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Preface

This report is based on the results of a suite of investigations with the main objective to get 
a better understanding of the scale of thermal processes and decrease the uncertainties in a 
Thermal Site Descriptive Model. Most of the work has been done in association with the 
Prototype Repository at Äspö Hard Rock Laboratory. However, parts of the data come from 
the site investigation at the Simpevarp area. 

Göran Hellström has been involved in the modelling of significant scale and the inverse 
modelling at the prototype repository. Except the authors, other participants in the project 
have been Anna Bengtsson and Märta Ländell, Geo Innova AB. 

A reference group has been connected to the project consisting of: Johan Andersson, 
Rolf Christiansson, Lars O Ericsson and Harald Hökmark. 
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Summary

The thermal properties of the rock affects the resulting temperature on the canister and on 
the surrounding buffer, and is thus an important parameter in determining the repository 
layout in order to meet thermal demands. Of main interest is the thermal conductivity, since 
it directly influences the design of a repository. This report is a result of the SKB RD&D 
programme. In the programme, research and development on the area of heat transport and 
thermal properties are described /SKB 2004/.

The overall objective of the project is to reduce the uncertainties in thermal data used in the 
dimensioning and design of a repository for final disposal of the nuclear waste produced 
in Sweden. The project is also meant to increase the knowledge of scale effects, anisotropy 
and inhomogeneity, establish a model/compilation of the different uncertainties present 
regarding thermal properties and determine the scale of the variation of thermal properties 
that significantly influence the temperature on the canister (the scale where difference no 
longer are levelled out). 

In the site descriptive projects (e.g. /SKB 2005/) thermal properties are modelled for differ
ent rock types and geological domains. The thermal conductivity for a rock type is based 
on small scale laboratory measurements which can give rather high variability. There is a 
need for upscaling of thermal properties to the scale of interest for the thermal design of a 
repository, in order to decrease the variability due to small scale determinations. If the rock 
is relatively homogeneous, variation in thermal conductivity at a small scale is averaged out 
at a larger scale.

The scale at which variations of thermal conductivity is significant for the maximum 
temperature on the canister has been investigated by numerical modelling. The result shows 
that below a scale of approximately 1–2 m, variation in thermal conductivities is mainly 
levelled out due to the size of the canister. Consequently it is possible to upscale small scale 
thermal conductivity values into at least 1–2 m scale when assessing the maximum tempera
ture. However, the appropriate scale for thermal conductivity data depends on the method of 
modelling. 

The scale dependence for laboratory measurements of thermal conductivity with different 
sensor size has been investigated on samples from Äspö HRL. The difference in results 
seems to be non significant. 

In earlier project a relationship between density and thermal conductivity has been observed 
/Sundberg 2002/. Within the density range of Ävrö granite, the thermal conductivity is 
inversely proportional to density. By the use of density logging, the relationship makes it 
possible to predict the spatial variability of conductivity in the rock mass. In this report, 
a physical explanation is suggested of the relationship, based on magma composition and 
mineralogy.

In the prototype repository at Äspö HRL, measurements of the temperature increase, caused 
by the heat generated from the canisters, have been conducted. Earlier, measurements of 
the rock thermal properties in the repository have been conducted in laboratory and in situ. 
A prognosis model of the thermal properties has been established based on these data. The 
prognosis model is evaluated towards values calculated through inverse modelling. The 
inverse modelling is based on an iterative process where a fitting of measured and calcu
lated temperatures is performed with a numerical model. There is good agreement between 
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prognosis of thermal conductivity in the prototype repository and the result from inverse 
modelling based on 37 different temperature sensors. The rather low thermal conductivity  
in the prototype repository is verified. Some sensors seem to be influenced by water move
ments and get a higher evaluated thermal conductivity. However, the evaluation shows that 
the initial conditions before the heating started where not stable, regarding temperature and 
water movements. 

Different types of variograms can be used to analyse the spatial distribution of conductivi
ties, preferably calculated from density loggings (semi variograms of thermal conductivity), 
and the spatial distribution of rock types (indicator variograms). The main challenge is 
to determine the spatial variability in rock domains where Ävrö granite is absent or sub
ordinate. In order to model the spatial variability for these domains in a reliable way more 
measurements are required, especially for the dominating rock types.

A methodology for upscaling of thermal conductivity from measurement scale to a signifi
cant scale for the canister has been developed. The variance is reduced when the scale 
increases but for some rock types the decrease in variance is low, mainly because of the 
high largescale spatial variability. The model has been used in the ongoing site descrip
tive models in Oskarshamn and Forsmark. Uncertainties in the whole process have been 
analysed. The largest uncertainty is the representativity of the boreholes. 

A Value of Information Analysis (VOIA) has been performed in order to estimate the value 
of additional investigations by studying how the new information reduces uncertainty in the 
mean thermal conductivity. Field measurements in a relevant scale yields the highest while 
producing an improved relationship between density and thermal conductivity is the most 
costefficient alternative of the four investigated ones. 
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Sammanfattning

Bergets termiska egenskaper påverkar temperaturen på kapslarna och den omgivande 
bufferten, och är därför en väsentlig parameter vid bestämning av förvarets utformning, 
med hänseende på termiska krav. Särskilt intressant är den termiska konduktiviteten, därför 
att den direkt påverkar utformningen av förvaret. Denna rapport är ett resultat av SKB:s 
FUDprogram. I programmet beskrivs forskning och utveckling inom området värmetran
sport och termiska egenskaper /SKB 2004/.

Det generella syftet med projektet är att reducera osäkerheterna i de termiska data som 
används vid dimensionering och utformning av slutförvaret för kärnavfall producerat i 
Sverige. Projektet ska också öka kunskapen om effekter av skala, anisotropi och inhomo
genitet, upprätta en modell/sammanställning av olika osäkerheter som finns för termiska 
egenskaper och beräkna skalan för de termiska egenskapernas variation som signifikant 
påverkar temperaturen på kapseln (skalan där skillnader i konduktivitet inte längre utjämnas).

I de platsbeskrivande modellerna (t ex /SKB 2005/) beskrivs de termiska egenskaperna för 
olika bergarter och geologiska domäner. Det kan finnas en stor variabilitet i värmelednings
förmågan baserat på småskalig laboratoriemätning. Det finns därför ett behov av att skala 
upp egenskaperna till en skala som är relevant för den termiska dimensioneringen av ett 
förvar. Om en bergart är homogen kommer småskalig variation i värmeledningsförmåga att 
utjämnas i en större skala. 

Den skala för vilken variationer i termisk konduktivitet är relevant för den maximala 
temperaturen på kapseln, har undersökts med hjälp av numerisk modellering. Resultaten 
visar att vid en skala under 1–2 m så är variationen i värmeledningsförmåga i huvudsak 
utjämnad. Sålunda kan man skala upp småskaliga bestämningar av värmeledningsförmåga 
till åtminstone 1–2 m när maximal temperatur beräknas för kapseln. Till vilken skala det 
är lämpligt att skala upp resultat till är beroende av den metod som används för simulering 
av maximal temperatur. 

Skalberoendet för laboratoriemätningar av termisk konduktivitet med olika sensorstorlekar 
har undersökts på prover från Äspö HRL. Skillnaden i resultaten verkar inte vara signifi
kanta.

I tidigare projekt har ett samband mellan densitet och termisk konduktivitet observerats 
/Sundberg 2002/. I densitetsintervallet för Ävrögranit, är termisk konduktivitet omvänt 
proportionell mot densiteten. Genom att använda densitetsloggningar, blir det möjligt att, 
genom detta samband, förutsäga konduktivitetens rumsliga variation i bergmassan. I denna 
rapport framläggs en fysikalisk förklaring till sambandet, baserad på magmasammansätt
ning och mineralogi.

I prototypförvaret vid Äspö HRL, har mätningar av temperaturökningen, orsakat av värme
avgivningen från kapslarna, utförts. Tidigare har mätningar av berget termiska egenskaper i 
förvaret utförts på laboratorium och in situ. En prognostisk modell av de termiska transport
egenskaperna har tagits fram baserat på dessa data. Den prognostiska modellen utvärderas 
mot värden beräknade genom inversmodellering. Inversmodelleringen baseras på en iterativ 
process där anpassning av uppmätta och beräknade temperaturer utförs i en numerisk 
modell. Överensstämmelsen mellan prognosen för termisk konduktivitet i prototypförvaret 
och resultaten från inversmodelleringen (baserad på 37 olika temperatursensorer) är god. 
Den relativt låga termiska konduktiviteten i prototypförvaret verifieras. Några sensorer 
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verkar ha påverkats av vattenrörelser och erhåller en högre utvärderad värmelednings
förmåga. Värderingen visar att förhållandena innan uppvärmningen startade inte var  
stabila, beträffande temperatur och vattenrörelser.

Olika typer av variogram kan användas för att analysera den rumsliga fördelningen 
för konduktivitet, företrädesvis beräknad från densitetsloggningar (semivariogram för 
termisk konduktivitet), och den rumsliga fördelningen för bergarter (indikatorvariogram). 
Den största utmaningen är att utvärdera den rumsliga variationen i bergartsdomäner där 
Ävrögranit inte finns eller endast finns i liten mängd. För att modellera den rumsliga 
variationen för dessa domäner på ett tillförlitligt sätt, behövs fler mätresultat, främst för 
de dominerande bergarterna.

En metodik för uppskalning av termisk konduktivitet från mätskala till en skala relevant 
för kapslarna, har utvecklats. Variansen reduceras när skalan ökar, men för några bergarter 
är variansminskningen liten, främst beroende på den stora storskaliga rumsliga variationen. 
Modellen har använts i det pågående arbetet med de platsbeskrivande modellerna för 
Oskarshamn och Forsmark. Osäkerheter för hela processen har analyserats. Den största 
osäkerheten är representativiteten för borrhålen.

En datavärdesanalys har utförts för att uppskatta värdet av ytterligare undersökningar, 
genom att studera hur den nya informationen skulle reducera osäkerhet i medelvärdet för 
termisk konduktivitet. Fältmätningar i en relevant skala ger högst värde, medan förbättring 
av sambandet mellan densitet och termisk konduktivitet är det mest kostnadseffektiva 
alternativet av de fyra som undersökts.
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1	 Introduction

1.1	 General
The thermal properties of the rock mass affects the possible distance, both between  
canisters and between deposition tunnels, and therefore puts requirements on the necessary 
repository volume. Of primary interest is the thermal conductivity, since it directly influ
ences the design of a repository. This report is a result of the SKB RD&D programme. In 
the programme, research and development within the area of heat transport and thermal 
properties are described /SKB 2004/.

The Swedish Nuclear Fuel and Waste Management Co (SKB) have established a proto
type repository at the Äspö HRL since several years for final disposal of nuclear waste 
produced in Sweden /SKB 2005b/. Canisters have been installed in the rock mass with a 
heat emission simulating the effect of the radioactive waste. A number of investigations 
have been conducted and a monitoring programme has been established. Measurements 
of thermal properties have earlier been conducted within and outside of the prototype 
repository both as field and laboratory measurements /Sundberg and Gabrielsson 1999/. 
Further, a number of temperature sensors have been installed in the rock mass with  
different geometric configurations in relation to the canisters. The prototype repository 
gives opportunities to study the confidence in prognosis models of thermal conductivities 
together with scale effects.

This report presents three different ways of acquiring thermal conductivity values; from 
direct measurements with the TPS method, from estimations based on density loggings 
and a relationship between density and thermal conductivity, and from inverse modelling 
using temperature measurements from the prototype repository. Further, the identified 
scale effects of the thermal properties are described and a methodology is presented for 
thermal modelling at large scales in order to handle the scale effects. Uncertainties in data 
and thermal modelling are evaluated and used in a value of information analysis in order 
to evaluate the worth of additional measurement and investigation alternatives. Further 
the scale for the variation of the thermal properties that influence a canister significantly 
is investigated. 

Some of the statistical concepts used in the report deserve clarification. Both the arithmetic 
mean and the geometric mean are used in the report. The former is referred to as “the mean” 
while the geometric mean always is denoted as “the geometric mean”. Whenever standard 
deviations are calculated from measurements, the data set is regarded as a sample from the 
population and consequently one degree of freedom is lost. 

1.2	 Scale	and	determination	of	thermal	properties
1.2.1	 Scale	of	thermal	processes	in	a	repository

The thermal function of a repository can be studied at different scales, exemplified in 
Figure 11. In order to describe the influence from natural climatic conditions above ground 
on the thermal conditions in a repository, mean values and deviations of thermal transport 
properties for the whole rock mass is adequate. However, for the local temperature field 
around canisters a much better understanding of the spatial variability of thermal properties 
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is needed. The sensitivity of the canister temperature for changes in thermal properties 
is highest in the area close to the canister. It is therefore of special interest to analyse the 
variation in thermal properties in the rock mass at the scale 3–20 m (canister deposition 
scale and up to tunnel scale). Smallscale variations in thermal properties are mainly evened 
out at this scale. 

Preliminary, the following scales are believed to be relevant:
• 1–10 m for the thermal function of the canister (canister or local scale),
• 10–100 m for the thermal function of the tunnel (tunnel scale),
• 100–1,000 m for the thermal function of the whole repository (repository scale).

Of special interest is the scale for thermal function of a canister. In Chapter 3 the significant 
scale of the canister is calculated. Computer simulations are made in order to investigate 
what scale of variation of thermal properties that influences the temperature of the canister. 

1.2.2	 Scale	of	variations	and	spatial	variability	in	rock

Rock forming minerals have different thermal properties, see i.e. /Sundberg 1988/. The 
different minerals exist at a micro or millimetre scale. Thus, there is a rather large variation 
in thermal properties at this scale. If the rock is finegrained, isotropic and homogeneous, 
the variations have to a large degree been evened out at the cmscale. Therefore, this small
scale variability is of minor importance for rock samples of larger scale.

However, even for a homogeneous igneous rock there is always a variation in thermal prop
erties due to chemical variations in the original magma. This “within rock type” variability 
may occur at the 1–100 m scale and differs significantly between different rock types.

Figure 1‑1.  Illustration of the various scales of importance for rock mechanics considerations for 
siting and constructing a KBS-3 repository /from Andersson et al. 2002/.
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The most significant type of spatial variability is of course the variation in thermal 
properties between different rock types, the so called “between rock type” variability. This 
variation coincides with the appearance of the various rock types, typically at a scale from 
0.1 m (dykes) up to several hundred meters (dominating rock types).

1.2.2	 Scale	of	determinations	of	thermal	properties

Determinations of thermal properties are made in different scales. Determinations of 
thermal properties in the laboratory are often made at the cmscale. The use of different 
sensors sizes for such smallscale measurements are made in Chapter 4. Spatial variations  
in chemistry and mineralogy, which influence the thermal conductivity of rock, also 
influence the density. A relationship between density and thermal conductivity has been 
established for certain rock types and permits the use of density logs for determination of 
the spatial variability of thermal conductivity within the rock mass. This is discussed further 
in Chapter 5. For the prototype repository it also possible to backcalculate the thermal 
properties of the rock mass from the measured temperature distribution, see Chapter 6. 

