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Abstract

In this report, we aim at defining a self-consistent method for analyzing the fracture patterns
from boreholes, outcrops and lineaments. The objective was both to point out some variations
in the fracture network parameters, and to define the global scaling fracture models that can
encompass all the constraints brought by the different datasets. Although a full description of
the DFN model variability is obviously fundamental for the future, we have put emphasis on the
determination of mean parameters.

The main parameters of the disc-shaped DFN model are the fracture size, orientations and
spatial density distribution. The scaling model is defined as an extrapolation of existing i) obser-
vations at specific scales and ii) local fitting models to the whole range of scales. The range of
possible models is restricted to the power-law scaling models formalized in /Davy et al. 1990/,
and later further elaborated in /Bour et al. 2002/. During the project we have put emphasize on
the definition of the theory and methodology necessary to assess a sound comparison between
data taken at different scales, with different techniques.

Both “local” and “global” models have been investigated. Local models are linked exactly to the
dataset they represent. Then, the global DFN models arise from the association of local models,
different scales and different sample support shapes. Discrepancies between local and global
model illustrate the variability associated to the DFN models.

We define two possible Global Scaling Models (GSM). The first one is consistent with the
scaling measured in the outcrops (Model A). Its scaling exponent is a;=3.5 (eq. to £=2.5); it
overestimates the fracture densities observed in the lineament maps. The second one assumes
that both lineaments and outcrops belong to the same distribution model (Model B), which
entails a scaling exponent as;=3.9 (eq. to £,=2.9).

Both models have been tested by looking for the best consistency in the fracture density-dip
relationships, between boreholes data at depth (based on boreholes KFM02A, KFMO0S5A,
HFMO04 and HFMO5) and outcrop DFN models. The main conclusions drawn from the
consistency analysis are the following:

» There exists an important subhorizontal fracturing that occurs close to surface, which
makes outcrop fracturing different, in term of density, from the fracturing observed in deep
geological units from boreholes. The difference between surface and deep units does not
exist for fractures dipping more than 30—40°.

* The rock units are remarkably consistent with outcrops for dips larger than 30-40°, and for
Model A (a3=3.5, Figure 7-14). Model B tends to predict larger fracture densities in outcrops
than in rock units defined in boreholes (in the dip range of 30—40°).

* There is no equivalence, in the outcrops, of the Deformation Zones, identified at depth.

* The best-fitting model is defined for /,;, (the smallest fracture diameter consistent with the
power law model; /.;,=2r, with r, the location parameter) smaller than the borehole diameter.
With this method, it is not possible to say more about /.,;,. Models that consider larger values
of Iy do not ensure the consistency between outcrops and boreholes.

» The shear zones, as well as the lineaments, may belong to a different global scaling model
than rock units. Further investigations and more data are necessary to characterize this
additional GSM.

Along the project, the issue of DFN model and of the fracture definition consistency across
scales is often raised. It should be further investigated, together with a more complete descrip-
tion of the model variability.
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1 Introduction

In this report, we aim at defining a DFN scaling model that is consistent with the available
dataset of the Forsmark area: several boreholes along which fractures have been recorded, the
5 outcrops where fracture traces have been mapped, and the map of possible deformation zones.

The DFN model is then based on the fracture traces sampled on cores (fracture traces of

0.08 m), outcrops (0.5 m to ~10 m) and lineaments (above 100 m). It aims at filling the gap
between observations by assuming that the different scales of the fracture system are linked
by a genetic relationship. This is a very strong assumption that cannot be really tested in this
project with the available dataset due to the large range of missing scales. For the same reason,
we cannot really discuss the generic shape of the scaling relationship since a large number of
fitting functions (power law, lognormal function, Weibull functions, ...) could match the data.

We thus decided to restrict the range of possible models to the power-law scaling models
formalized in /Davy et al. 1990/, and later further elaborated in /Bour et al. 2002/. This is a
model that can encompass all the observations from the borehole scale to the lineament scale
/see Darcel et al. 2004/. This is also a true “scaling” model in the sense that it only uses scaling
relationships that do not contain any characteristic length scale (the power law is the only
mathematical function that has this characteristic'). The scaling model is thus basically defined
by an exponent, which has the same meaning as a physical dimension. The quality of the scaling
interpolation (for instance predicting lineament density from core-scale fits) is almost entirely
defined by the confidence that one has about this exponent. The ability of the power-law
scaling model to apply to fracturing was argued in the review by /Bonnet et al. 2001/. The main
assumptions of the model are described in detail in the Sections 3 and 4. All the conclusions
derived from this report are dependent on their validity.

This model, as well as any DFN model, raises several issues that are described in the following
Section 3, which concerns the mathematical framework of the DFN, the difference between
outcrop fractures and lineaments, the range of validity of the scaling model and the issue of /.,
and the way to decrease uncertainties and handle variability.

The DFN scaling model is characterised by two scaling exponents as4 and D;¢% and by a density
term 0,4, which depends on fracture dip and strike. In the present case, where the fractal nature
of the fracture system is weak (D4 close to 3, Sections 6.2.4 and 6.4.3), the power-law exponent
asg mainly contains the scaling information. It is critical because fracture densities extrapolated
from one scale to the other are highly sensitive to it. The density term 034(6, @) is the fracture
density for a fracture diameter / of 1 (Equation 4-1). It is fundamentally related to the scaling
exponent a4 (see its unit dimension for instance), so that it is meaningless to compare two
different values of 054 if they have been calculated for two different scaling exponents. On

the other hand, a34(0, ¢) is the only information that can be used for really comparing the
consistency of a DFN model with data taken on different places, at different scales. In a

sense the fracture network orientation density is used as the “DNA” of a DFN model, and the
consistency analysis consists in comparing the DNA of the different datasets.

We cannot be sure that the best-fitting model deduced from this analysis is unique since it is
almost impossible to explore the range of all possible models, because of the large natural
variability, and because of the critical undersampling of the geological formations with respect
to the observed variability of geological formations and deformations. However we think that
the conclusions derived from this analysis are very informative on the fracture patterns, and that
the model concept retained here, together with the corresponding parameters determination, can
be used as a reasonable conceptualization of the DFN at the Forsmark site.

I See also Appendix 2.

2 Arecap of the model parameters and mathematical concepts is provided in Section 4.
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2 Index of notations

®, ¢)
2D

2d
3D
3d

b mins b max
Cshape

d
Dld; D2d, D3d

DFN
DZ
GSM

Density term that fixes the density at a given scale of observation.
Trend and plunge of a fracture pole.

Two dimensional (fracture appear as traces 7).

Subscript notation for 2D.

Three dimensional (disc-shape fractures of radius ‘7’ or diameter ‘/’).
Subscript notation for 3D.

Exponent of the power-law size distribution also called “length exponent”,
(k= ax—1; k.= az—1).

Boundary distances.

Coefficient related to the fracture shape, equal to /4 if fractures are assumed to
be discs.

Euclidean dimension (1 for a line, 2 for a plane, 3 for a cubic volume).

Same as D,, subscript refers to a dimension precisely measured over a one-
dimensional, two-dimensional or three-dimensional support.

Fractal dimension (correlation dimension) associated to a DFN.
Discrete fracture network.

Deformation Zone.

Global Scaling Model.

Shape parameter associated to the probability density function of a power-law
distribution.

Shape parameter associated to the probability density function of a power-law
distribution of fracture radi.

Shape parameter associated to the probability density function of a power-law
distribution of fracture traces.

Typical size of a system (ex: side L of a cube).

Fracture diameter for a disc-shaped fracture (/=2*r).
Arbitrary cutoff diameter in a DFN model (/. = /,,;,).
Minimum fracture diameter consistent with the DFN model.
Fracture area by unit of volume.

Fracture length by unit of area.

Number of fracture intersections by unit of length.

Radius of a disc-shape fracture.



4]

RD
RU

Location parameter associated to the probability density function of a power-law
distribution. It represents the minimum radius consistent with the DFN model.

Arbitrary cutoff radius in a DFN model (7.2 7).

Distance.
Rock Domain.

Rock Unit.

Fracture trace length.
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3 Scientific framework

The scaling model is defined as the extrapolation of i) existing observations at specific scales
and ii) local fitting models to the whole range of scales and parameters. It aims at filling the
gap between these observations by assuming that the different scales of the fracture system are
linked by a genetic relationship. This is a very strong assumption that cannot be really tested

in this project with the available dataset due to the large range of missing scales. For the same
reason, we cannot really discuss the generic shape of the scaling relationship since a large
number of fitting functions (power law, lognormal function, Weibull functions, ...) could match
the data.

We thus restrict the range of possible models to the power-law scaling models formalized in
/Davy et al. 1990/, and later further elaborated in /Bour et al. 2002/. This is a model that can
encompass all the observations from the borehole scale to the lineament scale /see Darcel et al.
2004/. This is also a true “scaling” model in the sense that it only uses scaling relationships that
do not contain any characteristic length scale (the power law is the only mathematical function
that has this characteristic?). Its applicability to fracturing was argued in the review by /Bonnet
et al. 2001/.

This model, as well as any DFN model, raises several issues — some of them are linked — that
we try not to escape, if possible, in the analysis:

1. We think that a basic definition of what a DFN model is has yet to be assessed properly. The
DFN model is obviously an incomplete mathematical representation of the reality. It is a
makeshift model between several issues: the underlying physics and geology, the purposes
for which it is to be used, the way it will be used, the mathematics, the availability of data,
... These concerns should be raised to define the basic constituents of the DFN model
that are: the object on which the model applies (fractures, fracture clusters, lineaments,

...), the mathematical framework (1%-order DFN model, 2"-order statistics, etc), and the
range of validity. This discussion is fundamental but beyond the purpose of this report. We
recommend that it could be developed in a further work with the experience collected in the
different sites.

2. The definition of the fracture “object” belongs to the previous discussion. Lineaments and
outcrop fractures are clearly two different objects in the sense that a lineament is a cluster of
several individual fractures whose length is smaller than the lineament scale. Whether or not
these objects share the same scaling logic is a key issue, and a strong assumption that cannot
be checked with the available dataset*. The problem is that we need this assumption to
define the DFN model, but we don’t know if the so-defined scaling model is still valid when
comparing boreholes and outcrops. On the other hand, we are quite confident that boreholes
and outcrops map the same objects. We thus put a strong emphasis on the comparison
between borehole and outcrop data, and we discuss if the lineaments could belong to the
same statistical framework.

3. The range of validity of a scaling model is obviously a key issue for modelling flow or
mechanical properties. As for the difference between lineaments and fracture outcrops
discussed above, we raise the issue of knowing the lower limit of the scaling law, that is the
smallest fracture that belongs to the scaling DFN model. The difficulty is that we are not
looking for the smallest fracture, but for the smallest fracture consistent with the DFN model.

> See also Appendix 2.

4 To tackle this issue a higher resolution lineament map or larger size trace maps would be required.
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4. The DFN model has an “average” definition, in the sense that it smoothes out the natural
variability. The DFN model does not reproduce nature, but predicts some average density
values of fracture networks. This means that the DFN model owns an intrinsic uncertainty
related to the natural variability. Conversely, natural variability is not the only source of
uncertainty. The goal of the DFN modeller is to reduce the uncertainty by looking for some
geological controls of the DFN models. The method consists in incorporating information on
the relationship between fracturing style, fracturing intensity and geology, lithology, etc. If
the methodology is potentially praiseworthy, we would like to stress two potential concerns:
— Implicitly this comes to postulate that there exists a kind of DFN-model homogeneity

in geological formations, which is trivial in some situations but worth being assessed in
others.

— The DFN uncertainty results from both some intrinsic variability and statistical effects.
Since increasing the number of DFN models comes to decrease the number of constraints,
there is a balance to find between the decrease of variability and the increase of statistical
uncertainty.

12



4 DFN model framework

4.1 Fracture parameters

A fracture is defined by its size, orientation and position. In the absence of information about
fracture shape, a disk shape is assumed. Note that any polygonal or elliptic shape would give
similar results, as long as the anisotropy in the fracture-plane shape remains small. The fracture
parameters are constrained by the DFN model described below.

Length and orientation are assumed to be independent parameters, meaning that small and large
fractures should have similar orientation distributions. Testing this assumption requires a large
number of data. The simplest method would consist in dividing the orientations into several
classes, and in analysing the length distribution for each class. However the small number of
points within each class, as well as the natural variability, make the calculation of a scaling
length exponent per class questionable. We thus make the following analysis in the framework
of this assumption. We will discuss some elements of consistency when comparing boreholes
and outcrops. However we recommend to consider the independence assumption as a potential
source of uncertainty when using the DFN model.

4.2 DFN model formalism

The DFN model provides the number of fractures in any given volume with given lengths and
orientations.

4.2.1 Parent DFN model

The 3D fracture distribution model(®) is quantitatively given by a general mathematical
expression of the type:

Ni(L, 1,0, ¢, ..) dI d0 do d...,

which is the number of fractures contained in a volume of typical size(’) L, with lengths
between [ and /+dl, orientations in [0, 6+d0] and [¢, ¢+de], and a series of other properties that
are represented by “...”. In addition to length (diameter of a disc-shape fracture) and angular
characteristics, the expression can include some fracture shape parameters (as eccentricity),
which are relevant to the intersection issue.

Using an appropriate expression for N4 is obviously the key point of this study. In particular the
fracture distribution model N3 must contain the scaling relations that enable extrapolation of
intensity from one scale to another. The simplest model contains two of such scaling laws: the
fractal density (i.e. the fractal dimension D), and the power-law length distribution (exponent
asq). This has been demonstrated by number of studies (see e.g. review by /Bonnet et al. 2001/),
formalized in /Davy et al. 1990/, and later further elaborated in /Bour et al. 2002/. Using

these scaling assumptions, and assuming that length, density and orientations are reasonably
independent entities, N4 takes the following form:

Ny (L,1,6,9)=0,,(0,0)/ =4 [ Paa Equation 4-1

5 3D refers to three dimensional space.

¢ The typical size L is given, for a volume ¥ (in 3D) by L=F"? and for a plane area 4 (in 2D) by L=4"".
For isotropic volumes (cubes, spheres) the notion of “typical size” is straight. It becomes less intuitive
when the volume has an anisotropic shape.

13



The power-law model is defined down to a limit fracture length (minimum diameter noted /,;,).

In the following we provide a few mathematical developments and notations that will be useful
all through the report.

First we aim at removing the system-size effects in order to compare observations made
on systems of various sizes. We thus define the density distribution model, which is (see
Figure 4-1):

N, (L,1,0,0)

Equation 4-2
[ Psa

ny, (1,0,0) =

Note that the previous definition requires to know (or measure) the dimension D4, which can be
either the Euclidean dimension (3 for 3D systems) if the density is homogeneously distributed,
or less than 3 if the pattern of fracture centres is fractal. We note that the dimension D;, fixes

the fracture density scaling; it is therefore a mass dimension. Details on the fractal dimension
definition and subsequent fractal dimension measurements are provided in Appendix 3. In brief,
the mass dimension is equivalent to the dimension of order two in a multifractal spectrum and to
the so-called correlation dimension.

