected repres	sentative paran			
Eapsed time [t	1] 10 ⁻² 10 ⁻¹ 10 ⁰	dt_1 (min) =	NA	C (m³/Pa) =	5.3E-1	
10 ²	ua , , , , , , , , , , , , , , , , , , ,	dt_2 (min) =	NA	$C_{D}(-) =$	5.9E-0	
		$T_{T}(m^{2}/s) =$	1.5E-10		-0.	
	3	S(-) =	1.0E-06		0.	
	F10		7.5E-12			
10 1	10	$S_{s}(1/m) =$	5.0E-08			
			0.00-00	1		
	0.3	Itee	4	£1.5-10.10 m·2/a ····	a dominand from	
	10			f 1.5•10-10 m2/s wa ase (outer zone). Th		
10 "	10			is estimated to be		
· · · · · ·	······································	6.0E-11 to 3.0E-1		pressure could not	be extrapolated	
	••••••	³ due to the very lo				
10 ⁻¹ 10 ^d	10 ¹ 10 ² 10 ³	-2				

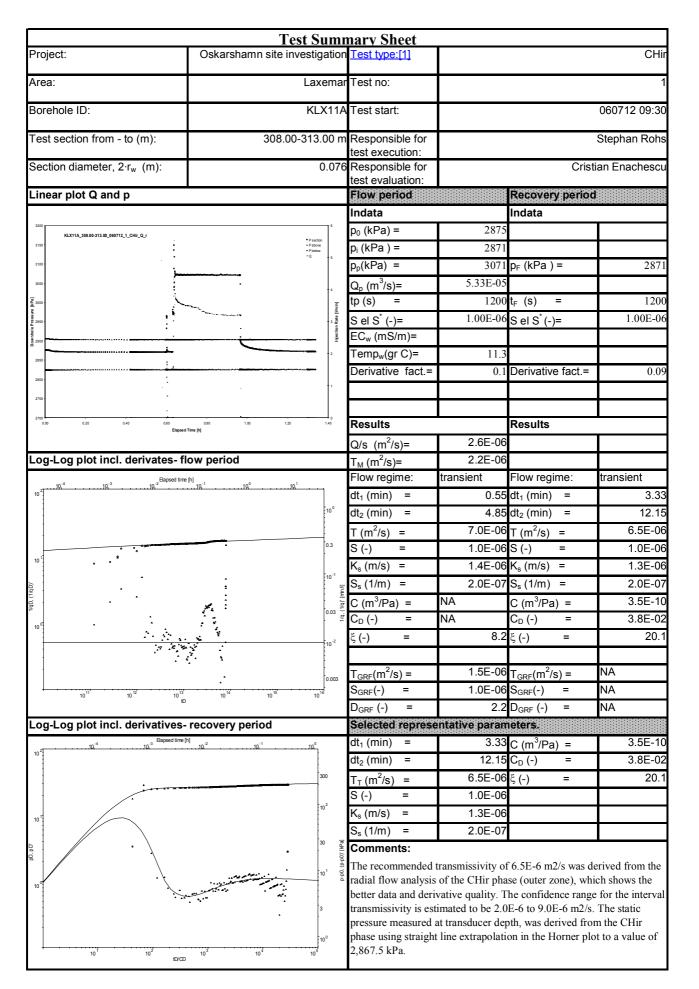
	Test S	umr	nary Sheet			
Project:	Oskarshamn site investi	gation	Test type:[1]			CHi
Area:	Lax	xemar	Test no:			1
Borehole ID:	KL	X11A	Test start:	060709 11:08		
Test section from - to (m):						Stephan Rohs
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for		Crist	ian Enachescu
		0.070	test evaluation:		Olist	
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
7000	KLX11A_703.00-723.00_060709_1_CHir_Q_r	0.05	p ₀ (kPa) =	6700		
0990 ·			p _i (kPa) =	6718		
6900 -		0.04	p _p (kPa) =	6928	p _F (kPa) =	676
8850			$Q_{p} (m^{3}/s) =$	5.00E-08		
6600		0.03 E	tp(s) =	1200	t _F (s) =	240
E 6000		Rate [1/m]	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-0
	J	Injection Rate [1/min]	$EC_w (mS/m) =$			
§ 6700	•	u.02 =	Temp _w (gr C)=	17.3		
6650 -	•D section		Derivative fact.=	0.08	Derivative fact.=	0.0
8600 -	P above P below Q	0.01				
6590	No.					
6500 0.00 0.50 1.00	150 2.00	0.00	Results		Results	
Elapsed Time	[ħ]		Q/s (m ² /s)=	2.3E-09		
og-Log plot incl. derivates- flo	w period		$T{M} (m^{2}/s) =$	2.4E-09		
Elapsed time [h]	-		Flow regime:	transient	Flow regime:	transient
101	4 · · · · · · · · · · · · · · · · · · ·		dt_1 (min) =	NA	dt_1 (min) =	NA
		3000	dt_2 (min) =	NA	dt_2 (min) =	NA
			$T(m^2/s) =$	1.9E-10	$T(m^2/s) =$	2.6E-1
		10 ³	S (-) =	1.0E-06		1.0E-0
100			$K_s(m/s) =$		$K_s (m/s) =$	1.3E-1
		300 _	$S_{s}(1/m) =$		$S_{s}(1/m) =$	5.0E-0
		a)" [min/	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.4E-1
		10 ² b	$C_{D}(-) =$		$C_{D}(-) =$	1.6E-0
10-1			ξ(-) =		ξ(-) =	-3.
		30	ς(-) –	-0.7	ς (-) –	-5.
· · ·			$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
		10 ¹	$S_{GRF}(m/s) =$ $S_{GRF}(-) =$	NA	$I_{GRF}(m/s) =$ $S_{GRF}(-) =$	NA
10 ⁻² 10 ⁻¹ tD	10 ^d 10 ¹ 10 ²		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
_og-Log plot incl. derivatives- r	acovary pariod		Selected represe			
Elapsed time (b)			dt_1 (min) =	NA		1.4E-1
10 ¹			$dt_1(min) = dt_2(min) =$	NA	C (m ³ /Pa) = C _D (-) =	1.4E-1
		3000				-3.
			$T_T (m^2/s) =$ S (-) =	2.6E-10 1.0E-06		-3.
		10 ³	- ()			
10 0			3 ()	1.3E-11		
		300 	$S_s(1/m) =$	5.0E-08		
and and		91),(Od-	Comments:		CO (E 10	domina 1.0. 1
		10 ² 0	The recommended radial flow analysis			
10 ⁻¹			derivative quality.			
and a start and a start		30	is estimated to be 9	.0E-11 to 6.0E-1	0 m2/s. Due to the	
a se and the second sec	r	10 ¹	transmissivity no fr	esh water head v	vas calculated.	
· //						
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³					

	Test Sum	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			Pi	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX11A	Test start:		060709 13:58		
Test section from - to (m):	723.00-743.00 m				Stephan Rohs	
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for		Criet	ian Enachescu	
	0.070	test evaluation:		Chat		
Linear plot Q and p		Flow period		Recovery period	1	
		Indata		Indata		
7200	0.10	p₀ (kPa) =	6886			
KLX11A_723.00-743.00_060709_1_Pi_Q_r	• P section • P above = 0.09	p _i (kPa) =	NA			
7100 -	P below Q 0.08	$p_p(kPa) =$	NA	p _F (kPa) =	NA	
7000 -			NA			
~	• 0.07	Q _p (m ³ /s)= tp (s) =	NA	t _F (s) =	NA	
g		-1- (-7				
• • • • • • • • • • • • • • • • • • •	4 - 0.05 BE	S el S [*] (-)=	NA	S el S [*] (-)=	NA	
	0.044 E	EC _w (mS/m)=				
	- 0.03	Temp _w (gr C)=	17.6			
6700		Derivative fact.=	NA	Derivative fact.=	NA	
0000 -	+ 0.02					
-	- 0.01					
6500 0.20 0.40 0.60	0.80 1.00 1.20 1.40	Results	•	Results		
Elapsed T	ime [h]	Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- fl	ow period	$T_{\rm M} (m^2/s) =$	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		$dt_1(min) =$ $dt_2(min) =$	NA	$dt_1(min) =$ $dt_2(min) =$	NA	
		$T(m^2/s) =$	NA	$T(m^{2}/s) =$	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
Not A	nalysed	$S_{s}(1/m) =$	NA	S _s (1/m) =	NA	
NOT AI	larysed	C (m³/Pa) =	NA	C (m³/Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
				,		
		T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe				
		dt_1 (min) =	NA		NA	
			NA	C (m³/Pa) = C _D (-) =	NA NA	
		-2()		-0()		
		$T_T(m^2/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
		$S_{s}(1/m) =$	NA			
Not Ar	nalysed	Comments:				
		Based on the test re 11 m2/s.	sponse the inter	val transmissivity is	lower than 1E-	

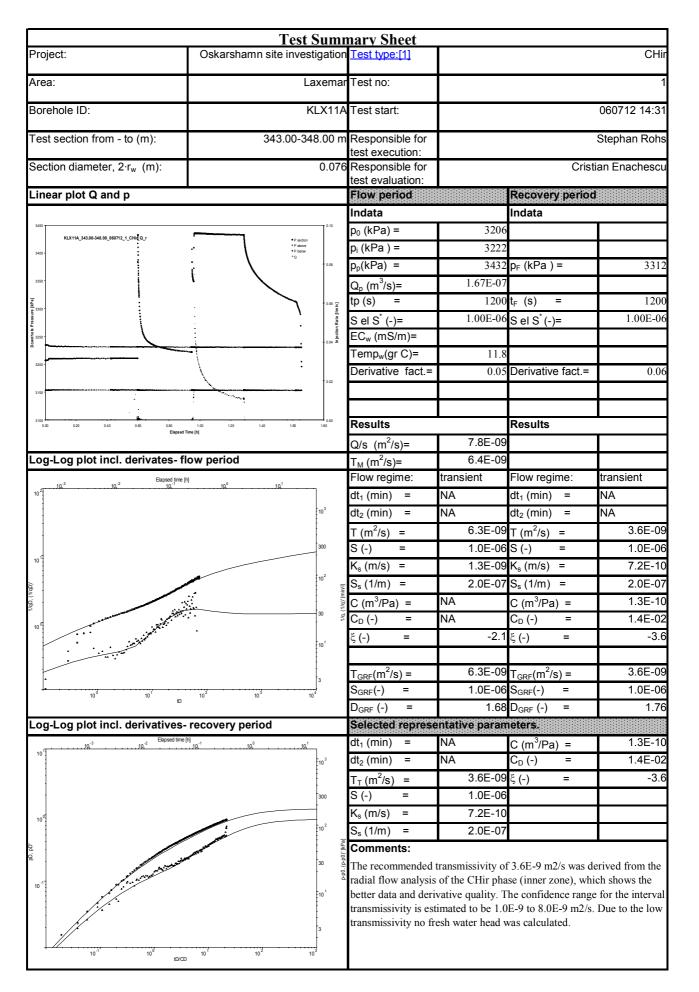

	l est Su	mm	nary Sheet			
Project:	Oskarshamn site investiga	tion	Test type:[1]			I
Area:	Laxe	mar	Test no:			
Borehole ID:	KLX	11A	Test start:	060709 15:4		
	740.00.700.0	0	Deenersikle fer			Otaulaan Dah
Test section from - to (m):	743.00-763.0		Responsible for test execution:			Stephan Roh
Section diameter, 2·r _w (m):	0.	076	Responsible for		Crist	ian Enacheso
			test evaluation:			
₋inear plot Q and p			Flow period		Recovery period	
7400	a			7070	Indata	1
KLX11A_743.00-763.00_060709_1_Pi_Q_r			p ₀ (kPa) =	7070 NA		
7300 -	i		p _i (kPa) = p _p (kPa) =	NA	p _F (kPa) =	NA
			-	NA	р _F (кга) -	INA
7200 -			Q _p (m ³ /s)= tp (s) =	NA	t _F (s) =	NA
7106	. 10	te [vmin]		NA		NA
7100			S el S [*] (-)= EC _w (mS/m)=	INA	S el S [*] (-)=	INA
7000 -	• - 0.		$EC_w (IIIS/III) =$ Temp _w (gr C)=	17.9		
1000	• P section • P above • P below		Derivative fact.=		Derivative fact.=	NA
. 0069		.02				
		ŀ				
6800 0.00 0.20 0.40 0.60		.00	Results		Results	
Elapsed Ti	ime [h]	Ī	Q/s (m²/s)=	NA		
.og-Log plot incl. derivates- fl	ow period		$T_{\rm M} (m^2/s) =$	NA		
	-		Flow regime:	transient	Flow regime:	transient
			dt₁ (min) =	NA	dt₁ (min) =	NA
			dt ₂ (min) =	NA	dt ₂ (min) =	NA
		ŀ	T (m²/s) =	NA	T (m²/s) =	NA
			S (-) =	NA	S (-) =	NA
			K _s (m/s) =	NA	K _s (m/s) =	NA
	1 1		S _s (1/m) =	NA	S _s (1/m) =	NA
Not Ar	nalysed		C (m³/Pa) =	NA	C (m³/Pa) =	NA
			C _D (-) =	NA	C _D (-) =	NA
			ξ(-) =	NA	ξ(-) =	NA
		ŀ	T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
.og-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	
		ľ	dt ₁ (min) =	NA	C (m³/Pa) =	NA
			dt ₂ (min) =	NA	C _D (-) =	NA
			T _⊤ (m²/s) =	NA	ξ(-) =	NA
		[S (-) =	NA		
			K _s (m/s) =	NA		
			S _s (1/m) =	NA		
Not Ar	nalysed		Comments:			
			Based on the test re 11 m2/s.	sponse the inter	val transmissivity is	lower than 1.0

	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			F
Area:	Laxemar	Test no:			
Borehole ID:	KLX11A	Test start:			060709 17:2
Test section from - to (m):	763.00-783.00 m	Responsible for			Stephan Roh
		test execution:			-
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Crist	tian Enachesc
Linear plot Q and p		Flow period		Recovery period	1
		Indata		Indata	
7600	0.10	p ₀ (kPa) =	7254		
KLX11A_763.00-783.00_060709_1_PI_Q_r	P section P above P below	p _i (kPa) =	NA		
7500 -	·Q 0.08	$p_{p}(kPa) =$	NA	p _F (kPa) =	NA
			NA	р _F (кга) –	NA .
7400		$Q_{p} (m^{3}/s) =$		t (a) -	NA
730	0.06 G	φ (υ)	NA	t _F (s) =	
7300	tion and the second sec	S el S [*] (-)=	NA	S el S [*] (-)=	NA
•	0.04 ²	EC _w (mS/m)=			Ļ
7200 -		Temp _w (gr C)=	18.2		
		Derivative fact.=	NA	Derivative fact.=	NA
7100					
7000	0.00 0.50 0.60 0.70 0.80 te (h)	Results		Results	
		Q/s $(m^{2}/s)=$	NA		
.og-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	NA	dt_1 (min) =	NA
		dt_2 (min) =	NA	dt_2 (min) =	NA
		$T(m^2/s) =$	NA	$T(m^2/s) =$	NA
		S (-) =	NA	S (-) =	NA
		$\frac{K_s}{K_s}$ (m/s) =	NA	$K_s (m/s) =$	NA
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not An	alysed	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C (m/Pa) = C_D (-) =$	NA	$C_{D}(-) =$	NA
			INA		NA
		ξ(-) =		ξ(-) =	NA
		2		2	N 1 A
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
.og-Log plot incl. derivatives-	recovery period	Selected represe	<u> </u>	neters.	
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA
		dt_2 (min) =	NA	C _D (-) =	NA
		$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		$K_s (m/s) =$	NA		
		S _s (1/m) =	NA		
Not An	alvsed	Comments:			
		Based on the test re 1.0•10-11 m2/s.	sponse the inter	val transmissivity is	lower than


	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxemar	Test no:			
Davahala ID:		T = =4 = 4= -4.			000700 40.4
Borehole ID:	KLXTIA	Test start:			060709 18:43
Test section from - to (m):	783.00-803.00 m				Stephan Rohs
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for		Crist	ian Enachesci
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
7800	[0.10	p ₀ (kPa) =	7439		
KLX11A_783.00-803.00_060709_1_Pi_Q_r	● Pacedian ▲ Pacove 0.09 ■ Pacove	p _i (kPa) =	NA		
7700		p _p (kPa) =	NA	p _F (kPa) =	NA
	0.07	Q _p (m ³ /s)=	NA		
7800	0.06 =	tp (s) =	NA	t _F (s) =	NA
	● [2] ● (2) ● (2) ● (2) ● (2)	S el S [*] (-)=	NA	S el S [*] (-)=	NA
	+ 0.03 (m) + 0.03 (m) + 0.03 (m) + 0.04 (m)	EC _w (mS/m)=		00.0()	
7400 -	• 0.03	Temp _w (gr C)=	18.5		
	+ 0.02	Derivative fact.=		Derivative fact.=	NA
7300 ·	+ 0.01				
720					
0.00 0.20 0.40 0.60 Elapsed 1	080 1.00 1.20 1.40 ime [h]	Results		Results	
		Q/s (m²/s)=	NA		
og-Log plot incl. derivates- f	ow period	$T{M} (m^{2}/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
		dt ₁ (min) =	NA	dt₁ (min) =	NA
		dt ₂ (min) =	NA	dt ₂ (min) =	NA
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	NA
		S (-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
Not A	nalysed	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C_{D}(-) =$	NA	$C_{D}(-) =$	NA
		ξ(-) =	NA	ξ(-) =	NA
		- (⁻) ک		~ (⁻) –	
		T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
_og-Log plot incl. derivatives-	recovery period	Selected represe			I
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA
		$dt_1(min) =$ $dt_2(min) =$	NA	$C (m'/Pa) = C_D (-) =$	NA
			NA		NA
		$T_T (m^2/s) =$ S (-) =	NA	ξ(-) =	
			NA		
		$K_s(m/s) =$			
		S _s (1/m) = Comments :	NA		
Not A	nalysed	Comments: Based on the test re	snonse the inter	val transmissivity is	lower than 1.0
		11 m2/s.	sponse me mer	var u anonnoorvity IS	iower man 1.0
		11 1112/5.			


	Test S	umn	nary Sheet			
Project:	Oskarshamn site investig	gation	Test type:[1]			CHi
Area:	Lax	emar	Test no:			
Borehole ID:	KL	X11A	Test start:			060710 08:1
Test section from - to (m):	803.00-823	00 m	Responsible for			Stephan Roh
	803.00-823.	.00 11	test execution:			Stephan Kon
Section diameter, 2·r _w (m):		0.076	Responsible for		Crist	tian Enachesc
Linear plot Q and p			test evaluation: Flow period		Recovery period	4
			Indata		Indata	
7900		0.10	p₀ (kPa) =	7623		1
KLX11A_803.00-823.00_060710_1_CHir_Q_r 7850 -	•	0.09	p _i (kPa) =	NA		
7800	<u> </u>	0.08	$p_p(kPa) =$	NA	p _F (kPa) =	NA
7750		0.07	$Q_p (m^3/s) =$	NA		
E 7700		0.06 =	$\frac{Q_p(m/s)}{tp(s)} =$	NA	t _F (s) =	NA
		80.0 Rate [11/m in]	S el S [*] (-)=	NA	s el S [*] (-)=	NA
		Injection R	EC _w (mS/m)=		3 8 3 (-)-	
5 7000 -	:	1 _{0.04} E	Temp _w (gr C)=	18.8		+
7580	P section	0.03	Derivative fact.=		Derivative fact.=	NA
7500 -	Patove Pelow Q	0.02	Denvalive laci		Derivative lact	
7450 -	4	• 0.01				
7400	· · · · · · · ·	0.00	Results		Results	
0.00 0.10 0.20 0.30 0.40 0.50 Elapsed Ti		1.00		NA	Results	
.og-Log plot incl. derivates- flo	au nariad		$Q/s (m^2/s) =$	NA		
.og-Log plot incl. derivates- in	ow period		$T_{M} (m^{2}/s) =$			transiant
			Flow regime:	transient	Flow regime:	transient
			$dt_1 (min) =$	NA	$dt_1 (min) =$	NA
			$dt_2 (min) =$	NA	$dt_2 (min) =$	NA
			$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	NA
			S (-) =	NA	S (-) =	NA
			$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not An	alvsed		$S_{s}(1/m) =$	NA	$S_s(1/m) =$	NA
			C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
			$C_D(-) =$	NA	C _D (-) =	NA
			ξ(-) =	NA	ξ(-) =	NA
					<u>^</u>	
			$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
			$S_{GRF}(-) =$	NA	S _{GRF} (-) =	NA
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
og-Log plot incl. derivatives-	recovery period		Selected represe	<u> </u>		-
			dt_1 (min) =	NA	C (m ³ /Pa) =	NA
			dt_2 (min) =	NA	$C_D(-) =$	NA
			T _T (m²/s) =	NA	ξ(-) =	NA
			S (-) =	NA		
			$K_s (m/s) =$	NA		
			S _s (1/m) =	NA		
Not An	alysed		Comments:			
			Based on the test re transmissivity is low			ice) the interval

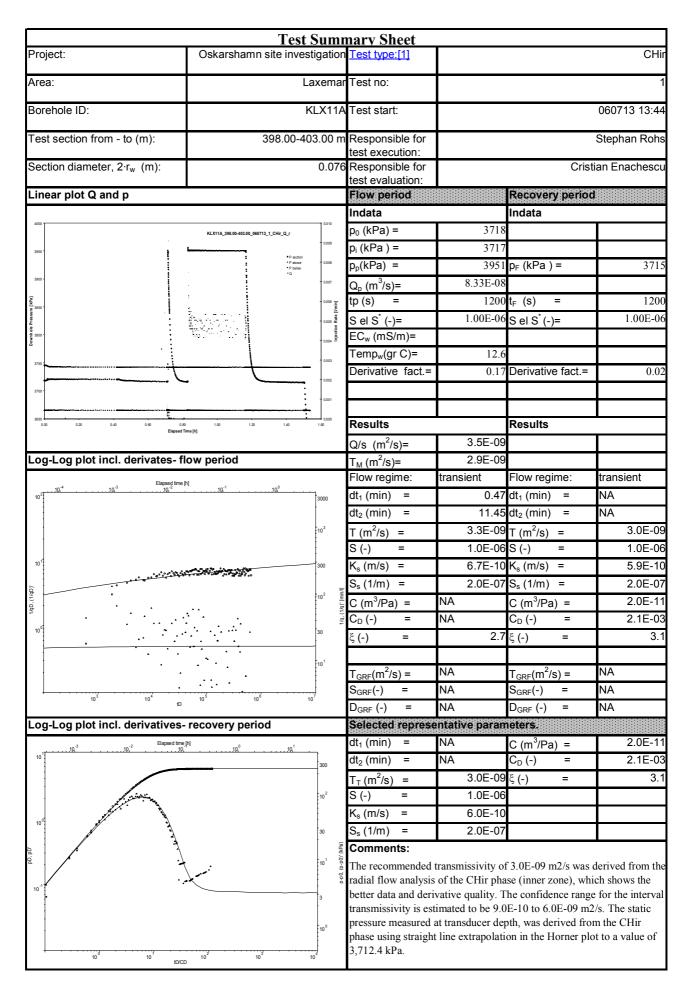
	Test Sumr	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHi	
Area:	Laxemar	Test no:				
Borehole ID:	KLX11A	Test start:		060710 09:45		
Test section from - to (m):	823.00-843.00 m	Responsible for		Stephan Roh		
		test execution:				
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
8100	0.10	p ₀ (kPa) =	7807			
KLX11A_823.00-843.00_060710_1_CHir_Q_r	• P section • P above + 0.09 • P belaw • O	p _i (kPa) =	NA			
8000 -	0.08	p _p (kPa) =	NA	p _F (kPa) =	NA	
7900	0.07	$Q_{p} (m^{3}/s) =$	NA			
	0.06 5	tp (s) =	NA	t _F (s) =	NA	
		S el S [*] (-)=	NA	S el S [*] (-)=	NA	
	• • • •	EC _w (mS/m)=			1	
7700 -		Temp _w (gr C)=	19.1		İ 👘	
	- 0.03	Derivative fact.=	NA	Derivative fact.=	NA	
7600	0.02					
	- 0.01					
7500	0.00 0.70 0.80 0.90 1.00	Results		Results		
Etapsed III	na luì	Q/s (m ² /s)=	NA			
.og-Log plot incl. derivates- fle	ow period	$T_{M} (m^{2}/s) =$	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt ₁ (min) =	NA	dt ₁ (min) =	NA	
		dt_2 (min) =	NA	dt ₂ (min) =	NA	
		$T(m^{2}/s) =$	NA	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	K _s (m/s) =	NA	
		S _s (1/m) =	NA	S _s (1/m) =	NA	
Not An	alysed	C (m³/Pa) =	NA	C (m³/Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =		ξ(-) =	NA	
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
_og-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.		
		dt ₁ (min) =	NA	C (m³/Pa) =	NA	
		dt ₂ (min) =	NA	C _D (-) =	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		K _s (m/s) =	NA			
		S _s (1/m) =	NA			
Not An	alvsed	Comments:		-	-	
	5	Based on the test re transmissivity is low		ed packer complian m2/s.	ce) the interval	


	Test Sum	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHi	
Area:	Laxema	Test no:				
Borehole ID:	KLX11A	Test start:		060710 14:04		
Test section from - to (m):	863.00-883.00 m	Responsible for		Stephan Rohs		
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for		Crist	ian Enachescu	
		test evaluation:		0.110		
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
8500 KLX11A_863.00-883.00_060710_1_CHir_Q_r	• P secton	p ₀ (kPa) =	NA			
	P above P below Q	p _i (kPa) =	NA			
8400 -		p _p (kPa) =	NA	p _F (kPa) =	NA	
		Q _p (m ³ /s)=	NA			
8300 · •	0.002	tp(s) =	NA	t _F (s) =	NA	
	as	S el S [*] (-)=	NA	S el S [*] (-)=	NA	
		EC _w (mS/m)=				
8100	<u>ح</u> ۵.001	Temp _w (gr C)=	19.8			
0100	0.001	Derivative fact.=		Derivative fact.=	NA	
8000						
7900		Results		Results		
0.00 0.10 0.20 0.30 0.40 Elapsed Tin	0.50 0.60 0.70 0.80 0.90			Results		
	· · ·	Q/s (m ² /s)=	NA			
Log-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	NA			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		dt_2 (min) =	NA	dt_2 (min) =	NA	
		T (m²/s) =	NA	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	K_{s} (m/s) =	NA	
Not An	alved	S _s (1/m) =	NA	S _s (1/m) =	NA	
Not All	latyseu	C (m ³ /Pa) =	NA	C (m³/Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		2	ΝΑ	2	NA	
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$		
		$S_{GRF}(-) =$ $D_{GRF}(-) =$	NA NA	$S_{GRF}(-) =$ $D_{GRF}(-) =$	NA NA	
	waaa waa waa waa da				INA	
Log-Log plot incl. derivatives-	recovery period	Selected represe			NA	
		dt_1 (min) =	NA	C (m ³ /Pa) =		
		$dt_2 (min) =$	NA	$C_D(-) =$	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
		$S_{s}(1/m) =$	NA			
Not An	alysed	Comments: Based on the test re	sponse the inter	val transmissivity is	lower than 1.01	
		11 m2/s.				

	Test S	umr	nary Sheet				
Project:	Oskarshamn site investig	ation	Test type:[1]			CH	
Area:	Lax	emar	Test no:				
Borehole ID:	KL	X11A	Test start:		060712 11:13		
Test section from - to (m):	313.00-318	.00 m	Responsible for	Stephan Roh			
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for	Cristian Enachesc			
Section diameter, $2 \cdot r_w$ (m):		0.076	test evaluation:		Crist	ian Enachesc	
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
3150	•	0.003	p₀ (kPa) =	2925			
KLX11A_313.00-318.00_060712_1_CHir_Q_r	P section P above P below		p _i (kPa) =	NA			
3100 -	• •		$p_p(kPa) =$	NA	p _F (kPa) =	NA	
	•			NA	p _F (Ki a) −		
3050	•	0.002	$Q_p (m^3/s) =$ tp (s) =	NA	t _⊏ (s) =	NA	
2000		[lmin]			-1 (-7		
3000	•	in jection Rate [[/m in]	S el S [*] (-)=	NA	S el S [*] (-)=	NA	
		In jec	EC _w (mS/m)=				
2950	· · ·	0.001	Temp _w (gr C)=	11.4			
			Derivative fact.=	NA	Derivative fact.=	NA	
2900 -							
2850 0.00 0.10 0.20 0.30 0.40 Elapsed Tir		90	Results		Results		
			Q/s (m ² /s)=	NA			
.og-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt ₁ (min) =	NA	
			dt ₂ (min) =	NA	dt ₂ (min) =	NA	
			T (m²/s) =	NA	T (m²/s) =	NA	
			S (-) =	NA	S (-) =	NA	
			$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
Not Ar	nalysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
			$C_D(-) =$	NA	$\frac{C_{D}(-)}{C_{D}(-)} =$	NA	
			ξ(-) =	NA	ξ(-) =	NA	
			() د		() د		
			T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA	
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
.og-Log plot incl. derivatives-	recovery period		Selected represe			<u> </u>	
-vy -vy pior mon derivatives-	recovery period		dt_1 (min) =	NA		NA	
			$dt_1(min) = dt_2(min) =$	NA	C (m ³ /Pa) = C _D (-) =	NA	
					-0()		
			$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
			S (-) =	NA			
			$K_s (m/s) =$	NA		L	
			$S_{s}(1/m) =$	NA			
Not Ar	nalysed		Comments:				
			Based on the test re transmissivity is low			ce) me interval	

	Test Sum	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:	1			
Borehole ID:	KLX11A			060712 13:09		
Test section from - to (m):	ection from - to (m): 318.00-323.00 m			Stephan Rohs		
Section diameter, 2·r _w (m): 0.0		test execution: Responsible for	Cristian Enachescu			
		test evaluation:	Chistian Endenesed			
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
200 6.003 KLX11A_318.00-323.00_060712_1_CHir_Q_r Partice Pattore Pattore Pattore Pattore Pattore		p ₀ (kPa) =	2972			
		p _i (kPa) =	NA			
3150	•	$p_p(kPa) =$	NA	p _F (kPa) =	NA	
	•	$Q_{p} (m^{3}/s) =$	NA	F1 ()		
Dentitie Pressent (PN) 000 000 000 000 000 000 000 000 000 0		$\frac{d_p (m/s)}{tp (s)} =$	NA	t _F (s) =	NA	
			NA		NA	
		S el S [*] (-)= EC _w (mS/m)=	INA	S el S [*] (-)=	INA	
		, ,	11.5			
		Temp _w (gr C)=	11.5			
2950 -	•	Derivative fact.=	NA	Derivative fact.=	NA	
2900	0.000 0.50 0.60 0.70 0.80 0.50	Results		Results		
eux			NIA	Results		
l l		Q/s (m ² /s)=	NA			
Log-Log plot incl. derivates- flow period		$T_M (m^2/s) =$	NA	-	4	
Not Analysed		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		dt_2 (min) =	NA	dt_2 (min) =	NA	
		T (m²/s) =	NA	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	K_{s} (m/s) =	NA	
		S _s (1/m) =	NA	S _s (1/m) =	NA	
		C (m ³ /Pa) =	NA	C (m³/Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA	
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	Selected represe	entative paran	neters.			
		dt ₁ (min) =	NA	C (m ³ /Pa) =	NA	
		dt_2 (min) =	NA	$C_{D}(-) =$	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		$K_s (m/s) =$	NA			
Not Analysed		$S_{s}(1/m) =$	NA			
		Comments:				
				ged packer complian l m2/s.	ce) the interval	

	Test S	umr	nary Sheet				
Project:	Oskarshamn site investig	ation	Test type:[1]			CHi	
Area:	Lax	emar	Test no:			1	
Borehole ID:	KL	X11A	Test start:		060712 16:3		
Test section from - to (m):	348.00-353.	00 m	Responsible for		Stephan Ro		
Ocation diameter On (m)		0.070	test execution:				
Section diameter, $2 \cdot r_w$ (m):		J.076	Responsible for test evaluation:	Cristian Eriac		ian Enachescu	
Linear plot Q and p			Flow period		Recovery period		
· · ·			Indata		Indata		
3500		0.003	p ₀ (kPa) =	3252			
KLX11A_348.00-353.00_060712_1_CHir_Q_r	P section P above P below		p _i (kPa) =	NA			
3450 -	•		$p_p(kPa) =$	NA	p _F (kPa) =	NA	
3400 -	•:		$Q_p (m^3/s) =$	NA	P1 ()		
	•	0.002	$\frac{Q_p(m/s)}{tp(s)} =$	NA	t _F (s) =	NA	
(red) 3339		[limin] et	S el S [*] (-)=	NA		NA	
106 T	***************************************	n jection Rate [km in]	S el S (-)= EC _w (mS/m)=		S el S [*] (-)=		
900000		_	$EC_w (III3/III) =$ Temp _w (gr C)=	11.9			
3200	•	0.001	Derivative fact.=	NA	Derivative fact.=	NA	
	•		Derivative fact.=	NA	Derivative fact.=	NA	
3200	•						
3150 0.00 0.10 0.20 0.30 0.40 0.50	0.60 0.70 0.80 0.90 1.	0.000	Results		Results		
Elapsed Tir	me [h]		Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} (m^2/s) =$	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt_1 (min) =	NA	dt_1 (min) =	NA	
			dt_2 (min) =	NA	dt_2 (min) =	NA	
				NA	$T (m^2/s) =$	NA	
			$T (m^2/s) =$ S (-) =	NA	()	NA	
				NA	0()	NA	
			$K_s (m/s) =$		$K_s(m/s) =$		
Not Ar	nalysed		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
	2		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
			C _D (-) =	NA	$C_{\rm D}(-) =$	NA	
			ξ(-) =	NA	ξ(-) =	NA	
					<u>^</u>	<u> </u>	
			$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe				
			dt_1 (min) =	NA	C (m³/Pa) =	NA	
			dt ₂ (min) =	NA	C _D (-) =	NA	
			$T_{T} (m^{2}/s) =$	NA	ξ(-) =	NA	
			S (-) =	NA			
			$K_s (m/s) =$	NA			
			S _s (1/m) =	NA			
Not Ar	nalysed		Comments:				
			Based on the test re transmissivity is low		ed packer complian 1 m2/s.	ce) the interval	

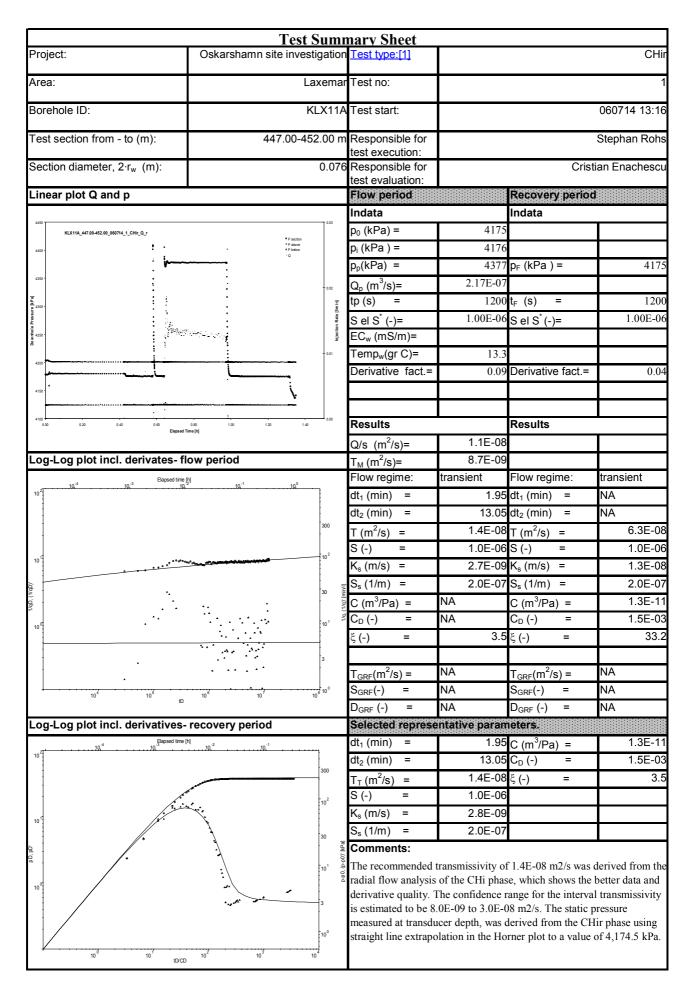

	Test Si	umn	nary Sheet				
Project:	Oskarshamn site investig	ation	Test type:[1]			CHi	
Area:	Lax	emar	Test no:				
Borehole ID:	KLX	K11A	Test start:		060712 17:		
Test section from - to (m):	353.00-358.		Responsible for		Stephan Ro		
Section diameter, 2·r _w (m):	(test execution: Responsible for		Cristian Enaches		
			test evaluation:				
Linear plot Q and p			Flow period		Recovery period		
3550 T		0.003	Indata		Indata		
KLX11A_353.00-358.00_060712_1_CHir_Q_r	P section Pabove		p ₀ (kPa) =	3298			
3500 -	• Padove • P below • Q		p _i (kPa) =	NA			
	5		p _p (kPa) =	NA	p _F (kPa) =	NA	
3450 -	:	0.002	Q _p (m ³ /s)=	NA			
a 3400		[uim	tp (s) =	NA	t _F (s) =	NA	
		Injection Rate [1/m in]	S el S [*] (-)=	NA	S el S [*] (-)=	NA	
0 E 3350 -		Injectior	EC _w (mS/m)=		(/		
°	ý line star star star star star star star star	0.001	Temp _w (gr C)=	12.0			
3300	•		Derivative fact.=		Derivative fact.=	NA	
3250	•						
3200 0.00 0.10 0.20 0.30 0.40 Elaosed Tim	0.50 0.60 0.70 0.80 0.5	0.000	Results		Results		
	- 103		Q/s (m ² /s)=	NA			
og-Log plot incl. derivates- flo	ow period		$T{M} (m^{2}/s) =$	NA			
	-		Flow regime:	transient	Flow regime:	transient	
			dt_1 (min) =	NA	dt_1 (min) =	NA	
			dt_2 (min) =	NA	dt_2 (min) =	NA	
			$T(m^2/s) =$	NA	$T(m^2/s) =$	NA	
			S (-) =	NA	S (-) =	NA	
			$K_s (m/s) =$	NA	K _s (m/s) =	NA	
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
Not An	alysed			NA		NA	
			$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	N 1 A	
			$C_{\rm D}(-) =$		$C_{\rm D}(-) =$		
			ξ(-) =	NA	ξ(-) =	NA	
			- (2))	NA	- (2)	NA	
			$T_{GRF}(m^2/s) = S_{GRF}(-) =$	NA	$T_{GRF}(m^2/s) = S_{GRF}(-) =$	NA	
			- 614 ()				
			$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA	
_og-Log plot incl. derivatives-	recovery period		Selected represe	<u> </u>		TA 1 A	
			dt_1 (min) =	NA	C (m ³ /Pa) =	NA	
			$dt_2 (min) =$	NA	$C_D(-) =$	NA	
			$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
			S (-) =	NA			
			K _s (m/s) =	NA			
			$S_{s}(1/m) =$	NA			
Not An	alysed		Comments:				
			Based on the test re transmissivity is low			ce) ine interval	

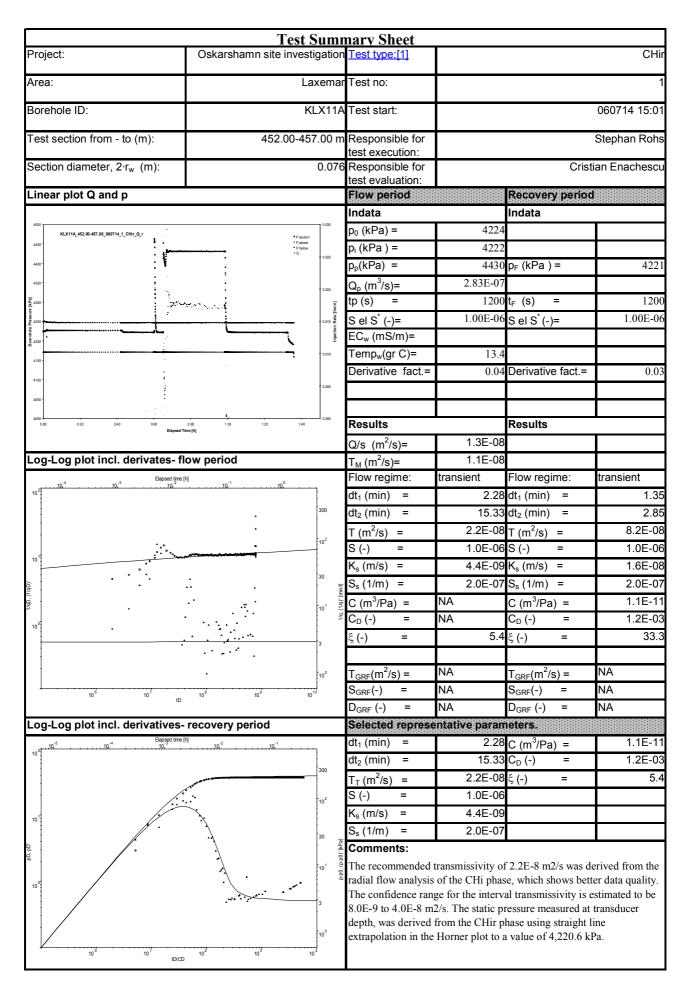
	Test Sumr	nary Sheet	-				
Project:	Oskarshamn site investigation	Test type:[1]			CHi		
Area:	Laxemar	Test no:					
Borehole ID:	KLX11A	Test start:		060713 07:5			
Test section from - to (m):	358.00-363.00 m	Responsible for test execution:	Stephan Rol				
Section diameter, 2·r _w (m):	0.076	Responsible for		Cristian Enacheso			
		test evaluation:					
Linear plot Q and p		Flow period		Recovery period			
3350	0.003	Indata		Indata			
KLX11A_358.00-363.00_060713_1_CHir_Q_r	● P sature ■ P sature ■ P sature	p ₀ (kPa) =	3341				
3900 -	•••	p _i (kPa) =	NA				
		p _p (kPa) =	NA	p _F (kPa) =	NA		
3400	• 0.022	Q _p (m ³ /s)=	NA				
(we) orm	• terrad bage	tp (s) =	NA	t _F (s) =	NA		
8 3400 ·	termination	S el S [*] (-)=	NA	S el S [*] (-)=	NA		
		EC _w (mS/m)=					
3350 •	0.001	Temp _w (gr C)=	12.0		Ī		
3300	•	Derivative fact.=	NA	Derivative fact.=	NA		
					İ		
3220 0.00 0.10 0.20 0.30 0.40	0.50 0.00 0.70 0.20 0.90						
Elapse d'Time	M	Results		Results			
		Q/s (m²/s)=	NA				
.og-Log plot incl. derivates- fl	ow period	$T_{\rm M} (m^2/s) =$	NA				
		Flow regime:	transient	Flow regime:	transient		
		dt_1 (min) =	NA	dt_1 (min) =	NA		
		dt_2 (min) =	NA	dt_2 (min) =	NA		
			NA		NA		
		T (m ² /s) = S (-) =	NA	T (m ² /s) = S (-) =	NA		
		$K_{s}(m/s) =$		$S(-) = K_s(m/s) =$	NA		
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA		
Not Ar	nalysed				NA		
		$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	N 1 A		
		$C_{\rm D}(-) =$		$C_{\rm D}(-) =$			
		ξ(-) =	NA	ξ(-) =	NA		
		2		2			
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA		
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA		
.og-Log plot incl. derivatives-	recovery period	Selected represe			.		
		dt_1 (min) =		C (m ³ /Pa) =	NA		
		dt_2 (min) =	NA	C _D (-) =	NA		
		$T_{T}(m^{2}/s) =$		ξ(-) =	NA		
		S (-) =	NA				
		$K_s (m/s) =$	NA				
		S _s (1/m) =	NA				
Not Ar	nalysed	Comments:					
		Based on the test re transmissivity is low		ed packer complian m2/s.	ce) the interval		

	Test S	umn	nary Sheet			
Project:	Oskarshamn site investig	gation	Test type:[1]			CH
Area:	Lax	emar	Test no:			
Borehole ID:	KL	X11A	Test start:		060713	
Fest section from - to (m):	383.00-388		Responsible for		Stephan	
Section diameter, 2·r _w (m):			test execution: Responsible for		Crist	ian Enacheso
		test evaluation:		Chot		
inear plot Q and p.			Flow period		Recovery period	
			Indata		Indata	
3800	Psecton	0.003	p ₀ (kPa) =	3576		
KLX11A_383.00-388.00_060713_1_CHir_Q_r	Pabove Pbelow Q		p _i (kPa) =	NA		
3750 -	•		p _p (kPa) =	NA	p _F (kPa) =	NA
3700 -			Q _p (m ³ /s)=	NA		
			tp (s) =	NA	t _F (s) =	NA
369 -	فمندر	injection Rate [limin]	S el S [*] (-)=	NA	S el S [*] (-)=	NA
		njection	EC _w (mS/m)=			
3600		0.001	Temp _w (gr C)=	12.4		
			Derivative fact.=		Derivative fact.=	NA
3550 -						
3500 0.00 0.10 0.20 0.30 0.40		0.000	Results		Results	
Elapsed Tim				NA	Results	1
			Q/s (m²/s)=			
og-Log plot incl. derivates- flo	ow period		$T_{M} (m^2/s) =$	NA	E 1	
			Flow regime:	transient	Flow regime:	transient
			$dt_1 (min) =$	NA	dt_1 (min) =	NA
			dt_2 (min) =	NA	dt_2 (min) =	NA
			$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	NA
			S (-) =	NA	S (-) =	NA
			$K_s (m/s) =$	NA	$K_{s} (m/s) =$	NA
Not An	alvsed		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
110171	urysed		C (m ³ /Pa) =	NA	C (m³/Pa) =	NA
			C _D (-) =	NA	C _D (-) =	NA
			ξ(-) =	NA	ξ(-) =	NA
			$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
og-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	-
			dt ₁ (min) =	NA	C (m³/Pa) =	NA
			dt ₂ (min) =	NA	$C_{D}(-) =$	NA
			$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
			S (-) =	NA	. /	1
			$K_s (m/s) =$	NA		
			$S_{s}(1/m) =$	NA		
Not An	alwad		Comments:			
			Based on the test re transmissivity is low		ed packer complian 1 m2/s.	ce) the interva

Test type:[1] Test no: Test start: Responsible for test execution: Responsible for test evaluation: Tow period Indata h_0 (kPa) = h_1 (kPa) = h_2 (kPa) = h_2 (kPa) = h_2 (kPa) = h_3 (kPa) =	3624 NA NA NA NA NA NA 12.5	Crist Recovery period Indata	CHI 060713 10:2 Stephan Roh ian Enachesc NA NA NA
Test start: Responsible for est execution: Responsible for est evaluation: How period Indata P_0 (kPa) = P_0 (kPa) = P_0 (kPa) = P_0 (kPa) = P_0 (kPa) = P_0 (m ³ /s)= P_0 (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	NA NA NA NA NA 12.5	Crist Recovery period Indata p _F (kPa) = t _F (s) =	Stephan Roh ian Enachesc NA NA
Responsible for est execution: Responsible for est evaluation: Now period p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (m ³ /s)= p_0 (m ³ /s)= p_0 (s) = p_0 (s) (s) = p_0 (s) (s) = p_0 (s) (s) = p_0 (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	NA NA NA NA NA 12.5	Crist Recovery period Indata p _F (kPa) = t _F (s) =	Stephan Roh ian Enachesc NA NA
est execution: Responsible for est evaluation: Tow period mdata $p_0 (kPa) =$ $p_0 (kPa) =$ $p_0 (kPa) =$ $p_0 (kPa) =$ $p_0 (m^3/s) =$ p (s) = p (s)	NA NA NA NA NA 12.5	Crist Recovery period Indata p _F (kPa) = t _F (s) =	ian Enachesc NA NA
Responsible for est evaluation: Tow period Indata P_0 (kPa) = P_0 (kPa) = P_0 (kPa) = P_0 (kPa) = P_0 (kPa) = P_0 (m ³ /s)= P_0 (m ³ /s)= P_0 (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) = P_0 (s) (s) (s) = P_0 (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	NA NA NA NA NA 12.5	Recovery period Indata p _F (kPa) = t _F (s) =	NA NA
est evaluation: Tow period mdata p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (kPa) = p_0 (m ³ /s)= p_0 (s) = p_0 (s) (s) = p_0 (s) (s) = p_0 (s) (s) = p_0 (s) (s) (s) = p_0 (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	NA NA NA NA NA 12.5	Recovery period Indata p _F (kPa) = t _F (s) =	NA NA
Iow period Indata Indata <t< td=""><td>NA NA NA NA NA 12.5</td><td>Indata p_F (kPa) = t_F (s) =</td><td>NA</td></t<>	NA NA NA NA NA 12.5	Indata p _F (kPa) = t _F (s) =	NA
ndata p_0 (kPa) = p_1 (kPa) = p_2 (kPa) = p_2 (m ³ /s)= p (s) = $s el s^{*} (-)=$ $EC_w (mS/m)=$ $Temp_w(gr C)=$	NA NA NA NA NA 12.5	Indata p _F (kPa) = t _F (s) =	NA
$p_0 (kPa) =$ $p_i (kPa) =$ $p_p (kPa) =$ $p_p (m^3/s) =$ p (s) = $s el s^* (-) =$ $C_w (mS/m) =$ $Temp_w (gr C) =$	NA NA NA NA NA 12.5	p _F (kPa) = t _F (s) =	NA
hi (kPa) = hp (kPa) = Dp (kPa) = Dp (m ³ /s)= p (s) = S el S [*] (-)= ECw (mS/m)= Tempw(gr C)=	NA NA NA 12.5	t _F (s) =	NA
p(kPa) = Qp (m ³ /s)= p (s) = S el S [*] (-)= EC _w (mS/m)= Temp _w (gr C)=	NA NA NA 12.5	t _F (s) =	NA
$p_{p}(m^{3}/s) =$ p(s) = $S el S^{*}(-) =$ $C_{w}(mS/m) =$ $Temp_{w}(gr C) =$	NA NA NA 12.5	t _F (s) =	NA
p (s) = S el S [*] (-)= EC _w (mS/m)= Temp _w (gr C)=	NA NA 12.5		
S el S [*] (-)= EC _w (mS/m)= Temp _w (gr C)=	NA 12.5		
EC _w (mS/m)= emp _w (gr C)=	12.5	୦ ୧୮୦ (-)=	
emp _w (gr C)=			
			┨─────
Derivative fact.=		Daniustius fast	
	NA	Derivative fact.=	NA
Results		Results	
Q/s (m²/s)=	NA		
_м (m²/s)=	NA		
low regime:	transient	Flow regime:	transient
lt ₁ (min) =	NA	dt₁ (min) =	NA
lt ₂ (min) =	NA	dt ₂ (min) =	NA
$(m^2/s) =$	NA	T (m²/s) =	NA
6 (-) =	NA	S (-) =	NA
K _s (m/s) =	NA	K _s (m/s) =	NA
$S_{s}(1/m) =$	NA		NA
	NA		NA
	NA		NA
			NA
		5()	1
$(m^2/s) =$	NA	$T_{}(m^2/c) =$	NA
			NA
			NA
			<u> </u>
			NA
			NA
			NA
$T(m^{-}/s) =$		֊(-) =	14/4
			───
			┣────
	NA		<u> </u>
	$\frac{(s (m^{2}/s) = (m^{2}/s) = (m^{2}/s) = (m^{2}/s) = (m^{2}/s) = (m^{2}/s) = (m^{2}/s) = (m^{2}/s) = (m^{2}/s) = (m^{3}/Pa) = (m^{3}/$	/s $(m^2/s) =$ NA M $(m^2/s) =$ NAow regime:transient1 $(min) =$ NA 2 $(min) =$ NA 2 $(min) =$ NA $(m^2/s) =$ NA $(-) =$ NA $(-) =$ NA (a) $(ms) =$ NA (a) $(ms) =$ NA (a) $(ms) =$ NA (a) $(ms) =$ NA (a) $(-) =$ NA (a) $(-) =$ NA (a) (a) (a) (a) (b) (a) (b) (c) (c) (a) (a) (b) (c) $(c$	/s (m²/s)= NA $_{M}$ (m²/s)= NA ow regime: transient Flow regime: 1 (min) = NA dt1 (min) = 2 (min) = NA dt2 (min) = (m²/s) = NA T (m²/s) = (n²/s) = NA T (m²/s) = (-) = NA S (-) = (a(m/s)) = NA C (m³/Pa) = (-) = NA C (-) = (-) = NA C (-) = (-) = NA D_GRF(-) = (-) = NA D_GRF(-) = (a(min)) = NA C (m³/Pa) = (-) = NA C (m³/Pa) = (-) = NA C (-) = (-) = NA C (-) = (-) = NA C (-) = <td< td=""></td<>

	Test Sum	mary Sheet				
Project:	Oskarshamn site investigation	n <u>Test type:[1]</u>			CHi	
Area:	l avema	r Test no:				
Alca.	Laxenia	i rest no.				
Borehole ID:	KLX11/	A Test start:		060713 12:		
Test section from - to (m):	202.00.209.00 p	n Responsible for			Stephan Rohs	
	393.00-396.00 1	test execution:			Stephan Rons	
Section diameter, 2·r _w (m):	0.07	6 Responsible for	for Cristian		ian Enachescu	
Linear plat O and p		test evaluation:		Deserversite	1	
Linear plot Q and p		Flow period		Recovery period Indata		
3800	T 0.003	$p_0 (kPa) =$	3673			
KLX11A_393.00-398.00_060713_1_CHir_Q_r	• P section • P above	$p_0 (kPa) = p_i (kPa) =$	NA			
	P below Q	$p_{i}(kPa) =$ $p_{p}(kPa) =$	NA	p _F (kPa) =	NA	
3760 -			NA	ρ _F (KFa) -		
3740	•	$\frac{Q_p (m^3/s)}{tp (s)} =$	NA	t _F (s) =	NA	
Ced 31202	[imm]	S el S [*] (-)=	NA	t⊧ (0) S el S [*] (-)=	NA	
90	algebra for the second s	EC _w (mS/m)=	1.0.1	3 8 3 (-)-	1	
5 3000 ······	•	Temp _w (gr C)=	12.5		<u> </u>	
3660 -	•	Derivative fact.=		Derivative fact.=	NA	
3640	·					
3823 	۰ ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰					
3600		Results		Results		
0.00 0.10 0.20 0.30 0.40 0.50 Elapsed Tin		Q/s (m^{2}/s)=	NA			
Log-Log plot incl. derivates- flo	ow period	$T_{M} (m^{2}/s) =$	NA			
5 51		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		dt_2 (min) =	NA	dt_2 (min) =	NA	
		$T(m^2/s) =$	NA	$T(m^2/s) =$	NA	
		S (-) =	NA	S (-) =	NA	
		$K_{s}(m/s) =$	NA	K _s (m/s) =	NA	
	1 1	$S_{s}(1/m) =$	NA	S _s (1/m) =	NA	
Not An	alysed	C (m ³ /Pa) =	NA	C (m³/Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
		$S_{GRF}(-) =$	NA	S _{GRF} (-) =	NA	
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	• • • • • • • • • • • • • • • • • • • •			
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA	
		dt_2 (min) =	NA	C _D (-) =	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA	ļ		
		$K_s (m/s) =$	NA			
		$S_{s}(1/m) =$	NA			
Not An	alysed	Comments:				
		transmissivity is lo		ged packer complian 1 m2/s.		

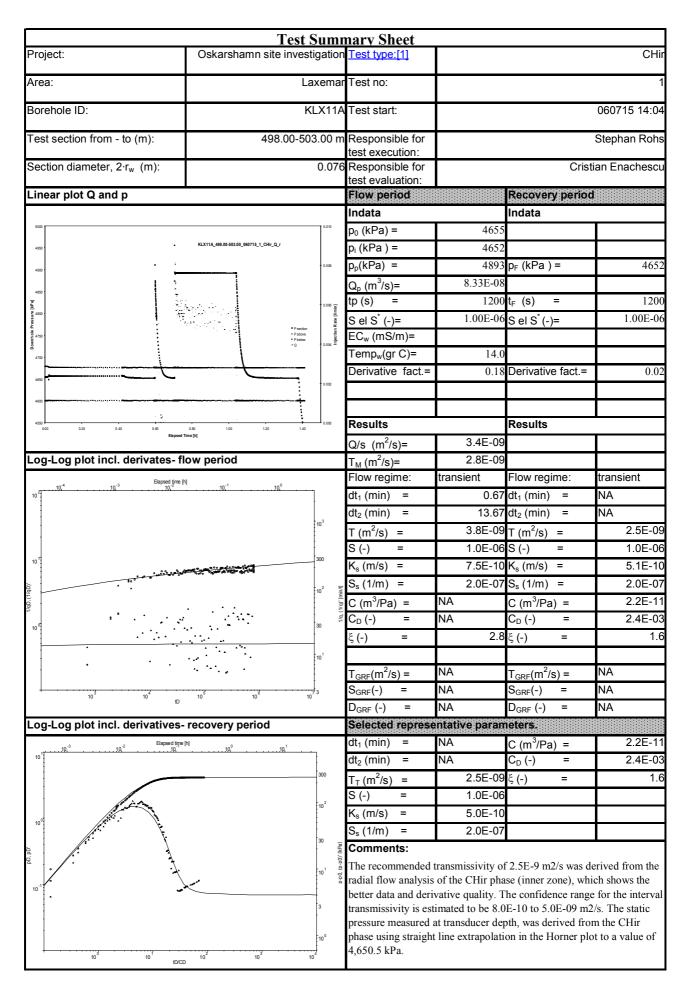

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxemar	Test no:			
Borehole ID:	KLX11A	Test start:			060713 15:40
Test section from - to (m):	423.00-428.00 m	Responsible for test execution:	Stepha		Stephan Roh
Section diameter, 2·r _w (m):	0.076	Responsible for test evaluation:	Cristian Enac		ian Enachesci
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
4100		p ₀ (kPa) =	3952		r –
KLX11A_423.00-428.00_060713_1_CHir_Q_r	P section A P above	p ₀ (kPa) = p _i (kPa) =	NA		
4050 -	● P below ● Q	p _i (kPa) = p _p (kPa) =	NA	p _F (kPa) =	NA
	•		NA	р _F (кга) -	NA
	- 0.002	$Q_{p} (m^{3}/s) =$		t (-)	
	· · · · · · · · · · · · · · · · · · ·	tp (s) =	NA	t _F (s) =	NA
		S el S [*] (-)=	NA	S el S [*] (-)=	NA
	• 4 0.001	EC _w (mS/m)=			Ļ
	•	Temp _w (gr C)=	13.0		
3900	•	Derivative fact.=	NA	Derivative fact.=	NA
	•				
3850 0.00 0.10 0.20 0.30 0.40 0.50 Based Tir	• 0.000 0.60 0.70 0.60 0.90 1.00	Results		Results	
саран п	a hi			Results	
		Q/s (m²/s)=	NA		
_og-Log plot incl. derivates- flo	ow period	T _M (m ² /s)=	NA	E 1	1
		Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	NA	dt ₁ (min) =	NA
		dt_2 (min) =	NA	dt_2 (min) =	NA
		T (m²/s) =	NA	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA
		K _s (m/s) =	NA	K _s (m/s) =	NA
Not An	alwood	S _s (1/m) =	NA	$S_{s}(1/m) =$	NA
Not An	larysed	C (m³/Pa) =	NA	C (m³/Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe			
		dt ₁ (min) =	NA	C (m ³ /Pa) =	NA
		dt_2 (min) =	NA	$C_{D}(-) =$	NA
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
		S(-) =	NA	° \ /	
		$K_s (m/s) =$	NA		
		$S_{s}(11/s) = S_{s}(1/m) =$	NA		<u> </u>
	1 1	Comments:			
Not Analysed				ed packer complian 1 m2/s.	ce) the interval

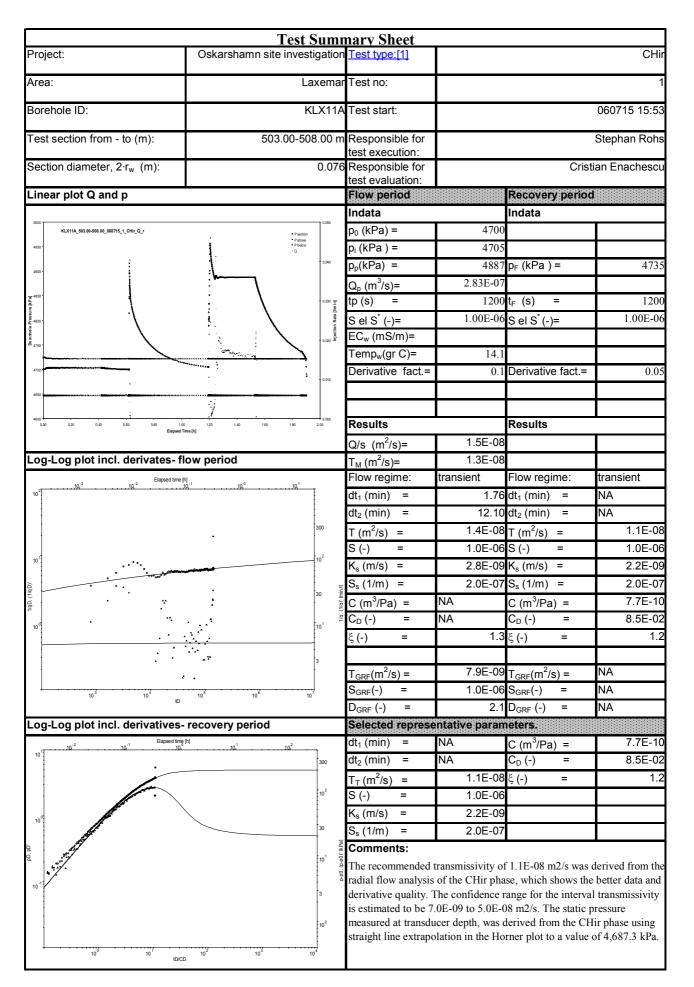

	Test Sum	mary Sheet				
Project:	Oskarshamn site investigation	on <u>Test type:[1]</u>			CH	
Area:	Laxema	ar Test no:				
Borehole ID:	KLX11	A Test start:		060713 16:5		
Test section from - to (m):	428.00-433.00	m Responsible for			Stephan Roh	
Section diameter, 2·r _w (m):	0.07	test execution: 6 Responsible for		Cristian Enaches		
	0.01	test evaluation:				
Linear plot Q and p		Flow period		Recovery period	1	
		Indata		Indata		
4250	0.003	p ₀ (kPa) =	3998			
KLX11A_428.00-433.00_060713_1_CHir_Q_r	Paction Pabove Pbelow O	p _i (kPa) =	NA			
	Q	p _p (kPa) =	NA	p _F (kPa) =	NA	
4150 -	• 0.002	$Q_{p} (m^{3}/s) =$	NA			
		to (c) =	NA	t _F (s) =	NA	
4100		S el S [*] (-)=	NA	S el S [*] (-)=	NA	
4100 - 4000 -		$EC_w (mS/m) =$	1	\ /		
		Temp _w (gr C)=	13.0			
4000	•	Derivative fact.=		Derivative fact.=	NA	
3950	•					
	•					
3900 0.00 0.10 0.20 0.30 0.40 Elspeed Tim	• 0.000 0.50 0.60 0.70 0.80 0.90	Results		Results		
скараео ни	la (li)	Q/s (m ² /s)=	NA			
.og-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	NA			
0 01		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	NA	dt_1 (min) =	NA	
		dt_2 (min) =	NA	dt_2 (min) =	NA	
		$T (m^2/s) =$	NA	$T(m^2/s) =$	NA	
		S (-) =	NA	S (-) =	NA	
		$K_{s}(m/s) =$	NA	$K_s (m/s) =$	NA	
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
Not An	alysed		NA		NA	
		$C (m^{3}/Pa) =$		$C (m^{3}/Pa) =$		
		$C_{D}(-) =$	NA	$C_{D}(-) =$	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		2	N1.0	2	N 1 A	
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
og-Log plot incl. derivatives-	recovery period	Selected represe				
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA	
		dt_2 (min) =	NA	C _D (-) =	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA		<u> </u>	
		$K_s (m/s) =$	NA			
		$S_{s}(1/m) =$	NA			
Not An	alysed	Comments:				
		transmissivity is lo		ted packer complian l m2/s.		