1.3	 Upscaling
If the rock is relatively homogeneous, variation in thermal conductivity at a given scale 
is averaged out at a certain distance (a larger scale). If the rock is anisotropic and hetero
geneous, a larger variation will exist at the small scale but not necessarily at the larger scale. 

There is a need for upscaling of thermal properties to the scale of interest, in order to 
decrease the variability due to small scale determinations. In this report, an upscaling 
methodology is developed and described in Chapter 7. 

The upscaling process must take into account the spatial variability within a rock type 
due to mineralogical and chemical changes in the magma. Furthermore, another type of 
variability is due to the presence of different rock types within a lithological domain. 
The variability is more pronounced where the difference in thermal conductivity is large 
between the most common rock types of the domain. A large variability of this type can 
also be expected in a domain of many different rock types. This type of variability is only 
reduced significantly when the scale becomes large compared to the spatial occurrence of 
the rock. This latter type of variability is subsequently referred to as “between rock type”. 

1.4	 Uncertainties	and	value	of	information
In general, a good description of uncertainties and if possible, the quantification of these, 
may strengthen the results and conclusions of a thermal model. In Chapter 8 an uncertainty 
model for the prototype repository is presented. These are uncertainties that may introduce 
variability (or bias) in addition to the spatial variability handled in earlier chapters. This 
combined variation due to spatial variability and lackofknowledge uncertainty is man
aged in Chapter 9. The lackofknowledge uncertainty can be reduced by investigations 
and a model with the objective to identify efficient investigation strategies is presented. It 
utilises value of information analysis and makes it possible to compare the value of different 
methods of determining the thermal conductivity. The methodology is applied using the 
prototype repository as an example.
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1.5	 Rock	type	nomenclature
The nomenclature of rock types is different at the Äspö Hard Rock laboratory compared 
tothe Simpevarp and Laxemar site description projects /SKB 2005/. The main difference 
is that at the Äspö HRL, the Ävrö granite (Simpevarp nomenclature) is divided into Ävrö 
granite and Äspö diorite (Äspö nomenclature). This may cause some confusion but the 
reason to the simplified rock type nomenclature in the Site dscription projects is that the 
different types of Ävrö granite are very hard to distinguish by eye.
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2	 Objective	and	scope

The overall objective of this project is to reduce the uncertainties in thermal data used in the 
dimensioning and design of a repository for final disposal of the nuclear waste produced 
in Sweden. This is of importance since reducing the uncertainty means that the possible 
distance, both between canisters and deposition tunnels may be reduced. In order to reach 
this objective, knowledge needs to be gained and different methods need to be tested and 
evaluated. A number of subgoals have been formulated for the project:

As regards knowledge three goals have been identified. The project proposes to:
• increase the knowledge of scale effects, anisotropy and inhomogeneity,
• establish a model/compilation of the different uncertainties present regarding thermal 

properties,
• determine the scale below which variation in thermal properties do not have a significant 

influence on the temperature on the canister (the scale below where variations in 
properties are levelled out).

Four purposes are stated regarding methods. The project is meant to:
• investigate scale effects at laboratory measurements,
• more profoundly study the methods for density loggings with an investigation of the 

relationship between density and thermal conductivity (reason and understanding),
• test inverse modelling as a tool to verify a prognosis model of thermal properties for  

the prototype repository,
• develop a method to evaluate the use of additional information/data (value of 

information analysis),
• develop a methodology of upscaling thermal properties to a relevant scale.
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3	 Significant	scale	for	thermal	processes	
around	canisters

3.1	 Introduction
An important aspect in the performance of a nuclear waste repository is the thermal 
exposure of the canister and the buffer material. The maximum canister and buffer 
temperature must be kept below a certain design temperature limit. The evolution of the 
canister temperature depends to a large extent on the thermal properties of the surrounding 
bentonite, rock mass and possible air gaps /Hökmark and Fälth 2003/. The canister temp
erature is most sensitive to the thermal properties of the material close to the canister, 
i.e. possible air gaps, the bentonite buffer and the rock nearest the canister borehole. An 
important issue concerns the level of detail or scale at which the thermal conductivity of  
the rock must be known and how an uncertainty relates to the ability to predict the 
maximum possible temperature. 

Thus, one source of uncertainty in the thermal modelling is at which scale thermal conduc
tivity is significant for the heat emitted from the canister. The significant scale is believed 
to be in the interval 1–10 m. Below the significant scale of thermal conductivity variations, 
the temperature on the canister surface is levelled out. To reduce this uncertainty and get a 
better understanding of the thermal process around a canister, numerical simulation have 
been made. 

In this study, the thermal conductivity of the rock matrix is randomized in order to study 
the influence of scale of heterogeneity in thermal conductivity on the maximum canister 
temperature.

The objective of the modelling is to define the scale for which variations of thermal  
conductivity is significant for the temperature on the canister, and not to evaluate how  
large the temperature variation could be in different scales. 

3.2	 Numerical	model
The model repository consists of nine deposition holes with copper canisters surrounded 
by a bentonite buffer. The deposition holes have been drilled from a tunnel, which has 
been backfilled with a mixture of bentonite and crushed rock. The deposition boreholes are 
drilled vertically from the tunnel and placed along a straight horizontal line. The standard 
spacing between the deposition boreholes is 6 m. It is assumed that identical repositories  
are placed parallel to the model repository.

A threedimensional finite difference model of the prototype repository (canisters, buffers, 
tunnel, etc) is used to calculate the transient temperature increase due to the heat generation 
in the canisters. The numerical model of the repository uses an explicit finite difference 
scheme. The code has been developed based on models previously used for underground 
thermal energy storage applications /Eftring 1990/ and it has been extended to accommo
date the geometry of the repository, see inverse modelling in Chapter 6. 
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The simulated ground region encompasses a parallelepipedical volume of 40×156×120 m3 
(approx. 750,000 m3) and is described with a grid using 54×271×59 = 863,406 cells for the 
numerical simulation scheme. The numerical grid has a fine resolution close to the canisters 
and the cell size expands outwards. The surrounding repositories are modelled by assuming 
a vertical symmetry plane at middistance between the repositories. There is no heat flow 
across these planes. The other boundaries are set a distance where the boundary conditions 
will not influence canister temperatures during the simulated time span. 

3.3	 Assumptions	and	method
The geometry and dimensions of canister and deposition boreholes as well as materials used 
in this study is based on the prototype repository. The tunnels above the deposition holes are 
backfilled with a mixture of bentonite (30%) and crushed rock. The thermal conductivity of 
the rock mass is assumed to be normal distributed with a mean value of 2.8 W/(m×K) and 
a standard deviation of 0.35 W/(m×K). This assumption is not strictly valid for the Ävrö 
granite. However, this is of secondary interest since the main objective of the modelling 
is to evaluate the scale of variation and not to evaluate how large the absolute temperature 
variation could be for different scales. 

The gaps between canister and bentonite buffer and between bentonite and borehole wall 
are assumed to be filled with air and have thermal resistances that give a combined tempera
ture difference of about 16°C. Approximately this value was measured for a “dry” canister 
at the prototype repository /Goudarzi and Johannesson 2004/.

The thermal properties of the different materials involved in the largescale thermal process 
are assumed to be homogeneous with exception of the thermal conductivity of the rock. The 
thermal properties are given in Table 31.

The heterogeneity of the rock thermal conductivity is modelled by dividing a ground region, 
which is slightly larger than the considered ground region for the simulation, into cubes of 
a certain size and assigning a random thermal conductivity value (normal distribution with 
average value 2.8 (W/(m×K)) and standard deviation 0.35 W/(m×K)) to each cube. The 
numerical grid used for the simulation is then placed into this threedimensional matrix of 
cubes. Both grids use a cartesian coordinate system. The axes are parallel, but the origins of 
the two grids do not coincide. The relative location of the origin is placed at random, which 
means that the cubes are located differently in each simulation. The initial temperature is 
assumed to be 15°C everywhere.

Table	3‑1.	 Thermal	properties	of	the	materials	involved	in	the	thermal	process.

Thermal	conductivity	
(W/(m×K))

Volumetric	heat	capacity	
(MJ/(m3×K))

Canister 15.0 4.00
Buffer 1.1 3.40

Backfill in tunnel 1.5 2.50
Rock Random* 2.20

* Normal distribution with average value 2.8 (W/(m×K)) and standard deviation 0.35. 
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The timedependent heat generation in the canisters is /Hökmark and Fälth 2003/:

      Equation 31

where t is time after deposition and the coefficients ti and ai are given by:

Different scales of the heterogeneity of the rock mass were modelled by varying the size of 
the cubic division of the ground. Five different side lengths of the cubes were used: 1, 2, 5, 
10 and 20 m. Thirty simulations were performed for each scale. The simulation gives the 
maximum volume average temperature for each of the nine canisters. The time to reach the 
maximum temperature is about ten years.

3.4	 Results
The results for the thirty simulation cases for each scale are given in Figure 31 to 
Figure 35. The serie number represent a canister. Canister 5 is in the middle and should 
have the highest temperature (series 5 with bold line). The thermal conductivity is randomly 
assigned to successively larger and larger scale in the different figures, and therefore the 
temperature variation is increased in larger scales. 

Figure 3‑1.  Maximum volume average temperature for each of the nine canisters for the thirty 
simulated cases. Thermal conductivity values are randomly assigned in the 1 m scale. 
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Figure 3‑2.  Maximum volume average temperature for each of the nine canisters for the thirty 
simulated cases. Thermal conductivity values are randomly assigned in the 2 m scale. 

Figure 3‑3.  Maximum volume average temperature for each of the nine canisters for the thirty 
simulated cases. Thermal conductivity values are randomly assigned in the 5 m scale. 
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Figure 3‑4.  Maximum volume average temperature for each of the nine canisters for the thirty 
simulated cases. Thermal conductivity values are randomly assigned in the 10 m scale. 

Figure 3‑5.  Maximum volume average temperature for each of the nine canisters for the thirty 
simulated cases. Thermal conductivity values are randomly assigned in the 20 m scale. 
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On the 1 m scale, the influence of the relative position of the canisters is easily visible. The 
maximum temperature is lowest for the outer canisters (1 and 9) and highest for the central 
canisters (5). The other canisters fall in between these values as expected. Each deposition 
borehole may potentially involve roughly 40–90 of the cubes with randomly distributed 
thermal conductivity. The thermal behaviour of deposition borehole therefore responds to a 
surrounding rock that statistically has an average thermal conductivity that should be fairly 
close to mean value of normal distribution. The variation in maximum temperature for each 
canister is relatively small.

As the scale of the cubes becomes larger, the statistical variation of the thermal conductiv
ity around a deposition borehole increases. The temperature gradients in the rock in the 
immediate surrounding of the borehole are inversely proportional to the local thermal con
ductivities. On the 10 m scale, a whole canister may actually be completely located inside 
a cube with one value of the thermal conductivity. The local heat transfer properties in the 
surrounding rock and the resulting maximum canister temperature may then vary drasti
cally from case to case. When the scale increases further beyond the scale of the deposition 
boreholes (> 10 m scale), the likelihood of a having one or several boreholes (canisters) 
within one cube increases. For these extreme cases, however, the thermal conductivity in 
the vicinity will be about the same, but there will be an influence due to differing thermal 
conductivities at some distance from the borehole. 

For larger scales the number of cubes to which thermal conductivity values are assigned 
becomes smaller. This means that more extreme values are expected for larger scales. In 
Figure 36 the numbers of “property cubes” in the model for each simulation are shown. 

The sorted deviation of the maximum average temperature for each of the nine canisters 
from the average maximum temperature for the thirty simulated cases on 2 m and 10 m 
scale is shown in Figure 37 and Figure 38. The slope will vary depending on scale. The 
slopes obtained for different canisters are fairly similar for values around the mean value  
for each scale.

Figure 3‑6.  Visualization of the number of property areas (cubes) in the total model volume 
(750,000 m3). 
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Figure 3‑7.  Sorted deviation of maximum average temperature for each of the nine canisters for 
the thirty simulated cases. Thermal conductivity values are randomly assigned in the 2 m scale. 

Figure 3‑8.  Sorted deviation of maximum average temperature for each of the nine canisters for 
the thirty simulated cases. Thermal conductivity values are randomly assigned in the 10 m scale. 
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3.5	 Evaluation
In Figure 39 and Figure 310 the mean temperature and standard deviation for each scale 
and canister are shown. The mean temperatures for the three canisters in the middle are 
similar. The somewhat lower temperature for the 20 m scale is probably a result of the 
rather limited number of property areas for this scale, see Figure 36. If the number of 
simulation for the 20 m scale were increased this discrepancy would probably be lower. 
The temperature for canister 1 and 9, with canisters at only one side, is approximately 
10°C lower. 

Figure 3‑9.  Mean temperature for each canister at different scales. In addition, maximum and 
minimum temperatures are shown for the individual simulations. 

Figure 3‑10.  Standard deviation for each canister at different scales.
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The standard deviation shows no trend according to canister placement. The minima for the 
central canisters at the 20 m scale may be a result of the limited number of property areas 
for this scale. 

The maximum temperature is of interest and the central canister (no 5) should have the 
highest possible temperature. In Table 32 the mean and max temperature are shown for 
canister 5. The mean temperature is rather similar at the different scales. However, the 
maximum temperature increases significantly when the scale is above 2–3 m. 

At larger scales (above 10 m) the simulation results are less certain due to the combina
tion of limited number of property areas to which the thermal conductivities are assigned 
(Figure 36), and the limited number of simulations (30). 

For further evaluation of the standard deviation, the distribution of the mean canister 
temperature is assumed to be normal and is evaluated according to the method of rand
omized sampling /Blom 1970/. For a (statistically) small number of observations this means 
that extreme values are excluded and that a fitting is performed for the observations within 
one standard deviation as indicated in Figure 311 as an example. This type of evaluation is 
performed for each canister and scale. 

Table	3‑2.	 Mean	and	maximum	temperature	for	canister	5	at	different	scales.	The	result	
comes	from	all	30	simulations.

Scale,	m Mean,	°C Max,	°C Max/mean Std

1 102.4 103.5 1.011 0.309

2 102.5 103.8 1.013 0.537

5 101.9 105.1 1.031 1.252

10 102.6 112.6 1.098 3.283

20 100.5 107.9 1.073 2.755

Figure 3‑11.  Sorted deviation of maximum average temperature for each of the nine canisters for 
the thirty simulated cases. 10 m scale. The central part of the curve, used for further evaluation, is 
indicated. 
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The temperature variation based on the average value of one standard deviation for each 
canister is shown in Figure 312. The statistical deviation of the maximum temperature 
grows until the scale of the heterogeneities is on the order of 8–10 m. This corresponds 
roughly to the linear dimensions of the canisters. For larger values of the scale the deviation 
approaches a limiting value that will occur when the whole simulated ground region has a 
homogeneous thermal conductivity for each simulation). The conductive thermal process 
will have negligible influence on the surrounding rock at distances larger than 50 m from 
the canisters during the ten years to reach maximum canister temperatures. Likewise, 
thermal properties beyond 50 m from the canisters will have negligible influence on the 
maximum temperature rise in the canisters. 

The temperature variation (or standard deviation) is approximately linearly proportional to 
the scale up to 8–10 m. The slope is depending on the variability in thermal conductivities. 
For a thermal conductivity distribution with higher standard deviation the slope would be 
steeper and vice verse. 