It is also convenient to define the density distribution of fractures with respect to a parameter
subset: length, dip and/or strike, which is the integral of ns4(/,0,p) with respect to the
parameter(s) that is (are) not considered. To simplify the notations, we keep the same variable
name as in Equation 4-3, but we specify explicitly the number of parameters of the density
function. For instance, the density distribution of fracture lengths (whatever dip and strike)
now becomes:

ny(D) = [ [n,4(1,6,0) d6 do Equation 4-3
0

The density distribution of fracture orientations is:

1y, (0,9) = jn3d (1,6,9) d/ ; etc Equation 4-4
!

100000

1000

1E-2

-

1E-5 L T B | . T
0.1 0.1 1 10 Ly

fracture diameter /

Figure 4-1. Density distribution of fracture diameters, illustration on a log-log diagram. . symbolizes
an arbitrary cutoff diameter of the density distribution. (The same shape is found in 2D with ny(t), a
and o, instead of ns(l), as; and o).
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Finally, density distribution model can be written either for the fracture diameters (noted /)
or for the fracture radius (noted r). Given Equation 4-1, the corresponding fracture density
distribution written for the fracture radii (r) is:

N, (L,r,0,0)= [0‘3(1 (6,0)- 2_”“”] p%a [Pu Equation 4-5

4.2.2 Notations requirements

In the SKB nomenclature, the power-law probability density function is formulated as /Munier
2004/:

. k>0
kr, :
f(r)=—=% 7 >0 Equation 4-6
r
7y, Sr<oo

where r refers to the fracture radius, r, is the location parameter (smallest value of ), and & is
the shape parameter. In addition, the fracture density is expressed from the amount of fracture
surface by unit of volume, Ps, (m™). Hence, the different notations are related as:

k=a-1 Equation 4-7

Equation 4-8

As was underlined in Section 3 (Scientific framework), the value of 7, (or eq. /yi, Which repre-
sents the smallest fracture consistent with the DFN model) remains often unknown. Besides, the
density expressed through Ps, is strongly related to the minimum class of fracture radius taken
into account. From the DFN model expressed in Equation 4-1, P, is simply given by:

P,()=C [Fon 1o
U ) =L, -

shape L3

where Cy.,y. 15 a function of the fracture shape (equal to n/4 for disks) and /. is the cutoff length
representing the smallest fractures included in the calculation of Ps,. It comes that the three
parameters, /., P, and as, are related.

Integration of the former equation leads, for a;4# 3, to

|:l,_a3d+3 _ L—a3d+3 ] )
1)32 (lL) = Cshapean ) LDC_3 = ( 3) Equatlon 4-9
a3y —

For a fracture system dominated by the smallest fractures (as;q > 3), the dominant term is a
function of /;:

|:la3d+3:|
o -yl ]
3d (asd _3)

In summary, for disc-shaped fractures, if the cutoff length scale is expressed in term of diameter
[ then:

B(l)=C

shape

|: —a3,+3 :|
¢ Equation 4-10

T _
P32(lc)52’0‘3d L 3.(a _3)
3d
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with o34 defining the density term of the fracture diameter distribution. If the fracture cutoff
length is expressed in term of radius 7. then we have:

—ay,+3

u Equation 4-11
(a5, =3)
When expressing DFN parameter sets, the quantity Ps;, must be accompanied with a cutoff

length (radius r. or diameter /.). The cutoff length can be chosen by the user or dictated by
resolution effects, it is not necessarily equal to the location parameter.

Py(r)=rx- |:a3d '2_%“] L2

4.2.3 DFN derivation on planar and borehole samples

The fracture trace density distribution resulting from the intersection of the DFN with a planar
sample is written as:

Na(L, 1,0, 0) = 024(6, @)z 24 24

The relation between a;4(0, @) and a,4(0, @) is developed in Appendix 4. The relation between
ayq and ayq 1s such that: ayg = asq — 1 /Piggott 1997/. As long as a4 is larger than 2, the relation
between D4 and Ds4 is such that: D,y = D3, — 1 /Darcel et al. 2003/. The fracture trace distribu-
tion follows the abovementioned power-law model down to a minimum trace length equal to the
minimum fracture diameter of the 3D parent distribution.

The fracture density distribution resulting from the intersection of the DFN with a borehole is
still modelled by a power-law with:

Nld(L5 ls 9) (P) = a]d(ea (P)Z_“ldLDld
with aig = a3d—2 and Dld = D3d—2

The relation between fracture density terms o34(0, @) and a,4(0, @) are thoroughly investigated
throughout the report (Section 7, Appendix 4, /Davy et al. sub/).

4.2.4 Fractal terms

The fractal dimension included in the present DFN model defines the fracture density scaling;
it is a mass dimension. The mass dimension is equivalent to the so-called correlation dimension
(Appendix 3, see also section Fractal dimension in /Bour et al. 2002/). All the dimensions
introduced above and noted D3y, D, and D4 refer to mass or correlation dimensions associated
to the fracture density respectively in 3D, 2D and 1d.

The fractal dimension (D.) quantifies the rate of fractal clustering or fractal correlation related
to the spatial fracture density distribution of the DFN model. As illustrated in the figure below
(Figure 4-2), the smaller the D, the higher the fractal clustering. Strictly speaking, the set of
points displayed in Figure 4-2 (left) is not fractal: in that case the fracture density distribution
is homogeneous’, with D.=d (d the Euclidean dimension, 2 for a plane). However, the homoge-
neous case (D,=d) is the upper limit of the fractal mathematical model and therefore belongs to
the fractal mathematical framework described here. In other words, the homogeneous case is
encompassed in the potentially fractal DFN model. Similarly in 3D we have, D, <3.1f D. <3,
then the DFN model is said fractal in strict sense. If D, = 3 the fracture density distribution is
said homogeneous however D, remains the parameter “fractal dimension”. Note that, by defini-
tion, the fractal dimension of a set of points distributed over an object (for instance a plane, as
in the figure below) is expected to be bounded by the topological/euclidean dimension of the
object (for instance D.< 2 in a plane).

7 The “homogeneous” distribution results from a poissonian process.
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Figure 4-2. 3 sets of points generated in 2D, on a plane. From left to right Dc decreases from 2
(homogeneous case) down to 1.4.

The term “fractal” is related to how the space is filled; the sole power-law nature of the length
distribution is not sufficient to define a fractal object. One can not measure a fractal dimension
less than the Euclidean dimension (strict sense of fractal) if the distribution associated to the
fracture position is poissonian, this whatever the length distribution characteristics. The length
distribution does not describe how the space is filled, it only provides the number of fractures of
a given size. Then, whatever a, if D.<d, the DFN is fractal and whatever a, if D.=d, the DFN is
homogeneous but can still be described within the fractal mathematical framework.

An object is said “self-similar” if it looks the same whatever the scale of observation
/Mandelbrot 1982/. Applied to DFN modelling, this happens if the relation a=D_+1 is satisfied.
(Note that a and D, are assumed to be independent; a cannot be used to derive D, nor the
inverse). Then whatever the scale of observation (within the range of validity of the model) the
system looks the same: in a system of size L, the number of fractures whose size is equal to xL
is independent of L:

D,—a+1=0
) = constant

L
N(L)= [or-177- L™ -dl:il(xL
xL a—

Note that if @ < D+1 then N(xL) increases with L: in that case the apparent number of larger
fractures increases when the system size of observation increases, whereas on the contrary if
a > D +1 then the number of larger fractures decreases when increasing the system size.
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5 Forsmark site and database

The Forsmark site is one of the two candidate areas for the deep repository of nuclear waste to
be built by SKB. It is located in the northern Uppland within the municipality of Osthammar,
about 170 km north of Stockholm. In this section we review quickly the site configuration
together with spatial localization of the available datasets. A complete site description of the
Forsmark area, model version 1.2, is reported in /R-05-18/.

Three model areas define the site: in complement to the candidate area, within which the
repository is expected to be placed, the site descriptive modelling is performed on two different
embedded scale model volumes, the regional and the local model volumes (Figure 5-1). The
local model encompasses the candidate area plus accesses and immediate environs, it is area is
close to 30 km?. The regional model volume is much larger (11x15 km), in order to place the
local model in a larger context, mainly to allow sensitivity analysis of hydrogeological boundary
conditions. The vertical extent of the model is set to 1,200 m (+100 to —1,100 m).

For the purpose of the present analysis we use the following surface and in depth dataset to
build the DFN model:

* outcrops, area hundreds of sq meters, traces meter to tens of meters,
* Lineament maps hundreds of sq km, traces tens of meters to 10 km, and

* Dboreholes km length, traces from borehole diameter and up.

The datasets from SICADA and SDE (references in Table 5-1 to Table 5-4) are briefly presented
below; their spatial position within the Forsmark site is recalled (on Figure 5-2 for the linea-
ments, Figure 5-3 for the outcrops and Figure 5-4 for the boreholes).

Lingseind

 — T
I I LS iNE
[—

2oy D Do 10 D
. __ﬂ":lmm-'.

Figure 5-1. Model volumes at the Forsmark site, with the regional model area contour, 11 by 15 km,
the local model area contour and the candidate area model contour. The sea and land use are drawn in
background.
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The lineament map available covers the regional model area (Figure 5-2, reference in

Table 5-2). Lineaments are linked. The final dataset contains slightly above a thousand elements
(linked lineament traces), classified in 3 categories: local minor, local major and regional (drawn
in different colours in Figure 5-2, see legend). The maximum trace length recorded is equal

to 11,445 m, with a lineament that cross cuts the entire model area in the NW direction; the
minimum trace length is equal to 15 m, which is one order of magnitude below the resolution
scale of the lineament map estimated at 200-300 m from the length distribution. We note that
the lineament map interpretation is based on geophysical data “acquisition” campaigns that have
been carried out at different times and using methods with different resolution limits. A detailed
description can be found in /R-05-18/ (Section 5.2.3 and Figure 5-16).

Five outcrop trace maps are available (Table 5-1), all located in the local model area (Figure 5-3,
see Appendix 1). Each of them contains about a thousand identified fracture traces for areas
comprised between about 279 m? (AFM0010098) and 645 m? (AFM000053). The truncation
policy for the trace mapping is 0.5 m. The largest traces on the map are limited by the map size.
In addition to these fracture trace maps, each outcrop has been sampled down to a resolution
scale of 0.2 meters along scanlines (Table 5-1).

The 2D superficial database is completed by a large number of depth data sampled along
boreholes (Figure 5-4). Drilled boreholes (KFM-A) are about a thousand meter length whereas
the other are limited to a few hundred meters (cored borehole named KFM-B and percussion
boreholes named HFM-). Boreholes plunge vary from close to vertical (90°) to 60°. Note that,
due to time constraints, analyses of the borehole database is limited to a few selected boreholes
(mainly A-cored boreholes, especially KFM02A and KFMO05A),
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Figure 5-2. Lineament traces within the regional model contour (thick green rectangle), 11 by 15 km.
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Cored (KFM...) and percussion (HFM...) boreholes and are represented respectively by pink and blue
symbols.
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The different datasets are listed in the following tables:

Table 5-1. Datasets: outcrops.

Name Link to datafile

AFM000053 SDEADM_GOL_FM_GEO_1765
AFM000054 SDEADM_GOL_FM_GEO_1344
AFM001097 SDEADM_GOL_FM_GEO_1866
AFM100201 SDEADM_GOL_FM_GEO_1911
AFMO001098 SDEADM_GOL_FM_GEO_1869

Table 5-2. Datasets: lineaments.

Name

Link to datafile

Lineaments

SDEADM_GV_FM_GEO_2079

(new name:
SDEAM_GV_FM_GEQO_2494)

Table 5-3. Datasets: boreholes.

Name Link to datafile

KFMO1A P_fract_core (updated early October 2005)
KFMO02A p_freq_1m_1hint (non official at the time of analysis)
KFMO3A p_one_hole_interpret

KFMO4A

KFMO5A

KFMO6A

HFM1 to HFM22

Table 5-4. Datasets: scanlines.

Name Description Link to datafile
LFMO000007 on AFM000053 scanlines.dbf
LFM000008 on AFM000054

LFMO000009 on AFM000053

LFM000010 on AFM000054

LFMO000576 on AFM001097

LFMO000577 on AFM001097

LFM000578 on AFM001098

LFMO000579 on AFM001098

LFMO000655 on AFM100201

LFMO000656 on AFM100201
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6 Local analyses

6.1 Introduction

Here data coming from different supports are analysed separately. By doing this, one comes
to define “local models™® of DFN, i.e. linked exactly to the dataset they represent. We note
that depending on the dataset, a complete (including geometrical information about fracture
size, orientation and position) DFN model can or can not be build since some datasets (taken
alone) do not contain the necessary information. Then, defining a global DFN model requires
associating different scales and different sample support shapes, which is the purpose of
Chapter “Scaling Model”.

The only inter-comparison performed in this chapter concerns the different outcrop trace maps,
since they share the same shape (2d planar shape) and the same resolution scale. The fracture
trace maps data are therefore analysed together (a simple representation trace map by trace
map).

6.2 Outcrop fracture trace maps
6.2.1 Preamble

The outcrop fracture trace maps contain the identified fracture traces, including a large amount
of information such as the fracture trace length, strike, dip and position. The outcrop local
lithological properties are associated to the fracture traces. Also, each outcrop belongs to a Rock
Domain. The sampling and interpretation process displays the following particularities:

* Contrary to the lineament map, the fracture traces on outcrops are not linked.

» Contrary to the borehole data, the separation between Rock Units (RU) and Deformation
Zones (DZ) is not performed. Despite, outcrop AFM001097 is located on one of the large
shear zones that cut through the investigated area.

The particular position of AFM001097 is an opportunity to highlight whether or not the fracture
traces within or outside a deformation zone have a distinct signature.

6.2.2 Fracture trace maps

Three of the maps (AFM000053, AFM000054 and AFM100201) belong to Rock Domain 29
(code 101057) associated with a dominant of type granite to granodiorite, metamorphic,
medium-grained (Chapter 10). AFM001098 belongs to Rock Domain 32 characterized by a
domination of granite metamorphic (code 101058). AFM001097 belongs to Rock Domain 18
characterized by a domination of granodiorite metamorphic (code 101056). Locally the outcrop
lithology is refined (Figure 6-1) and presents local variations from the Rock Domain dominant
rock type.

6.2.3 Orientations

All the five fracture trace maps display preferential directions of trace orientations. A complete
representation of orientation distributions, including both strikes and dips, is provided through
stereoplots (Schmidt projections) in the next figures (corresponding discrete stereoplots are

given in Appendix 1). At that stage the distributions are not yet corrected from orientation bias.

8 Local model differs from a model for the site local area, local is used as “linked to the local dataset™.
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Figure 6-1. Fracture trace maps superposed to the geological maps.
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However, intercomparison between the five datasets is allowed since all the fracture trace maps
are horizontal. All the five datasets display apparent peaks of fracture intensity corresponding to
close to vertical fractures.

In the perspective of the local DFN model definitions, pole sets are identified and modelled
through Fisher distributions, for each outcrop dataset (To lighten the presentation, results of this
analysis are provided in Appendix 1). The interpretation performed does not assume a link to
the site geological history: only the pole distributions over the stereonets have been considered
(Figure 6-2), in order to simply reproduce the statistical orientation distribution extracted from
the outcrop trace maps. The DFN user can take the parameters provided in the associated tables
(Appendix 1) to reproduce the local orientation distribution associated to each outcrop.