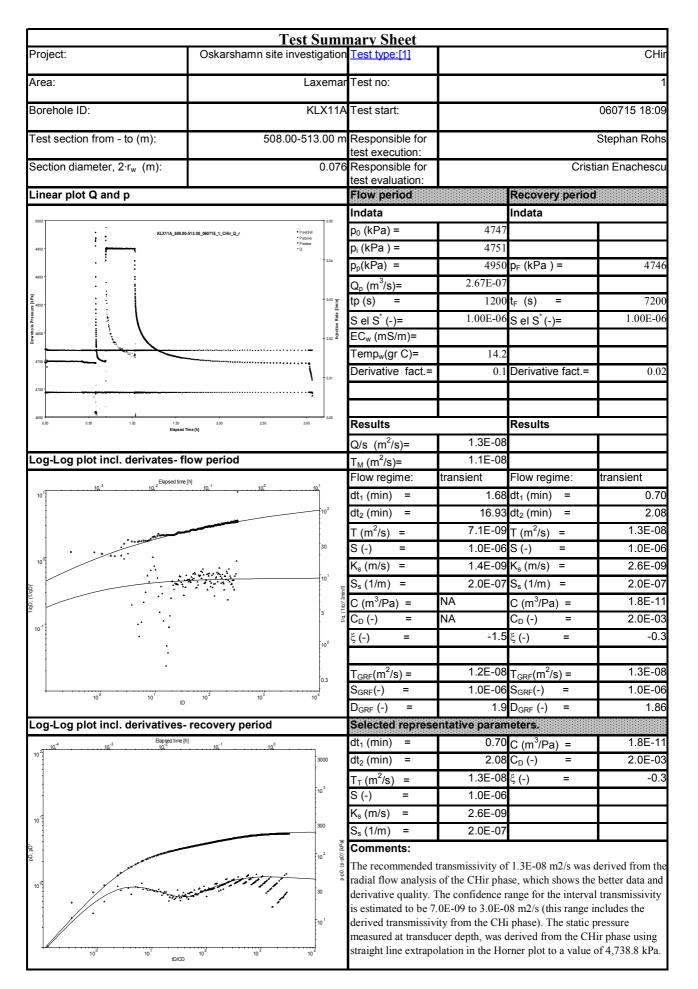
	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxemar	Test no:			
Borehole ID:	KLX11A	Test start:			060714 07:58
Test section from - to (m):	433.00-438.00 m	Responsible for test execution:			Stephan Roh
Section diameter, 2·r _w (m):	0.076	Responsible for	Cristian Ena		
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	1
		Indata		Indata	
	• 8 metrice	p ₀ (kPa) =	4043		
KLX11A_433.00-438.00_060714_1_CHir_Q_r	P above P below O	p _i (kPa) =	NA		
		p _p (kPa) =	NA	p _F (kPa) =	NA
4200 -	0.002	Q _p (m ³ /s)=	NA		
<u>و</u>	· · ·	tp (s) =	NA	t _F (s) =	NA
		S el S [*] (-)=	NA	S el S [*] (-)=	NA
4100 -	Injection	EC _w (mS/m)=		()	
·		Temp _w (gr C)=	13.1		
4050	•	Derivative fact.=	NA	Derivative fact.=	NA
4000 -	.				
3950 0.00 0.10 0.20 0.30 0.40	• 0.000 0.50 0.60 0.70 0.80 0.50	Results		Results	
Elapsed Tirr	re (h)	Q/s $(m^2/s)=$	NA		
.og-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	NA	dt_1 (min) =	NA
		$dt_2 (min) =$	NA	$dt_1(min) =$ $dt_2(min) =$	NA
			NA		NA
		$T(m^2/s) =$		$T(m^2/s) =$	
		S(-) =	NA	S (-) =	NA
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA
Not An	alvsed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
		$C_{D}(-) =$	NA	C _D (-) =	NA
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
.og-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	
		dt_1 (min) =	NA	C (m³/Pa) =	NA
		dt_2 (min) =	NA	C _D (-) =	NA
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
		S (-) =	NA		
		K _s (m/s) =	NA		
		$S_{s}(1/m) =$	NA		1
Not An	alvsed	Comments:			•
		Based on the test re transmissivity is low		ed packer complian m2/s.	ce) the interval

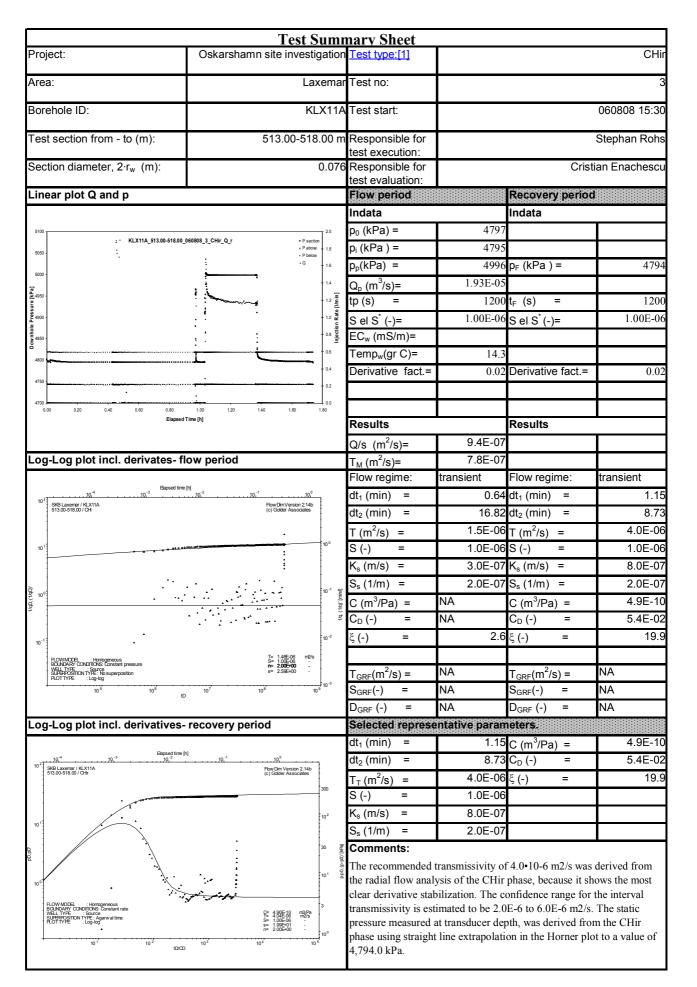
Project: Osl Area: Borehole ID:	karshamn site investigatior	Test type:[1]			
					CHi
Borehole ID:	Laxema	Test no:			1
	KLX11A	Test start:			060714 09:17
Test section from - to (m):	438.00-443.00 m	Responsible for			Stephan Rohs
Section diameter 2.r. (m):	0.076	test execution: Responsible for	Cristian En		
Section diameter, 2·r _w (m):	0.076	test evaluation:		Clist	
Linear plot Q and p		Flow period		Recovery period	1
		Indata		Indata	
4350	.00_060714_1_CHir_Q_r • P section	p₀ (kPa) =	4090		
4300	* P above * P below • Q	p _i (kPa) =	4087		
	•	p _p (kPa) =	4288	p _F (kPa) =	408
4250		$Q_{p} (m^{3}/s) =$	1.17E-06		
7				t _F (s) =	120
4156	• •	(0)		s el S [*] (-)=	1.00E-0
•	- 000 00000000000000000000000000000000	$S el S^{*} (-)=$	1.002-00	S el S (-)=	1.00L-0
	- 004 ²		10.5		
4100		Temp _w (gr C)=	13.2		
4000		Derivative fact.=	0.09	Derivative fact.=	0.0
0.00 0.20 0.40 0.60 0.80 Elspsed Time [h]	1.00 1.20 1.40 1.60	Results		Results	
		Q/s (m²/s)=	5.7E-08		
.og-Log plot incl. derivates- flow pe	eriod	T _M (m ² /s)=	4.7E-08		
Elapsed time [h]	10 ⁰ 10 ¹	Flow regime:	transient	Flow regime:	transient
102		dt ₁ (min) =	1.42	dt ₁ (min) =	0.8
		dt_2 (min) =	14.60	dt ₂ (min) =	7.9
	30	$T(m^2/s) =$		$T(m^2/s) =$	1.9E-0
		S (-) =	1.0E-06		1.0E-0
10 ¹ • • • • •	10 ¹			$K_{s}(m/s) =$	3.8E-0
	•				
	3	S _s (1/m) =		$S_{s}(1/m) =$	2.0E-0
		C (m³/Pa) =	NA	C (m³/Pa) =	2.4E-1
10 [°] · · · · · · · · · · · · · · · · · · ·	100	² C _D (-) =	NA	C _D (-) =	2.6E-0
		ξ(-) =	9.7	ξ(-) =	15.
	0.3	T _{GRF} (m ² /s) =	2.8F-08	T _{GRF} (m ² /s) =	NA
	10 ⁻¹	$S_{GRF}(-) =$	1.0E-06		NA
10 ¹¹ 10 ¹² 10 ¹³	10 10			$D_{GRF}(-) =$	NA
		= GRF ()			
og-Log plot incl. derivatives- recov	very period	Selected represe	·····	*****************************	
Bapsed time [h]	.10 ^{.1}	$dt_1 (min) =$		C (m³/Pa) =	2.4E-1
		dt_2 (min) =		C _D (-) =	2.6E-0
	300	$T_{T}(m^{2}/s) =$	1.9E-07	ξ(-) =	15.
- and the second s	300	S (-) =	1.0E-06		
	10 ²	$K_s (m/s) =$	3.8E-08		
101	10	$S_{s}(1/m) =$	2.0E-07		
	an L	Comments:			
	30 ¥ (o 	The recommended	transmissivity of	$f = 1.0 \text{E} = 7 \text{ m}^{2/c} \text{ was d}$	erived from the
•	8	radial flow analysis			
10	10 ¹	derivative stabilizat			
· · · · · · · · · · · · · · · · · · ·	in the second se	transmissivity is est		•	
	3			oth, was derived from	
		-	-	on in the Horner plo	
10 10 ² 10 ³	10 ⁴ 10 ⁵ 10 ⁰	4,087.3 kPa.			
10 10 tD/CD	10				

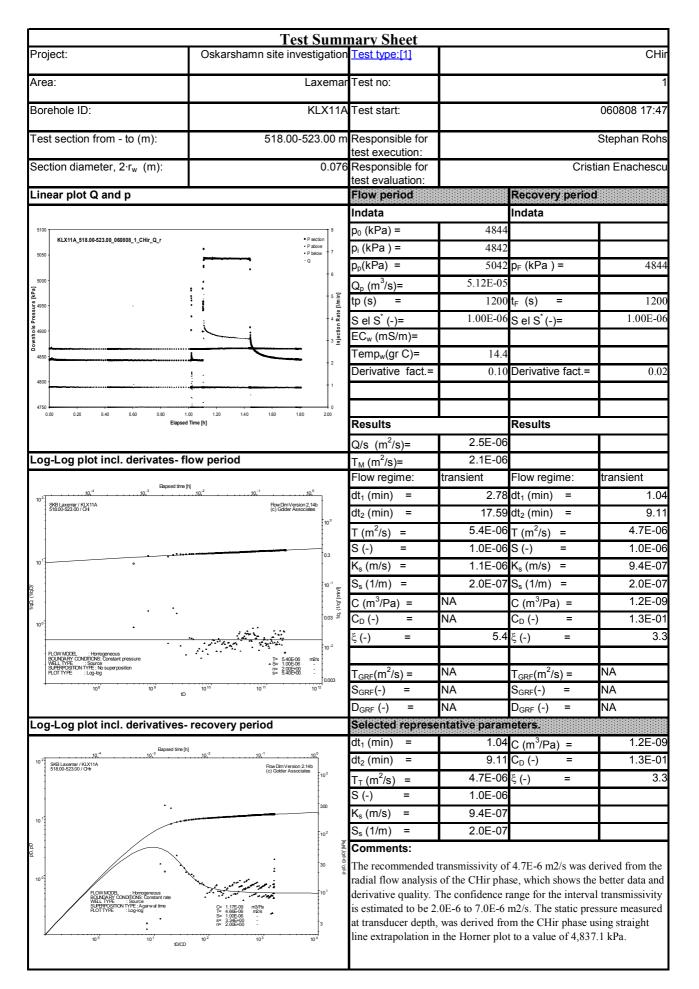
	Test Sur	nmary Sheet			
Project:	Oskarshamn site investigati	on <u>Test type:[1]</u>			Р
Area:	Laxen	nar Test no:			1
Borehole ID:	KLX1	1A Test start:			060714 11:06
Test section from - to (m):	442.00-447.00	m Responsible for			Stephan Rohs
		test execution:			
Section diameter, $2 \cdot r_w$ (m):	0.0	76 Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
· · ·		Indata		Indata	
4400	0.003	p ₀ (kPa) =	4133		
KLX11A_442.00-447	.00_060714_1_PI_Q_r	p _i (kPa) =	4147		
4350	u	$p_p(kPa) =$	4357	p _F (kPa) =	4150
		$Q_{p} (m^{3}/s) =$	NA		
4000 E	0.002	$t_{n}(a) =$	10	t _F (s) =	3840
		S el S [*] (-)=	NA	s el S [*] (-)=	1.00E-06
4 4200 8 9 9		$\frac{[p]}{S el S^{*}} (-)=$ $EC_{w} (mS/m)=$		3 8 3 (-)-	1.002 0
4200	0.001	Temp _w (gr C)=	13.3		
	•••••••••••••••••••••••••••••••••••••••	Derivative fact.=		Derivative fact.=	0.0
4150			nA .		0.0
4100		Results		Results	
Elapsed Ti	ime (nj	Q/s $(m^{2}/s)=$	NA		
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	NA		
	-	Flow regime:	transient	Flow regime:	transient
		dt_1 (min) =	NA	dt_1 (min) =	0.95
		dt_2 (min) =	NA	dt_2 (min) =	5.33
		$T(m^2/s) =$	NA	$T(m^2/s) =$	1.2E-10
		S (-) =	NA	S (-) =	1.0E-06
		K_{s} (m/s) =	NA	K _s (m/s) =	2.4E-1
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	2.0E-07
Not Ar	nalysed	$C_{s}(1/11) = C(m^{3}/Pa) =$	NA	C (m ³ /Pa) =	3.8E-1
		$C (M/Pa) = C_D (-) =$	NA	$C_{D}(-) =$	4.2E-03
			NA		4.22-00
		ξ(-) =		ξ(-) =	0.2
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	1.2E-10
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-06
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	2.23
Log-Log plot incl. derivatives-	recovery period	Selected repres			
Eaosed time (h)		dt_1 (min) =		C (m ³ /Pa) =	3.8E-11
10 1	10 ⁻² 10 ⁻¹ 10 ⁻¹			$C (m /Pa) = C_D (-) =$	4.2E-03
1			1.2E-10		4.22-00
1	0.3	$T_T (m^2/s) =$ S (-) =	1.2E-10		0.2
	E C T A SALES OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OF THE OWNER	$S(-) = K_s(m/s) =$	2.4E-11		
10 °	10 -1		2.4L-11 2.0E-07		
	and a second	Comments:	2.0E-07		
		<u>6</u>	trancmicainite	$f = 10 m^{2} h m^{2}$	darived from the
	• •		s of the Pi nhase	f 1.2E-10 m2/s was (inner zone). The co	onfidence range
10 -1	10 -2			imated to be 8.0E-11	
· ·		m2/s. The static pr		be extrapolated due	
	0.002	transmissivity.			
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10 ³				

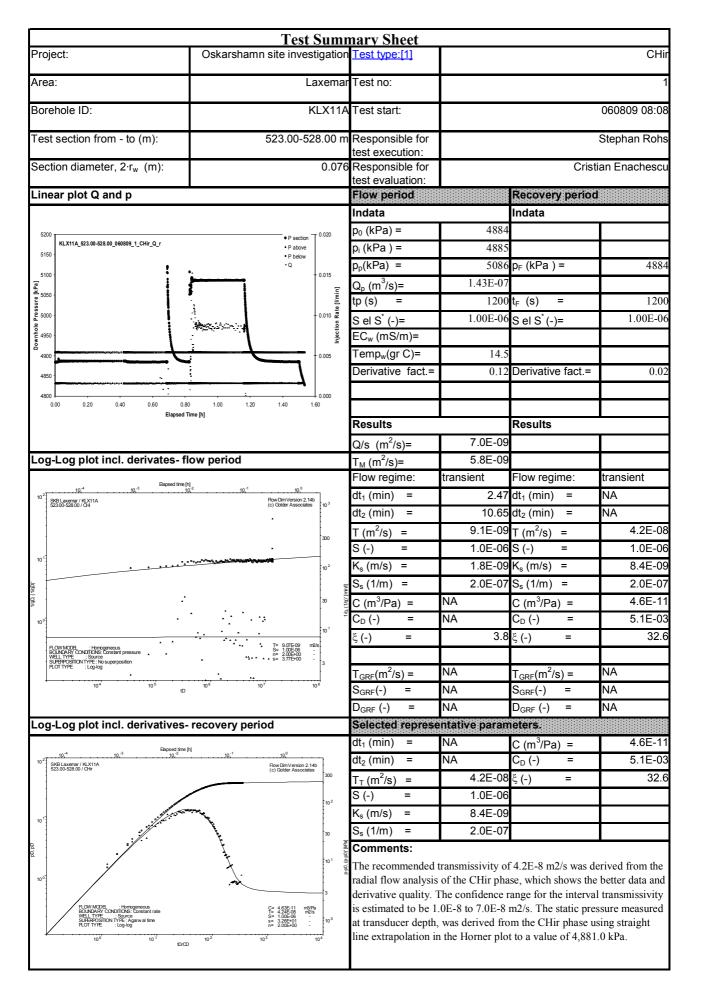

KL		Test no:			CHi	
KL						
KL						
	.X11A		<u> </u>	060714 16:		
457.00-462				060714 16:		
		Responsible for test execution:	Stephan Rol			
		Responsible for			ian Enachescu	
		test evaluation: Flow period		Recovery period		
				· · · · · · · · · · · · · · · · · · ·		
	0.003		4271	Indata		
P section P above P below						
۰۰ می						
				р _F (кРа) =	NA	
	0.002					
	[l/min]				NA	
	tion Rate		NA	S el S [*] (-)=	NA	
	Inject					
	0.001	Temp _w (gr C)=	13.5			
•		Derivative fact.=	NA	Derivative fact.=	NA	
•						
	0.000					
0.60 0.70 0.80 0	0.90			Results		
eriod						
		-	transient		transient	
			NA	dt_1 (min) =	NA	
		dt ₂ (min) =	NA	dt ₂ (min) =	NA	
		T (m²/s) =	NA	T (m²/s) =	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
1		S _s (1/m) =	NA	S _s (1/m) =	NA	
ed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
			NA	ξ(-) =	NA	
		$T_{GPE}(m^2/s) =$	NA	$T_{GPE}(m^2/s) =$	NA	
			NA		NA	
					NA	
very period					.	
					NA	
					NA	
		= . ,			NA	
				¬(⁻) −	· · · ·	
					<u> </u>	
			INA			
ed		Based on the test re			ce) the interval	
	• Pice • Pice • Desire • Desir	ed ed	ed $P_{0} (kPa) = P_{0} (kPa$	ed ed ed ed ed ed ed ed ed ed	ed = ed = ed = ed = ed = ed = ed = ed =	

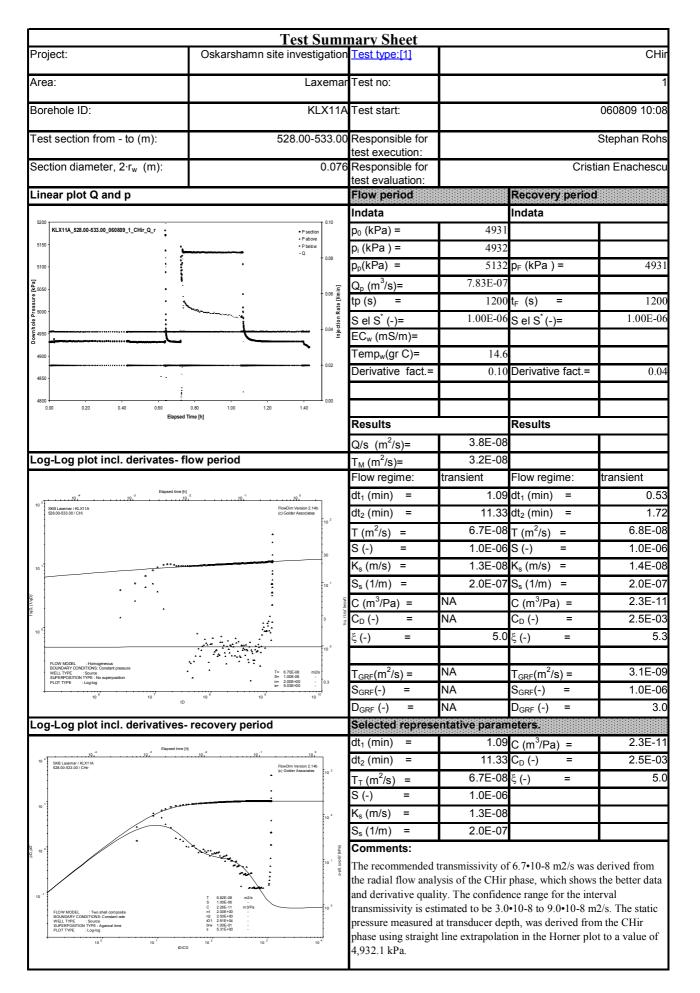

	Test Su	ımn	nary Sheet				
Project:	Oskarshamn site investiga					CHi	
Area:	Laxe	emar	Test no:				
Borehole ID:	KLX	(11A	Test start:		060714 18:0		
Test section from - to (m):	462.00-467.0)0 m	Responsible for			Stephan Rohs	
			test execution:				
Section diameter, $2 \cdot r_w$ (m):	0	.076	Responsible for test evaluation:		Crist	ian Enachescı	
Linear plot Q and p			Flow period		Recovery period		
· ·			Indata		Indata	•] •] •] •] •] •] •] •] •] •]	
4550	• P sector	0.003	p ₀ (kPa) =	4317			
KLX11A_462.00-467.00_060714_1_CHir_Q_r	Pabove Pbelow		p _i (kPa) =	NA			
4500 -	\$ ~ ~		p _p (kPa) =	NA	p _F (kPa) =	NA	
	•		$Q_p (m^3/s) =$	NA			
4400 ·		0.002	$Q_p (m/s) =$ tp (s) =	NA	t _F (s) =	NA	
Domination Program		ate [1 m ir		NA		NA	
22 4400 9		Injection Rate [1/m in]	S el S [*] (-)= EC _w (mS/m)=	INA.	S el S [*] (-)=	NA	
4300 -		Ē 0.001	$EC_w (mS/m) =$ Temp _w (gr C)=	13.5			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	2.001	Derivative fact.=				
400	•		Derivative fact.=	NA	Derivative fact.=	NA	
	•						
4220		0.000	_		_		
0.00 0.10 0.20 0.30 0.40 Elspsed Tin	0.50 0.60 0.70 0.80 0.90		Results		Results		
			Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	ow period		T _M (m²/s)=	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	$dt_1$ (min) =	NA	
			dt ₂ (min) =	NA	$dt_2$ (min) =	NA	
			T (m²/s) =	NA	T (m²/s) =	NA	
			S (-) =	NA	S (-) =	NA	
			$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
			S _s (1/m) =	NA	$S_{s}(1/m) =$	NA	
Not An	alysed		C (m³/Pa) =	NA	C (m³/Pa) =	NA	
			$C_{D}(-) =$	NA	$C_{D}(-) =$	NA	
			ξ(-) =	NA	ξ(-) =	NA	
			5()		5()		
			T _{GRF} (m ² /s) =	NA	$T_{GRF}(m^2/s) =$	NA	
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe				
			$dt_1$ (min) =	NA	C (m ³ /Pa) =	NA	
			$dt_1(min) =$ $dt_2(min) =$	NA	$C (m /Pa) = C_D (-) =$	NA	
				NA		NA	
			$T_T (m^2/s) =$ S (-) =	NA	ξ(-) =	- N/T	
			$K_s(m/s) =$	NA			
			S _s (1/m) =	NA			
Not An	alysed		Comments:				
			transmissivity is low		ged packer complian l m2/s.	ee, me merval	

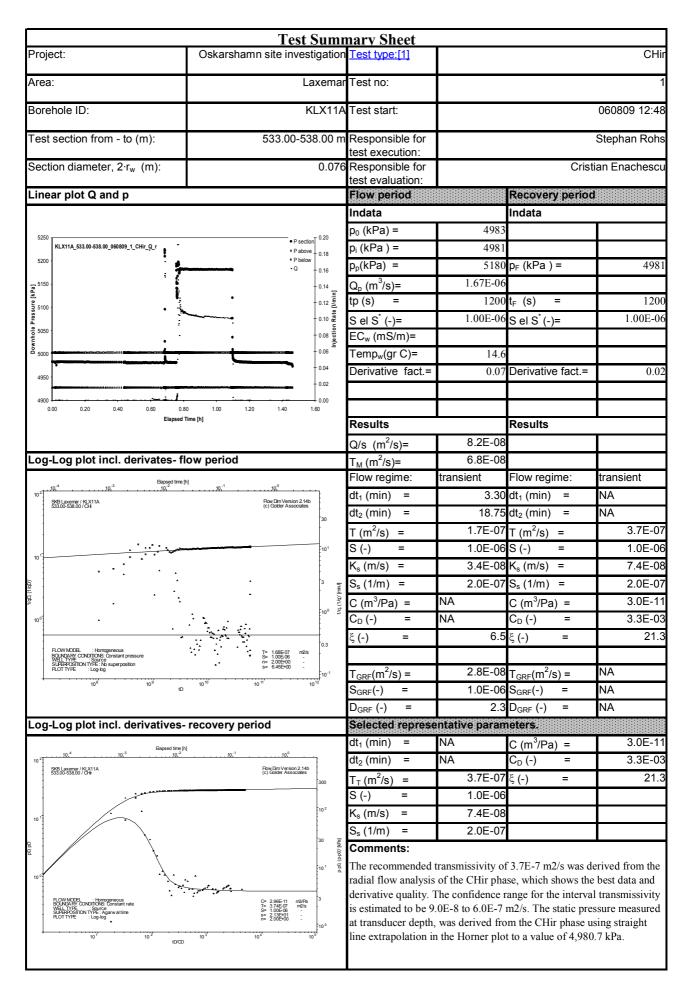

	Test Si	ımn	nary Sheet				
Project:	Oskarshamn site investig	ation	Test type:[1]			CHi	
Area:	Lax	emar	Test no:				
Borehole ID:	KL>	<11A	Test start:			060715 08:10	
Test section from - to (m):	483.00-488.	00 m	Responsible for			Stephan Roh	
			test execution:			-	
Section diameter, 2·r _w (m):	C	0.076	Responsible for test evaluation:		Crist	ian Enachesc	
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
4750 KLX11A_483.00-488.00_060715_1_CHir_Q_r		0.003	p ₀ (kPa) =	4509			
	<ul> <li>P section</li> <li>P above</li> <li>P below</li> </ul>		p _i (kPa ) =	NA			
4700	• · · ·		p _p (kPa) =	NA	p _F (kPa ) =	NA	
4650 -	•	0.002	Q _p (m ³ /s)=	NA			
			tp(s) =	NA	t _F (s) =	NA	
		lnjection Rate [l/m in]	S el S [*] (-)=	NA	S el S [*] (-)=	NA	
		Injection	EC _w (mS/m)=				
4550 -		0.001	Temp _w (gr C)=	13.8			
<u> </u>	/		Derivative fact.=		Derivative fact.=	NA	
4500	•						
4450		0.000			-		
0.00 0.10 0.20 0.30 0.40 Elapsed Tim	0.50 0.60 0.70 0.80 0.9 me [h]	0	Results		Results		
			$Q/s (m^2/s)=$	NA			
_og-Log plot incl. derivates- fle	ow period		T _M (m²/s)=	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt ₁ (min) =	NA	
			dt ₂ (min) =	NA	dt ₂ (min) =	NA	
			T (m²/s) =	NA	T (m²/s) =	NA	
			S (-) =	NA	S (-) =	NA	
			$K_s (m/s) =$	NA	$K_s (m/s) =$	NA	
Not Ar	almad		S _s (1/m) =	NA	S _s (1/m) =	NA	
Not Ar	latyseu		C (m³/Pa) =	NA	C (m³/Pa) =	NA	
			C _D (-) =	NA	C _D (-) =	NA	
			ξ(-) =	NA	ξ(-) =	NA	
			— · 2· ·	NA	2. \	NA	
			$T_{GRF}(m^2/s) = S_{GRF}(-) =$	NA	$T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$	NA	
			$S_{GRF}(-) = D_{GRF}(-) =$			NA	
.og-Log plot incl. derivatives-	racovary pariod		Selected represe				
-og-Log plot mor. derivatives-	recovery periou		$dt_1$ (min) =	<u></u>		NA	
					C (m ³ /Pa) =		
			$dt_2$ (min) =	NA	$C_D(-) =$	NA	
			$T_{T}(m^{2}/s) =$		ξ(-) =	NA	
			S (-) =	NA		<b> </b>	
			$K_s (m/s) =$	NA		<b> </b>	
			$S_{s}(1/m) =$	NA			
Not Ar	nalysed		Comments:				
			transmissivity is low		ed packer complian m2/s.	ce) me interval	

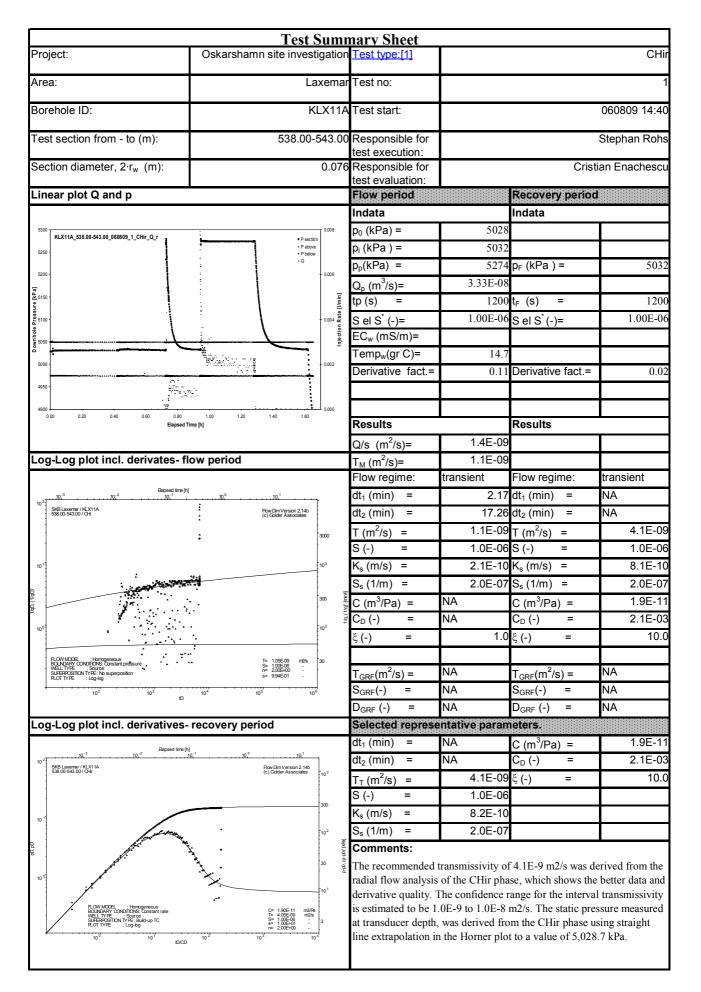

	Test Sumr	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHi	
Area:	Laxemar	Test no:				
Borehole ID:	KLX11A	Test start:		060715 09:2		
Test section from - to (m):	488.00-493.00 m				Stephan Roh	
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for		Crist	ian Enachesc	
		test evaluation:				
Linear plot <b>Q</b> and p		Flow period		Recovery period		
4810		Indata		Indata		
48500 KLX11A_488.00-493.00_060715_1_CHir_Q_r	P section	p ₀ (kPa) =	4556			
4800	P above     P below     Q	p _i (kPa ) =	NA			
4750	ň. –	p _p (kPa) =	NA	p _F (kPa ) =	NA	
4700	• • • • • • • • • • • • • • • • • • • •	Q _p (m ³ /s)=	NA			
7	• 	tp (s) =	NA	t _F (s) =	NA	
450 -		S el S [*] (-)=	NA	S el S [*] (-)=	NA	
400	plote	EC _w (mS/m)=		\ /		
4550	0.001	Temp _w (gr C)=	13.9			
4000		Derivative fact.=		Derivative fact.=	NA	
4500						
4450						
4400 0.00 0.10 0.20 0.30 0.40	0.000 0.50 0.60 0.70 0.80 0.90	Results		Results		
Elapsed Tin			NA			
.og-Log plot incl. derivates- flo	aw pariod	$Q/s (m^2/s) =$	NA			
Log-Log plot men derivates- m	ow period	T _M (m²/s)= Flow regime:	transient	Flow regime:	transient	
		-				
			NA	$dt_1 (min) =$	NA	
		$dt_2 (min) =$	NA	$dt_2 (min) =$	NA	
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	NA	
		S (-) =	NA	S (-) =	NA	
		K _s (m/s) =	NA	K _s (m/s) =	NA	
Not An	alvsed	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	NA	
		C (m³/Pa) =	NA	C (m³/Pa) =	NA	
		C _D (-) =	NA	C _D (-) =	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA	
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
.og-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	-	
		dt ₁ (min) =	NA	C (m³/Pa) =	NA	
		dt ₂ (min) =	NA	C _D (-) =	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA		İ	
		$K_s (m/s) =$	NA			
		$S_{s}(1/m) =$	NA			
Not An	alved	Comments:				
	-	Based on the test re transmissivity is low		ed packer complian m2/s.	ce) the interval	


	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			P
Area:	Laxemar	Test no:			1
Borehole ID:	KLX11A	Test start:			060715 10:47
Test section from - to (m):	493.00-498.00 m	Deenensible for			Stephan Rohs
rest section nom - to (m).	493.00-498.00 11	test execution:			
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	
		Indata		Indata	
4900	0.003	p ₀ (kPa) =	4605	indutu	
KLX11A_493.00-498.00_060715_1_P	Pabove Pbelow	p _i (kPa ) =	4613		
4830 -		$p_p(kPa) =$		p _F (kPa ) =	461
4800 -		$Q_p (m^3/s) =$	NA		
7 5	• 0002	$\frac{d_p (m/s)}{tp (s)} =$		t _F (s) =	1500
ति के 1795 - 199 -	• • • • • • • • • • • • • • • • • • •	S el S [*] (-)=		S el S [*] (-)=	1.00E-00
4700 - 3	· · · · · · · · · · · · · · · · · · ·	EC _w (mS/m)=	1.002.00	3 el 3 (- <i>)</i> -	1.002 0
ŝ	- 0001	Temp _w (gr C)=	14.0		<u> </u>
4650		Derivative fact.=		Derivative fact.=	0.02
4000		Bonnatino haot.		Donnative radi.	0.0.
4500		-		_	
0.00 0.50 1.00 1.50 2.00 2.50 3.00 Bispsed Time [h]		Results	<b>I</b>	Results	
		Q/s (m ² /s)=	NA		
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
		$dt_1$ (min) =	NA	$dt_1$ (min) =	0.4
		$dt_2$ (min) =	NA	$dt_2$ (min) =	23.02
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	2.6E-1
		S (-) =	NA	S (-) =	1.0E-0
		$K_s (m/s) =$	NA	K _s (m/s) =	5.2E-1
Not Ar	nalvsed	S _s (1/m) =	NA	S _s (1/m) =	2.0E-0
110011		C (m³/Pa) =	NA	C (m³/Pa) =	1.2E-1
		C _D (-) =	NA	C _D (-) =	1.3E-0
		ξ(-) =	NA	ξ(-) =	1.1
		$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param		
Elapsed time		$dt_1$ (min) =	0.47		1.2E-1
101		$dt_2$ (min) =	23.02	$C_{\rm D}(-) =$	1.3E-03
	10 ⁻¹	$T_{T} (m^{2}/s) =$	2.6E-10		1.1
a a a gran and a second a se		S (-) =	1.0E-06		1
· ·····	0.03	$K_s (m/s) =$	5.2E-11		
	-	$S_{s}(1/m) =$	2.0E-07		
· · · · · · · · · · · · · · · · · · ·	10 ⁻²	Comments:			
			transmissivity of	2.6E-10 m2/s was	derived from th
	• 0/				
	0.003	radial flow analysis			ge for the
104	•	radial flow analysis interval transmissiv	vity is estimated	to be	-
	. 0.003	radial flow analysis interval transmissiv 9.0E-11 to 4.0E-10	vity is estimated to m2/s. The static		-
	•	radial flow analysis interval transmissiv	vity is estimated to m2/s. The static	to be	-



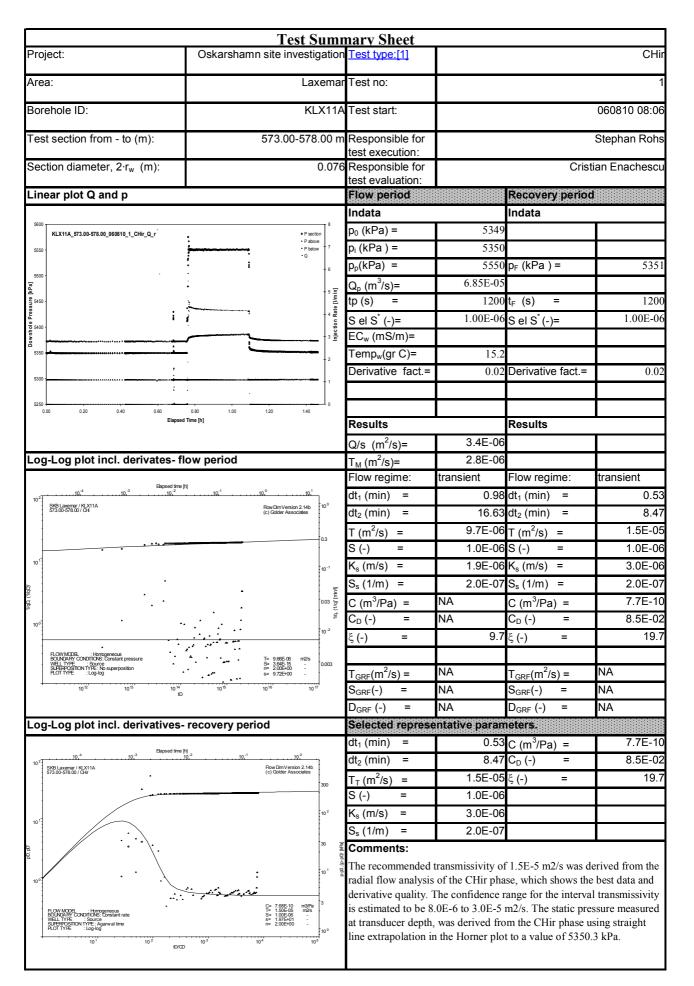







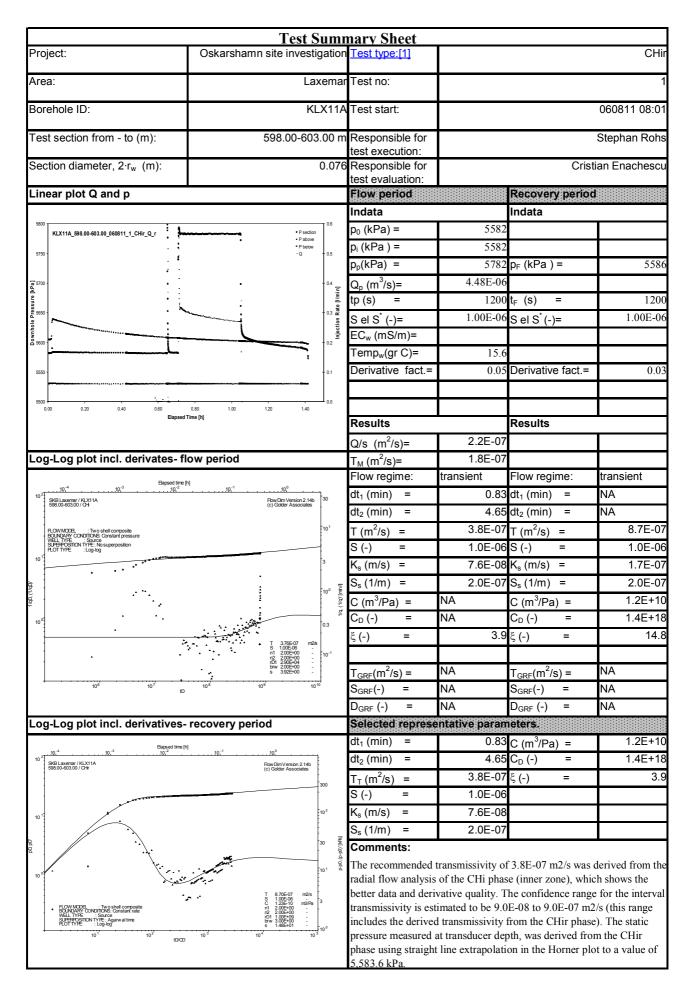



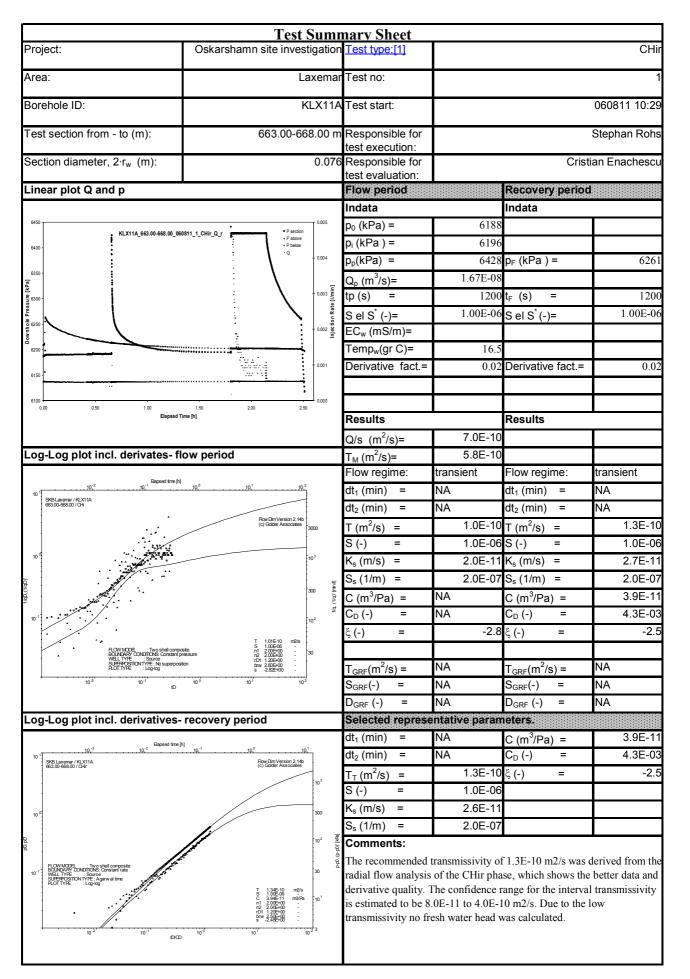





Project: Area: Borehole ID: Test section from - to (m):	Oskarshamn site investigation Laxema				CHi	
Borehole ID:	Laxema	Tool no.				
		r est no:				
Test section from - to (m):	KLX11A	Test start:			060809 16:5	
· ,	563.00-568.00 m	Responsible for			Stephan Roh	
Section diameter, 2·r _w (m):	0.076	test execution: Responsible for		Crist	ian Enachesci	
	0.070	test evaluation:		Clist		
Linear plot Q and p		Flow period		Recovery period	1	
		Indata		Indata		
5500 KLX11A_563.00-568.00_060809_1_CHir_Q_r	0.003	p ₀ (kPa) =	5262			
	P above     P below	p _i (kPa ) =	NA			
5450 -	<b>a</b>	p _p (kPa) =	NA	p _F (kPa ) =	NA	
<del>a</del> 5400 -	• + 0.002	Q _p (m ³ /s)=	NA			
		tp(s) =	NA	t _F (s) =	NA	
중 1400 - 2 명 3 350 - 0 0 2 5 500 -	• Rate	S el S [*] (-)=	NA	S el S [*] (-)=	NA	
	injection Rate (limin)	EC _w (mS/m)=				
§ 5300 -	- 0.001 ⁼	Temp _w (gr C)=	15.0			
	•	Derivative fact.=		Derivative fact.=	NA	
5250 -	•					
5200	0.000					
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Elapsed Time [h]		Results		Results		
		$Q/s (m^2/s)=$	NA	Results		
Log-Log plot incl. derivates- flow period			NA			
Log-Log plot men derivates- ne	ow period	T _M (m²/s)= Flow regime:	transient	Flow regime:	transient	
				_		
		. ,	NA	, ,	NA	
		$dt_2 (min) =$	NA	$dt_2$ (min) =	NA	
		$T(m^2/s) =$	NA	$T(m^{2}/s) =$	NA	
		S (-) =	NA	S (-) =	NA	
		$K_s (m/s) =$	NA	K _s (m/s) =	NA	
Not An	alvsed	$S_s(1/m) =$	NA	$S_{s}(1/m) =$	NA	
		C (m³/Pa) =	NA	C (m³/Pa) =	NA	
		$C_{D}(-) =$		$C_D(-) =$	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		T _{GRF} (m ² /s) =	NA	$T_{GRF}(m^2/s) =$	NA	
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	neters.		
		dt ₁ (min) =	NA	C (m³/Pa) =	NA	
		$dt_2$ (min) =	NA	C _D (-) =	NA	
		$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA	
		S (-) =	NA			
		K _s (m/s) =	NA		1	
		S _s (1/m) =	NA			
Not An	alvsed	Comments:				
		Based on the test re transmissivity is low		ed packer compilan m2/s.	ce) the interval	

	Test S	Sumr	nary Sheet			
Project:	Oskarshamn site investi	gation	Test type:[1]			CHi
Aroo		vomor	Test no:			
Area:	Ld	xemai	Test no.			
Borehole ID:	KL	_X11A	Test start:			060809 18:17
Test section from - to (m):	569 00 573	2 00 m	Responsible for			Stephan Roh
	506.00-573	5.00 m	test execution:			Stephan Ron
Section diameter, 2·r _w (m):		0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p			test evaluation: Flow period		Recovery period	
			Indata		Indata	
5500	•	T ^{0.003}	p ₀ (kPa) =	5308		1
KLX11A_568.00-573.00_060809_1_CHir_Q_r	P section     Pabove     Pelow		$p_0 (kPa) = p_i (kPa) =$	NA		
5450 -	• • Q		$p_p(kPa) =$	NA	p _F (kPa ) =	NA
<del>ल</del> 5400 -	•	0.002	$Q_p (m^3/s) =$	NA		
иге (КР		[/min]	$\frac{d_p(m/s)}{tp(s)} =$	NA	t _F (s) =	NA
Te 5400 S 5550 Jan Jan Jan Jan Jan Jan Jan Jan		Injection Rate [Vmin]	S el S [*] (-)=	NA	S el S [*] (-)=	NA
	·	In je ctic	$EC_w (mS/m) =$			
ō 5300 1 é	•	- 0.001	Temp _w (gr C)=	15.1		<u> </u>
5250	•		Derivative fact.=		Derivative fact.=	NA
	•					
5200 0.00 0.10 0.20 0.30 0.40 0.50	0.60 0.70 0.80 0.90 1	0.000				
Elapsed Time [h]			Results		Results	
			Q/s (m²/s)=	NA		
Log-Log plot incl. derivates- flo	ow period		$T_{M} (m^{2}/s) =$	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	NA
			$dt_2$ (min) =	NA	$dt_2$ (min) =	NA
			$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	NA
			S (-) =	NA	S (-) =	NA
			$K_{s}(m/s) =$	NA	$K_{s}(m/s) =$	NA
Not Am	almad		S _s (1/m) =	NA	S _s (1/m) =	NA
Not An	larysed		C (m³/Pa) =	NA	C (m³/Pa) =	NA
			C _D (-) =	NA	C _D (-) =	NA
			ξ(-) =	NA	ξ(-) =	NA
			$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	<u> </u>		<b>-</b>
			$dt_1$ (min) =	NA	C (m ³ /Pa) =	NA
			$dt_2$ (min) =	NA	C _D (-) =	NA
			$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
			S (-) =	NA		ļ
			$K_s (m/s) =$	NA		
			S _s (1/m) = Comments:	NA		
Not An	alysed				ed packer complian	aa) 4h - 1 - 1
			transmissivity is low			,



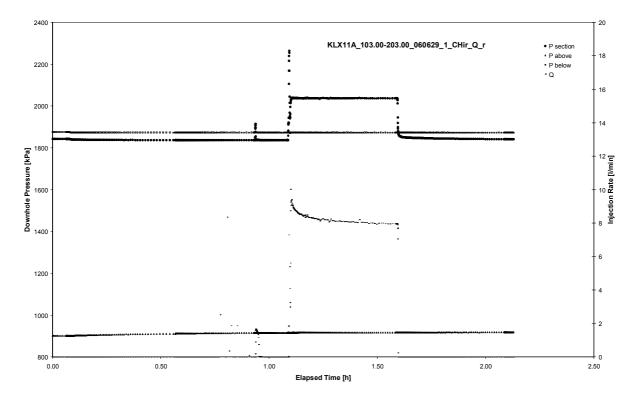


pe:[1] art: art: nsible for ecution: nsible for aluation: period a) = ) = ) = (-)= (s)= (-)= (s)= (gr C)= tive fact.= $s^{2^2/s}=$ (s)= egime: n) = n) =	9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Cris: Recovery period Indata $p_F (kPa) =$ $t_F (s) =$ S el S [*] (-)= Derivative fact.= Results Flow regime: $dt_1 (min) =$ $dt_2 (min) =$	CHi 060810 10:02 Stephan Rohs tian Enachescu 3 1200 1.00E-00 0.02 0.02 1.00E-00 0.02 1.00E-00 0.02 1.00E-00 0.02 1.00E-00 0.02 1.00E-00 0.02 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00E-00 1.00E-00E-00 1.00E-00E-00E-00E-00 1.00E-00E-00E-00E-00E-0
art: nsible for ecution: nsible for aluation: veriod a) = ) = ) = (-)= (s)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)= (c)	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Recovery period           Indata           p _F (kPa ) =           t _F (s) =           S el S [*] (-)=           Derivative fact.=           Results           Flow regime:           dt ₁ (min) =	Stephan Rohs tian Enachescu 3 5399 1200 1.00E-00 0.02 0.02
nsible for ecution: nsible for aluation: errod a) = ) = ) = ) = (-)= (s)= ((-)= (s)= ((r C)= tive fact.= <b>s</b> $n^2/s)=$ egime: n) = n) =	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Recovery period           Indata           p _F (kPa ) =           t _F (s) =           S el S [*] (-)=           Derivative fact.=           Results           Flow regime:           dt ₁ (min) =	Stephan Rohs tian Enachescu 3 5399 1200 1.00E-00 0.02 0.02
ecution: nsible for aluation: erriod a) = ) = ) = (-)= (s)= (-)= (s)= (gr C)= tive fact.= s s $n^2/s)=$ egime: n) = n) =	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Recovery period           Indata           p _F (kPa ) =           t _F (s) =           S el S [*] (-)=           Derivative fact.=           Results           Flow regime:           dt ₁ (min) =	tian Enachescu 3 5390 1200 1.00E-00 0.02 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00 1.00E-00
nsible for aluation: eriod a) = b) = b) = (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)= (-)=	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Recovery period           Indata           p _F (kPa ) =           t _F (s) =           S el S [*] (-)=           Derivative fact.=           Results           Flow regime:           dt ₁ (min) =	2 5399 1200 1.00E-00 0.02
aluation: reriod a) = b) = b) = (s) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) = (c-) =	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Recovery period           Indata           p _F (kPa ) =           t _F (s) =           S el S [*] (-)=           Derivative fact.=           Results           Flow regime:           dt ₁ (min) =	2 5399 1200 1.00E-00 0.02
a) = ) = ) = /s)= (-)= nS/m)= (gr C)= tive fact.= $r^{2}/s$ )= /s)= egime: n) = n) =	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Indata $p_F (kPa) =$ $t_F (s) =$ $S el S^* (-) =$ Derivative fact.= Results Flow regime: $dt_1 (min) =$	5399 1200 1.00E-00 0.02
a) = ) = ) = (s) = (-)= (s) = (gr C) = tive fact.= s (s) = (s)	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	$p_{F} (kPa) =$ $t_{F} (s) =$ S el S [*] (-)= Derivative fact.= Results Flow regime: $dt_{1} (min) =$	1200 1.00E-00 0.02
(-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-)	5397 5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	$t_F$ (s) = S el S [*] (-)= Derivative fact.= <b>Results</b> Flow regime: dt ₁ (min) =	1200 1.00E-00 0.02
(-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-) = (-)	5598 9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	$t_F$ (s) = S el S [*] (-)= Derivative fact.= <b>Results</b> Flow regime: dt ₁ (min) =	1200 1.00E-00 0.02
$\frac{(s)}{s} = \frac{(-)}{s} = (-$	9.33E-05 1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	$t_F$ (s) = S el S [*] (-)= Derivative fact.= <b>Results</b> Flow regime: dt ₁ (min) =	120 1.00E-0 0.0
$=$ $(-)=$ $nS/m)=$ $(gr C)=$ tive fact.= $s$ $s$ $n^{2}/s)=$ $sgime:$ $n) =$ $n) =$	1200 1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	S el S [*] (-)= Derivative fact.= Results Flow regime: dt ₁ (min) =	1.00E-0
$=$ $(-)=$ $nS/m)=$ $(gr C)=$ tive fact.= $s$ $s$ $n^{2}/s)=$ $sgime:$ $n) =$ $n) =$	1.00E-06 15.1 0.06 4.6E-06 3.8E-06 transient 0.88	S el S [*] (-)= Derivative fact.= Results Flow regime: dt ₁ (min) =	1.00E-0
$\frac{(\text{gr C})}{(\text{gr C})} = \frac{(\text{gr C})}{($	15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Derivative fact.= Results Flow regime: dt ₁ (min) =	0.0 transient 0.5
$\frac{(\text{gr C})}{(\text{gr C})} = \frac{(\text{gr C})}{($	15.1 0.06 4.6E-06 3.8E-06 transient 0.88	Derivative fact.= Results Flow regime: dt ₁ (min) =	transient 0.5
<b>s</b> n ² /s)= /s)= egime: n) = n) =	0.06 4.6E-06 3.8E-06 transient 0.88	Results Flow regime: dt ₁ (min) =	transient 0.5
<b>s</b> n ² /s)= /s)= egime: n) = n) =	4.6E-06 3.8E-06 transient 0.88	Results Flow regime: dt ₁ (min) =	transient 0.5
n ² /s)= /s)= egime: n) = n) =	3.8E-06 transient 0.88	Flow regime: dt ₁ (min) =	0.5
n ² /s)= /s)= egime: n) = n) =	3.8E-06 transient 0.88	Flow regime: dt ₁ (min) =	0.5
n ² /s)= /s)= egime: n) = n) =	3.8E-06 transient 0.88	Flow regime: dt ₁ (min) =	0.5
/s)= egime: n) = n) =	3.8E-06 transient 0.88	$dt_1 (min) =$	0.5
egime: n) = n) =	transient 0.88	$dt_1 (min) =$	0.5
n) = n) =	0.88	$dt_1 (min) =$	0.5
n) =			
,	10.00		0.0
		, ,	2.1E-0
s) =	1.0E-05	$T(m^2/s) =$	-
=		()	1.0E-0
s) =		$K_s(m/s) =$	4.2E-0
ו) =		$S_{s}(1/m) =$	2.0E-0
Pa) =	NA	C (m ³ /Pa) =	1.4E-0
=		C _D (-) =	1.5E-0
=	5.6	ξ(-) =	19.4
_		<u></u>	
¹² /s) =		T _{GRF} (m²/s) =	NA
			NA
			NA
,			1.4E-0
			1.5E-0
/s) =	1.0E-05	ξ(-) =	5.
=	1.0E-06		
s) =	2.0E-06		
ו) =	2.0E-07		
ents:			
	.UE-0 10 3.UE-3		
ated to be 8.		m the CHir phase u	
	$\begin{array}{l} (-) & = \\ \text{ted represe}\\ \text{in)} & = \\ \text{in)} & = \\ \hline \\ \text{in)} & = \\ \hline \\ \\ (s) & = \\ \hline \\ \text{monts:}\\ \hline \\ \text{commended}\\ \text{flow analysis}\\ \text{tive quality.} \end{array}$	$(-)$ =2.1ted representative paramin=2.1in)=0.88in)=15.88 $^2/s$ )=1.0E-05=1.0E-06 $(s)$ =2.0E-06m)=2.0E-07nents:commended transmissivity of flow analysis of the CHi phastive quality. The confidence restrict quality. The confidence restrict to be 8.0E-6 to 3.0E-5	$(-)$ =       2.1 $D_{GRF}$ (-)       =         ted representative parameters.

	<u> </u>	<u>mary Sheet</u>	_			
Project:	Oskarshamn site investigation	n <u>Test type:[1]</u>			Р	
Area:	Laxema	r Test no:			1	
Borehole ID:	KLX11/	Test start:		060810 12		
Test section from to (m):	E92.00 E99.00 r	n Responsible for			Stanhan Daha	
Test section from - to (m):	583.00-588.00 1	test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):	0.076	8 Responsible for		Crist	ian Enachescu	
Linear plot Q and p		test evaluation: Flow period		Recovery period		
		Indata		Indata		
			5447	inuala	1	
5750 KLX11A 583.0	0.003 0-588.00_060810_1_CHir_Q_r *P section	p ₀ (kPa) =	5447			
5700 -	P above •	p _i (kPa ) =	5452			
5650	· q · · ·	p _p (kPa) =		p _F (kPa ) =	551	
·	0.002	$Q_{p} (m^{3}/s) =$	NA			
E 255500	. [iiimi]	tp (s) =	10	t _F (s) =	388	
2 5550	Ra	S el S [*] (-)=	NA	S el S [*] (-)=	1.00E-0	
	Injection	EC _w (mS/m)=				
	=	Temp _w (gr C)=	15.4			
5450	•	Derivative fact.=	NA	Derivative fact.=	0.0	
5400	• •	Bonnanio haot.			0.0	
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.80 1.80 2.00 Elapsed Time [h]		Results		Results		
		Q/s $(m^2/s)=$	NA			
.og-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	NA			
		Flow regime:	transient	Flow regime:	transient	
		$dt_1$ (min) =	NA	$dt_1$ (min) =	NA	
		$dt_2 (min) =$	NA	$dt_2$ (min) =	NA	
		, ,	NA		1.2E-1	
		$T(m^2/s) =$		$T(m^{2}/s) =$		
		S (-) =	NA	S (-) =	1.0E-0	
		$K_{s} (m/s) =$	NA	$K_s (m/s) =$	2.4E-1	
Not A	nalysed	$S_{s}(1/m) =$	NA	S _s (1/m) =	2.0E-0	
	larysed	C (m³/Pa) =	NA	C (m³/Pa) =	1.2E-1	
		C _D (-) =	NA	C _D (-) =	1.3E-0	
		ξ(-) =	NA	ξ(-) =	-0.	
		$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m²/s) =	2.6E-1	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	1.0E-0	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	1.02 0	
.og-Log plot incl. derivatives-	racovary pariod	Selected represe				
			NA		1.2E-1	
Eapsed time	10,10,10,10,10,10,10,10,10,10,10,10,10,1	att ()		C (m ³ /Pa) =		
10 ¹ SKB Laxemar / KLX11A 583.00-588.00 / FI	How Dim Version 2.14b     (c) Golder Associates     3	$dt_2 (min) =$	NA	C _D (-) =	1.3E-0	
		$T_T (m^2/s) =$	1.2E-11		-0.1	
1	100	S (-) =	1.0E-06			
		$K_{s}$ (m/s) =	2.4E-12			
100	. 0.3	$S_{s}(1/m) =$	2.0E-07			
100						
		Comments:				
			transmissivity of	f 1.2E-11 m2/s was	derived from th	
	10 ⁻¹	The recommended radial flow analysis	s of the Pi phase.	f 1.2E-11 m2/s was The confidence ran	ige for the	
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		The recommended radial flow analysis interval transmissiv	s of the Pi phase. vity is estimated	The confidence ran to be 9.0E-12 to 4.0	nge for the E-11 m2/s. The	
10 ⁻¹	10-1 Port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of the second port of	The recommended radial flow analysis interval transmissiv static pressure coul	s of the Pi phase. vity is estimated	The confidence ran	nge for the E-11 m2/s. The	
- in the second	10 ⁻¹	The recommended radial flow analysis interval transmissiv	s of the Pi phase. vity is estimated	The confidence ran to be 9.0E-12 to 4.0	nge for the E-11 m2/s. The	

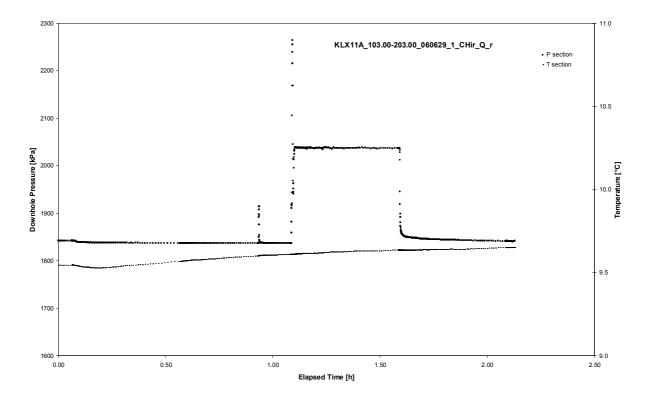
	Test	Sumn	nary Sheet			
Project:	Oskarshamn site invest	tigation	Test type:[1]			Р
Area:	La	axemar	Test no:			1
Borehole ID:	К	LX11A	Test start:			060810 14:41
Test section from - to (m):	588.00-59	3.00 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):		0.076	Responsible for		Crist	tian Enachescu
Linear plot Q and p			test evaluation: Flow period		Recovery period	4
Linear plot Q and p			Indata		Recovery period Indata	
5800 -		т 0.003	$p_0 (kPa) =$	5493	inuata	
KLX11A_588.00-593.00_060810_1_Pi_Q_r	P section     P above	0.003		5495 NA		
5750 -	P below		p _i (kPa ) =			
5700 ·	•		$p_p(kPa) =$	NA	p _F (kPa ) =	NA
° 5650 .	•	- Rate [//m in]	$Q_p (m^3/s) =$	NA		
∃ %2 ≥ 5600	•	Rate [I	tp (s) =	NA	t _F (s) =	NA
9 9 0 0	•	Injection F	S el S [*] (-)=	NA	S el S [*] (-)=	NA
	• .	0.001 흔	EC _w (mS/m)=			
5500	•		Temp _w (gr C)=	15.4		
5450			Derivative fact.=	NA	Derivative fact.=	NA
5400	· · · · · · · · · · · · · · · · · · ·	0.000				
0.00 0.20 0.40 0.60 0.8 Elapsed Time						
		Results		Results		
		Q/s (m²/s)=	NA			
Log-Log plot incl. derivates- flo	w period		T _M (m²/s)=	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	NA
			dt ₂ (min) =	NA	dt ₂ (min) =	NA
			T (m²/s) =	NA	T (m²/s) =	NA
		S (-) =	NA	S (-) =	NA	
			$K_s (m/s) =$	NA	K _s (m/s) =	NA
			S _s (1/m) =	NA	S _s (1/m) =	NA
Not Ana	alysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
			C _D (-) =	NA	$C_{D}(-) =$	NA
			ξ(-) =	NA	ξ(-) =	NA
			5()		5()	
			T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives- r	ecovery period		Selected represe			
- y - y plot mol. denvalives- i	soovery period		$dt_1$ (min) =	NA	C (m ³ /Pa) =	NA
			$dt_1(min) = dt_2(min) =$	NA	$C (m^{2}/Pa) = C_{D} (-) =$	NA
			$T_{T}(m^{2}/s) =$	NA	ξ(-) =	NA
			S(-) =	NA		ļ
		$K_s(m/s) =$	NA		ļ	
			S _s (1/m) = Comments:	NA		
Not Ana	alysed		Based on the test re 11 m2/s.	esponse the inter	val transmissivity is	lower than 1.01

	Test S	Sumr	<u>nary Sheet</u>	1		
Project:	Oskarshamn site investi	igation	Test type:[1]			CHi
Area:	La	xemar	Test no:			
Borehole ID:	KI	_X11A	Test start:			060810 16:33
est section from - to (m):	593.00-598	3.00 m	Responsible for			Stephan Roh
Section diameter, 2·r _w (m):	+	0.076	test execution: Responsible for		Cristian Enache	
		0.070	test evaluation:		Child	
inear plot Q and p.			Flow period		Recovery period	t
			Indata		Indata	
5850 KLX11A 593.00	0-598.00_060810_1_Pi_Q_r • P section	0.003	p ₀ (kPa) =	5540		
5800	• P below		p _i (kPa ) =	5546		
5750 -	• •		p _p (kPa) =	5784	p _F (kPa ) =	571
		- 0.002	$Q_{p} (m^{3}/s) =$	NA	,	1
5700 -	•		tp(s) =		t _F (s) =	3679
5650 -		n Rate	S el S [*] (-)=	NA	S el S [*] (-)=	1.00E-0
5600 -	•	Injection Rate [I/min	$EC_w (mS/m) =$		S el S (-)-	1.002 0
	•	0.001	Temp _w (gr C)=	15.5		
5550			Derivative fact.=		Derivative fact.=	0.0
5500 -	• *****					0.0
5450 0.00 0.20 0.40 0.60 0.80	• 1.00 1.20 1.40 1.60 1	0.000				
Elapsed Time [h]			Results		Results	
			Q/s $(m^2/s)=$	NA		
og-Log plot incl. derivates- f	low period		$T_{M} (m^{2}/s) =$	NA		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	NA
			dt ₂ (min) =	NA	dt ₂ (min) =	NA
			$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	4.2E-1
			S (-) =	NA	S (-) =	1.0E-0
			$K_s (m/s) =$	NA	$K_s (m/s) =$	8.4E-1
			$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	2.0E-0
Not A	nalysed		$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) =	1.9E-1
			$\frac{C_{D}(-)}{C_{D}(-)} =$	NA	$C_{D}(-) =$	2.1E-0
			$\xi(-) =$	NA	ξ(-) =	0.
			∽ ( [_] ) –		∽ ( ⁻ ) —	0.
			$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA		NA
.og-Log plot incl. derivatives	recovery period		Selected represe			
				NA		1.9E-1
10 ¹¹ SKB Laxemar / KLX11A		10, ²	att ()		C (m ³ /Pa) =	
SKB Laxemar / KLX11A 593.00-598.00 / Fl	Flow Dim Version 2.14b (c) Golder Associates	10 ¹	$dt_2 (min) =$	NA	$C_D(-) =$	2.1E-0
		1	$T_{T}(m^{2}/s) =$	4.2E-12	3()	0.
		3	S (-) =	1.0E-06		
10 [°] .	•	ŀ	$K_s (m/s) =$	NA		
it and the second second		10 [°] Insau	$S_{s}(1/m) =$	NA		
1		voluted p	Comments:			
· · · · · · · · · · · · ·		0.3 bog			f 4.2E-12 m2/s was	
10-1 · · · · · · · · · · · · · · · · · · ·		1	radial flow analysis		The confidence ran	
10 ⁻¹		10-1		•, • .• . •		
	enecus C≃ 1895–11 m3/5-a	10-1	interval transmissiv			
10 ⁻¹ ROWADE Hono BOUNNEY CONTINES WELLIVER ON BEEN ROTINE Free R	2eneous C= 1.805-11 m3Ps Sugnuse T= 4.205-12 m3Ps superposition S= 3.405-02 m3Ps superposition S= 3.405-02 m synotes n= 2.005-00 -	F	interval transmissiv		to be 1.0E-12 to 7.0 lated due to the ver	

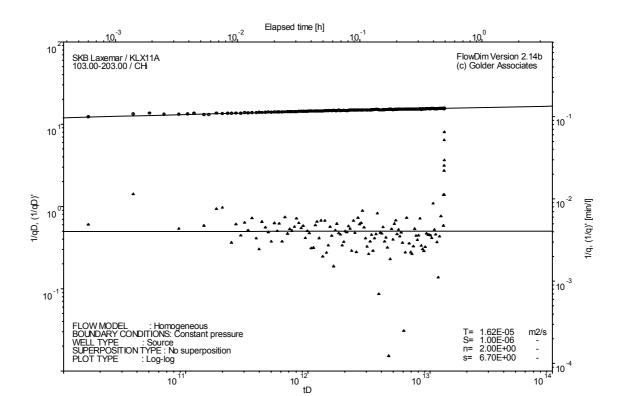




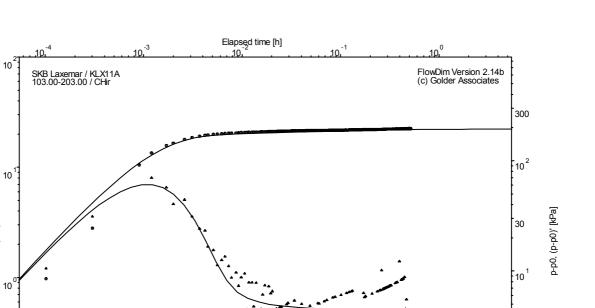

		<u>mmary Sheet</u>				
Project:	Oskarshamn site investiga	tion Test type:[1]			CHir	
Area:	Laxe	mar Test no:				
Borehole ID:	KLX	11A Test start:		060811 13:30		
Test section from - to (m):	668.00-673.0	0 m Responsible f		Stephan Roh		
Section diameter, 2·r _w (m):	0	test execution 076 Responsible f		Crist	ian Enachescu	
	0	test evaluation		Child		
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
6500 · KI V114 659 00 5	73.00_060811_1_Pi_Q_r • P section	⁰³ p ₀ (kPa) =	6237			
	/3.00_060811_1_Pi_Q_r • P section • P above • • • • • • • • • • • • • • • • • • •	p _i (kPa ) =	6245			
6450	· Q •	$p_p(kPa) =$		p _F (kPa ) =	6366	
6400 -	**********		NA		0500	
	۵۵	$Q_{p} (m^{3}/s) = \frac{Q_{p} (m^{3}/s)}{E}$		t _F (s) =	3582	
ੈ 6350 - ≋	•	E ()				
5 6300 - <b>x</b>		S el S [*] (-)=	NA	S el S [*] (-)=	1.00E-00	
	•					
6250	·····	Temp _w (gr C)=	= 16.6			
·		Derivative fac	ct.= NA	Derivative fact.=	0.0	
6200 - 	······································					
6150	1.00 1.20 1.40 1.60 1.80	··· Results		Results		
		$Q/s (m^2/s)=$	NA			
_og-Log plot incl. derivates- flo	w period	$T_{\rm M} (m^2/s) =$	NA			
Log-Log plot mel. derivates- no	wpenod				transiant	
		Flow regime:	transient	Flow regime:	transient	
		$dt_1$ (min) =	NA	$dt_1$ (min) =	6.7	
	$dt_2$ (min) =	NA	$dt_2$ (min) =	42.07		
	$T(m^{2}/s) =$	NA	T (m²/s) =	1.2E-1		
	S (-) =	NA	S (-) =	1.0E-06		
	$K_s(m/s) =$	NA	$K_s (m/s) =$	2.3E-12		
	1 1	$S_{s}(1/m) =$	NA	S _s (1/m) =	2.0E-07	
Not Ana	alysed	C (m ³ /Pa) =	NA	C (m³/Pa) =	1.7E-1	
		$C_{\rm D}(-) =$	NA	C _D (-) =	1.8E-03	
		ξ(-) =	NA	ξ(-) =	-0.3	
		5()		5()	-	
		$T_{(m^{2}/2)}$	NA	T _{GRF} (m ² /s) =	5.67E-1	
		$\frac{T_{GRF}(m^2/s)}{S_{GRF}(-)} =$	NA	$I_{GRF}(m / s) =$ $S_{GRF}(-) =$	1.00E-06	
	$D_{GRF}(-) =$	NA	D _{GRF} (-) =	1.6		
Log-Log plot incl. derivatives- r	ecovery period		resentative paran		1	
Eapsed time [h]	10 ⁻¹	$dt_1$ (min) =	6.71	0 (iii /i u)	1.7E-1	
10 ¹ SKB Laxemar / KLX11A 668.00-673.00 / FI	Flow Dim Version 2.14b (c) Golder Associates	$dt_2 (min) =$		C _D (-) =	1.8E-03	
000.00-0/3.00 / P	(C) Golder Associates	$T_{T}(m^{2}/s) =$	1.2E-11	ξ(-) =	-0.3	
•		S (-) =	1.0E-06			
10 ⁰		$K_s (m/s) =$	2.4E-12			
· · · · · · · · · · · · · · · · · · ·	- jast in the second second second second second second second second second second second second second second	₃ ₅ (1/m) =	2.0E-07			
A THE A	••••••••••••••••••••••••••••••••••••••	$S_{s}(1/m) =$ <b>Comments:</b> The recommen				
	1	The recommen	ded transmissivity o	f 1.2E-11 m2/s was	derived from the	
10-1		radial flow ana	lysis of the Pi phase.			
	C≈ 1.65E-11 m?/Pa	⁰³ interval transm	issivity is estimated	to be 9.0E-12 to 4.0	E-11 m2/s. The	
FLOW MODEL : Horrogeneous     BOUNDARY CONDITIONS Stugralse     WELLTYFE : Source     SUFEPECISION TYFE: No superposition     R-OT TYFE : The res, Reymolds	C= 1.655=11 m3/Pa T= 1.17E=11 m2/s S= 1.00€-06 - s= -2.90E=01 - n= 2.00E+00 -		could not be extrapo	lated due to the very	/ low	
	1	transmissivity.				
10 ⁻¹ 10 ⁰ tD	10 ¹ 10 ² 10 ³					


	Test S	umn	nary Sheet				
Project:	Oskarshamn site investig	gation	Test type:[1]			CHi	
Area:	Laxemar		Test no:	1			
Borehole ID:	KLX11A		Test start:		060811 15:38		
Test section from - to (m):	673.00-678	.00 m	Responsible for			Stephan Rohs	
			test execution:			-	
Section diameter, 2·r _w (m):			Responsible for test evaluation:		Crist	ian Enachescı	
Linear plot Q and p			Flow period	<b>I</b>	Recovery period		
			Indata		Indata		
6550 -		0.003	p ₀ (kPa) =	6283	indutu		
	• P section • P above		p _i (kPa ) =	6288			
6500 -	• P below • Q		$p_p(kPa) =$		p _F (kPa ) =	629	
6450	•			NA	р _F (кга) –	029	
		0.002 E	$Q_p (m^3/s) =$ tp (s) =		t₋ (s) =	272	
6400 -	•	te [l/m	·[- (-)		• _F (•)	372	
	•	Injection Rate [I/min]	S el S [*] (-)=	NA	S el S [*] (-)=	1.00E-0	
6400	*******	luje ct	EC _w (mS/m)=			ļ	
6300		0.001	Temp _w (gr C)=	16.7			
6250	•		Derivative fact.=	NA	Derivative fact.=	0.0	
	······································						
6200 0.00 0.20 0.40 0.60 0.80 Elapsed	1.00 1.20 1.40 1.60 1.8 fime [h]	- 0.000 80	Results		Results		
			Q/s (m²/s)=	NA			
_og-Log plot incl. derivates- f	low period		$T_{\rm M} (m^2/s) =$	NA			
			Flow regime:	transient	Flow regime:	transient	
			$dt_1$ (min) =	NA	$dt_1$ (min) =	2.3	
			$dt_2$ (min) =	NA	$dt_2$ (min) =	8.9	
			2	NA	$T(m^2/s) =$	9.0E-1	
			T (m²/s) = S (-) =	NA	S(-) =	1.0E-0	
			$S(-) = K_s(m/s) =$	NA	S (-) = K _s (m/s) =	1.0E-0	
Not A	nalysed		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	2.0E-0	
			C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.2E-1	
			C _D (-) =	NA	C _D (-) =	1.3E-0	
			ξ(-) =	NA	ξ(-) =	0.	
			T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA	
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives- recovery period			Selected represe				
			$dt_1$ (min) =	·····	C (m ³ /Pa) =	1.2E-1	
Eapsed time	[h]		$dt_1(min) =$ $dt_2(min) =$		C (m /Pa) = C _D (-) =	1.3E-0	
10 1 SKB Laxemar / KLX11A 673.00-678.00 / Pi	Flow Dim Version 2.14b (c) Golder Associates					1.3E-0 0.	
		0.3	$T_T (m^2/s) =$ S (-) =	9.0E-11	ξ(-) =	0.	
		10 -1	5()	1.0E-06		<b> </b>	
10 ⁰	-		$K_s(m/s) =$	1.8E-11			
···· ····	and the second second second second second second second second second second second second second second second	0.03	$S_{s}(1/m) =$	2.0E-07			
		oluted pre	Comments:			1 . 10 .	
		10 ⁻² Mooged	The recommended t		9.0E-11 m2/s was (inner zone). The co		
		ł			mated to be 5.0E-1		
10 1	_	0.003	for the interval fran				
	C 1.195-11 m2/s T 8.995-11 m2/s S 1.005-06 - s 1.405-01 -	0.003	m2/s. The static pre				
10 ⁻¹ COWMERCE AND TWO the composite BULLIVE NULLIVE SUFFYCIANT TWE is supposed NUTFYCE is supposed PLOTIVE : iters. sprods	T 8,98E-11 m2/s S 1.00E-06 - s 1.40E-01 -	0.003					