The relatively small number of simulations for each scale is likely the cause of the irregular 
shape of the curves for the canisters in Figure 312. The average value of all canisters uses 
more observations and is more regular. It is probably a more reasonable representation of 
how the temperature variation depends on the scale. 

Temperature variation based on the average value for all canisters for each scale is shown in 
Figure 313. The dotted lines indicate the maximum and minimum temperature variation. 

The temperature variation according to Figure 313 is used to derive Table 33, which gives 
an estimated maximum average temperature of canister 5 for different scales. The mean 
temperature is chosen to be 102.5 for all scales. The maximum temperature that will be 
exceeded in 1% (p=0.01, +2.58σ) or 0.1% (p=0.001, +3.29σ)) of the cases is stated.

Figure 3‑12.  Temperature variations based on average value of one standard variation for each 
canister. 
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Table	3‑3.	 Mean	and	maximum	temperature	for	canister	5	at	different	scales.	The	
standard	deviation	has	been	evaluated	from	all	canisters.	The	maximum	temperature	
that	will	be	exceeded	in	1%	(p=0.01)	or	0.1%	(p=0.001)	of	the	cases	is	stated.

Scale,	m Mean,	°C Max	(p=0.01) Max	(p=0.001)

1 102.5 103.0 103.2
2 102.5 103.7 104.1

5 102.5 105.8 106.7
10 102.5 109.2 111.0
20 102.5 110.4 112.6

Some conclusions from the simulations:
• The maximum temperature is relatively insensitive to variations in a scale below 2–3 m.
• The temperature variation (or standard deviation) increases linearly up to scales of 

8–10 m, which approximately corresponds to the linear dimension of the canister 
(4.5 m). The slope is a function of the standard deviation of the thermal conductivity 
distribution. For larger scales the variation increases more slowly. 

• Evaluation of larger scales (above 10 m) has uncertainties according to the limited 
number of property areas (cubes) to which the thermal conductivities are assigned, in 
combination with the limited number of simulations.

• The simulations are based on a constant value of the standard deviation of the thermal 
conductivity distribution. In reality, upscaling of thermal properties would decrease the 
variability of the distribution for larger scales. This would of course influence the shape 
of the curves in Figure 312. 

Figure 3‑13.  Temperature variations at one and two standard deviations based on average values 
for each scale for all canisters. The dotted lines show the temperature variation based on the min 
and max standard deviation.
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4	 Small‑scale	measurements	and	upscaling

4.1	 Introduction
Measurements in the laboratory of the two properties thermal conductivity (λ) and 
thermal diffusivity (κ) have been conducted by the TPS (Transient Plane Source) method 
/Gustafsson 1991/ using two different sensor sizes. The purpose of the measurements 
was to study scale effects of the thermal properties. Hot Disk AB has performed the TPS 
measurements on samples from borehole KA2599G01. An attempt to investigate the 
variability in repeated TPS measurements for the same sample has also been carried out  
by Hot Disk AB. Determinations of density and porosity have been performed for the same 
samples by the Swedish National Testing and Research Institute (SP).

Result reports from the above stated measurements are presented in Appendix A–C.

4.2	 Methods
4.2.1	 Sampling	design

The sampling layout was designed with the objective of allowing scale factors of thermal 
properties to be examined. The rock type distribution of the drill core from borehole 
KA2599G01 has been described in /Sundberg 2002/. According to Äspö nomenclature the 
chosen part of the drill core (4.33–24.92 m) was determined as Äspö diorite. The rock types 
of the samples has been revised to Ävrö granite in accordance with Simpevarp nomencla
ture /SKB 2005/, see Table 61.

Three sample groups with five samples in each were taken along the drill core. The individ
ual samples were taken 0.1 m apart and the sample groups were located approximately 10 m 
(9.87 respectively 8.02 m) apart. A sketch of the sampling layout is shown in Figure 41.

4.2.2	 Laboratory	measurements	with	different	sensor	sizes

The TPS method can be used for measurements of thermal diffusivity and thermal conduc
tivity of both fluids and solids, from cryogenic temperatures to about 250°C (if the sensor 
insulation is made of kapton). Measurements of thermal properties using the TPS method 
has been used before by SKB /Sundberg and Gabrielsson 1999, Sundberg 2002/ and also 
within the thermal programme of the site investigations.

Figure 4‑1.  Sketch of the sampling layout along a drill core from borehole KA2599G01. Samples 
are marked in black. 
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Prior to the measurements, the rock samples from the drill core were prepared by cutting  
the samples in two halves, each with a thickness of about 50 mm. The two intersection 
surfaces were carefully polished in order to limit the contact resistance between the probe 
and the sample surface. The samples were also water saturated for at least 7 days which 
means that all measurements were performed on water saturated samples.

The principle of the TPS instrument is to place a circular probe consisting of a Nispiral 
covered by an insulating material (Kapton) between the two sample pieces. The sensor 
generates a heat pulse while simultaneously the heating of the specimen is recorded. The 
heat pulse is selected to achieve a heat increase of 1K at the sample surfaces facing the 
sensor. The output power and the duration of the pulse are dependent on sample size,  
material properties and sensor diameter. The thermal properties can be evaluated by 
using the fact that the resistance for the thin Nispiral at any time is a function of its initial 
resistance, the temperature increase and the temperature coefficient of the resistivity of 
Nickel. The measured temperatures is stored in the software and by comparing these values 
to a theoretical solution based on assumptions regarding a plane sensor and an infinite 
sample in perfect contact with the sensor surface, the thermal diffusivity and thermal con
ductivity can be determined. The volumetric heat capacity (Cp) can thereafter be calculated. 

According to the manufacturer the accuracy of the thermal conductivity measurements is 
± 2%, thermal diffusivity ± 5% and specific heat ± 7% /HotDisk 2004/. This is reached 
if the sample size, sensor diameter, output of power and total time of the temperature 
measurement is properly selected, and providing the sample is allowed to reach temperature 
equilibrium before the start of measuring.

In this case two sensor sizes have been used for the TPS measurements in order to 
investigate different sample volumes. With a larger sample volume the influence from 
voids, cracks and grains becomes larger. Both of the sensors have been applied to all of 
the 15 samples.
• Large sensor 4921 (r = 9.719 mm) with an approximate probing depth of 14 mm. Heat 

pulse duration tmeas = 40 s with the power of 0.7 W. (Probing depth calculated from 
2×(κ×tmeas)0.5 with a mean κ = 1.23E–6 m2/s of the rock sample).

• Small sensor 5501 (r = 6.401 mm) with an approximate probing depth of 10 mm. Heat 
pulse duration 20 s with the power of 0.7 W.

For more detailed result of the method, see Appendix A: TPS measurements of thermal 
properties, two different sensor sizes.

4.2.1	 Density	and	porosity	measurements

The methods of density and porosity determinations have been SS EN 13755, ISRM (1973) 
section 3. For more detailed descriptions of the methods see Appendix B: Porosity and 
density measurements of core samples.

4.2.2	 Repeated	laboratory	measurements	on	the	same	sample

Samples for repeated measurements were selected after evaluation of the results from the 
TPS measurements with two sensor sizes, density and porosity measurements. Two samples 
showing a large difference in results between the two sensor sizes (sample 1 and 5) and 
two with a small difference (sample 8 and 9) were selected. The samples were planned to 
be measured five times each and for each measurements the sensor was supposed to be 
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disconnected and replaced at the supposed same location without marking out the sensor 
location on the sample piece. The purpose of this measurement was to investigate how the 
thermal properties vary when the measurements are repeated and if some of the differences 
between measurements with different sensor size could be addressed to the testing 
procedure.

4.3	 Results
4.3.1	 Laboratory	measurements	with	different	sensor	sizes

Results from TPS measurements on Ävrö granite samples with two different sensor sizes 
together with density, porosity and rock code classifications are summarized in Table 41. 
The rock code presented in Table 41 is the revised rock classification according to 
Simpevarp nomenclature /Wahlgren 2004/. 

Table	4‑1.	 Results	from	TPS	measurements	with	two	sensor	sizes	(sensor	4921	and	
5501)	and	rock	classification.	Sensor	5501	is	the	smaller	one.

Sample	(no) Density	
(kg/m³)

Poro‑
sity	(%)

λ	
(W/m×K)

κ	
(mm2/s)

Cp	
(MJ/m³×K)

Rock	
code

4921 5501 4921 5501 4921 5501

KA2599G01 4.33–4.43 (1) 2,780 0.4 2.390 2.155 1.131 1.314 2.115 1.641 501044
KA2599G01 4.53–4.63 (2) 2,730 0.4 2.927 2.869 1.272 1.322 2.302 2.170 501044
KA2599G01 4.73–4.83 (3) 2,710 0.4 3.004 3.045 1.316 1.323 2.282 2.309 501044
KA2599G01 4.93–5.03 (4) 2,730 0.4 2.860 2.664 1.332 1.464 2.148 1.820 501044
KA2599G01 5.13–5.23 (5) 2,710 0.4 2.909 2.517 1.474 1.761 1.974 1.449 501044
KA2599G01 15.10–15.20 (6) 2,770 0.4 2.551 2.612 1.104 1.120 2.311 2.332 501044
KA2599G01 15.30–15.40 (7) 2,760 0.4 2.621 2.667 1.156 1.124 2.268 2.374 501044
KA2599G01 15.50–15.60 (8) 2,780 0.4 2.568 2.564 1.148 1.129 2.237 2.272 501044
KA2599G01 15.70–15.80 (9) 2,770 0.4 2.534 2.542 1.125 1.130 2.255 2.250 501044
KA2599G01 15.90–16.00 (10) 2,770 0.4 2.496 2.526 1.086 1.083 2.298 2.331 501044
KA2599G01 24.02–24.12 (11) 2,760 0.5 2.613 2.764 1.130 1.127 2.314 2.452 5010441

KA2599G01 24.22–24.32 (12) 2,770 0.5 2.550 2.475 1.164 1.095 2.193 2.260 501044
KA2599G01 24.42–24.52 (13) 2,810 0.5 2.599 2.573 1.115 1.071 2.331 2.402 5010442

KA2599G01 24.62–24.72 (14) 2,740 0.4 2.812 2.720 1.302 1.240 2.160 2.193 5010443

KA2599G01 24.82–24.92 (15) 2,690 0.4 3.699 3.558 1.567 1.651 2.360 2.156 5010444

1) Strong foliation and epidote filled joints.
2) Elements of fine-grained mafic rock type.
3) Diffuse elements of red granite.
4) mixed with red granite and elements of fine-grained mafic rock type

4.3.2	 Repeated	laboratory	measurements	on	the	same	sample

The results of the first measurement set out of five for the same sample were of varying 
quality and further measurements were not continued. Results of the first measuring set are 
presented in Appendix C. In Table 42 the results of the first measuring set (out of five) is 
compared with the corresponding measurements from the two sensors measuring (same 
sample and sensor size). Results from two of the samples were of bad quality (sample 1 
and 5), one sample relatively good (sample 9) and one sample gave good results (sample 8). 
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This was due to the fact that the measuring surfaces were not as smooth as they ought to 
be. The deformation of the sample pieces meant that they did not fit as closely together as 
during measurements with two different sensor sizes. An explanation to the deformation 
may be that after density and porosity measurements the four samples were dried out from 
water saturation at 105°C. The density and porosity measurements were made after the two 
sensor measurements but before the repeated measurements. It is possible that the different 
volume expansion for the minerals has caused the deformation. 

For sample 1 and 5 the measuring points ~ 100–200 were used which indicates that there 
is an air gap between the sample pieces and the sensor. The reason for some measuring 
points being excluded in the beginning of the transient is that the air layer demands a certain 
amount of energy to be heated and this heating process takes time. The consequence of 
having few measuring points from the initial part of the measuring is that it can give incor
rect diffusivity values. It is also reasonable to expect a somewhat lower thermal conductiv
ity value if air has an influence on the measurements.

For sample 8 the measuring points 40–200 were used in the calculations, which indicate  
that the sample pieces could come closer to the sensor than for samples 1 and 5. Sample 8 
also seems to be the sample which has the smoothest surface towards the sensor.

The result of sample 9 is something between the two above ways of reasoning.

Observe that measuring points that gave the best fitting model were selected which means  
a relatively low standard deviation value.

The results indicate that the results for two measurements on the same sample with good or 
relatively good quality are in reasonably good agreement with each other (difference 1–3%). 
Due to the problem with deformation of samples, no further evaluation is made.

Table	4‑2.	 Comparison	or	results	from	two	measuring	sets	of	the	same	samples	with	
the	same	sensor	size.

Sample Measurement λ	
(W/m×K)

κ	
(mm2/s)

Cp		
(MJ/m³×K)

Quality	of	
measurement

1 First meas (2 sensors) 2.155 1.31 1.64 Good
Second meas (1 out of 5) 2.479 1.085 2.286 Bad

5 First meas (2 sensors) 2.5 1.8 1.4 Good
Second meas (1 out of 5) 2.994 1.358 2.204 Bad

8 First meas (2 sensors) 2.564 1.129 2.27 Good
Second meas (1 out of 5) 2.495 1.209 2.063 Good

9 First meas (2 sensors) 2.542 1.130 2.25 Good
Second meas (1 out of 5) 2.565 1.087 2.359 Relatively good

4.4	 Evaluation	of	results	in	different	scales
4.4.1	 Measurement	scale

The difference in thermal conductivity measured with two different sensor sizes is illus
trated in Figure 42. Statistical data of measurement results for both thermal conductivity 
and heat capacity is presented in Table 43 and Table 44. 
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For thermal conductivity there is a tendency that the large sensor gives a slightly higher 
value than the small sensor. This difference is however not significant at the 5% level 
(paired ttest). For heat capacity there is also a nonsignificant tendency for larger values 
with the large sensor. However, for individual groups of data there is also the opposite 
tendency. The numbers of measurements are too few to draw any conclusion of how the 
absolute value of thermal conductivity and heat capacity is affected by the size of the 
sensor.

Table	4‑3.	 Statistical	data	of	thermal	conductivity	(W/(m×K))	per	sampling	group.	
Sample	15	in	group	3	excluded	because	of	ambiguous	rock	type.	Sensor	5501	is	the	
smaller	one.

Group Sample Sensor	4921 Sensor	5501 Difference	(S4921–S5501)/
S4921	(%)

1 1 2.39 2.155 9.8
2 2.927 2.869 2.0
3 3.00 3.054 –1.7
4 2.860 2.66 6.9
5 2.91 2.5 13.5
Mean 2.817 2.648 6.1
St.	dev 0.244 0.346

2 6 2.551 2.61 –2.4
7 2.62 2.667 –1.7
8 2.57 2.564 0.1
9 2.534 2.542 –0.3
10 2.496 2.526 –1.2
Mean 2.554 2.582 –1.1
St.	dev 0.046 0.057

3 11 2.61 2.764 –5.8
12 2.55 2.475 3.0
13 2.599 2.573 1.0
14 2.81 2.720 3.3
Mean 2.642 2.633 0.4
St.	dev 0.115 0.133

All data Mean 2.673 2.620 1.9
St.	dev 0.189 0.207

Figure 4‑2.  Comparison of thermal conductivity measured with two sensor sizes. Presentation is 
given with samples divided in sample groups.
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Table	4‑4.	 Statistical	data	of	heat	capacity	(MJ/(m³×K))	per	sampling	group.	Sample	15	
in	group	3	is	excluded	because	of	ambiguous	rock	type.	Sensor	5501	is	the	smaller	
one.