From the stereoplots one observes that two main peaks of fracture intensity, oriented NE and
NW, appear on each sample, with little variations from one map to another.
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Figure 6-2. Stereoplots (Schmidt projections, no bias correction) from fracture traces.
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The fracture orientation distribution observation is completed by the representation of two
cross-sections in the strike-dip space: fracture intensity evolution with the dip and fracture
intensity evolution with strike (Figure 6-3). Also, the evolution with fracture dip allows
counting the proportion of fractures between subhorizontal and vertical, which is a critical
parameter when comparing boreholes to outcrops data.

The relative proportion of horizontal versus vertical fractures is very similar from one outcrop
to the other (Figure 6-3 left). Also the two main fracture strike directions appear on each dataset
when comparing the evolution of fracture density versus fracture strike. To sum up, the five
outcrops display very similar characteristics (at that stage bias correction is not yet performed):
a domination of the close to vertical fractures, with mainly two trends, NE and a NW and a
similar variations with dip (Figure 6-3 left). In the following (see Section 6.2.8), a single mean
orientation model representing all the fracture trace maps will be defined.

6.2.4 Fractal clustering

Fractal dimensions (Section 4.2.4 and Appendix 3) associated to the fracture trace maps are
derived from the application of the two points correlation function (also called integral of
correlation). The method was applied previously and reported in /Darcel et al. 2004/. Details

of the methodology are recalled in Appendix 3. In brief, the integral of correlation is calculated
twice: once from the real fracture center dataset, leading to C(s); and once from a simulated
fracture center dataset (leading to Chomogeneous(s)), Where the fracture centers are randomly
redistributed through the sample shape, according to a poissonian process. Accordingly, for

the 2D case, the quantity Chomogencous(s)/C(s) varies like s>, where s is a distance, 2 is the
Euclidean dimension of the plane and D,, the fractal dimension. D,, is simply deduced from the
slope (2-D;,) of the quantity Chomogencous(5)/C(s) represented in a log-log diagram (Figure 6-4).
Analysing Chomogeneous(5)/C(s) instead of only C(s) allows to decrease possible artefacts linked to
sample shapes.In practice, the slope (2-D,,) is measured over a finite range, comprised between
a minimum and a maximum boundary distances, b, and b, (dotted red lines in Figure 6-4).
In addition a qualitative degree of confidence is attributed to each measurement (from 3: good
confidence to 1: poor confidence). It is based on the quality of the fit (departure from the
theoretical straight line in the log-log representation), from which D,, is deduced. A confidence
level equal to 1 indicates that D,, is an average scaling fit that does not render local variations;
a confidence level of 3 reflects a very good power-law fit over a scale range of at least one order
of magnitude.

The method is applied for the five outcrops (Figure 6-4 for outcrop AFM000053 and
AFM100201). Results are summarised in Table 6-1 below and Figure 6-5.
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Figure 6-3. Evolution of apparent fracture intensity versus (left) fracture dip and (right) fracture strike.
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performed within the milestones provided in Table 6-1).

Table 6-1. Summary of fractal dimensions D,; measured for the different outcrops. See text
for details.

Outcrop brmin Bmax Confidence level Doy Indicative uncertainty
AFMO000053 1.5 20.7 3 1.91 0.01
AFMO000054 0.7 9.6 2 1.93 0.05
AFM001097 0.7 28 2 1.93 0.05
AFM100201 0.5 10 1 1.83 0.15
AFMO001098 0.5 8.6 3 1.90 0.05
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Figure 6-5. Fractal dimensions D,; measured over the five outcrops datasets.
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All the outcrops except AFM 100201 display well defined (over at least one order of magnitude
each time) fractal dimensions comprised between 1.89 and 1.93. Between the boundaries
bminand by, defined for each dataset, local variations of the slope are expressed through the
“indicative uncertainty” and the confidence level. Outcrop AFM 100201 has the smallest dimen-
sion (1.83) associated to a poor confidence level (local variations of the slope are important).
There is no clear explanation for that behaviour. On this outcrop the clustering seems to be more
pronounced (see pictures in Appendix 1) than on the other ones.

Note that if the method would be applied on a homogenous fracture centre distribution (arising
from a poissonian process), the resulting curve of Cjmogencous(s)/C(s) would be flat, leading
simply to D,4=2. Therefore, the apparent fractal clustering observed here (D,4<2), also weak,
can not result from a poissonian distribution.

By averaging over the 5 outcrops, we obtain D,=1.90+0.04. If AFM100201 is excluded, we
obtain D,;=1.92+0.02. Then the variability from one outcrop to the other does not exceed the
indicative uncertainty defined for each dataset separately. All the outcrops except AFM 100201
are consistent with a fractal dimension D,, of 1.92+0.02. This indicates only weak (or subtle)
fractal correlations.

6.2.5 Fracture trace density distribution

For the fracture trace map analyses, the density distributions functions 7, ), noted n(¢) for
simplicity, can be written as (see Section 4.2.3):

n(t)= —N(Z L) [P Equation 6-1

where 4 is the outcrop area, L the typical linear size of the area (L = A'?), ¢ the fracture trace
length, D,, the fractal dimension. N(z,L) is equal to the number of fracture traces whose length
is between ¢ and #+dt. It is calculated from the fracture trace map dataset and next normalized to
obtain the proper value of n(z). The method used is based on a logarithmic binning /Darcel et al.
2004 Section 3.1, Davy 1993/.

In the following the density distribution functions are normalized by the map areas (4). This
choice is mainly motivated by the weak fractal correlations measured over the outcrop trace
maps and by the uncertainty attached to the measure (Section 6.2.4): D,, is estimated to be in
between 1.9 and 1.95. As a consequence, the fractal dimension associated to the DFN model is
of second order importance when deriving the density length distribution parameters ((k+1) and
0,4). Anyway the potential error associated to this assumption is quantified through the factor
L*PX_ Given the uncertainties related to the determination of 4 (see Appendix 1), L, D,,, the
uncertainty reported to the density term can be estimated by a factor between 1.15 to 1.4. As
will be seen in the section, this variation is less than the observed variations in apparent density
from one outcrop to the other. The consequences on the scaling analysis are mentioned in a
dedicated section (Section 7).

The density-lengths distributions are thus calculated (Figure 4-1 recall how the length exponent
ayand the density term and o4 can be measured from the density length distribution represented
in a log-log diagram); all the curves are displayed in Figure 6-6a to f. On each graph, the curve
n(t) (green line plus symbol curve), plus the local fits (in black) and the outcrop scale models
(in orange, see Section 7.2) are provided. Local variations of logarithmic slope are displayed as
inlet below the density-length distribution (in blue).

For outcrops AFM001097 and AFM 100201, only one well defined trend is present. The result-
ing power-law fit leads to an exponent a,y =2.5 eq. to k=1.5. For the remaining outcrops, the
curves n(?) are slightly curved. This effect is apparent for instance when observing the variations
of n(¢) for the outcrop AFM000054 (Figure 6-6d); from a purely statistical point of view, the
concave shape of the bi-logarithmic plot suggests that different regimes may exist, here above
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and below 2.5 m. Because it is difficult to say that these regimes are physically and statistically
sound, we choose to derive 3 power-law fits for AFM000054 (note that derivation of @,y and o,
are simultaneous):

» above 2.5 meters: a,.=3.1 (eq. to k=2.1) and o,= 4.1,

» between the map resolution scale and 2.5 meters length: a,=1.85 (eq. to k£,=0.85) and
o=1.32, and

» through the entire range of admissible scales: a,=2.15 (eq. to k,=1.15) a,—= 1.55.

We do not believe that the 3 fits are sound and valid, but this exhaustive methodology combined
with arguments on the scaling consistency of the DFN model should permit us to capture the
most likely model. Each dataset is therefore firstly treated individually and, when possible,
several fits are considered, to reflect:

* the trend of the smallest sizes (fit called "small-scale", yellow square on Figure 6-6g and h),
+ the trend of the largest sizes (fit called "large-scale", blued square on the same figure), and

* the mean behaviour, over both the small and larger sizes (fit called “wide-range”, black
circles on the same figure).

The power-law fitted models are summarized in Figure 6-6g and h. Large discrepancies appear
both between the fits within a single outcrop and from one outcrop to the other: the exponent
a4 (€q. to k,+1) varies between 2 and 3 and a,, varies simultaneously from a factor two to three
(Figure 6-6g and h). The slope variation between smallest and largest scales is more pronounced
for outcrop AFM000054 (Figure 6-6d). Variations of local length exponents between 2 to 3

(k, varies from 1 to 2) correspond in fact to almost all the possible values classically associated
to natural systems. However, many of the fits performed reflect the finite size of the samples,
the outcrop map special shapes and resolution effects.

When plotting the 5 density length distributions on one single graph (Figure 6-6f), the distribu-
tions do not appear very different the one from the other. The two enveloping curves displayed
(dashed orange lines in Figure 6-6f) have the same slope (a,, =2.5) and densities equal to 1.2
and 3. In other words, for equivalent values of a,,, the density term o,4 may vary by a factor of
two. Discrepancies appear mainly from a size equal to 0.8 and towards shorter lengths. Over
that range of scale it appears difficult to distinguish between real tendency and resolution
sampling effect.

Finally we underline that the density length distribution related to AFM001097 does not display
a distinct signature, although a very large proportion of the fracture traces included in the
analysis belong to a deformation zone.

6.2.6 Local models

For each outcrop one can define a “local DFN model” that matches precisely the outcrop
dataset. The range of validity of such a model is restricted: it is a priori usable only at the exact
outcrop geographical position. Validation simulations (code 3FLO, reference in Section 10) are
performed in order to check the DFN parameters consistency with the dataset. At that stage, the
model parameters are derived from stereological rules (4.2.3) for the exponents a;, (eq. to k,)
and Ds4. Also, the relation between the orientation distribution and the density term o, (parent
distribution) leading to the value of oy, (apparent density on a planar outcrop) is fitted through a
simple trial and error process’.

The model local AFMO001097 is defined, in 2D, with a,:=2.5 (eq. to £=1.5) and a,;= 2.14. The
location parameter is not known (resolution effects inherent to fracture trace mapping prevent

° A complete calculation of the link between orientations and density terms is provided in the next
chapter.
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from observing 7). In order to simplify the numerical simulation process, D, is approximated
to 2 (also it was measured equal to 1.93+0.2). Consequently, the fractal correlation, due to a
fractal dimension D,y equal to 1.93+0.2, will not be reproduced. We recall however that taking
D, equal to 2 is consistent with the density term also provided (Section 6.2.5). In complement,
the orientation distribution is expressed in term of Fisher distributions (parameters are provided
in Appendix 1).

Numerical modelling coupled to the trial and error method lead to a parent distribution, for the
model “local AFM001097”, to the following parameters: a;;=3.5 (£,=2.5), a;.= 3.2 and Ds=3
(and P5,(r=0.1)=11.24 , Equation 4-12), with the orientation distribution recalled in Appendix 1.

The fracture trace map characteristics arising from model “local AFM001097” are illustrated
for one realisation local AFM001097 (Figure 6-7). The parent fracture density distribution can
be generated down to any minimum fracture radius'’. In the present case, it is arbitrarily gener-
ated down to a fracture radius equal to 0.4; accordingly the 2D fracture trace length distribution
simulated departs from the power-law model for fracture traces shorter than 0.8 m (Figure 6-7¢).
One can observe the qualitative consistency between the real and simulated fracture trace map
(Figure 6-7a and b) consistency between trace length distributions (Figure 6-7¢) and orientation
distributions (Figure 6-7¢ and d). The same procedure can be simply repeated to provide the
local models related to the five outcrops.

In the next section the model local AFMO001097 is employed as a support to analyse the
scanline data.

6.2.7 Consistency with scanline data
Use of scanline data

The 2D fracture trace mapping is complemented by a scanline sampling at different places of
the site, in particular on the five outcrops analysed above (see Table 6-2). We illustrate here how
the scanline sampling could contribute to the DFN modelling process. Indeed, scanlines should
potentially be used to assess the model validity between 20 and 50 cm, at least locally for the
five outcrops.

During scanline sampling, fractures whose apparent trace length is equal to or larger than

20 centimeters are recorded; several characteristics are recorded: the intersection position, the
trace length, orientation etc. Scanlines constitute therefore potentially additional information
that can contribute to the DFN modelling process.

Table 6-2. Fracture intensity along scanlines.

Name Fracture intensity (P,) Outcrop

LFM000007 2.3 AFMO000053
LFM000008 3.9 AFMO000054
LFM000009 2.9 AFMO000053
LFM000010 3.0 AFMO000054
LFM000576 2.9 AFMO001097
LFM000577 1.7 AFMO001097
LFM000578 5.4 AFMO001098
LFM000579 3.0 AFMO001098
LFM000655 1.1 AFM100201
LFM000656 2.6 AFM100201

19 This does not affect the relation between 0,y and 0tsg.
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Figure 6-7. Comparison of the model local AFM001097 with the corresponding dataset. Parameters
of local AFMO001097 are: a;;=3.5 (k.=2.5), o;4= 3.2 and D;,=3 (and P;y(r.=0.1)=11.24), with the

orientation distribution recalled in Appendix 1.
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Figure 6-8. Scanlines on outcrop AFM001097.

In the present case a total of 288 fracture intersections are recorded along 10 scanlines (see
Table 6-2) for a cumulative length equal to 99.3 meters. On each trace map, scanlines are
gathered by pairs of perpendicular directions. The scanline orientations differ from map to
map. Locally, the fracture intensity (averaged over the 2 perpendicular directions) is comprised
between 2.3 and 4.7 fractures per meters; the mean fracture intensity is 2.9. The ratio between
fracture intensity measured on two perpendicular scanlines for each outcrop is comprised
between 1.26 (AFM000053) and 2.36 (AFM100201).

The number of scanlines per outcrop combined to the quantity of fractures sampled is consid-
ered to be too low to enable a length, an orientation or an integral of correlation analysis. We
propose nevertheless to check the consistency between the measured scanline fracture intensity
and the 2D-3D DFN model parameters. This provides also a picture of the 1d fracture intensity
variability intrinsic to the DFN Model. Numerical simulations (software 3FLO, /Billaux et al.
2005/) are used to test the 1d fracture intensity consistency between the trace map and the
scanline map records. Model local AFMO001097 is selected to perform the analysis (see
Section 6.2.6).

Numerical modelling

Fractures (from DFN model local AFM001097 whose parameters are recalled in Section 6.2.6)
are generated by their centers within a 3D cubic domain of edge £=30 m (see Figure 6-9). A 2D
horizontal sampling plane and two sampling lines are defined. The two scanlines are ten meters
length and oriented like LFM000576 and LFMO000577 (resp. noted T2 and T1 in Figure 6-10
and Figure 6-11) on AFM001097. Since field scanline sampling is simulated, the shortest
fracture traces to be recorded are equal to 20 cm. Then fractures whose radius is smaller or
equal to 10 cm are simply not generated and fracture traces shorter than 20 cm do not contribute
to fracture intensity estimate.