	Test S	Sumr	nary Sheet				
Project:	Oskarshamn site invest	igation	Test type:[1]			CHir	
Area:	Laxemar		Test no:		1		
Borehole ID:	KI Y11A		Test start:		060811 17:45		
Borenoie ID.			Test start.			00001117.40	
Test section from - to (m):	678.00-683.00 m		Responsible for test execution:		Stephan Rohs		
Section diameter, 2·r _w (m):		0.076	Responsible for		Crist	ian Enachescu	
			test evaluation:				
Linear plot <b>Q</b> and p			Flow period		Recovery period		
			Indata	(220	Indata	1	
6600 KLX11A_678.00-683.00_060811_1	1_Pi_Q_r • P section	0.003	p₀ (kPa) =	6329			
6550 -	- Pabove - P below - Q		p _i (kPa ) =	6332			
	·u		p _p (kPa) =		p _F (kPa ) =	6338	
6500 - ·		0.002	Q _p (m ³ /s)=	NA			
<u>호</u> 을 6450 -		[I/m in ]	tp (s) =	10	t _F (s) =	9120	
Example 2010		Injection Rate [I/min]	S el S [*] (-)=	NA	S el S [*] (-)=	1.00E-06	
		jection	EC _w (mS/m)=				
8 6350		- 0.001	Temp _w (gr C)=	16.8			
*			Derivative fact.=	NA	Derivative fact.=	0.04	
6300 -	:						
6250 .00 0.50 1.00 1.50	• 2.00 2.50 3.00 3	0.000					
Elapsed T	Time [h]		Results	-	Results	-	
			Q/s (m ² /s)=	NA			
Log-Log plot incl. derivates- fl	low period		T _M (m ² /s)=	NA			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	NA	dt ₁ (min) =	1.95	
			$dt_2$ (min) =	NA	dt ₂ (min) =	16.97	
			$T(m^{2}/s) =$	NA	T (m²/s) =	8.4E-11	
			S (-) =	NA	S (-) =	1.0E-06	
			$K_s (m/s) =$	NA	$K_s (m/s) =$	1.7E-11	
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	2.0E-07		
					$O_{\rm S}$ ( 1/11)	2.00 01	
Not Ar	nalysed				$O(m^3/D_{\rm P}) =$	1 5E_11	
Not Ar	nalysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =		
Not Ai	nalysed		C (m ³ /Pa) = C _D (-) =	NA NA	C _D (-) =	1.7E-03	
Not Ai	nalysed		C (m ³ /Pa) =	NA	· · /	1.7E-03	
Not Ai	nalysed		$C (m^{3}/Pa) =$ $C_{D} (-) =$ $\xi (-) =$	NA NA NA	$C_D(-) = \xi(-) =$	1.5E-11 1.7E-03 -0.3 NA	
Not Ai	nalysed		$C (m^{3}/Pa) = C_{D} (-) = \xi (-) = T_{GRF}(m^{2}/s) =$	NA NA NA NA	$C_{D}(-) = \xi(-) = T_{GRF}(m^{2}/s) =$	1.7E-03 -0.3 NA	
Not Ai	nalysed		$C (m^{3}/Pa) = C_{D} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac{1}{\xi} (-) = \frac$	NA NA NA NA NA	$C_{D}(-) =$ $\xi(-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$	1.7E-03 -0.3 NA NA	
	-		$C (m^{3}/Pa) = C_{D} (-) = \xi (-) = T_{GRF}(m^{2}/s) = S_{GRF}(-) = D_{GRF} (-) = 0$	NA NA NA NA NA	$C_D(-) =$ $\xi(-) =$ $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$	1.7E-03 -0.3 NA	
	-		$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \xi \ (-) \ = \\ \end{array}$ $T_{GRF}(m^{2}/s) = \\ S_{GRF}(-) \ = \\ D_{GRF} \ (-) \ = \\ \end{array}$ Selected represe	NA NA NA NA NA NA NA	$C_D(-) =$ $\xi(-) =$ $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$ <b>netters</b> .	1.7E-03 -0.3 NA NA NA	
Log-Log plot incl. derivatives-	- recovery period		$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \xi \ (-) \ = \\ \end{array}$ $T_{GRF}(m^{2}/s) = \\ S_{GRF}(-) \ = \\ D_{GRF} \ (-) \ = \\ \end{array}$ Selected represent the dt of the selected of the selected represent the selected of the selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected select	NA NA NA NA NA NA antative param	$C_D(-) = \xi(-) =$ $\xi(-) =$ $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$ <b>Deters.</b> $C (m^3/Pa) =$	1.7E-03 -0.3 NA NA NA NA	
_og-Log plot incl. derivatives-	- recovery period		$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \xi \ (-) \ = \\ \end{array}$ $T_{GRF}(m^{2}/s) = \\ S_{GRF}(-) \ = \\ D_{GRF} \ (-) \ = \\ \end{array}$ $\begin{array}{l} Selected \ represent \\ dt_1 \ (min) \ = \\ dt_2 \ (min) \ = \\ \end{array}$	NA NA NA NA NA antative param 1.95 16.97	$C_{D}(-) =$ $\xi(-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$ <b>leters.</b> $C (m^{3}/Pa) =$ $C_{D}(-) =$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03	
Log-Log plot incl. derivatives-	- recovery period	0.3	$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{RF}(m^{2}/s) \ = \\ \hline \\ S_{GRF}(-) \ = \\ \hline \\ Selected \ represent \\ dt_{1} \ (min) \ = \\ \hline \\ dt_{2} \ (min) \ = \\ \hline \\ T_{T} \ (m^{2}/s) \ = \\ \end{array}$	NA NA NA NA NA NA entative param 1.95 16.97 8.4E-11	$C_{D}(-) =$ $\xi(-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$ <b>leters.</b> $C (m^{3}/Pa) =$ $C_{D}(-) =$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03	
Log-Log plot incl. derivatives-	- recovery period		$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ = \\ \hline \\ C_{RF} \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) $	NA NA NA NA NA NA antative paran 1.95 16.97 8.4E-11 1.0E-06	$C_{D}(-) =$ $\xi(-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$ <b>leters.</b> $C (m^{3}/Pa) =$ $C_{D}(-) =$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03	
Log-Log plot incl. derivatives-	- recovery period	0.3	$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ $	NA NA NA NA NA NA ntative param 1.95 16.97 8.4E-11 1.0E-06 1.7E-11	$C_{D}(-) =$ $\xi(-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$ <b>leters.</b> $C (m^{3}/Pa) =$ $C_{D}(-) =$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03	
Log-Log plot incl. derivatives- 10 ^{-10,3} Beyoed time 10 ⁻¹⁰ SKB Laverner /KX 19A 678.00-683.00//P	- recovery period	10 ⁻¹	$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ (-) \ $	NA NA NA NA NA NA antative paran 1.95 16.97 8.4E-11 1.0E-06	$C_{D}(-) =$ $\xi(-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF}(-) =$ <b>leters.</b> $C (m^{3}/Pa) =$ $C_{D}(-) =$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03	
Log-Log plot incl. derivatives-	- recovery period		$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ C_{GRF} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ Comments: \\ \hline \end{array}$	NA NA NA NA NA NA entative param 1.95 16.97 8.4E-11 1.0E-06 1.7E-11 2.0E-07	$\begin{array}{c} C_{D}(-) & = \\ \xi(-) & = \\ \end{array} \\ \hline T_{GRF}(m^{2}/s) = \\ S_{GRF}(-) & = \\ \end{array} \\ \hline D_{GRF}(-) & = \\ \hline D_{GRF}(-) & = \\ \hline \end{array} \\ \hline \begin{array}{c} C & (m^{3}/Pa) = \\ C_{D}(-) & = \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03 -0.3	
Log-Log plot incl. derivatives-	- recovery period	10 ⁻¹	$\begin{array}{l} C \ (m^{3}/Pa) \ = \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{D} \ (-) \ = \\ \hline \\ C_{BRF} \ (-) \ = \\ \hline \\ S_{GRF} \ (-) \ = \\ \hline \\ S_{GRF} \ (-) \ = \\ \hline \\ S_{elected} \ represent \\ \hline \\ dt_{1} \ (min) \ = \\ \hline \\ dt_{2} \ (min) \ = \\ \hline \\ T_{T} \ (m^{2}/s) \ = \\ \hline \\ S \ (-) \ = \\ \hline \\ K_{s} \ (m/s) \ = \\ \hline \\ S_{s} \ (1/m) \ = \\ \hline \\ Comments: \\ The recommended \\ \end{array}$	NA NA NA NA NA NA antative param 1.95 16.97 8.4E-11 1.0E-06 1.7E-11 2.0E-07	$C_{D}(-) = \\ \xi(-) = \\ T_{GRF}(m^{2}/s) = \\ S_{GRF}(-) = \\ D_{GRF}(-) = \\ D_{GRF}(-) = \\ c_{D}(-) = \\ \xi(-) = \\$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03 -0.3	
Log-Log plot incl. derivatives-	- recovery period	10 ⁻¹	$C (m^{3}/Pa) =$ $C_{D} (-) =$ $\xi (-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF} (-) =$ $Selected represed dt_{1} (min) = dt_{2} (min) = T_{T} (m^{2}/s) = S (-) = K_{s} (m/s) = S_{s} (1/m) = Comments: The recommended radial flow analysis$	NA NA NA NA NA NA antative paran 1.95 16.97 8.4E-11 1.0E-06 1.7E-11 2.0E-07	$C_{D}(-) = \frac{\xi}{\xi}(-) = \frac{\xi}{$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03 -0.3 derived from the ge for the	
Log-Log plot incl. derivatives-	- recovery period	10 ⁻¹	$C (m^{3}/Pa) =$ $C_{D} (-) =$ $\xi (-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF} (-) =$ $Selected represed dt_{1} (min) = dt_{2} (min) = T_{T} (m^{2}/s) = S (-) = K_{s} (m/s) = S_{s} (1/m) = Comments: The recommended radial flow analysis interval transmissiv$	NA NA NA NA NA NA NA antative paran 1.95 16.97 8.4E-11 1.0E-06 1.7E-11 2.0E-07 transmissivity of 5 of the Pi phase. ity is estimated	$C_{D}(-) = \\ \xi(-) = \\ T_{GRF}(m^{2}/s) = \\ S_{GRF}(-) = \\ D_{GRF}(-) = \\ D_{GRF}(-) = \\ C_{D}(-) = \\ \xi(-) = \\$	1.7E-03 -0.3 NA NA NA 1.5E-11 1.7E-03 -0.3 derived from the ge for the E-10 m2/s. The	
Log-Log plot incl. derivatives-	- recovery period	10 ⁻¹	$C (m^{3}/Pa) =$ $C_{D} (-) =$ $\xi (-) =$ $T_{GRF}(m^{2}/s) =$ $S_{GRF}(-) =$ $D_{GRF} (-) =$ $Selected represed dt_{1} (min) = dt_{2} (min) = T_{T} (m^{2}/s) = S (-) = K_{s} (m/s) = S_{s} (1/m) = Comments: The recommended radial flow analysis interval transmissiv$	NA NA NA NA NA NA NA antative paran 1.95 16.97 8.4E-11 1.0E-06 1.7E-11 2.0E-07 transmissivity of 5 of the Pi phase. ity is estimated	$C_{D}(-) = \frac{\xi}{\xi}(-) = \frac{\xi}{$	1.7E-03 -0.3 NA NA NA NA derived from the ge for the E-10 m2/s. The	


Test 103.00 – 203.00 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

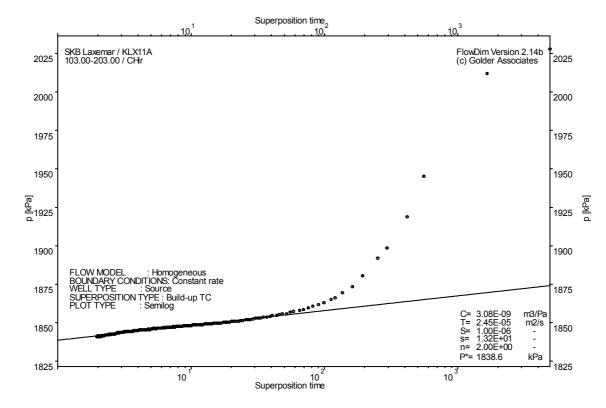


CHI phase; log-log match



10

tD/CD


CHIR phase; log-log match

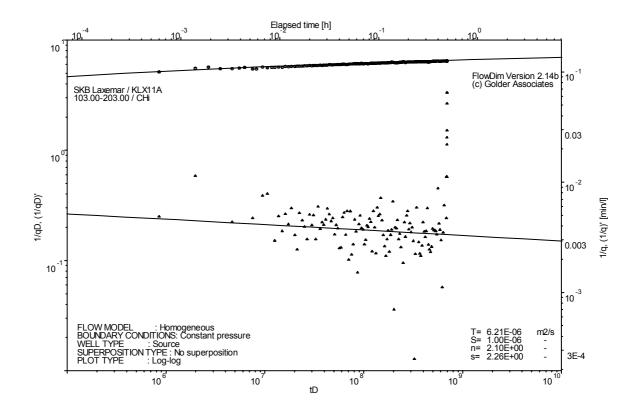
FLOW MODEL : Homogeneous BOUNDARY CONDITIONS: Constant rate WELL TYPE : Source SUPERPOSITION TYPE : Build-up TC PLOT TYPE : Log-log

10

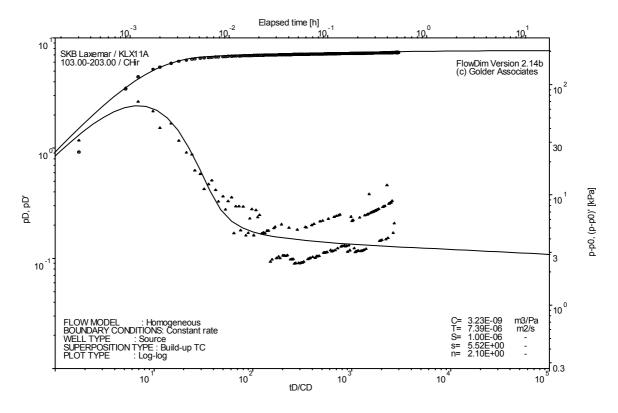
10²

pD, pD'



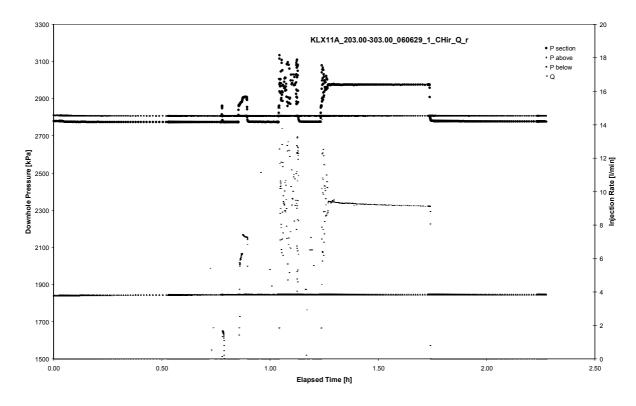

CHIR phase; HORNER match

3

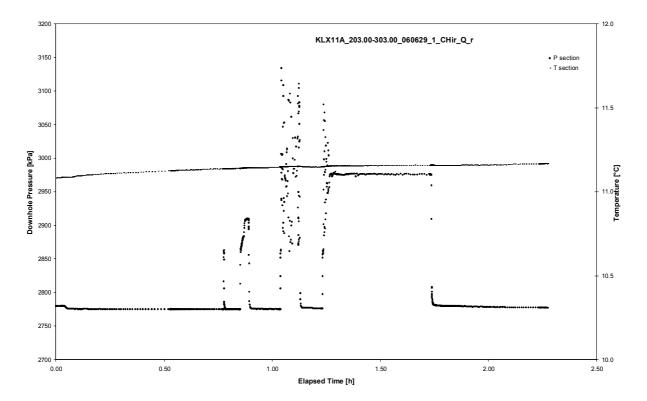

m3/Pa m2/s --10⁵

C= 3.08E-09 T= 2.45E-05 S= 1.00E-06 s= 1.32E+01 n= 2.00E+00

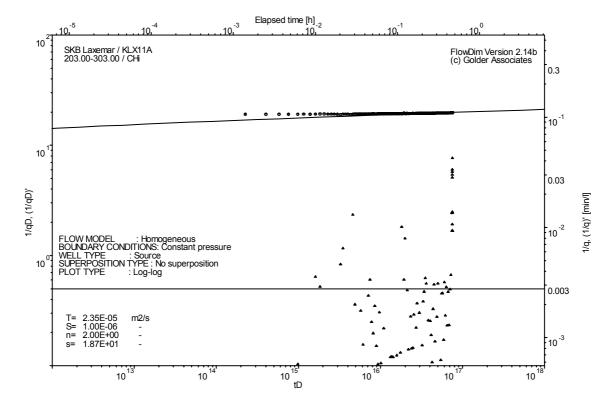
104



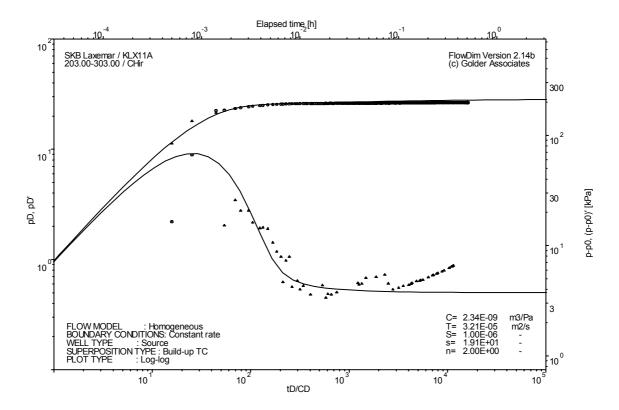

CHI phase; log-log match (n=2.1)



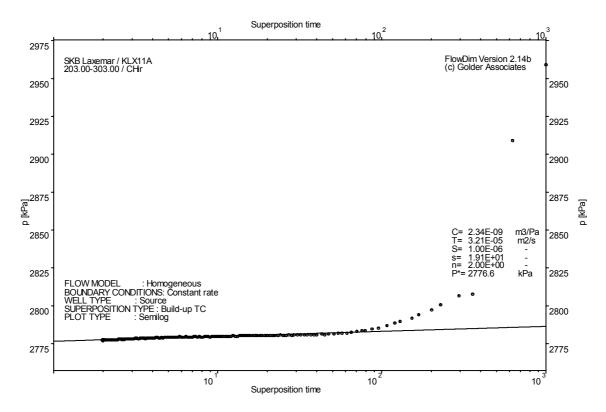

CHIR phase; log-log match (n=2.1)


Test 203.00 – 303.00 m

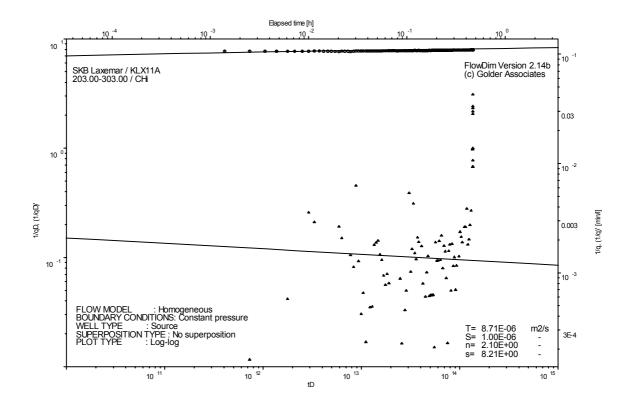



Pressure and flow rate vs. time; cartesian plot

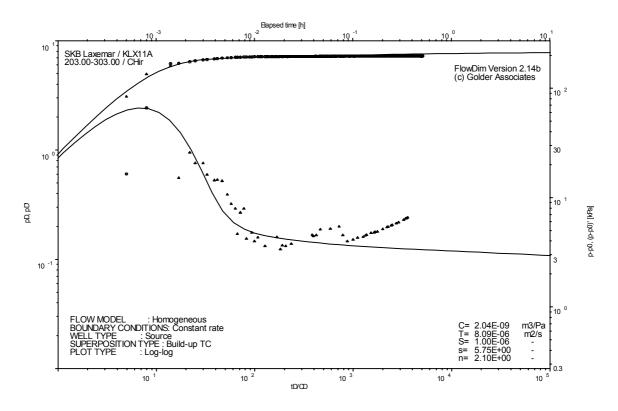



Interval pressure and temperature vs. time; cartesian plot



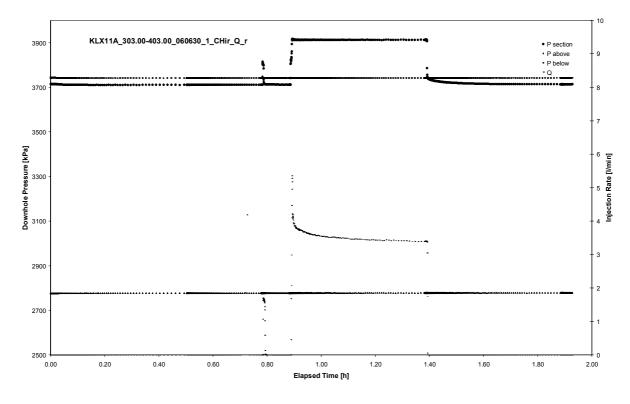

CHI phase; log-log match



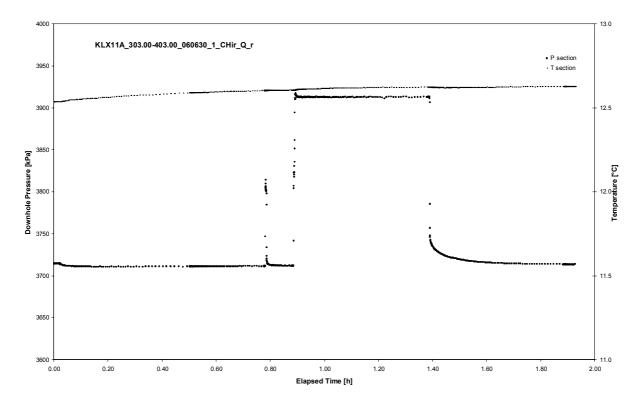

CHIR phase; log-log match



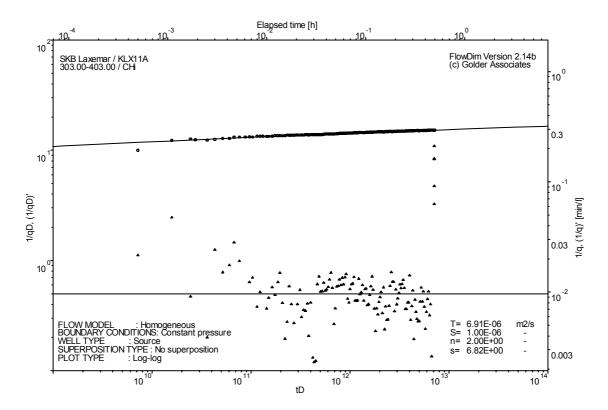
CHIR phase; HORNER match



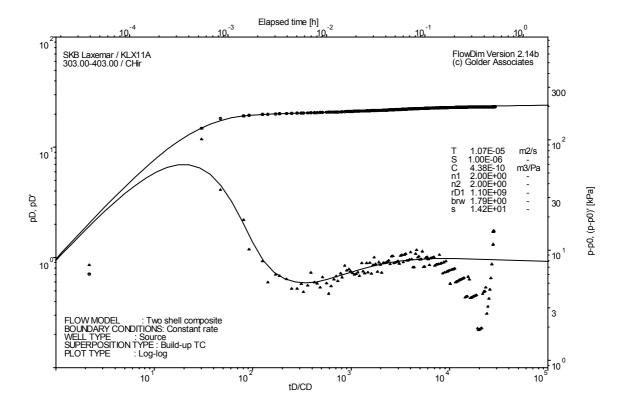

CHI phase; log-log match (n=2.1)



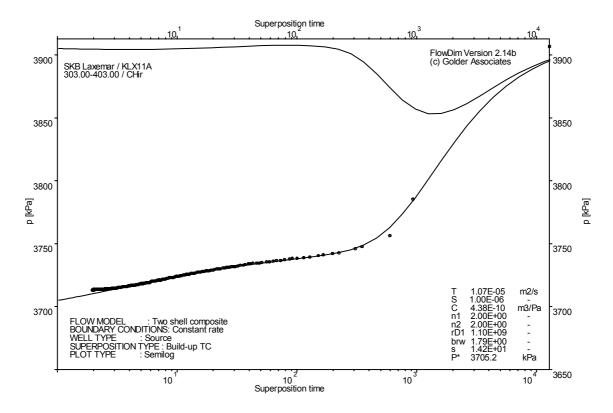

CHIR phase; log-log match (n=2.1)


Test 303.00 – 403.00 m

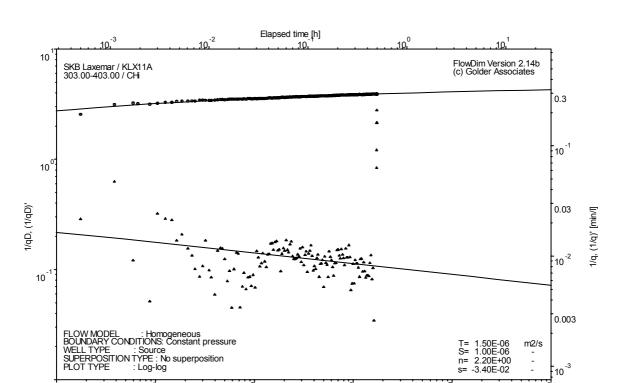



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot




CHI phase; log-log match



CHIR phase; log-log match



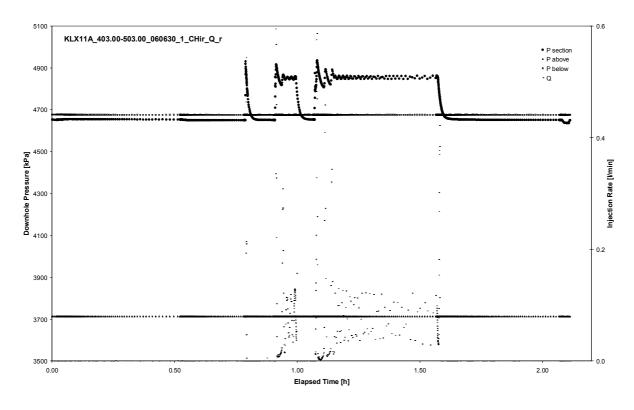
CHIR phase; HORNER match



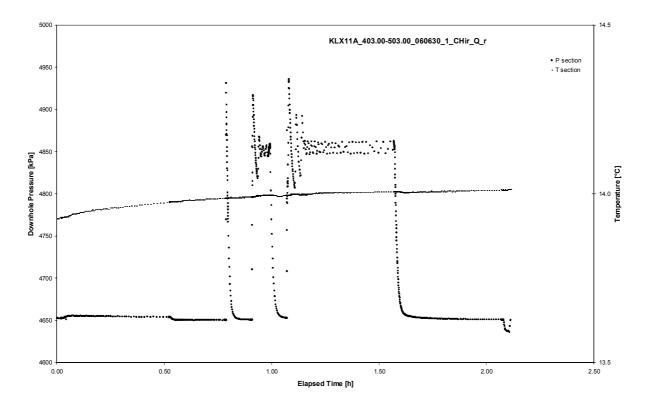
10⁶

tD

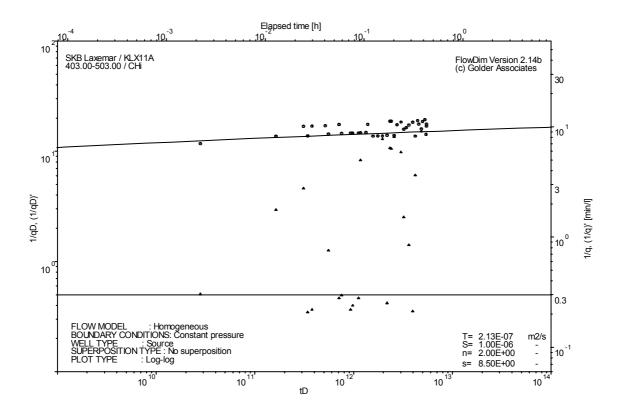
10


10⁵

CHI phase; log-log match (n=2.2)

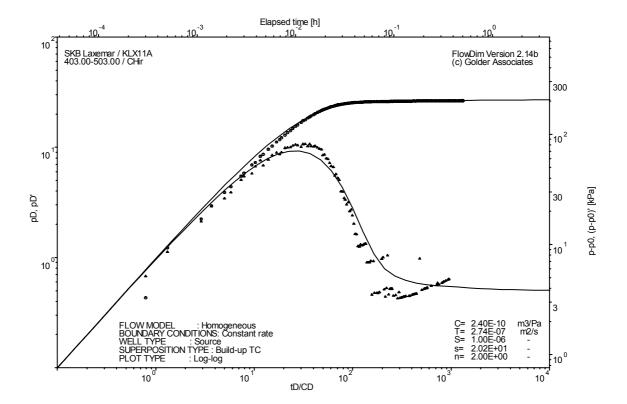

10⁴

10⁸

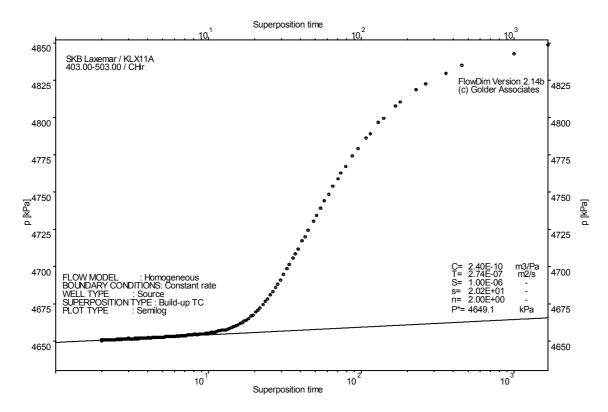

Test 403.00 – 503.00 m



Pressure and flow rate vs. time; cartesian plot

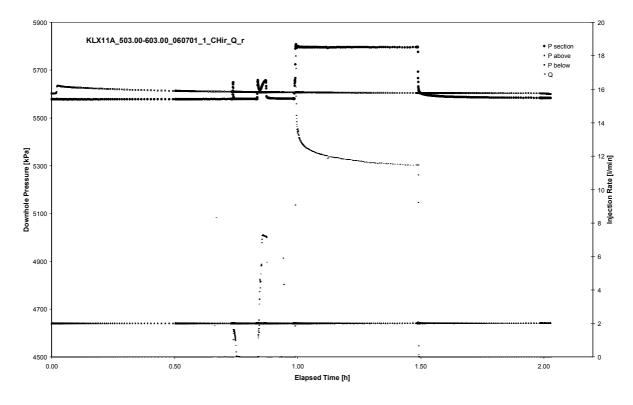



Interval pressure and temperature vs. time; cartesian plot

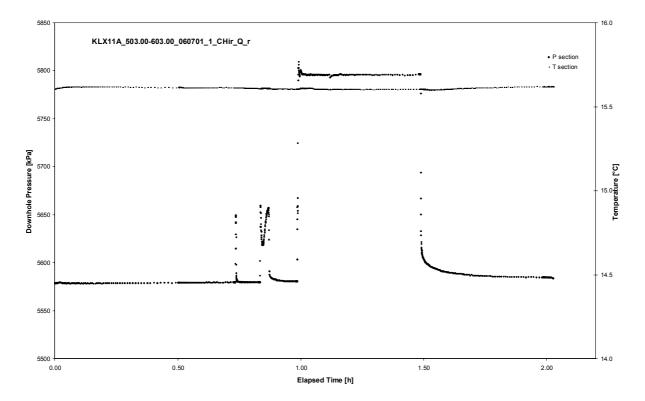



CHI phase; log-log match

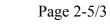


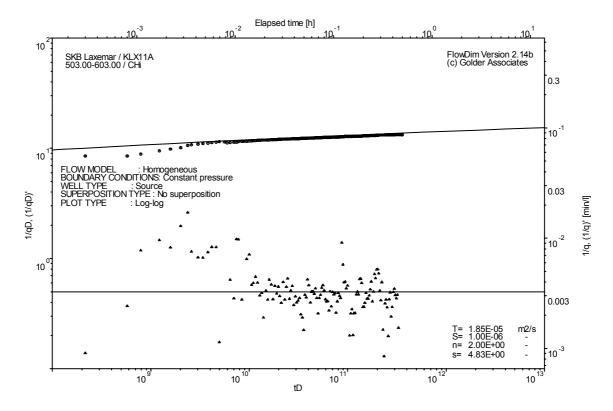



CHIR phase; log-log match

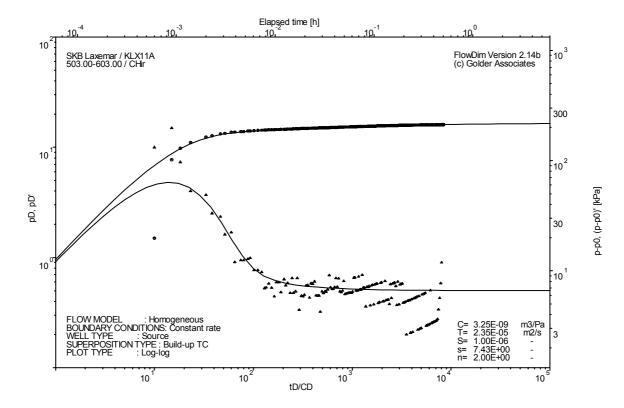



CHIR phase; HORNER match

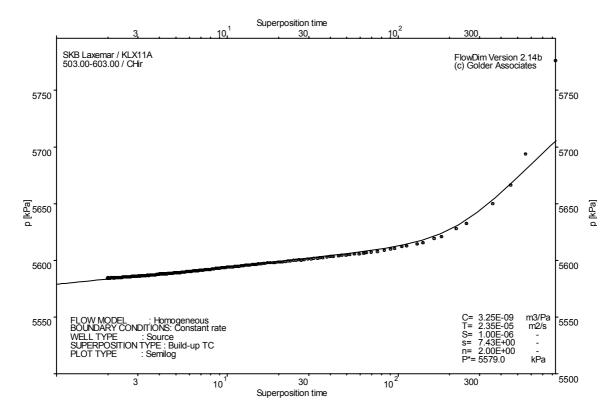

Test 503.00 – 603.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

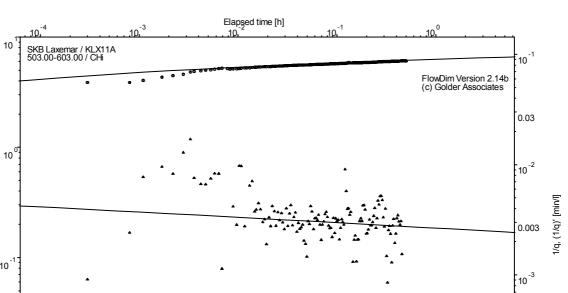


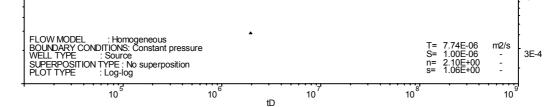



CHI phase; log-log match

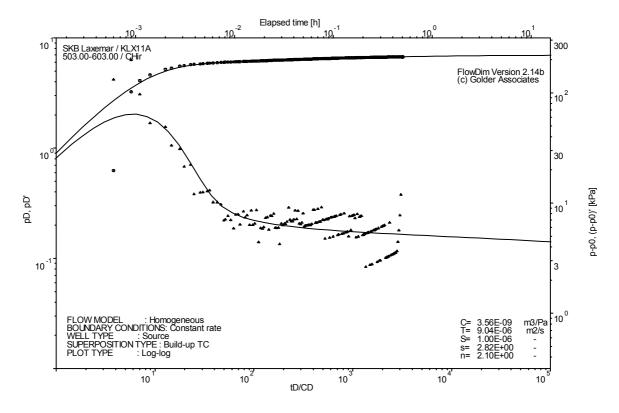


CHIR phase; log-log match



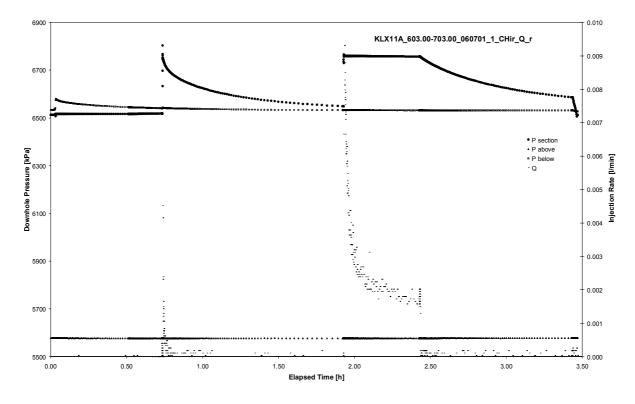


CHIR phase; HORNER match

10

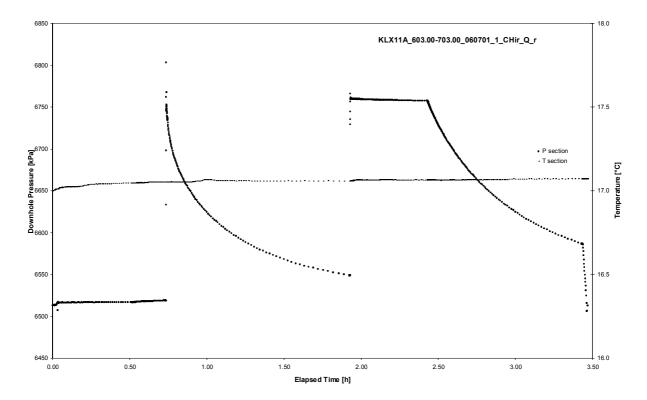

1/qD, (1/qD)'

10

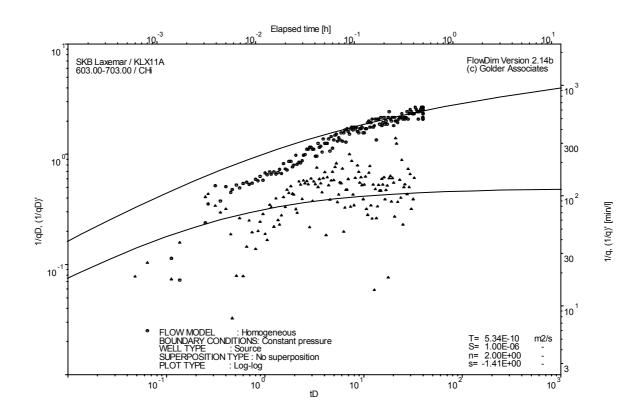





CHI phase; log-log match (n=2.1)



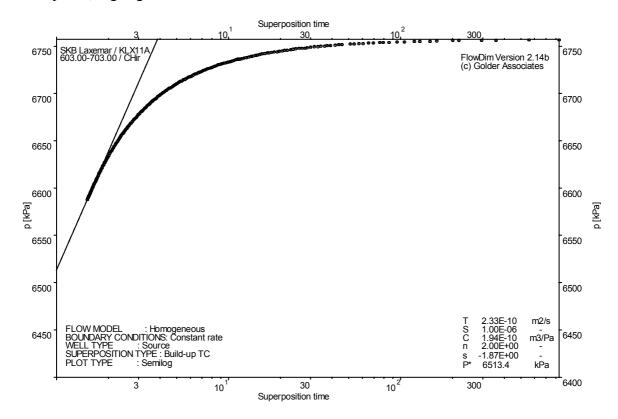

CHIR phase; log-log match (n=2.1)


Test 603.00 – 703.00 m

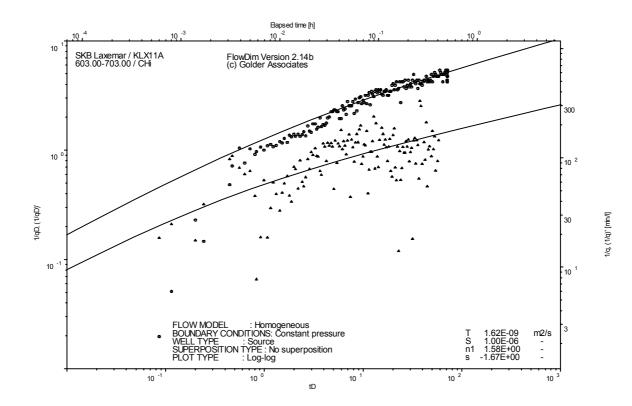


Pressure and flow rate vs. time; cartesian plot



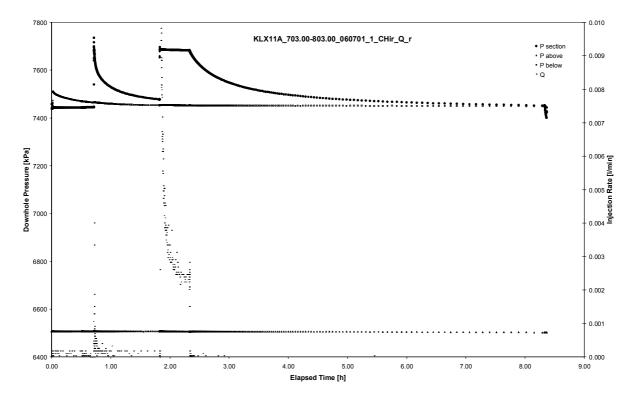

Interval pressure and temperature vs. time; cartesian plot



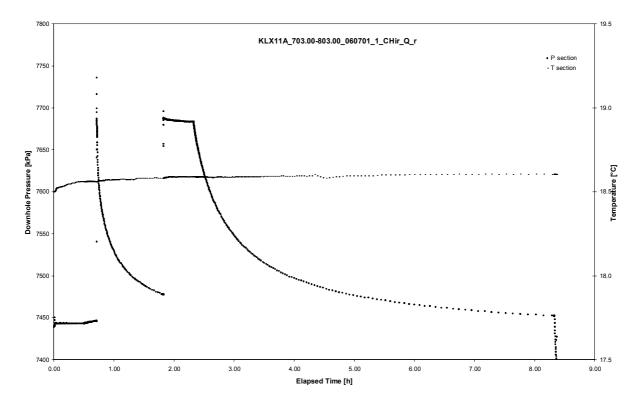

CHI phase; log-log match



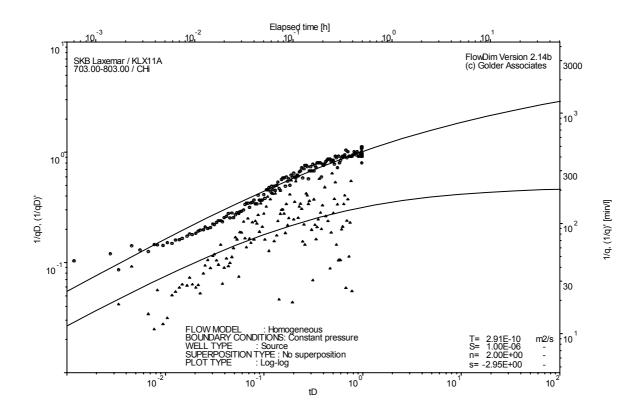
CHIR phase; log-log match



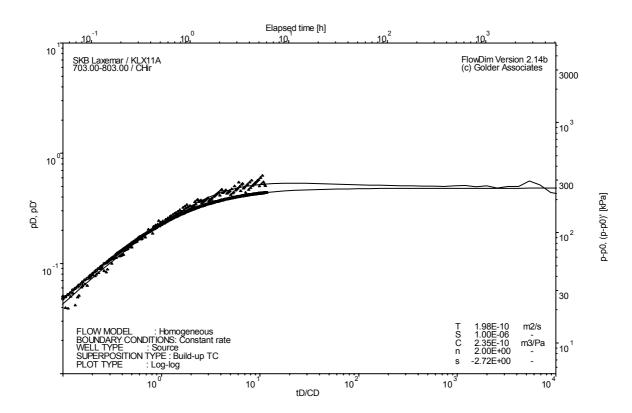

CHIR phase; HORNER match



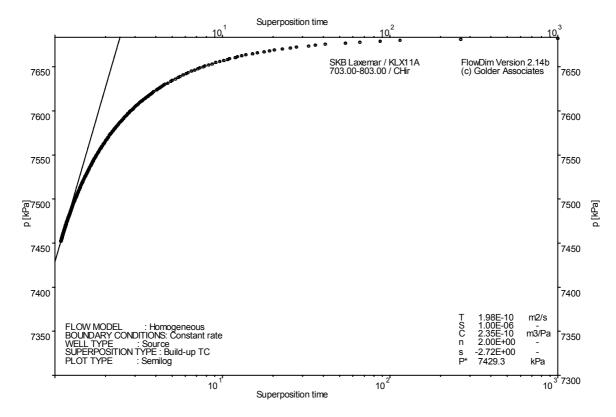

CHI phase; log-log match (n=1.58)


Test 703.00 - 803.00 m

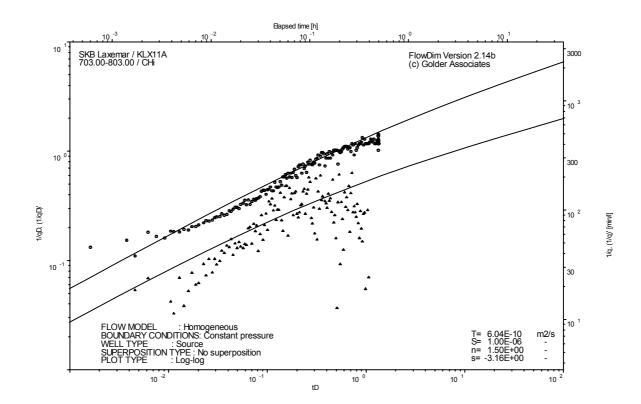



Pressure and flow rate vs. time; cartesian plot



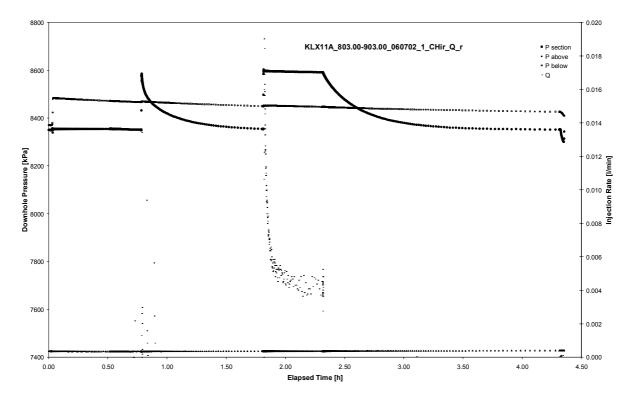

Interval pressure and temperature vs. time; cartesian plot



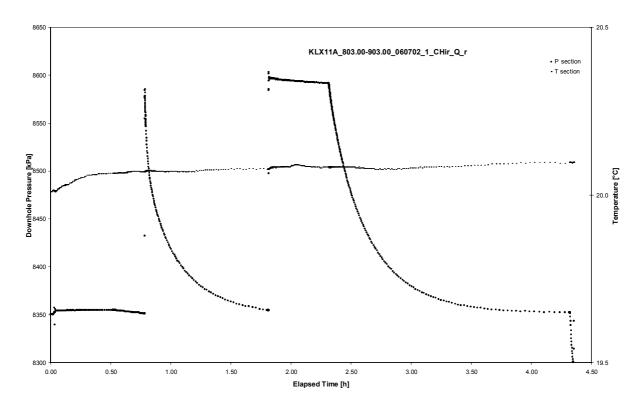

CHI phase; log-log match



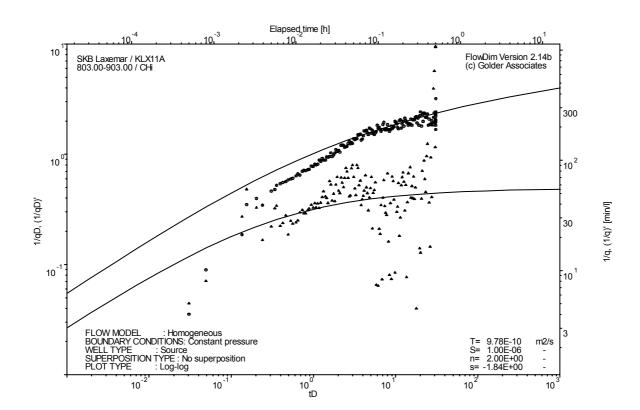
CHIR phase; log-log match



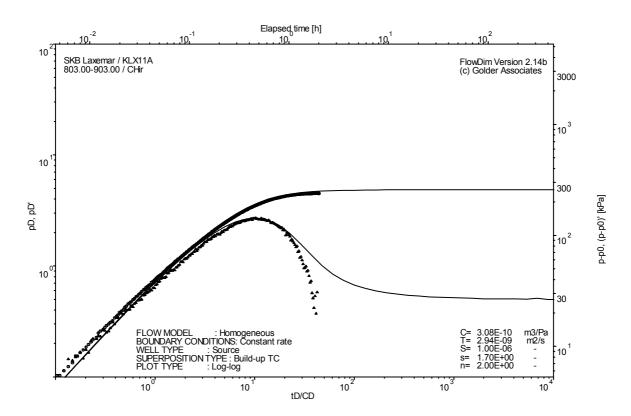

CHIR phase; HORNER match



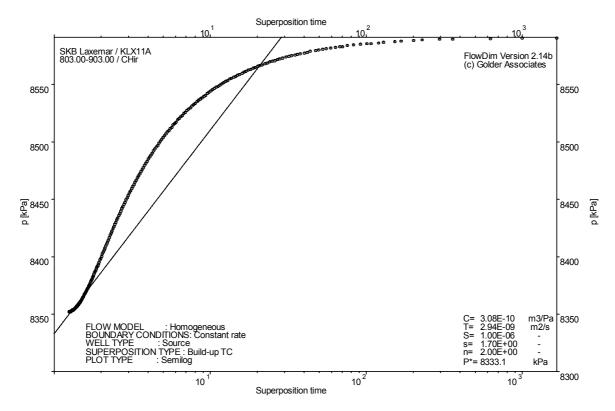

CHI phase; log-log match (n=1.5)


Test 803.00 – 903.00 m

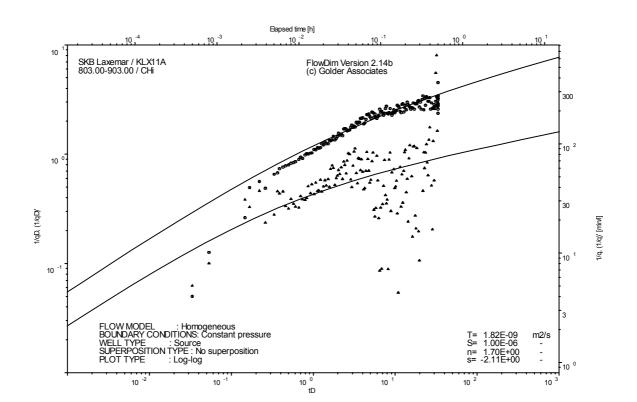



Pressure and flow rate vs. time; cartesian plot



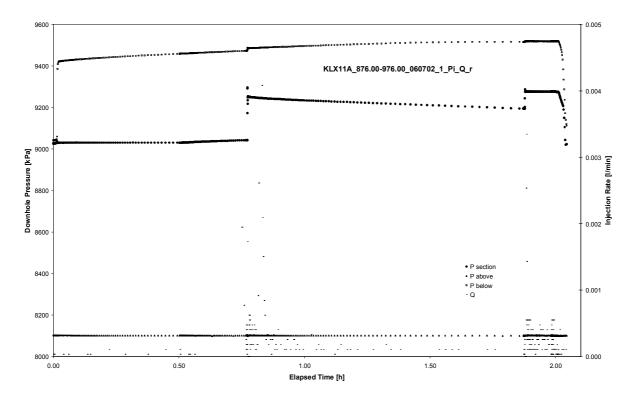

Interval pressure and temperature vs. time; cartesian plot



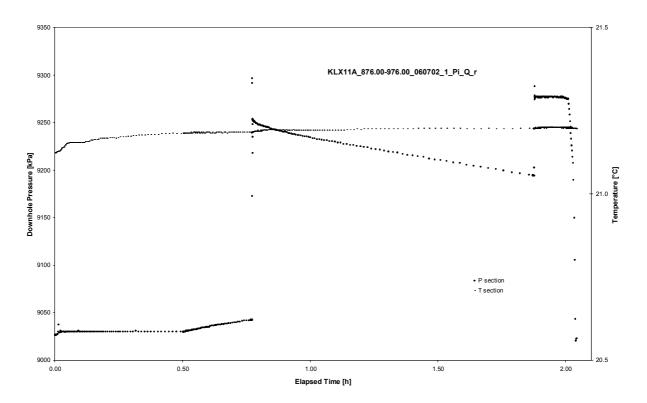

CHI phase; log-log match



CHIR phase; log-log match

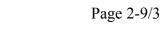


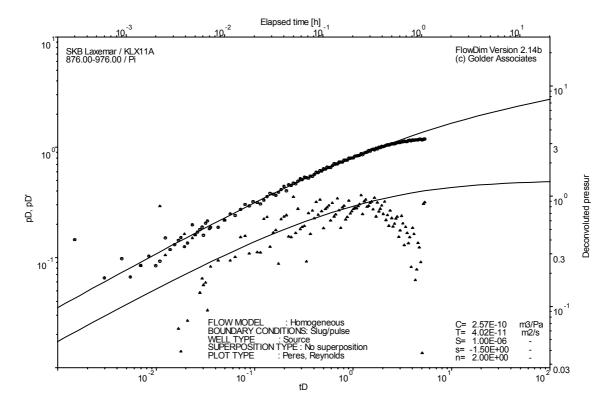

CHIR phase; HORNER match



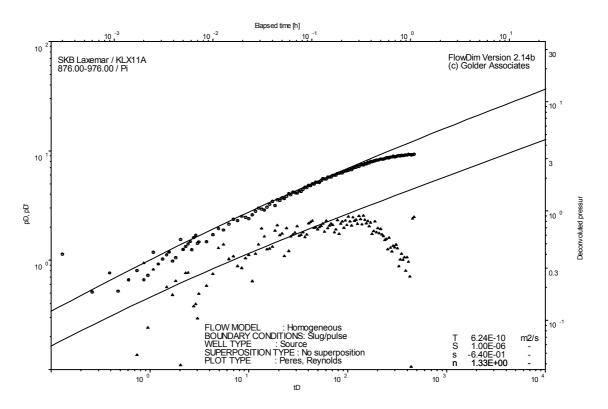

CHI phase; log-log match (n=1.7)

Test 876.00 – 976.00 m



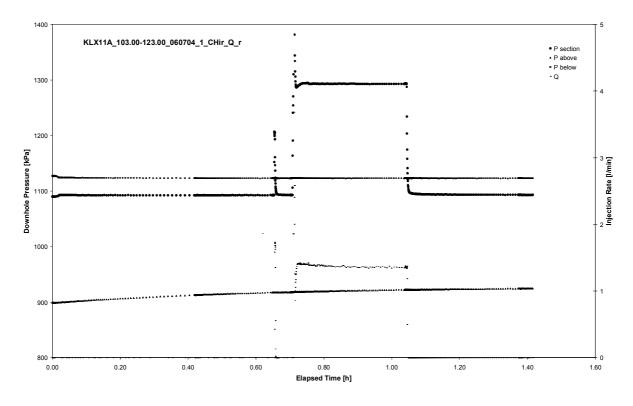


Pressure and flow rate vs. time; cartesian plot



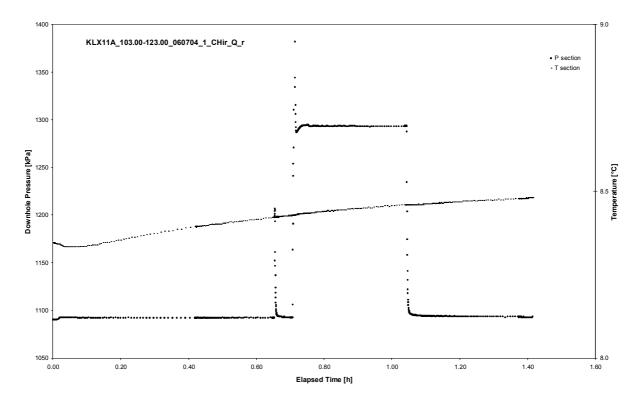

Interval pressure and temperature vs. time; cartesian plot

Page 2-9/2

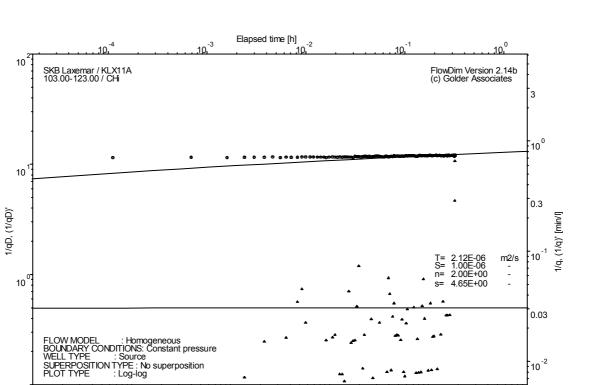





Pulse injection; deconvolution match




Pulse injection; deconvolution match (n=1.33)


Test 103.00 – 123.00 m



Pressure and flow rate vs. time; cartesian plot



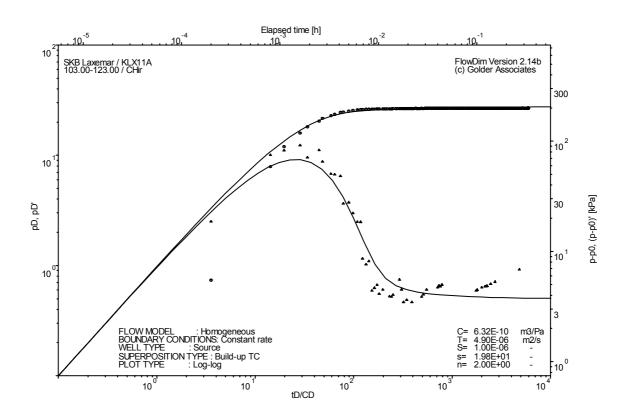
Interval pressure and temperature vs. time; cartesian plot



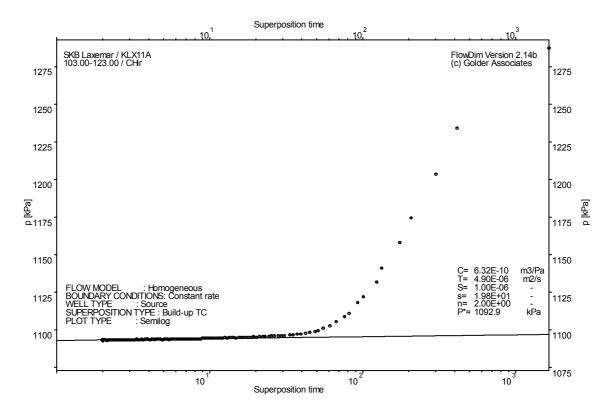
10⁹

tD

CHI phase; log-log match

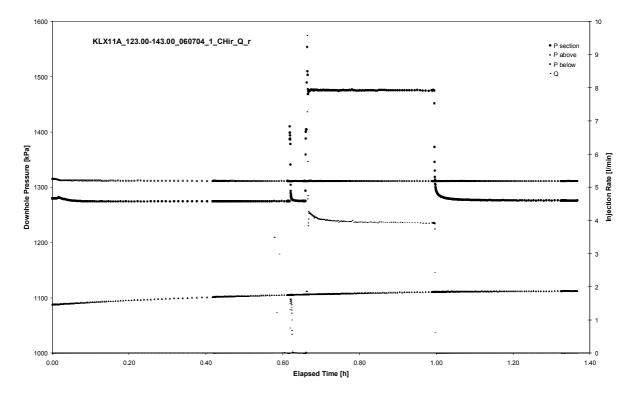

10⁷

10⁸

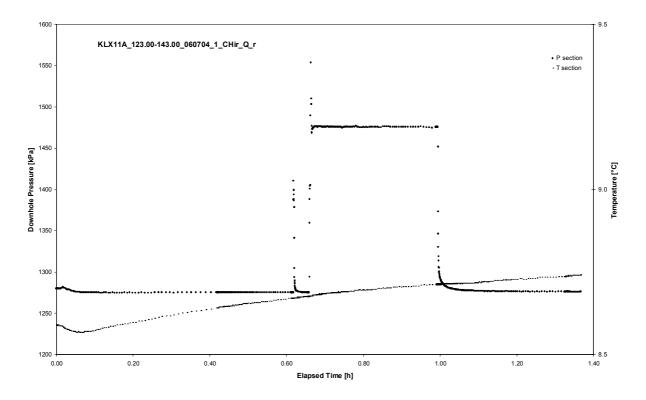

10⁻²

10¹¹

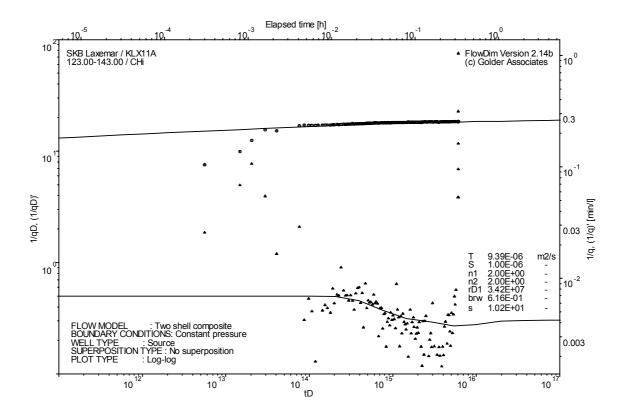
10¹⁰



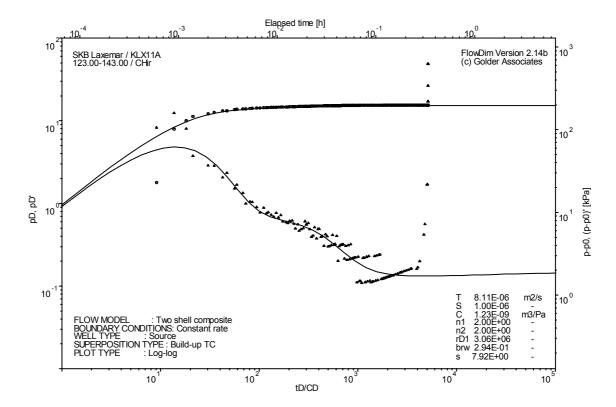

CHIR phase; log-log match



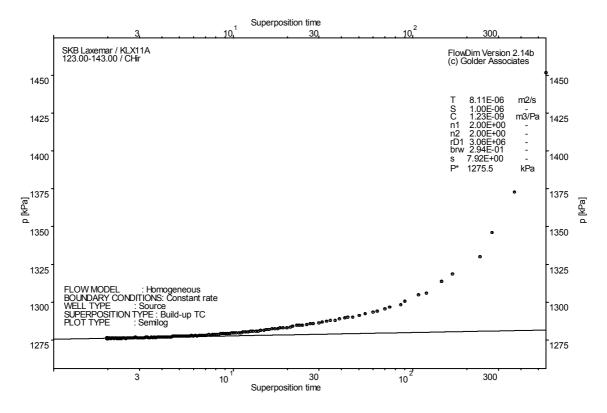

CHIR phase; HORNER match


Test 123.00 – 143.00 m

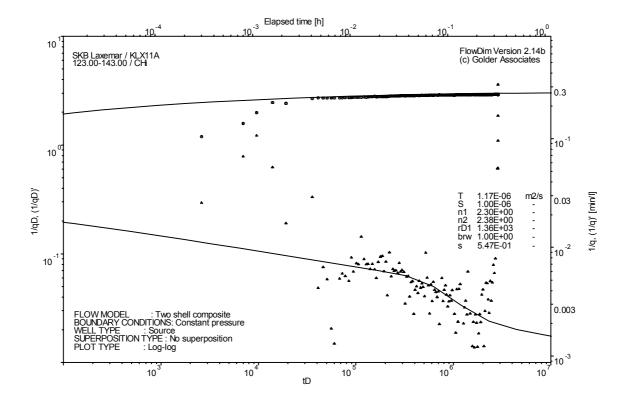



Pressure and flow rate vs. time; cartesian plot

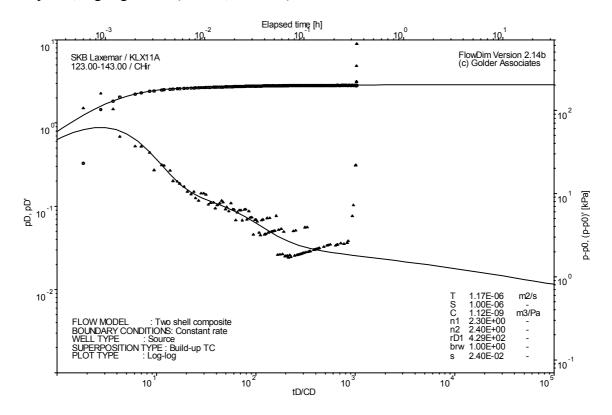



Interval pressure and temperature vs. time; cartesian plot



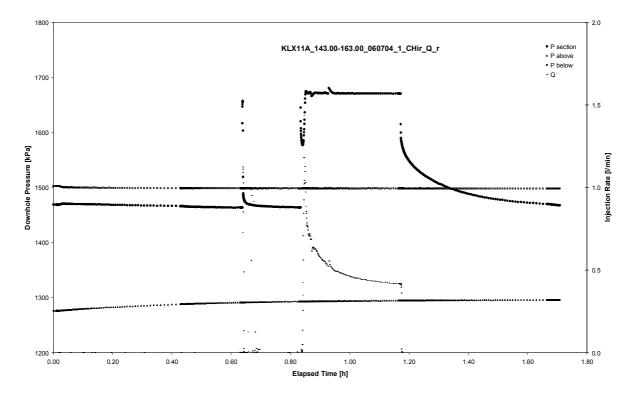

CHI phase; log-log match



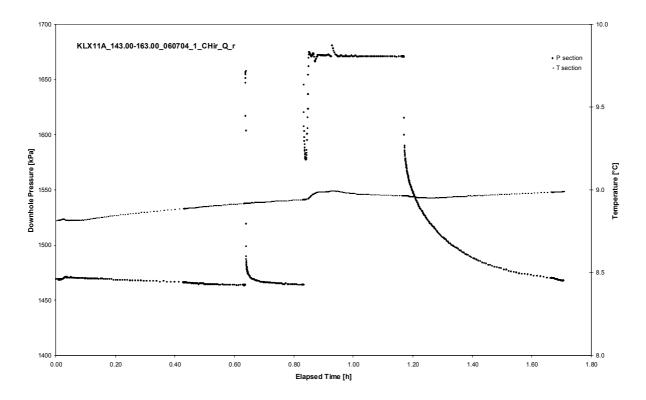

CHIR phase; log-log match



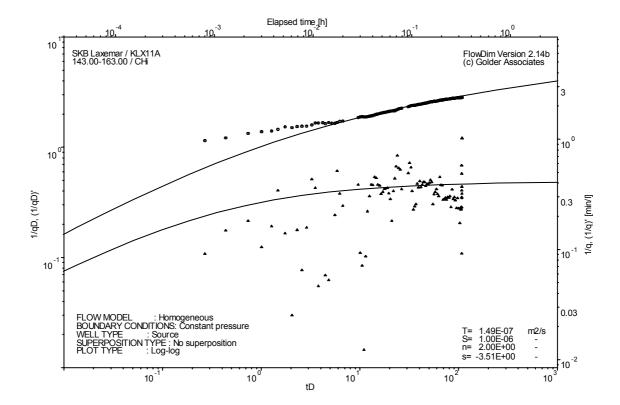
CHIR phase; HORNER match



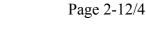

CHI phase; log-log match (n1=2.3, n2=2.38)

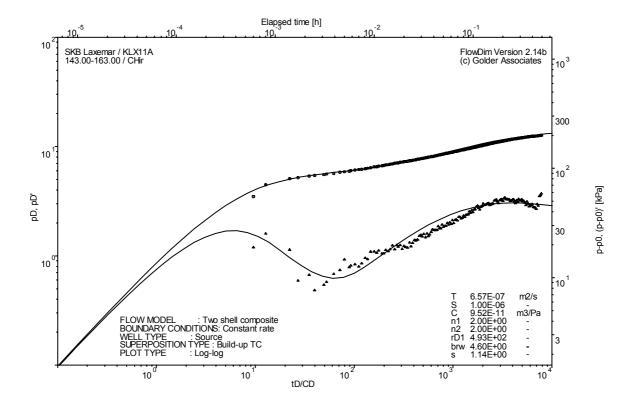



CHIR phase; log-log match (n1=2.3, n2=2.4)


Test 143.00 – 163.00 m




Pressure and flow rate vs. time; cartesian plot

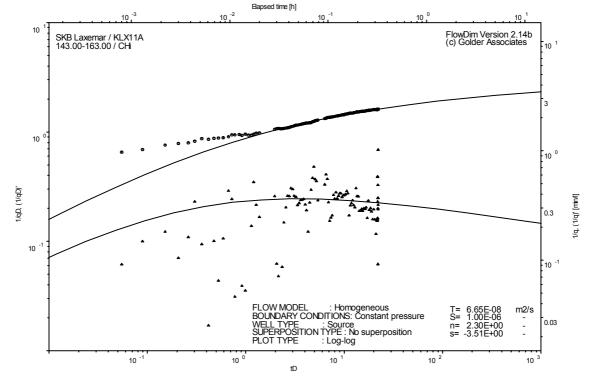



Interval pressure and temperature vs. time; cartesian plot



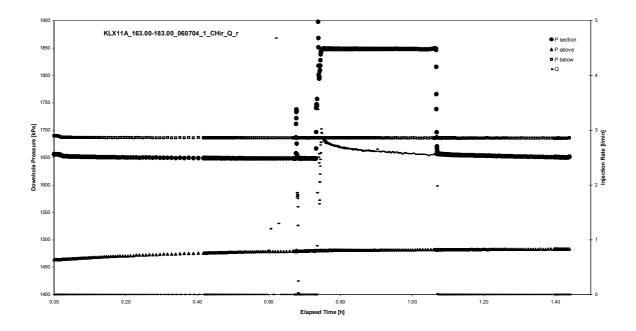
CHI phase; log-log match



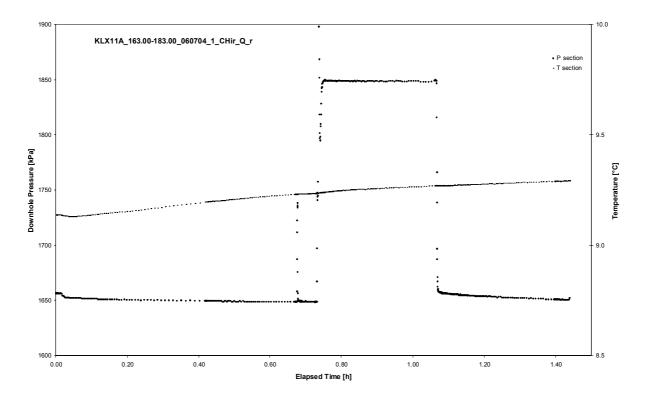



CHIR phase; log-log match

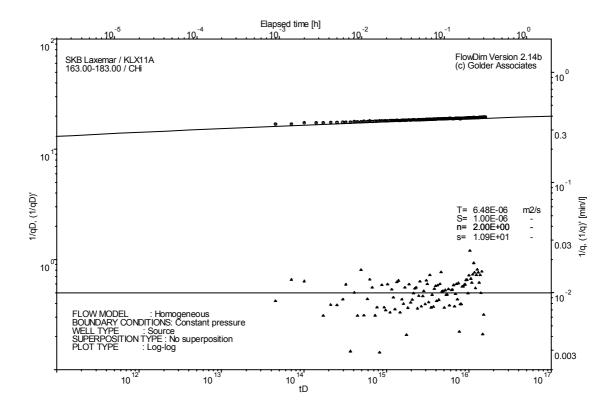



CHIR phase; HORNER match



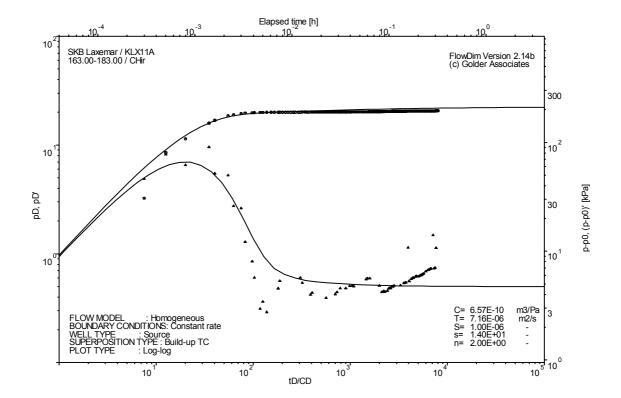



CHI phase; log-log match (n=2.3)


Test 163.00 – 183.00 m



Pressure and flow rate vs. time; cartesian plot

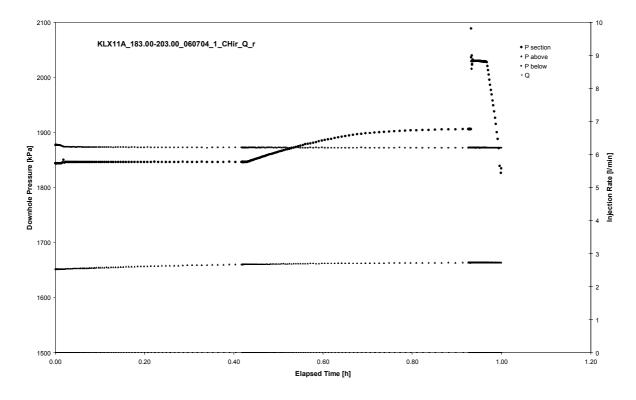



Interval pressure and temperature vs. time; cartesian plot

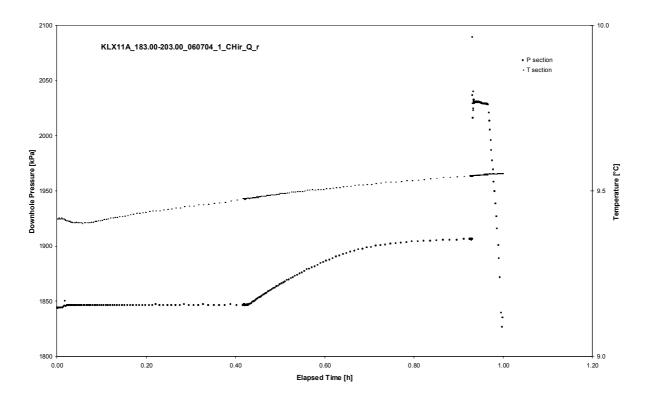


CHI phase; log-log match






CHIR phase; log-log match




CHIR phase; HORNER match

Test 183.00 – 203.00 m



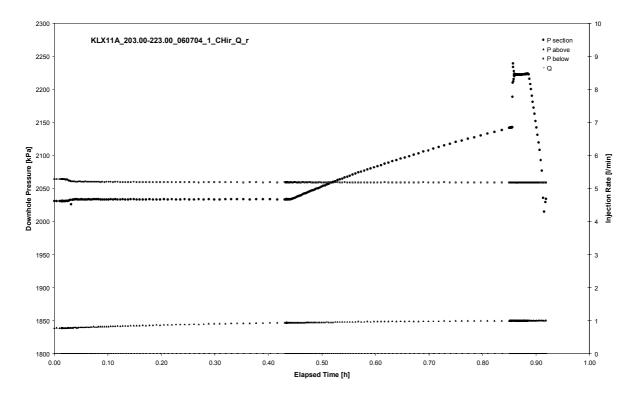
Pressure and flow rate vs. time; cartesian plot



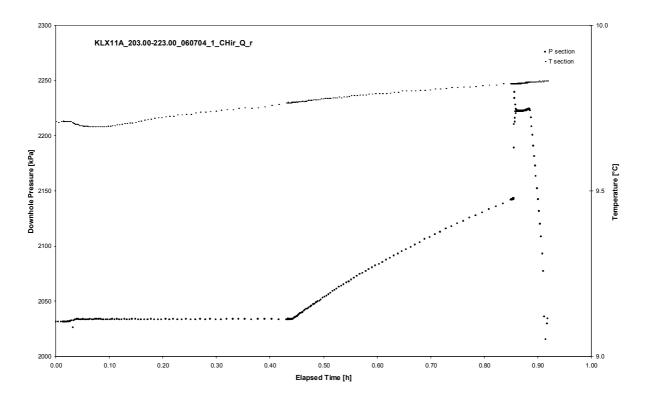
Interval pressure and temperature vs. time; cartesian plot