Group Sample Sensor	4921 Sensor	5501 Difference	(S4921–S5501)/
S4921	(%)

1 1 2.11 1.64 22.4

2 2.30 2.17 5.7

3 2.28 2.31 –1.2

4 2.15 1.82 15.3

5 1.97 1.4 26.6

Mean 2.162 1.868 13.8
St.	dev 0.135 0.374

2 6 2.31 2.33 –0.9

7 2.27 2.37 –4.7

8 2.24 2.27 –1.5

9 2.26 2.25 0.215

10 2.298 2.33 –1.4

Mean 2.276 2.311 –1.7
St.	dev 0.028 0.050

3 11 2.31 2.45 –6.0

12 2.19 2.26 –3.1

13 2.33 2.40 –3.1

14 2.16 2.19 –1.5

Mean 2.248 2.326 –3.4
St. dev 0.085 0.121

All data Mean 2.227 2.157 3.3
St.	dev 0.102 0.312

There is no significant difference in variance between the small and large sensor for 
the thermal conductivity measurements (Figure 43). However, for heat capacity there 
is a distinct and significant difference in variance, see Figure 44. Data from the small 
sensor have a variance that is 9 times as large as data from the large sensor (3 times as 
large standard deviation, see Table 44). These results are based on all 14 data points. 
When each group of data in Table 43 and Table 44 is analysed separately, no significant 
difference in variance can be identified, neither for thermal conductivity nor heat capacity.

The size of the small sensor (5501) is 1.3 cm2 and the measurement volume in the rock 
sample is about 11.3 cm3. For the large sensor (4921), the size is 3 cm2 and the measure
ment volume about 32.9 cm3. The measurement volume is calculated from an ellipsoid 
with rx,y = (probing depth + rsensor) and rz = probing depth.
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4.4.2	 Upscaling	to	1	m	scale

In order to make possible an upscaling from TPS scale (cm) to 1 m scale, samples were 
taken in groups with a sampling design as presented in Section 4.2.1. Samples from both 
Äspö HRL and the Simpevarp subarea were used. By calculating the geometric mean 
for each group, the effective thermal conductivity at the group scale (1 m support) was 
estimated. Table 45 and Figure 45 indicate that the small scale variability (centimetre 
scale) may be both large and small (st.dev. between 0.06 and 0.36 W/(m×K) within groups). 
The groups representing the 1 m scale are illustrated in the box plot in Figure 45 in grey, 
4 values in total.

Figure 4‑3.  Significance test of equal variances for thermal conductivity with small (1) vs large 
(2) sensor. Sample 15 in group 3 is excluded.

Figure 4‑4.  Significance test of equal variances for heat capacity with small (1) vs large (2) 
sensor. Sample 15 in group 3 is excluded.
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Table	4‑5.	 Estimation	of	the	effective	thermal	conductivity	(W/(m×K))	at	the	1	m	scale	
from	TPS	measurements	in	the	cm	scale	in	rock	code	501044	(Ävrö	granite).	Samples	
in	groups	of	five	from	boreholes	KA2599G01	(Äspö)	and	KAV01.	One	measurement	in	
group	3	is	excluded	because	of	ambiguous	rock	type.

Samples	(secup‑seclow) Geometric	mean	
within	groups

St	dev	within	
groups

Number	of		
samples

KA2599G01 (4.33–5.23) 2.63 0.35 5
KA2599G01 (15.10–16.00) 2.58 0.06 5

KA2599G01 (24.02–24.72) 2.63 0.13 4
KAV01 (508.25–509.26) 3.24 0.29 5

Result	for	1	m	scale: Mean:		 2.77 (arithmetic mean of groups)
St.dev:			0.24 (St dev of geometric mean within groups)

The red box in Figure 45 represents variability at the 1 m scale. The mean at the 1 m scale 
was estimated to 2.77 W/(m×K) and the standard deviation to 0.24 W/(m×K), see Table 45. 
The relatively high standard deviation at the 1 m scale is mainly due to high thermal 
conductivity values in the samples from KAV01. This indicates that the thermal conductiv
ity of Ävrö granite can differ significantly over large distances. This variability over large 
distances may be less pronounced for other rock types than Ävrö granite.

No significant difference between data from the centimetre scale and the metre scale can be 
determined from this limited data set. Therefore, no general conclusions of the scale effects 
can be drawn from this limited number of TPS measurements. Further analysis of upscaling 
methodology is discussed in Chapter 7. 

Figure 4‑5.  Upscaling of TPS measurements from cm scale to 1 m scale for Ävrö granite (rock 
code 501044). Four groups of TPS measurements (grey boxes), each representing approximately 
1 m, are used to estimate thermal conductivity at the 1 m scale (red box).
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4.4.3	 Rock	type	scale

The reason for the variability within a rock type derives from the process of rock formation 
but also the system of classifying the rock types. This variability cannot be reduced but 
collecting a large number of samples at varying distances from each other may reduce the 
uncertainty of the variability, so that reliable variograms can be created. An attempt of this 
is presented in Figure 46, which is constructed from the TPS data presented in Table 41 
(with an outlier removed, sample No. 15).

An exponential model has been fitted to the data: range 57 m, sill 0.054, and nugget 0.0262. 
The range is the separation distance where the correlation ceases, i.e. there is no longer an 
increase in variance. The sill is the variance when no correlation exists, and the nugget is 
the variance at zero separation distance. The number of data pairs in each lag class is small 
due to the small number of samples: 26, 45, and 20 for the three lag classes. Therefore, 
the variogram is highly uncertain. The three lag classes correspond to the three groups of 
samples in Figure 41.

The variability that is indicated in Figure 46 is the “within rock type” variability due to 
spatial variations in composition of the rock. As indicated, the spatial variability increases 
over distance. There is an increase by a factor of about two from the 1 m scale to the 25 m 
scale.

Note that Figure 46 does not give a reliable picture of the variability below 1 m. Most 
likely there is a significant drop in variance at separation distances less than 1 m but this  
has not been investigated. 

Figure 4‑6.  Variogram of thermal conductivity from TPS measurements KA2599G01. The dotted 
line indicates the total variance (W/(m×K))2 in the data set. Sample 15 in group 3 is excluded. 
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5	 Estimation	of	thermal	conductivity	from		
small‑scale	density	measurements

5.1	 Relationship	between	density	and	thermal	conductivity
A relationship between density and thermal conductivity was found for granitoid rocks 
from borehole KA2599G01 at Äspö HRL /Sundberg 2002/. Based on this investigation, 
a relationship between density and thermal conductivity was used by /Staub et al. 2003/. 

Based on additional laboratory measurements /Sundberg and Gabrielsson 1999/, a new, 
modified relationship was derived in /Sundberg 2003/ with data from both investigations, 
see Figure 51 and Equation 51.

λ = 27.265ρ2–156.67ρ+227.18  R2=0.88   Equation 51

The equation was derived based on 20 samples from Äspö HRL (the prototype repository 
and borehole KA2599G01) including, according to Äspö nomenclature, Äspö diorite, Ävrö 
granite and Finegrained granite (one xenolith sample was excluded).

The relationship has been further developed by incorporating additional laboratory meas
urements on thermal properties. The updated relationship is based on all measurements of 
Ävrö granite and is presented in Figure 51 and Equation 52. Classification of the samples 
has been performed according to Simpevarp nomenclature. New measurements have 
been made, both within this study (14 samples of Ävrö granite, rock code 501044) and 
in the Simpevarp site investigation program (41 samples divided between the three rock 
codes 501030, 501036, and 501044). Samples included in the relationship in Equation 51 
have been reclassified according to Simpevarp nomenclature and are also included. The 
updated relationship between density and thermal conductivity for Ävrö granite (501044) 
is /Sundberg et al. 2005/:

λ = –7.1668ρ+22.326   R2=0.74   Equation 52

Figure 5‑1.  Relationships between density and thermal conductivity. Equations based on rock 
code 501044 where Equation 5-1 is derived by polynomial regression and Equation 5-2 by linear 
regression.
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The valid range for density (x) is 2.6–2.85 g/cm3 and the equation is only applied within this 
range.

Measurements from the Simpevarp site investigation program of the two rock types Quartz 
monzodiorite (501036) and Finegrained dioritoid (501030) are plotted in Figure 51 to 
illustrate the relation between density and thermal conductivity. Samples from these two 
rock types are not included in the same relationship as the Ävrö granite since they do not 
show the same trends. Two samples of Fine grained granite (511058) are also included the 
figure.

The model has been evaluated statistically by calculating both the confidence and prediction 
interval. The confidence interval indicated in Figure 52 by the red dashed line indicates 
the uncertainty of the model. The interval can be interpreted as the area the model will 
fall within with 95% probability. The prediction interval shown in Figure 52 by a green 
dashed line shows the uncertainty in predicted thermal conductivity values from density. 
The interval can be interpreted as the area a prediction of the thermal conductivity will fall 
within with 95% probability. As Figure 52 indicates, the prediction interval is much wider 
than the confidence interval. 

When the relationship in Equation 52 is applied to density loggings there are some factors 
that contribute significantly to the uncertainty in the estimated thermal conductivity data:
1. Uncertainty in the density loggings.
2. Random prediction uncertainty in the model in Equation 52.
3. Possible bias in the model in Equation 52.

Figure 5‑2.  Statistical analysis of the relationship between density and thermal conductivity for 
Ävrö granite (rock code 501044). The red lines indicate the confidence interval and the green lines 
the prediction interval.
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There are a number of uncertainties associated with density loggings. These include random 
errors in the measurement equipment, disturbances in the geology such as fractures etc, 
bias in the logging data etc. The relative error in density logging data should not exceed 
3–5 Kg/m3, according to SKB:s method description of geophysical logging. In reality, the 
error is about 10 times this value. The reason for this is under investigation. In addition, the 
logging data often contains a lot of noise and is therefore filtered. A recalibration is also 
performed in order to minimise the potential for bias.

The random prediction error that is expected from Equation 52 is a result of the heteroge
neous composition of the Ävrö granite. It cannot be reduced significantly without further 
development of the model. 

There are indications of a potential bias in the model /Sundberg et al. 2005/. This bias will 
affect the mean value of estimated thermal conductivities but the magnitude of this bias is 
not known.

All these uncertainties indicate that the total uncertainty in estimated thermal conductiv
ity data is substantial. The random errors will affect the variance of estimated thermal 
conductivity, and the bias will affect the mean thermal conductivity. The variance is also 
affected by the removal of data outside of the valid density range of the regression equation. 
Although application of the model results in uncertain data there is a major advantage, 
namely that the spatial correlation of thermal conductivity along a borehole is taken into 
account, see Chapter 7. 

The relationship in Equation 52 is applied for calculation of thermal conductivity in the 
domain modelling approaches described in Chapter 7 and in the Value of Information 
Analysis (Chapter 9).

5.2	 Analysis	of	relationship
An explanation of the relationship between density and thermal has been sought by investi
gating porosity dependence, properties of the specific minerals in the Ävrö granite, and by 
analysing synthetically created “samples” based on the formation of different igneous rock 
types. Each of these explanations is analysed below.

5.2.1	 Effects	of	porosity

Figure 53 illustrates how the density of the core samples depends on the porosity. As illus
trated in the figure, there is only a weak relationship between density and porosity within 
the Ävrö granite (Simpevarp nomenclature). However, the porosity relationship is quite the 
opposite of what could be expected in order to explain the relationship between density and 
thermal conductivity. This eliminates one possible explanation of the relationship between 
density and thermal conductivity. 

5.2.2	 Mineral	properties

Another possible explanation of the relationship between density and thermal conductivity 
is the mineral properties. For minerals appearing in Ävrö granite (501044) the thermal 
conductivity has been plotted against density in Figure 54.  
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An explanation of the relationship could be the appearance of low density minerals with 
high thermal conductivity or high density minerals with low thermal conductivity. The 
mineral compositions of the dominating rock type Äspö diorite/Ävrö granite have therefore 
been examined, see Table 51. In /Sundberg and Gabrielsson 1999/ the mineral composition 
of fresh Äspö diorite was determined based on rock samples from the prototype repository. 
In /Sundberg 2002/ mineral compositions based on core samples from KA2599G01 were 
determined for Äspö diorite, Ävrö granite and Finegrained granite (Äspö nomenclature).
Äspö diorite and Ävrö granite is named Ävrö granite according to Simpevarp nomenclature.

Figure 5‑3.  Porosity vs density of measured Ävrö granite (501044) samples.
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Figure 5‑4.  Thermal conductivity of some minerals vs density of minerals /Horai 1971/.
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Table	5‑1.	 Mineral	compositions	of	different	rock	types	together	with	mineral	
properties.

Density	
mineral	
(kg/m³)

Therm	cond	
mineral	
(W/(m×K))

Prototype	repository KA2599G01
Fresh	Äspö	
diorite

Fresh	Äspö	
diorite

Äspö	
diorite

Ävrö	
granite

Fine‑gr	
granite

Number of samples 2 1 5 3 2
Mean meas density 
(kg/m³)

2,761 2,770 2,744 2,663 2,642

Opaques 5,000 3.00 0.6 0.3 1
Titanite 3,525 2.34 1 1 1.3 0.4 0.2
Epidote 3,287 2.83 1 7 4 2.5 3
Hornblende 3,183 2.81 7 5
Amphibole 3,176 3.39 0.2
Biotite 2,981 2.02 18 15 18 7 3
Sericite 2,852 – 1 1 4 4 10.5
Chlorite 2,755 5.15 0.3 1 0.5
Quartz 2,674 7.69 10 10 12 25 31
Plagioclase 2,652 1.70 52 50 40 28 15
K-feldspar 2,566 2.29 10 10 20 32 36

It is concluded that the relationship between density and thermal conductivity is not the 
result of a few dominating minerals. More likely, all minerals contribute to the relation
ship but the contribution of some minerals is believed to be larger, eg. Quartz, plagioclase, 
biotite and epidote.

5.2.3	 Magma	composition	and	mineralogy

A third explanation of the relationship between density and thermal conductivity has been 
investigated: the mineral compositions of common igneous rocks, schematically illustrated 
in Figure 55. In order to do this, 21 synthetically “samples” were defined, evenly distrib
uted along the horizontal line in Figure 55. The mineral composition of each synthetic 
sample was taken from Figure 55. The data is presented in Appendix D in Table D1. The 
density and thermal conductivity was calculated for each sample, using mineral properties 
described in Table D2 and Table D3. The thermal conductivity was calculated as the 
geometric mean of the thermal conductivity of the minerals.