A large number of realisations is performed. Each time the fracture intensity along the two
scanlines is recorded. Mean values and variability of the fracture intensities simulated along the
scanlines are next estimated over all the realizations.
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Figure 6-9. Numerical simulation illustration (code 3FLO, /Billaux et al. 2005/). Fracture discs
are generated in 3D. Fracture traces on the sampling plane are displayed above and fracture traces
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From model local AFM001097, two models are considered: one with a minimum fracture
radius (7,) equal to 0.4 m (apparent size at which the fracture trace density departs from

the power law model when going towards small scales) and the other with 7, equal to 0.1
(corresponds to a fracture diameter of 0.2, equal to the cutoff length applied during scanline
sampling). Results are presented in Figure 6-10.
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Figure 6-10. Histograms of fracture intensity along scanlines (left) ro =0.1, 40 realisations (right)
ro =0.4, 100 realisations. Column/bars are results from numerical simulations, dashed lines are the
values measured on the scanlines from AFM001097.
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The simulation process provides an illustration of the intrinsic variability of the DFN model
considered. In that case the mean fracture intensity is representative of the DFN model and
several realisations are necessary to catch it. Qualitatively, the simulated value of fracture
intensity for one realisation can differ up to roughly a factor 2 from the mean value.

The model with requal to 0.1 predicts mean fracture intensity about twice the values observed,
whereas the model with r, equal to 0.4 seems to be more consistent with the data. Additional
simulations are performed to calculate the evolution of the mean fracture intensity with 7,
(Figure 6-11). Results show that even the model with 7,=0.4 tends to overestimate the number
of fracture intersections along the scanline. Fracture intensities measured on all the scanlines
are reported in the figure. However scanline orientations vary from one place to the other; it is
therefore difficult to perform a direct comparison of all the fracture intensity values (grey dotted
lines in Figure 6-11).

A tentative interpretation of the former comparison would indicate that the limit of the power
law model validity could be comprised somewhere in the range of twenty to fifty centimeters
(which is larger than the borehole diameter). However, the scanline data representativity and the
model assumptions must be kept in mind. For the moment (local scale) the model reproduces
only the fracture length and orientation distribution; for the present simulation purpose the
fractal clustering was not reproduced in the modelling; no domaining were defined within the
AFMO001097 area. In other words, the density parameter evaluated reflects the mean fracture
intensity. Numerical simulations have shown that even with such a simple model the apparent
values of P;, measured on the two scanlines (potentially vary by a factor 2 to 3, from one
realisation to the other (Figure 6-10). Several very different interpretations could be considered:

* uncertainty: the true limit of the sampling process is not equal to 0.2 but larger (thin fractures
not seen by the human eye?),

+ the number of small fractures is not satisfactorily modelled by the local AFM001097 power-
law model,

* the scanline data of AFM001097 sample a low density zone of the outcrop; this is illustrated
on Figure 6-12, were only the traces have been used (limit set to 50 cm). Nevertheless, a
virtual scanline couple is located at a place were the fracture intensity is almost 2.5 times
higher than for the real scanline position. The model is for the moment representative from
a mean density (established as an average over all AFM001097) whereas the scanline data is
representative for a low density.
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Figure 6-11. Evolution of the mean fracture intensity for different r,.
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Figure 6-12. Variability of scanline sampling illustrated on the traces off outcrop AFM001097.
Scanline sampling (cutoff 50 cm) performed leads to 27 intersections (scanlines in thick black) and
virtual scanline sampling leads to 65 intersections (traces in blue).

The present basic comparison between data and model has shown that a factor of two on the

P, value may arise from the DFN and scanline respective orientations, from the data location
(Figure 6-12), from the stochastic nature of the modelling, even for a Poissonian spatial process
and obviously from the power-law model scale range of validity. Although the data available
here prevent to draw a general conclusion about the power-law model validity towards small
scales, we have shown here how they can be used to check the model consistency. As a conclu-
sion about the use of scanline data, whatever the assumption about 7, and the model obvious
departure from reality, the fracture intensity simulated or measured varies rather from a factor of
two than from an order of magnitude. Variability is significant (Figure 6-12). Many explanations
can be invoked. At that stage this can be viewed as an uncertainty of the modelling process. The
issue of model validity towards smallest scales will be further investigated when interpreting the
borehole data.

We therefore can doubt that two scanlines per outcrops are sufficient to catch the fracture
intensity variability on each outcrop. In addition the total number of fractures sampled along
one scanline is to low to allow a length and/or an orientation analysis (see also /Darcel et al.
2004/ where an attempt were made to analyse the lengths). The number of fracture traces per
outcrop is slightly larger than one thousand whereas the number of fracture sampled through the
scanline is less than fifty elements. Note additionally that the apparent length exponent along
the scanline should be (a34-2); the smallest fractures are proportionally less sampled.

On one side, the local 1d fracture intensity variability can potentially arise from many sources
(the scanline orientation, the Imin, the lengths, the local density etc). On the other side, the
scanline dataset is restricted to two samples by outcrops, containing a small number of fractures.
In that sense the scanline dataset analysis must be taken cautiously. We consider the analysis
here as exploratory.
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6.2.8 Outcrop model
Approach

The local models defined in Section 6.2.6 are related to the geographical position and to the
Rock Domain of the datasets they are derived from. Given the relatively limited number of
datasets available to sample the different Rock Domains present on the site, and given the
results of Section 6 (no striking difference between trace length distributions from one RD to
the other), it is not justified to differentiate the DFN models properties from one RD to the
other. Accordingly the aim of the “outcrop model” to be defined here is to provide a mean DFN
model, at the outcrop scale (10 meters), that could be used as a proxy over the whole model
areas. The outcrop model should catch the main characteristics of the fracture system, in terms
of fracture size and orientation distribution, and spatial centre density distribution. Obviously
the “outcrop model” will differ slightly from the local models.

The determination of mean DFN models is the central axis of the present developments.
Although a full description of the DFN model variability is obviously fundamental, we have put
emphasis on the determination of mean parameters; it was beyond the scope of the present work
to fully describe the variability.

Orientations

In previous sections it has been shown that the orientation distributions of the different outcrops
present large similarities (Figure 6-3). Then we chose to combine the outcrop datasets to define
a “2d global orientation” distribution of the candidate model. By doing this, one obtains a

total of almost 6,000 fracture orientations from which a bulk orientation distribution is derived
(Figure 6-13). Note that the apparent regular repartition of fracture poles every five degrees in
the dip direction and every 10 degrees in the strike direction reflects the precision on orientation
measurements (Figure 6-13).

The orientation distribution is then subdivided into several subsets based on the main local
peaks of intensity observed. Three of them have horizontal poles (i.e. vertical fractures), the
fourth is made of subvertical poles (horizontal fractures). The global orientation distribution is
modelled by 4 sub sets of fractures characterized by a Fisher distribution. We note that the only
way to reproduce exactly the observed orientation distribution is to use bootstrapped orientation.
The division in 4 sets constitutes a simplification that reproduces the principal characteristics of
the orientation distribution.

In summary, 4 orientation subsets are defined (see Table 6-3), 3 close to vertical and one close
to horizontal. The main vertical set is trending NE; it contains more than half of the fractures
that intersect the outcrop plane. The second set contains around one third of the total. These

two sets are ubiquitous in the different outcrops, with a mean strike of N200 to N230 for the
NE set, and N110 to N125 for the WNW set (except for AFM100201). The remaining subset
includes the horizontal fracture (dip<45°). We note here, that the two main sets present on the
fracture trace map (NE and WNW) are also visible on the lineament map (Figure 5-2). However
the proportion is different: the NE set prevails in outcrop maps, while the orientations are more
equally distributed between the different sets in the lineament map.

Density-length model

As was shown in Section 6.2.5, the restricted range of scales available to perform a power-law
fit prevents from defining easily the power-law exponent from the sole outcrop scale trace map
datasets!!. We nevertheless here define a mean density-length model with parameters o,=1.85
(Figure 6-6h) and a,4=2.5 (eq. to k~=1.5; Figure 6-6g). Locally (depending on the observed
outcrop), the density term can vary up to 50% (in Figure 6-6f), orange straight line, plus

" The scaling analysis is provided in the next chapter.
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Figure 6-13. Stereoplots from outcrop datasets (Schmidt projection, equal Area, lower hemisphere),
pole (below) and contour (top) plots. 4 main sets are defined from the diagram (black lines), 3 of them
being subhorizontal and the remaining subvertical.

variations by about 50% in density, plus and minus, in orange dashed lines). The parameters of
the first 2D candidate model are recalled in Table 6-4. The consistency of this model is further
assessed in Chapter “The Scaling Model”.

Table 6-3. Division in sets of the combined outcrop dataset.

SET Mean strike Mean dip K Apparent weight (in %)  Bulk weight (in %)
NE 224 88 13 57 51.8
WNW 119 88 18 28 25.8
NNW 163 87 25 09 7.9
SUBHZ 62 7 15 05 14.5

Table 6-4. 2D candidate site model called Model A2,

Model name g ke [ Doy Orientations

Model_A 25 1.5 1.85 2. “outcrop” Table 6-3

12 “Model A” refers to a mean model whose main parameter is the length exponent a (eq. to k+1). a is
fixed whereas the density term and fractal dimensions are defined on average. Derivations of Model A
rely on variations of density term and fractal dimensions. The DFN candidate models definitions are
recalled in Section 7.2 and 8.
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6.3 Lineaments

The lineament map covers the regional model area (Figure 6-14a). Contrary to the outcrop
fracture trace maps, the lineaments are linked. Lineament mapping is a difficult exercise that
consists in linking at best segments whose fracturing nature is not completely assessed (see
/R-04-15/ Section 4.2.3 and Figure 4-14 for details). After the linking process, the largest
lineament size recorded is comparable to the regional model scale, with a lineament that cross
cuts the entire model area in the NW direction.

The resolution scale of the lineament map is estimated at 200-300 m. However, the regional
lineament mapping is performed both inland and offshore, leading to local variations in
resolution scale. In short, the resolution is much better inland than offshore, which causes an
apparent decrease of the fracture density from the continent to the sea. As a consequence the
density length distribution requires in itself a scaling analysis: depending on the location and on
the fracture lengths, the resolution differs, entailing complexity for defining the map area and
normalising the distribution.

To deal with the abovementioned issue (the density length distribution analysis requires having
a unique resolution scale within one map), the lineament map is separated in two analysis
domains (Figure 6-14b). We assume that each resulting domain has a distinct but constant
resolution scale. The variations, in terms of resolution scale, between the undersea and the main-
land lineaments are illustrated in Figure 6-14a. The aerial subarea displays a smaller resolution
scale than the sea area.
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Figure 6-14. (a) Lineament traces within the regional model contour, 11 by 15 km, local major
lineaments are in green, local minor in violet and regional lineaments in brown. (b) Definition of two
analysis-domains. (c) Density distribution n(t) for the complete lineament map, the inland part and the
undersea part, (d) Rosette diagram of the complete lineament map.
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Many trends could be measured on the density distribution curves, with several possible
power-law fits, from values close to —1 (central part of the undersea set) up to —2.95 (largest
lineaments, above one km). These trends result partly from the mixing of resolution scales.
The only trend apparent on both datasets is encountered for the largest scale (a,=2.95, eq. to
k=1.95).

Due to the resolution differences that are clearly observable for the lineament dataset, we have
not attempted to calculate the fractal dimension associated to the integral of correlation.

The lineament orientation information is restricted to strike. As illustrated in a rosette diagram
(Figure 6-14c), the strikes are broadly distributed, with nevertheless three main directions,
estimated visually, of striking towards NW (300-320), NS (350-360) and NE (40-50).

6.4 Borehole data
6.4.1 Introduction

Data collected in borehole logs are very complex and rich. This complexity raises the problem
of fracture definition. Therefore assumptions related to the link between the 2D-fractures
analysed above and the 1d-fractures sampled along boreholes are briefly reviewed before
proceeding with the borehole analysis. In the present section the analysis remains descriptive
(or “local”, by analogy to the 2D descriptive analysis in Section 6.2). Inter comparison between
different boreholes and between scales is the object of the Chapter Scaling Model.

To provide a simple overview of the underground data variability, a global analysis of spatial
correlation (through D.) is presented. Next, due to time constraints, the analyses are limited to
two boreholes, KFM02A and KFMOS5A. These 2 boreholes were chosen as they somehow can
illustrate potential variations in the site by their geometry and geographical location. We note
that even though the different boreholes data are all gathered in one well formatted database,
each borehole displays some particularities which preclude the use of fully automatic analysis
procedures.

6.4.2 1d-fracture definition

Boreholes are a huge but very restricted window of observation at depth on the natural DFN.
Additionally, boreholes can not be viewed exactly as 1d straight lines but rather as a slightly
curved cylinder of finite diameter (see Appendix 4). Thus, one must keep in mind the difference
between the sampled object (the natural DFN) and the sample support shape (the borehole).

In correspondence with the geometrical DFN, the following apparent geometrical parameters
can be registered along boreholes:

» fracture occurrences: amount or fracture intensity (P),),
+ fracture orientations (strike and dip),

e fracture width.

Indications on spatial organization and variability can be derived from the fracture intensity.
Of course, no information about fracture length can be directly registered along the boreholes.
Both the fracture apparent orientation distribution and intensity distribution must be corrected
from orientation bias. Even the intercomparison between two boreholes of different directions
relies on the parent distribution through an orientation bias correction. In fact, the building of a
parent DFN model from borehole observations necessarily relies on strong assumptions and is
model-dependent.
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Besides, three levels of “sampling” coexist in the boreholes:

* “individualized fractures”: Fracture intersections exist and can be individualised (labels:
Open, Partly open, Sealed Fracture): position, orientations and internal properties are
recorded.

* Fractures appear in clusters, no individualisation is possible (labels: Open_crush,
Sealed Network): extension, approximation of a fracture intensity and some internal
parameters are recorded.

» Large scale volumes, RU (Rock units) and DZ (deformation zones), are delimited from
single hole interpretation; DFN is expected to be defined in the RU, however individualized
fractures exist in both these types of volumes.

These three levels of sampling overlap. In addition, depending on the applications related to
the DFN, the fracture status of open or sealed takes on a particular importance. We note that
even if fractures can not be individualized, fracture intensity values are estimated. However,
no information about orientation is available in the fracture clusters (crush zones or sealed
networks).

In the following, we assume that the 1d-DFN corresponding to the 2D/3D DFN derived from
the surface analysis includes the individualized fractures (partly open, open and sealed) that
fully intersect the boreholes. Nevertheless the internal complexity mentioned above must be
kept in mind.

6.4.3 Global analyses

Some of the analyses have been applied directly to each borehole taken as one single dataset
(opentpartly opentsealed, RU and DZ zones together). In particular the fractal dimension
associated to the integral of correlation is calculated for the different KFM — boreholes.

The integral of correlation method is applied on all the fracture intersection positions identified
(in file p_frac_core) and visible in bips. Integrals of correlation are measured from a minimum
distance s,;=0.1 up to s,,,=500. Results are summarised in Table 6-5 and Figure 6-15 below.

A well defined single fractal dimension can be defined in each case, except for KFMO1A where
two tendencies are observable. The range of validity of the fit varies between 2 to 3 orders of
magnitude.