Not analysed

CHI phase; log-log match


Not analysed

CHIR phase; log-log match


Not analysed

CHIR phase; HORNER match

Test 203.00 – 223.00 m

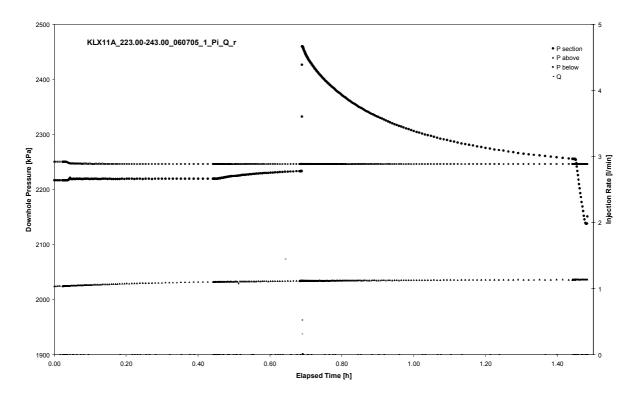


Pressure and flow rate vs. time; cartesian plot

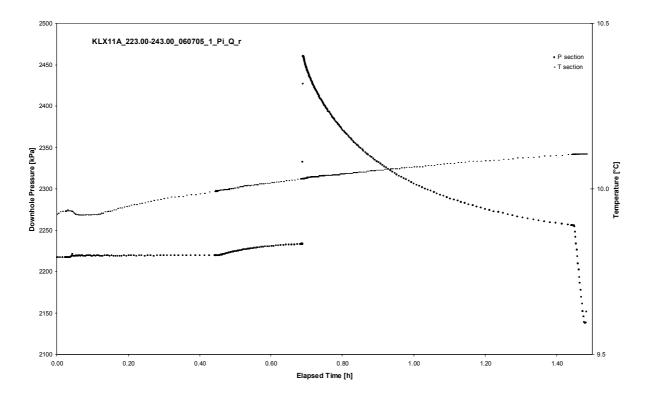


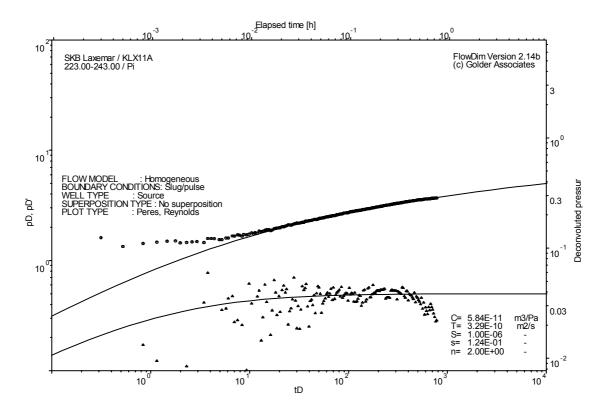
Interval pressure and temperature vs. time; cartesian plot

Not analysed

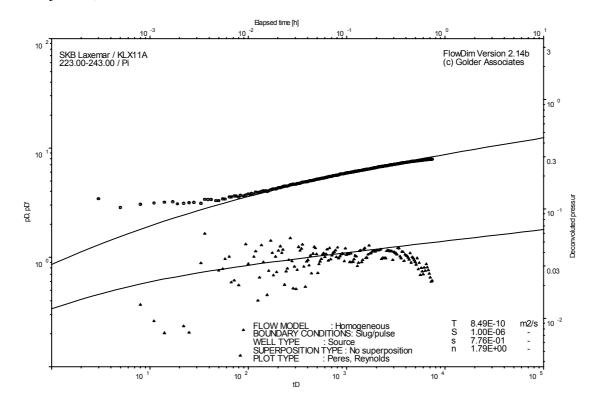

CHI phase; log-log match

Not analysed


CHIR phase; log-log match

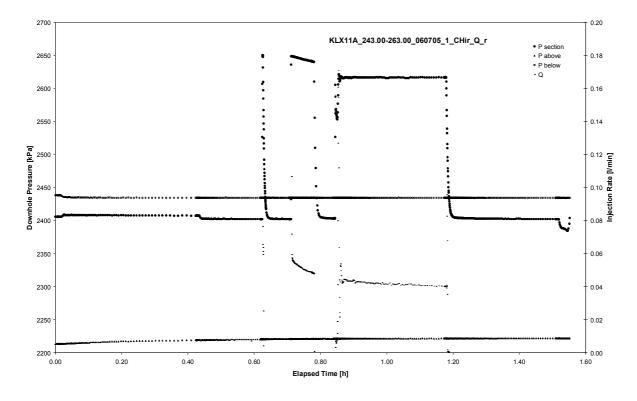

Not analysed

Test 223.00 – 243.00 m

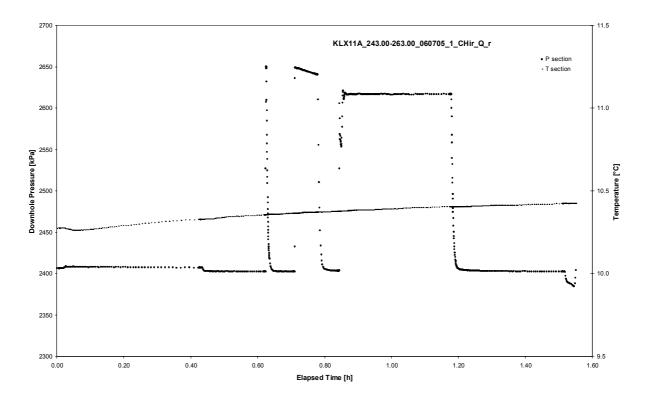



Pressure and flow rate vs. time; cartesian plot

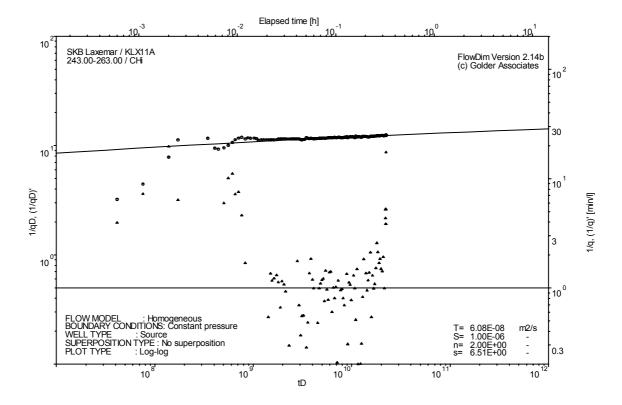





Pulse injection; deconvolution match

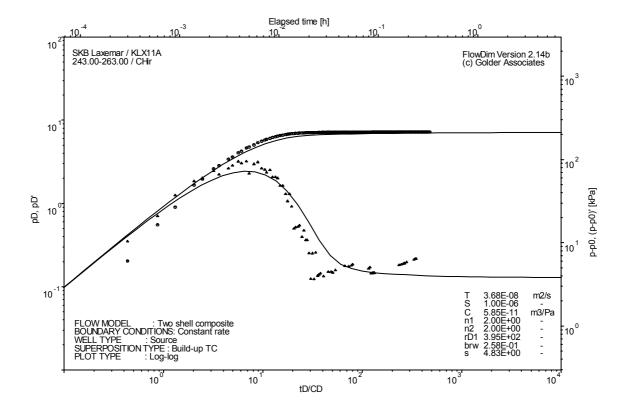



Pulse injection; deconvolution match (n=1.79)

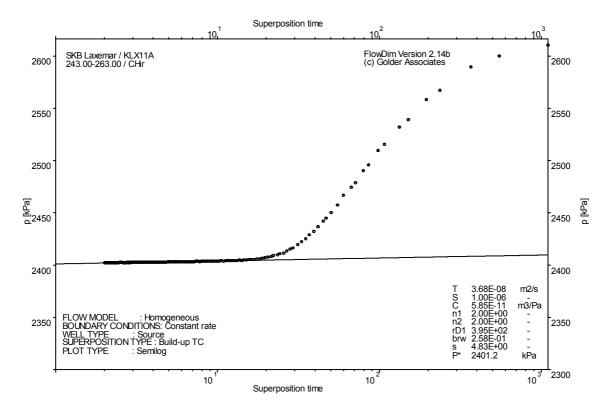

Test 243.00 – 263.00 m



Pressure and flow rate vs. time; cartesian plot

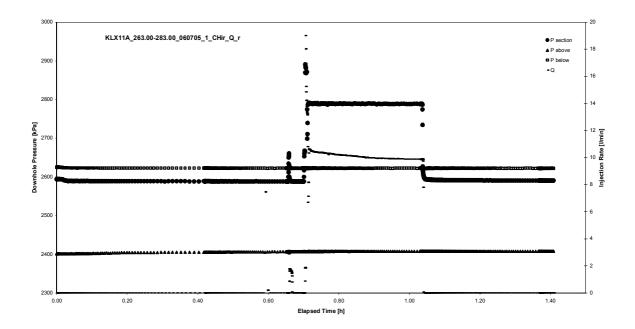



Interval pressure and temperature vs. time; cartesian plot

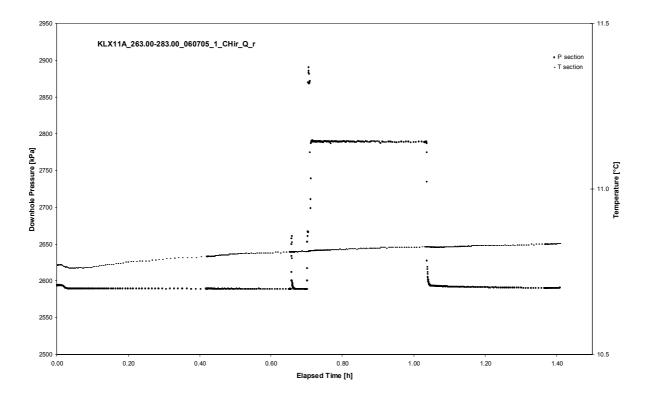



CHI phase; log-log match






CHIR phase; log-log match

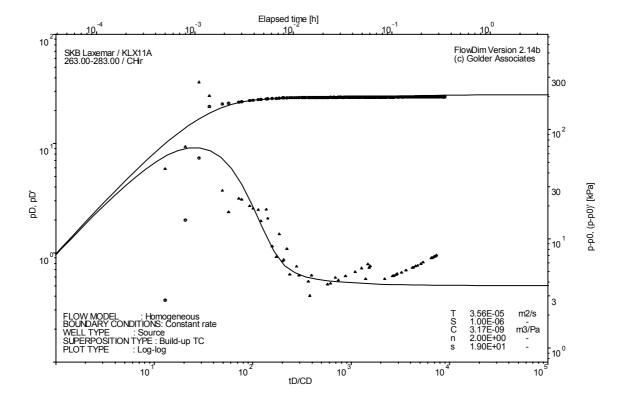




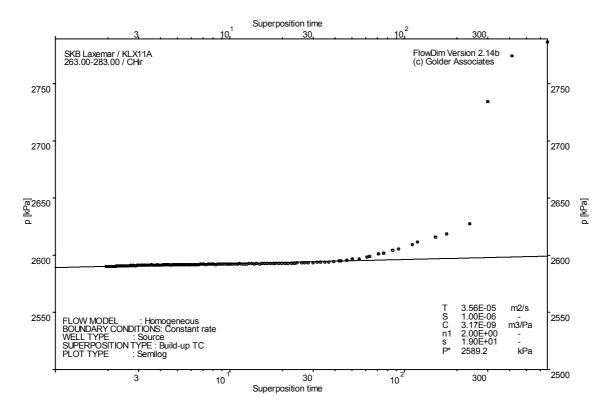
CHIR phase; HORNER match

Test 263.00 – 283.00 m



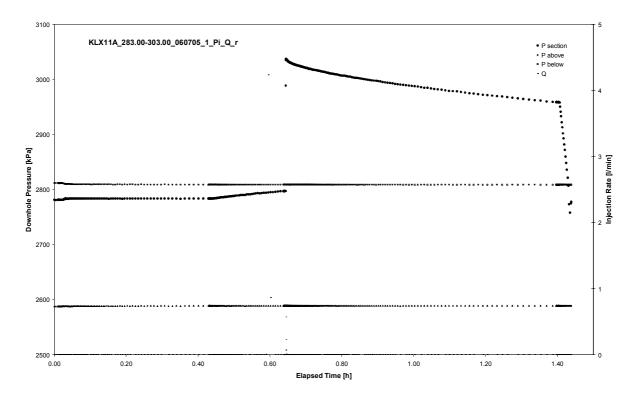

Pressure and flow rate vs. time; cartesian plot



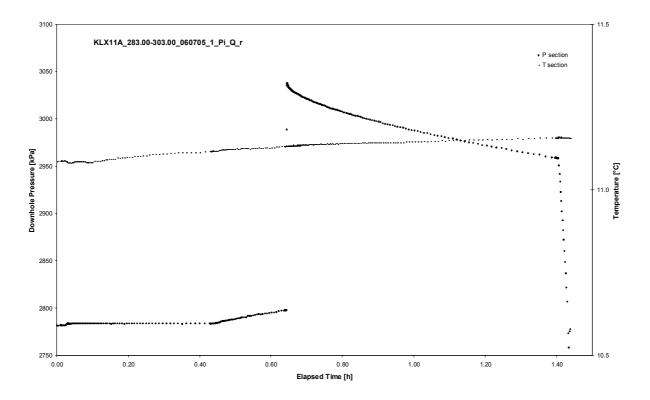



CHI phase; log-log match






CHIR phase; log-log match

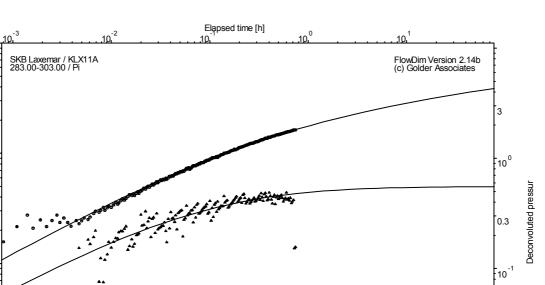


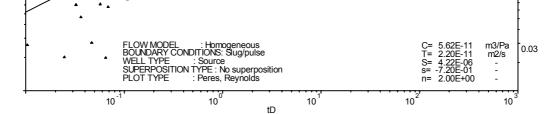

CHIR phase; HORNER match

Test 283.00 – 303.00 m

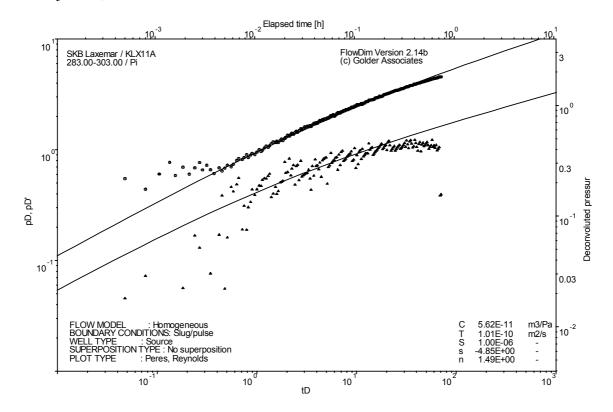


Pressure and flow rate vs. time; cartesian plot



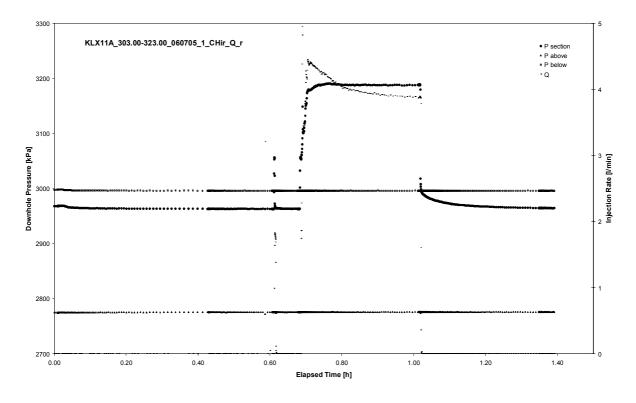


10

10

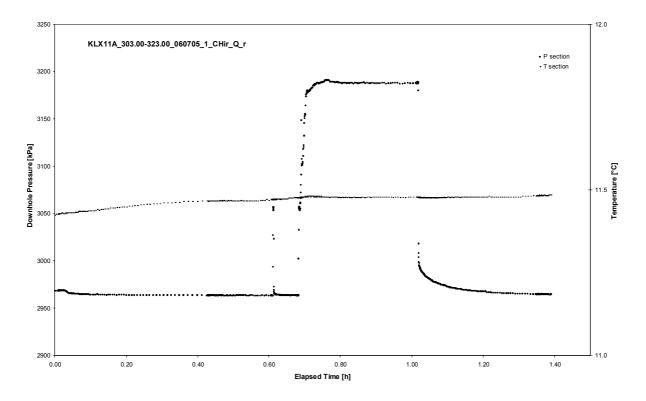

10

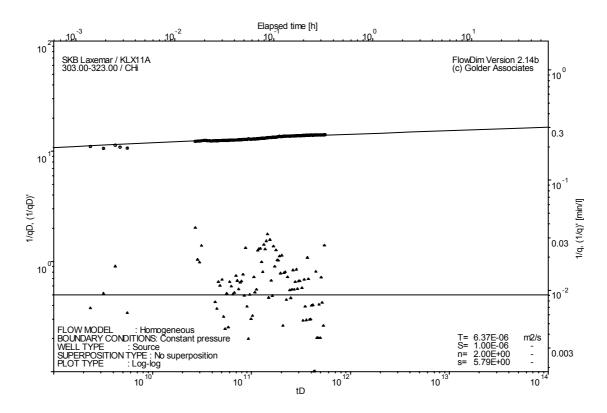
pD, pD'



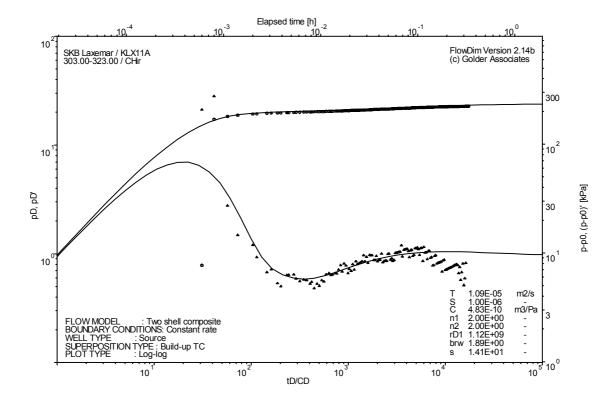



Pulse injection; deconvolution match

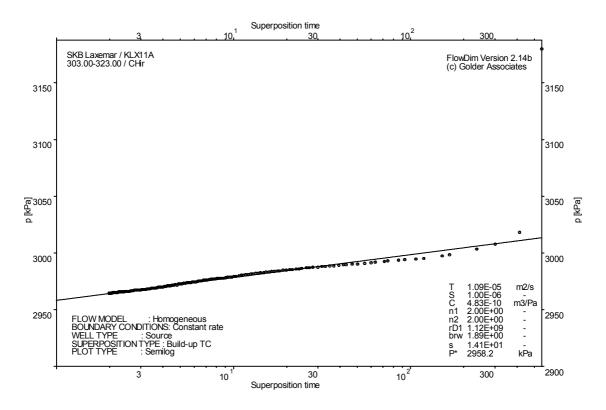




Pulse injection; deconvolution match (n=1.49)

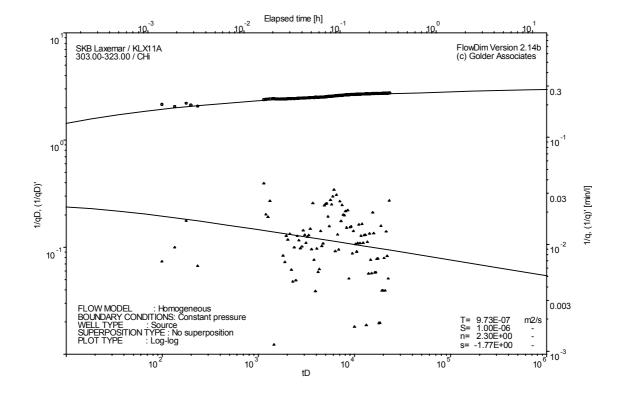
Test 303.00 – 323.00 m




Pressure and flow rate vs. time; cartesian plot

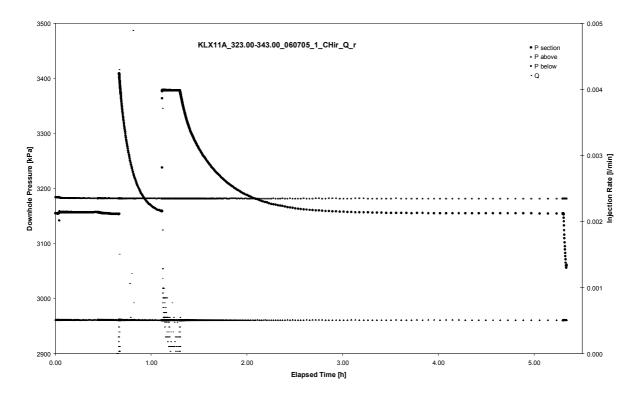




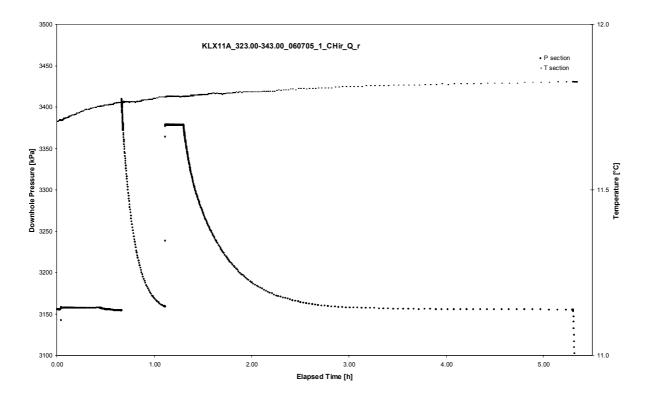


CHI phase; log-log match

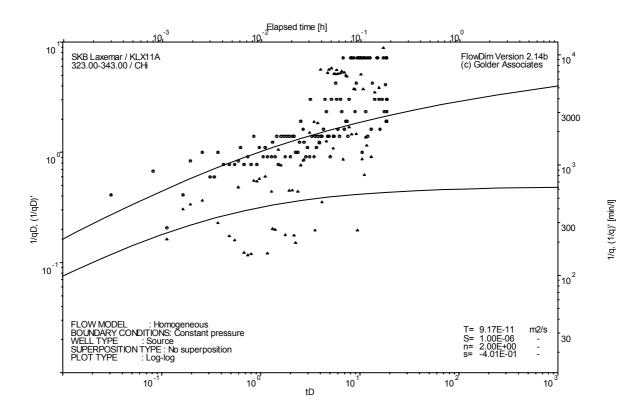


CHIR phase; log-log match

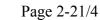


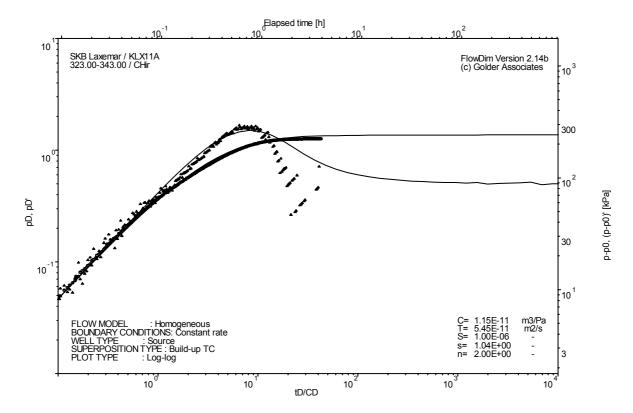

CHIR phase; HORNER match



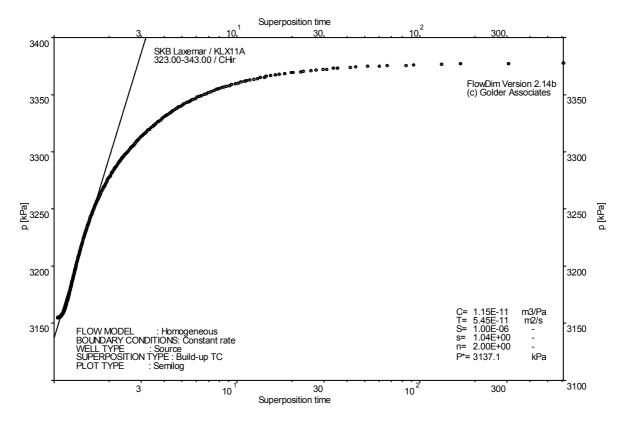


CHI phase; log-log match (n=2.3)

Test 323.00 – 343.00 m



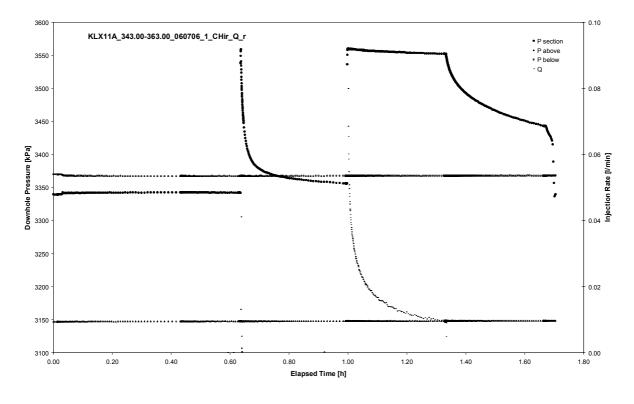


Pressure and flow rate vs. time; cartesian plot



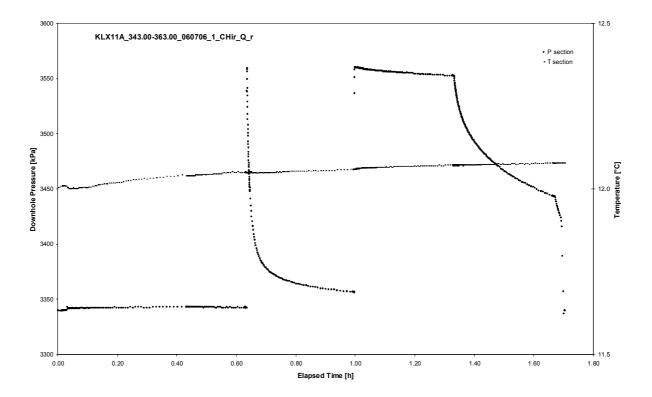



CHI phase; log-log match

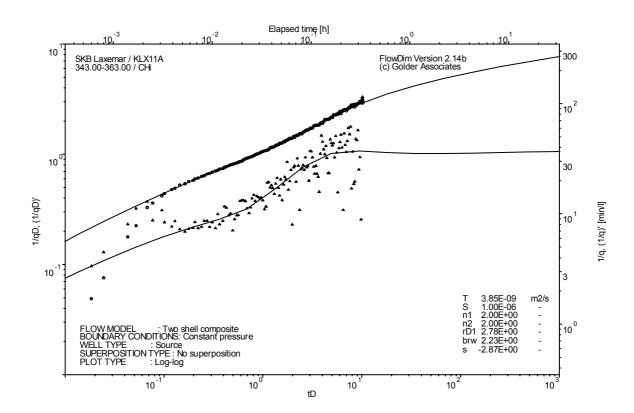




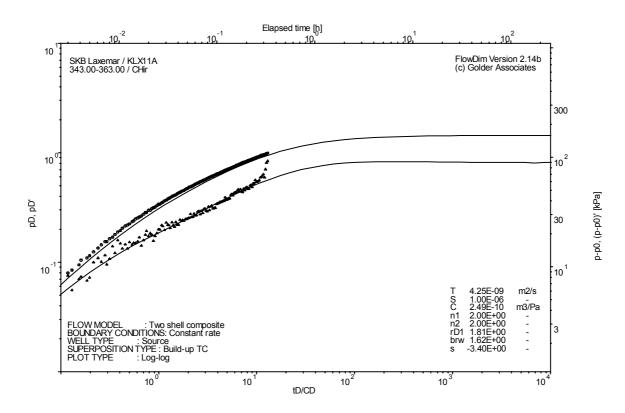

CHIR phase; log-log match



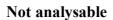

CHIR phase; HORNER match


Test 343.00 – 363.00 m




Pressure and flow rate vs. time; cartesian plot



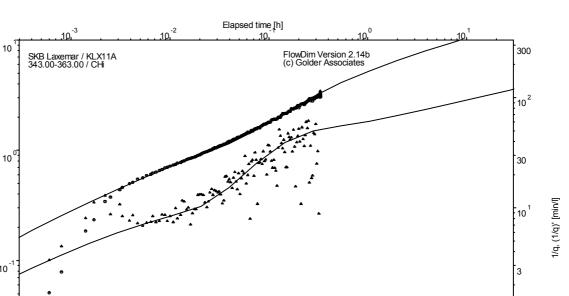

Interval pressure and temperature vs. time; cartesian plot

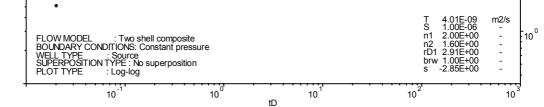


CHI phase; log-log match

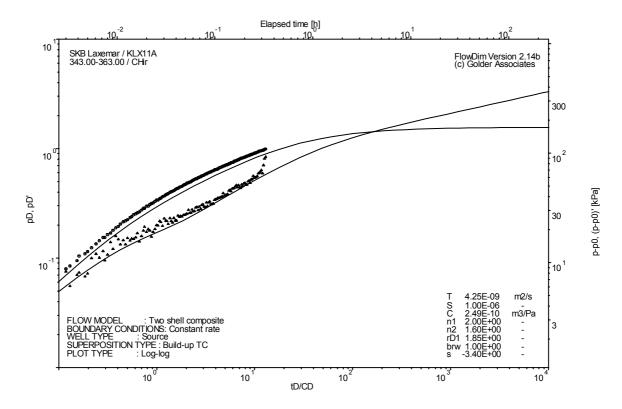


CHIR phase; log-log match



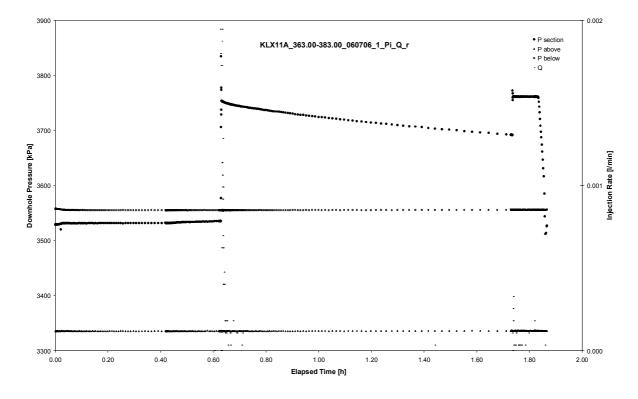


CHIR phase; HORNER match

10

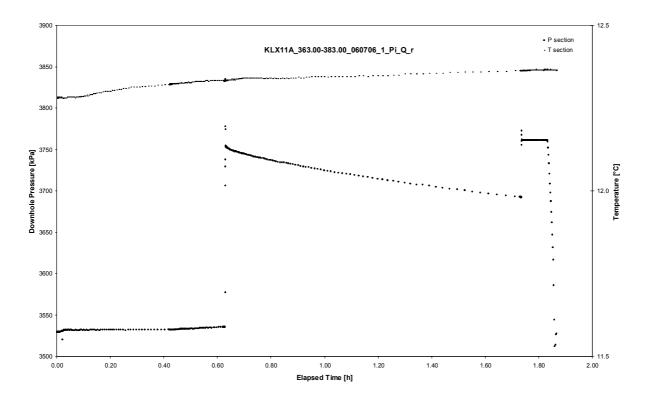

1/qD, (1/qD)'

10





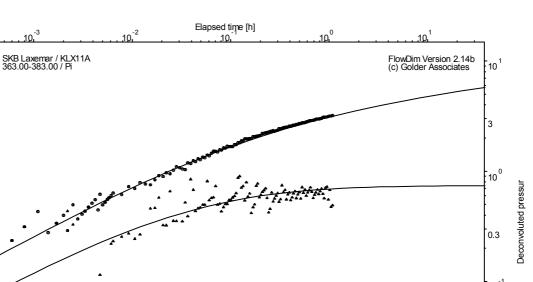

CHI phase; log-log match (n1=2, n2=1.6)

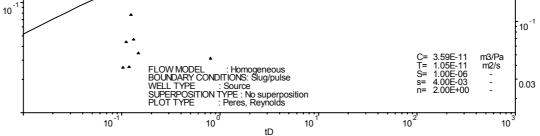



CHIR phase; log-log match (n1=2, n2=1.6)

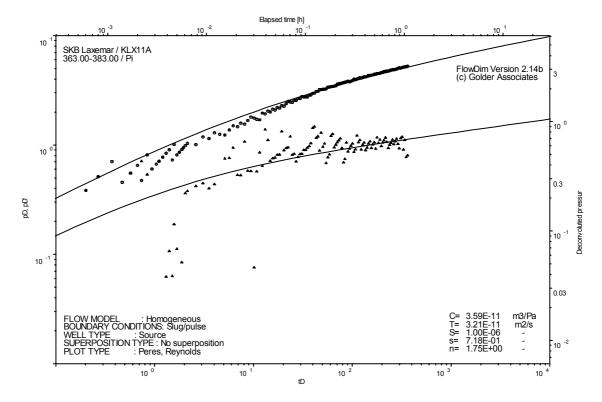
Test 363.00 – 383.00 m




Pressure and flow rate vs. time; cartesian plot

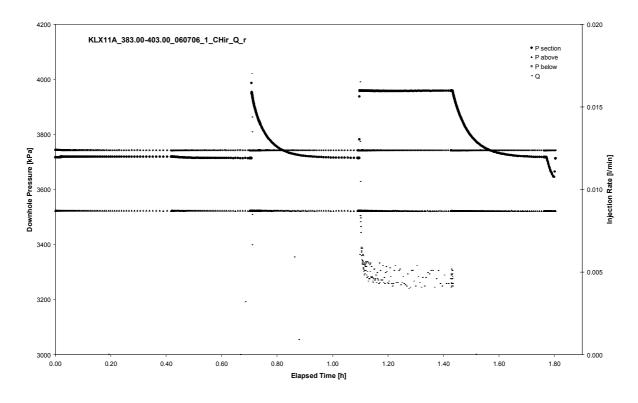



10

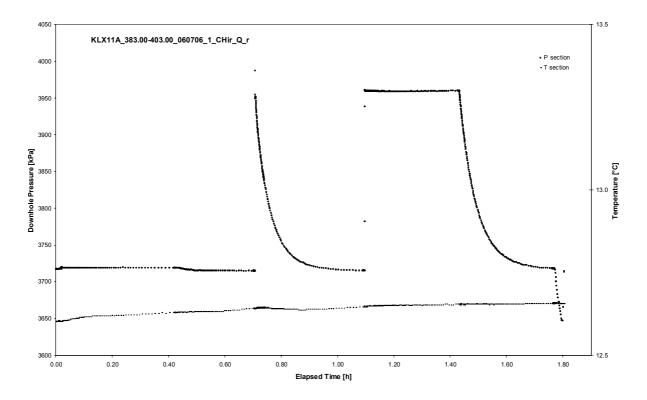

10[°]

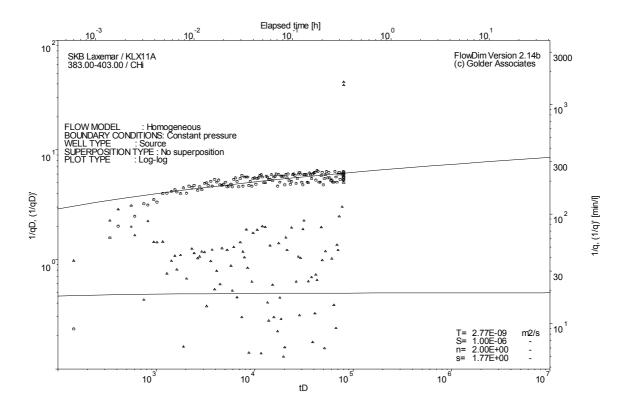
pD, pD'



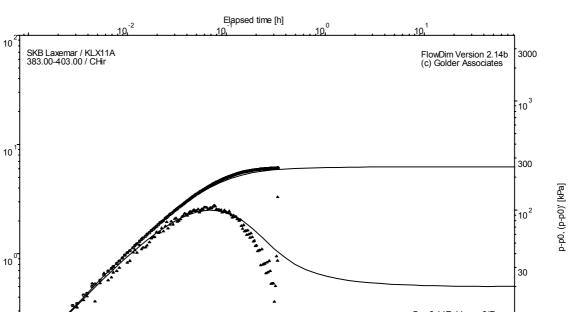


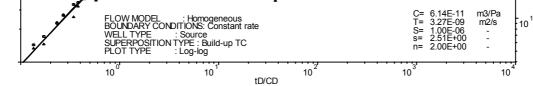

Pulse injection; deconvolution match





Pulse injection; deconvolution match (n=1.75)

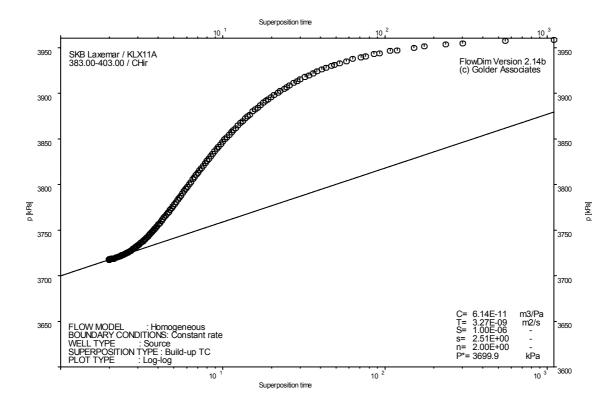
Test 383.00 – 403.00 m





Pressure and flow rate vs. time; cartesian plot

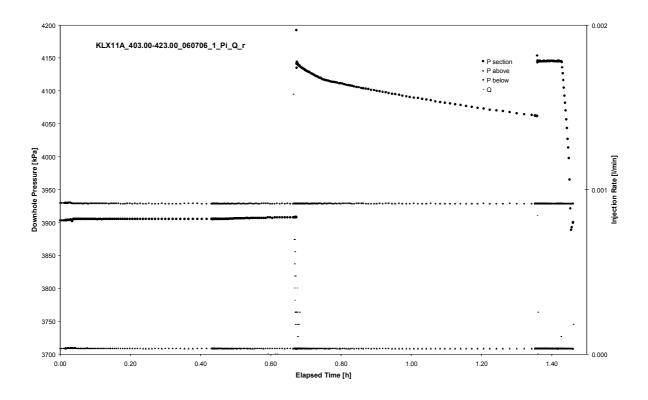




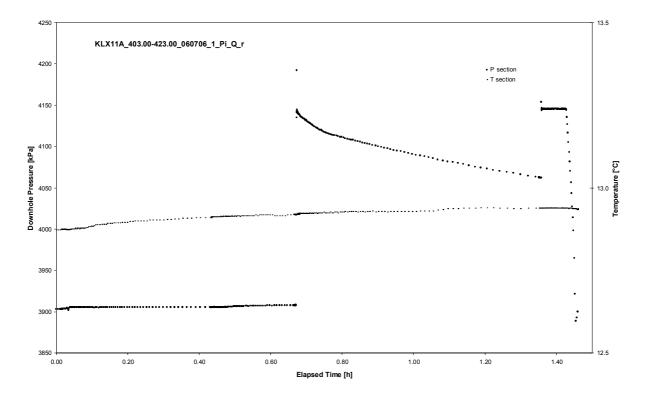

CHI phase; log-log match



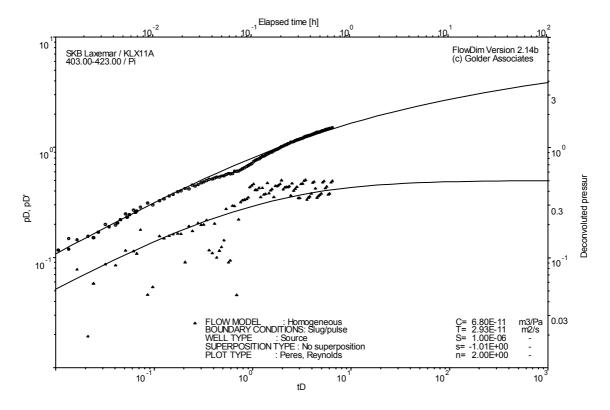



CHIR phase; log-log match

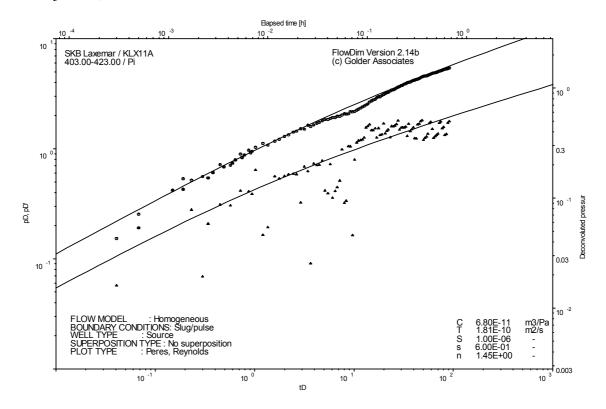
pD, pD'




CHIR phase; HORNER match

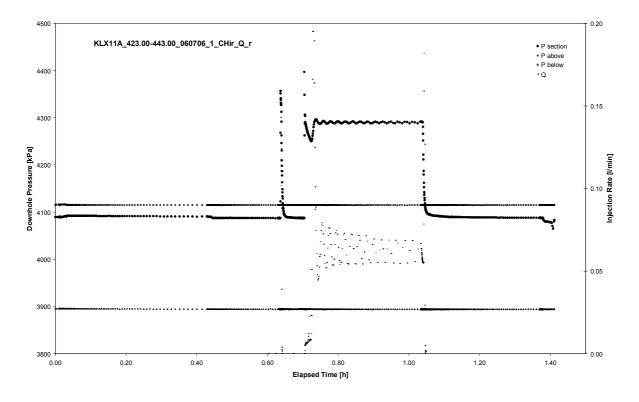

Test 403.00 – 423.00 m



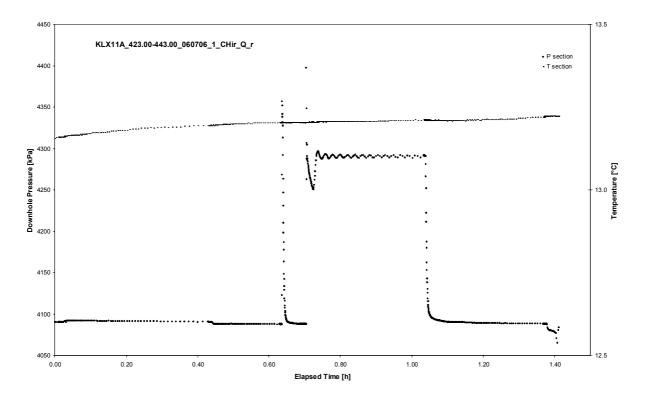

Pressure and flow rate vs. time; cartesian plot



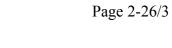
Interval pressure and temperature vs. time; cartesian plot

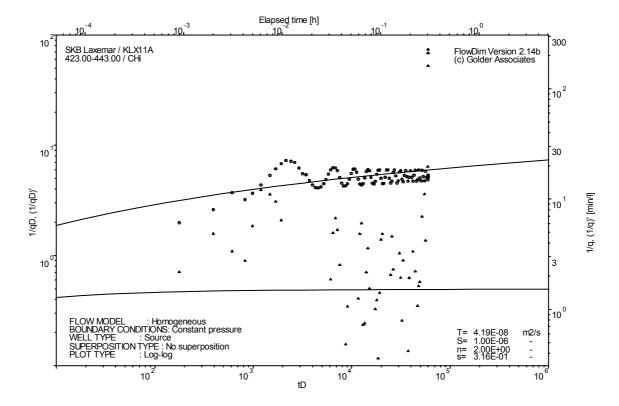



Pulse injection; deconvolution match

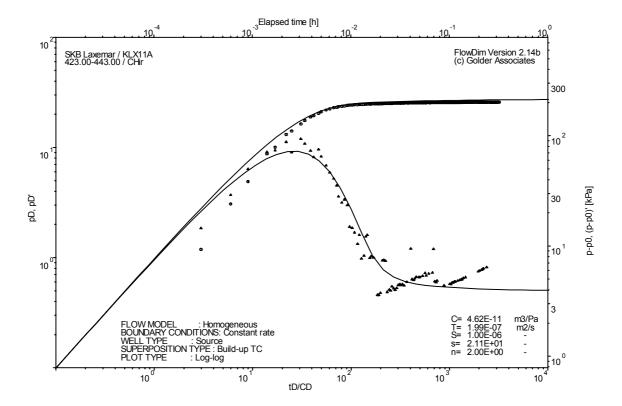



Pulse injection; deconvolution match (n=1.45)

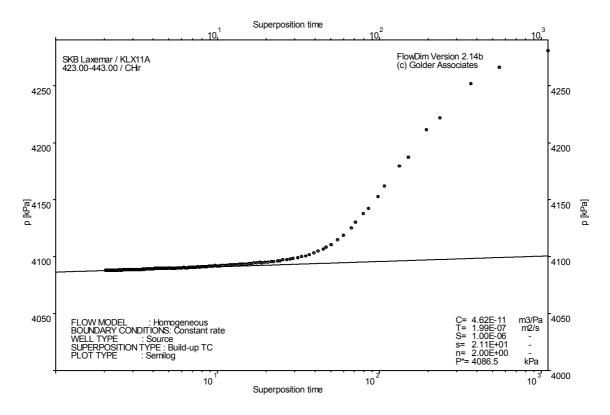

Test 423.00 – 443.00 m




Pressure and flow rate vs. time; cartesian plot

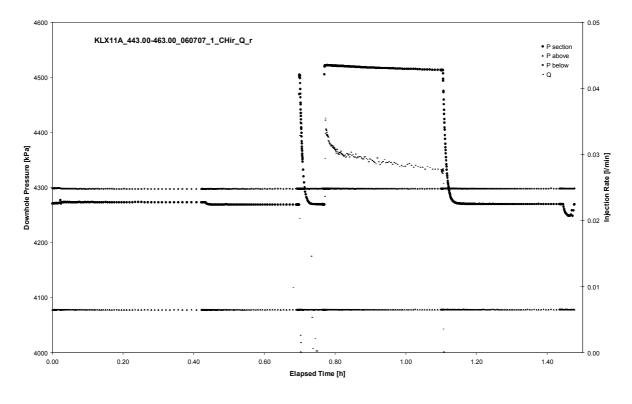



Interval pressure and temperature vs. time; cartesian plot

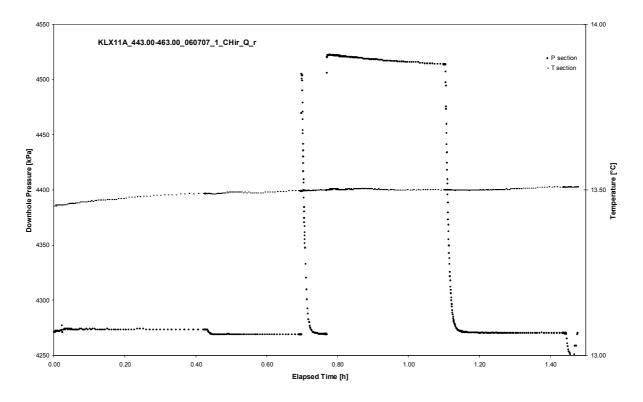




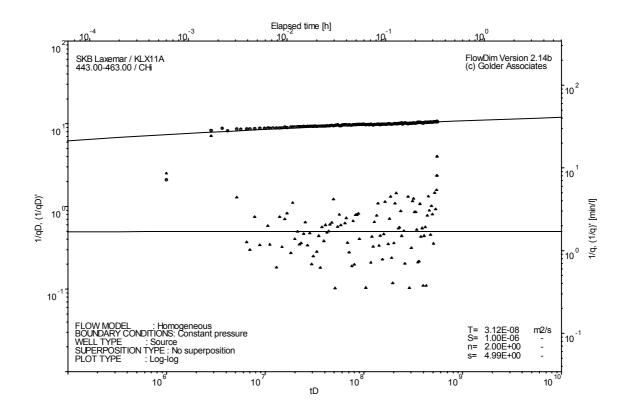

CHI phase; log-log match



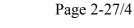

CHIR phase; log-log match

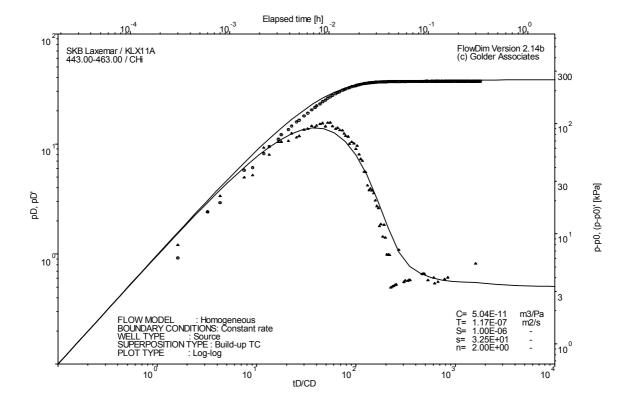



CHIR phase; HORNER match

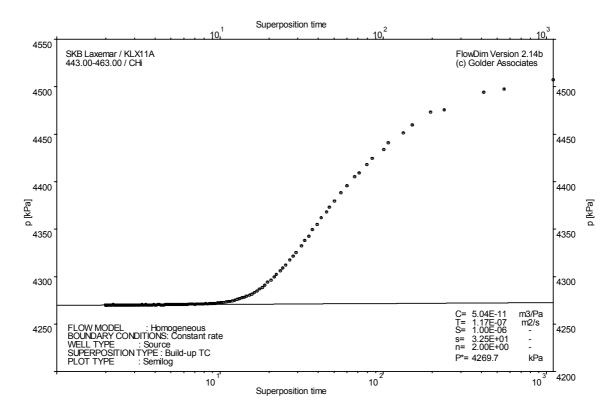

Test 443.00 – 463.00 m




Pressure and flow rate vs. time; cartesian plot

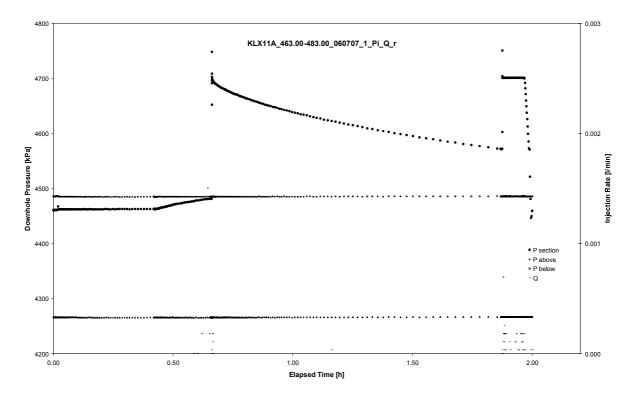



Interval pressure and temperature vs. time; cartesian plot

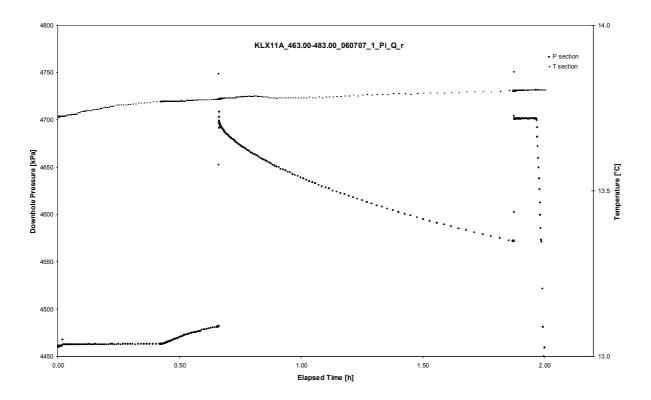



CHI phase; log-log match

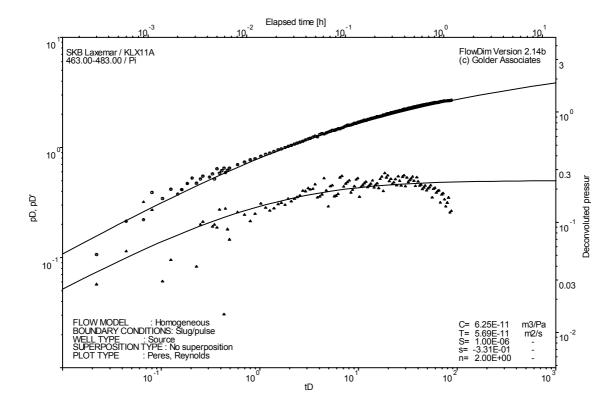




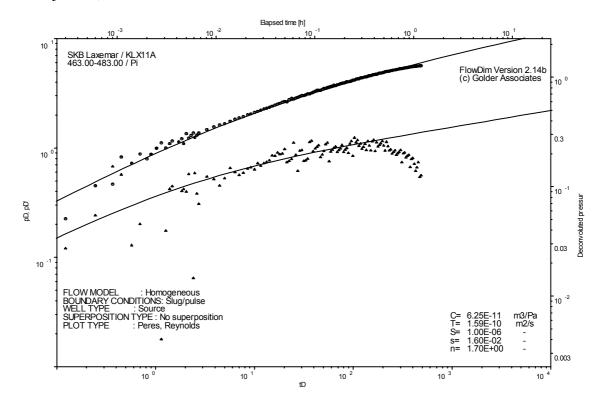

CHIR phase; log-log match




CHIR phase; HORNER match

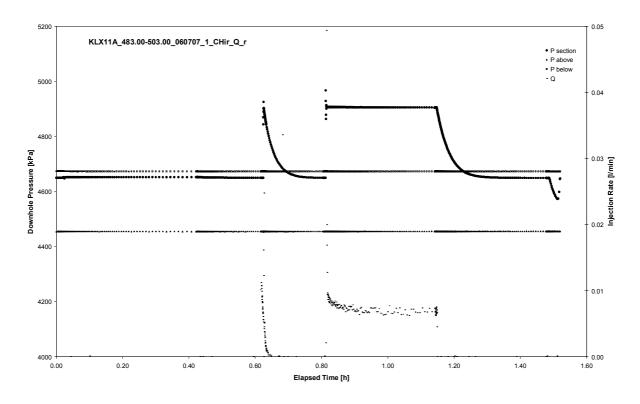

Test 463.00 – 483.00 m



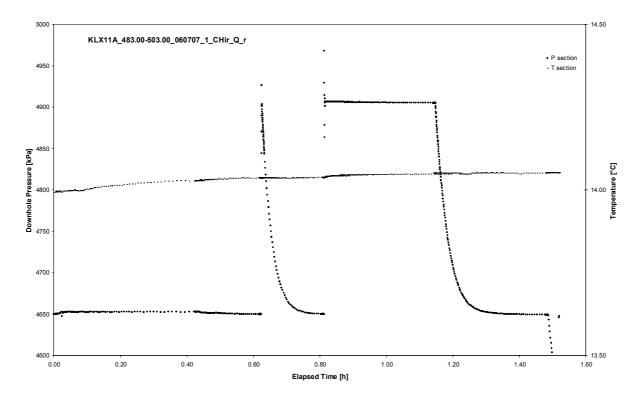

Pressure and flow rate vs. time; cartesian plot



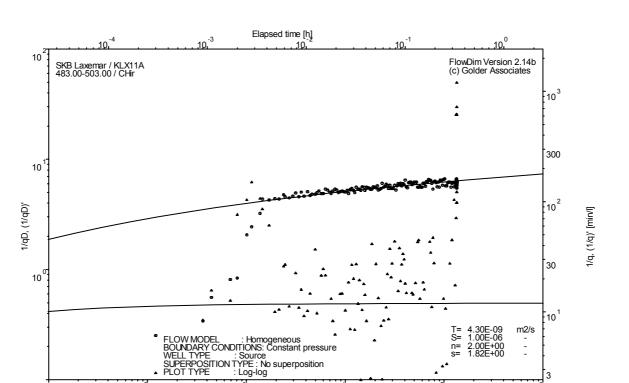
Interval pressure and temperature vs. time; cartesian plot




Pulse injection; deconvolution match




Pulse injection; deconvolution match (n=1.7)


Test 483.00 – 503.00 m



Pressure and flow rate vs. time; cartesian plot



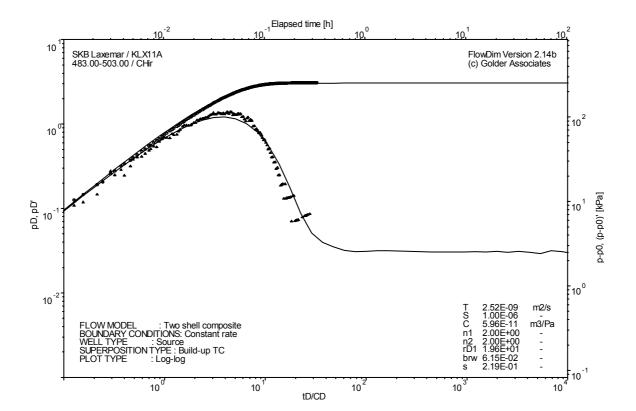
Interval pressure and temperature vs. time; cartesian plot



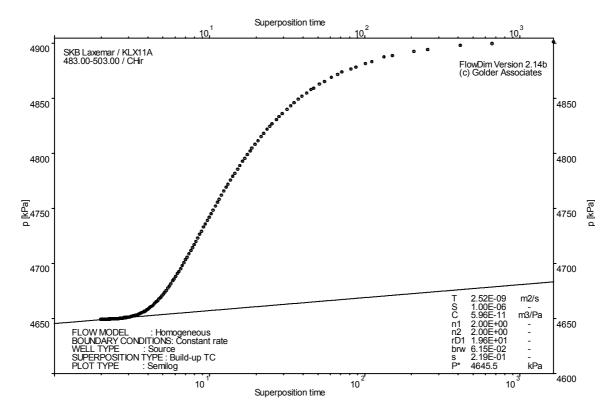
10⁴

tD

CHI phase; log-log match

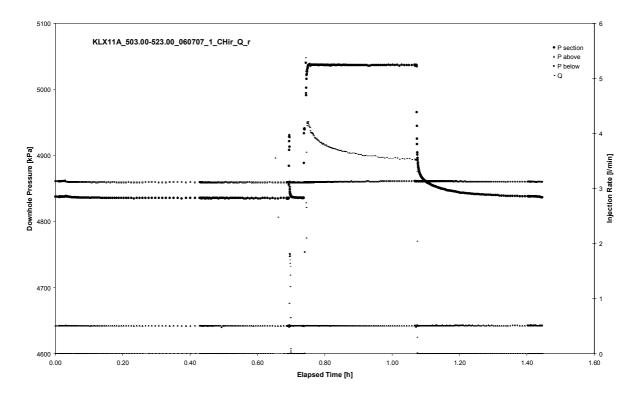

10²

10³

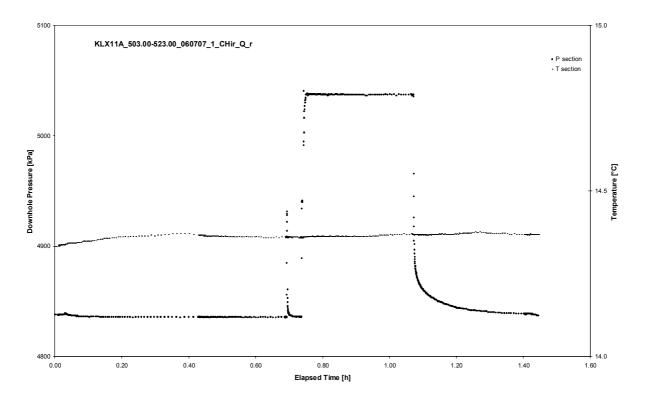

3

10⁶

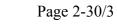
10⁵

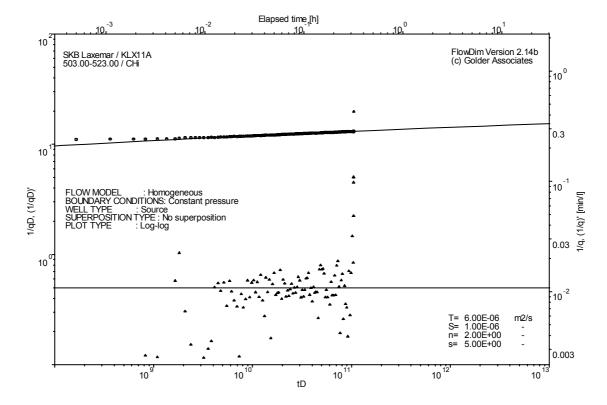



CHIR phase; log-log match

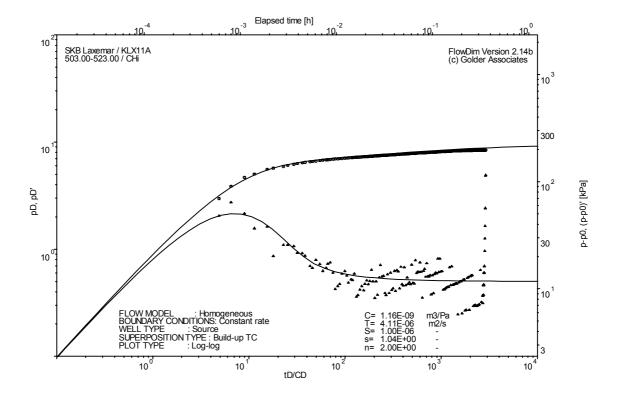



CHIR phase; HORNER match

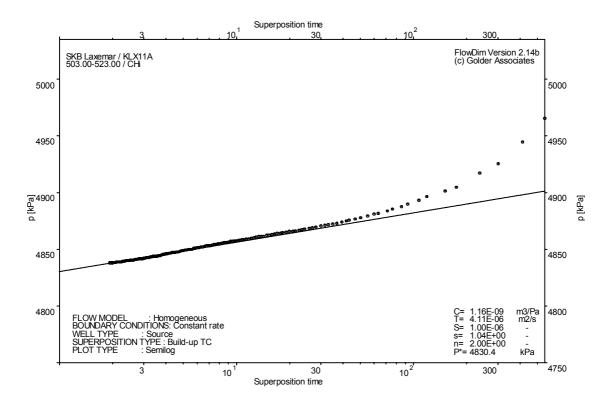

Test 503.00 – 523.00 m




Pressure and flow rate vs. time; cartesian plot

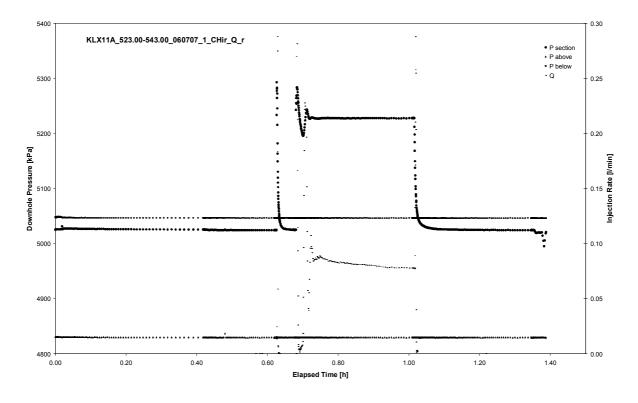



Interval pressure and temperature vs. time; cartesian plot

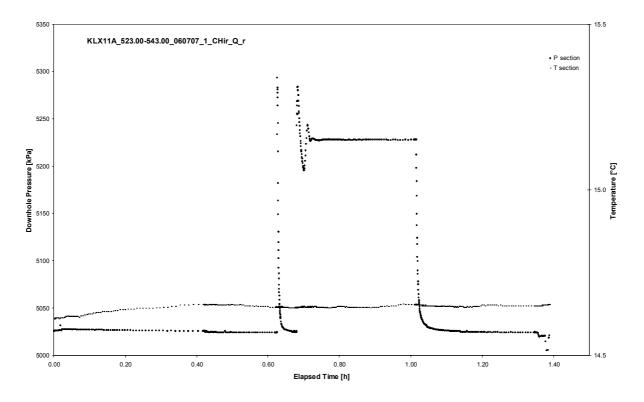




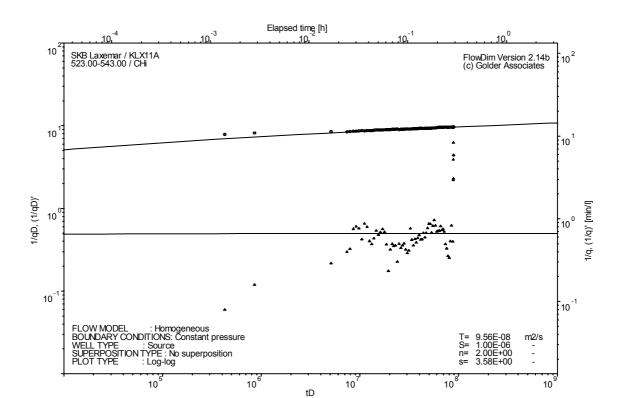

CHI phase; log-log match



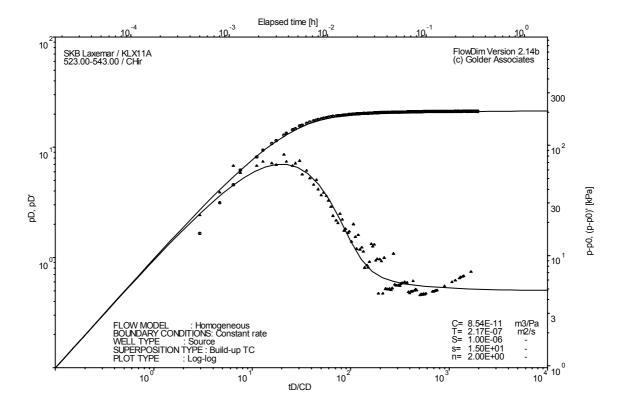

CHIR phase; log-log match



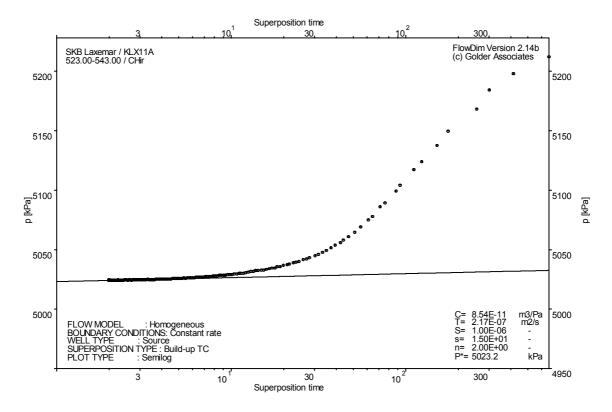

CHIR phase; HORNER match


Test 523.00 – 543.00 m



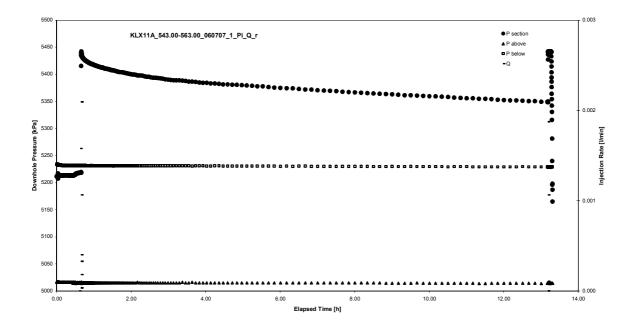

Pressure and flow rate vs. time; cartesian plot



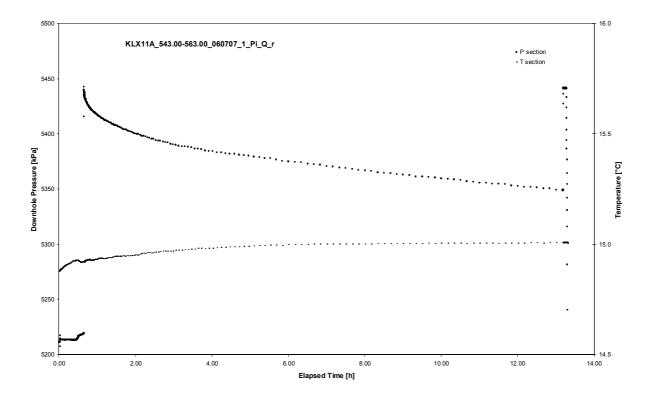

Interval pressure and temperature vs. time; cartesian plot



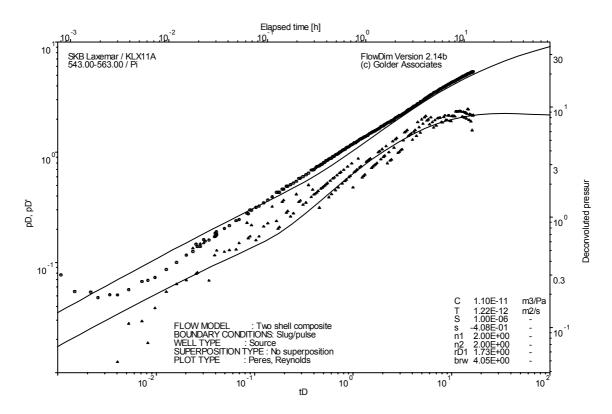
CHI phase; log-log match



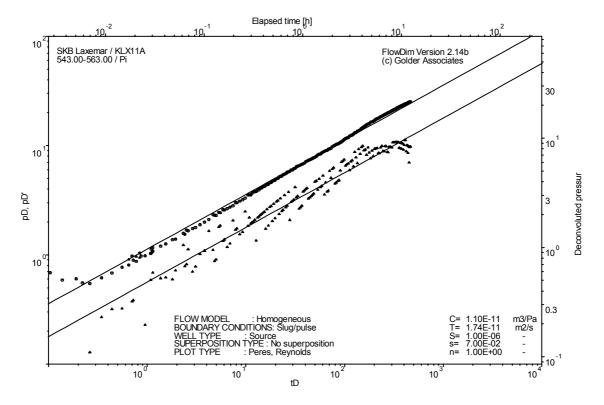

CHIR phase; log-log match




CHIR phase; HORNER match

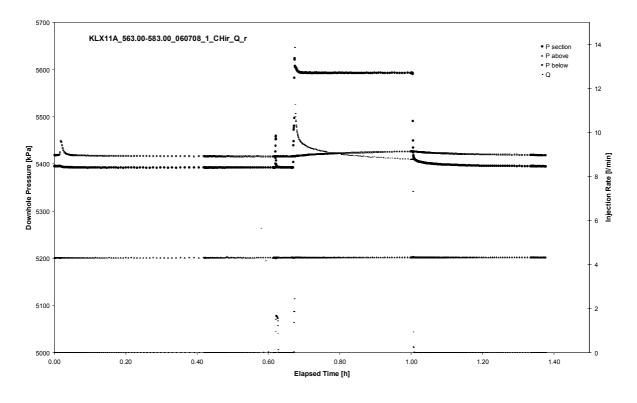

Test 543.00 – 563.00 m



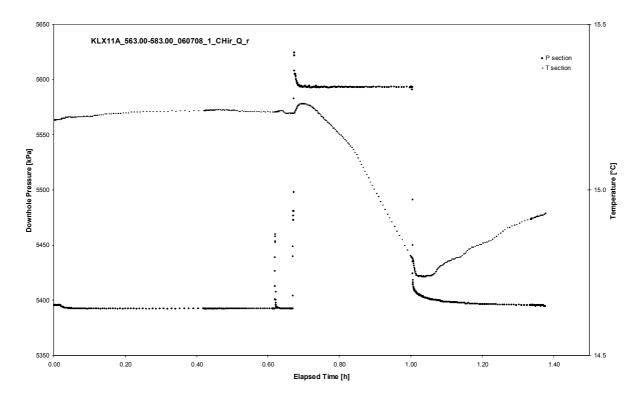

Pressure and flow rate vs. time; cartesian plot



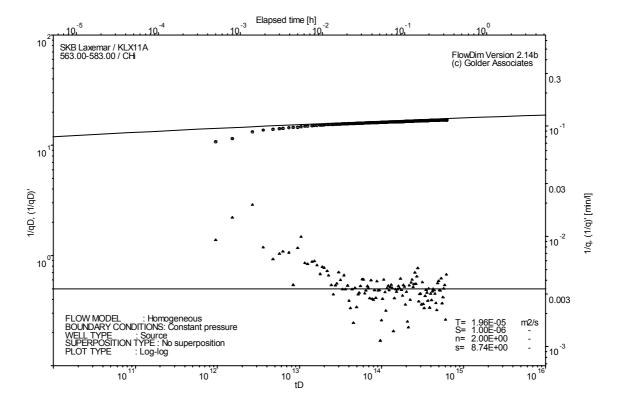
Interval pressure and temperature vs. time; cartesian plot