Two different calculations were carried out: (1) with fixed mineral properties of the thermal 
conductivity for all rock types, and (2) with adjusted (varying) properties of the plagioclase 
and olivine minerals depending on the silica content in the rock. The latter was performed 
because thermal conductivity of these two minerals varies when the chemical composition 
of the minerals changes. For plagioclase, the content of anorthite and albite is estimated to 
vary from 0–100%, with the lowest content of anorthite on the right hand side in Figure 55. 
The same way of reasoning was applied for the forsterite and fayalite content in the olivine 
(lowest forsterite content to the right). The same principle of adjustment could also be 
applied for pyroxene but this was not performed due to lack of reliable mineral data of ther
mal conductivity. All results are presented in Table D4 in Appendix D in and in Figure 56.

Results of both calculations, with fixed and with adjusted mineral properties, are illustrated 
in Figure 56. The brackets represent the density intervals of the different rock types in 
Figure 51. The relationship between density and thermal conductivity for the Ävrö granite 
(Equation 52) is illustrated in Figure 56 with a green line.
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Figure 56 offers an explanation of the relationship between density and thermal conduc
tivity for Ävrö granite (501044). Within the density range of Ävrö granite, the thermal 
conductivity is inversely proportional to density and the reason is the mineral composition. 
This is not obvious for the other three rock types, although Finegrained dioritoid (501030) 
has a similar tendency but not as pronounced as Ävrö granite.

Figure 5‑5.  Mineralogy of igneous rocks and the magmas /modified after Tarbuck et al. 2005/.  
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6	 Inverse	modelling	of	thermal	conductivity	at	
prototype	repository	scale

6.1	 Introduction
Measurements of thermal properties and temperatures have been conducted within the 
prototype repository /Sundberg and Gabrielsson 1999/. Measurements has also been made 
on samples from the nearby borehole KA2599G01 /Sundberg 2002/. A prognosis model 
of the thermal properties has been established based on these data. The prognosis model 
is evaluated towards values calculated through inverse modelling. The inverse modelling 
is based on an iterative process where a fitting of measured and calculated temperatures is 
performed with a numerical model.

6.2	 Instrumentation
Temperature sensors in the rock mass have been placed with a layout described in 
Figure 61. Samples collected for measurements of thermal properties were located 
in borehole KA2599G01 (drilled vertically from the gallery in Äspö HRL at chainage 
2,599 m) and also several short boreholes from both the inner and outer section of the 
prototype repository. 

Figure 6‑1.  Overview of the temperature sensors in the rock. Length section (upper) and cross 
section (towards the end of the tunnel) /Goudarzi and Johannesson 2004/.
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6.3	 Description	of	data
Samples for measurements of thermal properties sampled within the Äspö area and rock 
type classified according to Äspö nomenclature have been reclassified according to 
Simpevarp nomenclature. The following results were obtained, see Table 61.

Table	6‑1.	 Thermal	conductivity	values	and	classification	of	samples	with	Äspö	and	
Simpevarp	nomenclature.	Results	from	laboratory	and	field	measurements	/Sundberg	
and	Gabrielsson	1999	(A)	(data	from	prototype	tunnel),	Sundberg	2002	(B)/.

Sample Secup‑seclow Äspö	nomenclature Simpevarp	
nomenclature

Therm	cond	
(W/(m×K))

Reference

KA 3539-1 1.0–1.22 Äspö diorite Ävrö granite 2.42 (A)
KA 3539-2 5.50–5.68 Alt. Äspö diorite Quartzmonzodiorite 2.63 (A)

KA 3545 0.83–1.11 Alt. Äspö diorite Ävrö granite 2.72 (A)
KA 3551 0.95–1.15 Alt. Äspö diorite Ävrö granite 2.76 (A)
KA 3563 0.88–1.12 Äspö diorite Ävrö granite* 2.39 (A)
KA 3569 0.87–1.20 Äspö diorite Ävrö granite 2.42 (A)
KA 3575 1.03–1.27 Äspö diorite Ävrö granite 2.44 (A)
KA 3581 1.10–1.33 Äspö diorite Ävrö granite 2.50 (A)
KA 3587 0.97–1.14 Äspö diorite Ävrö granite 2.33 (A)
KA 3593-1 1.42–1.63 Äspö diorite Ävrö granite 2.55 (A)
KA 3593-2 4.19–4.43 Xenolite Quartzmonzodiorite 2.38 (A)
KA2599G01 4.33–4.43 Äspö diorite Ävrö granite 2.16 (B)
KA2599G01 4.53–4.63 Äspö diorite Ävrö granite 2.87 (B)
KA2599G01 4.73–4.83 Äspö diorite Ävrö granite 3.05 (B)
KA2599G01 4.93–5.03 Äspö diorite Ävrö granite 2.66 (B)
KA2599G01 5.13–5.23 Äspö diorite Ävrö granite 2.50 (B)
KA2599G01 5.90–5.94 Äspö diorite Ävrö granite 2.49 (B)
KA2599G01 14.63–14.67 Äspö diorite Ävrö granite 2.34 (B)
KA2599G01 15.10–15.20 Äspö diorite Ävrö granite 2.61 (B)
KA2599G01 15.30–15.40 Äspö diorite Ävrö granite 2.67 (B)
KA2599G01 15.50–15.60 Äspö diorite Ävrö granite 2.56 (B)
KA2599G01 15.70–15.80 Äspö diorite Ävrö granite 2.54 (B)
KA2599G01 15.90–16.00 Äspö diorite Ävrö granite 2.53 (B)
KA2599G01 24.02–24.12 Äspö diorite Ävrö granite 1) 2.76 (B)
KA2599G01 24.22–24.32 Äspö diorite Ävrö granite 2.48 (B)
KA2599G01 24.42–24.52 Äspö diorite Ävrö granite 2) 2.57 (B)
KA2599G01 24.62–24.72 Äspö diorite Ävrö granite 3) 2.72 (B)
KA2599G01 24.82–24.92 Äspö diorite Ävrö granite 4) 3.56 (B)
KA2599G01 25.32–25.36 Äspö diorite Ävrö granite 2.47 (B)
KA2599G01 44.28–44.32 Ävrö granite Ävrö granite 2.99 (B)
KA2599G01 50.10–50.14 Fine-grained granite Fine-grained granite 3.58 (B)
KA2599G01 61.89–61.93 Fine-grained granite Fine-grained granite 3.68 (B)
KA2599G01 70.60–70.64 Äspö diorite Ävrö granite 2.84 (B)
KA2599G01 85.10–85.50 Äspö diorite Ävrö granite 2.69 (B)
KA2599G01 101.85–101.89 Alt. Äspö diorite Ävrö granite 3.11 (B)
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Sample Secup‑seclow Äspö	nomenclature Simpevarp	
nomenclature

Therm	cond	
(W/(m×K))

Reference

KA2599G01 120.05–120.09 Ävrö granite Ävrö granite 3.22 (B)
KA2599G01 126.35–126.39 Ävrö granite Ävrö granite 3.55 (B)
Section 3535 Meas 1 No 1 Äspö diorite Ävrö granite * 2.73 5) (A)
Section 3535 Meas 2 No 1 Äspö diorite Ävrö granite * 2.67 5) (A)
Section 3566 No 1 Äspö diorite Ävrö granite * 3.16 5) (A)
Section 3583 No 1 Äspö diorite Ävrö granite * 2.80 5) (A)
Section 3583 No 2 Äspö diorite Ävrö granite * 2.78 5) (A)

* Not reclassified.
1) Strong foliation and epidot filled joints.
2) Elements of fine-grained mafic rock type.
3) Diffuse elements of red granite.
4) Mixed with red granite and elements of fine-grained mafic rock type.
5) Field measurement with multi probe method.

Some of the field measurements at the prototype repository were disturbed by water move
ments. Table 62 shows apparent thermal conductivity influenced by water movements. The 
results are significant higher compared to Table 61. Location of samples and field measure
ments in the prototype tunnel is showed in Figure 62.

Figure 6‑2.  Location of boreholes (samples) and field measurements in the prototype tunnel. 
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Table	6‑2.	 Measuring	results	for	field	measurements	of	thermal	conductivity	influenced	
by	water	movements.

Sample Comment Äspö	nom Simpevarp	nom Apparent	therm	
cond	(W/(m×K))

Section 3535 Meas 1 No 2 Äspö diorite Ävrö granite 3.49
Section 3535 Meas 2 No 2 Äspö diorite Ävrö granite 3.76

Section 3594 No 1 Äspö diorite Ävrö granite 5.98
Section 3594 No 2 Äspö diorite Ävrö granite 3.64
Mean 4.22
Mean (extreme  
value excluded

3.63

6.4	 Waterbearing	fractures	and	lithology
The prototype tunnel has been mapped due to water bearing fractures and different rock 
types. In Figure 63 to Figure 65 water conductive fractures are showed together with 
observations of moist and water. Sections for location of canisters are also indicated in the 
figures. Most of the water comes from the inner part of the tunnel, see Figure 66. 

Lithological and fracture mapping are showed in Figure 67. The dominating rock type, 
according to Äspö nomenclature, is Äspö diorite. 

Figure 6‑3.  Water conductive fractures with observations of water together with the location of the 
different canisters in the outer section of the prototype tunnel. Modified from /Patel et al. 1997/.



�1

Figure 6‑4.  Water conductive fractures with observations of water together with the location of the 
different canisters in the middle section of the prototype tunnel. Modified from /Patel et al. 1997/.
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Figure 6‑5.  Water conductive fractures with observations of water in the inner section of the 
prototype tunnel. For location of the different canisters, see previous figure /Patel et al. 1997/. 
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Figure 6‑6.  Inflow measurements data from the prototype repository. The total flow was  
5.2 l/minute (mean). Data from /Patel et al. 1997/.

Figure 6‑7.  Lithological and fracture mapping of the prototype tunnel /Rhén 1995/. 
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6.5	 Prognosis	of	thermal	properties
A prognosis of the thermal conductivity has been made based on sample results from 
laboratory measurements with the TPS method /Sundberg and Gabrielsson 1999, Sundberg 
2002/ together with samples measured within this project (see Chapter 4) and field measure
ments /Sundberg and Gabrielsson 1999/. Different prognosis models have been calculated 
based on a number of assumptions regarding population and rock type nomenclature.

The following assumptions have been done regarding populations and rock type nomen
clature for seven different prognosis models:
1. Prototype repository section 1 (inner), laboratory measurements (6 samples), 

Äspö diorite.
2. Prototype repository section 2 (outer), laboratory measurements (4 samples), 

Äspö diorite.
3. Prototype repository section 1 and 2, laboratory measurements (10 samples), 

Äspö diorite.
4. Prototype repository section 1 and 2, field measurements (5 samples), Äspö diorite.
5. Äspö area, laboratory measurements (31 samples), Äspö diorite.
6. Äspö area, laboratory measurements (32 samples), Ävrö granite.
7. Äspö and Simpevarp, laboratory measurements (37 samples), Ävrö granite.

Äspö nomenclature has been used for all prognoses except for no 6 and 7 for which 
Simpevarp nomenclature has been used. 

Probability plots to evaluate the distribution of data included in the different models have 
been calculated and the results are presented in Figure 68 for models 1–4, in Figure 69 
for model 5, and in Figure 610 for models 67. The distribution models with best fit to 
data consist of both lognormal and extreme value distributions. It is reasonable to assume 
that a set of representative measurements of thermal conductivity is approximately log
normally distributed. However, when data sets from different populations are combined, as 
in Figure 69 and Figure 610, it is not surprising that data no longer follows a lognormal 
distribution (sampling from mixed populations should be avoided if possible because biases 
can be introduced, see /Chai 1996/). Empirically, the extreme value distribution exhibit the 
best fit to these data sets of the limited number of evaluated ones.

Distribution models of the different populations are presented in Figure 610. The higher 
uncertainty in the upper end of the prognosis is possibly due to elements of granite in 
samples with high thermal conductivity classified as Ävrö granite. 

A summary of the prognosis models for the thermal conductivity within the prototype 
repository is presented in Table 63. It is also possible to combine different prognosis 
models for different purposes.

To illustrate the background data of the seven different prognoses, cumulative histograms 
are presented in Figure 612 and Figure 613. 

It can be discussed weather data for all prognosis models are representative. The measured 
samples from Simpevarp have all been taken from a limited, only 1 m long, part of borehole 
KAV01 (prognosis model 6 and 7). Further, the 15 samples measured in this project are 
all sampled within an approximately 20 m long section of borehole KA2599G01, see 
Chapter 4. These 15 samples constitute almost half of the data for the distribution models 
no 5 to 7. 
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Figure 6‑8.  Probability distribution (lognormal distributed) of four thermal conductivity 
populations (models 1–4) from prototype repository classified as Äspö diorite with Äspö 
nomenclature.

Figure 6‑9.  Probability distribution (extreme value distributed) of all thermal conductivity 
measurements from the Äspö area (model 5) classified as Äspö diorite with Äspö nomenclature.

99

90

50

10

1

99

90

50

10

1

99

90

50

10

1

99

90

50

10

1

  

 

Probability Plot of Outer prot.; Inner prot.; All prot.; All prot. Äspö nom.
Lognormal - 95% CI

Pe
rc

en
t

Outer prot. Inner prot.

All prot. All prot. field

2.2 2.4 2.6 2.8

2.0 2.4 2.8 3.2         3.6

2.0 2.4 2.8 3.2         3.6

2.00 2.25 2.50 2.75       3.00

Outer prot.

Inner prot.

All prot.

All prot. field
Loc                  1,038
Scale           0,06566
N                            5
AD                   0,548
P-Value           0,076

Loc                0,9212
Scale           0,05707
N                          10
AD                   0,348
P-Value           0,399

Loc                0,8909
Scale           0,03210
N                            6
AD                   0,143
P-Value           0,934

Loc                 0,9667
Scale            0,05883
N                             4
AD                    0,327
P-Value            0,300

98

97

95

90

80

70

60
50
40
30
20

10

1

Probability Plot of All Äspö Äspö nom.
Largest Extreme Value - 95% CI

All Äspö

Pe
rc

en
t

2.0            2.2            2.4             2.6           2.8             3.0           3.2             3.4            3.6            3.8

Loc                 2,510
Scale            0,2001
N                          31
AD                  0,285
P-Value        >0,250



��

Table	6‑3.	 Summary	of	results	from	prognosis	modelling	of	thermal	properties.

Prognosis Population Mean	
(W/(m×K))

Std.dev	
(W/(m×K))

Number	of		
samples

Distribution

1 Prototype repository section 1 (inner), 
laboratory measurements, Äspö diorite.

2.44 0.08 6 Lognormal

2 Prototype repository section 2 (outer), 
laboratory measurements, Äspö diorite.

2.63 0.15 4 Lognormal

3 Prototype repository section 1+2, laboratory 
measurements, Äspö diorite.

2.52 0.15 10 Lognormal

4 Prototype repository section 1+2, field 
measurements, Äspö diorite.

2.83 0.19 5 Lognormal

5 All measurements Äspö area, laboratory 
measurements, Äspö diorite.

2.62 0.27 31 Largest extreme 
value

6 All measurements Äspö area, laboratory 
measurements, Ävrö granite.

2.65 0.29 32 Largest extreme 
value

7 All measurements Äspö and Simpevarp area, 
laboratory measurements, Ävrö granite.

2.73 0.35 37 Largest extreme 
value

According to these presumptions the best prognosis should be number 3, based on all 
laboratory measurements from the prototype repository, or a combination of no 3 and 4 (the 
latter based on field measurements). The results for the field measurements (2.86 W/(m×K)) 
are a bit higher than the laboratory measurements (2.52 W/(m×K)) and are possible influ
enced by water movements. However, also the results from the temperature measurements 
at the prototype repository are influenced by water movements, especially in the initial stage 
after installation of the backfill. The weight mean of these two prognosis model (3 and 4) is 
2.62 W/(m×K) and may be a prognosis of the effective thermal conductivity. 