If we assume that the variability is given by the variability of D, from one borehole to the other,
then the correlation dimension D,., measured on 1d sample in the site is estimated to be equal to

0.9+0.05. This value is compatible with the value measured on the 2D data. This is indicative of
weak fractal correlations.

Table 6-5. Fractal dimension measurements along boreholes.

Borehole D4 brin brmax Confidence level
KFMO1A  0.96 0.1 10 3
KFMO1A  0.82 10 500 3
KFMO02A  0.86 0.1 400 3
KFMO3A  0.82 0.1 10 3
KFM04A  0.95 0.2 200 3
KFMO5A  0.89 0.1 505 2
KFMO6A  0.92 0.5 500 3
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Figure 6-15. Fractal dimensions measured along K-boreholes, (left) summary of measurements, (vight)
case of KFMO02A.

6.4.4 Descriptive local analyses
Borehole KFM02A
Preliminary remarks

KFMO02A is a borehole close to vertical with mean trend and plunge of 275° and 85° respec-
tively (Table 5-9 in /R-05-18/). The total borehole length is about 1,000 meters. We also note
that:

* No data are registered between secup 96 and 100 meters, at the transition between two
types of drilling, cored and percussion; however, zero values were assigned (in the database
delivered) to the corresponding Py, values and a RU (RU1) is associated.

* 15% percent of the mapped fractures do not have any measurable orientation. This does not
affect the P,, values.

» No sealed network!? is mapped.

Description

On average, the fracture intensity (on individualized fractures) along KFMO02A (RU and DZ
together) is equal to 2.4. When only the RU are counted, the average fracture intensity is
reduced to 1.4 (see Table 6-6). In both cases standard deviations associated are above the mean
values, thus reflecting a high variability. If every “type” of fracture is counted (fractures plus
clusters of fractures, open and sealed) to estimate the fracture intensity, a value of 4.4 is reached.
Although we do not discriminate here between the open and sealed fractures, we notice that
individualized fractures are dominated by the sealed fractures (green bars to be compared to

red and magenta bars in Figure 6-16b and c). Besides, the few crush zones are restrained within
Deformation Zones and no information related to “sealed network fracturing” is recorded.

Table 6-6. Fracture intensities (from individualized fractures) measured on KFM02A.

KFM02A Size <P,>  Sdv
ALL (RU+DZ)  [1:990] 2.4 3.1
RU [1:728] 1.4 1.7

13 “Sealed network” is a concept that started to be mapped after borehole KFMO03A, so that no sealed
network are mapped in KFMO1A, KFM02A and KFM03A-B.
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The fracture intensity high variability is furthermore illustrated through the subdivision of this
borehole in terms of RU and DZ (Figure 6-16a), and through the variations of fracture intensity
(Figure 6-16b). The variability observed here is only partly reflected in the fractal dimension
measured between 0.86 and 0.9 (Section 6.4.3). The geological complexity and the variations in
intensity observed from one RU (and DZ) to the other are displayed Figure 6-16c¢ and d.
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Figure 6-16. Borehole KFM024, (a) RU and DZ definition from p_one_hole_interpret. (b) fracture
intensity (P, smoothed by adjacent averaging n=10) along the borehole (fracture=open+partly
open-sealed). (mean represented as a dashed grey line). (c and d) relative proportion of the different

“type” of fractures for the RU and DZ zones.
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An insight of the fracture orientation distribution is provided through the stereoplots —
(Schmidt projections) of the fracture poles belonging to the DZ (Figure 6-17a) and to the RU
(Figure 6-17b). This illustrates again at the orientation level, the high variability associated to
the fracturing.

Finally, even within a single Rock Unit, variability is present. The fracture intensity decreases
slightly with depth, as illustrated by the values of fracture intensity within the RU1 of KFM02A
(Figure 6-18, RU1 subsets defined in Figure 6-16, RU1a is the most superficial and RU1g the
deepest). The trend is visible for the sealed, open and partly opened fractures. However, the
decrease is less than the internal variability (Figure 6-18b).

a)DZ b) RU
= Pesiy o Full
Ed = Emd drem
s by Lmver Havedam
1H Folan oM Fulsd
. 11N ki p H- Gt

Figure 6-17. KFMO024, stereoplots (Schmidt projections, not corrected), a)fractures from Deformation
zones and b) fractures from Rock Units.
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Figure 6-18. Borehole KFMZ2A. Fracture intensity variations within a single rock unit, RUI. Subsets
RUla down to RUlg are defined toward increasing depth. a) mean fracture intensity, b) mean plus
standard deviation.
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Borehole KFM05A

KFMOS5A is an inclined borehole with a mean trend and plunge of 90° and 60° respectively
(Table 5-9 in /R-05-18/). The total borehole length is about 1,000 meters, sampled between an
elevation of —82 meters down to —822 meters.

On average, the fracture intensity (on individualized fractures) along KFMO5A (RU and DZ
together) is equal to 3.2. When only the RU are counted, the average fracture intensity is
reduced to 2.0 (see Table 6-7). In both cases the associated standard deviations are above the
mean values, thus reflecting a high variability. If every type of fracturing is counted (individual-
ized fractures plus crush and sealed networks) to estimate the fracture intensity, a value of 5.2 is
reached. Although we do not discriminate here between the open and sealed fractures, we notice
that individualized fractures are dominated by the sealed fractures (green bars to be compared
to red and magenta bars in Figure 6-19b and c). In addition, borehole KFMO5A contains a
significant amount of sealed network fracturing (see also Section 7.3.2) and a few crush zones.

The fracture intensity high variability is furthermore illustrated through the subdivision of this
borehole in a few RU and DZ (Figure 6-19a), and through the variations of fracture intensity
(Figure 6-19b). The variability observed here is only partly reflected in the fractal dimension
measured closed to 0.9 (Section 6.4.3). The geological complexity and the variations in intensity
observed from one RU (and DZ) to the other are displayed Figure 6-19c and d.

An insight of the fracture orientation distribution is provided through the representation
of stereoplots of the fracture poles belonging to the DZ (Figure 6-17a) and to the RU
(Figure 6-17b). Both distributions display similar characteristics with 3 apparent peaks of
intensities, two subvertical ones and one horizontal.

Finally, even within a single Rock Unit, variability is present. Here the mean fracture intensity
increases slightly with depth, as illustrated by the values of fracture intensity within the

RU2 zones of KFMOS5A (Figure 6-21, RU2 subsets defined in Figure 6-19, RU1a is the most
superficial from an elevation equal —240 m down to —292 m, and RU1c the deepest one,

from elevation —597 m down to —738 m). The trend in fracture intensity is observed for the
individualized fractures and for the sealed network fracturing, whereas the intensity of open
fractures remains constant.

Conclusion

The preceding descriptive analyses demonstrate the complexity of interpretation for even a
single borehole. Moreover, the intercomparison between boreholes becomes straightaway highly
thoughtful since it requires the further inference of a 3D model coupling both orientation and
apparent fracture intensity. Therefore additional interpretations regarding in depth fracturing are
directly moved through the calculation of a;4(¢) in the next chapter.

Table 6-7. Fracture intensities (from individualized fractures) measured on FKMO5A.

KFMO5A Size <P,>  Sdv
ALL (RU+DZ) [1:898] 3.2 35
RU [1:622] 2.0 2.6
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Figure 6-19. KFMO05A, (left) RU and DZ definition from p_one_hole_interpret. (right, top and
bottom)relative proportion of the different “type” of fractures for the Rock Units and Deformation
zones. ¢) and d) fracture intensity (P, smoothed by adjacent averaging n=10) along the borehole
(fracture=open-+partly open+tsealed), (mean represented as a dashed grey line).
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Figure 6-20. KFMO05A4, stereoplots (Schmidt projection, not corrected from orientation bias) a) RU and
b) DZ.
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7 The scaling model(s)

The general framework within which the scaling model is defined is recalled in Section 3. In the
following, we first define the theory and methodology required to assess a sound comparison
between data taken at different scales, with different techniques. Then we discuss the likelihood
scaling models that are consistent with data, and we perform an analysis of these scaling models
in terms of data consistency and potential geological controls. We end up with a discussion on
some peculiar fracturing zones that are the crush zones and the sealed networks.

7.1 Theory and methodology
The scaling DFN model has been defined in Sections 3 and 4. We recall the main assumptions:

» The main parameters of the DFN model are the fracture size, and fracture orientations.
In the absence of information about fracture shape, a disk shape is assumed. Note that any
polygonal or elliptic shapes would give similar results, as long as the anisotropy in the
fracture-plane shape remains small.

* Length and orientations are assumed to be independent parameters, meaning that small and
large fractures should have similar orientation distributions. Testing this assumption requires
a large number of data. The simplest method would consist in dividing the orientations into
several classes, and in analysing the length distribution for each class. However the small
number of points within each class, as well as the natural variability, make the calculation
of a scaling length exponent per class questionable. We thus make the following analysis
in the framework of this assumption. We will discuss some elements of consistency when
comparing boreholes and outcrops. However we recommend to consider the independence
assumption as a potential source of uncertainty when using the DFN model.

» At last, we consider that the fracture length distribution can be modelled by a power law, and
that the fracture density (number of fractures per unit volume) is scale independent (D.=3).
The latter assumption is consistent with the large correlation dimensions calculated for
both outcrops, boreholes, and lineaments. The differences with the constant-density model
(fractal dimension of 1.9 in 2D or 0.9 in 1d) are not statistically demonstrated, and anyway
lead to differences in fracture density much smaller than the other sources of uncertainty or
variability.

With these assumptions, the general scaling model is thus (see Equation 4-2):

N3q (Za 0, (P) = O3q (9, (P) [,

The power-law exponent a;4 contains the scaling information. It is critical because fracture
densities extrapolated at large scale are highly sensitive to it. The “density” term o54(0,9) is

the fracture density for a length / of 1. It is fundamentally related to the scaling exponent as,,

so that it is meaningless to compare two different values of o4 if they have been calculated for
two different scaling exponents. On the other hand, a;4(0,9) is the only information that can be
used for really comparing the consistency of a DFN model with data taken on different places,
at different scales. In a sense the fracture network orientation density is used as the “DNA” of a
DFN model, and the consistency analysis consists in comparing the DNA of different data.

The method for calculating 034(0,¢) and as4 from the outcrop fracture trace maps, and from
borehole fracture intensity are developed in Appendix 4 and in /Davy et al. sub/. To be short, the
basic equations that we use for calculating oy, are:
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Equation 7-1

with ¢ the fracture trace length on outcrops, I' the gamma function, o,y and d»4 the parameters of
the 2D power-law fit on fracture traces, such as:

My (1) = 0Lyt~ ™
and

My = Oy .[ et dy
t

For the 1d/3d stereology problem, the recorded fractures are those that cross the entire borehole.
The classical Terzaghi correction was found not be to valid because of an incorrect considera-
tion of this breaking condition, and of the power-law length distribution (Figure 7-1).

The general expression of the borehole fracturing intensity for a power-law length distribution
was calculated from numerical simulations. We found the following expression to be valid up to
a;¢=5 with an excellent accuracy:

Tl 5 3 5
0,0) =0, (0, cos@™ ™ [1——* -3)*(7.4- *(1—cos @™
n,4(9,0) 50(6,0) 2as, —3)(ay —2)ay, —1) ¢ 38 (a5 =3)*( az)*( ™)

where d is the borehole diameter. Note that the classical Py, is the integral of ;4 over both 6 and
¢, that is:

Ry ={[n,0.0)d0-dgp
69

This expression is valid only if the smallest element of the 3D fracture distribution (/;,) is
smaller than the borehole diameter d. If not and if /., is larger than 10d, the classical Terzaghi
correction is obtained (see Figure 7-2).

P(¢)/P,(0)

0 20 40 60 80

dip angle ¢

Figure 7-1. Probability for a fracture of dip ¢ to intersect a vertical borehole normalized by the same
probability for a dip p=0. The curves are calculated for different values of as, (see legend). The cos(p)
correction, classically denoted Terzaghi correction, is the thin black line. The colour lines indicate the
fit obtained with the equation given below.
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Figure 7-2. Same legend than Figure 7-1 for a fracture distribution with a power-law length
dependency valid down to 1, and l,;, larger than the borehole diameter d.

The expression for /,,;,>10d becomes:

2

T 3-a 1 2 d 1 d

6,0) =—-01,(8,0) [, - cos - 7 T
m4(6,9) 4 (9.0) ¢ ay =3 ay—21, a,-1 [lmin

This additional complexity is in fact helpful to address the /,;, issue from the stereology
analysis.

7.2 Definition of a global scaling model
7.2.1 Data analysis

The Global Scaling Model (GSM) derivation relies on density distribution interpretations. At
this stage of the DFN model analysis, borehole data are not integrated since they only sample
one scale — the borehole diameter — and thus do not provide any scaling argument about fracture
sizes. Moreover the comparison of borehole fracturing intensity and outcrop trace length
distribution is model dependent.

The fracture trace-length density distributions have been calculated at ranges of: the outcrop
scales (1-10 meters), and the lineament scales (300 m—10 km). Each dataset taken independ-
ently can hardly define a valid GSM since it covers a very restrictive range of scales. But
linking directly outcrop fractures and lineaments is also debatable: Do these objects, whose
geological nature is very different (see discussion in Section 2), belong to the same distribution?

We thus consider two extreme possibilities for the global scaling model (Figure 7-4 and
Figure 7-3).

The first GSM represents a kind of synthesis of the information derived from the outcrop
datasets. We first put all the related fracture traces together in order to calculate an average
density distribution. The resulting curve (Figure 7-3b) displays a slight concave shape in a log-
log plot, which means that a single scaling exponent is not well defined. We can not distinguish
whether this is due to some finite size effects or to the very nature of fracturing. The central
part of the curve is consistent with a length exponent a,, equal to 2.5 (eq. to & equal to 1.5).
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Figure 7-3. Outcrops density distributions, a) pdf calculated for the five outcrop trace maps separately
(symbols), pdf calculated over the sum of the five outcrop datasets (navy line) and the two site models:
“model_A” (orange thick straight line) and “model B” (grey thick line). b) Same figure without the
individual pdf curves (plus logarithmic slope as an inlet).

This value is also consistent with several exponents derived from the local and independent
analysis of the different outcrop sets (see Section 6.2.8). We thus decide to take this model as a
potential candidate for the GSM, at least representative of the variations observed in the outcrop
scale range. In the next paragraph, this model will be called “model_A” (see Table 7-1 for a
sum up). It overestimates the lineament density, when extrapolated at the kilometer scale, by
about one order of magnitude (Figure 7-4 and Figure 7-5d).

The second GSM that we define is based on the assumption that outcrops and lineaments belong
to the same distribution (blue straight line in the Figure 7-4). This model has a length exponent
aq equal to 2.9 (eq. to k=1.9). It fits the outcrop density distributions for trace lengths larger
than about 2 m. Note that this exponent is equal to D,s+1, with D,, the fractal dimension of
fracture traces that was found to be 1.9 for most outcrops (also consistent with the correlation
dimension of 0.9 measured for boreholes). This model thus leads to a self-similar description of
the fracture networks in the sense that derived fracture networks have a look independent of the
observation scale. This second GSM model is called Model B in the following.

The model parameters, deduced from data fits, are given in Table 7-1.