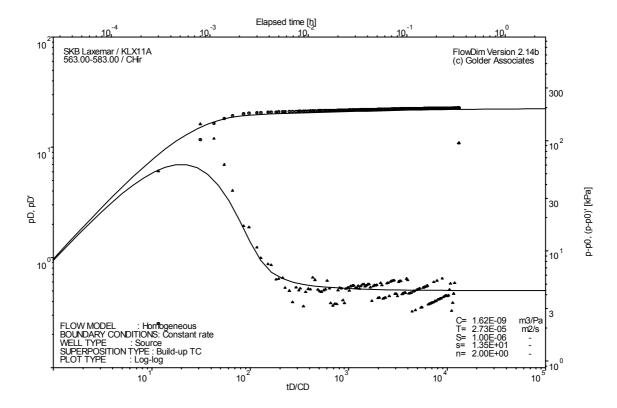

Pulse injection; deconvolution match



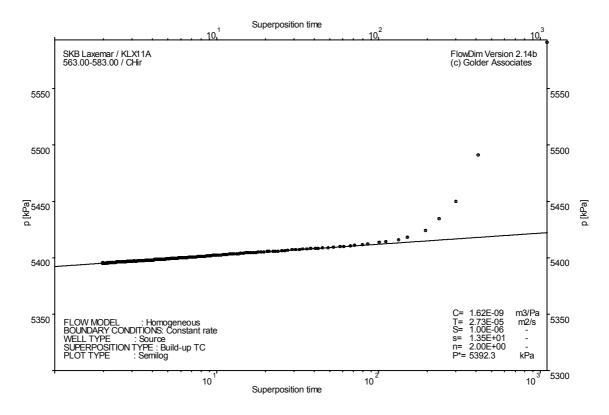

Pulse injection; deconvolution match (n=1)


Test 563.00 – 583.00 m

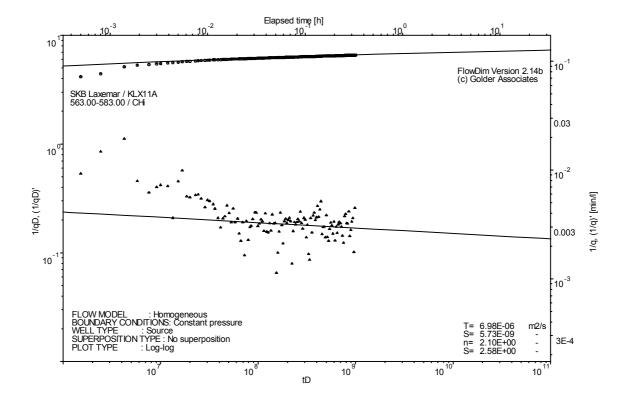



Pressure and flow rate vs. time; cartesian plot

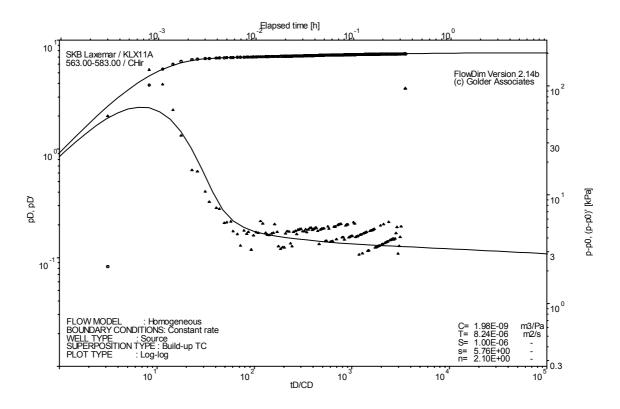



Interval pressure and temperature vs. time; cartesian plot



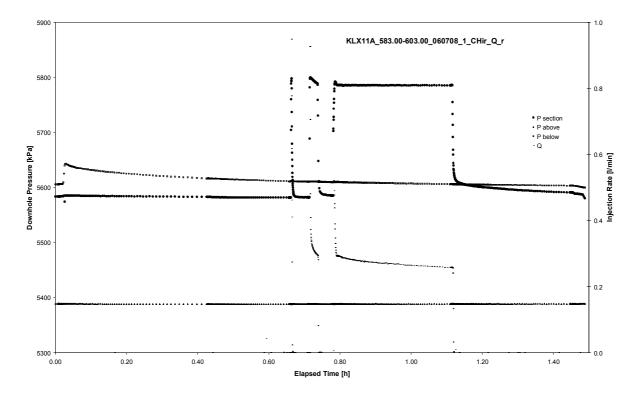

CHI phase; log-log match



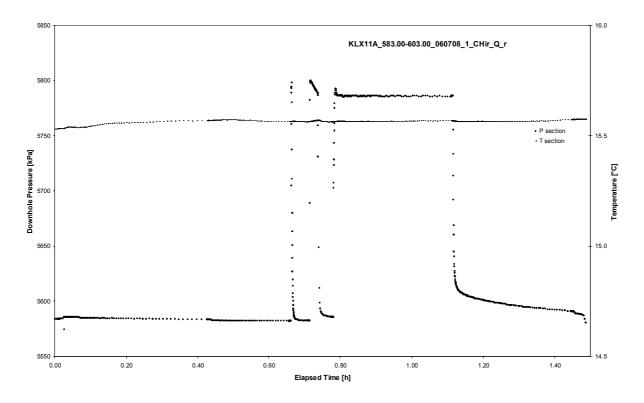

CHIR phase; log-log match



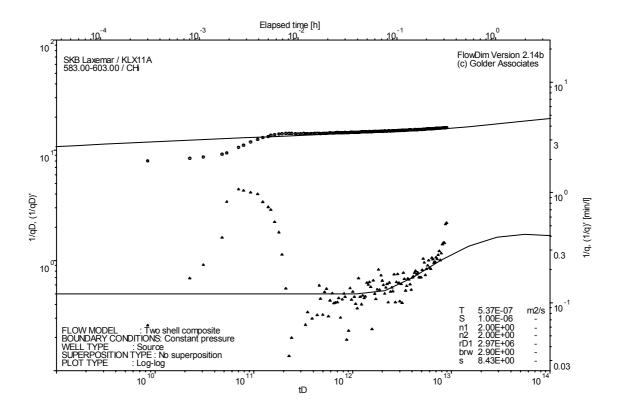
CHIR phase; HORNER match



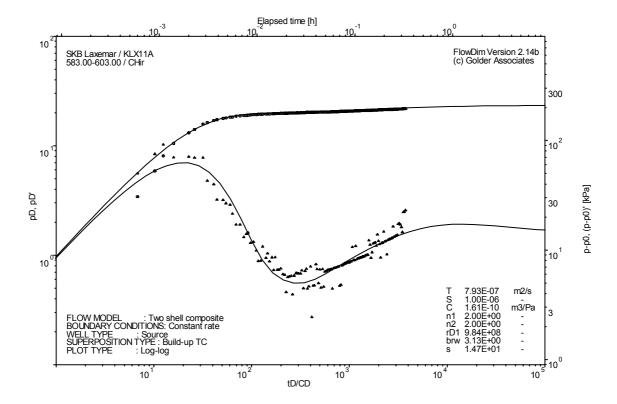

CHI phase; log-log match (n=2.1)



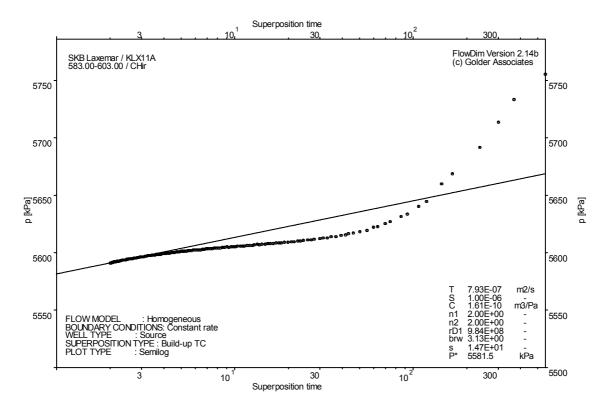

CHIR phase; log-log match (n=2.1)


Test 583.00 – 603.00 m

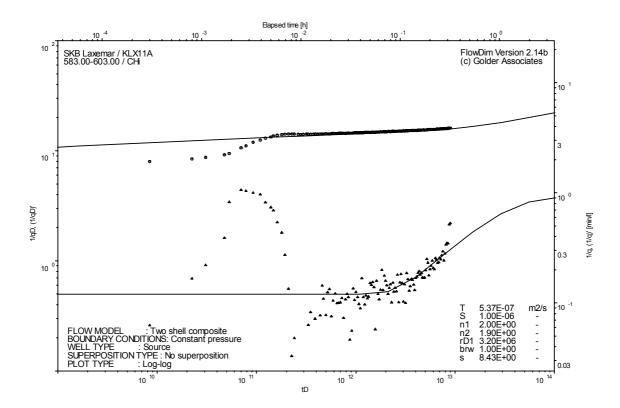



Pressure and flow rate vs. time; cartesian plot

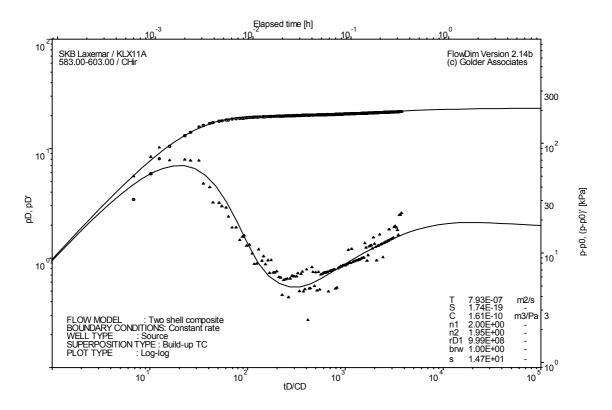



Interval pressure and temperature vs. time; cartesian plot



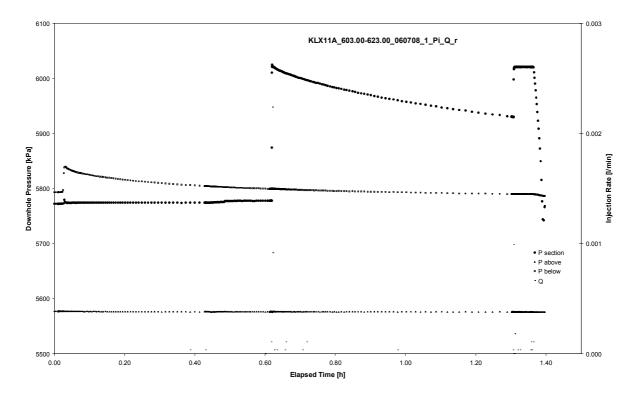

CHI phase; log-log match



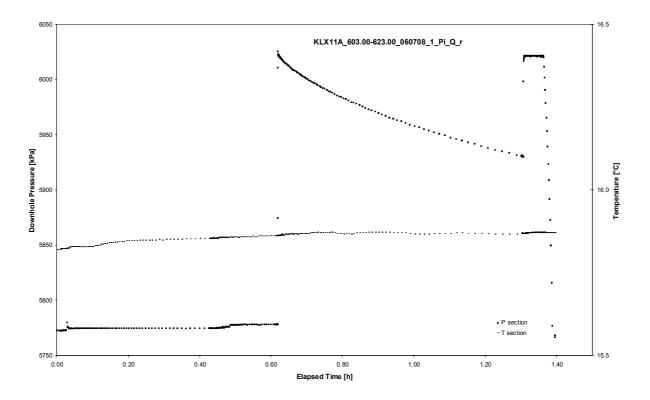

CHIR phase; log-log match

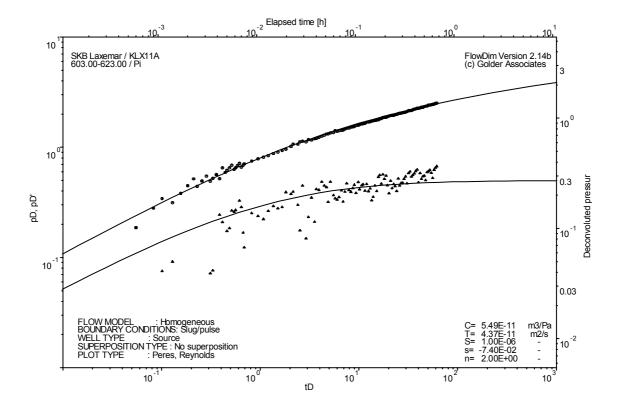


CHIR phase; HORNER match

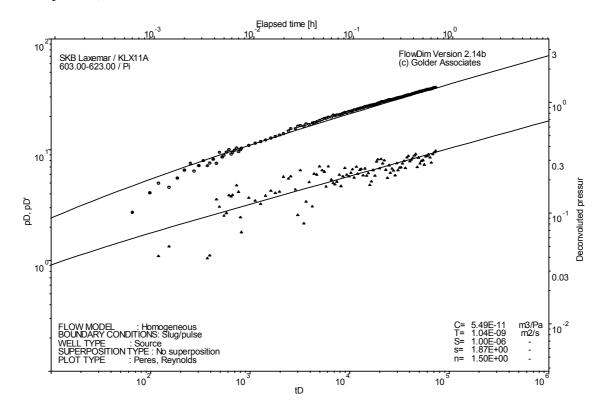



CHI phase; log-log match (n1=2, n2=1.9)



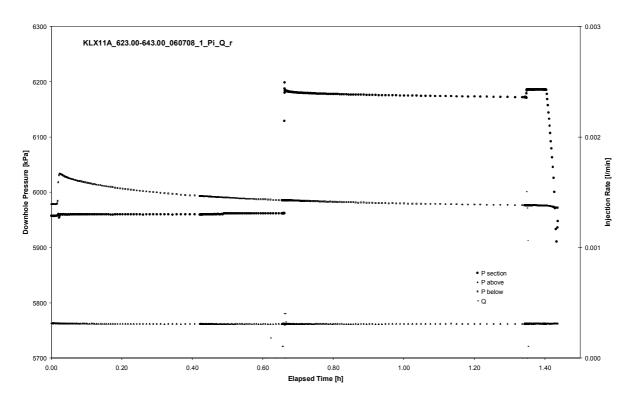


CHIR phase; log-log match (n1=2, n2=1.95)

Test 603.00 – 623.00 m

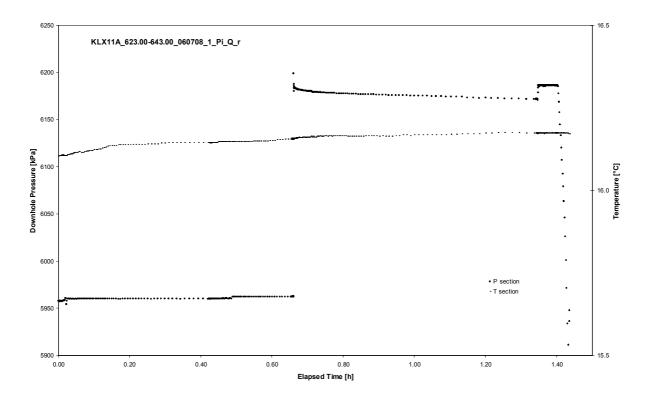


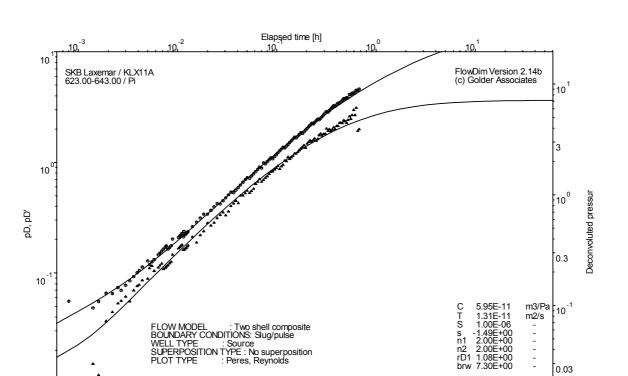

Pressure and flow rate vs. time; cartesian plot






Pulse injection; deconvolution match





Pulse injection; deconvolution match (n=1.5)

Test 623.00 – 643.00 m



Pressure and flow rate vs. time; cartesian plot

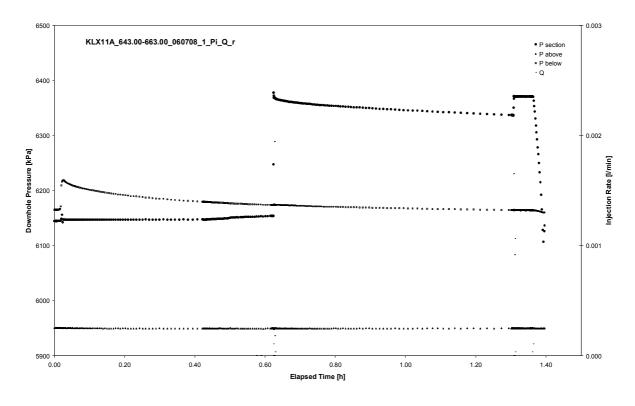




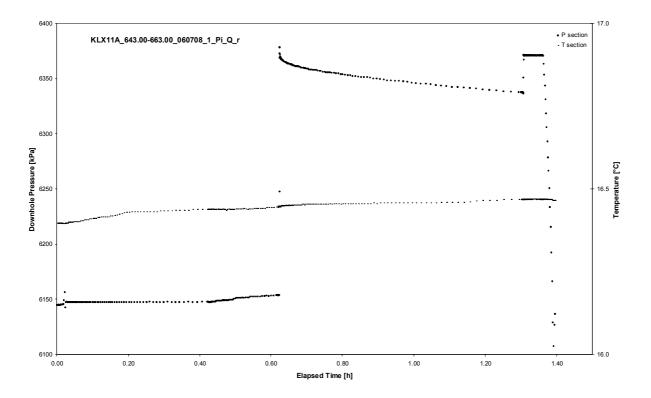
10

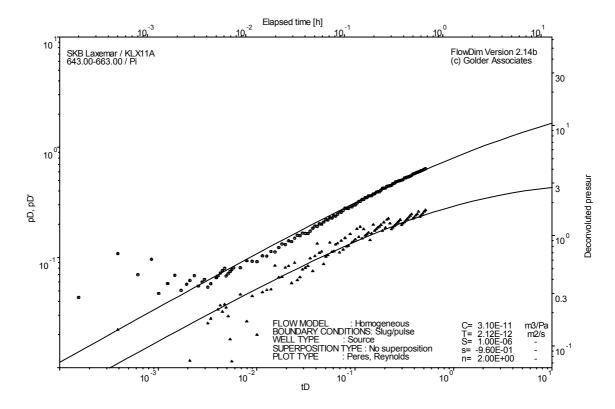
tD

10

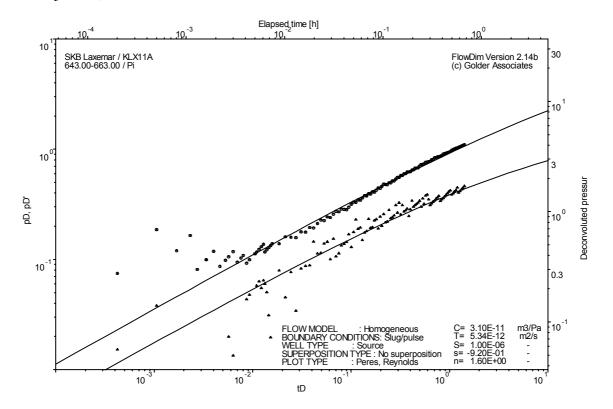

10²

Pulse injection; deconvolution match


10⁻²

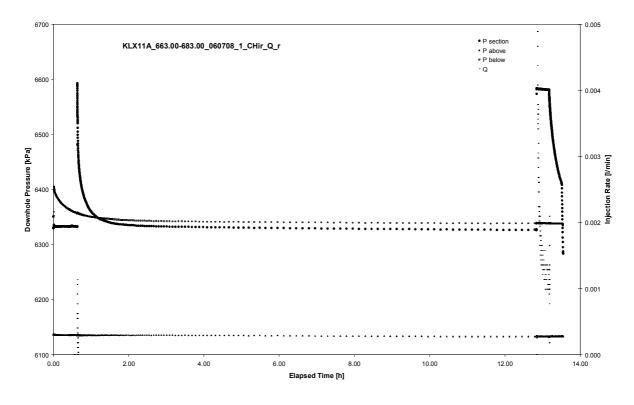

10

Test 643.00 – 663.00 m

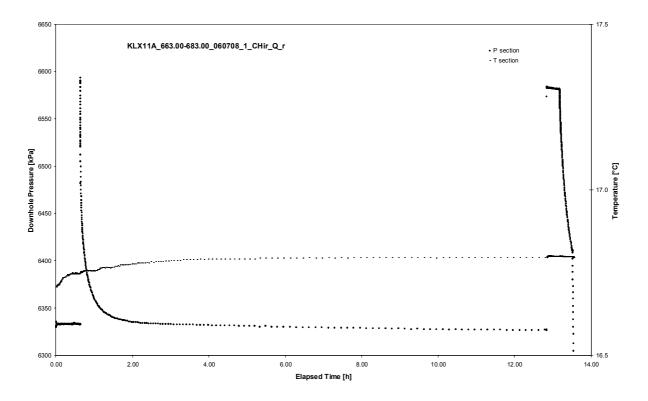


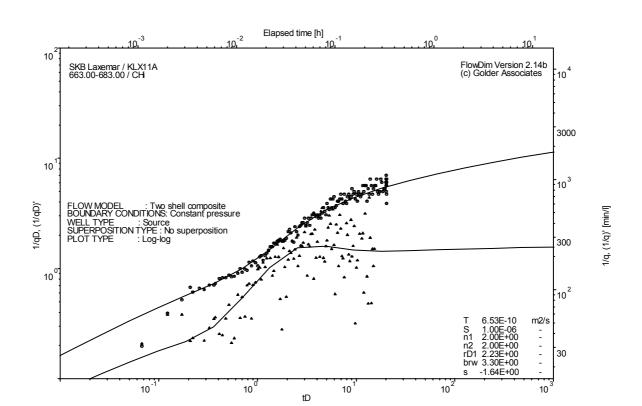

Pressure and flow rate vs. time; cartesian plot



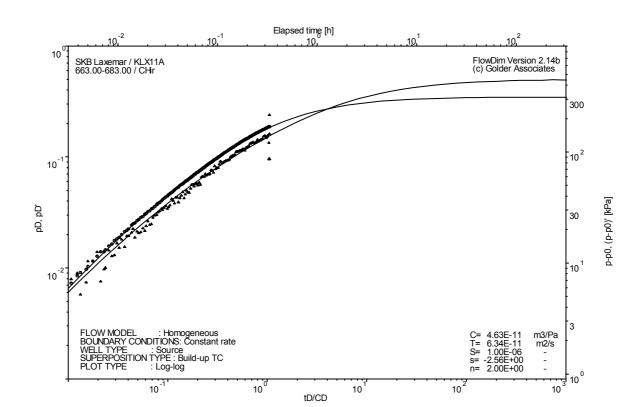



Pulse injection; deconvolution match





Pulse injection; deconvolution match (n=1.6)

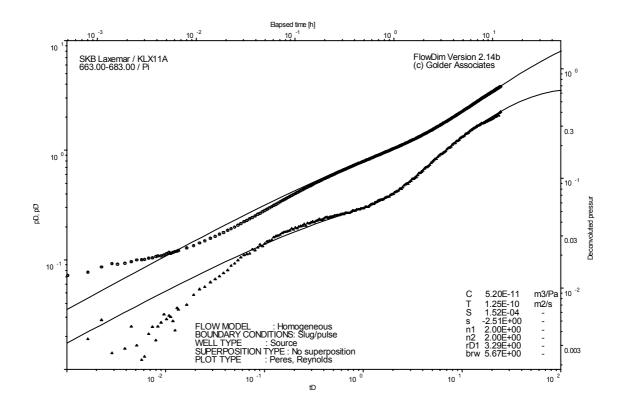
Test 663.00 – 683.00 m




Pressure and flow rate vs. time; cartesian plot

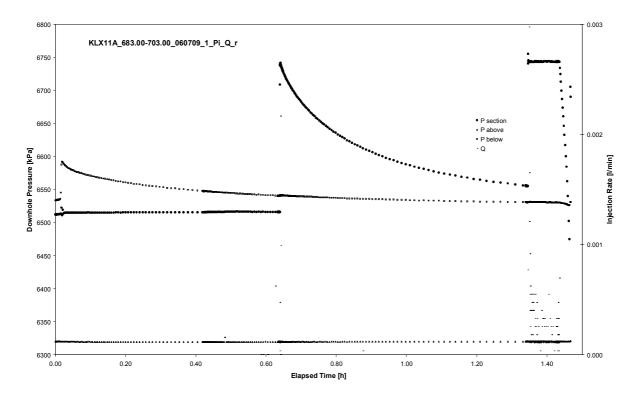




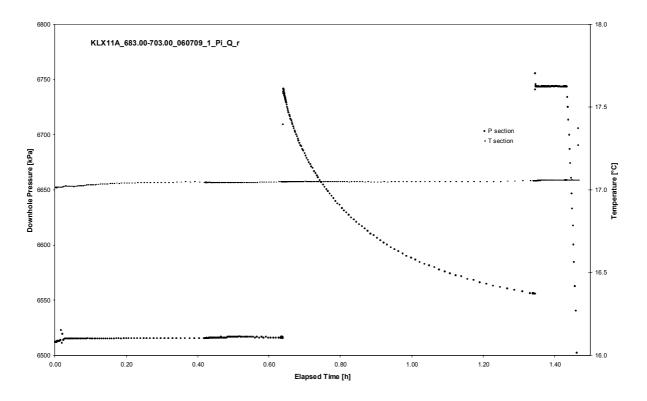

CHI phase; log-log match

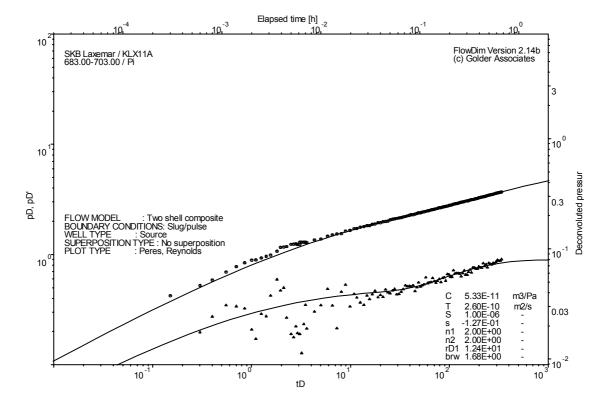


CHIR phase; log-log match

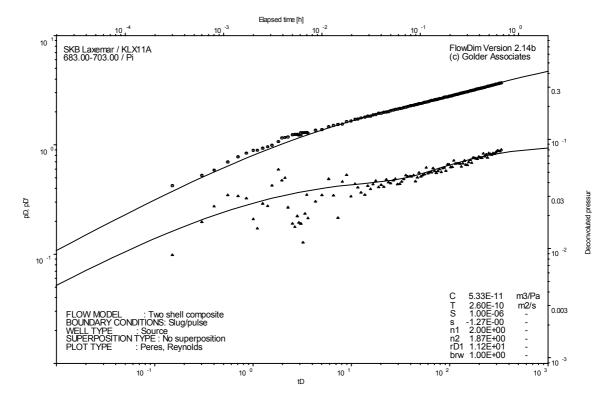



CHIR phase; HORNER match



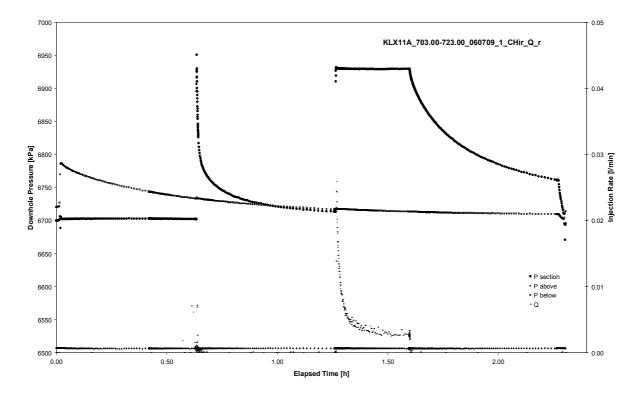


Pulse injection; deconvolution match

Test 683.00 – 703.00 m

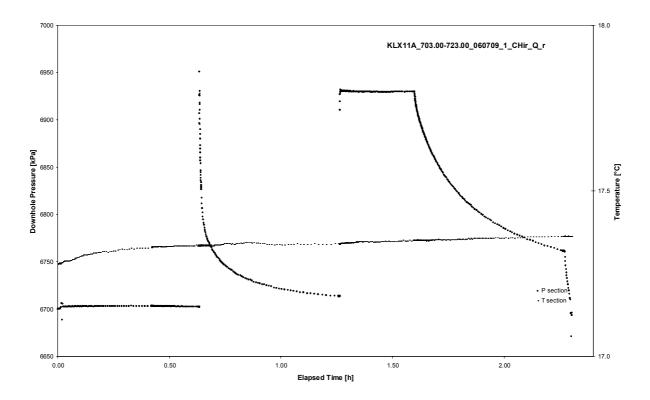



Pressure and flow rate vs. time; cartesian plot



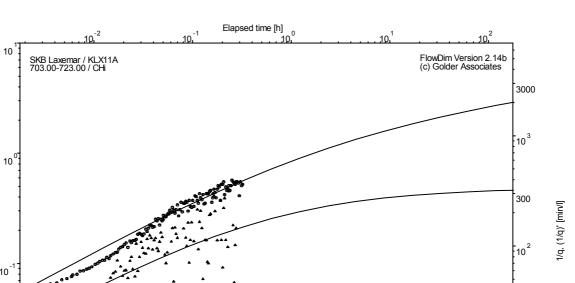


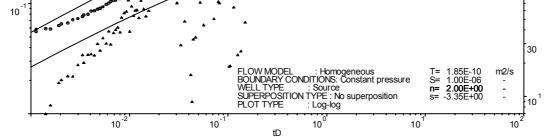

Pulse injection; deconvolution match



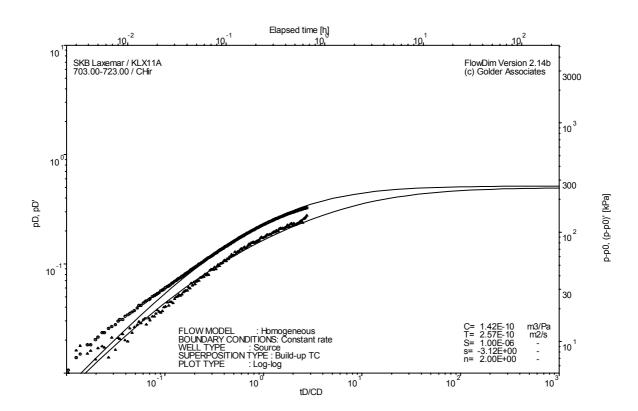

Pulse injection; deconvolution match (n1=2, n2=1.87)

Test 703.00 – 723.00 m

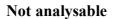




Pressure and flow rate vs. time; cartesian plot




10

1/qD, (1/qD)'

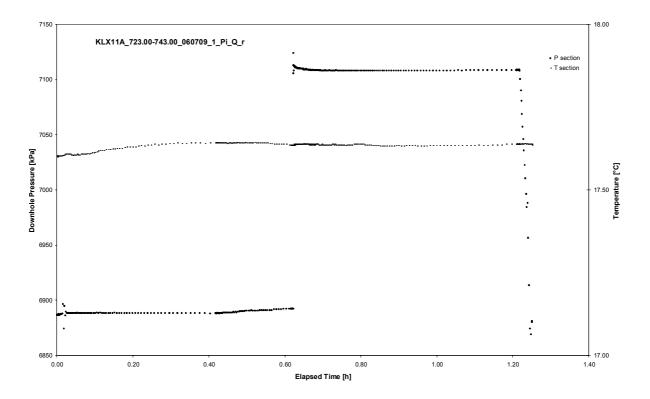





CHI phase; log-log match



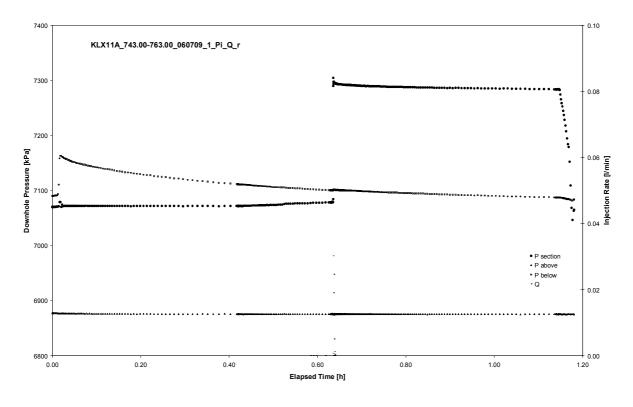
CHIR phase; log-log match



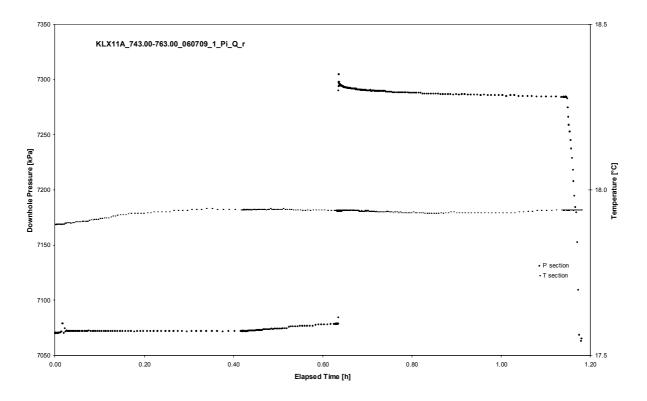

CHIR phase; HORNER match

Test 723.00 – 743.00 m




Pressure and flow rate vs. time; cartesian plot

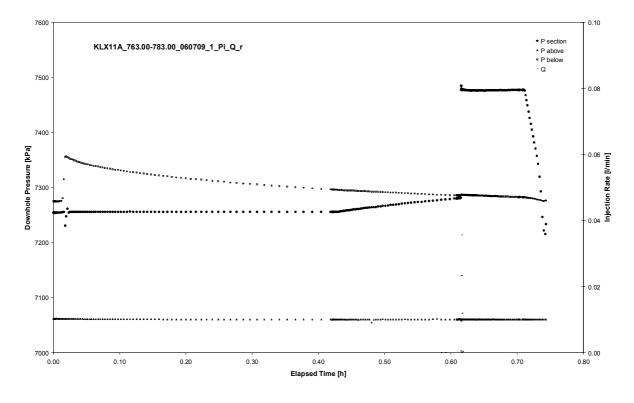



Not analysed

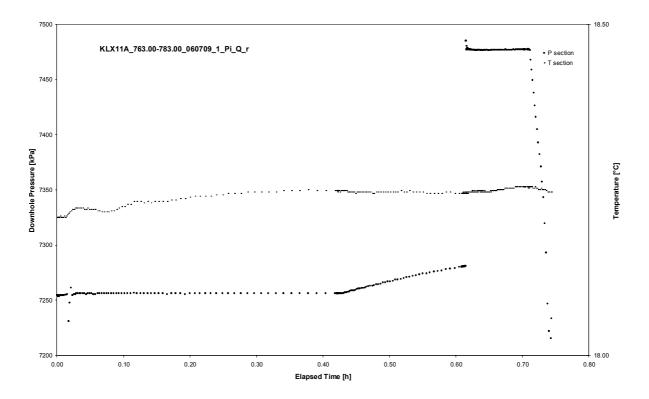
Pulse injection; deconvolution match

Test 743.00 – 763.00 m




Pressure and flow rate vs. time; cartesian plot

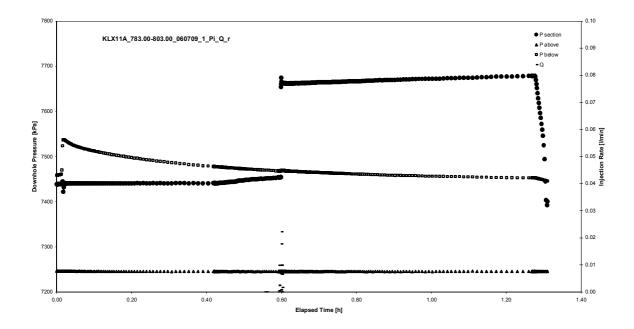



Not analysed

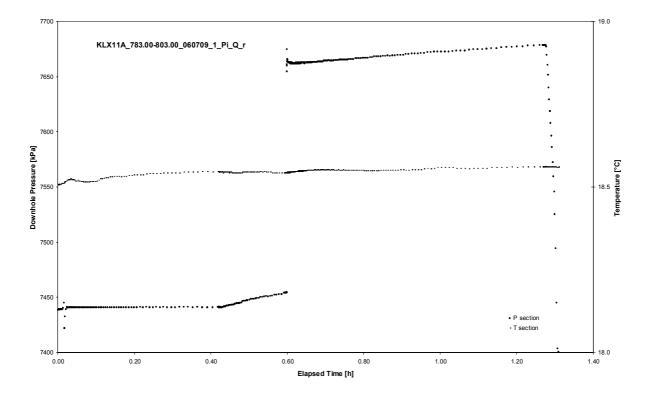
Pulse injection; deconvolution match

Test 763.00 – 783.00 m




Pressure and flow rate vs. time; cartesian plot

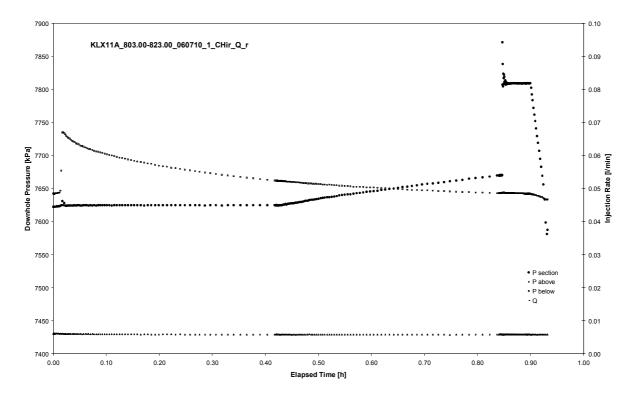



Not analysed

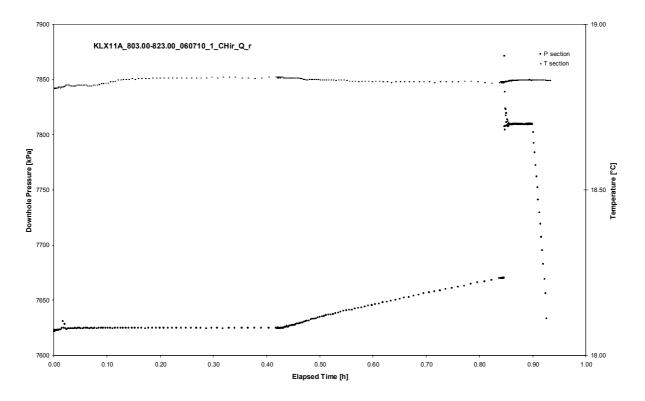
Pulse injection; deconvolution match

Test 783.00 – 803.00 m



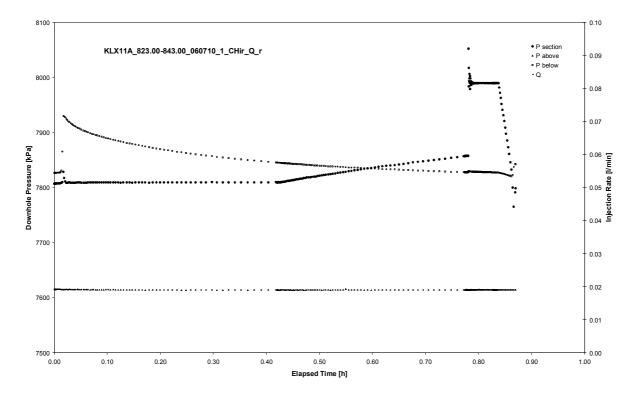

Pressure and flow rate vs. time; cartesian plot



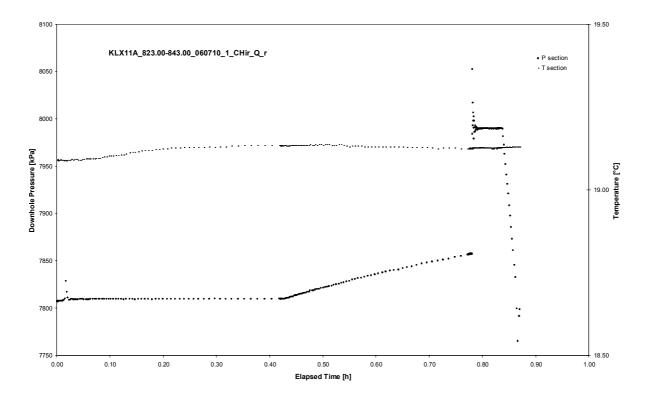

Not analysed

Pulse injection; deconvolution match

Test 803.00 – 823.00 m



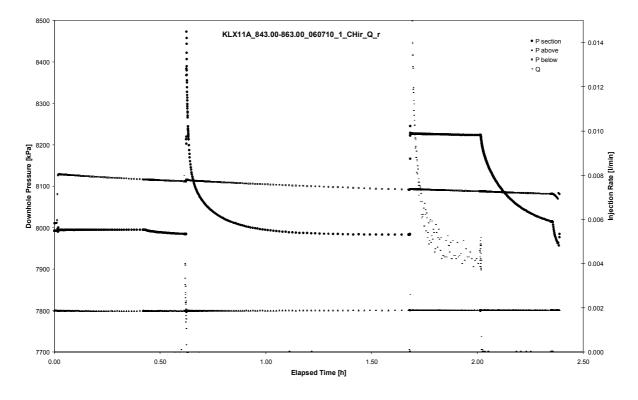

Pressure and flow rate vs. time; cartesian plot



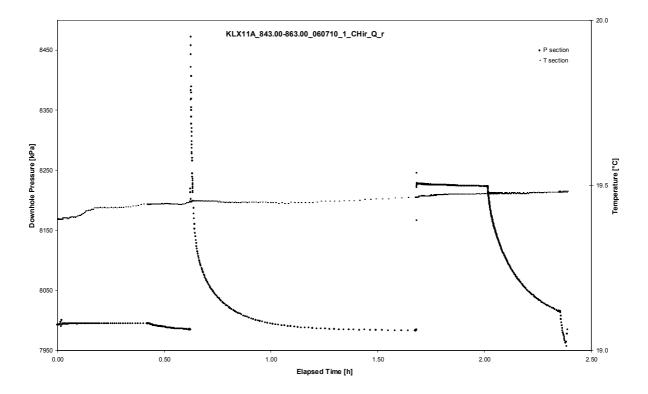

CHIR phase; log-log match

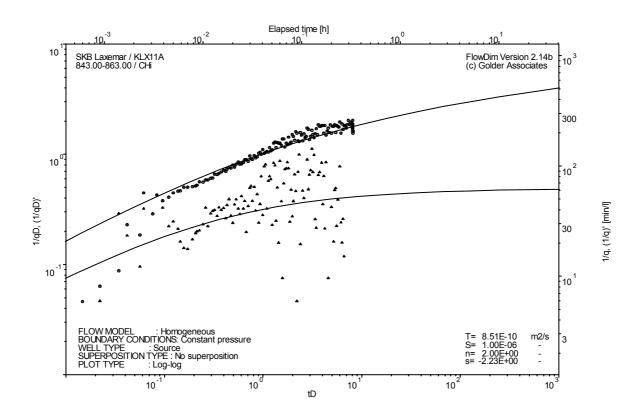
Test 823.00 – 843.00 m



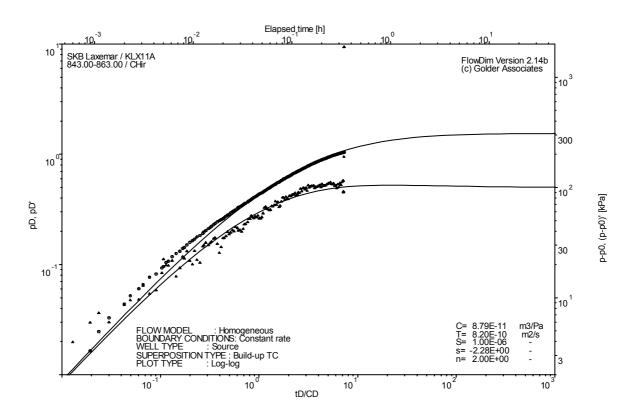

Pressure and flow rate vs. time; cartesian plot



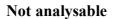

Interval pressure and temperature vs. time; cartesian plot


CHIR phase; log-log match

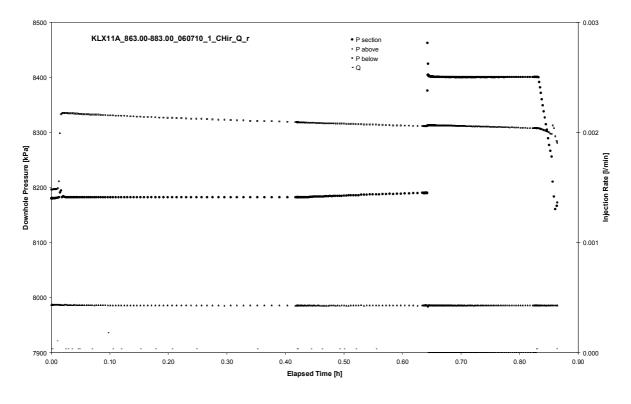
Test 843.00 - 863.00 m



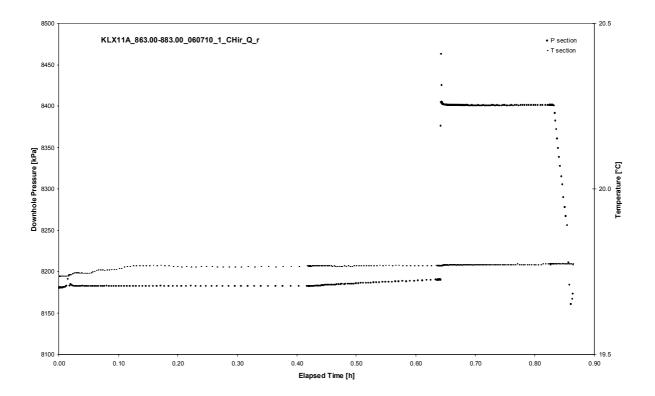

Pressure and flow rate vs. time; cartesian plot





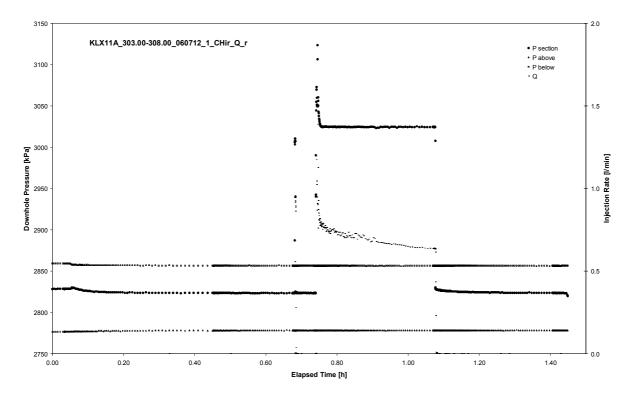


CHI phase; log-log match



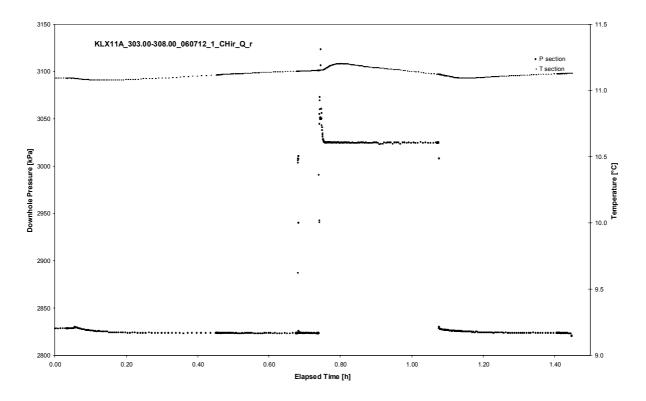

CHIR phase; log-log match

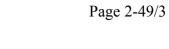


Test 863.00 – 883.00 m



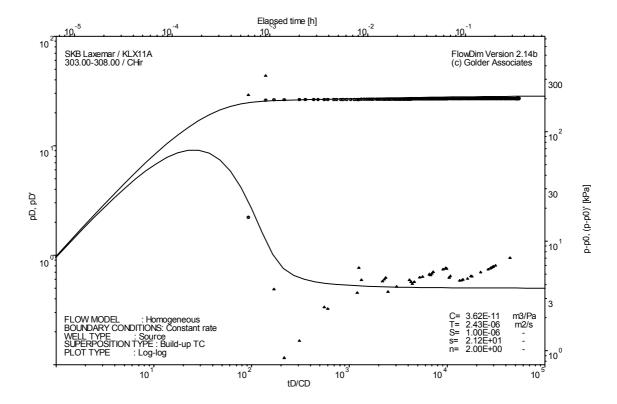

Pressure and flow rate vs. time; cartesian plot



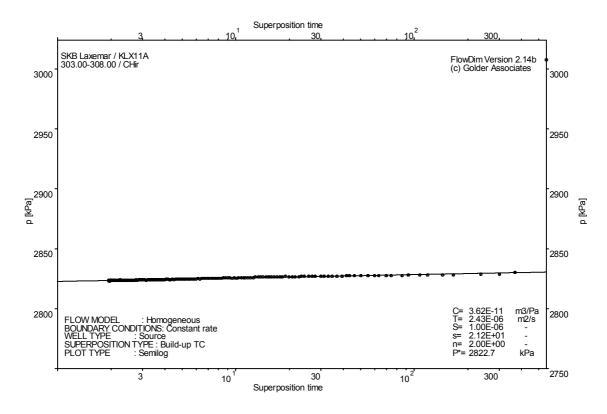


CHIR phase; log-log match

Test 303.00 – 308.00 m

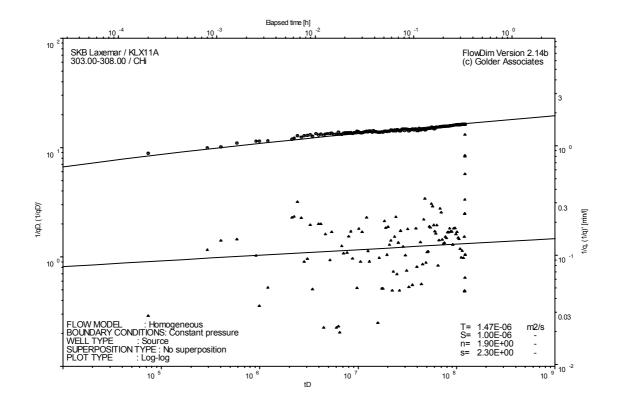



Pressure and flow rate vs. time; cartesian plot



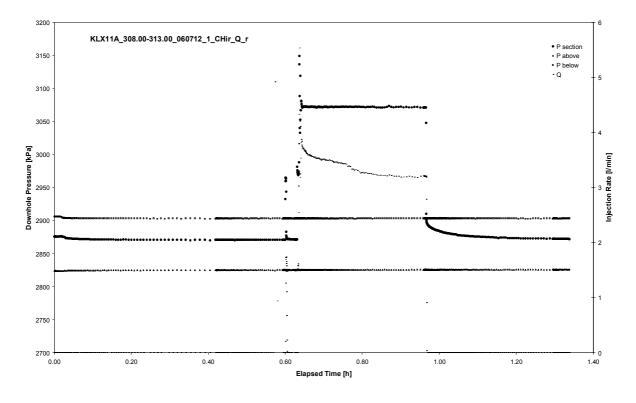




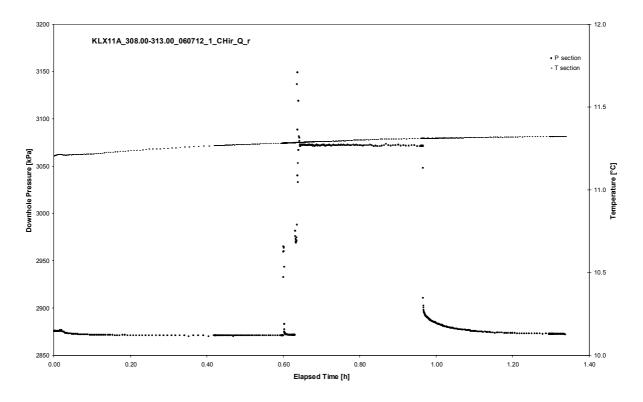


CHI phase; log-log match

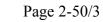


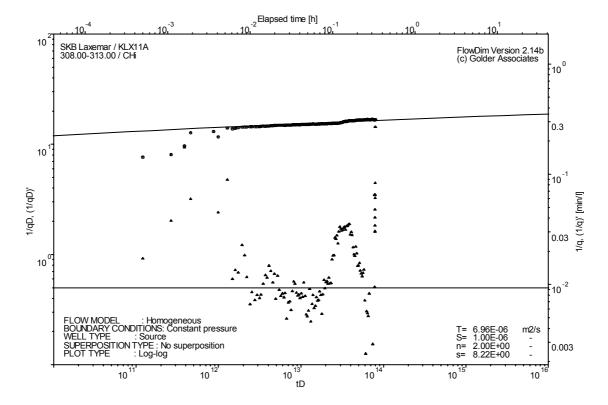
CHIR phase; log-log match




CHIR phase; HORNER match



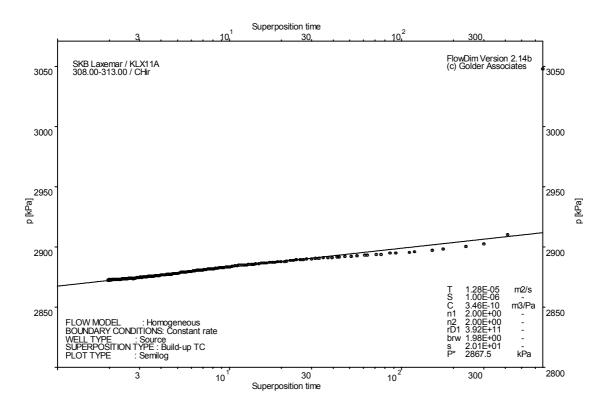


CHI phase; log-log match (n=1.9)


Test 308.00 – 313.00 m

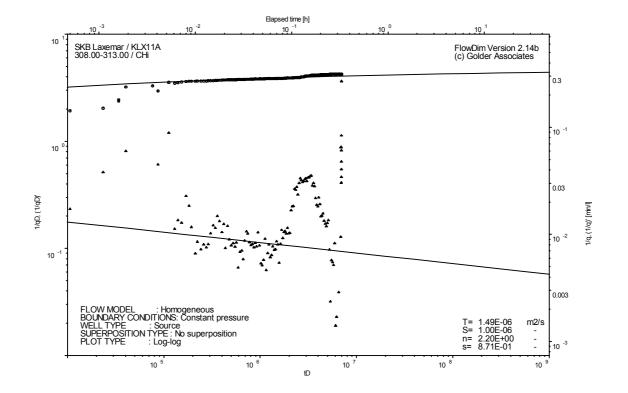


Pressure and flow rate vs. time; cartesian plot



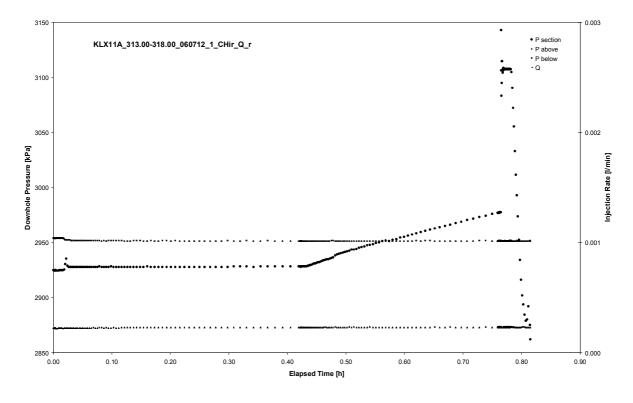




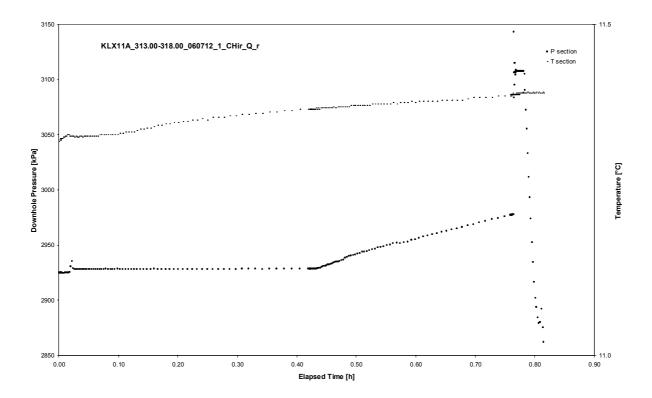


CHI phase; log-log match



CHIR phase; log-log match

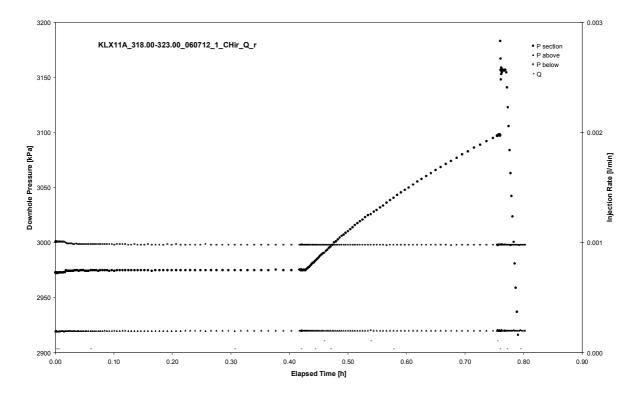



CHIR phase; HORNER match

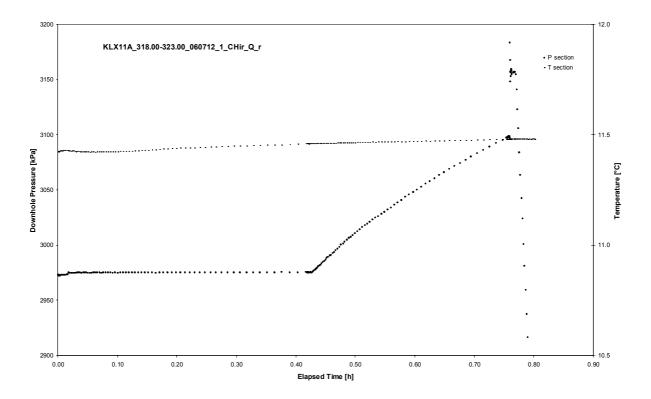



CHI phase; log-log match (n=2.2)

Test 313.00 – 318.00 m



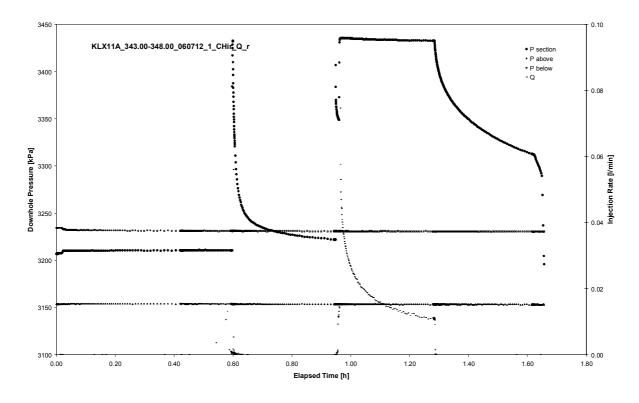

Pressure and flow rate vs. time; cartesian plot



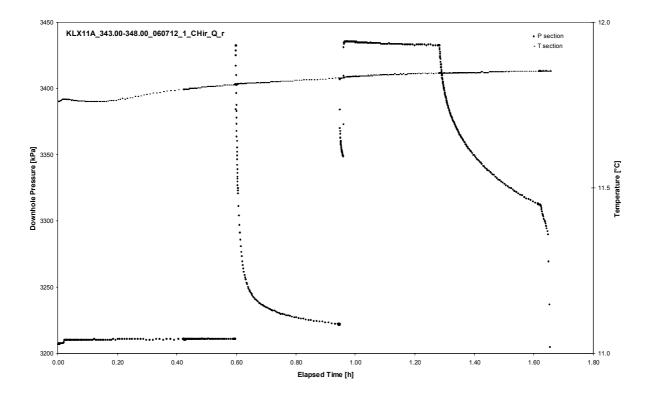

CHIR phase; log-log match

Test 318.00 – 323.00 m



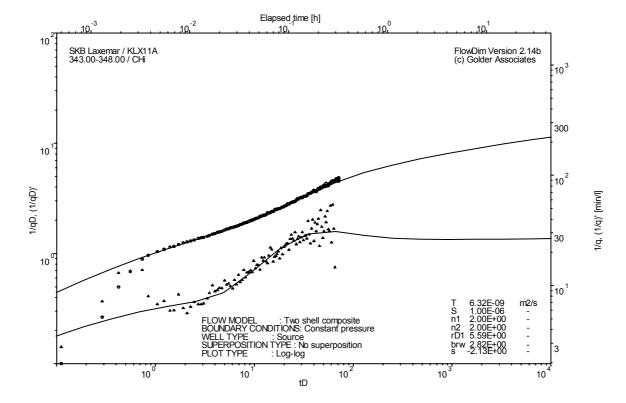

Pressure and flow rate vs. time; cartesian plot



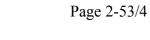

Interval pressure and temperature vs. time; cartesian plot

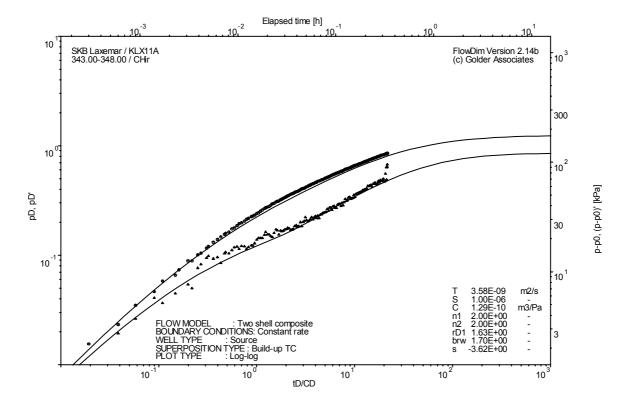
CHIR phase; log-log match

Test 343.00 – 348.00 m

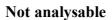



Pressure and flow rate vs. time; cartesian plot

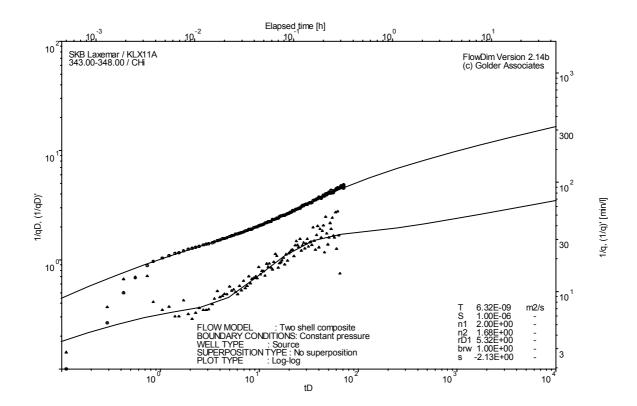




Interval pressure and temperature vs. time; cartesian plot

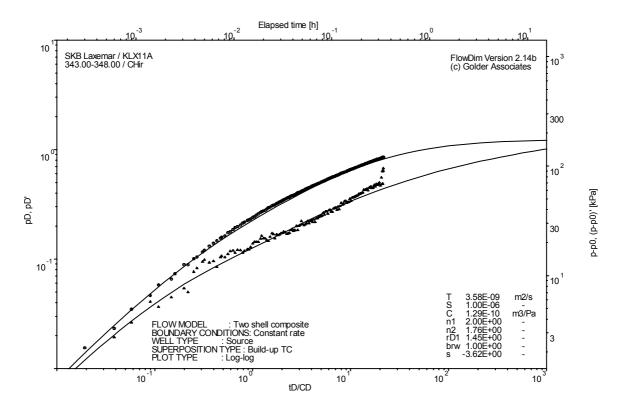





CHI phase; log-log match

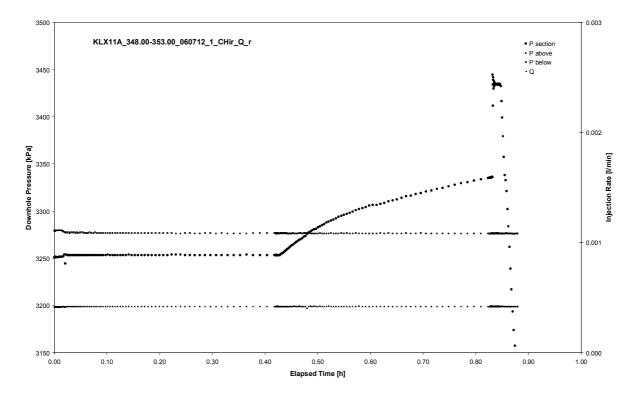




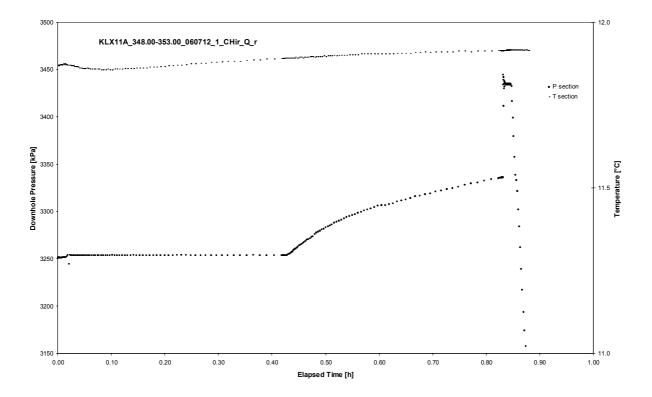


CHIR phase; log-log match



CHIR phase; HORNER match



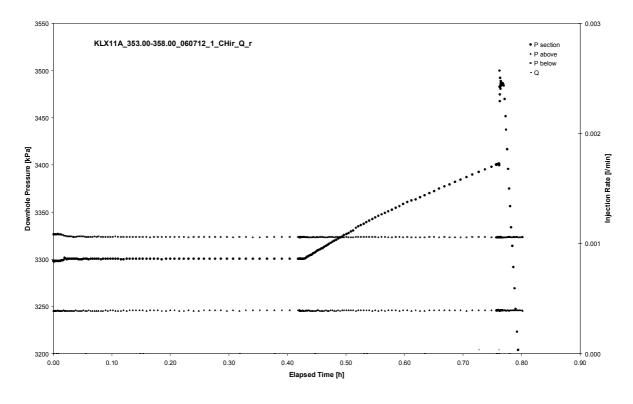

CHI phase; log-log match (n1=2, n2=1.68)



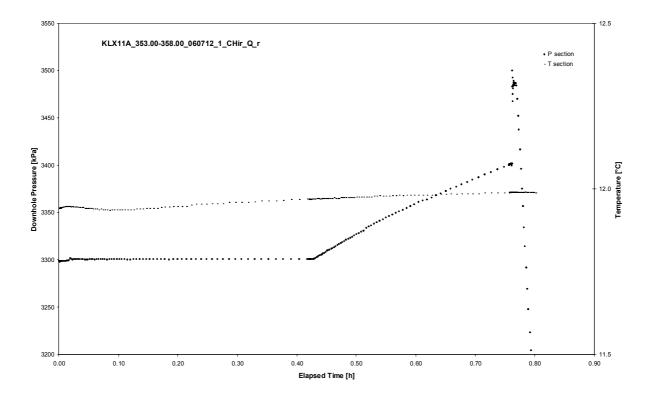

CHIR phase; log-log match (n1=2, n2=1.76)