Figure 6‑10.  Probability distribution (extreme value distributed) of all thermal conductivity 
measurements from the Äspö area and the Äspö area together with the Simpevarp data  
(model 6–7) classified as Ävrö granite with Simpevarp nomenclature.
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Figure 6‑11.  Seven prognosis models based on different populations and rock type nomenclatures.
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Figure 6‑12.  Cumulative histograms of data (measured thermal conductivity) to the five prognosis 
models based on Äspö nomenclature (models 1–5).
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6.6	 Inverse	numerical	modelling
6.6.1	 Introduction

Measured data

The material used in this study consists of measured data from thermal test at the prototype 
repository:
• Canister power rates. The power rates for the six different canisters have been measured, 

screened and adjusted. The new calculated power rates are available with an average 
sampling frequency for the six canisters varying from 17 to 24 readings per day. 

• Rock temperatures have been measured at 37 temperature sensor locations with roughly 
an hourly frequency for 527 days.

• Special file with initial temperatures at the 37 sensor locations.
• Sensor locations.
• Temperature on the inside and the outside of the canisters.

The files with canister power rates were merged into one file where every change in power 
rate for any canister was arranged in chronological order. The massive file containing all 
rock temperature data was split into 37 different files – one for each sensor. The sensor 
locations are given in a local grid pertaining to each canister. These coordinates were 
transformed to the global grid. Initial temperatures screened against the initial readings  
from the measured rock temperature files. The canister temperature files are not used in  
this study In Figure 614, the heat sources are indicated as blue quadruples and the sensors 
are indicated as black and grey circles. 

Figure 6‑13.  Cumulative histograms of data (measured thermal conductivity) to the two prognosis 
models based on Simpevarp nomenclature (models 6–7).
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Idealizations

This study focuses on the thermal conditions in the rock mass. Thus, the conditions at the 
canister and in the bentonite buffer are not of primary interest in this study. Similar to the 
thermal response tests carried out for groundcoupled heat pumps it is assumed that these 
conditions have little influence on the evolution of rock temperatures after a certain initial 
period. The heat transfer properties of the buffer and the capacities of the involved materials 
are of course important in the immediate vicinity of the canisters and when the heating is 
started. Most of the released heat is then absorbed in the canister and buffer. A certain initial 
period is therefore ignored during the parameter fitting procedure. 

The water saturation of the bentonite buffers can be mentioned as an example of the 
complexity of the boundary conditions close to canister. The bentonite buffers surrounding 
the canisters are fairly dry when the heating starts, but there is a rapid increase in the water 
saturation as the experiment starts. Saturation of bentonite buffers around the canisters is 
predicted to take 2–3 years along the buffer and 5–6 years in the thicker bentonite below 
and above the canister. The relative humidity of the sensors indicates that the bentonite is 
close to water saturation after one year of operation although the conditions seem to be 
fairly heterogeneous. 

The tunnels above the deposition holes are backfilled with a mixture of bentonite (30%) and 
crushed rock.

Comparison with thermal response test

The evaluation method of the inverse modelling has similarities with a thermal response 
test with a thermal probe, which are a common technique to evaluate the thermal properties 
of solid materials. The thermal response test is performed by supplying a constant heat rate 
from a cylindrical probe inserted into the material. The length of the probe is often chosen 
so that threedimensional endeffects become negligible during the test period. A tempera
ture sensor in the probe registers the temperature evolution during the period. The thermal 
properties are determined based on the shape of the measured temperature response.

The left figure in Figure 615 shows the measured fluid temperature during a response test 
for a 175 m borehole (diameter 115 mm) used for groundsource heat pumps. The duration 
of the test was about 76 hours. A logarithmic timescale is used. The right figure shows the 
measured temperature response of a thermal probe at the prototype repository.

Figure 6‑14.  Location of temperature sensors. The inner part of the prototype tunnel to the left. 
The numbering of canisters is from the left. See also Figure 6-1.
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The collected data for an initial period of 15 hours is not used during the evaluation in order 
to minimize the influence of capacitive effects in the borehole, since it is difficult to obtain 
details of the actual heat transfer properties in the borehole heat exchanger. The thermal 
conductivity is evaluated from the slope of the curve (see Figure 615). 

The response curves of temperature sensors in the rock around the deposition holes have a 
similar character. However, the infinite linesource theory is not applicable to the analyses 
of prototype repository due to the large diameter of the deposition holes in relation to their 
vertical extension and distance to other deposition holes. The response curve also has 
contributions from several heat sources (canisters). The basic idea of the evaluation method 
used in this report is anyway similar in its focus on the slope of the response curve. 

6.6.2	 Modelling

Evaluation method

The measured thermal response in the surrounding rock is analyzed by inverse modelling 
of the thermal properties of the rock mass. In this study, a threedimensional finite differ
ence model of the prototype repository (canisters, buffers, tunnel, etc) is used to calculate 
the transient temperature increase due to the heat generation in the canisters. The value of 
a homogeneous rock thermal conductivity is varied until the best fit with measured data is 
obtained for each sensor point. The evaluation period for the fitting procedure is varied in 
order to study sensitivity to different timescales.

Numerical model

The numerical model of the repository uses an explicit finite difference scheme. The code is 
based on models previously developed for underground thermal energy storage applications 
and it has been extended to accommodate the geometry of the repository. 

The simulated ground region encompasses a parallelepipedical volume of 120×150×120 m3 
and is described with a grid using 54×197×59 = 627,642 cells for the numerical simulation 
scheme. 

Figure 6‑15.  Left: Measured fluid temperature during a response test for a 175 m borehole 
used for ground-source heat pumps. Right: Measured temperature response of thermal probe 
PXPTA1020 at the protoype repository.
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Assumptions

The thermal properties of the different materials involved largescale thermal process are 
assumed to be homogeneous. The thermal properties are given in Table 64.

Table	6‑4.	 Thermal	properties	of	the	materials	involved	in	the	thermal	process.

Thermal	
conductivity	
(W/(m×K))

Volumetric	heat	
capacity	
(MJ/(m3×K))

Canister 15.0 4.00
Buffer 1.5 3.40

Tunnel 1.5 2.50
Rock To be estimated 2.20*

* A value of 2.32 (MJ/(m3×K)) was also used in order to test the sensitivity to this parameter. 

All thermal properties are constant, which means that the thermal problem is linear. 
Different solutions to the heat conduction problem can then be superimposed on each other 
to form the complete temperature field. Here, this technique is used by superimposing two 
parts of the thermal response – the initial temperature field and the temperature increase 
due the heat generation in the canisters. The initial temperature is assumed to be constant 
although it is apparent from the initial rock temperatures that there is a certain thermal 
disturbance from the activities in the deposition tunnel. This disturbance will decline with 
time. The influence of this disturbance will reduced if a certain initial time period is omitted 
from the fitting procedure. The initial temperature in the calculation of the thermal distur
bance is set to zero everywhere.

Fitting procedure

The measured thermal response is used to find the thermal conductivity that result in the 
best fit with the simulated thermal response. The thermal conductivity of the rock is set to a 
constant homogeneous value for each calculation of the temperature disturbance due to the 
heat generation within each canister. The value of thermal conductivity is varied from 1.9 to 
3.7 W/(m×K) with an increment of 0.1 W/(m×K). During the simulation for each value of 
the thermal conductivity, the temperature disturbance (increase) at each temperature sensor 
location is calculated. The temperatures are stored with a time interval of 12 hours for a 
total simulation time of 730 days. 

In the second step the simulated values are interpolated in time to match the times at which 
the measured data were collected for each sensor. The third step involves comparison of 
the measured and simulated temperatures for each point and thermal conductivity during 
the chosen evaluation interval. The average temperature of the measured temperature and 
the simulated temperature increase during the evaluation period is first calculated. The 
difference between these averages is assumed to be the initial temperature for the simu
lated temperatures, which are then the sum of this initial temperature and the temperature 
increase. The square of the difference between measured and simulated temperature for 
each measured time in the evaluation period is summed. This procedure is repeated for each 
value of thermal conductivity. Finally, we have the square sum for 18 values of thermal 
conductivity in the range from 1.9 to 3.7 W/(m×K) for each sensor. The thermal conductiv
ity of the best match between measured and simulated values for a given sensor is found by 
minimizing a polynomial fit to the 18 values.



�2

The choice of evaluation period is guided by three different concerns:
• To minimize the influence of an incomplete description of the local conditions in the 

canister and bentonite buffer, a certain initial period should not be included in the 
fitting procedure. For instance, the varying saturation level in the bentonite buffer will 
influence the local heat transfer characteristics from the canister to the borehole wall. 
This will affect the temperature increase (capacitive effects) of the canister. Lower heat 
transfer capacity gives higher canister temperature and thus more energy is stored in the 
canister and less is released to the surrounding. It is apparent from the measured canister 
temperature that the temperature rise is most pronounced in the beginning. Later the 
temperature becomes more stable and the energy absorbed in the canister decreases. 

• Local disturbances of the initial temperatures. These disturbances are due to activities 
and varying temperatures in the deposition holes and the tunnel during construction. The 
distances from the surfaces to which these temperature changes penetrate depend on the 
duration of exposure. The variation in measured initial temperature is an indication of 
this process. After the sealing of the tunnel there will be a decline of the disturbances on 
a timescale similar to the exposure duration. The chosen fitting procedure may result in 
simulated “initial” temperatures being slightly different than the measured ones.

• Another important process may be convective heat transport due to largescale ground
water flow in the fissures. The basic influence is most pronounced on a long time scale. 
Using a fitting procedure based on conductive heat transport will lead to increasingly 
higher “effective” thermal conductivities when longer evaluation periods are considered 
in order to compensate for the energy transport away from the rock around the canisters. 

It should be emphasized that the fitted thermal conductivity values are calculated for 
each sensor point individually without regard to the thermal response of any other point. 
However, it is also possible to give a thermal conductivity considering the best fit for all 
37 sensor points. The procedure to obtain this overall thermal conductivity value is carried 
out as follows. For each sensor point, the square sum of the differences between measuredof the differences between measured 
and calculated temperatures for the 18 values of thermal conductivity in the range from 1.9 for the 18 values of thermal conductivity in the range from 1.9 
to 3.7 W/(m×K) is normalized through division by the number of temperature observations. 
Then the normalized values for the 37 sensor points are summed up for each value of the 
thermal conductivity (1.9 to 3.7 W/(m×K)). The thermal conductivity of the best overall 
match between measured and simulated values considering all sensors is found by mini
mizing a polynomial fit to the 18 values.

6.6.3	 Result	of	evaluated	thermal	conductivity

The influence of the duration of the evaluation period is for two different start values 
– 30 days and 160 days. The reasons for omitting a certain initial time period have been 
explained above. 

Influence of duration of evaluation period and initial temperatures

The point PXPTA2120 with the largest temperature change is used as a reference. The first 
comparison for the two cases is made with an end time of 250 days. The fitted simulated 
thermal responses are given in Figure 616 and Figure 617.

A comparison for the two cases is made with an end time of 525 days. The fitted simulated 
thermal responses are given in Figure 618 and Figure 619.
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Figure 6‑16.  Thermal response of thermal probe PXPTA2120 during 525 days. The period  
30–250 days is used for fitting the measured and simulated response.

Figure 6‑17.  Thermal response of thermal probe PXPTA2120 during 525 days. The period  
160–250 days is used for fitting the measured and simulated response.
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A general observation is that setting the start time for the evaluation period at 160 days 
results in better fit during the chosen evaluation period than the setting the time to 30 days. 
There is a certain disagreement during the initial period before 160 days. It is of course 
more difficult to obtain a better fit for the period starting at 30 days since it is considerably 
longer. In this case, a noticeable deviation occurs at the end of the evaluation period.  
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Figure 620 shows the average measured rock temperature, the average simulated tempera
ture increase and the difference between these values during the evaluation period from 
160 to 250 days for all the 37 temperature sensors. The results have been ordered according 
to magnitude of average simulated temperature increase. This reflects to some degree the 
temperature sensor’s proximity to a canister. The influence of a relative error in the meas
urements and local deviations in the initial temperatures will be less for such sensors. See 
Figure 622.

The difference between the measured temperature and the simulated temperature increase 
may be regarded as the “fitted” initial temperature of the simulation. The fitted initial 
simulation temperature is compared with the measured initial temperature in Figure 621. 

Figure 6‑18.  Thermal response of thermal probe PXPTA2120 during 525 days. The period  
30–525 days is used for fitting the measured and simulated response.

Figure 6‑19.  Thermal response of thermal probe PXPTA2120 during 525 days. The period  
160–525 days is used for fitting the measured and simulated response.
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Figure 6‑20.  Average measured rock temperature, average simulated temperature increase 
and difference between these values during the evaluation period 160–250 days for each of the 
37 temperature sensors. 
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Figure 6‑21.  Measured initial temperature and fitted “initial” temperature for each of the 
37 temperature sensors. The period 160–250 days is used for fitting the measured and simulated 
response.
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The measured initial temperatures range between 14°C and 18°C with a tendency to higher 
values close to the tunnel and the deposition boreholes. The original undisturbed rock 
temperature is likely to have been much more uniform in the relatively limited region. With 
a vertical gradient of about 15°C/km, the range of initial temperature at probes would have 
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Figure 6‑22.  Average deviation between measured and simulated temperatures in relation to 
simulated temperature increase for each of the 37 temperature sensors. The period 160–250 days 
is used for fitting the measured and simulated response.
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been within 0.2°C. It is evident from the measurements that there are “residual” temperature 
disturbances from the local climate in the deposition tunnel. These disturbances, which 
can be treated as a superimposed thermal process, will decline with time. The examination 
of the fitting procedure for thermal probe PXPTA2120 (see Figure 616 to Figure 619) 
indicates that omitting a longer initial time period from the fitting is likely to result in larger 
difference between fitted and measured initial temperature. Shifting the evaluation from and 
early period to a later one tends to give higher fitted thermal conductivities, which may be 
the result of a general temperature decrease or convective heat transport due to groundwater 
flow. The largest difference between measured and fitted initial temperatures is found for 
probes PXPTA2140 and PXPTA1830, which are fairly close on the same vertical level. Also 
the adjacent probes PXPTA2130 and PXPTA1850 show a large difference.  

The corresponding curves for the evaluation periods 160–365 days and 160–525 days are 
given in Appendix E. 

Summary of results for different evaluation periods

The rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors is presented in Figure 623 for the three 
evaluation periods 160–250 days, 160–365 days, and 160–525 days. The corresponding 
values for a starting time of 30 days in the evaluation period are shown in Figure 624. 
A definite trend towards higher values of the fitted thermal conductivity can be noted for 
almost all points when the end time of the evaluation period is extended. 