Both global models are now applied to each dataset to evaluate the variability in the density
term 0,4 (note that, as mentioned above, it is meaningless to compare o, for different
exponents). For a,=2.5, a,4 varies from 1.26 to 2.17, while a mean value of 1.85 was derived
from the mean model (Table 7-2, model reference: “outcrop”). For a,.=2.9, a4 varies between
2.0 and 3.0 (see also Table 7-2, Model B).
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Figure 7-4. Multiscale pdf distribution, data in symbols, models in straight lines (see inlet legend for
details).

Table 7-1. 2D candidate model parameters.

Model name ¢, k; Oy D,y Orientations
Model_A 2.5 1.5 1.85 2. “outcrops”
Model_B 29 1.9 3. 2. “outcrops”

Table 7-2. 2D models.

Outcrop reference name Model reference Exponent a,q (ki) Density a4
AFMO000053 model_A 2.5(1.5) 1.85
AFMO000053 Model_B 2.9(1.9) 3.0
AFMO000054 Model_A 2.5(1.5) 1.85
AFMO000054 Model_B 2.9(1.9) 3.0
AFM100201 Model_A 2.5(1.5) 1.26
AFM100201 Model_B 2.9(1.9) 2.0
AFM001097 Model_A 2.5(1.5) 2.15
AFMO001097 Model_B 2.9(1.9) 3.0
AFMO001098 Model_A 2.5(1.5) 2.7
AFMO001098 Model_B 29(1.9) 3.0
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7.2.2 Numerical illustration

We provide here a simple inference between the 2D GSM model parameters up to the 3D model
parameters, through numerical procedures. We note that the complete calculation, integrating
both the density and orientation terms, is provided in Section 7.3.

Here we chose to keep the orientation distribution expressed in terms of Fisher distributions
(Table 6-3 in Section 6.2.8). Then the 3D density term o4 is simply fitted through numerical
simulations, since for a given orientation distribution a4 is simply proportional to ayg. The
numerical procedure was already used above for defining the 3D model local AFM001097
(Section 6.2.6). Results of the numerical simulations are provided in Table 7-3. These results
will be compared to the complete calculations of oz4().

We recall that the two models considered assume disc-shape fractures in 3D whose length
(diameter) and orientations are modelled through the present approach. At that stage, the fractal
nature of the fracture system is not handled in the model (although it could) since the fractal
dimension measured in 2D corresponds to a weak fractal correlation. As a consequence, one can
not expect more, from a simulated DFN, than lengths, orientation and apparent densities aspects.

The two GSM models are generated in 3D and sampled on horizontal ten meter scale and km
scale outcrops. The corresponding fracture trace maps are provided in Figure 7-5. For illustra-
tion purposes, the outcrop contour of AFM001097 is chosen to represent the ten meter scale
(Figure 7-5a and b) and the local and regional model areas are chosen to outline the km scale
(Figure 7-5d, e and h). On the figure, the two first columns correspond to the models (leftmost
column for Model A, middle column for Model B) and the remaining one (rightmost) to the
original data. In addition, each line of the figure corresponds to a scale of observation coupled
to a range of scales for the representation of fracture trace lengths: it is obviously impossible to
observe at one glance all the fracture traces, from the meter to the km scale.

The first scale of observation is the “outcrop scale” (a, b and c), where fracture traces are
represented within the contour of AFM001097, with a minimum trace #,;, equal to 0.5 m and a
maximum trace length simply bounded by the system size. At that scale of observation (see also
Figure 7-3), the apparent difference between model A and model B above one meter is hardly
observable from the simulated trace maps. The variations in fracture trace length proportions
(largest versus smallest fractures) is however illustrated further in Figure 7-6.

The second scale of observation corresponds to the local and regional model areas. In

Figure 7-5d to f, the minimum trace length represented is set to 2,000 m (representation zoomed
over the local model area). As expected from the multiscale pdf distribution (Figure 7-4), one
observes that Model A, arising from the single outcrop scale observations, overestimates largely
the of the lineament density. Over that range of scales Model B (a;/~=3.9, equivalent to £,=2.9)
provides the same trace length distribution than the data. Note that this is simply an illustration
of the concordance of data and Model B already provided in the density length analysis (Figure
7-4). Finally, the simulated DFN’s are represented at the regional scale, with a minimum

trace length set to 500 m, which corresponds roughly to the resolution scale declared for the
lineament data analyses. Model A (Figure 7-5g) is simply not provided because of the limit of
representation possibilities. Model B seems to over predict slightly the fracture density; this is
simply due to the larger amount of traces, in the model by comparison to the dataset, below the
kilometer scale. Whether this discrepancy is due to a resolution effect inherent to the lineament
dataset analysis or to a limit of the fracture concept, or a limit of the power law model, remains
an issue that could not be assessed within the project.

Table 7-3. 3D candidate model parameters.

g Og Ds;y  Orientations
Model_A 3.5 3.2 3. “outcrops”
Model_B 3.9 54 3. “outcrops”
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Figure 7-5. Simulated fracture trace maps from 2D-3d candidate models: model A in leftmost column
and Model B in middle column. Corresponding data in rightmost column. From top to bottom the scale
of observation and the minimum fracture trace t,,;, increases.
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From the preceding illustration (Figure 7-5) the apparent difference between Model A and
Model B is hardly discernable towards the outcrop scale (Figure 7-5a and b). However, based
on the model equations in Section 4.1, the number of fracture traces whose length is larger than
10 meters varies roughly of a factor two between Model A and Model B. This is simply illus-
trated in the following Figure 7-6. The fracture trace maps correspond to the same realisation as
in Figure 7-5, but they are displayed within a square area of side 50 m. Fractures whose trace

is larger than 10 m together with fractures whose trace is smaller than one meter (with a parent
fracture diameter larger than 0.5 m) are represented by red and black lines respectively. As
expected, the number of traces larger than 10 increases of a factor close to two from Model B
to Model A. Also, the proportion of smallest fractures (red lines) decreases from Model B to
Model A.

Finally we provide simulations, for the two GSM models, of the fracture intensity measured
along km-long boreholes. The bulk DFN model is sampled along boreholes that have exactly the
size and shape of real cored-boreholes of the site. For doing this, a kilometric cube of generation
is defined. Then a borehole is placed at the cube center. Two boreholes are considered: a copy
of KFMO02A and a copy of KFMO5A. The numerical boreholes mimic exactly the real borehole
shape (radius and local deviations). Fractures of the DFN are generated from a minimum scale
equal to the borehole diameter and without a limit towards largest scales. During the simulation
process, fractures fully intersecting the boreholes are identified and their characteristics (size,
center position, orientation), as long as the position (secup and elevation) on the borehole, are
registered.

The method of generation is adapted in order to avoid huge computation times and memory
requirements, due to the wide range of scales modelled (from the borehole diameter up to the
lineament scale within a kilometric space): instead of initially generating the DFN and next
detecting the fractures intersecting a given sample (plane, borehole), the fracture generation
and sampling are performed simultaneously; by doing this, only the fractures intersecting the
sample are kept in memory. Secondly, the region of generation is adapted to the fracture range
of size; by doing this, one avoids generating cm scale fractures hundreds of meters away from

a) Model A (a,,=3.5 eq. to k=2.5), b) Model B (a,,=3.9 eq. to k=2.5)
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Figure 7-6. Complement to Figure 7-5, fracture trace map observed in a fifty meters squared area,
resulting from a 3D parent fracture model with minimum fracture radius set to 0.25 m (diameter 0.5 m),
for Model A (a) and model B (b).
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the sampling object. These adaptations allow to simulate the DFN dynamics through several
scales, which is essential when dealing with borehole data whose characteristic lengths go from

the borehole diameter (less than 10 cm) up to the borehole length (that reaches one kilometer for
the cored boreholes).

From the simulations (Figure 7-7) we observe that:

+ the 2D-3d DFN model overestimates up to a factor of two the mean value of Po; the amount
of horizontal fractures seems to be large,

* model B leads to a larger fracture intensity than the “outcrop” model,
* the fracture intensity is larger on borehole KFMOS5A than for KFMO02A,

+ the fracture intensity variability is weak since no spatial correlation is included at that stage
in the modelling.

a) borehole equivalent to KFM0O5A b) borehole equivalent to KFM02A
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Figure 7-7. Simulations of the 2D-3d model on boreholes equivalent to KFMO05A and KFMO02A.
(Great circle in c;shows the range of fracture poles perpendicular to the borehole mean orientation;
this represents the poles that can not be sampled by the borehole).
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7.3 Consistency analysis

As stated before, the model consistency is assessed by comparing the o,4 values calculated from
the borehole fracturing intensity and from the outcrop fracture trace maps. We check a,4 for both
different values of as4 that have been defined in the previous paragraph: a;=3.5 (£,=2.5) and
a3=3.9 (k=2.9).

We analyse the only dependency with fracture dip: oz4(¢), which is calculated by integrating
over strike 0. A detailed analysis on both 6 and ¢ would have required a very large dataset

— that we do not have — in order to get a decent level of statistical relevance. The fracture dip is
anyway a key parameter when calculating a4 since it controls the intersection probability with
horizontal plane and vertical boreholes.

Figure 7-8 shows the 3D density terms calculated by two different methods. The difference
between both methods illustrates the data variability and the related statistical issues. As for the
next figures (Figure 7-8, Figure 7-10, Figure 7-11, Figure 7-13 and Figure 7-14), a4 is plotted
with a log scale, which make possible the comparison of large and small values. The uncertainty
on a3y depends on the dip value: subhorizontal fractures (small @) are badly sampled on
horizontal outcrops, which explains why the uncertainty on o, is so large for the first two points
on the left of the figure. The uncertainty also depends on the number of fractures over which a4
is calculated. There also exists an horizontal error bar, which is about the uncertainty on the dip
measurement (£ 5°).

The density term o4 was first calculated for the different outcrops by applying the stereological
rules defined in Section 7.1, and by using the 2D fit parameters defined in the previous

Section 7.2 in Table 7-3. Figure 7-9 gives values of a4 integrated over the whole range of
fracture orientations. Densities varying between 2.1 and 4.35 were obtained for Model A
(derived from the sole outcrop trace maps), and between 3.6 and 5.5 for Model B (close to
self-similar). These values are fully compatible with the a;,4 values calculated from the numeri-
cal modelling performed independently (Section 7.2.2).

Comparison between binning methods

<)

=
!
|

3D density terma.
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dip
Figure 7-8. The 3D fracture density term oz, calculated for the outcrop AFM0010098 with two
different methods. The first one is based on a simple logarithmic binning; the second one is derived
from /Davy 1993/, which ensures a sufficient number of elements for each dip value.
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Figure 7-9. o3, calculated for each outcrop trace map and for the two candidate models, model A
(as=3.5, or k.=2.5) and model B (a;;=3.9 or k,=2.9).

Variations of az4(¢) with dip is shown in Figure 7-10 for each outcrop and for both GSM
models. Most fractures are vertical, but the number of subhorizontal fractures is quite important.
The smallest frequency is observed for fractures dipping between 30° and 60°. We note that the
error bars increase towards small dips, reflecting the increase of uncertainty due to orientation
bias'* (detailed expression provided in Appendix 1). We observe a remarkable consistency
between AFM000053, AFM000054 and AFM001098. AFM001097, the outcrop that corre-
sponds to a shear zone, exhibits small densities in the dip range of 30° to 60°, and quite large
densities for subvertical fractures. In AFM 10201, the fracture density is more or less constant
from 0 to 70°, and increases for vertical fractures.

The “likely” outcrop, where all fracture traces have been put together, is representative of the
curve average. It will be taken as an illustrative reference when comparing with boreholes.

Finally, we note that the differences between the two GSM models (a;=3.5 Figure 7-10 left, and
a;=3.9 Figure 7-10 right) are qualitatively small except for a shift of the curves in proportion to

the average a4 values.

a; =3.5 a;, =3.9
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Figure 7-10. os,(p) for the five outcrop trace maps. Left Model A (a;,=3.5 eq. to k,=2.5). Right, “self-
similar” model (a;;=3.9 eq. to k,=2.9).

4" On the contrary, errors bars increase towards large dips for vertical boreholes.
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We now compare the density term o;4(¢) calculated from the 2D outcrop datasets with
034(¢) calculated from boreholes. Borehole KFMO02A is investigated in details (Figure 7-11,
Figure 7-12 and Figure 7-14); in total, four boreholes have been analysed (Figure 7-13).

First we claim that the calculation of 034(¢) (or a;4(6, ©)) is the only way to compare fracture
orientations between boreholes of different orientations, and obviously between boreholes and
outcrops. Stereonet representation could be adapted to handle the a;4(0, ¢); however, the repre-
sentation does not allow superposition of curves that make the interpretation easier (especially
when investigated the density variations from horizontal to vertical fractures).

In Figure 7-11, we have analysed the entire borehole KFM02A with either a;4=3.5 (left) or
a3=3.9 (right). We recall that, except in Figure 7-14, a;4(¢) is calculated from the entire amount
of fractures in the borehole, mixing RU, DZ and different depths.

For each length exponent, two cases are displayed: /., (the smallest fracture length, with
l.in=2%r,) smaller than the borehole diameter (yellow disks), and /;, set to one meter (yellow
stars). We observe that /,,;;=1 leads to a systematic overestimation of az4(¢) when compared to
the outcrop densities (the grey lines). Model B (a3;:=3.9 eq. to £,=2.9) coupled to no lower limit
(yellow disks in Figure 7-11a) seems to fit better the outcrop data, at least for dips larger than
30°.

The 3D density of subhorizontal fractures is larger in outcrops than in boreholes, whatever the
GSM model. This is consistent with an increase of the subhorizontal fracturing close to surface
/R-05-18/. As a consequence, a DFN model that is constrained only by surface data would
produce unrealistically large fracturing intensities along boreholes. This is consistent with the
conclusions drawn from numerical simulations (see Section 7.2.2).

Figure 7-12 reproduces exactly Figure 7-11, with a linear vertical axis. This helps to visualise
the actual variation of fracture density with dip.

Based on the interpretations related to borehole KFM02A, the 3D density terms as4(p) were
calculated for a few other boreholes: the cored KFMO5A (Section 6.4.4), and two percussion
drilled boreholes HFM04 and HFMOS5. Again all depths, RU and DZ were used together.

The main conclusion of the analysis of KFMO02A still holds. The subhorizontal fractures are
more frequent in outcrops than in boreholes, and the trends are very similar for fractures dipping
between 30° and 90°. The only difference is that the outcrop model (model A, a;:=3.5 eq. to
k=2.5) is now as efficient as model B (a3,=3.9 eq. to £=2.9) to ensure the consistency between
boreholes and outcrops.
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Figure 7-11. 3d density term, az.(p) for borehole KFM02a, with the two possible models: the “out-
crop” model on the left with as; equal to 3.5, and the “self-similar” model on the right with as; equal
to 3.9. azu(p) is calculated without limit on 1., (vellow disks) and with 1, equal to one meter (stars).
o54(p) values calculated from the 2D outcrops are drawn as grey lines, the thickest corresponding to the
mean 2D model. The red dashed line corresponds to the homogeneous orientation model.
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Figure 7-12. 3d density term, as.(p), same graph as in Figure 7—11a with ordinate axis in linear
instead of log.
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Figure 7-13. 3d density term, os4(p) for the outcrop model (a;;=3.5, left), and for the self-similar
model (a3;=3.9, right) calculated for boreholes KFM02A4, KFMO05A, HFM04 and HFMO05. a4(p) from

2D datasets are outlined in grey lines.