Test 348.00 – 353.00 m




Pressure and flow rate vs. time; cartesian plot

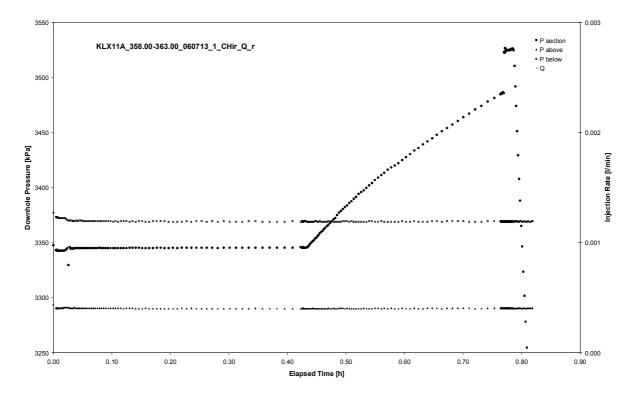



Interval pressure and temperature vs. time; cartesian plot

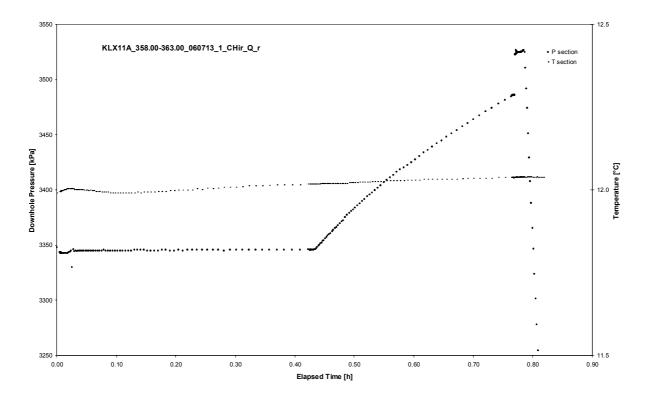
CHIR phase; log-log match

Test 353.00 – 358.00 m




Pressure and flow rate vs. time; cartesian plot

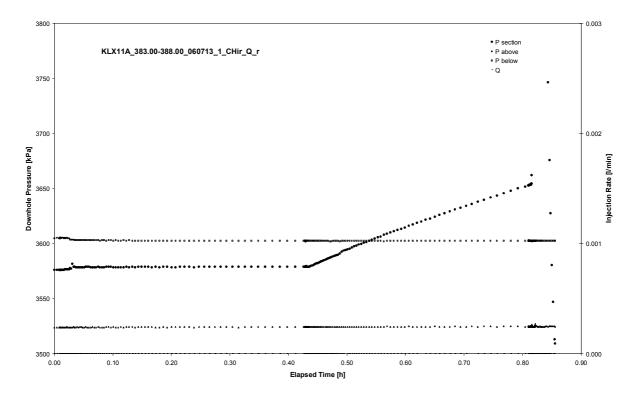



Interval pressure and temperature vs. time; cartesian plot

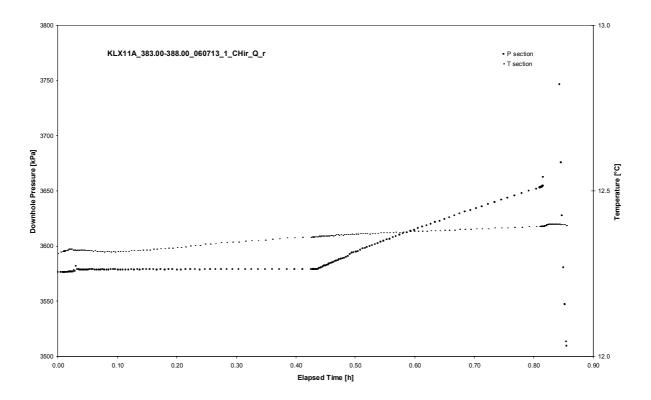
CHIR phase; log-log match

Test 358.00 – 363.00 m




Pressure and flow rate vs. time; cartesian plot

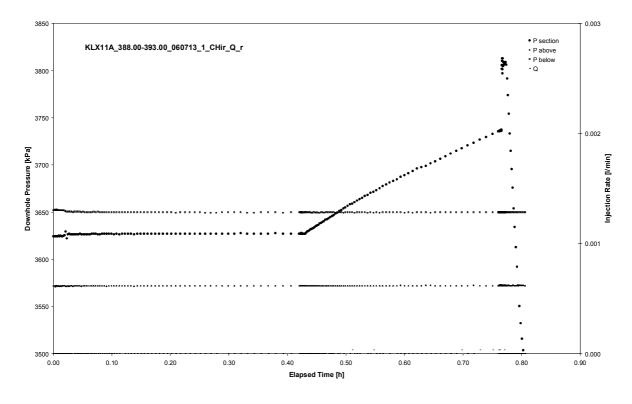



Interval pressure and temperature vs. time; cartesian plot

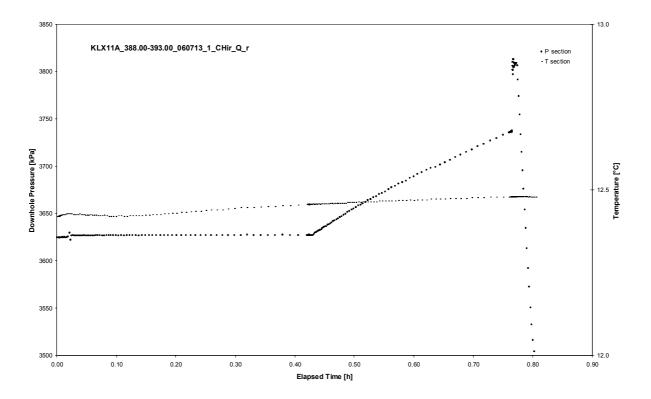
CHIR phase; log-log match

Test 383.00 – 388.00 m




Pressure and flow rate vs. time; cartesian plot

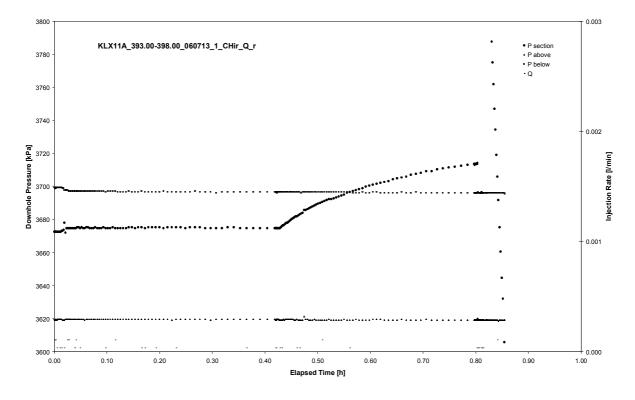



Interval pressure and temperature vs. time; cartesian plot

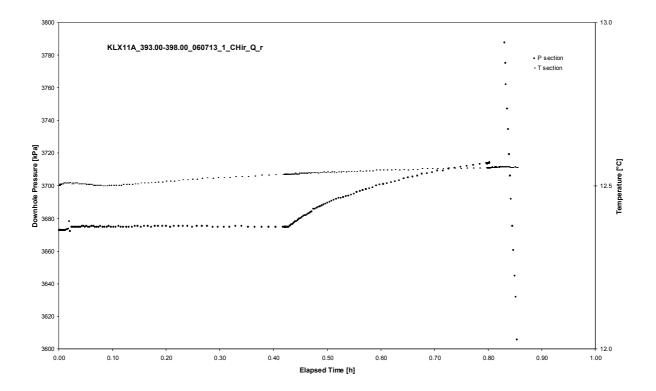
CHIR phase; log-log match

Test 388.00 – 393.00 m




Pressure and flow rate vs. time; cartesian plot

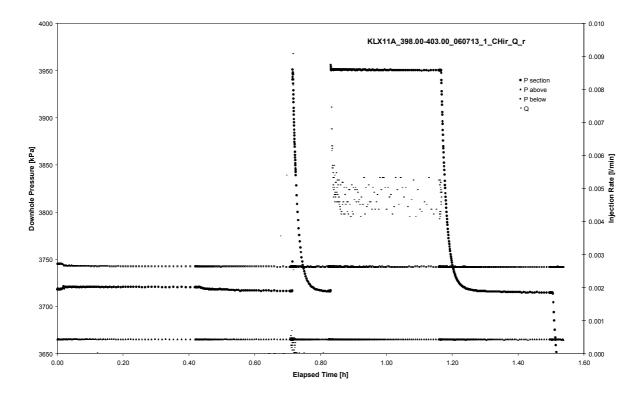



Interval pressure and temperature vs. time; cartesian plot

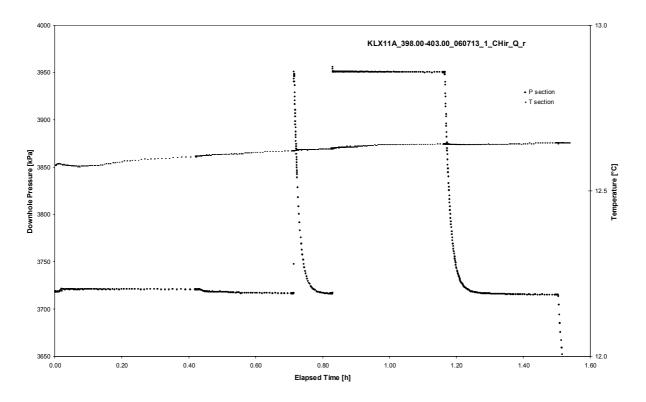
CHIR phase; log-log match

Test 393.00 – 398.00 m

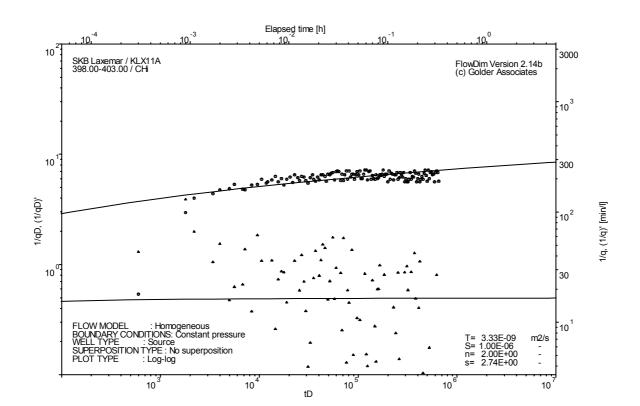



Pressure and flow rate vs. time; cartesian plot

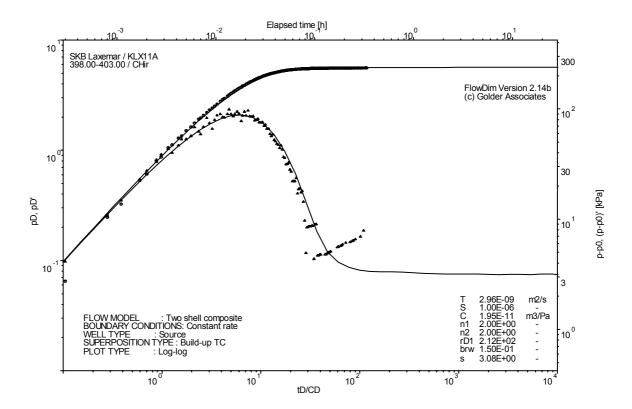



Interval pressure and temperature vs. time; cartesian plot

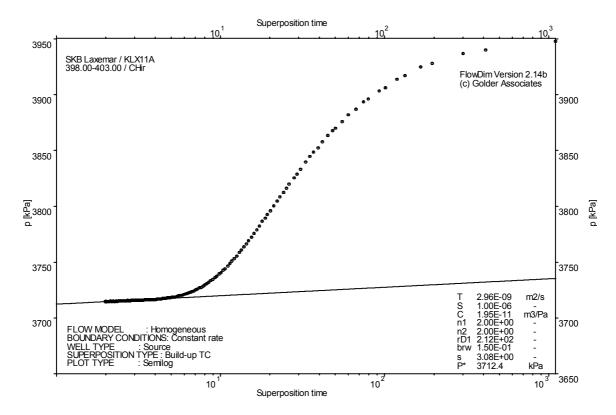
CHIR phase; log-log match


Test 398.00 – 403.00 m



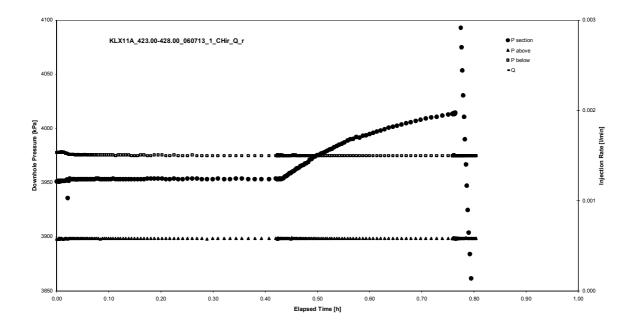

Pressure and flow rate vs. time; cartesian plot



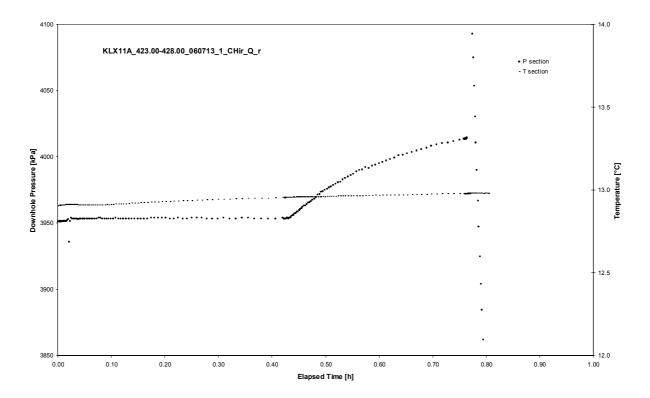

Interval pressure and temperature vs. time; cartesian plot



CHI phase; log-log match



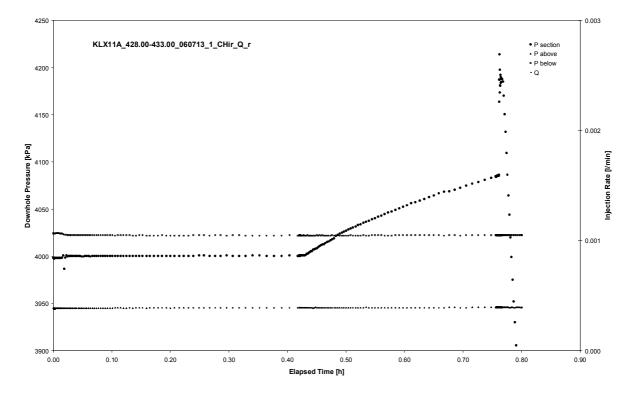

CHIR phase; log-log match



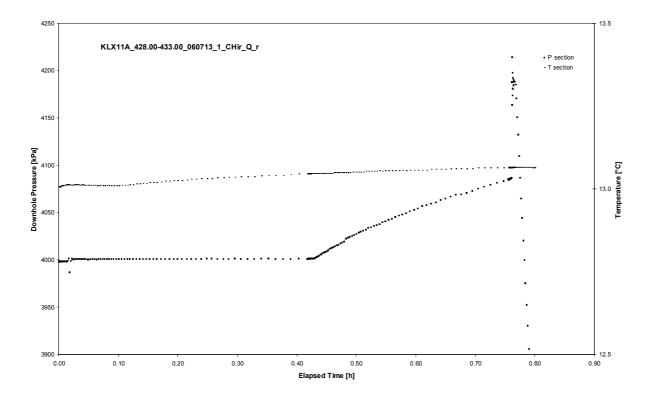

CHIR phase; HORNER match

Test 423.00 – 428.00 m




Pressure and flow rate vs. time; cartesian plot

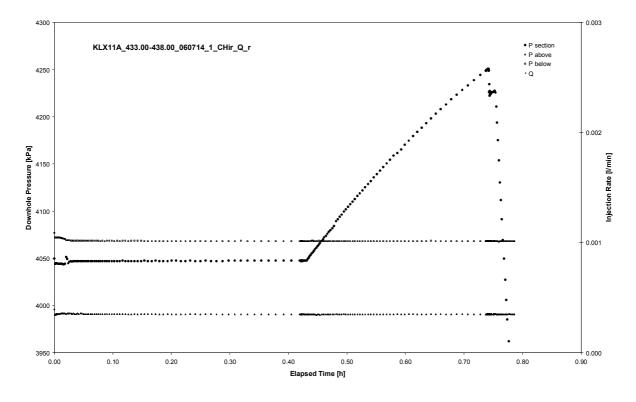



Interval pressure and temperature vs. time; cartesian plot

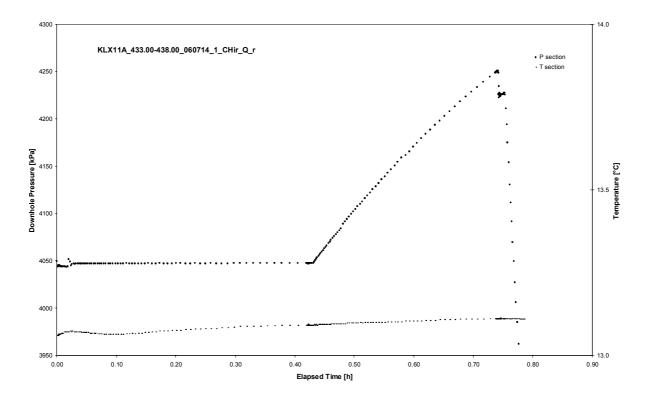
CHIR phase; log-log match

Test 428.00 – 433.00 m




Pressure and flow rate vs. time; cartesian plot

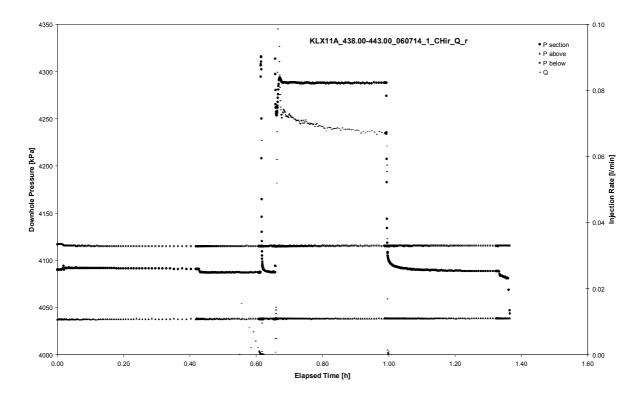



Interval pressure and temperature vs. time; cartesian plot

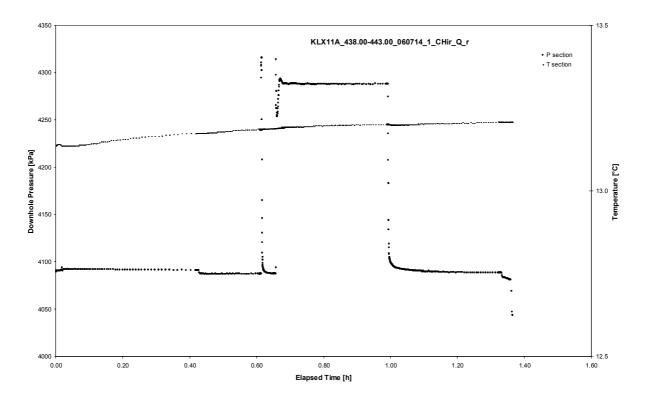
CHIR phase; log-log match

Test 433.00 – 438.00 m

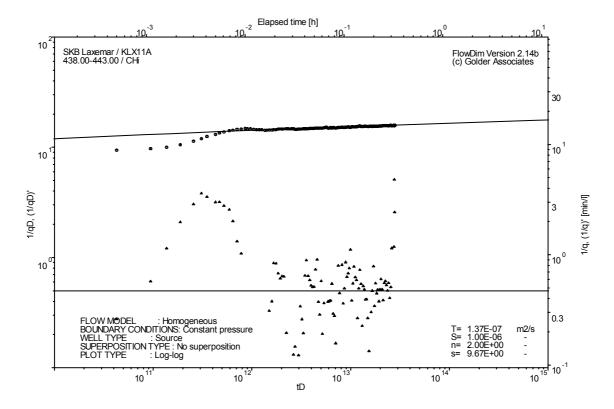



Pressure and flow rate vs. time; cartesian plot

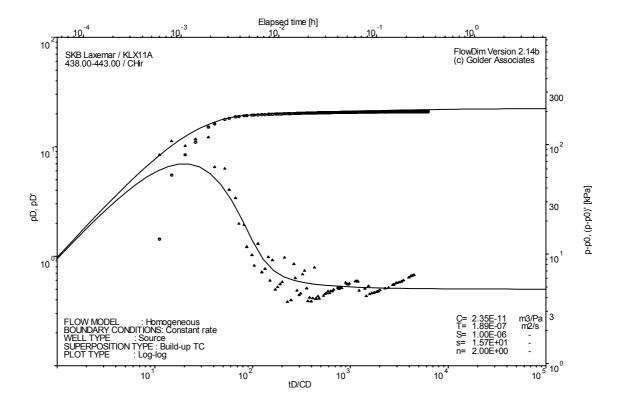



Interval pressure and temperature vs. time; cartesian plot

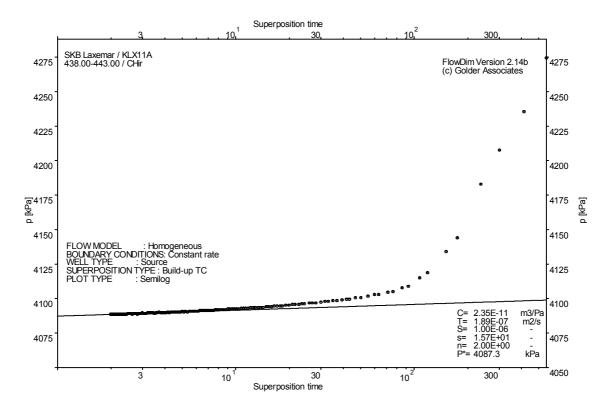
CHIR phase; log-log match


Test 438.00 – 443.00 m

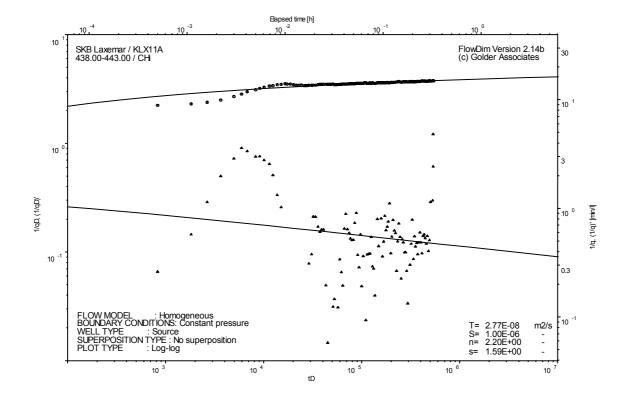



Pressure and flow rate vs. time; cartesian plot



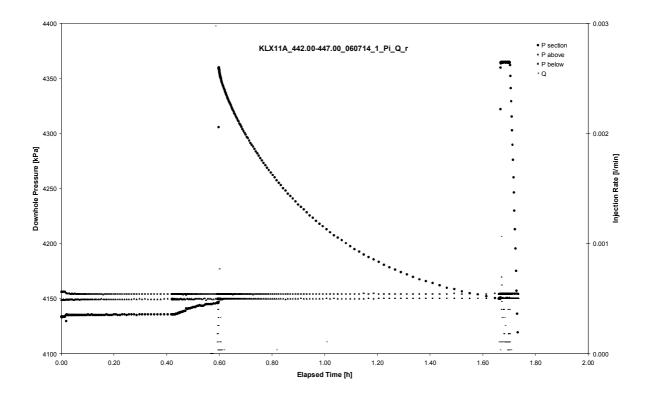

Interval pressure and temperature vs. time; cartesian plot



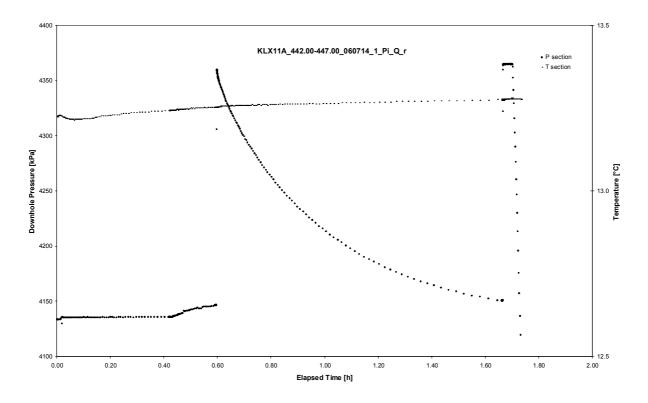

CHI phase; log-log match



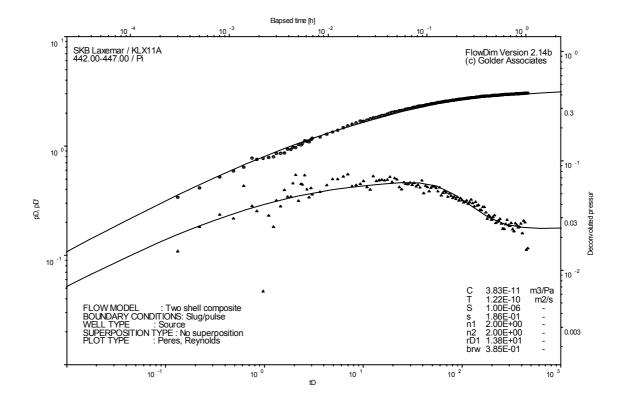
CHIR phase; log-log match



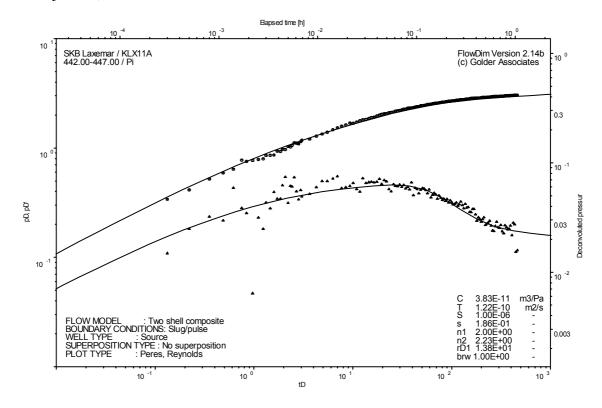

CHIR phase; HORNER match




CHI phase; log-log match (n=2.2)

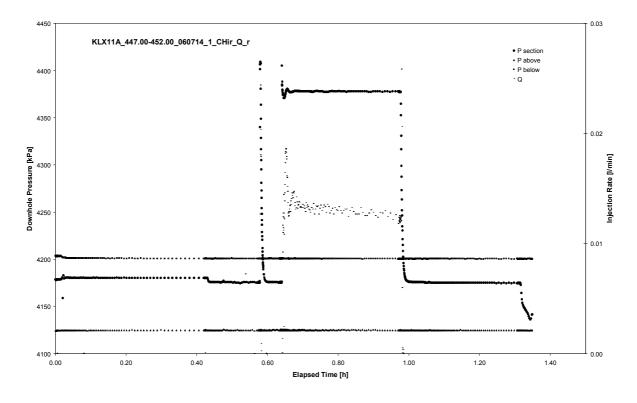

Test 442.00 – 447.00 m



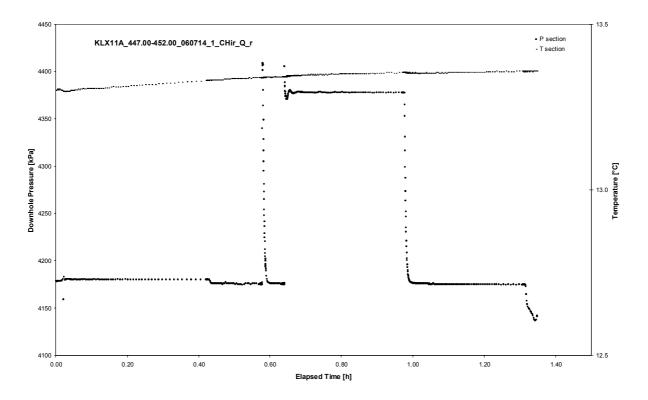

Pressure and flow rate vs. time; cartesian plot



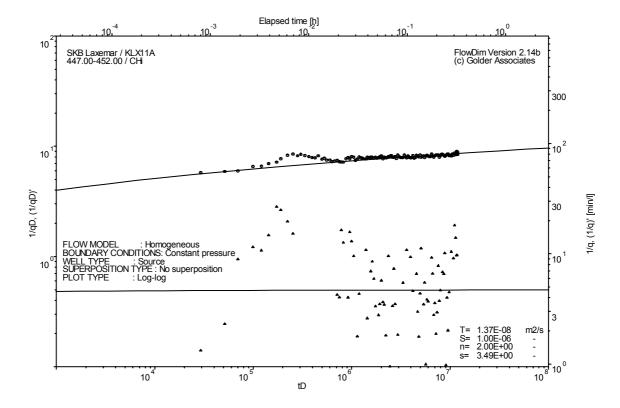
Interval pressure and temperature vs. time; cartesian plot



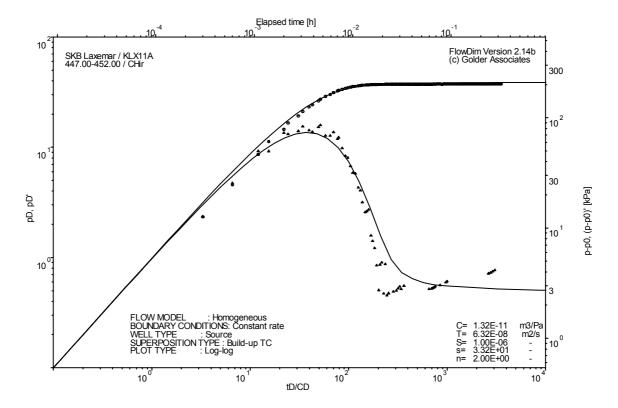

Pulse injection; deconvolution match



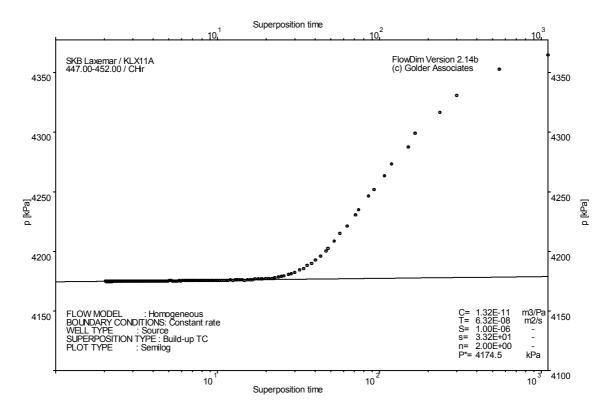

Pulse injection; deconvolution match (n1=2, n2=2.23)


Test 447.00 – 452.00 m



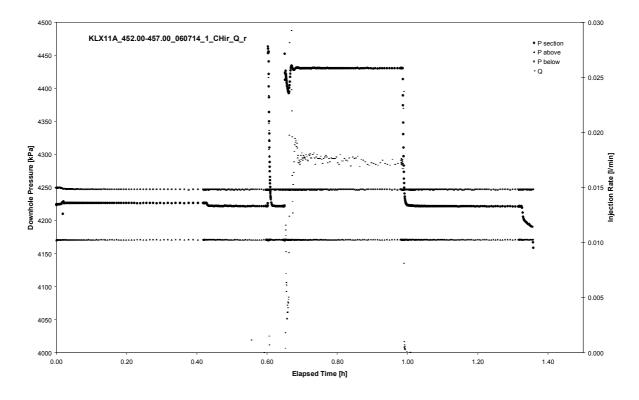

Pressure and flow rate vs. time; cartesian plot



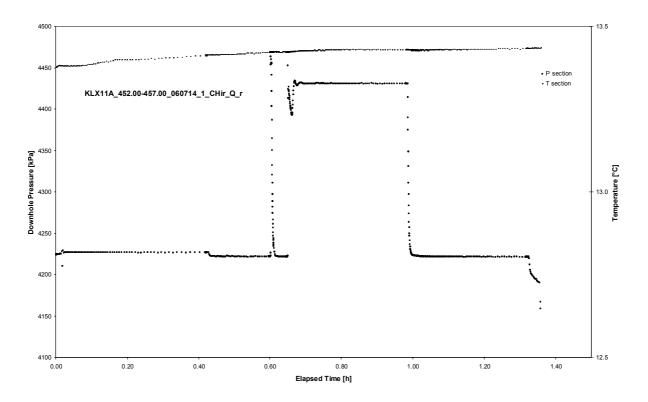

Interval pressure and temperature vs. time; cartesian plot



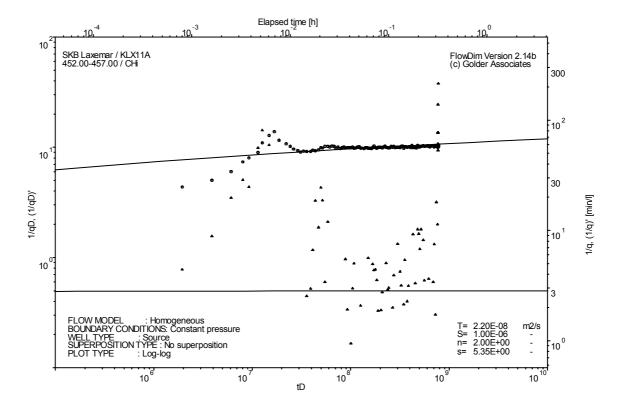
CHI phase; log-log match



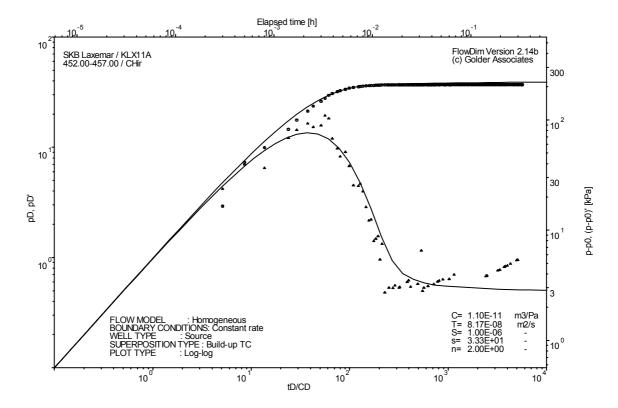

CHIR phase; log-log match



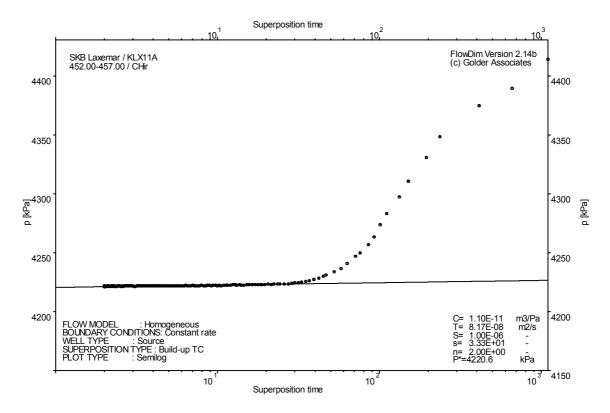

CHIR phase; HORNER match


Test 452.00 – 457.00 m



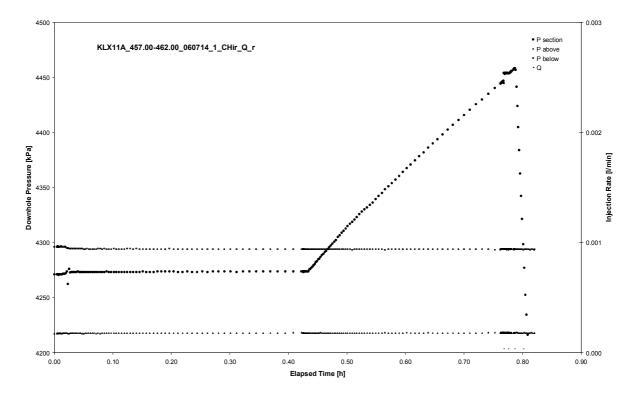

Pressure and flow rate vs. time; cartesian plot



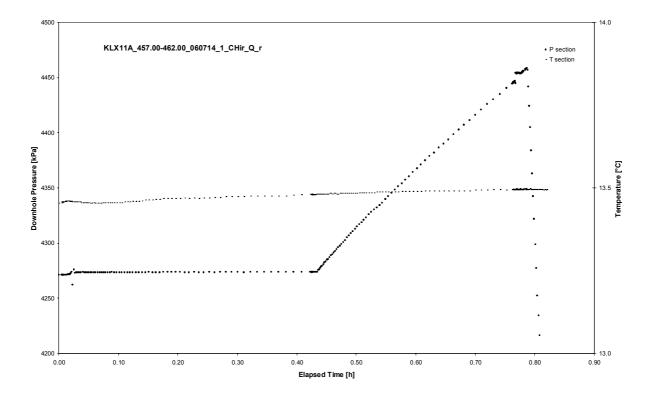

Interval pressure and temperature vs. time; cartesian plot



CHI phase; log-log match



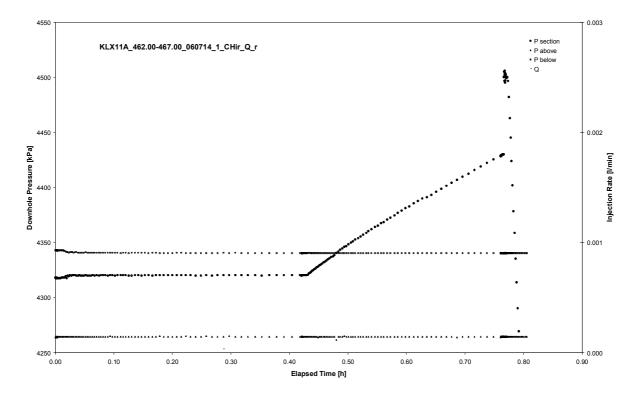

CHIR phase; log-log match



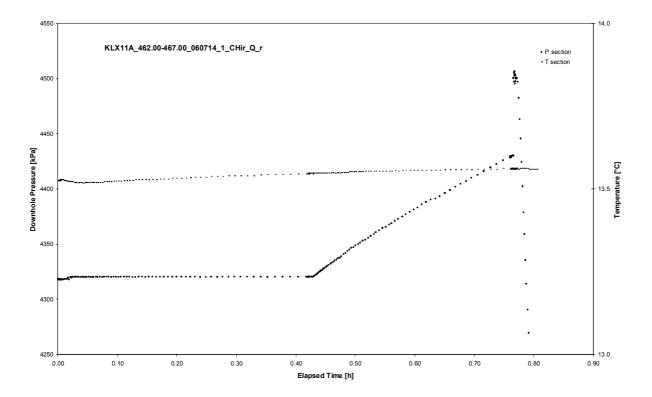

CHIR phase; HORNER match

Test 457.00 – 462.00 m




Pressure and flow rate vs. time; cartesian plot

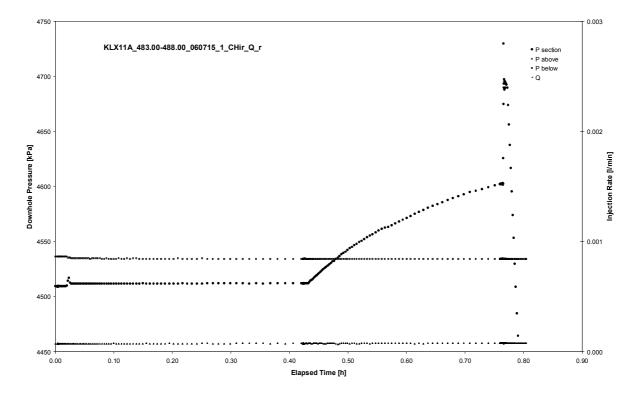



Interval pressure and temperature vs. time; cartesian plot

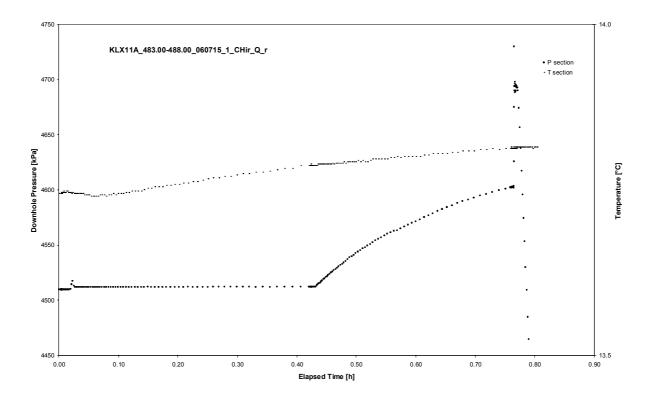
CHIR phase; log-log match

Test 462.00 – 467.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

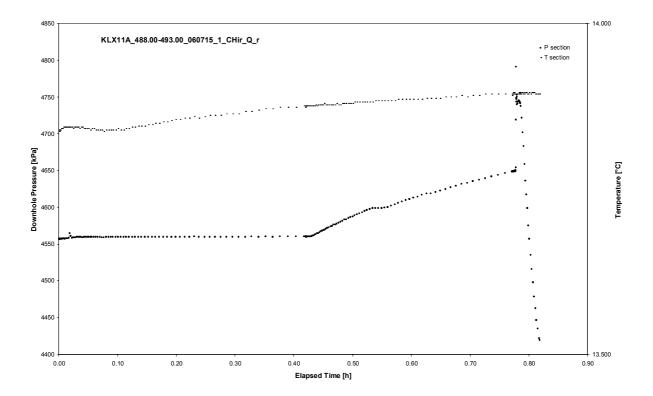
CHIR phase; log-log match

Test 483.00 – 488.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Test 488.00 – 493.00 m

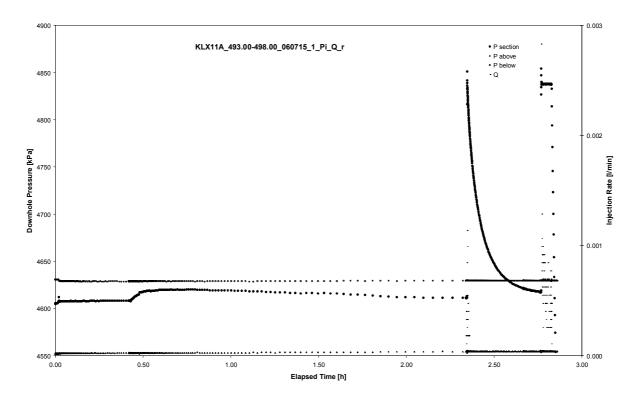


Pressure and flow rate vs. time; cartesian plot

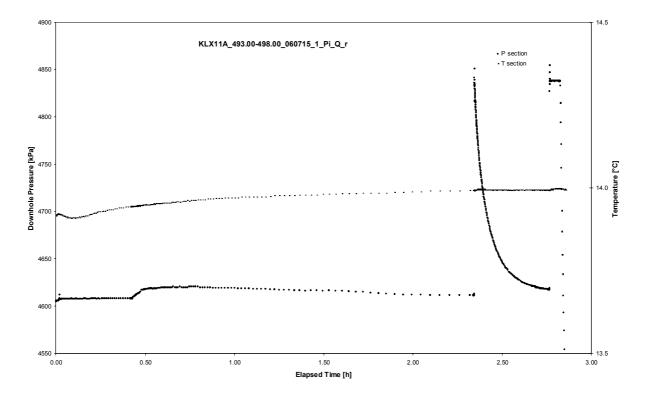


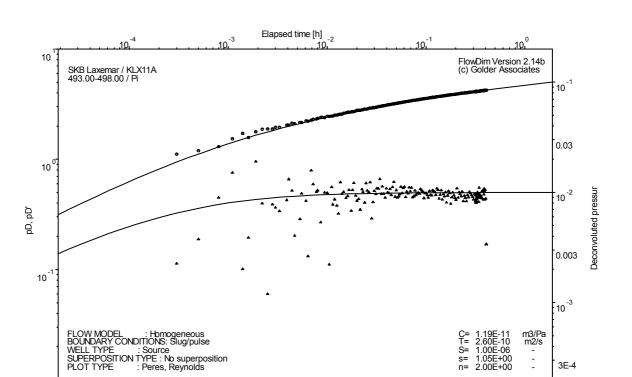
Interval pressure and temperature vs. time; cartesian plot

Not analysed


CHI phase; log-log match

Not analysed


CHIR phase; log-log match


Not analysed

Test 493.00 – 498.00 m



Pressure and flow rate vs. time; cartesian plot

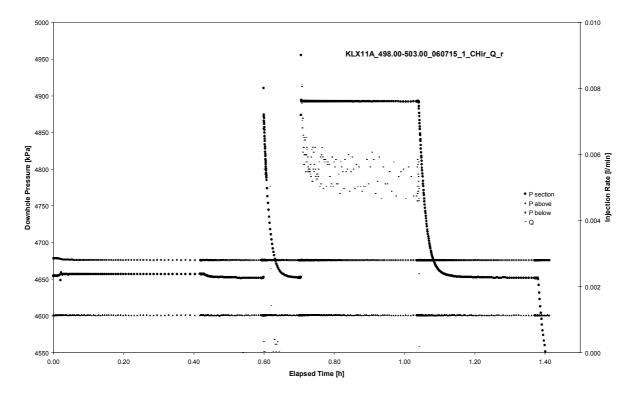




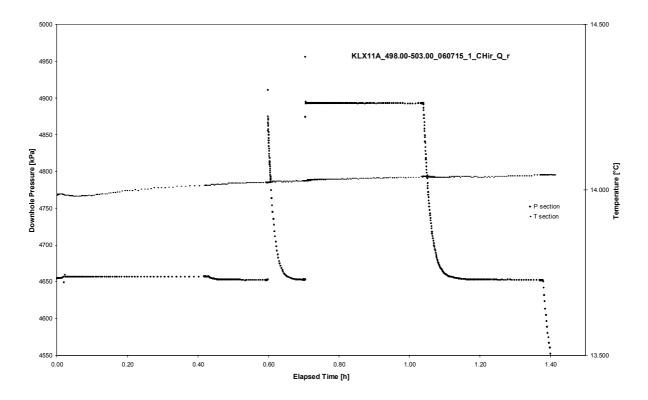
10²

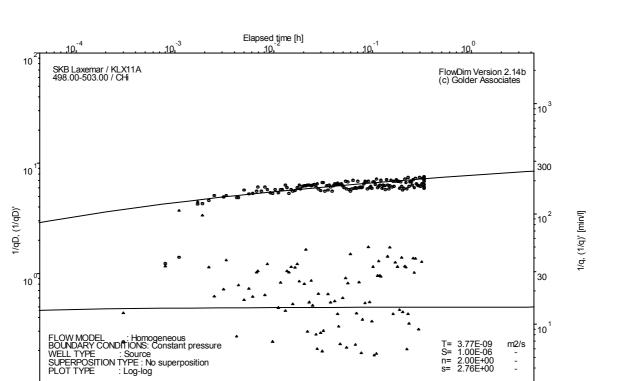
tD

10³


10⁴

Pulse injection; deconvolution match


10


10¹

Test 498.00 – 503.00 m



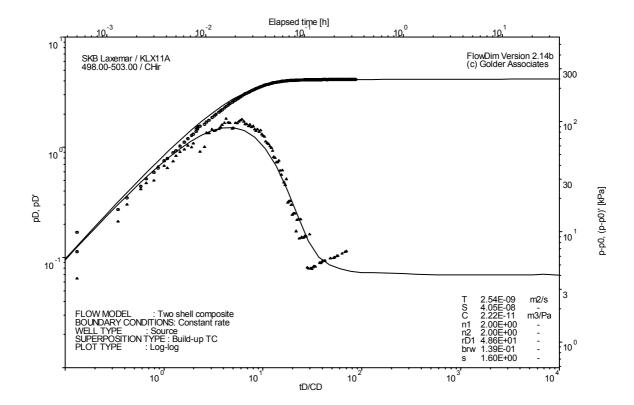
Pressure and flow rate vs. time; cartesian plot



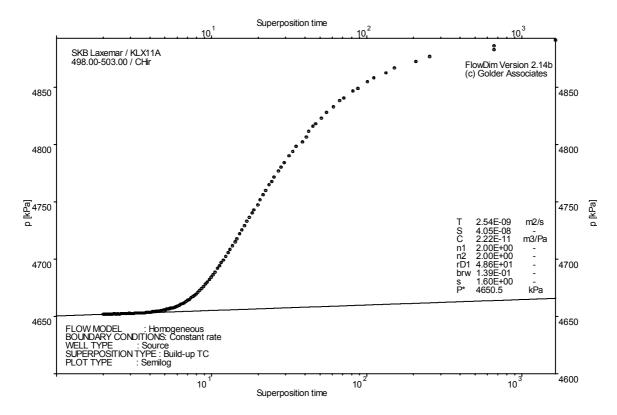


10⁵

tD

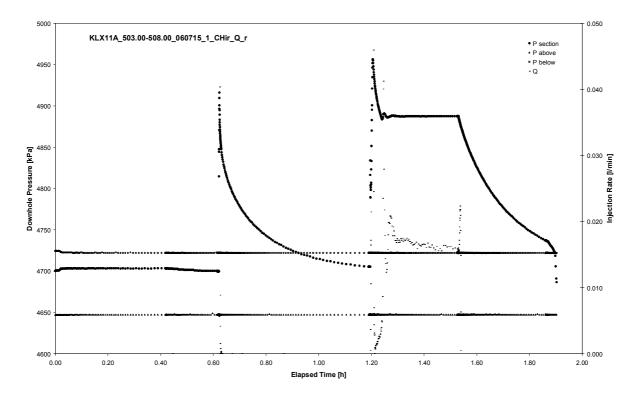

10⁶

CHI phase; log-log match

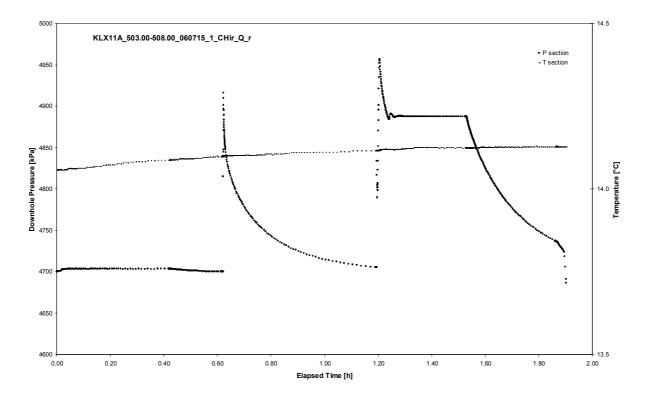

10³

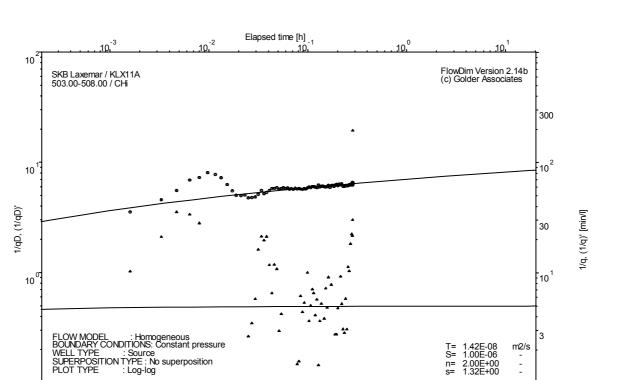
104

10⁷3




CHIR phase; log-log match





CHIR phase; HORNER match

Test 503.00 – 508.00 m



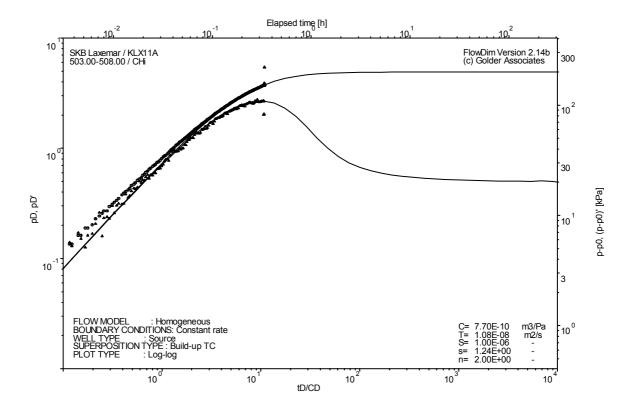
Pressure and flow rate vs. time; cartesian plot



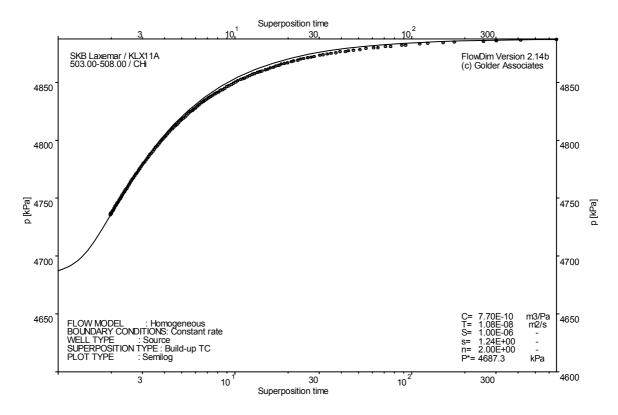


10⁵

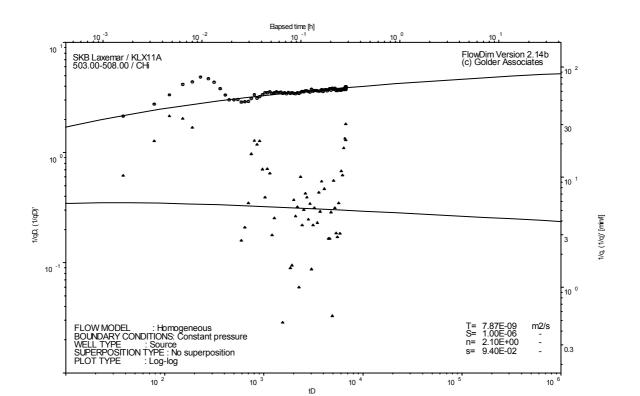
tD


10⁶

10

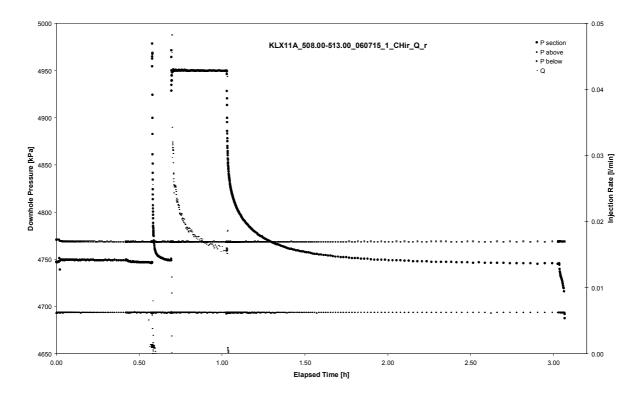

CHI phase; log-log match

10³

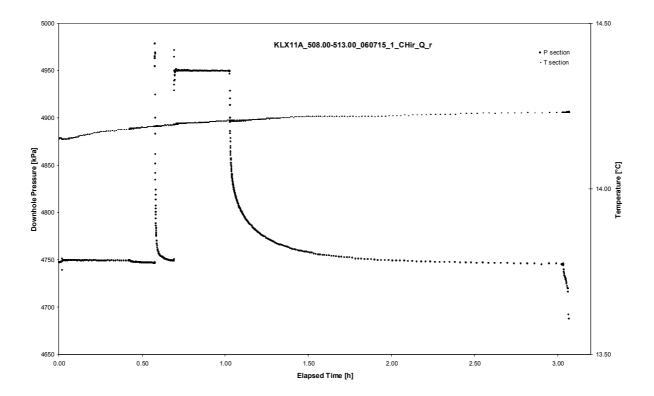

104

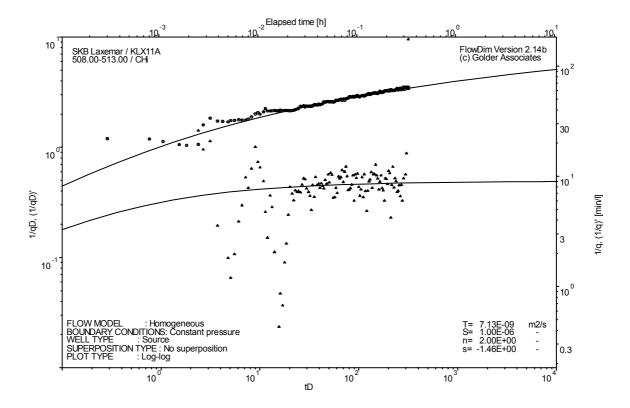


CHIR phase; log-log match

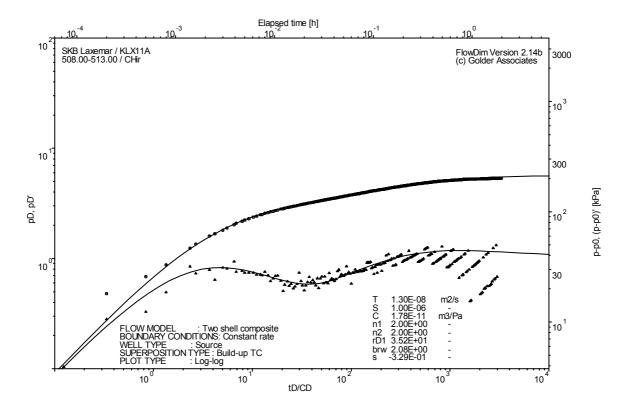



CHIR phase; HORNER match

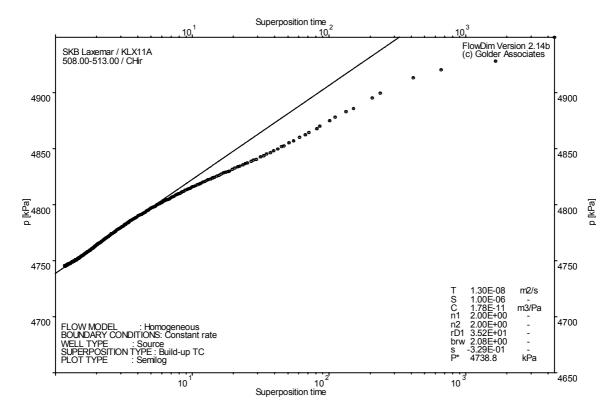




CHI phase; log-log match (n=2.1)

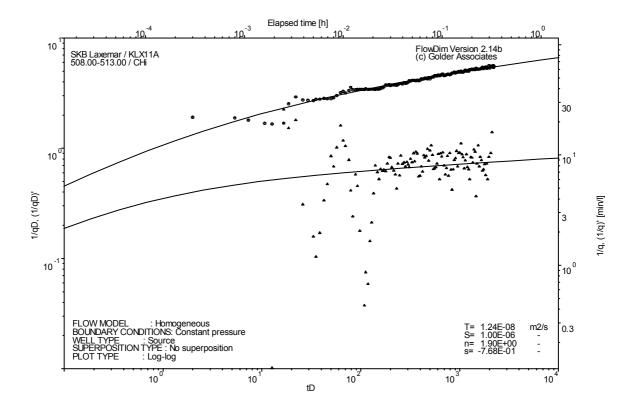
Test 508.00 – 513.00 m



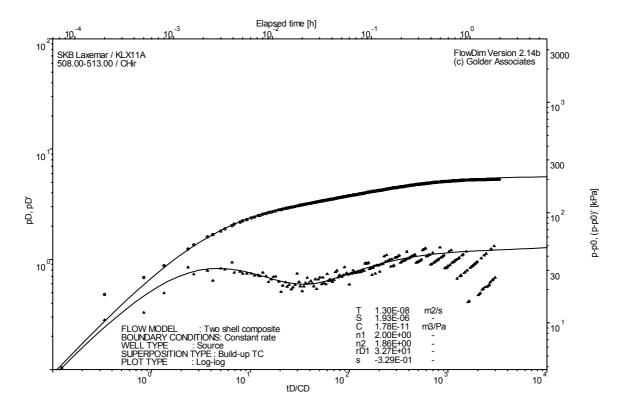

Pressure and flow rate vs. time; cartesian plot





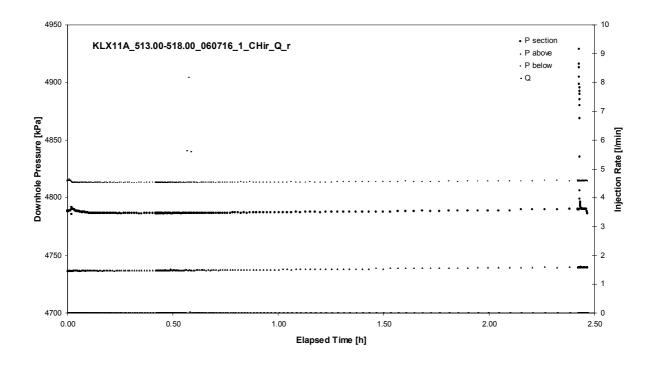


CHI phase; log-log match



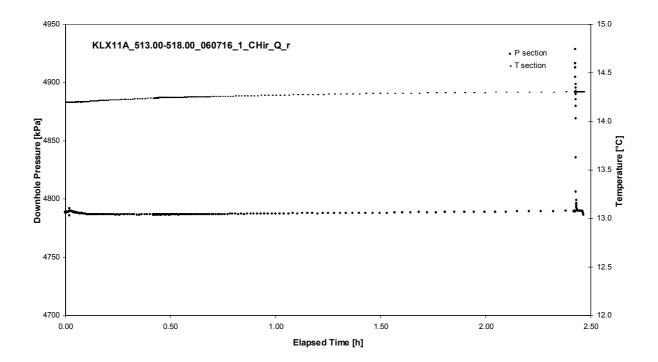

CHIR phase; log-log match



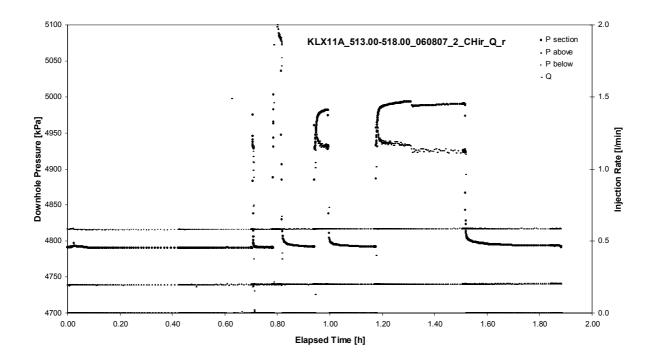
CHIR phase; HORNER match



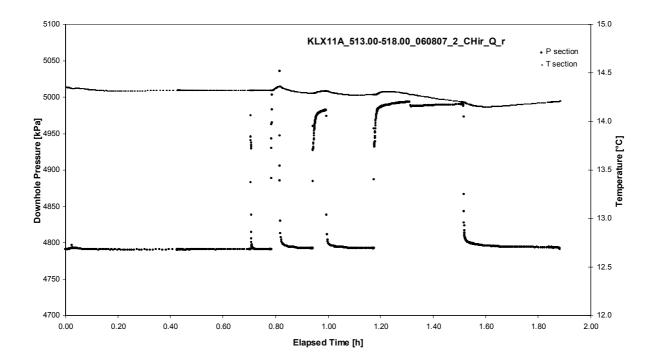

CHI phase; log-log match (n=1.9)



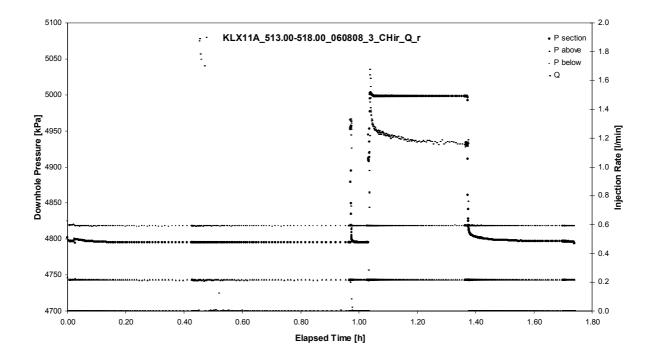

CHIR phase; log-log match (n1=2, n2=1.86)


Test 513.00 – 518.00 m

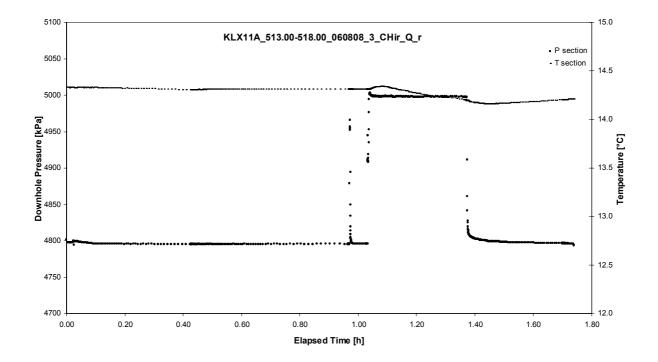


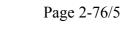

Pressure and flow rate vs. time; cartesian plot (test repeated)

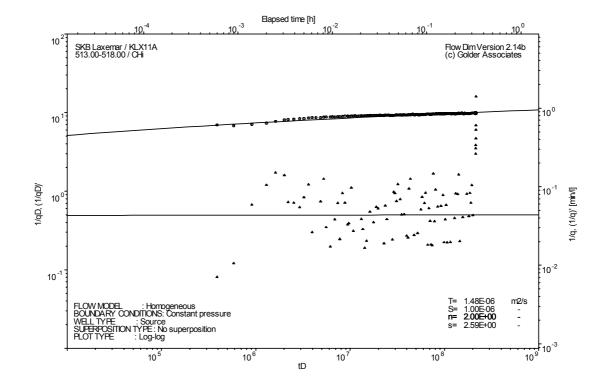



Interval pressure and temperature vs. time; cartesian plot (test repeated)

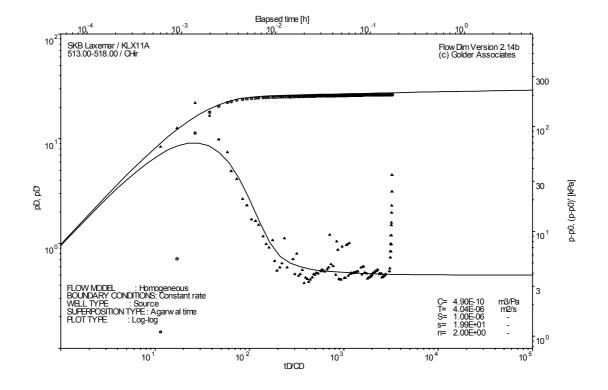



Pressure and flow rate vs. time; cartesian plot (test repeated)

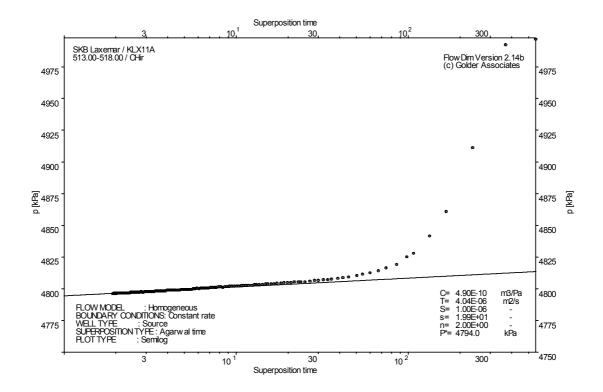




Interval pressure and temperature vs. time; cartesian plot (test repeated)



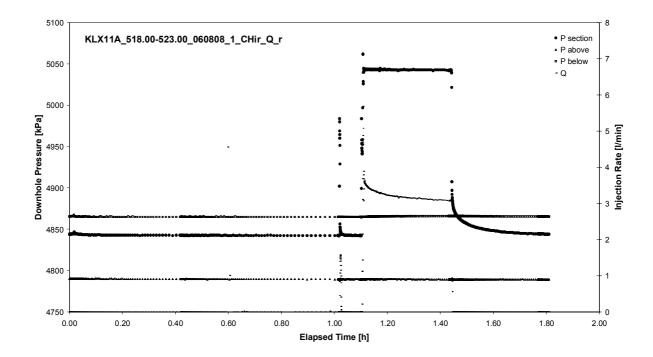

Pressure and flow rate vs. time; cartesian plot (analysed)



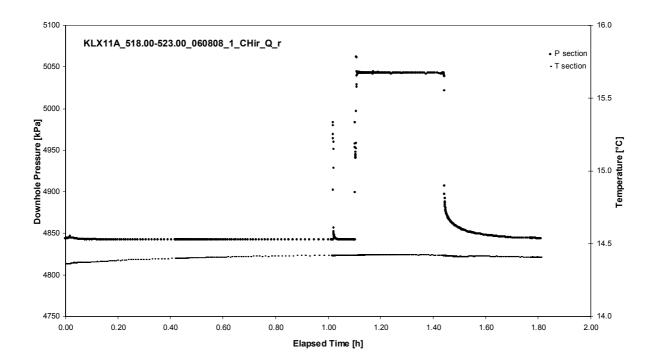


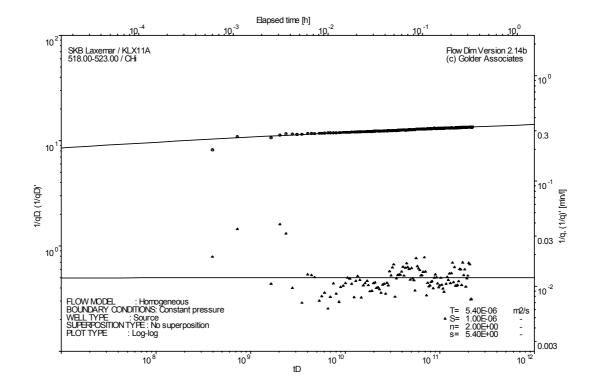



CHI phase; log-log match

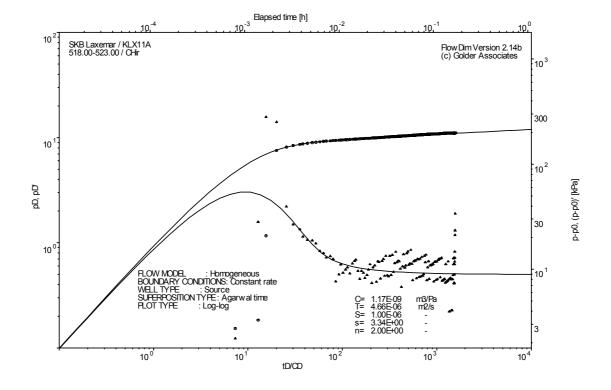



CHIR phase; log-log match

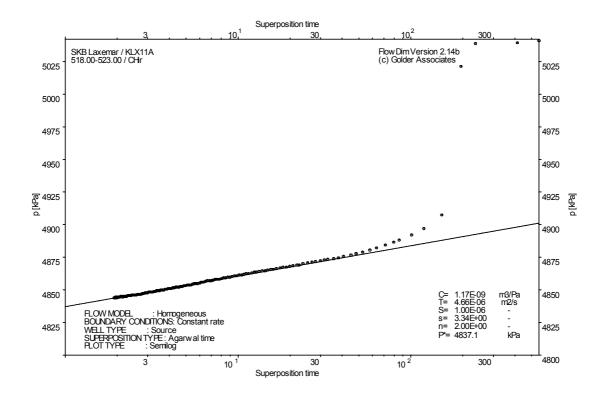




CHIR phase; HORNER match

Test 518.00 – 523.00 m

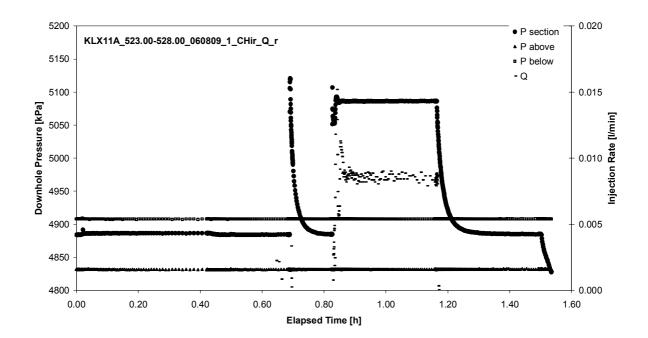



Pressure and flow rate vs. time; cartesian plot

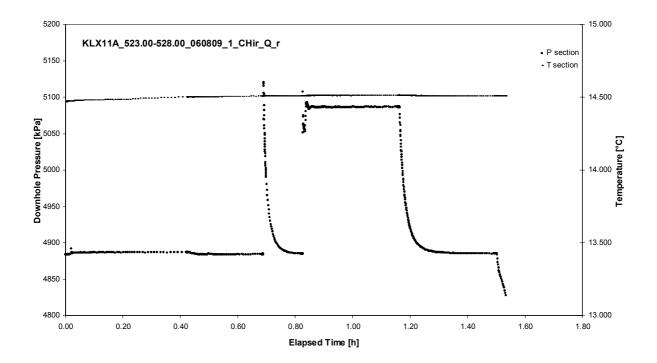


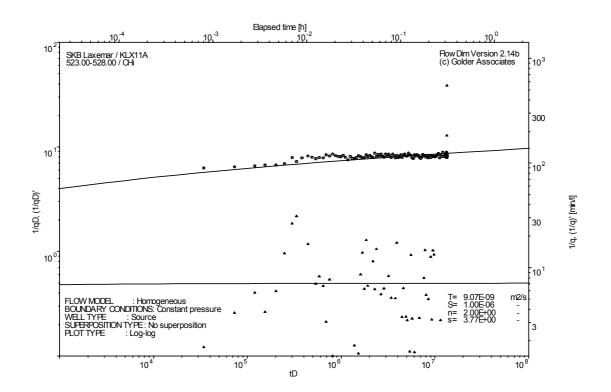



CHI phase; log-log match

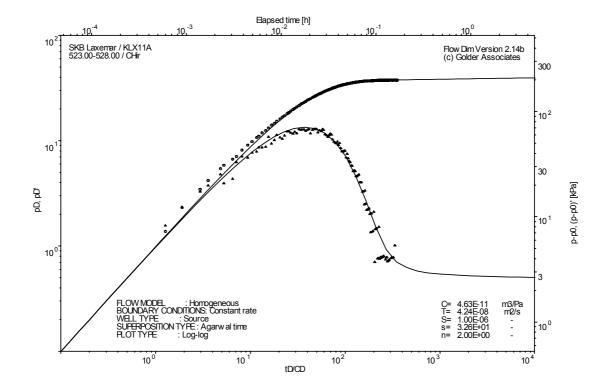



CHIR phase; log-log match

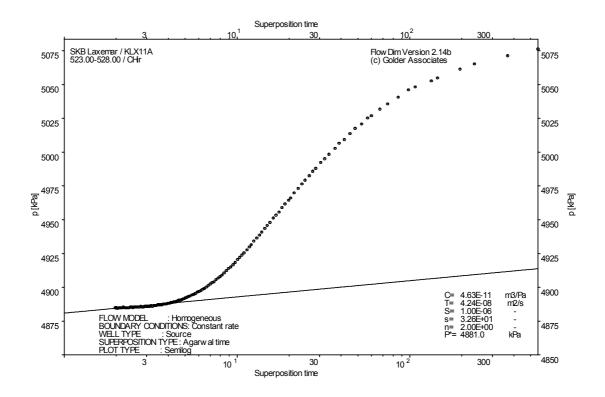




CHIR phase; HORNER match

Test 523.00 – 528.00 m

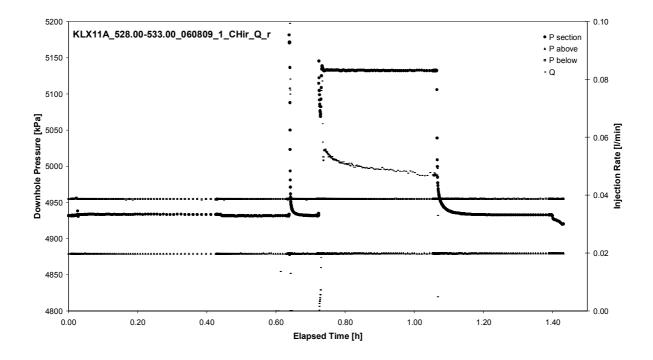



Pressure and flow rate vs. time; cartesian plot

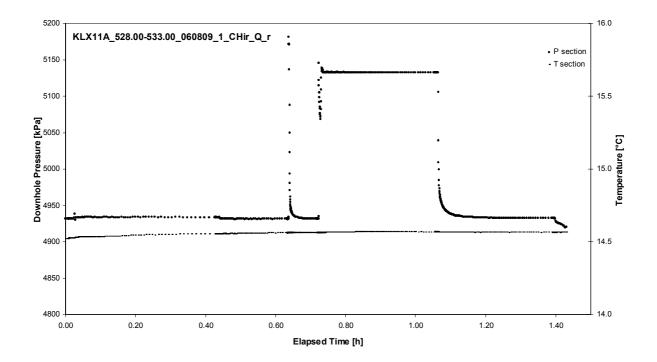


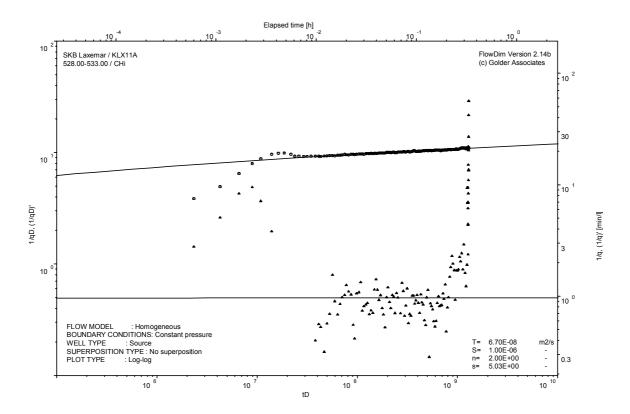



CHI phase; log-log match

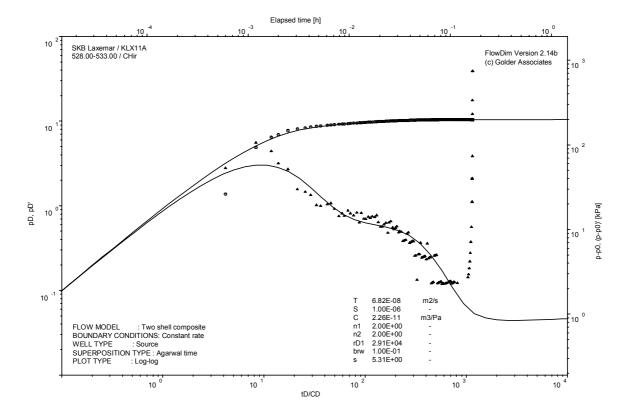



CHIR phase; log-log match

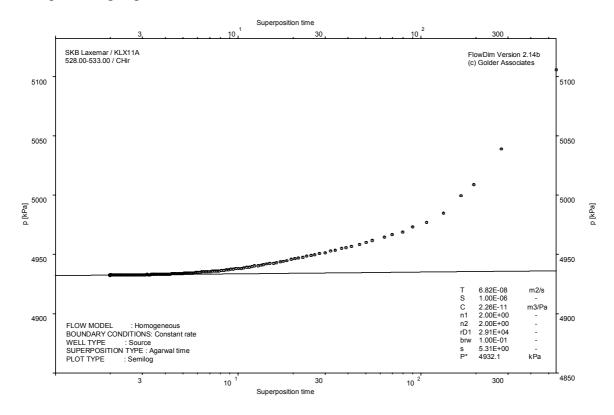




CHIR phase; HORNER match

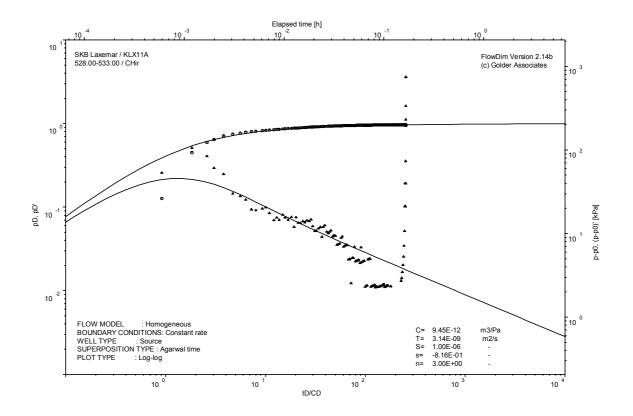
Test 528.00 – 533.00 m




Pressure and flow rate vs. time; cartesian plot

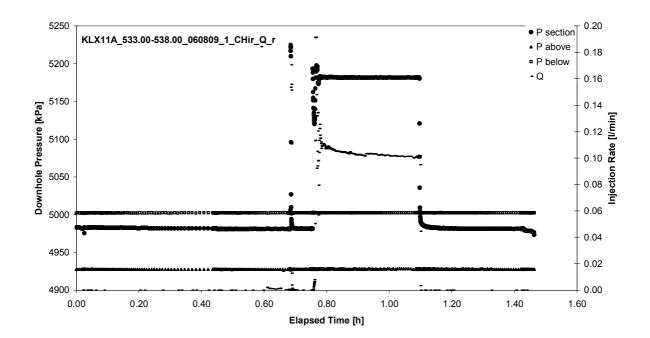




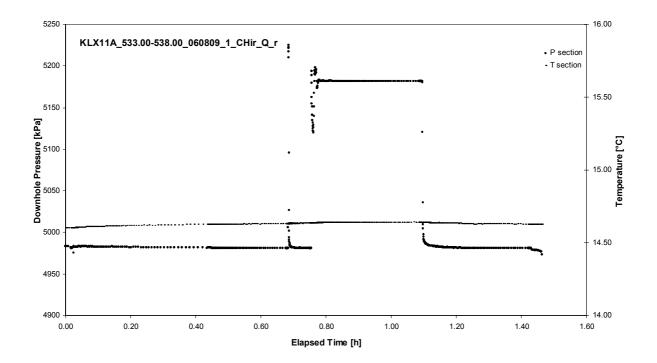


CHI phase; log-log match

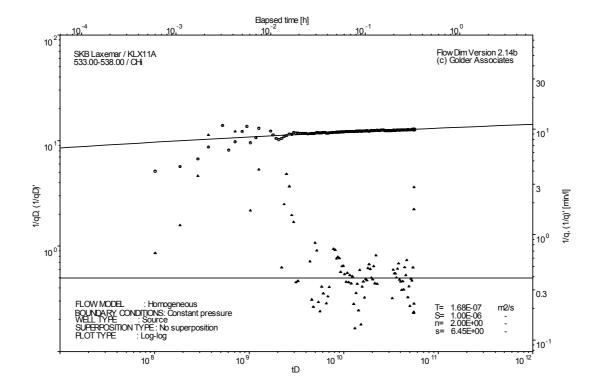


CHIR phase; log-log match

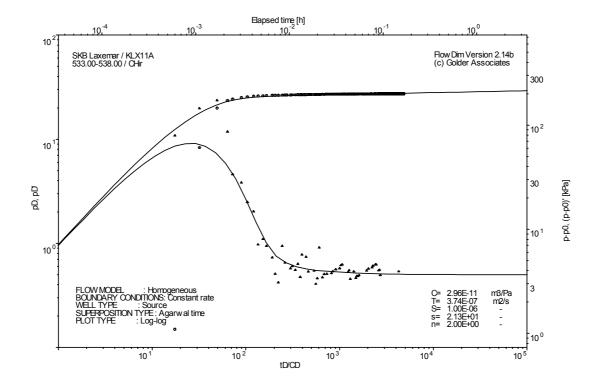



CHIR phase; HORNER match

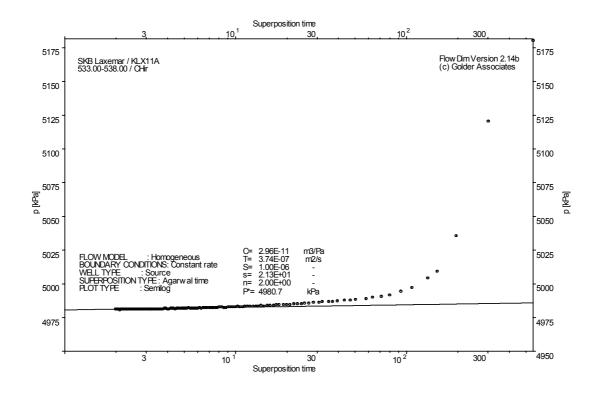




CHIR phase; log-log match (n=3)