The influence of the start time for the evaluation is compared for a fixed end time of 
525 days in Figure 625. Changing the start time from 30 to 160 days yields higher values 
of the fitted thermal conductivities for almost all points. 
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Figure 6‑24.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors. An evaluation period of 30–250 days,  
30–365 days, or 30–525 days is used.

Figure 6‑23.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors. An evaluation period of 160–250 days, 
160–365 days, or 160–525 days is used.
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Influence of volumetric heat capacity

The influence of the volumetric heat capacity of the rock has been assessed by performing 
a calculation with a 5% higher value than the reference case, see Figure 626. The fitted 
“initial” temperature is given in Figure 627. As can be expected, the slope of the response 
curve is practically determined by the thermal conductivity, whereas the fitted “initial” 
temperature has to be raised to compensate for the increased capacitive effect of the rock. 

Influence of large-scale temperature change

The activities in the tunnels (e.g. ventilation) may disturb the rock temperatures. If the air 
temperature in the tunnels becomes higher than the initial undisturbed rock temperatures, 
it will cause a temperature increase in the rock close to the tunnel. The thermally disturbed 
zone will grow slowly with time until the tunnel is backfilled. It is documented that the air 
temperature near the prototype repository is changing and has an annual wave form with an 
amplitude of about 10°C (max/min temp approximately 20/10°C) /Fälth 2005/. The altered 
geohydrological conditions around the tunnel will also cause groundwater movements and 
associated convective heat transfer on a large scale.  

To check the possible influence of a slow largescale (global) temperature drift, a general 
constant temperature change of –0.2°C per year has been superimposed. The simulated tem
perature increase (slope) will thus become lower for a given thermal conductivity. In order 
to compensate for this effect, the fitting procedure will find a lower thermal conductivity. 
See Figure 628 and Figure 629. The influence is larger for temperature sensors far away 
from the canisters where the temperature increase is small. Conversely, a constant global 
temperature increase will require higher thermal conductivities.

Figure 6‑25.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors. An evaluation period of 30–525 days or 
160–525 days is used.
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Figure 6‑26.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors for an evaluation period of 160–525 days. 
The volumetric heat capacity is 2.2 MJ/(m3×K) or 2.32 MJ/(m3×K).

Figure 6‑27.  Fitted “initial” temperature for each of the 37 temperature sensors for an evaluation 
period of 160–525 days. The volumetric heat capacity is 2.2 MJ/(m3×K) or 2.32 MJ/(m3×K).
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Figure 6‑28.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors for an evaluation period of 160–525 days. 
The global temperature change is 0°C/year or –0.2°C/year.

Figure 6‑29.  Fitted “initial” temperature for each of the 37 temperature sensors for an evaluation 
period of 160–525 days. The global temperature change is 0°C/year or –0.2°C/year.
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The rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors is presented in Figure 630 for the three 
evaluation periods 160–250 days, 160–365 days, and 160–525 days. Compared with the 
case without global temperature change, there is a trend towards lower values of the fitted 
thermal conductivity especially for distant sensors with small temperature increase due to 
canister heating. The relative influence of the global temperature change is larger for these 
sensors. The fitted thermal conductivity values still become larger with longer duration of 
the evaluation period. 

6.6.4	 Results	due	to	location	of	temperature	sensors

Thermal conductivity was assessed through an inverse modelling where measured data was 
fitted to simulated temperature curves. The simulated curves was for each sensor location 
calculated for 19 cases assuming a thermal conductivity from 1.9 to 3.7 W/(m×K) with 0.1 
increments. During the modelling, a fitting procedure including different time periods of 
measurements were used. In Figure 631 to Figure 633, the thermal conductivity achieved 
from curve fitting using data form different time periods from 160 through 525 days after 
the initiation of the experiment were used. In Figure 614, the identities of individual 
temperature sensors are shown. 

High thermal conductivity values are modelled in the inner parts of the tunnel, especially 
close to the tunnel surface. These high values may be caused by water movements, which 
have been reported in the actual parts of the tunnel. Due to the limited period of heating, 
evaluated thermal conductivity values close to the canister are probably the most reliable. 

However, also the simulation of the initial temperatures may be an indication of water 
movements, see Figure 621. The largest difference between measured and fitted initial 
temperatures is found for probes PXPTA2140 and PXPTA1830, which are fairly close on 
the same vertical level. Also the adjacent probes PXPTA2130 and PXPTA1850 show a large 
difference, see Figure 634. A convective heat transport is a possible explanation. 

Figure 6‑30.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures for each of the 37 temperature sensors. An evaluation period of 160–250 days, 
160–365 days, or 160–525 days is used. The global temperature change is –0.2°C/year.

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

PXPTA21
20

PXPTA30
30

PXPTA18
20

PXPTA21
10

PXPTA21
30

PXPTA30
20

PXPTA24
30

PXPTA30
40

PXPTA10
30

PXPTA21
40

PXPTA24
20

PXPTA18
30

PXPTA10
20

PXPTA18
10

PXPTA23
20

PXPTA30
10

PXPTA10
40

PXPTA18
40

PXPTA18
50

PXPTA30
50

PXPTA23
30

PXPTA24
40

PXPTA21
50

PXPTA10
10

PXPTA10
50

PXPTA06
30

PXPTA06
20

PXPTA24
10

PXPTA23
10

PXPTA06
40

PXPTA06
10

PXPTA06
50

PXPTA03
30

PXPTA03
20

PXPTA03
40

PXPTA03
10

PXPTA03
50

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
/(m

,K
))

Evaluation period 160-250 days

Evaluation period 160-365 days

Evaluation period 160-525 days

C=2.2 MJ/(m3,K)



�2

Figure 6‑31.  Thermal conductivity from simulation including curve fitting for 160 through 
250 days.

Figure 6‑32.  Thermal conductivity from simulation including curve fitting for 160 through 
525 days.

Figure 6‑33.  Thermal conductivity from simulation including curve fitting for 160 through 
525 days including a correction for thermal drift of 0.2 degrees Celsius annually.
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6.7	 Verification	of	prognosis	
The measured thermal response has been used to estimate the effective thermal conductivity 
by finding the best fit with results obtained by a numerical simulation of the thermal process 
around the repository. A thermal conductivity value is estimated for each of the 37 tempera
ture sensors placed in the surrounding rock by matching the slope of the curve for a given 
evaluation period. An initial time period was omitted in the fitting procedure to reduce the 
influence of heat transfer properties and capacitive effects of the deposition holes.

Temperature measurements for 525 days from the start of canister heating were available 
for the evaluation. The data is evaluated for different time intervals in order to study if the 
fitted thermal conductivity changes with time. 

It is found that the fitted thermal conductivity increases with the duration of the evaluation 
period. This may be explained by the influence of groundwater flow or a low rate of temper
ature increase on a large scale. This largescale increase may be caused by changed thermal 
conditions due the activities in the tunnels and/or a disturbed geohydrological situation. 

Table 65 shows the thermal conductivity that gives the best fit considering all temperature 
sensors. The sensitivity of the fitted thermal conductivity with regards to the volumetric 
heat capacity is small. The overall influence of a largescale (global) temperature drift is 
also fairly small, although it becomes relatively important for temperature sensors with little 
increase due to canister heating.

Table	6‑5.	 Thermal	conductivity	that	gives	the	best	fit	considering	all	temperature	
sensors.

Case Evaluation	
period	(days)

Thermal	conductivity	
(W/(m×K))

Reference 30–250 2.46
Reference 30–365 2.50
Reference 30–525 2.57
Reference 160–250 2.51
Reference 160–365 2.58
Reference 160–525 2.72
Volumetric heat capacity +5% 160–525 2.73
Global temp. change –0.2 C/year 160–250 2.47
Global temp. change –0.2 C/year 160–365 2.53
Global temp. change –0.2 C/year 160–525 2.65

Figure 6‑34.  Largest differences between measured and fitted initial temperatures indicated with 
red (high fitted temperatures) and blue (low fitted temperatures).
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In Table 66 comparison are made between best prognosis (2.52 W/(m×K)) and inverse 
modelling (2.65 W/(m×K)) for all sensors. However, some of the temperature sensors used 
in the best fit (inverse modelling) is probably influenced by water movements. Therefore it 
is possible that the best prognosis of the effective thermal conductivity is a combination of 
laboratory (thermal conductivity) and field measurements (effective thermal conductivity) 
at the prototype repository. 

In Table 67 comparison is also made of the prognosis with the best fit of inverse modelling 
to individual temperature sensors, including standard deviation for both types of distribu
tions. The standard deviation is calculated from the thermal conductivity values based on 
best fit between measured and simulated temperature for individual temperature sensors. 
The prognosis no 3 (2.52, std 0.15) are close to the mean of the modelled individual values 
(2.65, std 0.18). If prognosis no 3 combines with no 4 (field measured values) almost identi
cal results compared to the modelled ones are achieved (2.62 W/(m×K)).

Table	6‑6.	 Modelled	thermal	conductivity	compared	with	prognosis	(mean	values).	Best	
fit	to	all	sensors.	Most	relevant	values	in	bold	(judgement).	Prognosis	numbers	refers	
to	Table	6‑3.

Case Modelled	thermal	
conductivity	
W/(m×K)

Prognosis	
W/(m×K)

Comment

Inverse modelling (160–525 days) 2.72

Inverse modelling (160–525 days), including 
possible global temp change –0.2°C/year

2.65

Laboratory measurements section 1, inner 
(prognosis 1)

2.44

Laboratory measurements section 1+2 
(prognosis 3)

2.52 “Best“ prognosis of thermal 
conductivity

Field measurements section 1+2, not obvious 
influenced by water (judgement) (prognosis 4)

2.83

Laboratory and field measurements,  
combination of prognosis 3 and 4

2.62 “Best“ prognosis of effective 
thermal conductivity

Table	6‑7.	 Modelled	thermal	conductivity	compared	with	prognosis	(mean	values).	
Best	fit	to	individual	sensors.	Most	relevant	values	are	in	bold	(judgement).	Prognosis	
numbers	refers	to	Table	6‑3.	Field	measurements	disturbed	by	water	movement	are	
only	for	comparison.

Case Modelled	thermal	
conductivity	
W/(m×K)

Std		
W/(m×K)

Prognosis	
W/(m×K)

Std		
W/(m×K)

Inverse modelling (160–525 days) 2.91 (N=37) 0.34
Inverse modelling (160–525 days), values 
above 3.4 excluded

2.81 (N=33) 0.22

Inverse modelling (160–525 days), including 
possible global temp change –0.2°C/year

2.73 (N=37) 0.32

Inverse modelling (160–525 days), including 
possible global temp change –0.2°C/year, 
values above 3.4 excluded

2.65 (N=34) 0.18

Laboratory measurements section 1, inner 
(prognosis1)

2.44 0.08
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Case Modelled	thermal	
conductivity	
W/(m×K)

Std		
W/(m×K)

Prognosis	
W/(m×K)

Std		
W/(m×K)

Laboratory measurements section 1+2 
(prognosis 3)

2.52 0.15

Field measurements section 1+2, not obvious 
influenced by water (judgement) (prognosis 4)

2.83 0.19

Laboratory and field measurements, 
combination of prognosis 3 and 4

2.62

Field measurements, section 1, obvious 
influenced by water movements, Table 6-2

3.63 (4.22)

6.8	 Discussion
A large scale temperature disturbance is indicated in the modelling. A better and more 
reliable fit is possible if the first part of the temperature data is excluded or if a constant 
negative temperature drift is introduced. The temperature appears not to have been stable 
when the experiment started. This assumption is strengthened by the fact that temperature 
measurements from 1999 (field measurements of thermal conductivity) indicate a tempera
ture of about 11.5–12.5°C (at 0.6 m below rock surface), which can be compared with a 
starting temperature of 14–17°C for the experiment, see Figure 624. Rather large annual 
temperature oscillations in the air have also been measured during the last two years near 
the prototype repository with amplitudes of about 10°C /Fälth 2005/. 

The first part of the experiment seems to have larger uncertainties, both due to temperature 
drift and uncertainties in heating power. 

The best prognosis of the thermal conductivity at the prototype repository is judged to be 
number 3. This prognosis is based on laboratory determinations of thermal conductivity 
on samples from the prototype repository. The results for the field measurements from the 
prototype repository (prognosis 4) are a bit higher than the laboratory measurements and 
are possible influenced by small water movements. However, also some of the results from 
the temperature measurements at the prototype repository are probably influenced by water 
movements, especially in the initial stage after installation of the backfill. The combination 
of these two prognoses (weight mean) may be the best prognosis of the effective thermal 
conductivity (2.62 W/(m×K)).

The verification of prognosis of thermal conductivity is judged to be good in the perspective 
best fit of all temperature sensors. However, for some individual sensors there is a large 
discrepancy between the individual and the overall best fit. The heat transport in the vicinity 
of these sensors is likely to be influenced by groundwater movements. Evaluated effective 
thermal conductivities of more than 3.5 are found for sensors near the floor in the inner part 
of the tunnel. Water bearing fractures are present in this region (Figure 64) and local field 
measurements of thermal conductivity are obviously influenced by water, see Table 62 
(values) and Figure 62 (location). 

For some sensors there is a rather bad fit to measured data. The five sensors with the largest 
squaresum error are situated at the inner end of the tunnel, and are those showing the 
smallest temperature increase, and are therefore sensitive to disturbances. If the sensors with 
the largest evaluated conductivity (above 3.4 W/(m×K)) are excluded from the mean, the 
result is close to the prognosis. 
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The relatively wide range of measured initial temperature shows that there is a considerable 
thermal disturbance, which can be explained by the varying air temperature during the 
construction phase. The accuracy of the evaluation would have been improved if the rock 
temperature had been allowed to equilibrate after the sealing of the tunnel and verified to 
be stable before the heating of the canisters began. It may also have made it possible to 
determine if there was a longterm largescale drift in temperatures.

The influence that the uncertainty of the initial temperature has on the evaluated effective 
thermal conductivity can be reduced in the fitting procedure by excluding data from an 
initial period. Extending the duration of the measurement would allow more initial data to 
be omitted in order to improve accuracy and would also enhance prediction of groundwater 
flow effects. 
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7	 Methodology	of	upscaling	in	thermal	
modelling

7.1	 Introduction
If the rock is relatively homogeneous, variation in thermal conductivity at a given scale is 
averaged out at a certain distance (a larger scale). There is a need for upscaling of thermal 
properties to the scale of interest, in order to decrease the variability due to small scale 
determinations. 

The upscaling process must take into account the spatial variability within a rock type due 
to mineralogical and chemical changes in the magma. Furthermore, another type of variabil
ity is due to the presence of different rock types within a lithological domain. The variability 
is more pronounced where the difference in thermal conductivity is large between the most 
common rock types of the domain. A large variability of this type can also be expected in a 
domain of many different rock types. This type of variability is only reduced significantly 
when the scale becomes large compared to the spatial occurrence of the rock. This latter 
type of variability is subsequently referred to as “between rock type”. 

7.2	 Spatial	variability	within	and	between	rock	types
7.2.1	 Types	of	spatial	variability

There are three main causes for the spatial variability of thermal conductivity; (1) small
scale variability between minerals, (2) spatial variability within each rock type, and (3) 
spatial distribution of different rock types. The first type entails variability in sample data 
(TPS measurements and modal analysis), where the smallscale variability can be substan
tial. However, the variability is rapidly reduced when the scale increases. This variability is 
of limited interest and will not be further discussed.