Finally, the 3D density terms a;4(¢) is calculated within the different rock units and deformation
zones defined along the borehole KFMO02A (Figure 7-14). The objective is to provide an insight
of the possible variations in oz4(¢) as a function of geology and depth. We have compared

the following zones (see scheme in Figure 6-16): DZ6, DZ7, RUla, RU1d and RU1e. These
units are chosen because they contain enough fractures to derive statistically sound values of
o34(0). In addition, we note that RU1a is located close to the surface; RU1d is located between
300 m (secup) and 400 m, and RU1d between 650 m to 830 m. We first observe, as it could

be expected, that the deformation zones are characterized by larger fracture densities than

rock units and outcrops. As a consequence, the densities of rock units are smaller than the one
calculated for the whole borehole, which is presented in the Figure 7-11. The best-fitting model,
that is the model which ensures the best consistency between rock units and outcrop datasets, is
now the “outcrop” model, with the exponent a;;=3.5.

Moreover the upper rock unit (red squares in Figure 7-14) shows an increase of the fracture
density for subhorizontal fractures, consistent with outcrop fracturing.
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Figure 7-14. 3d density term, as.(p), recalculated from some subparts of KFM02A: RUla, RUId and
RUla=e (coloured squares), DZ6 and DZ7 (yellow triangles). The outcrop models are drawn as grey
lines. On the left, a3, is calculated for az;;=3.5, on the right for a;;=3.9.

From this part, we draw several important conclusions for the general GSM model:

» There exists an important subhorizontal fracturing that occurs close to surface, which makes
outcrop fracturing different, in term of density, from the fracturing observed in deep geologi-
cal units from boreholes. The difference between surface and deep units does not exist for
fractures dipping more than 30—40°.

* The rock units are remarkably consistent with outcrops for dips larger than 30—40°, and for
the “outcrop” model (a;=3.5 eq. to k=2.5, Figure 7-14). Model B (a;4=3.9 eq. to k=2.9,
Figure 7-14) tends to predict larger fracture densities in outcrops than in rock units defined in
boreholes (in the dip range of 30—40°).

» Fracturing densities from the DZ at depth are larger than fracture densities observed on
outcrops: so, there is no equivalent, in the outcrops, of the Deformation Zones, identified at
depth.

* The best-fitting model is defined for /,,;, (the smallest fracture length, »=1,;/2) smaller than
the borehole diameter. With this method, it is not possible to say more about /,;,. Models
that consider larger values of /;, (1 m for the stars plotted in Figure 7-11) do not ensure the
consistency between outcrops and boreholes.

7.3.1 The crush zones

There exists a few crush zones along boreholes that cannot be investigated through our analysis
because of the lack of any orientation information. Quantitatively speaking, this missing
information is small and should not affect the statistical model. The total number of fractures
that are likely to be in crush zones represents 7.5% of the total for KFMO02A, and 0.6% for
KFMOS5A (see Table 7-4).

Table 7-4. Number of crush zones and sealed-network zones in the boreholes KFM02A and
KFMO5A.

KFMO02A KFMO05A

Truly referenced fractures 1,839 2,678
(open and sealed)

Crush zones 7 3
Fractures in crush zones 139 16
Sealed network zones - ~50
Fractures in sealed network - 1,835
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These crush zones are more valuable than their statistical occurrence since they may bear a
significant part of the flow. Moreover the crush zones may be somewhat representative of the
lineaments. By analyzing the occurrence of the crush zones, we may infer the link between
boreholes, outcrops and large-scale lineament maps.

An issue is to know if the lineaments belong to the same statistical model as the fractures in
boreholes and outcrops. Let us assume that it is true, and that the shear zones represent large
structures, whose length is larger than a given value /;, to be determined. The occurrence of
these structures is ruled by a probability distribution function, such as (see Equation 3 in /Davy
et al. 2006/ above):

3-ay
) - l’l llin

a, -3

N>l

lin
where /4 is the borehole length. The total number of intersecting fractures is:

d> 2
A3y -3 (ayy - 2)(a5y - 1)

L, can be derived from the ratio between both numbers:

1
a3
ly, =d 2 Ny Equation 7-2
(a3d - 2)(a3d - 1) Nl

liin just depends on a3y, in a way given in the graph below (; is given by the number of crush
zones and Ny by the number of “truly referenced fractures” in Table 7-4):

With a power-law length exponent a4 of about 3.9 (eq. to k=2.9), the minimum length of shear
zones is estimated at about 100 m—1 km. If the exponent is smaller, this length becomes very
large, up to 10—-100 km for a;:=3.5 (eq. to k=2.5). This simple analysis gives the conditions for
the shear zones to be statistically consistent with the rest of the fracture sets. If we assume that
the shear zones have the same length as the lineaments, it is not unreasonable to think that their
minimum length is about 100 m—1 km, which is consistent with a power-law exponent a;4 of
about 3.9. This result shows that the conditions for having lineaments consistent with outcrops
is the same as that of having shear zones consistent with borehole fractures. This is not really
surprising but this was worth checking out.

—l— KFMO02A
—@— KFMO5A

Estimated minimum length
of the shear zones

3.2 34 3.6 3.8 4.0

Figure 7-15. Estimated minimum shear zone length using Equation 7-1.
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7.3.2 Sealed networks

The sealed-network zones are not included in the dataset when calculating the statistical density
distribution because no information is provided concerning their orientation.

In KFMOS5A, there are about 50-700 sealed-network zones (depending on how we define a
“zone”) with an estimated fracture density of about 2, comparable with the density of the treated
fracture dataset.

In fact, “sealed network” is a concept that started to be mapped after the sampling of borehole
KFMO3A. A sealed network zone has a particular signature with respect to the rest of fracture
types identified on boreholes: it consists actually in a very dense cluster of small fractures

(high clustering is illustrated in Figure 7-16 below). Due to the high fracture density in a sealed
network zone, the characteristics of each “sealed-network fracture* are not registered. Therefore
only an estimate of the fracture intensity (P,o) is provided for each identified sealed network
zone. We suspect that most of these fractures are smaller than the borehole diameter; then, it will
be really difficult to perform a comparison between the sealed network fractures and the rest of
the fractures, because of the dependence of the fracture density on the smallest recorded fracture
length.

The sealed networks are potentially an important (at least worth being considered) part of the
fracture system at least for their mechanical consequences. How should the sealed network
zone or sealed network fractures be related to the rest of the fracture system (cluster of small
fractures, single fracture zone or something in between) remains an issue.

We recommend analysing some of the sealed-network zones in order to understand the geologi-
cal factors that may control their occurrence, and to quantify their spatial organisation. With the
currently available database (fractures lumped in any given sealed network zone), this analysis
cannot be done.

KFMO05A
0 fracture intensity 07 sealed network intensity
———————— mean
smoothed o
] discrete
200 200 —fm—
—~ 400 ~—~ 400
E E
2 o
o o
@ @
600 . 600

800 800

=
-

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
fracture intensity sealed network intensity

1000 1000

Figure 7-16. Fracture intensity profile for KFMO05A, corresponding to both open and sealed fractures
(left) and sealed-network fractures (right). The latter is characterised by locally high densities and
strong clustering.
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8 DFN model parameters

Both local (Section 6.2.6) and scaling (Section 7) DFN models have been defined along the
report. Given the different variations observed in terms of apparent density, fractal correlation
dimension and power-law length exponent, the value of the latter was found to implicate the
major source of uncertainty in the DFN modelling process (Figure 8-1, grey) .

Two main candidate models are defined, Model A and Model B, defined by a constant length
exponent. Model A refers to the DFN models having a;, equal to 3.5 (eq. to &, equal to 2.5) and
Model B refers to the DFN models having a;, equal to 3.9 (eq. to &, equal to 2.9). For the two
models, the orientation distribution chosen arises from the outcrop datasets (fisher distributions
provided in Table 6-3).

Both models were refined to either local constant values of densities (the local models,

Figure 7-9) or a mean density, derived from five datasets gathered and combined in the scaling
analysis (global models). The different parameters obtained (in terms of a;4, 034 and Ds,) are
summarized in Table 8-1. the mean fracture density 034 mean 1S provided; in complement, the
extreme values of fracture densities found from the different datasets (local models), are also
provided (03q.min, O3amax). This provides a picture of the DFN model variability (Figure 8-1, inlet,
variability around the mean model). The range of validity of the models is discussed in the
conclusions (next section).

We note finally that the variability of the DFN models remains obviously lower than the real
fracture system; one reason is that fractal correlations are not yet included in the modelling. We
think more generally that this issue should be tackled together with the consideration of second
order correlations and with the issue of fracture definition with scales.

100000
1000 R
10
0.1 : ‘::.” K - 1234_5
— 2%, ’ frachure digmeder
8 1E3 o
© -
% 1E-5 e
1E-7 SR
1E-9 Y
1E-11 o
1E-13 | T T T T T T T T T 7T T T T o ----ﬁ:l
0.1 1 10 100 1000 10000

fracture diameter

Figure 8-1. GSM models, the two candidate models, with a;;=3.5 (eq. to k., = 2.5) in red and a;;=3.9
(eq. to k., = 2.9) in blue. Dashed zones represent windows of observation. Density variability is
illustrated in inlet.
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The smallest fracture (fracture radius 7, or fracture diameter /,;,) consistent with the DFN model
remains an open question (see the conclusions in next section). We chose therefore to express
the results P, like Ps,(r.), where 7. is chosen by the user (see Section 4.2.2, Equation 3-2).

The DFN model parameters equivalent to Table 8-1, expressed in terms of k. and P;,, are
provided in Table 8-2 below. As expected for power law DFN models dominated by the small
scales (a;>3, eq. to k>2), the shorter is 7., the larger is the density Ps,. Below a certain scale (r.)
the fracture density measured, Ps,, is larger for Model B (with £,=2.9) than for Model A (with

k=2.5).

Table 8-1. GSM parameters summary (see Table 8-2 for P;, and k,).

A3zq Ol3d,mean O3d,min U3d,max D3y Orientations
Model A 3.5 3.0 2.1 4.35 3. Table 6-3
Model B 3.9 5.2 3.6 5.2 3. Table 6-3
Table 8-2. GSM parameters summary.
Model_A Model_B
k. 25 2.9
Dsy 3 3
orientations Table 6-3 Table 6-3
P32,mean(rc=250) 021 002
Pazvmin(rc=250) 0.15 0.01
P32 max(r:=250) 0.31 0.02
PSZ,mean(rczo-s) 4.71 4.54
P32,min(rc=0-5) 33 314
P32max(r:=0.5) 6.83 4.54
P32,mean(rc=0.039) 17.09 46.14
P32 min(r:=0.039) 11.97 31.95
P32,max(rc=0-039) 24.79 46.14
a) [}
10-
P.(r) —— model A (k = 2.5) 1000
al ! B
——model B (k =2.9)
— 10
E T il
=
4. 0.1
2- 1E-3
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1 2 3 4 8 Q.

e e
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Figure 8-2. a) Evolution of P;(r.) for the two mean models: Model A and Model B. b) fracture radius
density distribution (red lines), limit r. symbolized by the blue dashed line.
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9 Conclusions

In this report, we aim at defining a self-consistent method for analysing the fracture patterns
from boreholes, outcrops and lineaments. The objective was both to point out some variations
in the fracture network parameters, and to define the global scaling fracture models that can
encompass all the constraints brought by the different datasets.

From the surface data analyses, we define two possible global scaling models. The first one

is consistent with the scaling measured in the outcrops. Its scaling exponent is a;;=3.5 (eq. to
k=2.5); it overestimates the fracture densities observed in the lineament maps. The second one
assumes that both lineaments and outcrops belong to the same distribution model, which entails
a scaling exponent a;:=3.9 (eq. to k=2.5).

Both models have been tested by looking for the best consistency between boreholes and
outcrops in the fracture density-dip relationships. This consistency analysis has been limited to
boreholes KFM02A, KFMO05A, HFM04 and HFMO0S5. The main conclusions that we draw are
the following:

» There exists an important subhorizontal fracturing that occurs close to surface, which makes
outcrop fracturing different from the fracturing observed in deep geological units from
boreholes. The difference between surface and deep units does not exist for fractures dipping
more than 30—40°.

* The rock units are remarkably consistent with outcrops for dips larger than 30-40°, and for
the “outcrop” model (model A, a;=3.5, eq to £=2.5, Figure 7-14). The model B (model B,
a3=3.9, eq to k,=2.9) tends to predict fracture densities larger in outcrops than in rock units
defined in boreholes (in the dip range of 30—40°).

* Fracturing densities from the DZ at depth are larger than fracture densities observed on
outcrops: so, in that way there is no equivalent in outcrops of the Deformation Zones
encountered at depth.

* The best-fitting model is defined for /., (the smallest fracture diameter, /,,;,;=2%ry) smaller
than the borehole diameter. With this method, it is not possible to say more about /,,;,. Models
that consider larger values of /,;, (1 m for the stars plotted in Figure 7-11) do not ensure the
consistency between outcrops and boreholes.

* The shear zones, as well as the lineaments, may belong to a different global scaling model
than rock units. Further investigations and more data are necessary to characterize this
additional GSM.
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10 Numerical tools

Dips 5.0

Origin 7.5

Arcview 9

Access

Excel

3FLO 2.20-002 /Billaux et al. 2005/

Geosciences Rennes Numerical Tools
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Appendix 1

Fracture trace maps — outcrops

Local analyses

Five fracture trace maps were analysed in the study. Their reference name, area and number of
traces are recalled in the table below; their location within the site are recalled in Figure A1-1.
In the next pages a descriptive representation of the corresponding data is provided with:

a) trace map together with geological characteristic,

b) a picture of the outcrop or close to the outcrop,

c) a graph corresponding to the density-length distribution (power-law exponent a,y),

d) a graph corresponding to the integral of correlation calculation (fractal dimension D),
e) discrete stereonet (lower hemisphere equal area projection),

f) contoured stereonet (lower hemisphere equal area projection).

Table A1-1.

Outcrop Outcroparea L (Varea) Number of fractures
AFMO000053 645.5 254 986

AFMO000054 596.1 244 1235

AFMO001097 486.7 221 1197

AFM100201 501.2 22.4 1280

AFMO001098 279.9 16.7 1201
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Figure Al1-1. Location of the five outcrops within the site (numbers indicate the rock domains).
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Note on the area estimate

Fracture areas (Table A1-1) are estimated from trace map contours, as illustrated in Figure A1-2.
As illustrated on AFM001097, traces are mapped within a grid (violet in the figure). Next the
map contour seems to have been drawn after the traces mapping, by encircling all the fracture
traces. Grid areas and contoured areas can therefore differ from a few percents, leading to

an uncertainty on the fracture trace map areas estimates. In these report, we have chosen to
estimate the fracture trace map areas from the contoured areas.