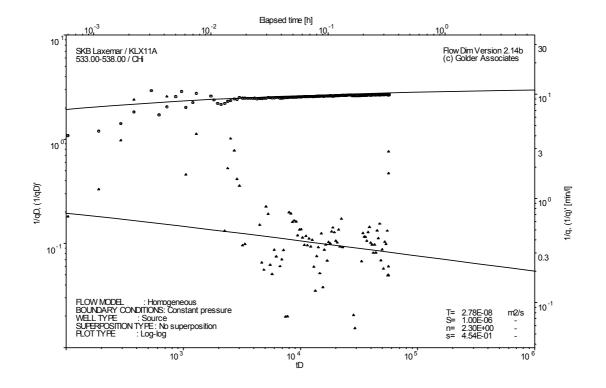
Test 533.00 – 538.00 m




Pressure and flow rate vs. time; cartesian plot

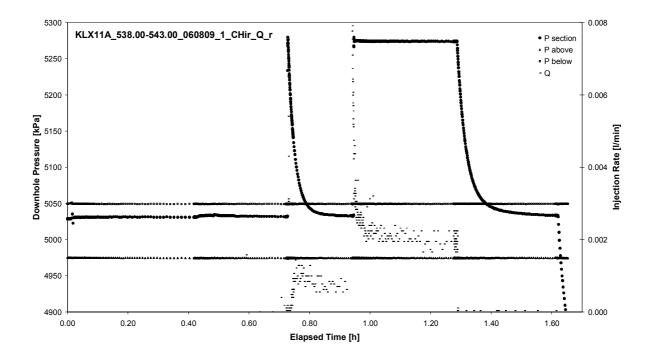




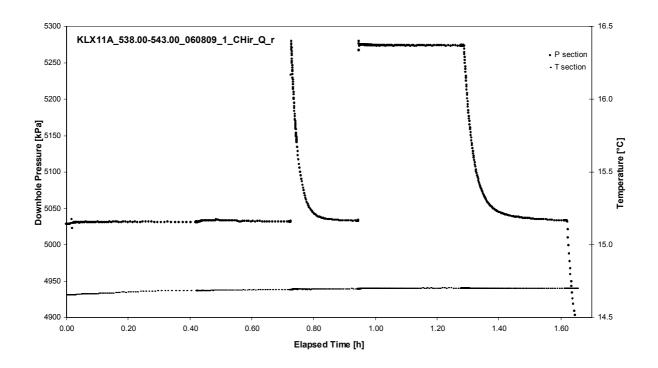


CHI phase; log-log match

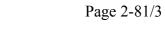


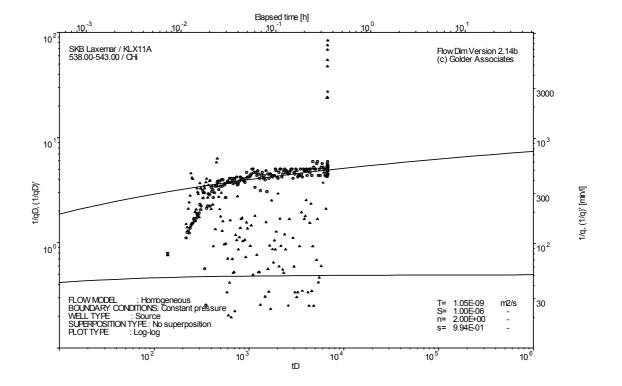
CHIR phase; log-log match



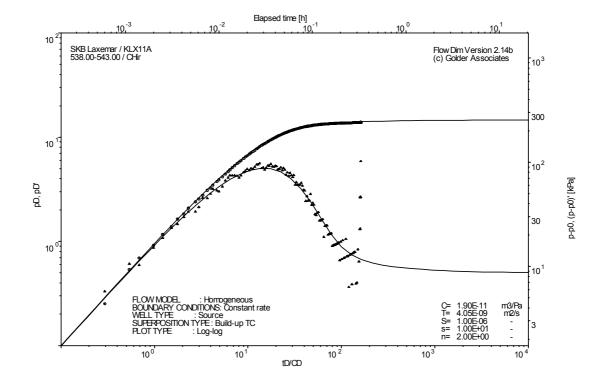

CHIR phase; HORNER match



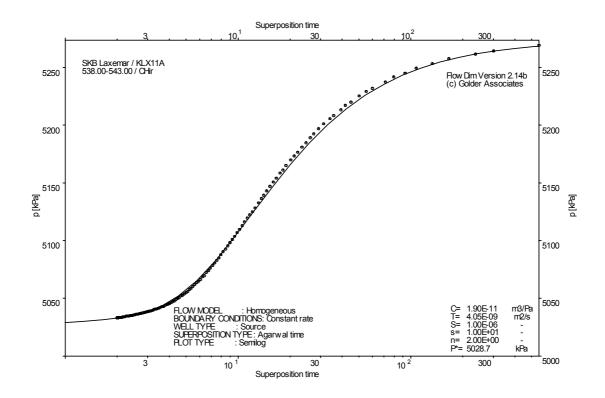


CHI phase; log-log match (n=2.3)


Test 538.00 – 543.00 m



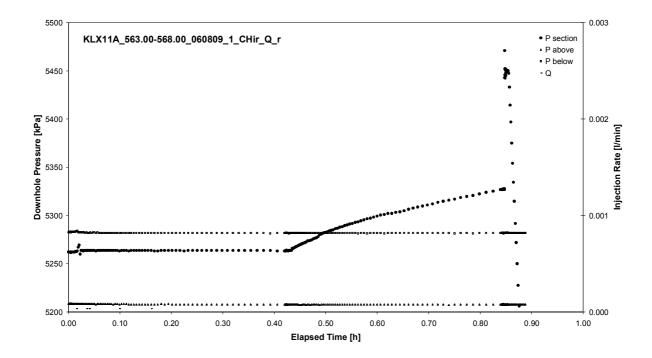

Pressure and flow rate vs. time; cartesian plot



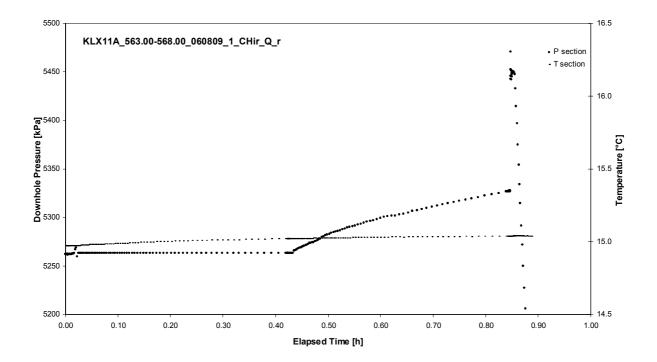





CHI phase; log-log match




CHIR phase; log-log match

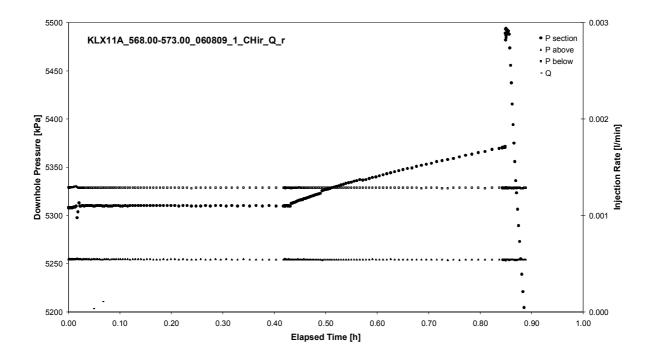



CHIR phase; HORNER match

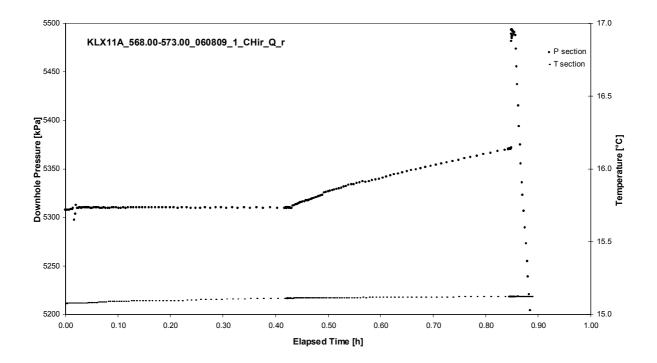
Test 563.00 – 568.00 m



Pressure and flow rate vs. time; cartesian plot




CHI phase; log-log match

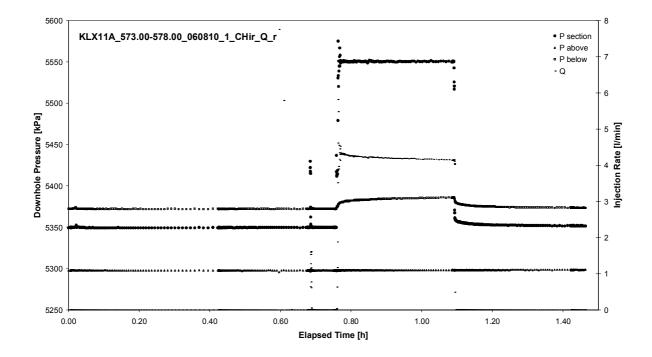

CHIR phase; log-log match

Not analysed

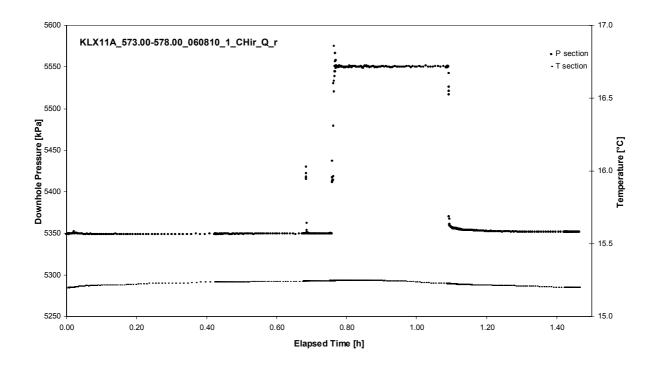
Test 568.00 – 573.00 m

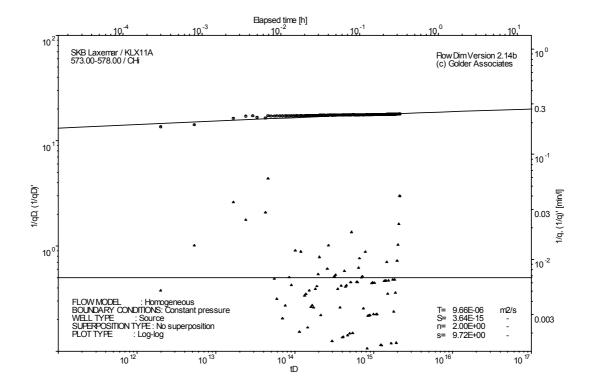


Pressure and flow rate vs. time; cartesian plot

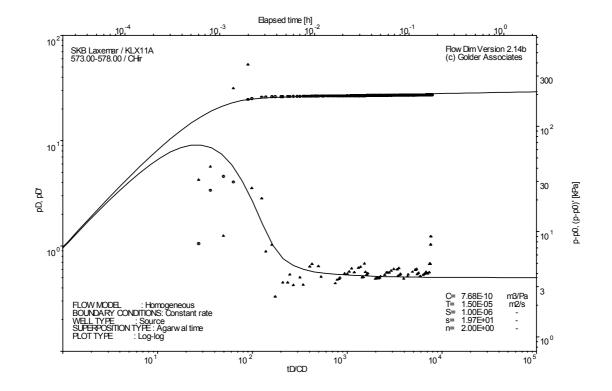



CHI phase; log-log match

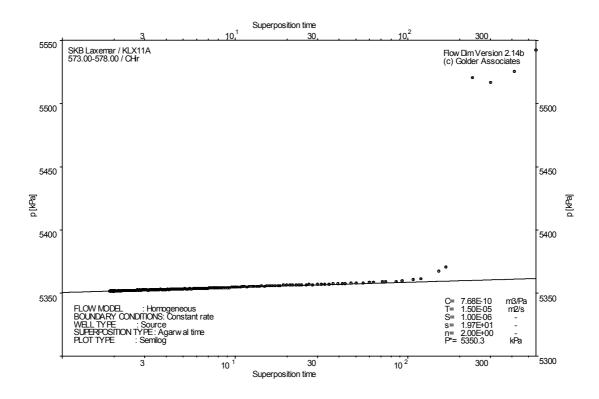

CHIR phase; log-log match


Not analysed

Test 573.00 – 578.00 m

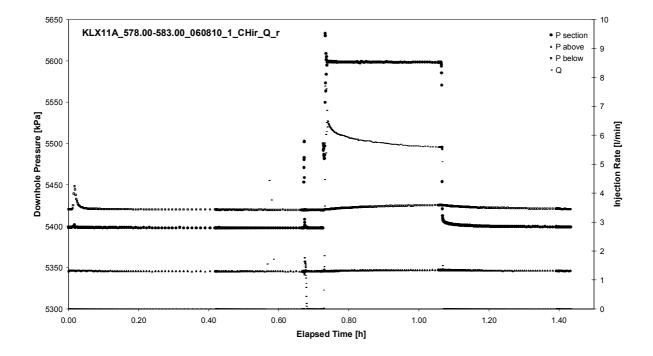



Pressure and flow rate vs. time; cartesian plot

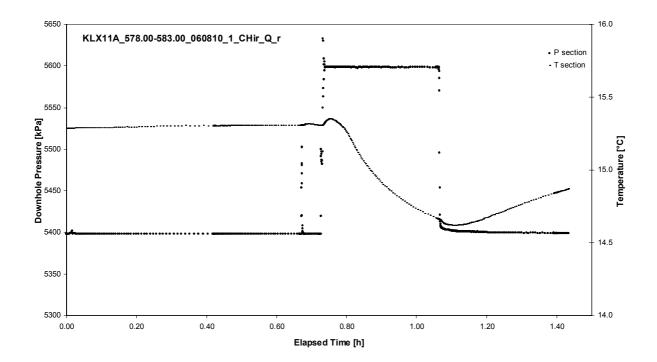


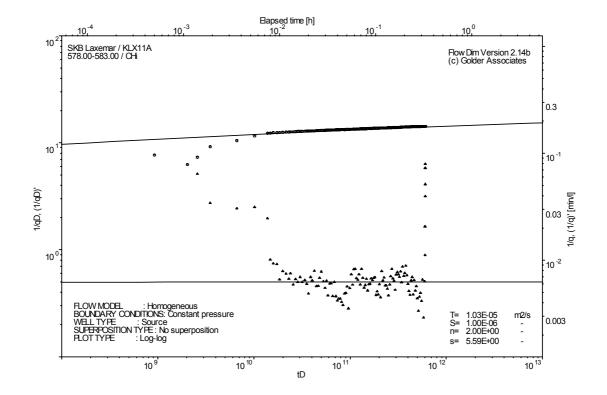



CHI phase; log-log match

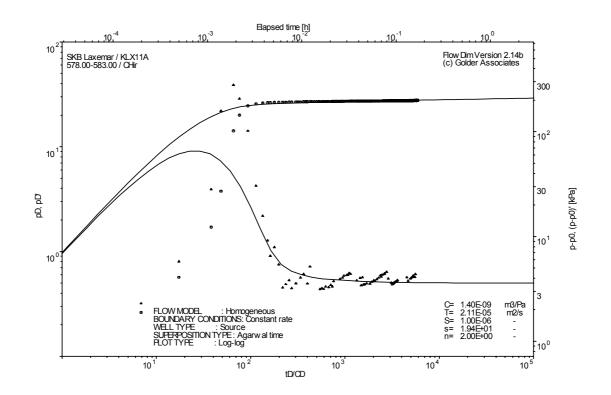



CHIR phase; log-log match

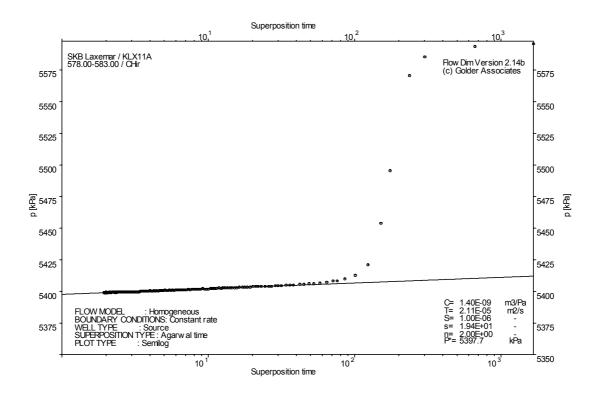




CHIR phase; HORNER match

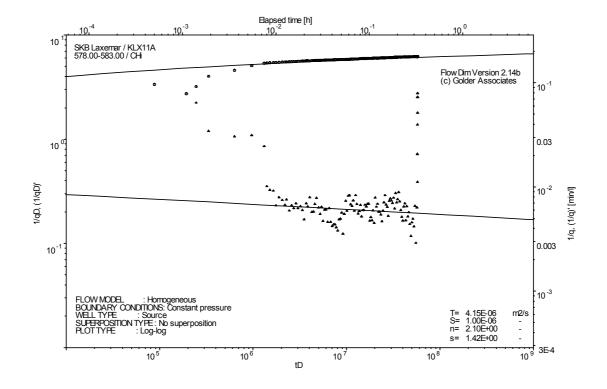
Test 578.00 – 583.00 m




Pressure and flow rate vs. time; cartesian plot

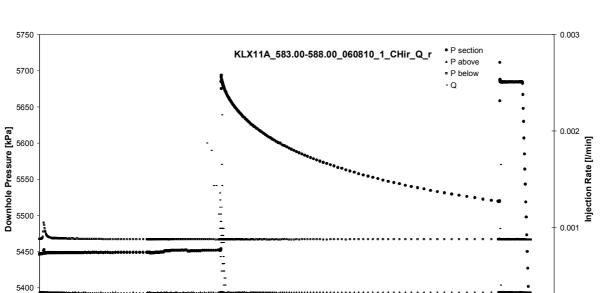






CHI phase; log-log match

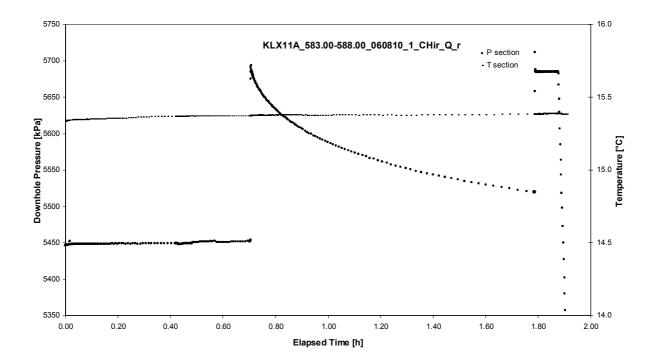


CHIR phase; log-log match




CHIR phase; HORNER match

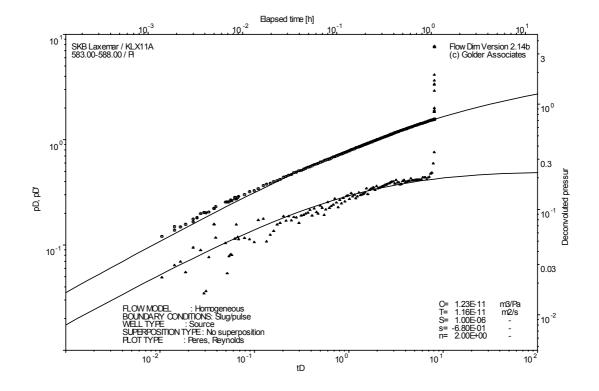



CHI phase; log-log match (n=2.1)

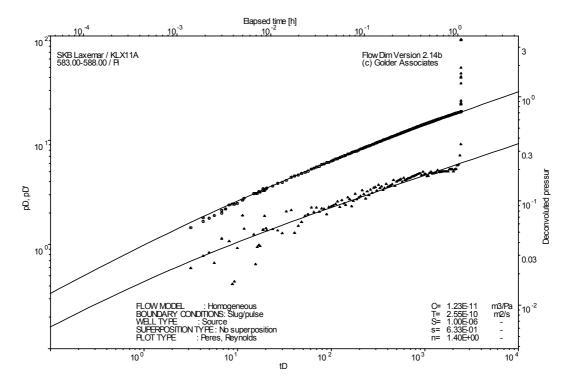
Test 583.00 – 588.00 m



-5350 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 Elapsed Time [h]

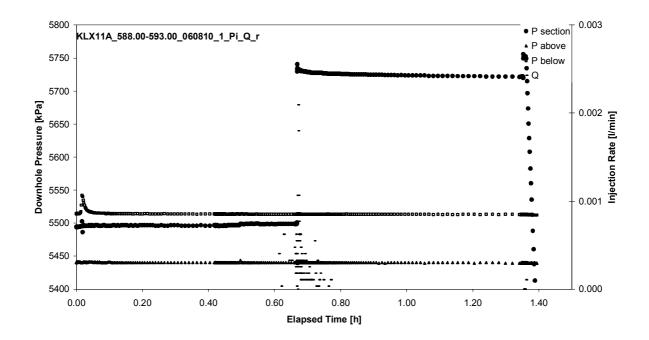

Pressure and flow rate vs. time; cartesian plot



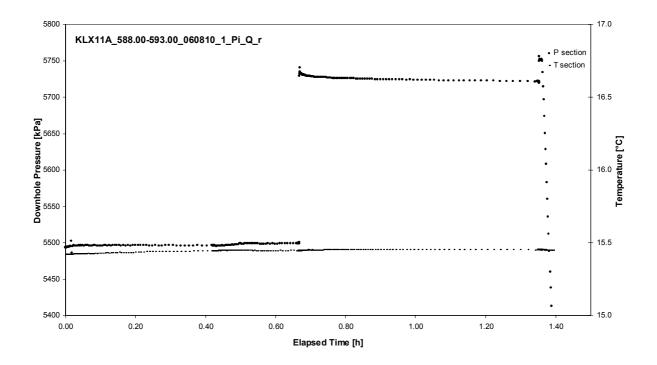

Interval pressure and temperature vs. time; cartesian plot

0.000

2.00

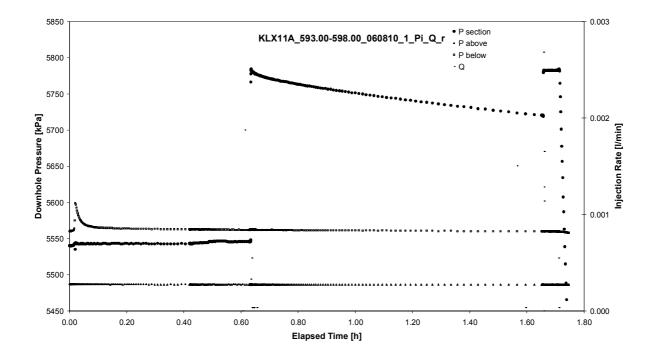



Pulse injection; deconvolution match

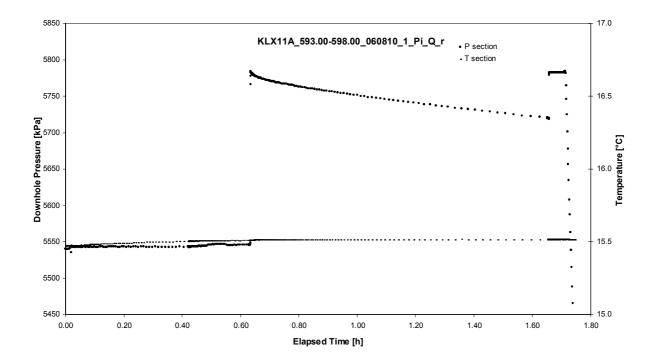



Pulse injection; deconvolution match (n=1.4)

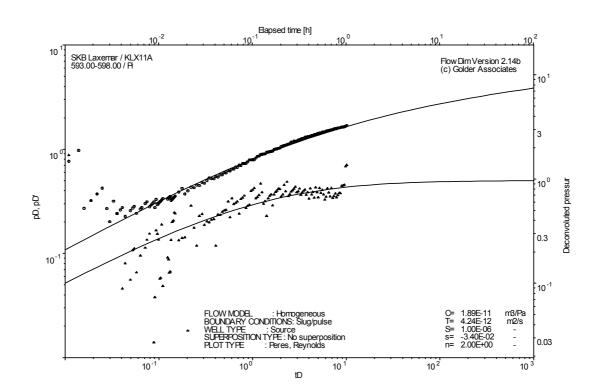
Test 588.00 – 593.00 m




Pressure and flow rate vs. time; cartesian plot

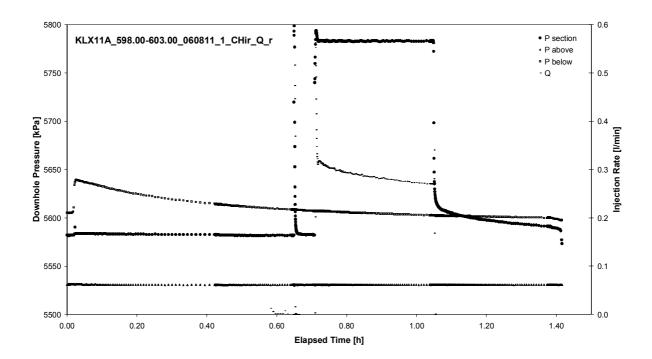



Pulse injection; deconvolution match

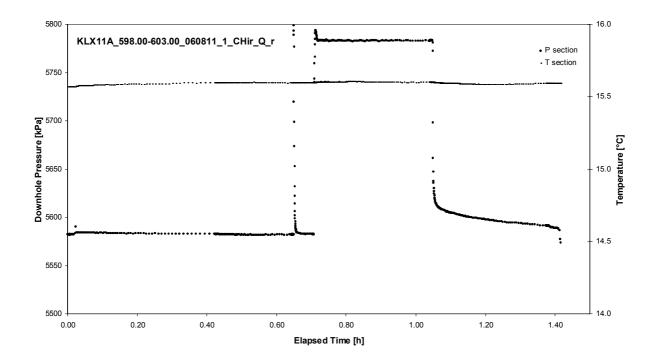

Test 593.00 – 598.00 m



Pressure and flow rate vs. time; cartesian plot



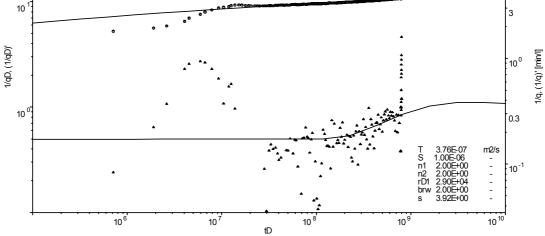

Interval pressure and temperature vs. time; cartesian plot



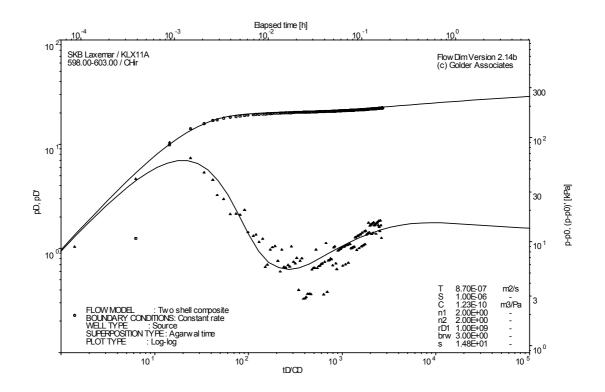

Pulse injection; deconvolution match

Test 598.00 – 603.00 m

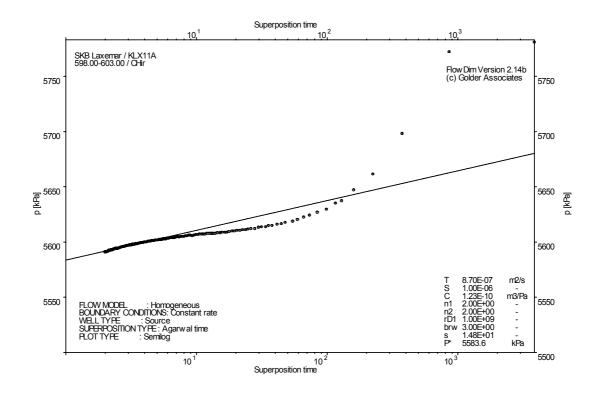




Pressure and flow rate vs. time; cartesian plot



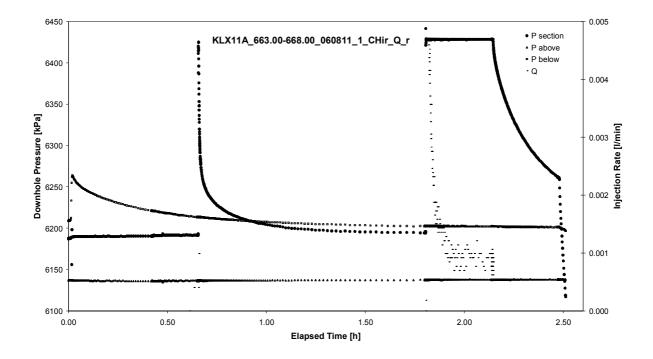

Interval pressure and temperature vs. time; cartesian plot

10

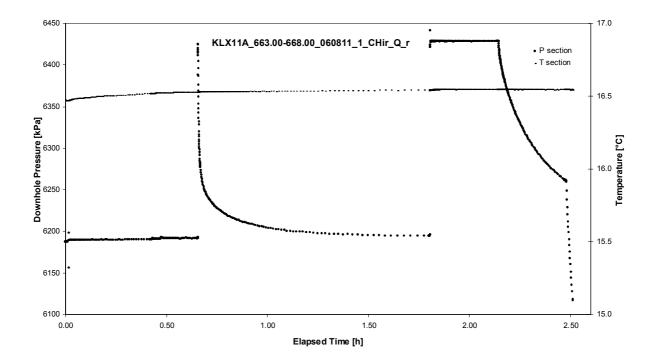




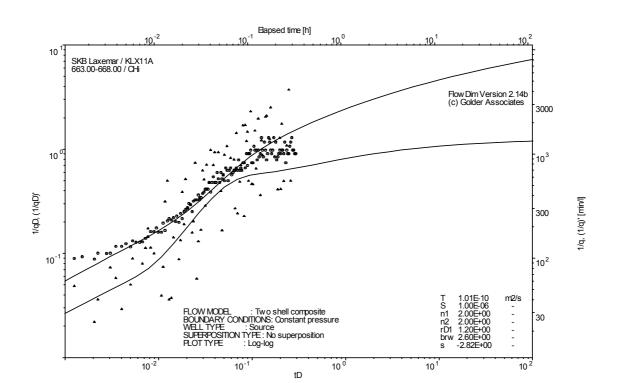

CHI phase; log-log match




CHIR phase; log-log match



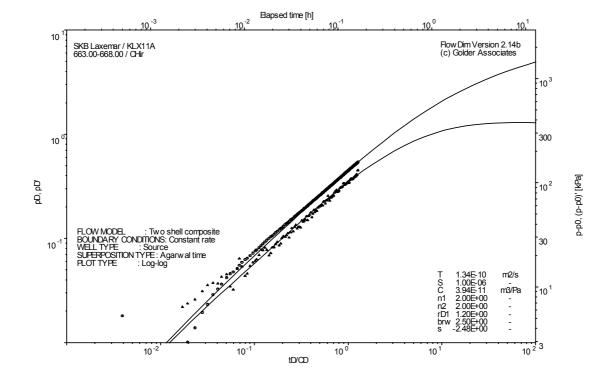

CHIR phase; HORNER match


Test 663.00 – 668.00 m



Pressure and flow rate vs. time; cartesian plot



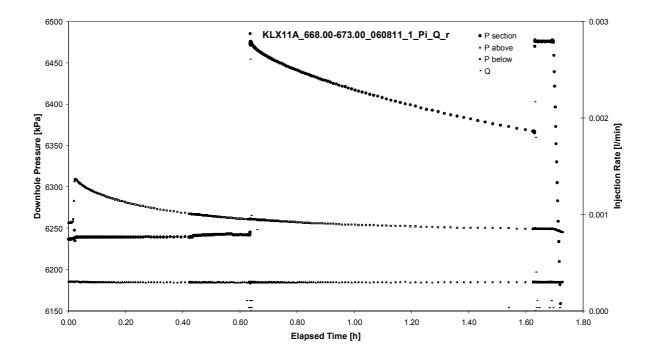

Interval pressure and temperature vs. time; cartesian plot



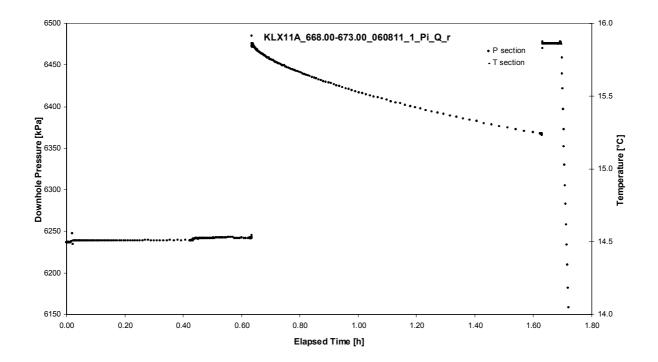
CHI phase; log-log match



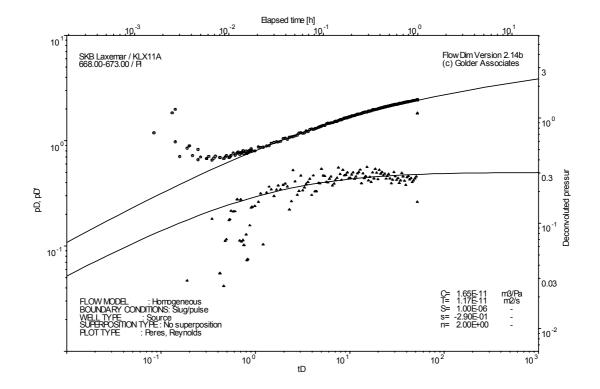
Page 2-90/4



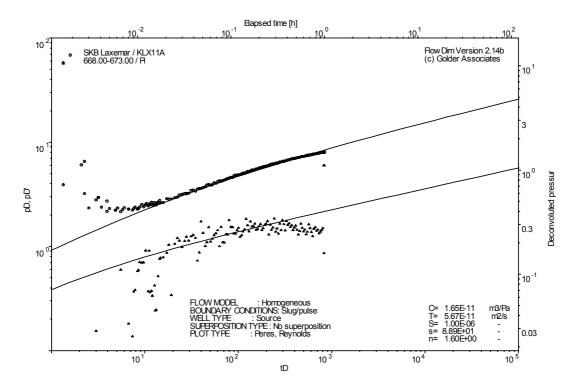

CHIR phase; log-log match


Not analysable

CHIR phase; HORNER match

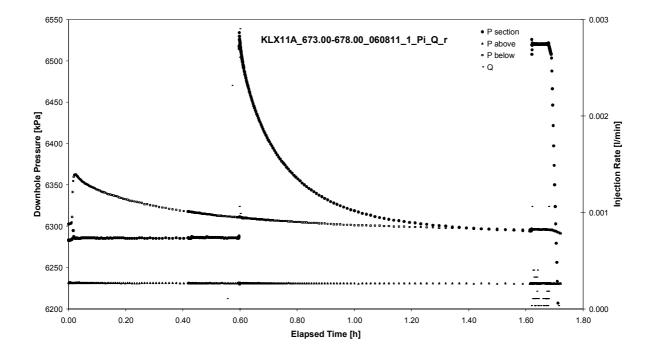

Test 668.00 – 673.00 m



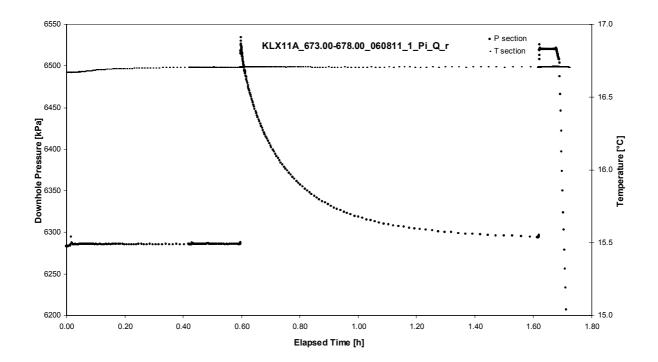

Pressure and flow rate vs. time; cartesian plot



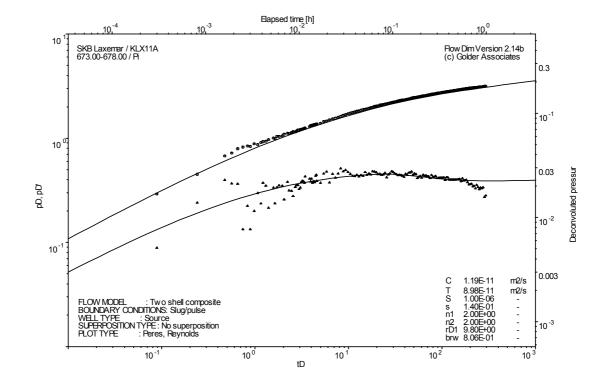
Interval pressure and temperature vs. time; cartesian plot




Pulse injection; deconvolution match

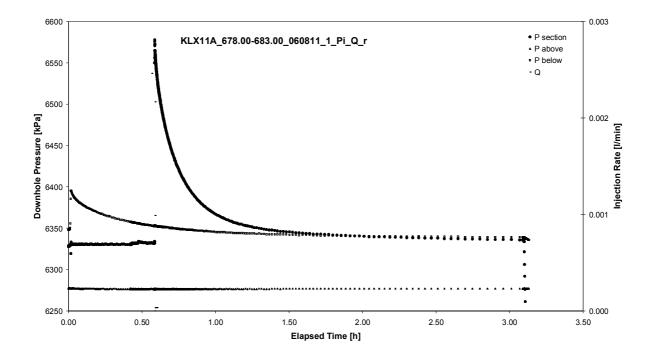



Pulse injection; deconvolution match (n=1.6)

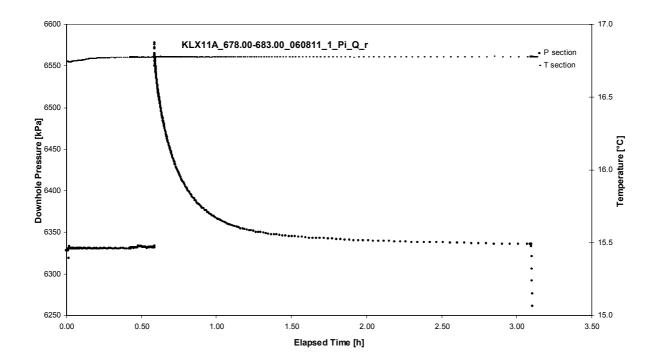

Test 673.00 – 678.00 m



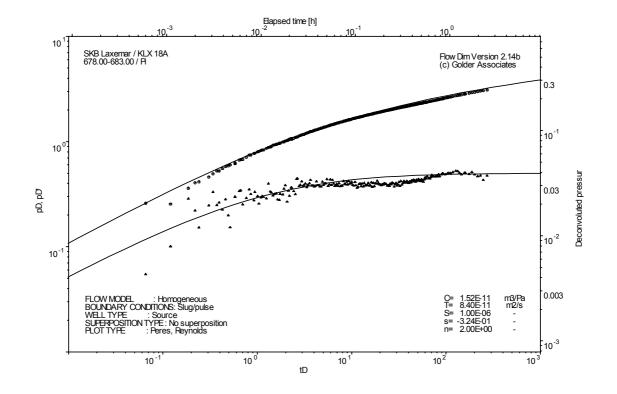
Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot




Pulse injection; deconvolution match


Test 678.00 – 683.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot



Pulse injection; deconvolution match

HYDRO	<b>)</b> TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX11A									
TEST- A	AND	FILEP	ROTC	OCOL	Testorder dated : 2006-06-27									
Teststart		Interval boundari	es	Nam	ne of Datafiles	Testtype	Copied to	Plotted	Sign.					
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)						
2006-06-29	14:32	103.00	203.00	KLX11A_0103.00_200606291432.ht2	KLX11A_103.00-203.00_060629_1_CHir_Q_r.csv	Chir	2006-08-12	2006-06-29						
2006-06-29	18:03	203.00	303.00	KLX11A_0203.00_200606291803.ht2	KLX11A_203.00-303.00_060629_1_CHir_Q_r.csv	Chir	2006-08-12	2006-06-29						
2006-06-30	09:15	303.00	403.00	KLX11A_0303.00_200606300915.ht2	KLX11A_303.00-403.00_060630_1_CHir_Q_r.csv	Chir	2006-08-12	2006-06-30						
2006-06-30	13:11	403.00	503.00	KLX11A_0403.00_200606301311.ht2	KLX11A_403.00-503.00_060630_1_CHir_Q_r.csv	Chir	2006-08-12	2006-06-30						
2006-07-01	08:47	503.00	603.00	KLX11A_0503.00_200607010847.ht2	KLX11A_503.00-603.00_060701_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-01						
2006-07-01	12:14	603.00	703.00	KLX11A_0603.00_200607011214.ht2	KLX11A_603.00-703.00_060701_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-01						
2006-07-01	17:09	703.00	803.00	KLX11A_0703.00_200607011709.ht2	KLX11A_703.00-803.00_060701_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-02						
2006-07-02	09:11	803.00	903.00	KLX11A_0803.00_200607020911.ht2	KLX11A_803.00-903.00_060702_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-02						
2006-07-02	14:45	876.00	976.00	KLX11A_0876.00_200607021445.ht2	KLX11A_876.00-976.00_060702_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-02						
2006-07-04	08:19	103.00	123.00	KLX11A_0103.00_200607040819.ht2	KLX11A_103.00-123.00_060704_1_CHir_Q_r.csv	CHir	2006-08-12	2006-07-04						
2006-07-04	10:31	123.00	143.00	KLX11A_0123.00_200607041031.ht2	KLX11A_123.00-143.00_060704_1_CHir_Q_r.csv	CHir	2006-08-12	2006-07-04						
2006-07-04	12:49	143.00	163.00	KLX11A_0143.00_200607041249.ht2	KLX11A_143.00-163.00_060704_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-04						
2006-07-04	15:05	163.00	183.00	KLX11A 0163.00 200607041505.ht2	KLX11A 163.00-183.00 060704 1 CHir Q r.csv	Chir	2006-08-12	2006-07-04						
2006-07-04	17:12	183.00	203.00	KLX11A 0183.00 200607041712.ht2	KLX11A 183.00-203.00 060704 1 CHir Q r.csv	Chir	2006-08-12	2006-07-04						
2006-07-04			223.00	KLX11A 0203.00 200607041850.ht2	KLX11A 203.00-223.00 060704 1 CHir Q r.csv	Chir	2006-08-12	2006-07-05						
2006-07-05			243.00	KLX11A 0223.00 200607050838.ht2	KLX11A 223.00-243.00 060705 1 Pi Q r.csv	Pi	2006-08-12	2006-07-05						

HYDRC	<b>)</b> TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX11A								
TEST- A	AND	FILEP	ROTC	OCOL	Testorder dated : 2006-06-27								
Teststart	I	Interval boundari	es	Name	e of Datafiles	Testtype	Copied to	Plotted	Sign.				
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)					
2006-07-05	10:48	243.00	263.00	KLX11A_0243.00_200607051048.ht2	KLX11A_243.00-263.00_060705_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-05					
2006-07-05	13:18	263.00	283.00	KLX11A_0263.00_200607051318.ht2	KLX11A_263.00-283.00_060705_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-05					
2006-07-05	15:25	283.00	303.00	KLX11A_0283.00_200607051525.ht2	KLX11A_283.00-303.00_060705_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-05					
2006-07-05	17:25	303.00	323.00	KLX11A_0303.00_200607051725.ht2	KLX11A_303.00-323.00_060705_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-05					
2006-07-05	19:21	323.00	343.00	KLX11A_0323.00_200607051921.ht2	KLX11A_323.00-343.00_060705_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-06					
2006-07-06	08:48	343.00	363.00	KLX11A_0343.00_200607060848.ht2	KLX11A_343.00-363.00_060706_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-06					
2006-07-06	11:03	363.00	383.00	KLX11A_0363.00_200607061103.ht2	KLX11A_363.00-383.00_060706_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-06					
2006-07-06	13:34	383.00	403.00	KLX11A_0383.00_200607061334.ht2	KLX11A_383.00-403.00_060706_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-06					
2006-07-06	15:54	403.00	423.00	KLX11A_0403.00_200607061554.ht2	KLX11A_403.00-423.00_060706_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-06					
2006-07-06	17:56	423.00	443.00	KLX11A_0423.00_200607061756.ht2	KLX11A_423.00-443.00_060706_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-07					
2006-07-07	08:32	443.00	463.00	KLX11A_0443.00_200607070832.ht2	KLX11A_443.00-463.00_060707_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-07					
2006-07-07	10:33	463.00	483.00	KLX11A_0463.00_200607071033.ht2	KLX11A_463.00-483.00_060707_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-07					
2006-07-07	13:12	483.00	503.00	KLX11A_0483.00_200607071312.ht2	KLX11A_483.00-503.00_060707_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-07					
2006-07-07	15:12	503.00	523.00	KLX11A_0503.00_200607071512.ht2	KLX11A_503.00-523.00_060707_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-07					
2006-07-07	17:07	523.00	543.00	KLX11A_0523.00_200607071707.ht2	KLX11A_523.00-543.00_060707_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-07					
2006-07-07	19:07	543.00	563.00	KLX11A_0543.00_200607071907.ht2	KLX11A_543.00-563.00_060707_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-08					

HYDRO	<b>)TES</b>	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX11A								
TEST- A	AND	FILEP	ROTC	OCOL	Testorder dated : 2006-06-27								
Teststart		Interval boundari	es	Name	e of Datafiles	Testtype	Copied to	Plotted	Sign.				
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)					
2006-07-08	08:58	563.00	583.00	KLX11A_0563.00_200607080858.ht2	KLX11A_563.00-583.00_060708_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-08					
2006-07-08	10:53	583.00	603.00	KLX11A_0583.00_200607081053.ht2	KLX11A_583.00-603.00_060708_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-08					
2006-07-08	13:17	603.00	623.00	KLX11A_0603.00_200607081317.ht2	KLX11A_603.00-623.00_060708_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-08					
2006-07-08	15:12	623.00	643.00	KLX11A_0623.00_200607081512.ht2	KLX11A_623.00-643.00_060708_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-08					
2006-07-08	17:10	643.00	663.00	KLX11A_0643.00_200607081710.ht2	KLX11A_643.00-663.00_060708_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-08					
2006-07-08	19:06	663.00	683.00	KLX11A_0663.00_200607081906.ht2	KLX11A_663.00-683.00_060708_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-09					
2006-07-09	09:11	683.00	703.00	KLX11A_0683.00_200607090911.ht2	KLX11A_683.00-703.00_060709_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-09					
2006-07-09	11:08	703.00	723.00	KLX11A_0703.00_200607091108.ht2	KLX11A_703.00-723.00_060709_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-09					
2006-07-09	13:58	723.00	743.00	KLX11A_0723.00_200607091358.ht2	KLX11A_723.00-743.00_060709_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-09					
2006-07-09	15:45	743.00	763.00	KLX11A_0743.00_200607091545.ht2	KLX11A_743.00-763.00_060709_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-09					
2006-07-09	17:25	763.00	783.00	KLX11A_0763.00_200607091725.ht2	KLX11A_763.00-783.00_060709_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-09					
2006-07-09	18:43	783.00	803.00	KLX11A_0783.00_200607091843.ht2	KLX11A_783.00-803.00_060709_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-10					
2006-07-10	08:19	803.00	823.00	KLX11A_0803.00_200607100819.ht2	KLX11A_803.00-823.00_060710_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-10					
2006-07-10	09:45	823.00	843.00	KLX11A_0823.00_200607100945.ht2	KLX11A_823.00-843.00_060710_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-10					
2006-07-10	11:10	843.00	863.00	KLX11A_0843.00_200607101110.ht2	KLX11A_843.00-863.00_060710_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-10					

HYDRO	<b>)</b> TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX11A								
TEST- A	AND	FILEP	ROTC	OCOL	Testorder dated : 2006-06-27								
Teststart		Interval boundari	es	Nam	e of Datafiles	Testtype	Copied to	Plotted	Sign.				
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)					
2006-07-10	14:04	863.00	883.00	KLX11A_0863.00_200607101404.ht2	KLX11A_863.00-883.00_060710_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-10					
2006-07-12	07:38	303.00	308.00	KLX11A_0303.00_200607120738.ht2	KLX11A_303.00-308.00_060712_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-12					
2006-07-12	09:30	308.00	313.00	KLX11A_0308.00_200607120930.ht2	KLX11A_308.00-313.00_060712_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-12					
2006-07-12	11:13	313.00	318.00	KLX11A_0313.00_200607121113.ht2	KLX11A_313.00-318.00_060712_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-12					
2006-07-12	13:09	318.00	323.00	KLX11A_0318.00_200607121309.ht2	KLX11A_318.00-323.00_060712_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-12					
2006-07-12	14:31	343.00	348.00	KLX11A_0343.00_200607121431.ht2	KLX11A_343.00-348.00_060712_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-12					
2006-07-12	16:38	348.00	353.00	KLX11A_0348.00_200607121638.ht2	KLX11A_348.00-353.00_060712_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-12					
2006-07-12	17:56	353.00	358.00	KLX11A_0353.00_200607121756.ht2	KLX11A_353.00-358.00_060712_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-13					
2006-07-13	07:52	358.00	363.00	KLX11A_0358.00_200607130752.ht2	KLX11A_358.00-363.00_060713_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-13					
2006-07-13	09:14	383.00	388.00	KLX11A_0383.00_200607130914.ht2	KLX11A_383.00-388.00_060713_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-13					
2006-07-13	10:28	388.00	393.00	KLX11A_0388.00_200607131028.ht2	KLX11A_388.00-393.00_060713_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-13					
2006-07-13	12:29	393.00	398.00	KLX11A_0393.00_200607131229.ht2	KLX11A_393.00-398.00_060713_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-13					
2006-07-13	13:44	398.00	403.00	KLX11A_0398.00_200607131344.ht2	KLX11A_398.00-403.00_060713_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-13					
2006-07-13	15:46	423.00	428.00	KLX11A_0423.00_200607131546.ht2	KLX11A_423.00-428.00_060713_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-13					
2006-07-13	16:59	428.00	433.00	KLX11A_0428.00_200607131659.ht2	KLX11A_428.00-433.00_060713_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-14					

HYDRO	<b>)</b> TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX11A								
TEST- A	AND	FILEP	ROTC	OCOL	Testorder dated : 2006-06-27								
Teststart		Interval boundari	es	Nan	ne of Datafiles	Testtype	Copied to	Plotted	Sign.				
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)	$\mid$				
2006-07-14	07:58	433.00	438.00	KLX11A_0433.00_200607140758.ht2	KLX11A_433.00-438.00_060714_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-14					
2006-07-14	09:17	438.00	443.00	KLX11A_0438.00_200607140917.ht2	KLX11A_438.00-443.00_060714_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-14					
2006-07-14	11:06	442.00	447.00	KLX11A_0442.00_200607141106.ht2	KLX11A_442.00-447.00_060714_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-14					
2006-07-14	13:16	447.00	452.00	KLX11A_0447.00_200607141316.ht2	KLX11A_447.00-452.00_060714_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-14					
2006-07-14	15:01	452.00	457.00	KLX11A_0452.00_200607141501.ht2	KLX11A_452.00-457.00_060714_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-14					
2006-07-14	16:45	457.00	462.00	KLX11A_0457.00_200607141645.ht2	KLX11A_457.00-462.00_060714_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-14					
2006-07-14	18:01	462.00	467.00	KLX11A_0462.00_200607141801.ht2	KLX11A_462.00-467.00_060714_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-15					
2006-07-15	08:16	483.00	488.00	KLX11A_0483.00_200607150816.ht2	KLX11A_483.00-488.00_060715_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-15					
2006-07-15	09:29	488.00	493.00	KLX11A_0488.00_200607150929.ht2	KLX11A_488.00-493.00_060715_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-15					
2006-07-15	10:47	493.00	498.00	KLX11A_0493.00_200607151047.ht2	KLX11A_493.00-498.00_060715_1_Pi_Q_r.csv	Pi	2006-08-12	2006-07-15					
2006-07-15	14:04	498.00	503.00	KLX11A_0498.00_200607151404.ht2	KLX11A_498.00-503.00_060715_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-15					
2006-07-15	15:53	503.00	508.00	KLX11A_0503.00_200607151553.ht2	KLX11A_503.00-508.00_060715_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-15					
2006-07-15	18:09	508.00	513.00	KLX11A_0508.00_200607151809.ht2	KLX11A_508.00-513.00_060715_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-16					
2006-07-16	08:05	513.00	518.00	KLX11A_0513.00_200607160805.ht2	KLX11A_513.00-518.00_060716_1_CHir_Q_r.csv	Chir	2006-08-12	2006-07-16					
2006-08-07	09:04	513.00	518.00	KLX11A_0513.00_200608070904.ht2	KLX11A_513.00-518.00_060807_2_CHir_Q_r.csv	Chir	2006-08-12	2006-08-07					

HYDRO	<b>)</b> TES	TING	WITH	PSS	DRILLHOLE IDENTIFICATION NO.: KLX11A								
TEST- A	AND	FILEP	ROTC	OCOL	Testorder dated : 2006-06-27								
Teststart		Interval boundari	es	Nam	e of Datafiles	Testtype	Copied to	Plotted	Sign.				
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)					
2006-08-08	15:30	513.00	518.00	KLX11A_0513.00_200608081530.ht2	KLX11A_513.00-518.00_060808_3_CHir_Q_r.csv	Chir	2006-08-12	2006-08-08					
2006-08-08	17:47	518.00	523.00	KLX11A_0518.00_200608081747.ht2	KLX11A_518.00-523.00_060808_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-09					
2006-08-09	08:08	523.00	528.00	KLX11A_0523.00_200608090808.ht2	KLX11A_523.00-528.00_060809_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-09					
2006-08-09	10:08	528.00	533.00	KLX11A_0528.00_200608091008.ht2	KLX11A_528.00-533.00_060809_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-09					
2006-08-09	12:48	533.00	538.00	KLX11A_0533.00_200608091248.ht2	KLX11A_533.00-538.00_060809_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-09					
2006-08-09	14:40	538.00	543.00	KLX11A_0538.00_200608091440.ht2	KLX11A_538.00-543.00_060809_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-09					
2006-08-09	16:59	563.00	568.00	KLX11A_0563.00_200608091659.ht2	KLX11A_563.00-568.00_060809_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-09					
2006-08-09	18:17	568.00	573.00	KLX11A_0568.00_200608091817.ht2	KLX11A_568.00-573.00_060809_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-10					
2006-08-10	08:06	573.00	578.00	KLX11A_0573.00_200608100806.ht2	KLX11A_573.00-578.00_060810_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-10					
2006-08-10	10:02	578.00	583.00	KLX11A_0578.00_200608101002.ht2	KLX11A_578.00-583.00_060810_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-10					
2006-08-10	12:20	583.00	588.00	KLX11A_0583.00_200608101220.ht2	KLX11A_583.00-588.00_060810_1_Pi_Q_r.csv	Pi	2006-08-12	2006-08-10					
2006-08-10	14:41	588.00	593.00	KLX11A_0588.00_200608101441.ht2	KLX11A_588.00-593.00_060810_1_Pi_Q_r.csv	Pi	2006-08-12	2006-08-10					
2006-08-10	16:33	593.00	598.00	KLX11A_0593.00_200608101633.ht2	KLX11A_593.00-598.00_060810_1_Pi_Q_r.csv	Pi	2006-08-12	2006-08-11					
2006-08-11	08:01	598.00	603.00	KLX11A_0598.00_200608110801.ht2	KLX11A_598.00-603.00_060811_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-11					
2006-08-11	10:29	663.00	668.00	KLX11A_0663.00_200608111029.ht2	KLX11A_663.00-668.00_060811_1_CHir_Q_r.csv	Chir	2006-08-12	2006-08-11					

HYDRO	IYDROTESTING WITH PSS				DRILLHOLE IDENTIFICATION NO.: KLX11A									
TEST- A	AND	FILEP	PROTO	OCOL	Testorder dated : 2006-06-27									
Teststart Doundaries Na				Nam	ne of Datafiles	Testtype	Copied to	Plotted	Sign.					
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)						
2006-08-11	13:30	668.00	673.00	KLX11A_0668.00_200608111330.ht2	KLX11A_668.00-673.00_060811_1_Pi_Q_r.csv	Pi	2006-08-12	2006-08-11						
2006-08-11	15:38	673.00	678.00	KLX11A_0673.00_200608111538.ht2	KLX11A_673.00-678.00_060811_1_Pi_Q_r.csv	Pi	2006-08-12	2006-08-11						
2006-08-11	17:45	678.00	683.00	KLX11A 0678.00 200608111745.ht2	KLX11A_678.00-683.00_060811_1_Pi_Q_r.csv	Pi	2006-08-12	2006-08-12						

Borehole: KLX11A

# **APPENDIX 5**

SICADA data tables

(Simplified version v1 SICADA/Data Import Template SKB & Ergodata AB 20
File Identity Compiled By
Created By Stephan Rohs Quality Check For Delivery
Created 2006-09-11 Delivery Approval
Activity Type       KLX 11A       Project       AP PS 400-06-072         KLX 11A - Injection test       AP PS 400-06-072       AP PS 400-06-072
Activity Information Additional Activity Data
C10 P20 P200 R25
Idcode       Start Date       Stop Date       Secup (m)       Section No       Company       Field crew       evaluating         Idcode       Start Date       Stop Date       Secup (m)       Section No       Company       manager       Field crew       data       Report
KLX 11A2006-06-29 14:322006-07-16 10:33103.00976.00Golder AssociatesRohsStephanStephanStephanStephanStephanKLX 11A2006-06-29 14:322006-07-16 10:33103.00976.00Golder AssociatesRohsPhilipp WolfWolfWolf
KLX 11A2006.08.08 15:302006.08.11 20:53513.00683.00Golder AssociatesReinder van der WallReinder van Philipp WolfStephan Rohs, Philip
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec

Table		plu_s_hole	e_test_d
	PL	U Injection and pumping	ng, General information
	I		
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
flow_rate_end_qp	FLOAT	m**3/s	Flow rate at the end of the flowing period
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
mean_flow_rate_qm	FLOAT	m**3/s	Arithmetic mean flow rate during flow period
q_measll	FLOAT	m**3/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m**3/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m**3	Total volume of pumped or injected water
dur_flow_phase_tp	FLOAT	S	Duration of the flowing period of the test
dur_rec_phase_tf	FLOAT	S	Duration of the recovery period of the test
initial_head_hi	FLOAT	m	Hydraulic head in test section at start of the flow period
head_at_flow_end_h	FLOAT	m	Hydraulic head in test section at stop of the flow period.
final_head_hf	FLOAT	m	Hydraulic head in test section at stop of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in test section at start of flow period
press_at_flow_end_	FLOAT	kPa	Groundwater pressure in test section at stop of flow period.
final_press_pf	FLOAT	kPa	Ground water pressure at the end of the recovery period.
fluid_temp_tew	FLOAT	oC	Measured section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Measured section fluid el. conductivity, see table descr.
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC,see table descr.
fluid_salinity_tdswm	FLOAT	mg/l	Tot. section fluid salinity based on water sampling, see
reference	CHAR		SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
lp	FLOAT	m	Hydraulic point of application

KLX11A															Page 5/4
					section_		formation_			flow_rate_end_	value_type_ n	nean_flow_			
idcode	start_date	stop_date	secup	seclow	no	test_type	type	start_flow_period	stop_flow_period	qp	qp ra	ate_qm	q_measll	q_measlu	tot_volume_vp
KLX 11A	060629 14:32:00	060629 16:40:00	103.00	203.00		3	8 1	2006-06-29 15:38:42	2006-06-29 16:08:52	1.31E-04	0	1.37E-04	1.67E-08	8.33E-04	2.46E-01
KLX 11A	060629 18:03:00	060629 20:21:00	203.00	303.00		3	8 1	2006-06-29 19:18:52	2006-06-29 19:49:02	1.52E-04	0	1.53E-04	1.67E-08	8.33E-04	2.76E-01
KLX 11A	060630 09:15:00	060630 11:12:00	303.00	403.00		3	8 1	2006-06-30 10:10:28	2006-06-30 10:40:38	5.67E-05	0	5.83E-05	1.67E-08	8.33E-04	1.05E-01
KLX 11A	060630 13:11:00	060630 15:20:00	403.00	503.00		3	8 1	2006-06-30 14:18:35	2006-06-30 14:48:45	1.17E-06	0	1.33E-06	1.67E-08	8.33E-04	2.40E-03
KLX 11A	060701 08:47:00	060701 10:50:00	503.00	603.00		3	8 1	2006-07-01 09:48:22	2006-07-01 10:18:32	1.91E-04	0	1.98E-04	1.67E-08	8.33E-04	3.57E-01
KLX 11A	060701 12:14:00	060701 15:43:00	603.00	703.00		3	8 1	2006-07-01 14:11:12	2006-07-01 14:41:22	3.33E-08	0	5.00E-08	1.67E-08	8.33E-04	9.00E-05
KLX 11A	060701 17:09:00	060702 01:32:00	703.00	803.00		3	8 1	2006-07-01 19:00:34	2006-07-01 19:30:44	3.33E-08	0	6.67E-08	1.67E-08	8.33E-04	1.20E-04
KLX 11A	060702 09:11:00	060702 13:33:00	803.00	903.00		3	8 1	2006-07-02 11:01:14	2006-07-02 11:31:24	6.67E-08	0	1.00E-07	1.67E-08	8.33E-04	1.80E-04
KLX 11A	060702 14:45:00	060702 16:49:00	876.00	976.00		3	8 1	2006-07-02 15:33:25	2006-07-02 15:33:35	#NV	0	#NV	1.67E-08	8.33E-04	5.60E-06
KLX 11A	060704 08:19:00	060704 09:46:00	103.00	123.00		3	8 1	2006-07-04 09:04:05	2006-07-04 09:24:15	2.33E-05	0	2.33E-05	1.67E-08	8.33E-04	2.80E-02
KLX 11A	060704 10:31:00	060704 11:54:00	123.00	143.00		3	8 1	2006-07-04 11:12:38	2006-07-04 11:32:48	6.50E-05	0	6.67E-05	1.67E-08	8.33E-04	8.00E-02
KLX 11A	060704 12:49:00	060704 14:32:00	143.00	163.00		3	8 1	2006-07-04 13:40:34	2006-07-04 14:00:44	6.67E-06	0	8.33E-06	1.67E-08	8.33E-04	1.00E-02
KLX 11A	060704 15:05:00	060704 16:33:00	163.00	183.00		3	8 1	2006-07-04 15:51:48	2006-07-04 16:11:58	4.17E-05	0	4.33E-05	1.67E-08	8.33E-04	5.20E-02
KLX 11A	060704 17:12:00	060704 18:14:00	183.00	203.00		3	8 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A	060704 18:50:00	060704 19:46:00	203.00	223.00		3	8 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A	060705 08:38:00	060705 10:07:00	223.00	243.00		3	3 1	2006-07-05 09:20:29	2006-07-05 09:20:39	#NV	0	#NV	1.67E-08	8.33E-04	1.32E-05
KLX 11A	060705 10:48:00	060705 12:22:00	243.00	263.00		3	8 1	2006-07-05 11:40:25	2006-07-05 12:00:35	6.67E-07	0	7.00E-07	1.67E-08	8.33E-04	8.40E-04
KLX 11A	060705 13:18:00	060705 14:44:00	263.00	283.00		3	8 1	2006-07-05 14:02:11	2006-07-05 14:22:21	1.65E-04	0	1.69E-04	1.67E-08	8.33E-04	2.03E-01
KLX 11A	060705 15:25:00	060705 16:51:00	283.00	303.00		3	3 1	2006-07-05 16:04:29	2006-07-05 16:04:39	#NV	0	#NV	1.67E-08	8.33E-04	1.33E-05
KLX 11A	060705 17:25:00	060705 18:49:00	303.00	323.00		3	3 1	2006-07-05 18:07:26	2006-07-05 18:27:36	6.50E-05	0	6.83E-05	1.67E-08	8.33E-04	8.20E-02
KLX 11A	060705 19:21:00	060706 00:42:00	323.00	343.00		3	8 1	2006-07-05 20:29:02	2006-07-05 20:40:12	8.33E-09	0	5.00E-09	1.67E-08	8.33E-04	3.30E-06
KLX 11A	060706 08:48:00	060706 10:30:00	343.00	363.00		3	3 1	2006-07-06 09:48:23	2006-07-06 10:08:33	1.50E-07	0	3.00E-07	1.67E-08	8.33E-04	3.60E-04
KLX 11A	060706 11:03:00	060706 12:55:00	363.00	383.00		3	3 1	2006-07-06 11:41:39	2006-07-06 11:41:49	#NV	0	#NV	1.67E-08	8.33E-04	7.80E-06
KLX 11A	060706 13:34:00	060706 15:02:00	383.00	403.00		3	8 1	2006-07-06 14:40:27	2006-07-06 15:00:37	8.33E-08	0	8.33E-08	1.67E-08	8.33E-04	1.00E-04
KLX 11A	060706 15:54:00	060706 17:22:00	403.00	423.00		3	8 1	2006-07-06 16:35:13	2006-07-06 16:35:23	#NV	0	#NV	1.67E-08	8.33E-04	2.20E-06
KLX 11A		060706 19:21:00		443.00		3	8 1	2006-07-06 18:39:37	2006-07-06 18:59:47	1.00E-06	0	1.00E-06	1.67E-08	8.33E-04	1.20E-03
KLX 11A		060707 10:01:00		463.00		3	8 1	2006-07-07 09:19:26		5.00E-07	0	4.92E-07	1.67E-08	8.33E-04	
KLX 11A		060707 12:34:00		483.00		3	1	2006-07-07 11:12:30		#NV	0	#NV	1.67E-08	8.33E-04	1.33E-05
KLX 11A		060707 14:44:00		503.00		3	1	2006-07-07 14:01:52		1.17E-07	0	1.33E-07		8.33E-04	1.60E-04
KLX 11A		060707 16:39:00		523.00		3	8 1	2006-07-07 15:57:20		5.83E-05	0	6.17E-05	1.67E-08	8.33E-04	7.40E-02
KLX 11A		060707 18:30:00		543.00		3		2006-07-07 17:48:44	2006-07-07 18:08:54	1.33E-06	0	1.33E-06		8.33E-04	
KLX 11A		060708 08:26:00		563.00		3	1	2006-07-07 19:44:15		#NV	0	#NV	1.67E-08	8.33E-04	2.40E-06
KLX 11A		060708 10:21:00		583.00		3		2006-07-08 09:39:14	2006-07-08 09:59:24	1.47E-04	0	1.52E-04	1.67E-08	8.33E-04	1.82E-01
KLX 11A		060708 12:23:00		603.00		3		2006-07-08 11:41:17		4.33E-06	0	4.50E-06		8.33E-04	5.40E-03
KLX 11A		060708 14:41:00		623.00		3		2006-07-08 13:55:12	2006-07-08 13:55:22	#NV	0	#NV	1.67E-08	8.33E-04	1.33E-05
KLX 11A		060708 16:39:00		643.00		3		2006-07-08 15:52:56	2006-07-08 15:53:06	#NV	0	#NV	1.67E-08	8.33E-04	
KLX 11A		060708 18:34:00		663.00		3		2006-07-08 17:48:39		#NV	0	#NV	1.67E-08	8.33E-04	
KLX 11A		060709 08:39:00		683.00				2006-07-09 07:57:45		1.67E-08	0	3.67E-08	1.67E-08	8.33E-04	4.40E-05
KLX 11A		060709 10:40:00		703.00				2006-07-09 09:50:31	2006-07-09 10:32:52	#NV	0	#NV	1.67E-08	8.33E-04	
KLX 11A		060709 13:27:00		723.00				2006-07-09 12:25:20	2006-07-09 12:45:30	5.00E-08	0	8.47E-08	1.67E-08	8.33E-04	1.02E-04
KLX 11A		060709 15:13:00		743.00				#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A		060709 16:56:00		763.00		3		#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A		060709 18:10:00		783.00		3		#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A		060709 20:01:00		803.00				#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A		060710 09:15:00		823.00		3		#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A		060710 09:13:00		843.00		3		#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 11A		060710 10:37:00		863.00		3		2006-07-10 12:52:06	2006-07-10 13:02:16	6.67E-08	-1	1.05E-07	1.67E-08	8.33E-04	1.26E-04
KLX 11A		06071013.24.00		883.00		3			2000-07-10 13.02.16 #NV	0.07E-08 #NV	-1	1.05E-07 #NV	1.67E-08	8.33E-04	1.20E-04 #NV
KLX 11A		060710 14.58.00		308.00		3				1.06E-05	-1	1.16E-05		8.33E-04	
NLA HA	000/12 07.38:00	000712 09.06:00	303.00	300.00	1	`		2000-07-12 00:24:00	2000-07-12 00:24:10	1.00E-05	U	1.10E-05	1.07 E-08	0.33⊏-04	1.39E-02

	LX1	

1			dur flow n	dur rec n	initial_head_	head at flow e	final head h	initial pross	press_at_flow_e	final pross	fluid to	emp_t fluid_elcond_	o fluid salinity t	t fluid_salinity_t	•	1	<del>т – – –</del>
idcode	secup	seclow			hi	nd_hp	f	nitiai_press_	nd_pp	pf	ew	cw	dsw	dswm	reference	comments	In
KLX 11A	103.00	203.00		_		na_np	. 11.45	1837		1840		9.6	4011	uowini	Tererenee	Commente	153.00
KLX 11A	203.00	303.00					10.70			2777		11.1					253.00
KLX 11A	303.00	403.00					10.78			3713		12.6					353.00
KLX 11A	403.00	503.00					12.21			4650		14.0					453.00
KLX 11A	503.00	603.00					12.66			5600		15.6					553.00
KLX 11A	603.00	703.00					14.05			6586		17.1					653.00
KLX 11A	703.00	803.00					14.06			7451		18.6					753.00
KLX 11A	803.00	903.00					13.37			8352		20.1					853.00
KLX 11A	876.00	976.00					#NV			9202		21.2					926.00
KLX 11A	103.00	123.00					10.46			1093		8.4					113.00
KLX 11A	123.00	143.00					9.97			1275		8.7					133.00
KLX 11A	143.00	163.00					8.03			1469		8.9					153.00
KLX 11A	163.00	183.00					10.02			1651		9.2					173.00
KLX 11A	183.00	203.00					#NV			#N\		9.5					193.00
KLX 11A	203.00	223.00					#NV			#N\		9.8					213.00
KLX 11A	223.00	243.00					#NV			2255		10.0					233.00
KLX 11A	243.00	263.00					10.42			2402		10.4					253.00
KLX 11A	263.00	283.00					10.58			2590		10.8					273.00
KLX 11A	283.00	303.00					#NV			2958		11.1					293.00
KLX 11A	303.00	323.00					10.24			2964		11.5					313.00
KLX 11A	323.00	343.00					9.51			3155		11.8					333.00
KLX 11A	343.00	363.00					#NV			3443		12.1					353.00
KLX 11A	363.00	383.00					#NV			3693		12.3					373.00
KLX 11A	383.00	403.00					10.04			3712		12.6					393.00
KLX 11A	403.00	423.00					#NV			4062		12.9					413.00
KLX 11A	423.00	443.00					11.59			4087		13.2					433.00
KLX 11A	443.00	463.00					11.35			4269		13.5					453.00
KLX 11A	463.00	483.00					#NV			4572		13.8					473.00
KLX 11A	483.00	503.00					11.84			4642		14.0					493.00
KLX 11A	503.00	523.00					11.80			4838		14.4					513.00
KLX 11A	523.00	543.00					12.57			5023		14.6					533.00
KLX 11A	543.00	563.00					#NV			5349		15.0					553.00
KLX 11A	563.00	583.00					12.47			5394		15.1					573.00
KLX 11A	583.00	603.00					12.91			5590		15.6					593.00
KLX 11A	603.00	623.00					#NV			5930		15.9					613.00
KLX 11A	623.00	643.00					#NV			6172		16.2					633.00
KLX 11A	643.00	663.00					#NV			6133		16.5					653.00
KLX 11A	663.00	683.00					12.80			6411		16.8					673.00
KLX 11A	683.00	703.00					#NV			6556	6	17.1					693.00
KLX 11A	703.00	723.00					#NV			6761		17.3					713.00
KLX 11A	723.00	743.00					#NV			#N\		17.6					733.00
KLX 11A	743.00	763.00					#NV			#N\		17.9					753.00
KLX 11A	763.00	783.00					#NV			#N\		18.2					773.00
KLX 11A	783.00	803.00					#NV			#N\		18.5					793.00
KLX 11A	803.00	823.00					#NV			#N\		18.8					813.00
KLX 11A	823.00	843.00					#NV			#N\		19.1					833.00
KLX 11A	843.00	863.00					#NV			8013		19.5					853.00
KLX 11A	863.00	883.00					#NV			#N\		19.8					873.00
KLX 11A	303.00	308.00					10.66			2823		11.1					305.50

KLX11A															Page 5/6
					section_		formation			flow_rate_end_	value_type_	mean_flow_			
idcode	start_date	stop_date	secup	seclow	no	test_type	type	start_flow_period	stop_flow_period	qp	qp	rate_qm	q_measll	q_measlu	tot_volume_vp
KLX 11A	060712 09:30:00	060712 10:51:00	308.00	313.00		3	3 1	2006-07-12 10:08:49	2006-07-12 10:28:59	5.33E-05	0	5.61E-05	1.67E-08	8.33E-04	6.73E-02
KLX 11A	060712 11:13:00	060712 12:03:00	313.00	318.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060712 13:09:00	060712 13:57:00	318.00	323.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060712 14:31:00	060712 16:11:00	343.00	348.00		3	3 1	2006-07-12 15:29:26	2006-07-12 15:49:36	1.67E-07	C	) 3.33E-07	1.67E-08	8.33E-04	4.00E-04
KLX 11A	060712 16:38:00	060712 17:38:00	348.00	353.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060712 17:56:00	060712 18:45:00	353.00	358.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060713 07:52:00	060713 08:41:00	358.00	363.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060713 09:14:00	060713 10:05:00	383.00	388.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060713 10:28:00	060713 11:17:00	388.00	393.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060713 12:29:00	060713 13:20:00	393.00	398.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060713 13:44:00	060713 15:16:00	398.00	403.00		3	3 1	2006-07-13 14:34:34	2006-07-13 14:54:44	8.33E-08	0	8.33E-08	1.67E-08	8.33E-04	1.00E-04
KLX 11A	060713 15:46:00	060713 16:55:00	423.00	428.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060713 16:59:00	060713 17:47:00	428.00	433.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060714 07:59:00	060714 08:46:00	433.00	438.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060714 09:17:00	060714 10:39:00	438.00	443.00		3	3 1	2006-07-14 09:57:00	2006-07-14 10:17:10	1.17E-06	C	1.16E-06	1.67E-08	8.33E-04	1.39E-03
KLX 11A	060714 11:06:00	060714 12:51:00	442.00	447.00		3	3 1	2006-07-14 11:42:39	2006-07-14 11:42:49	#NV	0	) #NV	1.67E-08	8.33E-04	8.07E-06
KLX 11A	060714 13:16:00	060714 14:37:00	447.00	452.00		3	3 1	2006-07-14 13:55:05	2006-07-14 14:15:15	2.17E-07	0	2.17E-07	1.67E-08	8.33E-04	2.60E-04
KLX 11A	060714 15:01:00	060714 16:22:00	452.00	457.00		3	3 1	2006-07-14 15:40:42	2006-07-14 16:00:52	2.83E-07	· (	2.95E-07	1.67E-08	8.33E-04	3.54E-04
KLX 11A	060714 16:45:00	060714 17:35:00	457.00	462.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060714 18:01:00	060714 18:50:00	462.00	467.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060715 08:16:00	060715 09:05:00	483.00	488.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060715 09:29:00	060715 10:19:00	488.00	493.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060715 10:47:00	060715 13:39:00	493.00	498.00		3	3 1	2006-07-15 13:08:52	2006-07-15 13:09:02	#NV	C	) #NV	1.67E-08	8.33E-04	2.69E-06
KLX 11A	060715 14:04:00	060715 15:29:00	498.00	503.00		3	3 1	2006-07-15 14:47:28	2006-07-15 15:07:38	8.33E-08	0	1.00E-07	1.67E-08	8.33E-04	1.20E-04
KLX 11A	060715 15:53:00	060715 17:47:00	503.00	508.00		3	3 1	2006-07-15 17:05:25	2006-07-15 17:25:35	2.83E-07	0	2.83E-07	1.67E-08	8.33E-04	3.40E-04
KLX 11A	060715 18:09:00	060715 21:14:00	508.00	513.00		3	3 1	2006-07-15 18:52:09	2006-07-15 19:12:19	2.67E-07	C	3.12E-07	1.67E-08	8.33E-04	3.74E-04
KLX 11A	060716 08:05:00	060716 10:33:00	513.00	518.00		3	3 1	2006-08-08 16:33:36	2006-08-08 16:53:46	1.93E-05	C	1.98E-05	1.67E-08	8.33E-04	2.38E-02
KLX 11A	060808 17:47:00	060808 19:37:00	518.00	523.00		3	3 1	2006-08-08 18:55:36	2006-08-08 19:15:46	5.12E-05	0	5.33E-05	1.67E-08	8.33E-04	6.40E-02
KLX 11A	060809 08:08:00	060809 09:41:00	523.00	528.00		3	3 1	2006-08-09 08:59:28	2006-08-09 09:19:38	1.43E-07	0	1.43E-07	1.67E-08	8.33E-04	1.72E-04
KLX 11A	060809 10:08:00	060809 11:34:00	528.00	533.00		3	3 1	2006-08-09 10:52:02	2006-08-09 11:12:12	7.83E-07	0	8.33E-07	1.67E-08	8.33E-04	1.00E-03
KLX 11A	060809 12:48:00	060809 14:16:00	533.00	538.00		3	3 1	2006-08-09 13:34:21	2006-08-09 13:54:31	1.67E-06	0	1.75E-06	1.67E-08	8.33E-04	2.10E-03
KLX 11A	060809 14:40:00	060809 16:19:00	538.00	543.00		3	3 1	2006-08-09 15:37:49	2006-08-09 15:57:59	3.33E-08	0	4.50E-08	1.67E-08	8.33E-04	5.40E-05
KLX 11A	060809 16:59:00	060809 17:53:00	563.00	568.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060809 18:17:00	060809 19:11:00	568.00	573.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060810 08:06:00	060810 09:34:00	573.00	578.00		3	3 1	2006-08-10 08:52:30	2006-08-10 09:12:40	6.85E-05	C	7.02E-05	1.67E-08	8.33E-04	8.42E-02
KLX 11A	060810 10:02:00	060810 11:28:00	578.00	583.00		3	3 1	2006-08-10 10:46:37	2006-08-10 11:06:47	9.33E-05	C	9.72E-05	1.67E-08	8.33E-04	1.17E-01
KLX 11A	060810 12:20:00	060810 14:15:00	583.00	588.00		3	3 1	2006-08-10 13:03:30	2006-08-10 13:03:40	#NV	0	) #NV	1.67E-08	8.33E-04	2.97E-06
KLX 11A	060810 14:41:00	060810 16:05:00	588.00	593.00		3	3 1	#NV	#NV	#NV	-1	I #NV	1.67E-08	8.33E-04	#NV
KLX 11A	060810 16:33:00	060810 18:19:00	593.00	598.00		3	3 1	2006-08-10 17:12:19	2006-08-10 17:12:29	#NV	C	) #NV	1.67E-08	8.33E-04	4.50E-06
KLX 11A		060811 09:26:00		603.00		3	3 1	2006-08-11 08:44:30	2006-08-11 09:44:40	4.48E-06	C	4.80E-06	1.67E-08	8.33E-04	5.76E-03
KLX 11A		060811 13:01:00	663.00	668.00		3	3 1	2006-08-11 12:18:56	2006-08-11 12:39:06	1.67E-08	C	2.50E-08	1.67E-08	8.33E-04	3.00E-05
KLX 11A		060811 15:14:00	668.00	673.00		3	3 1	2006-08-11 14:08:51	2006-08-11 14:09:01	#NV			1.67E-08	8.33E-04	3.81E-06
KLX 11A		060811 17:22:00	673.00	678.00		3	3 1	2006-08-11 16:15:05	2006-08-11 16:15:15	#NV		) #NV	1.67E-08	8.33E-04	2.92E-06
KLX 11A	060811 17:45:00	060811 20:53:00	678.00	683.00		3	3 1	2006-08-11 18:21:34	2006-08-11 18:21:44	#NV	0	) #NV	1.67E-08	8.33E-04	3.75E-06

K	LX1	1	A
---	-----	---	---

			dur_flow_p			final_head_h	initial_press_		final_press_	fluid_temp_t	fluid_elcond_e	e fluid_salinity_t	fluid_salinity_t			1
idcode	secup	seclow	hase_tp	hase_tf	hi nd_hp	f	pi	nd_pp	pf	ew	cw	dsw	dswm	reference	comments	lp
KLX 11A	308.00	313.00	1200	1200		10.48	2871	3071	2871	11.3	3					310.50
KLX 11A	313.00	318.00	) #NV	/ #NV		#NV	#NV	#NV	#N\	/ 11.4	L .					315.50
KLX 11A	318.00	323.00	) #NV	/ #NV		#NV	#NV	#NV	#N\	/ 11.5	5					320.50
KLX 11A	343.00	348.00	1200	1200		#NV	3222	3432	3312	2 11.8	3					345.50
KLX 11A	348.00					#NV	#NV	#NV	#N\							350.50
KLX 11A	353.00					#NV	#NV		#N\							355.50
KLX 11A	358.00					#NV	#N∨		#N\							360.50
KLX 11A	383.00					#NV	#N∨		#N\							385.50
KLX 11A	388.00					#NV	#NV		#N\							390.50
KLX 11A	393.00					#NV	#NV		#N\							395.50
KLX 11A	398.00					11.32	3717		3715							400.50
KLX 11A	423.00					#NV	#NV		#N\							425.50
KLX 11A	428.00					#NV	#NV		#N\							430.50
KLX 11A	433.00					#NV	#NV		#N\							435.50
KLX 11A	438.00					11.68	4087		4088							440.50
KLX 11A	442.00					#NV	4147		4150							444.50
KLX 11A	447.00					12.05	4176		4175							449.50
KLX 11A	452.00					12.02	4222		4221							454.50
KLX 11A	457.00					#NV	#NV		#N\							459.50
KLX 11A	462.00					#NV	#NV		#N\							464.50
KLX 11A	483.00					#NV	#NV		#N\							485.50
KLX 11A	488.00					#NV	#NV		#N\							490.50
KLX 11A	493.00					#NV	4613		4617							495.50
KLX 11A	498.00					12.35	4652		4652							500.50
KLX 11A	503.00					11.38	4705		4735							505.50
KLX 11A	508.00					11.83	4751		4746							510.50
KLX 11A	513.00					12.81	4795		4794							515.50
KLX 11A	518.00					12.49	4842		4844							520.50
KLX 11A	523.00					12.24	4885		4884							525.50
KLX 11A	528.00					12.73	4932		4931							530.50
KLX 11A	533.00					12.96	4981	5180	4981							535.50
KLX 11A	538.00					13.13	5032		5032							540.50
KLX 11A	563.00					#NV	#NV		#N\							565.50
KLX 11A	568.00					#NV	#N\⁄		#N\							570.50
KLX 11A	573.00					12.90	5350		5351							575.50
KLX 11A	578.00					13.02	5397		5399							580.50
KLX 11A	583.00					#NV	5452		5519							585.50
KLX 11A	588.00					#NV	#NV		#N\							590.50
KLX 11A	593.00					#NV	5546		5719							595.50
KLX 11A	598.00					13.12	5582		5586							600.50
KLX 11A	663.00					#NV	6196		6261							665.50
KLX 11A	668.00					#NV	6245		6366							670.50
KLX 11A	673.00	678.00				#NV	6288		6296							675.50
KLX 11A	678.00	683.00	10	9105		#NV	6332	6578	6338	8 16.8	3					680.50

#### KLX11A

Table

Page 8/8

plu_s_hole_test_ed1 PLU Single hole tests, pumping/injection. Basic evaluation

Column	Datatype	Unit	Column Description
site	CHAR	Unit	Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR	number	Test type code (1-7), see table description!
formation type	CHAR		Formation type code. 1: Rock, 2: Soil (superficial deposits)
lp	FLOAT	m	Hydraulic point of application for test section, see descr.
seclen_class	FLOAT	m	Planned ordinary test interval during test campaign.
spec_capacity_q_s	FLOAT	m**2/s	Specific capacity (Q/s) of test section, see table descript.
value_type_q_s	CHAR	111 2/5	0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
		m**2/s	
ransmissivity_tq	FLOAT	111 2/5	Tranmissivity based on Q/s, see table description
/alue_type_tq	CHAR		0:true value,-1:TQ <lower 1:tq="" meas.limit,="">upper meas.limit.</lower>
oc_tq	CHAR	**0 '	Best choice code. 1 means TQ is best choice of T, else 0
ransmissivity_moye	FLOAT	m**2/s	Transmissivity,TM, based on Moye (1967)
pc_tm	CHAR		Best choice code. 1 means Tmoye is best choice of T, else 0
value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
hydr_cond_moye	FLOAT	m/s	K_M: Hydraulic conductivity based on Moye (1967)
ormation_width_b	FLOAT	m	b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.
vidth_of_channel_b	FLOAT	m	B:Inferred width of formation for evaluated TB
b	FLOAT	m**3/s	TB:Flow capacity in 1D formation of T & width B, see descr.
_measl_tb	FLOAT	m**3/s	Estimated lower meas. limit for evaluated TB,see description
u_measl_tb	FLOAT	m**3/s	Estimated upper meas. limit of evaluated TB,see description
sb	FLOAT	m	SB:S=storativity,B=width of formation,1D model,see descript.
assumed_sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
eakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
ransmissivity_tt	FLOAT	m**2/s	TT:Transmissivity of formation, 2D radial flow model, see
/alue_type_tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc_tt	CHAR		Best choice code. 1 means TT is best choice of T, else 0
_measl_q_s	FLOAT	m**2/s	Estimated lower meas. limit for evaluated TT, see table descr
_measl_q_s	FLOAT	m**2/s	Estimated upper meas. limit for evaluated TT,see description
storativity_s	FLOAT	111 2/3	S:Storativity of formation based on 2D rad flow,see descr.
assumed_s	FLOAT		-
-			Assumed Storativity,2D model evaluation,see table descr.
oc_s	FLOAT		Best choice of S (Storativity) ,see descr.
i 	FLOAT	m	Radius of influence
i_index	CHAR		ri index=index of radius of influence :-1,0 or 1, see descr.
eakage_coeff	FLOAT	1/s	K'/b':2D rad flow model evaluation of leakage coeff,see desc
nydr_cond_ksf	FLOAT	m/s	Ksf:3D model evaluation of hydraulic conductivity,see desc.
value_type_ksf	CHAR		0:true value,-1:Ksf <lower meas.limit,1:ksf="">upper meas.limit,</lower>
_measl_ksf	FLOAT	m/s	Estimated lower meas.limit for evaluated Ksf,see table desc.
u_measl_ksf	FLOAT	m/s	Estimated upper meas.limit for evaluated Ksf,see table descr
spec_storage_ssf	FLOAT	1/m	Ssf:Specific storage,3D model evaluation,see table descr.
assumed_ssf	FLOAT	1/m	Ssf*:Assumed Spec.storage,3D model evaluation,see table des.
<b>;</b>	FLOAT	m**3/pa	C: Wellbore storage coefficient; flow or recovery period
d	FLOAT		CD: Dimensionless wellbore storage coefficient
skin	FLOAT		Skin factor;best estimate of flow/recovery period,see descr.
it1	FLOAT	S	Estimated start time of evaluation, see table description
it2	FLOAT	s	Estimated stop time of evaluation. see table description
1	FLOAT	s	Start time for evaluated parameter from start flow period
2	FLOAT	s	Stop time for evaluated parameter from start of flow period
ite1	FLOAT	s	Start time for evaluated parameter from start of recovery
ite2	FLOAT	s	Stop time for evaluated parameter from start of recovery
_horner	FLOAT	kPa	p*:Horner extrapolated pressure, see table description
ransmissivity_t_nlr	FLOAT	m**2/s	T_NLR Transmissivity based on None Linear Regression
torativity_s_nlr	FLOAT	23	S_NLR=storativity based on None Linear Regression.see
alue_type_t_nlr	CHAR		0:true value,-1:T_NLR <lower meas.limit,1:="">upper meas.limit</lower>
oc_t_nir	CHAR		Best choice code. 1 means T_NLR is best choice of T, else 0
_nir	FLOAT	m**3/pa	Wellbore storage coefficient, based on NLR, see descr.
d_nlr	FLOAT		Dimensionless wellbore storage constant, see table descrip.
skin_nlr	FLOAT		Skin factor based on Non Linear Regression, see desc.
ransmissivity_t_grf	FLOAT	m**2/s	T_GRF:Transmissivity based on Genelized Radial Flow,see
/alue_type_t_grf	CHAR		0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>
oc_t_grf	CHAR		Best choice code. 1 means T_GRF is best choice of T, else 0
storativity_s_grf	FLOAT		S_GRF:Storativity based on Generalized Radial Flow, see des.
low_dim_grf	FLOAT		Inferred flow dimesion based on Generalized Rad. Flow model
comment	VARCHAR	no_unit	Short comment to the evaluated parameters
error_flag	CHAR		If error_flag = "*" then an error occured and an error
n_use	CHAR		If in_use = "*" then the activity has been selected as
	010.01		aoc - monthe douvry has been beledied as

KLX11A															Page 8/9
							formation_t			spec_capacity_	value_type_	transmissivity			transmissivity_
idcode	start_date	stop_date	secup	seclow	section_no	test_type	уре	lp	seclen_class	q_s	q_s	_tq	tq	bc_tq	moye
KLX 11A	060629 14:32:00	060629 16:40:00	103.00	203.00		3		153.00	100						8.47E-06
KLX 11A	060629 18:03:00		203.00	303.00		3		253.00	100						9.74E-06
KLX 11A	060630 09:15:00		303.00	403.00		3		353.00	100						3.71E-06
KLX 11A	060630 13:11:00		403.00	503.00		3		453.00	100						7.31E-08
KLX 11A KLX 11A	060701 08:47:00 060701 12:14:00	060701 10:50:00 060701 15:43:00	503.00 603.00	603.00 703.00		3		553.00 653.00	100						1.14E-05 2.08E-09
	060701 12:14:00		703.00	803.00		3		753.00	100						2.08E-09 2.10E-09
KLX 11A KLX 11A	060702 09:11:00		803.00	903.00		3		853.00	100						2.78E-09
KLX 11A	060702 09:11:00		876.00	903.00		48		926.00	100						2.78E-09 #NV
KLX 11A	060702 14:43:00		103.00	123.00		40		113.00	20						1.20E-06
KLX 11A	060704 08:19:00	060704 09.40.00	123.00	143.00				133.00	20						3.34E-06
KLX 11A	060704 10:31:00		143.00	143.00		3		153.00	20		0				3.31E-07
KLX 11A	060704 12:43:00		163.00	183.00		3		173.00	20						2.13E-06
KLX 11A	060704 17:12:00		183.00	203.00				193.00	20						#NV
KLX 11A	060704 18:50:00	060704 19:46:00	203.00	223.00				213.00	20		-1				#NV
KLX 11A	060705 08:38:00	060705 10:07:00	223.00	243.00		48		233.00	20		-1				#NV
KLX 11A	060705 10:48:00		243.00	263.00		3		253.00	20						3.21E-08
KLX 11A	060705 13:18:00		263.00	283.00		3		273.00	20						8.42E-06
KLX 11A	060705 15:25:00		283.00	303.00		48		293.00	20		-1				#NV
KLX 11A	060705 17:25:00	060705 18:49:00	303.00	323.00		3		313.00	20						2.98E-06
KLX 11A	060705 19:21:00	060706 00:42:00	323.00	343.00		3		333.00	20		0				1.57E-10
KLX 11A	060706 08:48:00		343.00	363.00		3		353.00	20						7.89E-09
KLX 11A	060706 11:03:00		363.00	383.00		48		373.00	20						#NV
KLX 11A	060706 13:34:00		383.00	403.00		3		393.00	20						3.58E-09
KLX 11A	060706 15:54:00	060706 17:22:00	403.00	423.00		46	1	413.00	20		· -1				#NV
KLX 11A	060706 17:56:00	060706 19:21:00	423.00	443.00		3		433.00	20		0				5.08E-08
KLX 11A	060707 08:32:00		443.00	463.00		3	8 1	453.00	20		0	)			2.10E-08
KLX 11A	060707 10:33:00		463.00	483.00		4E	8 1	473.00	20		′ -1				#NV
KLX 11A	060707 13:12:00		483.00	503.00		3		493.00	20		0	)			4.79E-09
KLX 11A	060707 15:12:00		503.00	523.00		3	3 1	513.00	20		0	)			2.99E-06
KLX 11A	060707 17:07:00	060707 18:30:00	523.00	543.00		3	3 1	533.00	20		0	)			6.71E-08
KLX 11A	060707 19:07:00	060708 08:26:00	543.00	563.00		4E	1	553.00	20	#NV	-1				#NV
KLX 11A	060708 08:58:00	060708 10:21:00	563.00	583.00		3	8 1	573.00	20	7.27E-06	0	)			7.60E-06
KLX 11A	060708 10:53:00	060708 12:23:00	583.00	603.00		3	8 1	593.00	20	2.11E-07	0	)			2.21E-07
KLX 11A	060708 13:17:00	060708 14:41:00	603.00	623.00		4E	8 1	613.00	20	#NV	-1				#NV
KLX 11A	060708 15:12:00	060708 16:39:00	623.00	643.00		4E	8 1	633.00	20	#NV	-1				#NV
KLX 11A	060708 17:11:00	060708 18:34:00	643.00	663.00		4E	8 1	653.00	20		′				#NV
KLX 11A	060708 19:06:00	060709 08:39:00	663.00	683.00		3	8 1	673.00	20		0	)			6.68E-10
KLX 11A	060709 09:11:00	060709 10:40:00	683.00	703.00		4E	8 1	693.00	20						#NV
KLX 11A	060709 11:08:00	060709 13:27:00	703.00	723.00		3		713.00	20			)			2.44E-09
KLX 11A	060709 13:58:00	060709 15:13:00	723.00	743.00		4E		733.00	20		'1				#NV
KLX 11A	060709 15:45:00		743.00	763.00		4E		753.00	20		-1				#NV
KLX 11A	060709 17:25:00		763.00	783.00		4E		773.00	20						#NV
KLX 11A	060709 18:43:00		783.00	803.00		4E		793.00	20						#NV
KLX 11A	060710 08:19:00	060710 09:15:00	803.00	823.00		3		813.00	20						#NV
KLX 11A	060710 09:45:00	060710 10:37:00	823.00	843.00		3		833.00	20		-1				#NV
KLX 11A	060710 11:10:00		843.00	863.00		3		853.00	20						2.85E-09
KLX 11A	060710 14:04:00		863.00	883.00		3		873.00	20						#NV
KLX 11A	060712 07:38:00	060712 09:06:00	303.00	308.00		3	8  1	305.50	5	5.16E-07	0				4.26E-07

KLX11A																Pag	e 8/10
idcode	secup	seclow	bc_tm	value_type_t m	hydr_cond_ moye	formation_ width_b	width_of_chan	I_measl_tb	u_measl_tb	sb	assumed_ sb	leakage_f actor_lf	transmissivity_ tt	value_type_ tt	bc_tt	l_measl_q_s	u_measl_q_s
KLX 11A	103.00	203.00	0	(	0 8.47E-08								1.62E-05	0	-	8.00E-06	
KLX 11A	203.00			(	9.74E-04	-							3.21E-05	0		9.00E-06	5.00E-05
KLX 11A	303.00			(	0 3.71E-04								5.98E-06	0	-		9.00E-06
KLX 11A	403.00			(	7.31E-06								2.74E-07	0			6.00E-07
KLX 11A	503.00			(									2.35E-05	0			5.00E-05
KLX 11A	603.00	703.00	0	(	2.08E-07	•							2.33E-10	0		9.00E-11	6.00E-10
KLX 11A	703.00	803.00	0	(	2.10E-07	•							1.98E-10	0		9.00E-11	4.00E-10
KLX 11A	803.00	903.00	0	(	2.78E-07	•							2.94E-09	0		8.00E-10	4.00E-09
KLX 11A	876.00	976.00	0	_^	1 #N∖	1							4.02E-11	0		1.00E-11	8.00E-11
KLX 11A	103.00	123.00	0	(	2.40E-05	i							4.90E-06	0	-	3.00E-06	8.00E-06
KLX 11A	123.00	143.00	0	(	0 6.68E-05	5							8.11E-06	0		7.00E-06	1.00E-05
KLX 11A	143.00	163.00	0	(	0 6.62E-06	5							1.43E-07	0		8.00E-08	4.00E-07
KLX 11A	163.00	183.00	0	(	0 4.26E-05	5							6.48E-06	0		4.00E-06	1.00E-05
KLX 11A	183.00	203.00	0		1 #N∖	1							1.00E-11	-1		1.00E-13	1.00E-11
KLX 11A	203.00	223.00	0		1 #N∖	1							1.00E-11	-1		1.00E-13	1.00E-11
KLX 11A	223.00	243.00	0		1 #N∖	1							3.29E-10	0		1.00E-10	6.00E-10
KLX 11A	243.00			(	0 6.42E-07	,							3.68E-08	0		8.00E-09	8.00E-08
KLX 11A	263.00	283.00	0	(	1.68E-04	Ļ							3.56E-05	0		9.00E-06	6.00E-05
KLX 11A	283.00	303.00	0		1 #N∖	1							2.20E-11	0		9.00E-12	6.00E-11
KLX 11A	303.00	323.00	0	(	5.96E-05								5.77E-06	0		3.00E-06	9.00E-06
KLX 11A	323.00	343.00	0	(	) 3.14E-09	)							5.45E-11	0		2.00E-11	9.00E-11
KLX 11A	343.00			(									4.25E-09	0			8.00E-09
KLX 11A	363.00			-									1.05E-11	0			5.00E-11
KLX 11A	383.00	403.00	0	(	7.16E-08	1							3.27E-09	0		9.00E-10	5.00E-09
KLX 11A	403.00	423.00	0		1 #N∖	1							2.93E-11	0		9.00E-12	8.00E-11
KLX 11A	423.00	443.00	0	(	1.02E-06	;							1.99E-07	0		8.00E-08	6.00E-07
KLX 11A	443.00			(	0 4.20E-07	•							3.10E-08	0		9.00E-09	6.00E-08
KLX 11A	463.00	483.00	0		1 #N∖	1							5.69E-11	0		2.00E-11	9.00E-11
KLX 11A	483.00	503.00	0	(	9.58E-08	6							2.52E-09	0		9.00E-10	5.00E-09
KLX 11A	503.00	523.00	0	(	5.98E-05	5							4.11E-06	0		1.00E-06	7.00E-06
KLX 11A	523.00	543.00	0	(	1.34E-06	i							2.17E-07	0	-	8.00E-08	6.00E-07
KLX 11A	543.00	563.00	0		1 #N∖	1							1.22E-12	0	-	7.00E-13	4.00E-12
KLX 11A	563.00	583.00	0	(	0 1.52E-04	Ļ							2.73E-05	0		9.00E-06	5.00E-05
KLX 11A	583.00	603.00	0	(	0 4.42E-06	i							7.93E-07	0		5.00E-07	1.00E-06
KLX 11A	603.00	623.00	0	-*	1 #NV	1							4.37E-11	0	-	1.00E-11	9.00E-11
KLX 11A	623.00	643.00	0	-*	1 #NV	1							1.31E-11	0	-	9.00E-12	4.00E-11
KLX 11A	643.00	663.00	0	-*	1 #NV	1							2.12E-12	0	-	9.00E-13	6.00E-12
KLX 11A	663.00	683.00	0	(	1.34E-08	6							1.98E-10	0		9.00E-11	7.00E-10
KLX 11A	683.00	703.00	0	_^	1 #N∖	1							1.55E-10	0		6.00E-11	3.00E-10
KLX 11A	703.00	723.00	0	(	0 4.88E-08	1							2.57E-10	0	-	8.00E-11	6.00E-10
KLX 11A	723.00	743.00	0	-	1 #NV	1							1.00E-11	-1	-	1.00E-13	1.00E-11
KLX 11A	743.00	763.00	0	-									1.00E-11	-1			1.00E-11
KLX 11A	763.00				1 #N∖	1							1.00E-11	-1		1.00E-13	1.00E-11
KLX 11A	783.00	803.00	0	-	1 #NV	1							1.00E-11	-1	-	1.00E-13	1.00E-11
KLX 11A	803.00			-	1 #N∖	1							1.00E-11	-1		1.00E-13	1.00E-11
KLX 11A	823.00			-*	1 #N∖	1							1.00E-11	-1		1.00E-13	1.00E-11
KLX 11A	843.00	863.00		(									8.20E-10	0			1.00E-09
KLX 11A	863.00			-									1.00E-11	-1	-		1.00E-11
KLX 11A	303.00			(	2.13E-06								6.00E-07	0		2.00E-07	9.00E-07

KLX11A																	Pa	ge 8/11
idcode	secup	seclow	storativity_s	assumed_s	bc_s ri	ri_index	leakage_ oeff	_c hydr_cond_ ksf	value_type_ ksf	l_measl_k sf	ku_measl_ ksf	spec_storage_ ssf	assumed_s sf	с	cd	skin	dt1	dt2
KLX 11A	103.00	203.00	1.00E-06	1.00E+06	192.28	0								3.08E-09	3.4E-0	6.70	0.73	3 21.10
KLX 11A	203.00	303.00	1.00E-06	1.00E-06	228.13	0	)							2.34E-09	2.6E-0 ⁻	l 19.11	0.40	5.27
KLX 11A	303.00	403.00	1.00E-06	1.00E-06	42.22	1								4.38E-10	4.8E-02	2 14.20	1.78	9.33
KLX 11A	403.00	503.00	1.00E-06	1.00E-06	69.34	0	)							2.40E-10	2.6E-02	2 20.25	5 #N\	/ #NV
KLX 11A	503.00	603.00	1.00E-06	1.00E-06	211.02	0	)							3.25E-09	3.6E-0 ⁻	7.43	0.68	3 22.28
KLX 11A	603.00	703.00	1.00E-06	1.00E-06	16.75	-1								1.94E-10	2.1E-02	-1.87	′ #N\	/ #NV
KLX 11A	703.00	803.00	1.00E-06	1.00E-06	39.38	0	)							2.35E-10	2.6E-02	-2.72	2 #N\	/ #NV
KLX 11A	803.00	903.00	1.00E-06	1.00E-06	44.63	-1								3.08E-10	) 3.4E-02	2 1.70	) #N\	/ #NV
KLX 11A	876.00	976.00	1.00E-06	1.00E-06	11.34	0	)							2.57E-10	2.8E-02	-1.50	) #N\	/ #NV
KLX 11A	103.00		1.00E-06		116.43									6.32E-10			0.61	
KLX 11A	123.00	143.00	1.00E-06	1.00E-06	37.35	-1								1.23E-09	1.4E-01	7.92	0.47	
KLX 11A	143.00	163.00	1.00E-06	1.00E-06	40.13	1								9.52E-11	1.0E-02	2 1.14	6.49	27.49
KLX 11A	163.00	183.00	1.00E-06		124.85									6.67E-10	7.4E-02	2 10.93	0.49	9 16.72
KLX 11A	183.00	203.00	1.00E-06	1.00E-06	#NV	#NV	r							#NV	/ #NV	#NV	′ #N∖	/ #NV
KLX 11A	203.00		1.00E-06		#NV		r							#NV	/ #NV	#NV	′ #N∖	
KLX 11A	223.00		1.00E-06		15.81									5.84E-11				
KLX 11A	243.00		1.00E-06		#NV									5.85E-11				
KLX 11A	263.00		1.00E-06		191.15									3.17E-09				
KLX 11A	283.00	303.00	1.00E-06	1.00E-06	8.04	0								5.62E-11	6.2E-03	-0.72	2 #N∖	
KLX 11A	303.00		1.00E-06		17.70									4.83E-10			0.31	
KLX 11A	323.00	343.00	1.00E-06	1.00E-06	23.29	-1								1.15E-11	1.3E-03	3 1.04	#N\	
KLX 11A	343.00		1.00E-06	1.00E-06	#NV									2.49E-10	2.7E-02	-3.40	) #N\	
KLX 11A	363.00		1.00E-06		8.09									3.59E-11			15.64	4 60.85
KLX 11A	383.00	403.00	1.00E-06	1.00E-06	#NV	-1								6.14E-11	6.8E-03	3 2.51	#N\	/ #NV
KLX 11A	403.00	423.00	1.00E-06	1.00E-06	8.24	0								6.80E-11	7.5E-03	-1.01	#N\	/ #NV
KLX 11A	423.00		1.00E-06		52.27									4.62E-11	5.1E-03	3 21.07		
KLX 11A	443.00	463.00	1.00E-06	1.00E-06	32.89									5.04E-11			0.38	
KLX 11A	463.00		1.00E-06		13.16									6.25E-11			9.04	32.95
KLX 11A	483.00	503.00	1.00E-06	1.00E-06	#NV									5.96E-11	6.6E-03	3 0.22	2 #N\	/ #NV
KLX 11A	503.00		1.00E-06		111.42									1.16E-09				
KLX 11A	523.00		1.00E-06		53.41									8.54E-11				
KLX 11A	543.00		1.00E-06		#NV									1.10E-11				
KLX 11A	563.00		1.00E-06		178.87									1.62E-09				
KLX 11A	583.00		1.00E-06		#NV									1.61E-10				
KLX 11A	603.00		1.00E-06		9.11									5.49E-11				
KLX 11A	623.00		1.00E-06		#NV									5.95E-11				
KLX 11A	643.00		1.00E-06	1.00E-06	#NV									3.10E-11				
KLX 11A	663.00		1.00E-06		4.58									4.63E-11				
KLX 11A	683.00		1.00E-06		#NV									5.33E-11				
KLX 11A	703.00		1.00E-06		14.01									1.42E-10				
KLX 11A	723.00		1.00E-06		#NV									#NV		#NV	′ #N\	
KLX 11A	743.00		1.00E-06		#NV									#NV		#NV	′ #N∖	
KLX 11A	763.00		1.00E-06		#NV									#N∨		#N∨		
KLX 11A	783.00		1.00E-06		#NV									#NV		#NV		
KLX 11A	803.00		1.00E-06		#NV									#NV		#NV		
KLX 11A	823.00		1.00E-06		#NV									#NV		#NV	′ #N\	
KLX 11A	843.00		1.00E-06		13.24									8.79E-11				
KLX 11A	863.00		1.00E-06		#NV									#NV		#NV		
KLX 11A	303.00	308.00	1.00E-06	1.00E-06	68.87	0								3.62E-11	4.0E-03	0.25	0.50	17.83

KLX11A																			Pa	age 8/12
								transmissivity_t	storativity s	value type t					transmissivity_t	value type t		storativity_s_	flow dim	
idcode	secup	seclow	t1	t2	dte1	dte2	p horner	nir	nir	nir	bc_t_nlr	c nlr	cd nlr	skin nlr			bc_t_grf		grf	comment
KLX 11A	. 103.00	203.	.00				1838.6	6	-	-		-			6.21E-06	1		1.00E-06	•	
KLX 11A	203.00						2776.6								8.10E-06			1.00E-06	2.1	
KLX 11A	303.00	403.					3705.2								1.50E-06			1.00E-06	2.2	
KLX 11A	403.00	503.	.00				4649.1	1							#NV	0	0	1.00E-06	#NV	
KLX 11A	503.00	603.	.00				5579.0	)							9.04E-06	0	0	1.00E-06	2.1	
KLX 11A	603.00	703.	.00				6513.4	Ļ							1.62E-09	0	0	1.00E-06	1.58	
KLX 11A	703.00	803.	.00				7429.3	3							6.04E-10	0	0	1.00E-06	1.5	
KLX 11A	803.00	903.	.00				8333.1								1.82E-09	0	0	1.00E-06	1.7	
KLX 11A	876.00	976.	.00				#N∖	/							6.24E-10	0		1.00E-06	1.33	
KLX 11A	103.00						1092.9								#NV	0		1.00E-06	#NV	
KLX 11A	123.00						1275.5	5							1.20E-06			1.00E-06	2.3	
KLX 11A	143.00						1443.8								6.65E-08	0		1.00E-06	2.3	
KLX 11A	163.00						1650.5								#NV	0		1.00E-06	#NV	
KLX 11A	183.00						#N∖								1.00E-11	-1		1.00E-06	#NV	
KLX 11A	203.00						#N\								1.00E-11	-1		1.00E-06	#NV	
KLX 11A	223.00						#N\								8.49E-10	0		1.00E-06	1.79	
KLX 11A	243.00						2401.2								#NV	0		1.00E-06		
KLX 11A	263.00						2589.2								#NV	0		1.00E-06	#NV	
KLX 11A	283.00						#N\⁄								1.01E-10			1.00E-06	1.49	
KLX 11A	303.00						2958.2								9.73E-07	0		1.00E-06	2.3	
KLX 11A	323.00						3137.1								#NV	0		1.00E-06	#NV	
KLX 11A	343.00						#N\								4.25E-09	0		1.00E-06	1.6	
KLX 11A	363.00						#N\								3.21E-11	0		1.00E-06	1.75	
KLX 11A	383.00						3699.9								#NV			1.00E-06	#NV	
KLX 11A	403.00					_	#NV								1.81E-10	0		1.00E-06	1.45	
KLX 11A	423.00				_		4086.5								#NV	0		1.00E-06	#NV	
KLX 11A	443.00				_		4269.7								#NV	0		1.00E-06	#NV	
KLX 11A	463.00					-	#NV								1.59E-10	0		1.00E-06 1.00E-06	1.7 #NV	
KLX 11A KLX 11A	483.00 503.00				_	_	4645.5								#NV #NV	0		1.00E-06	#NV #NV	
KLX 11A KLX 11A	503.00						4830.4								#NV #NV	0		1.00E-06	#NV #NV	
KLX 11A	543.00						5023.2 #NV								1.74E-11	0		1.00E-06	#INV	
KLX 11A	563.00						5392.3								8.24E-06			1.00E-06	2.1	
KLX 11A	583.00					+	5581.5								7.93E-07	0		1.00E-06	1.95	
KLX 11A	603.00					+	5561.5 #NV								1.09E-09	0		1.00E-06	1.95	
KLX 11A	623.00					-	#NV								1.03L=03 #NV	0		1.00E-00	#NV	
KLX 11A	643.00						#NV								5.34E-12	0		1.00E-00	1.6	
KLX 11A	663.00					1	6317.5				1				#NV	0		1.00E-00	#NV	
KLX 11A	683.00					1	#NV				1				2.60E-10	0	-	1.00E-00	1.87	
KLX 11A	703.00					1	#NV				1				#NV	0		1.00E-00	#NV	
KLX 11A	723.00					1	#NV								#NV	-1		1.00E-06	#NV	
KLX 11A	743.00				1	1	#NV								#NV	-1		1.00E-06	#NV	
KLX 11A	763.00					1	#NV								#NV	-1		1.00E-06	#NV	
KLX 11A	783.00	803.				1	#NV								#NV	-1		1.00E-06	#NV	
KLX 11A	803.00					1	#N\								#NV	-1		1.00E-06	#NV	
KLX 11A	823.00	843.	.00				#N∖	/							#NV	-1		1.00E-06	#NV	
KLX 11A	843.00	863.					#N\								#NV	0		1.00E-06	#NV	
KLX 11A	863.00						#N\	/							#NV	-1		1.00E-06	#NV	
KLX 11A	303.00	308.	.00				2822.7	7							1.47E-06	0	0	1.00E-06	1.9	

KLX11A															Page 8/13
idcode	start date	aton data	secup	seclow	section no	toot turo	formation_	ln.	seclen class	spec_capacity_		transmissivity		ha ta	transmissivity_
		stop_date				test_type	type	lp		q_s	q_s	_tq	tq	bc_tq	moye
KLX 11A	060712 09:30:00	060712 10:51:00		313.00		3		310.50		5 2.62E-06 5 #NV	0				2.16E-06
KLX 11A KLX 11A	060712 11:13:00 060712 13:09:00	060712 12:03:00 060712 13:57:00		318.00 323.00		3	-	315.50 320.50		5 #NV 5 #NV	-1				#NV #NV
KLX 11A	060712 13:09:00	060712 13:57:00		348.00		3		345.50		5 7.79E-09	-1				6.43E-09
KLX 11A	060712 14:31:00	060712 10:11:00		353.00		3		350.50	-	5 7.79E-09 5 #NV	-1				#NV
KLX 11A	060712 10:56:00	060712 17:30:00		358.00		3		355.50		5 #NV	-1				#NV
KLX 11A	060713 07:52:00	060713 08:41:00		363.00		3		360.50		5 #NV	-1				#NV
KLX 11A	060713 09:14:00	060713 10:05:00		388.00		3		385.50		5 #NV	-1				#NV
KLX 11A	060713 10:28:00	060713 11:17:00		393.00		3		390.50		5 #NV	-1				#NV
KLX 11A	060713 12:29:00	060713 13:20:00		398.00		3		395.50		5 #NV	-1				#NV
KLX 11A	060713 13:44:00	060713 15:16:00		403.00		3	1	400.50		5 3.49E-09	0				2.88E-09
KLX 11A	060713 15:46:00	060713 16:55:00	423.00	428.00		3	1	425.50		5 #NV	-1				#NV
KLX 11A	060713 16:59:00	060713 17:47:00	428.00	433.00		3	1	430.50	ę	5 #NV	-1				#NV
KLX 11A	060714 07:59:00	060714 08:46:00	433.00	438.00		3	1	435.50	Į	5 #NV	-1				#NV
KLX 11A	060714 09:17:00	060714 10:39:00	438.00	443.00		3	1	440.50	!	5 5.69E-08	0				4.70E-08
KLX 11A	060714 11:06:00	060714 12:51:00	442.00	447.00		4B	1	444.50	!	5 #NV	-1				#NV
KLX 11A	060714 13:16:00	060714 14:37:00		452.00		3	1	449.50	!	5 8.78E-09	0				1.06E-08
KLX 11A	060714 15:01:00	060714 16:22:00		457.00		3	1	454.50	ł	5 1.34E-08	0				1.10E-08
KLX 11A	060714 16:45:00	060714 17:35:00		462.00		3	1	459.50	ł	5 #NV	-1				#NV
KLX 11A	060714 18:01:00	060714 18:50:00		467.00		3		464.50		5 #NV	-1				#NV
KLX 11A	060715 08:16:00	060715 09:05:00		488.00		3	-	485.50	-	5 #NV	-1				#NV
KLX 11A	060715 09:29:00	060715 10:19:00		493.00		3		490.50		5 #NV	-1				#NV
KLX 11A	060715 10:47:00	060715 13:39:00		498.00		4B		495.50		5 #NV	-1				#NV
KLX 11A	060715 14:04:00	060715 15:29:00		503.00		3		500.50		5 3.90E-10	0				2.80E-09
KLX 11A	060715 15:53:00	060715 17:47:00		508.00		3		505.50		5 1.53E-08	0				1.26E-08
KLX 11A	060715 18:09:00	060715 21:14:00		513.00		3		510.50		5 1.31E-08	0				1.09E-08
KLX 11A	060808 15:30:00	060808 17:15:00		518.00		3		515.50		5 9.44E-07	0				7.79E-07
KLX 11A	060808 17:47:00	060808 19:37:00		523.00		3		520.50		5 2.51E-06	0				2.07E-06
KLX 11A	060809 08:08:00	060809 09:41:00		528.00		3		525.50		5 7.00E-09	0				5.77E-09
KLX 11A	060809 10:08:00	060809 11:34:00		533.00 538.00		3		530.50		5 3.84E-08 5 8.22E-08	0				3.17E-08
KLX 11A KLX 11A	060809 12:48:00 060809 14:40:00	060809 14:16:00 060809 16:19:00		538.00		3		535.50 540.50	-	5 8.22E-08 5 1.35E-09	0				6.78E-08 1.12E-09
KLX 11A	060809 14:40:00	060809 17:53:00		568.00		3		540.50		5 1.35E-09 5 #NV	-1				1.12E-09 #NV
KLX 11A	060809 18:17:00	060809 19:11:00		573.00		3		570.50		5 #NV	-1				#NV
KLX 11A	060810 08:06:00	060810 09:34:00		578.00		3		575.50		5 3.36E-06	-1				2.77E-06
KLX 11A	060810 10:02:00	060810 11:28:00		583.00		3		580.50		5 4.56E-06	0				3.76E-06
KLX 11A	060810 12:20:00	060810 14:15:00		588.00		4B		585.50		5 4.50E-00 5 #NV	-1				3.70E-00 #NV
KLX 11A	060810 14:41:00	060810 16:05:00		593.00		4B		590.50		5 #NV	-1				#NV
KLX 11A	060810 16:33:00	060810 18:19:00		598.00		4B		595.50		5 #NV	-1		1		#NV
KLX 11A	060811 08:01:00	060811 09:26:00		603.00		3		600.50		5 2.20E-07	0		1		1.82E-07
KLX 11A	060811 10:29:00	060811 13:01:00		668.00		3		665.50		5 7.05E-10	0		1		5.82E-10
KLX 11A	060811 13:30:00	060811 15:14:00		673.00		4B		670.50		5 #NV	-1		1		#NV
KLX 11A	060811 15:38:00	060811 17:22:00		678.00		4B		675.50		5 #NV	-1		1		#NV
KLX 11A	060811 17:45:00	060811 20:53:00		683.00		4B	1	680.50		5 #NV	-1				#NV

KLX11A																F	Page 8/14
idcode	secup	seclow	bc_tm	value_type_t m	t hydr_cond_ moye	formation_ width_b	width_of_channel_ b	tb	l_measl_tb	u_measl_tb	s	-	transmissivity_ tt	value_type_ tt	bc_tt	l_measl_q_s	u_measl_q_s
KLX 11A	308.00	313.00	0 0	) (	0 1.08E-05	5							 6.46E-06	0	1	2.00E-06	9.00E-06
KLX 11A	313.00			) -									1.00E-11	-1	1		
KLX 11A	318.00			) -									1.00E-11		1		
KLX 11A	343.00	348.00	0	) (	0 3.22E-08	3							3.58E-09	0	1	1.00E-09	8.00E-09
KLX 11A	348.00	353.00	0	) -	1 #NV	/							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	353.00	358.00	0 0	) -	1 #NV	(							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	358.00	363.00	) (	) -	1 #NV	/							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	383.00	388.00	) (	) -	1 #NV	/							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	388.00	393.00	0 0	) _	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	393.00	398.00	) (	) -	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	398.00	403.00	0 0	) (	0 1.44E-08	3							2.96E-09	0	1	9.00E-10	6.00E-09
KLX 11A	423.00	428.00	0 0	) -	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	428.00	433.00	0 0	) -	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	433.00	438.00	0	) -	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	438.00	443.00	0 0	) (	0 2.35E-07	7							1.89E-07	0	1	9.00E-08	5.00E-07
KLX 11A	442.00	447.00	0 0	) -	1 #NV	1							1.22E-10	0	1	8.00E-11	
KLX 11A	447.00	452.00	0 0	)	0 5.30E-08	3							1.37E-08	0	1	8.00E-09	3.00E-08
KLX 11A	452.00	457.00	0	) (	0 5.50E-08	3							2.20E-08	0	1	8.00E-09	4.00E-08
KLX 11A	457.00	462.00	0	) -	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	462.00	467.00	0 0	) -	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	483.00	488.00	0 0	) -	1 #NV	1							1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 11A	488.00	493.00	0 0	) -	1 #NV	(							1.00E-11	-1	1	1.00E-13	
KLX 11A	493.00			) -									2.60E-10		1	9.00E-11	
KLX 11A	498.00			) (	0 1.40E-08								2.54E-09		1		
KLX 11A	503.00	508.00	0 0	) (	0 6.30E-08	3							1.08E-08	0	1	7.00E-09	
KLX 11A	508.00		) (	) (	0 5.45E-08								1.30E-08		1		
KLX 11A	513.00				0 3.90E-06								4.04E-06		1	2.002 00	
KLX 11A	518.00				0 1.04E-05								4.66E-06	0	1	2.002.00	
KLX 11A	523.00				0 2.89E-08								4.24E-08		1		
KLX 11A	528.00				0 1.59E-07								6.70E-08	0	1	0.002.00	
KLX 11A	533.00				0 3.39E-07								3.74E-07		1	9.00E-08	
KLX 11A	538.00				0 5.60E-09								4.05E-09		1	1.00E-09	
KLX 11A	563.00												1.00E-11		1		
KLX 11A	568.00												1.00E-11		1		
KLX 11A	573.00				0 1.39E-05								1.50E-05		1		
KLX 11A	578.00				0 1.88E-05								1.03E-05				
KLX 11A	583.00				1 #NV								1.16E-11				
KLX 11A	588.00												1.00E-11				
KLX 11A	593.00			-									4.24E-12			1.002 12	
KLX 11A	598.00				0 9.10E-07								3.76E-07				
KLX 11A	663.00				0 2.91E-09								1.34E-10		1	0.002	4.00E-10
KLX 11A	668.00				1 #NV								1.17E-11		1	0.002 12	
KLX 11A	673.00												8.98E-11		1	0.002 11	2.00E-10
KLX 11A	678.00	683.00	0	) -	1 #NV	/							8.40E-11	0	1	6.00E-11	1.00E-10

KLX11A																	Page	e 8/15
								leakage_c	hydr_cond_	value_type_	l_measl_k	<ul> <li>u_measl_</li> </ul>	spec_storage_	assumed_s				
idcode	secup	seclow	storativity_s	assumed_s	bc_s	ri	ri_index	oeff	ksf	ksf	sf	ksf	ssf	sf c	cd	skin	dt1	dt2
KLX 11A	308.00			1.00E-06		60.40	1							3.46E-1			3.33	3 12.15
KLX 11A	313.00			1.00E-06		#NV	#NV							#N				
KLX 11A	318.00			1.00E-06		#NV	#NV							#N				
KLX 11A	343.00			1.00E-06		#NV	1							1.29E-2				
KLX 11A	348.00			1.00E-06		#NV	#NV							#N				
KLX 11A	353.00			1.00E-06		#NV	#NV							#N				
KLX 11A	358.00			1.00E-06		#NV	#NV							#N				
KLX 11A	383.00			1.00E-06		#NV	#NV							#N				
KLX 11A	388.00			1.00E-06		#NV	#NV							#N				
KLX 11A	393.00			1.00E-06		#NV	#NV							#N		#NV		
KLX 11A	398.00			1.00E-06		#NV	-1							1.95E-1				
KLX 11A	423.00			1.00E-06		#NV	#NV							#N				
KLX 11A	428.00			1.00E-06		#NV	#NV		+					#N				
KLX 11A	433.00			1.00E-06		#NV	#NV		+					#N				
KLX 11A	438.00			1.00E-06		51.60	0							2.35E-1				
KLX 11A	442.00			1.00E-06		4.25	-1							3.83E-1				
KLX 11A	447.00			1.00E-06		-	•					-		1.32E-				
KLX 11A KLX 11A	452.00			1.00E-06 1.00E-06		30.14 #NV	0 #NV							1.10E-* #N				
KLX 11A	462.00			1.00E-06		#NV	#NV #NV							#N #N				
KLX 11A	482.00			1.00E-06		#NV	#NV							#N #N		#NV		
KLX 11A	483.00			1.00E-06		#NV	#NV							#N				
KLX 11A	488.00			1.00E-06		11.11	#NV							1.19E-1				
KLX 11A	498.00			1.00E-00		#NV	-1							2.22E-2				
KLX 11A	503.00			1.00E-06		25.23	1							7.70E-				
KLX 11A	508.00			1.00E-06		8.52	1							1.78E-				
KLX 11A	513.00			1.00E-06		110.94	0							4.90E-				
KLX 11A	518.00			1.00E-06		114.97	0							1.17E-0		3.34		
KLX 11A	523.00			1.00E-06		35.51	-1							4.63E-				
KLX 11A	528.00	533.00	1.00E-06	1.00E-06		39.81	0							2.26E-1	1 2.5E-03	5.03	1.09	
KLX 11A	533.00	538.00	1.00E-06	1.00E-06		61.20	0							2.96E-1	1 3.3E-03	21.29	#N\	/ #NV
KLX 11A	538.00	543.00	1.00E-06	1.00E-06		19.74	-1							1.90E-1	1 2.1E-03	10.00	#N\	/ #NV
KLX 11A	563.00	568.00	1.00E-06	1.00E-06		#NV	#NV							#N	V #NV	#NV	#N\	/ #NV
KLX 11A	568.00	573.00	1.00E-06	1.00E-06		#NV	#NV							#N		#NV	#N\	/ #NV
KLX 11A	573.00	578.00	1.00E-06	1.00E-06		154.00	0							7.68E-1	0 8.5E-02	19.70	0.53	3 8.47
KLX 11A	578.00			1.00E-06		140.19	0							1.40E-0		5.59		
KLX 11A	583.00			1.00E-06		8.22	1							1.23E-1				
KLX 11A	588.00			1.00E-06		#NV	#NV							#NV	#NV			
KLX 11A	593.00			1.00E-06		6.22	0							1.89E-1				
KLX 11A	598.00			1.00E-06		29.55	1							1.23E-1				
KLX 11A	663.00			1.00E-06		8.42	1							3.94E-1				
KLX 11A	668.00			1.00E-06		7.91	0							1.65E-1				
KLX 11A	673.00			1.00E-06		13.36	0					-		1.19E-1		0.10		
KLX 11A	678.00	683.00	1.00E-06	1.00E-06		20.64	0					1		1.52E-1	1 1.7E-03	-0.32	1.95	5 16.97

KI X11A

Page 8/15

KLX11A																		F	age 8/16
							transmissivity_t	storativity_s	value_type_t					transm	nissivity_t	value_type_t	storativity_s	flow_dim_	
idcode	secup	seclow	t1	t2 dte	e1 dte	2 p_horner	_nir	_nlr	_nir	bc_t_nlr	c_nlr	cd_nlr	skin_nlr		/-	_grf bc_t_gr		grf	comment
KLX 11A	308.00	313.00				2867.5	5								1.49E-06	00	1.00E-0	6 2.2	
KLX 11A	313.00					#NV									#NV		1.00E-0		
KLX 11A	318.00	323.00				#NV									#NV		1.00E-0	-	
KLX 11A	343.00	348.00				#N\	/								3.58E-09	0 0	1.00E-0	6 1.76	
KLX 11A	348.00	353.00				#N\									#NV		1.00E-0		
KLX 11A	353.00					#N\									#NV		1.00E-0		
KLX 11A	358.00	363.00				#N\	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	383.00	388.00				#N\	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	388.00	393.00				#N\	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	393.00	398.00				#N\	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	398.00	403.00				3712.4	1								#NV	0 0	1.00E-0	6 #NV	
KLX 11A	423.00	428.00	1			#N\	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	428.00	433.00	1			#N\	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	433.00	438.00				#NV	/								#NV		1.00E-0		
KLX 11A	438.00	443.00				4087.3	3								2.77E-08		1.00E-0		
KLX 11A	442.00	447.00				#NV	/								1.20E-10	0 0	1.00E-0	6 2.23	
KLX 11A	447.00	452.00				4174.5	5								#NV	0 0	1.00E-0	6 #NV	
KLX 11A	452.00	457.00				4220.6	6								#NV	0 0	1.00E-0	6 #NV	
KLX 11A	457.00	462.00				#N∖	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	462.00	467.00				#N\	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	483.00	488.00				#N\	/								#NV		1.00E-0	6 #NV	
KLX 11A	488.00	493.00				#NV	/								#NV	-1 0	1.00E-0	6 #NV	
KLX 11A	493.00	498.00				#NV	/								#NV	0 0	1.00E-0	6 #NV	
KLX 11A	498.00	503.00				4650.5	5								#NV		1.00E-0	6 #NV	
KLX 11A	503.00	508.00				4687.3	3								7.87E-09	0 0	1.00E-0	6 2.1	
KLX 11A	508.00	513.00				4738.0	)								1.30E-08	0 0	1.00E-0	6 1.86	
KLX 11A	513.00	518.00				4794.0									#NV		1.00E-0	6 #NV	
KLX 11A	518.00	523.00				4837.1	I								#NV		1.00E-0	6 #NV	
KLX 11A	523.00	528.00				4881.0	)								#NV	0 0	1.00E-0	6 #NV	
KLX 11A	528.00					4932.1									3.14E-09		1.00E-0		
KLX 11A	533.00					4980.7									2.78E-08		1.00E-0	-	
KLX 11A	538.00	543.00				5028.7	7								#NV		1.00E-0	6 #NV	
KLX 11A	563.00					#N∖									#NV		1.00E-0	6 #NV	
KLX 11A	568.00					#N\									#NV		1.00E-0		
KLX 11A	573.00	578.00				5350.3									#NV		1.00E-0		
KLX 11A	578.00					5397.7									4.15E-06		1.00E-0	-	
KLX 11A	583.00	588.00				#N∖									2.55E-10		1.00E-0	-	
KLX 11A	588.00	593.00				#N\									#NV		1.00E-0		
KLX 11A	593.00	598.00				#N\									#NV		1.00E-0	6 #NV	
KLX 11A	598.00	603.00				5583.6									#NV		1.00E-0		
KLX 11A	663.00	668.00				#N\									#NV		1.00E-0		
KLX 11A	668.00					#N\									5.67E-11		1.00E-0		
KLX 11A	673.00					#N\									#NV		1.00E-0		
KLX 11A	678.00	683.00				#N∖	/								#NV	0 0	1.00E-0	6 #NV	

Table	e	• = =	Dle_test_obs ections of single hole test
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section, at stop flow period
pf_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
pp_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
pf_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

KLX11A														Page
idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX 11A	060629 14:32:00	060629 16:40:00	103.00	203.00		204.00	992.29	915	917	917	1872	1872	1872	
KLX 11A	060629 18:03:00	060629 20:21:00	203.00	303.00		304.00	992.29			1846				
KLX 11A	060630 09:15:00	060630 11:12:00	303.00	403.00		404.00	992.29			2778	-	-	-	
KLX 11A	060630 13:11:00	060630 15:20:00	403.00	503.00		504.00	992.29		-	3712				
KLX 11A	060701 08:47:00	060701 10:50:00	503.00	603.00		604.00	992.29		4641	4642				
KLX 11A	060701 12:14:00	060701 15:43:00	603.00	703.00		704.00	992.29			5578				
KLX 11A	060701 17:09:00	060702 01:32:00	703.00	803.00		804.00	992.29			6502				
KLX 11A	060702 09:11:00	060702 13:33:00	803.00	903.00		904.00	992.29	-	-	7428				
KLX 11A	060702 14:45:00	060702 16:49:00	876.00	976.00		977.00	992.29			8100		9487	9515	
KLX 11A	060704 08:19:00	060704 09:46:00	103.00	123.00		124.00	992.29			924				
KLX 11A	060704 10:31:00	060704 11:54:00	123.00	143.00		144.00	992.29			1112		1310	1310	
KLX 11A	060704 12:49:00	060704 14:32:00	143.00	163.00		164.00	992.29			1295				
KLX 11A	060704 15:05:00	060704 16:33:00	163.00	183.00		184.00	992.29		-	1483				
KLX 11A	060704 17:12:00	060704 18:14:00	183.00	203.00		204.00	992.29			#NV				
KLX 11A	060704 18:50:00	060704 19:46:00	203.00	223.00		224.00	992.29			#NV				
KLX 11A	060705 08:38:00	060705 10:07:00	223.00	243.00		244.00	992.29			2036		-		
KLX 11A	060705 10:48:00	060705 12:22:00	243.00	263.00		264.00	992.29		2221	2221	2434	-	-	
KLX 11A	060705 13:18:00	060705 14:44:00	263.00	283.00		284.00	992.29	2406	2407	2407	2622	2622	2622	
KLX 11A	060705 15:25:00	060705 16:51:00	283.00	303.00		304.00	992.29	2588	2588	2588	2809	2809	2808	
KLX 11A	060705 17:25:00	060705 18:49:00	303.00	323.00		324.00	992.29		2775	2775	2995	2995	2995	
KLX 11A	060705 19:21:00	060706 00:42:00	323.00	343.00		344.00	992.29	2961	2961	2961	3182	3182	3181	
KLX 11A	060706 08:48:00	060706 10:30:00	343.00	363.00		364.00	992.29	3148	3148	3148	3367	3367	3368	
KLX 11A	060706 11:03:00	060706 12:55:00	363.00	383.00		384.00	992.29	3335	3335	3335	3555	3555	3555	
KLX 11A	060706 13:34:00	060706 15:02:00	383.00	403.00		404.00	992.29	3522	3522	3522	3742	3742	3742	
KLX 11A	060706 15:54:00	060706 17:22:00	403.00	423.00		424.00	992.29	3708	3708	3707	3928	3928	3928	
KLX 11A	060706 17:56:00	060706 19:21:00	423.00	443.00		444.00	992.29	3894	3894	3894	4114	4114	4114	
KLX 11A	060707 08:32:00	060707 10:01:00	443.00	463.00		464.00	992.29	4078	4078	4078	4297	4297	4297	
KLX 11A	060707 10:33:00	060707 12:34:00	463.00	483.00		484.00	992.29	4265	4265	4265	4485	4485	4485	
KLX 11A	060707 13:12:00	060707 14:44:00	483.00	503.00		504.00	992.29	4455	4455	4455	4673	4673	4673	
KLX 11A	060707 15:12:00	060707 16:39:00	503.00	523.00		524.00	992.29	4642	4642	4642	4859	4860	4860	
KLX 11A	060707 17:07:00	060707 18:30:00	523.00	543.00		544.00	992.29	4829	4829	4829	5046	5046	5046	
KLX 11A	060707 19:07:00	060708 08:26:00	543.00	563.00		564.00	992.29	5015	5015	5014	5231	5231	5229	
KLX 11A	060708 08:58:00	060708 10:21:00	563.00	583.00		584.00	992.29	5201	5202	5202	5416	5425	5418	
KLX 11A	060708 10:53:00	060708 12:23:00	583.00	603.00		604.00	992.29	5388	5389	5389	5610	5605	5602	
KLX 11A	060708 13:17:00	060708 14:41:00	603.00	623.00		624.00	992.29	5576	5576	5575	5799	5799	5790	
KLX 11A	060708 15:12:00	060708 16:39:00	623.00	643.00		644.00	992.29	5762	5762	5762	5985	5986	5976	
KLX 11A	060708 17:11:00	060708 18:34:00	643.00	663.00		664.00	992.29	5949	5949	5949	6173	6173	6164	
KLX 11A	060708 19:06:00	060709 08:39:00	663.00	683.00		684.00	992.29	6135	6135	6135	6338	6338	6338	
KLX 11A	060709 09:11:00	060709 10:40:00	683.00	703.00		704.00	992.29	6319	6319	6319	6541	6541	6536	
KLX 11A	060709 11:08:00	060709 13:27:00	703.00	723.00		724.00	992.29	6506	6506	6506	6717	6712	6708	
KLX 11A	060709 13:58:00	060709 15:13:00	723.00	743.00		744.00	992.29	#NV	#NV	#NV	#NV	′ #NV	#NV	
KLX 11A	060709 15:45:00	060709 16:56:00	743.00	763.00		764.00	992.29	#NV	#NV	#NV	#NV	′ #NV	#NV	
KLX 11A	060709 17:25:00	060709 18:10:00	763.00	783.00		784.00	992.29	#NV	#NV	#NV	#NV	′ #NV	#NV	
KLX 11A	060709 18:43:00	060709 20:01:00	783.00	803.00		804.00	992.29	#NV	#NV	#NV	#NV	′ #NV	#NV	
KLX 11A	060710 08:19:00	060710 09:15:00	803.00	823.00		824.00	992.29	#NV	#NV	#NV	#NV	′ #NV	#NV	
KLX 11A	060710 09:45:00	060710 10:37:00	823.00	843.00		844.00	992.29	#NV	#NV	#NV	#NV	′ #NV	#NV	
KLX 11A	060710 11:10:00	060710 13:24:00	843.00	863.00		864.00	992.29		7801	7801	8092	8086	8081	
KLX 11A	060710 14:04:00	060710 14:56:00	863.00	883.00		884.00	992.29			#NV	#NV			
KLX 11A	060712 07:38:00		303.00	308.00		309.00	992.29	2778	2778	2778	2855	2856	2856	

Da e 5/18

KLX11A											1	1	1	Page 5/19
idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX 11A	060712 09:30:00	060712 10:51:00	308.00	313.00		314.00	992.29	2825	2825	2825	2903	3 2903	2903	
KLX 11A	060712 11:13:00	060712 12:03:00	313.00	318.00		319.00	992.29	#NV	#NV	′ #NV	#NV	′ #NV	′ #N∨	,
KLX 11A	060712 13:09:00	060712 13:57:00	318.00	323.00		324.00	992.29	#NV	#NV	′ #NV	#NV	′ #NV	′ #NV	
KLX 11A	060712 14:31:00	060712 16:11:00	343.00	348.00		349.00	992.29	3153	3153	3152	3230	3230	3230	
KLX 11A	060712 16:38:00		348.00			354.00			#NV	′ #NV	#NV	′ #NV	′ #NV	,
KLX 11A	060712 17:56:00			358.00		359.00			#NV	/ #NV	#NV	′ #NV		
KLX 11A	060713 07:52:00					364.00				′ #NV	#NV	′ #NV	′ #N∨	r
KLX 11A	060713 09:14:00					389.00			#NV	′ #NV	#NV	′ #NV	′ #N∨	r
KLX 11A	060713 10:28:00			393.00		394.00			#NV	′ #NV	#NV	′ #NV	′ #N∨	r
KLX 11A	060713 12:29:00			398.00		399.00			#NV	′ #NV				
KLX 11A	060713 13:44:00		398.00			404.00								
KLX 11A	060713 15:46:00					429.00			#NV	′ #NV	#NV	′ #NV	′ #N∨	r
KLX 11A	060713 16:59:00					434.00	992.29	#NV	#NV	′ #NV	#NV	′ #NV	′ #N∨	r
KLX 11A	060714 07:59:00					439.00	992.29	#NV	#NV	′ #NV	#NV	′ #NV	′ #N∨	r
KLX 11A	060714 09:17:00					444.00			4038	4038	4114	4115	6 4115	
KLX 11A	060714 11:06:00					448.00								
KLX 11A	060714 13:16:00					453.00			4124	4124	4200	4200	4200	
KLX 11A	060714 15:01:00					458.00			4170	4171	4246	6 4247	4247	•
KLX 11A	060714 16:45:00			462.00		463.00					#NV	′ #NV		
KLX 11A	060714 18:01:00					468.00			#NV	′ #NV	#NV	′ #NV		
KLX 11A	060715 08:16:00					489.00								
KLX 11A	060715 09:29:00					494.00								
KLX 11A	060715 10:47:00		493.00			499.00			4554	4554	4629	4629		
KLX 11A	060715 14:04:00		498.00			504.00								
KLX 11A	060715 15:53:00					509.00				-				
KLX 11A	060715 18:09:00					514.00								
KLX 11A	060808 15:30:00					519.00								
KLX 11A	060808 17:47:00					524.00								
KLX 11A	060809 08:08:00					529.00								
KLX 11A	060809 10:08:00					534.00								
KLX 11A	060809 12:48:00					539.00								
KLX 11A	060809 14:40:00					544.00			-	-				
KLX 11A	060809 16:59:00			568.00		569.00								
KLX 11A	060809 18:17:00					574.00								
KLX 11A	060810 08:06:00			578.00		579.00								
KLX 11A	060810 10:02:00			583.00		584.00								
KLX 11A	060810 12:20:00					589.00								
KLX 11A	060810 14:41:00					594.00								
KLX 11A	060810 16:33:00					599.00								
KLX 11A	060811 08:01:00					604.00								
KLX 11A	060811 10:29:00					669.00								
KLX 11A	060811 13:30:00					674.00								
KLX 11A	060811 15:38:00					679.00								
KLX 11A	060811 17:45:00	060811 20:53:00	678.00	683.00		684.00	992.29	6276	6276	6277	6352	6352	6339	)