Local “outcrop” models: orientation distribution

A table summarises the fracture set name (NW etc), orientation of the mean fracture plane
(strike-dip), the Kappa value corresponding to an equivalent Fisher distribution and finally
the modelled percentage of each set (corrected from orientation bias, ie directly the modelled
percentage of fracture intensity belonging to the set for the bulk distribution).
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Figure AI-2. Tracture traces (in color) and map (in black) contour for AFM000053 and AFM001097.
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Table A1-2. AFM000053, orientation distribution.
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Table A1-3. AFM000054, orientation distribution.
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Table A1-5. AFM001098, orientation distribution.
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Table A1-6. AFM100201, orientation distribution.
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Appendix 2

Classical fracture distribution laws

Several kind of statistical laws are classically used to fit fracture size properties /Bonnet et al.
2001/. The most common are the power, lognormal, exponential and gamma laws. A general
discussion of their relevancy for describing the frequency distribution of fracture properties can
be found in /Bonnet et al. 2001/. We provide here a very short summary of Section 2 in /Bonnet
et al. 2001/: a schematic plot (Figure A2-1) of these laws, illustrating in particular the absence of
characteristic length scale associated only to the power law, and their mathematical expression.

| .exp |- (log(w)— < log(w) >)°
w-0 27w 207

where w is the fracture length, </og(w)> the logarithmic mean, ¢ the variance, and 4, a constant.

The lognormal law is expressed by: n(w) =

The exponential law is expressed by: n(w) = 4, - exp v
Wo

where A, is a constant and w, a characteristic length scale.

The power law is expressed by: n(w) = A,-w™*, where A, is a constant and « the scaling
exponent (with the correspondence in notation: k=a—1 from Equation 4-7 and Equation 4-8).

The gamma law is finally a power law with an exponential tail, expressed by:

n(w)=A4,-w’-exp -
L)

where 45 is a constant, a the power law exponent and w, a characteristic scale.

1000000 |
100000
10000
1000 4
100 4

lognormal law
—— gamma law
— expenential law
- = - power law

00i 0.4 1 10 100 1000
Y

Figure A2-1. Schematic plot illustrating the different functions classical used to fit fracture length
distributions datasets.
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The power-law model shape is defined only by its scaling exponent (), in contrast to other
mentioned laws which use at least one parameter with a dimension of a length (w, <log(w)>).
In that sense there is no characteristic length scale in the power law (see the schematic plot
in Figure A2-1). Note finally that, in nature, power laws have to be limited by physical length
scales that form the upper and lower limits to the scale range over which they are valid.
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Appendix 3

Fractal objects and measures

Introduction

The fractal dimension associated to the DFN model defines the fracture density scaling. It is
a mass dimension /Davy et al. 1990/. This dimension is equivalent to the so-called correlation
dimension or dimension of order two of the multifractal spectrum /Bour et al. 2002/. It

is measured from the spatial distribution of the discrete set of points formed by the fracture
barycenters. The most appropriate method to measure the fractal dimension D (also noted D.)
relies on the integral of correlation calculation /Bour et al. 2002/.

In practice, the fractal dimension Ds, associated to a 3d DFN model can not be measured
directly. Therefore, values of D, are inferred from measures of the fractal dimension performed
over the 2d outcrops (noted D,,) or along the boreholes (noted D). In the present framework of
DFN modelling, D;, is linked to D,4 and D,y /Darcel et al. 2003/. In order to better identify the
fractal dimension considered here, we recall in the following basic definitions of fractal objects
and multifractal measures.

Notations

To refer to the fractal dimension throughout the report, the notation D, is kept to represent the
correlation dimension (or equivalently the mass dimension) in general; “D,,” and “D,y” refer
especially to measures performed on 1d and 2d supports respectively; at last, “Ds,” refers to the
fractal dimension associated to the bulk DFN model.

Fractal object

According to Mandelbrot /Mandelbrot 1982/, a fractal object displays irregularities similar at all
scales. From a general point of view, a fractal object is defined as an object having a non integer
dimension and no characteristic length.

b)

Figure A3-1. a) deterministic fractal, Sierpinski carpet, b) statistical homogeneous fractal and
¢) statistical heterogeneous fractal.
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A simple way to measure the dimension consists in applying a classical paving method, by
counting the number of elements necessary to cover an object as a function of the elements size.
Let S be an object in R and N(€) the number of hypercubes of radius € necessary to cover S.
The fractal dimension associated to S, di(S), is defined from:

N(g) =~ r(S)

Thus, the dimension of a straight line is 1 and the dimension of a plane is 2. In the case of

the Sierpinski Carpet (Figure A3-1), at the scale T/2", if T is the linear size of the system,

one needs N,(/,)=3" boxes of size [,=T/2™" to cover the object, leading to a fractal dimension
D=log(3)/1og(2)=1.58. The Sierpinski carpet displayed in Figure A3-1a is deterministic: its
shape is fully determined by an initiator (initial state) and a generator (recursive splitting
operator). Fractals can also have a statistical nature. A statistical fractal is homogeneous if the
mass ratio is conserved from a scale to the other (Figure A3-1b) and heterogeneous if this ratio
can vary (Figure A3-1c). Most fractals observed in nature are statistical fractals /Korvin 1992,
Viseck 1992/.

Contrary to the fractal dimension measurement over a regular (or deterministic) object,
measuring the fractal dimension over an irregular (or statistical) object may lead to differents
results according to the method used. Thus, several definitions of the fractal dimension are
proposed in literature /Feder 1988, Gouyet 1992/. The method of the integral of correlation is
found to be best suited for the charaterization of statistical fractals /Viseck 1992/. This method is
based on the two-point statistic of the point set /Grassberger and Procaccia 1983/ and is defined
as follows: let (x;) be a set of points in the metric space X, one considers the counting function:

xl-—xj‘Sr,i,jSN}

C(r,N) = — card{i, )
N

where card(4) refers to the number of pair of points whose distance is lower than » and N to the
total number of points in the set. The limit

C(r)= lim C(r,N)
N oo

is the probability that two points of (x;) are distant from a distance less than . The correlation
dimension is therefore given by:

D = limM
r=0  logr

Note that D, is easily obtained from the slope of C(r) vs r in log-log space.

Multifractals

The concept of a fractal is extended to the more complex notion of multifractal. A multifractal
measure is linked to the characterization of the spatial distribution of a quantity associated to
a support /Feder 1988/. One can for instance consider the density distribution of the human
population over the world, or more simply over fracture density repartition within a fracture
system. One defines the measure [ over its support S, . The multifractal formalism can be
expressed through the concept of “partition function” /Feder 1988/. The partition function, for
any ge R, is written like:

N(¢)

Z(g.€)= Y, ui(e)

i=1
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where | is the measure, € the size. The partition function Z(q, €) represents the sum of the
moments of order ¢ of the measure distribution over the support. The spectrum t(g) can be
defined from the power-law behavior of Z(g, €) when e—0":

Z(q,€) ~ ™

The spectrum of generalized dimensions, or multifractal spectrum, is defined as:

)
T (q-1

The multifractal spectrum ({D,}) characterizes the degree of homogeneity and regularity. The
dimension D, (for g=0) is equal to the dimension of the physical support, which can be fractal
itself, but not necessarily. If D;=D, for any value of ¢, the measure is then uniform over the
support, corresponding to the classical definition of a fractal (monofractal).

The dimensions D, are linked to the q-points correlation functions (like the integral of
correlation described above), /Grassberger and Procaccia 1983, Hentschel and Proccacia 1983/.
In particular, the correlation dimension is equal to the dimension of order 2 (q=2) of the
generalized dimensions spectrum.

Application to DFN

Independently of the multifractal or monofractal nature of a fracture system, the mass dimension
(or correlation dimension, i.e. Dy, of the multifractal formalism) is sufficient to constrain the
first order DFN model considered in the present work (Section 3).

The correlation integral method is adapted discrete fracture networks characterization /Bonnet
et al. 2001, Bour et al. 2002/. We note that:

* In 2d, the points, from which the correlation function are calculated, are the fracture trace
barycentre positions. However “all points of fracture plane are possible a priori candidates:
we take the fracture barycenter as the most neutral position compared to fracture tips” /Bour
et al. 2001/.

» For 1d datasets, fractures positions are non ambiguous, simply defined as the fracture
intercepts.

 In the present case, measuring the fractal dimension through the classical mass dimension
or integral of correlation method is almost equivalent. The difference concerns finite size
effects due to finiteness of the datasets.

» In practice, the method efficiency is sensitive to the number of points in the dataset, and to
the shape and size of the sampling area. To take account of possible boundary effects due to
the shape of the support, an adapted method is proposed; the integral of correlation is calcu-
lated for two point sets: the original one (C(7), or Cyuwmi(7) ~ #°¢) and a second one for which
fracture positions have been homogeneously distributed over the support (Chomogencous(*)~7?).
The ratio C(7)nomogeneous’ Coanural(7)) Varies as r42¢, cleared from finite size effects related to the
support shape.
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Appendix 4

Stereological rules for random disk-shaped fractures

We aim at deriving the stereological rules for randomly distributed fractures with both fixed
length and orientation distributions. This section is the extension of Piggot’s work for randomly
oriented fractures.

Consider a 3D distribution model for fractures, ns4 (7, 9, ¢, x, ¥, z), and the corresponding
distribution of fracture traces in any plane: n.q4 (7, 0, @, x, ) The basic definitions are:

0 is the fracture strike (similar in 3D and 2D if the intersection plane is horizontal).
¢ is the fracture dip.

[ is the fracture diameter.

t is the length of the fracture trace.

X, y, z are the coordinates of the fracture center.

The intersection plane is defined by z=0, so that z is also the distance from the fracture center
to the intersection plane.

If the fracture density is homogeneous, n3q4 (7, 0, @) is the number of fractures per unit volume
whose orientations and diameter are in the intervals [/, /+d/], [0, 6+d0], and [¢, ¢+do]
respectively. n,p is an areal density with similar definition.

The fracture trace length depends on /, ¢ and z, such as:

. 2z
sin@= , or conversely
NP =1
2 2
t= |1 —| =2 (Equation 1)
sin @

We make further equations simpler by applying the following variable change:

z

2z

= (Equation 2)

sin @

The number of fracture trace with a length / and orientations (8, ¢) is the sum of all fractures
above and below the intersection plane whose length follows:

o di o d .
1y (,6,0) = L 73y (1,8,9) - dz =2 jo sy (1,8, 9)dz (Equation 3)

dz comes from the ratio between area and volume, which are basic to 7,4 and ns4 respectively.

..odf : : L .
The derivative — makes the link between diameter and trace length. Its expression is derived

dr

directly from (1):

a1

dr [y »
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By making the variable change (Equation 2), the stereological integral (Equation 3) now
becomes:

10 (1,0,0) =sin o ., (1,6, w,z)tTdZ' (Equation 4)

We now consider some basic assumptions for fracture distributions that are used when assessing
a Discrete-Fracture-Network statistical model.

» The strike and dip orientations are assumed to be independent of the fracture-diameter
distribution:

n3d (l’ e,(P) = (XSd (e’(p) n(l)

* The fracture-diameter distribution is assumed to be a power law:

1y, (1,0,0) = 0y, (0,0) 17

With these assumptions, (Equation 4) becomes:

(18,0 = 00, @) sine [(ViF+27) T
z

e —(azg+1)
134 (1.0.9) = 0, (0,9) sin 1 | (\/12 +z'2) dz'

)2
: : z . :
By making the variable change, u =1+ (T] the above equation can be written as:

. u_a3d

u’ =1

du

1y (1,0,0) = 013, (6,9) sin > |
The integral term depends only on a;4. By making an appropriate variable change with
hyperbolic sine, we obtain:
@
— (%Y

J /u _ 1_,(a3d+l)

The final expression of #n,, is thus:

(%)
_ . N —azq+1
1 (1,8,9) = 04 (8,9) sin 0= —r(“3d +1)t (Equation 5)

For uniform dip and orientation distribution, d(¢) = gd and the expression is similar to
Piggott’s equation: n

Qy4
g T
\/_r(a3d+1)

t—a3d+l

Ny () =
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Now we make use of the 2D fitting model that have been defined for the fracture trace:
n,, (2,0,0) =0, (0,)r (Equation 6)
The comparison of the previous equation with (5) implies that a;;=a,,+1, and that

A3q

o Jn %)
0,,(0,9) = 0,,,(6,9) sin (p7 ﬁ
F(%)

034 can be obtained by integrating Equation 5 over the fracture trace length ¢:

r(a3d+1)fnzd(f,9,<p) dr
2 2 . sin@

o, (0,0)=
50(6,9) N F(@) J‘t—agmdt
2 '

The denominator integral can be obtained by integrating (Equation 6):

dyy = Inzn (,0,0) df = 0., (6, (p)J.t_"Zd dr = oL, (8, (P)_’.f_a3d+ldt

t
with d,4 the average fracture density mapped on the outcrop. Then a;4(0, @) writes:

a,, +1
1’* 3d
0, (0,9) 2 ( 2 ) ”2d(t:9,(P)dt
dyy  n r(@) ; Sino
2

0Olyy (e: (P) =

The derivation of a34(0, @) for any values of 6 and ¢ is now straightforward since the integral
consists in counting the fracture population with the specified conditions in 6 and ¢.
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Appendix 5

Methodology — local deviations

Borehole curvature

If the borehole curvature is not negligible, then the correction from orientation bias must be
based on the local borehole direction instead of the mean borehole direction. The effect of the
borehole curvature is complex: it relies obviously on the local borehole orientation and on

the intersected fracture orientation. For a given class of orientations it can affect the apparent
fracture intensity. The only case where fracture intensity is independent of the borehole direction
is for a homogeneous orientation distribution. To delimit the problem, we have calculated the
local deviation from the mean direction along all the boreholes; then a local borehole direction
has been associated to each fracture intersection position and the subsequent correction from
orientation bias have been systematically based on the local borehole direction.

Local deviation — definition and calculation

To calculate the borehole local deviation from its mean direction, we have chosen the following
procedure (see Figure A5-1). The mean direction is calculated from the extreme fracture
intersection points. Locally the direction is calculated from the fracture intersection positions
with a given sampling step. The local deviation is defined as the angle between local and mean
borehole orientation.

Application to the data

The size of the sampling step is varied to check the procedure. If it is too large, some local

high variations (Figure A5-2 left) are missed. On the contrary, if it is too short, no fracture inter-
sections positions are available to calculate the deviation. We finally choose a step of size 4 m to
calculate locally the borehole direction. Local deviations from mean direction are illustrated on
the below.

All boreholes display departure from a constant direction (Figure A5-2). Variations are most of
the time smooth, except for KFMO04A (Figure A5-2) around depth —340 m. the variations for
instance for borehole KFM04A, are comprised between 43° and 63° for the trend and 30° and
45° for the plunge.

\ dz‘

dz‘

Figure A5-1. Scheme of the local borehole deviation calculation
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Figure A5-2. Local deviation (left) example of KFMO04A for dz equal to 0.1, 2 and 50 (right) all the
boreholes (dz=+ 2 m).

Conclusion

+ all boreholes must be analysed with great care: it is not possible to run automatic procedures,
all the support samples are distinct,

 the local borehole direction must be taken to correct observations from orientation bias,

* numerical simulations of validation must include the special shape of borehole (finite size
and local deviations).
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