The second type, spatial variability within a rock type, is a result of the process of rock 
formation but also of the rock classification system. This variability cannot be reduced but 
the uncertainty about the variability may be reduced by investigations. This is achieved by 
analysing large sets of spatial data, so that reliable variograms of thermal conductivity can 
be created.

The third type of variability, spatial distribution of different rock types, is a result of the 
rock forming processes and cannot be reduced. It can be analysed deterministically or by 
indicator variograms.

7.2.2	 Spatial	variability	within	rock	types

The relationship between density and thermal conductivity offers excellent possibilities 
to analyse the spatial variability and scale effects in boreholes because more or less 
continuous sets of density data are available from the boreholes. From these large data sets, 
stable variograms can be constructed. This can be compared to the uncertain variogram in 
Figure 46 construct by limited amount of TPS data.
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Variograms can be used for at least two types of analyses: (1) analysis of the spatial 
variation of thermal conductivity within a specific rock type, and (2) analysis of the spatial 
distribution of different rock types.

Examples of variograms of spatial variability within rock type Ävrö granite are presented in 
Figure 71. About 50% of the variance occurs at scales larger than a few meters. However, 
it is important to realise that the variance in the figure is not only an effect of the spatial 
variability but also of the random measurement errors resulting from the density logging 
technique. In reality, a larger part of the total variance may be attributed to largescale 
spatial variability.

Several different scales can be identified in Figure 71. Rapid changes in correlation occur 
regularly, almost in a stepwise manner. These changes are believed to result from rapid 
changes in the composition of the Ävrö granite, i.e. as a result of the rock forming proc
esses. There is a strong correlation up to a few meters and a weaker, largescale correlation 
up to about 100 m. This is believed to be general conclusions, but somewhat different 
results can be expected for other boreholes depending on the composition of Ävrö granite  
in the specific borehole.

Figure 7‑1.  Variogram of thermal conductivity for Ävrö granite (501044) in borehole KAV01, 
estimated from density logging data. The variograms are plotted in four scales: 0–700 m, 0–80 m, 
0–20 m, and 0–5 m separation distance. The straight line indicates the total variance in data. 
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7.2.3	 Spatial	variability	between	different	rock	types

The spatial distribution of different rock types contributes to the spatial variability of 
thermal conductivity in the rock mass because different rock types have different thermal 
properties. In this report, this type of spatial variability of thermal conductivity is referred to 
as variability between rock types. In this section, the focus is on the spatial distribution of 
different rock types. 

The spatial distribution of different rock types can be described deterministically or 
visualised and modelled by indicator variograms. Examples of indicator variograms for 
Ävrö granite is presented for two boreholes in Figure 72. The variance in such a variogram 
is calculated from indicators of “0” and “1”, where “0” indicates absence of the rock of 
interest and “1” indicates presences /Isaacs and Srivastava 1989/. In Figure 72, indicator 
“1” indicates presence of Ävrö granite and “0” symbolises presence of a different rock type, 
i.e. the rock mass is classified in two categories. The variance on the yaxis is a measure 
of transition frequency between the two classes /Goovaerts 1999/. In other words, if two 
locations (A and B) in the borehole are selected, the indicator variance is the probability 
that either A or B, not both, is located in Ävrö granite. The relatively low probability in 
Figure 72 (~ 0.15) is because Ävrö granite dominates in the two boreholes, and therefore  
it is much more likely that both A and B are located in Ävrö granite.

Figure 7‑2.  Indicator variogram of the occurrence of Ävrö granite (501044) in borehole KAV01 
(upper) and KSH01A (lower) for two different scales: 0–450 m and 0–80 m separation distance. 
The diagrams are constructed based on lithological classification (boremap). 
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The difference between the two boreholes is relatively large, illustrating that this type of 
variability can be quite different from one borehole to the other. However, some general 
conclusions can be drawn. There is a strong correlation of the occurrence of Ävrö granite up 
to about 5–15 m. A less pronounced correlation can be traced up to distances of more than 
50 m. At larger distances, there are large differences between the two boreholes. Similar 
variograms could also be developed to describe the occurrence of other rock types in the 
boreholes.

Obviously, the spatial distribution of different rock types results in a spatial variability of 
thermal conductivity if the rock types have different thermal properties. This variability is 
more pronounced where the difference in thermal conductivity is large between the most 
dominating rock types. Large variability can also be expected in a rock domain with many 
different rock types. It is believed that the variability of thermal conductivity between rock 
types is important for most rock domains. Of special importance is that this variability is 
only reduced significantly when the scale of thermal conductivity is large compared to the 
occurrence of rock types.

7.3	 Approaches	to	thermal	modelling
A methodology for lithological domain modelling and modelling of scale dependency has 
been developed. Different approaches are used in the modelling work where all of them use 
a lithological model of the considered area as a geometrical base. The geological Boremap 
log of the boreholes, showing the distribution of dominant and subordinate rock types, is 
used as input jointly with a lithological domain classification of borehole intervals. Two 
criteria need to be fulfilled for the boreholes to be included in the domain modelling:
• Lithological data with complete rock classification of the borehole (both dominant and 

subordinate rock types must be available. 
• Density logging of good quality must be available.

However, if only rock types without known relationship between density and thermal con
ductivity occurs in the borehole (see Section 5.1), only the first criteria need to be fulfilled. 

Modelling of the mean thermal conductivity of the domain is performed according to the 
main approach, including both approach A and C in Figure 73 (depending on the demand 
for density loggings to be used). Spatial variability for the domain can be estimated as the 
sum of variance due to different rock types and the variance due to spatial variability within 
the dominating rock types:

Vtot = Vbetween rock type + Vwithin rock type     Equation 71

The “between rock type” variability is qualitatively different from, and therefore likely to 
be independent of, the “within rock type” variability. Therefore, the addition of variances is 
reasonable.

The spatial variability between rock types is handled the same way for all approaches by 
assigning rock type models (PDF:s) to borehole sections and performing stochastic simula
tion. In addition to variability between rock types, the spatial variability within rock types 
needs to be considered. This is performed in one of the following ways, where capital letters 
refer to Figure 73:



�1

A. Spatial variability within rock types is taken into account based on density loggings.
B. Spatial variability within rock types is taken into account based on density loggings, but 

is adjusted upwards (extrapolated) to account for lack of spatial data for some sections of 
the boreholes (subordinate rock types etc).

C. Spatial variability within rock types is ignored.
D. Spatial variability within rock types is estimated from stochastic simulation (difference 

between A and C) and is added to the calculated variance between rock types.
E. Spatial variability within rock types is estimated from TPS data of the dominating rock 

types and is added to the calculated variance between rock types.
F. Spatial variability within rock types is estimated from variograms of the dominating rock 

types and is subtracted from the rock type model.

A schematic description of the different thermal conductivity modelling approaches is 
illustrated in Figure 73. The figure also illustrates how the different approaches are related 
to each other and what kind of result the approaches provide.

Of importance at the domain level is the scale representative for the canister, i.e. the scale 
at which the thermal conductivity is important for the heat transfer from the canister. At 
present knowledge, this scale is assumed to be 1–10 m and therefore the approach in the 
lithological domain modelling is to use different scales to study the scale effect, and to draw 
conclusions of representative thermal conductivity values from that.

In the following sections, each and one of the different modelling approaches will be 
described more in detail.

Figure 7‑3.  Schematic description of the different thermal conductivity modelling approaches, 
how they are related to each other and the results they provide. Vtot is the total variance for the 
considered scale.
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7.4	 Main	approach	(A)	and	(C)
7.4.1	 Procedure

The main modelling approach for different lithological domains is illustrated in Figure 74 
and Figure 75. 

Figure 74 illustrates the main modelling approach in cases where borehole density loggings 
are possible to use and Figure 75 in cases where they are not.

The modelling according to the main approach is performed as follows:

Thermal conductivity values, both measured and calculated from modal analysis, are used 
to produce PDF:s (Probability Density Functions) for rock types present in the domains. 
These PDF:s are referred to as rock type models. Density loggings are transformed into 
thermal conductivity estimates according to the model described in Section 5.1.

The total length of boreholes, or parts of boreholes, belonging to a domain is assumed to be 
a representative realisation of the domain. Each borehole belonging to a domain is divided 
into 0.1 m long sections and each section is assigned a thermal conductivity value accord
ing to the lithological classification of that section. Both dominating and subordinate rock 
types are considered in this context. The principle for assignment of thermal properties is 

Figure 7‑4.  Main approach (A) and (C) for modelling of thermal conductivity for domains where 
density loggings are applicable. The purpose of approach C is to estimate the spatial variability 
within rock types. This variability is required in approach D. Yellow colour indicates the data 
level, blue the rock type level, and green the domain level.
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illustrated in Figure 76. For rock types where a relationship between density and thermal 
conductivity has been found the principles are:
• Primarily, the thermal conductivity values calculated from density loggings are used. 

This implies that spatial variability within the rock type is considered.
• If the density value is outside the valid density range, as stipulated by the relationship 

between density and thermal conductivity, a value of the thermal conductivity is 
randomly selected from the rock type model (PDF). 

Other dominating and subordinate rock types are assigned thermal properties according to:
• A value of thermal conductivity is randomly selected according to the rock type model 

(PDF). This implies that only the spatial variability between rock types is considered.
• For rock types where no rock type model is available (due to lack of data), no value is 

assigned to that 0.1 m section (section is ignored in the calculations). For rock types 
with a low degree of occurrence in the domain, the influence on the result will be 
insignificant.

The next step is the upscaling from the 0.1 m scale to an appropriate scale. The upscaling 
is performed on a range of scales, from 0.1 m up to approximately 60 m. The upscaling is 
performed in the following way, illustrated both in Figure 76 and Figure 77:
1. The boreholes representing the domain are divided into a number of sections with a 

length according to the desired scale.
2. Thermal conductivity is calculated for each section as the geometric mean of the values 

at the 0.1 m scale. This gives the effective thermal conductivity at the desired scale, see 
Section 7.4.2.

Figure 7‑5.  Main approach (C) for modelling of thermal conductivity for domains where no 
density loggings are applicable. Yellow colour indicates the data level, blue the rock type level, 
and green the domain level.
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3. The mean and the variance of all sections at the desired scale are calculated. For each 
scale, the calculations are repeated n times with different assignment of thermal con
ductivity values at the 0.1 m scale (stochastic simulation). This produces representative 
values of the mean and the standard deviation for the desired scale. The required number 
of calculations (n) depends on the length of the boreholes, the desired scale, the percent
age of density data used, and the required precision of the result. For applications in 
Simpevarp, 10 realisations were sufficient in the Monte Carlo simulation /Sundberg et al. 
2005/.

4. The calculations are repeated for the next scale.

In Figure 76, 25 sections are indicated, each with a length of 0.1 m. For the scale 0.5 m, the 
thermal conductivity λ0.5–1 is estimated as the geometric mean of five 0.1 m sections, λ0.5–2 

as the geometric mean for the next five 0.1 m sections, and so on. The mean and variance is 
then easily computed for the 0.5 m scale. This sequence is repeated for the other scales of 
interest. The effect of upscaling is illustrated in Figure 77.

Confidence intervals can be derived directly from the result of the stochastic simulation. 
No assumption of the type of statistical distribution of the thermal conductivity values is 
required in this approach. It must be stressed that these confidence intervals mainly includes 
uncertainty due to natural variability in the rock mass. Uncertainties resulting from lack of 
knowledge of the true variability and representativeness etc are not included explicitly in 
the domain modelling. An approach for including lackofknowledge uncertainty is pre
sented in Chapter 9. 

Figure 7‑6.  Thermal conductivity is assigned to 0.1 m sections by calculation from density 
loggings or randomly selected from the rock type models. Upscaling is performed by calculating 
geometric means for different scales, for example 0.5 and 0.7 m.
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As illustrated in Figure 74 and Figure 75, the main approach (A) and (C) is slightly 
different between domains where density loggings can or cannot be used. Domains where 
density loggings can be used also take into account the spatial correlation within the domi
nating rock type. This is not possible for domains where no reliable relationship between 
density and thermal conductivity is presently available. Therefore, the variance for the 
latter domains is grossly underestimated. This is the main disadvantage of this modelling 
approach.

7.4.2	 Theory	of	upscaling

Above, the geometrical mean equation is used to produce an effective thermal conductivity 
in an appropriate scale from small scale determinations. The geometric mean equation is 
simple to use and is often applied for estimation of effective transport properties /Dagan 
1979, Sundberg 1988/. However, the effective transport properties are influenced by the 
variance, which is not considered when the geometric mean is calculated. According to 
/Gutjahr et al. 1978/ and /Dagan 1979/, the effective hydraulic conductivity is slightly dif
ferent due to the dimensionality of the problem. /Dagan 1979/ derived the following generalDagan 1979/ derived the following general 
solution to the effective mean hydraulic conductivity (transformed to thermal conductivity):

λe = –(m–1) ×λx + (∫ f(λ) dλ / (m–1)× λx + λ)–1    Equation 72

Figure 7‑7.  Effects of applying the principle for upscaling of thermal conductivity, as given in 
Figure 7-6. As can be seen, the spatial variability within the rock types is levelled out due to the 
modelling concept.
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Where m is the dimensionality of the problem and f(λ) the fre�uency function. �f λλ) the fre�uency function. �f λx is 
substituted with λmax and λmin, the result is Hashin’s and Shtrikman’s well known upper and 
lower bounds for an isotropic material /Hashin and Shtrikman 1962/. �f λx is substituted 
with λe, the self consistent approximation (SCA) is obtained as follows:

λe = 1/m × (∫ f(λ) dλ / (m–1)× λe + λ)–1      Equation 73

For a lognormal distribution, the effective conductivity according to Equation 73 for two 
dimensions (m=2) coincides with the geometric mean. For tree dimensions (m=3) the effec
tive conductivity is slightly higher. Equation 73 is used to calculate the thermal conductiv
ity from the mineral distribution of rocks /Sundberg 1988/.

�f the standard deviation (σ) of the logσ) of the logof the log10 (λ) is small, the effective thermal conductivity canλ) is small, the effective thermal conductivity can is small, the effective thermal conductivity can 
be approximated as follows for a lognormal conductivity distribution:

2D: λe = λG        Equation 74

3D: λe = λG [1 + σ2/6]        Equation 75

where λλG is the geometric mean thermal conductivity. However, in this thermal applicationHowever, in this thermal application 
the variance is low and therefore the geometric mean is a sufficient approximation, see 
example Table 71.

Table	7‑1.	 Comparison	between	geometric	mean	and	SCA	(3D)	for	samples	from	
KA2599G01.

Sample Secup‑seclow	m	 Therm.	cond.	
(W/(m×K))

Therm.	cond.	
(W/(m×K)),	values	
above	3.5	excluded

KA2599G01 5.90–5.94 2.49 2.49

KA2599G01 14.63–14.67 2.34 2.34

KA2599G01 25.32–25.36 2.47 2.47

KA2599G01 44.28–44.32 2.99 2.99

KA2599G01 50.10–50.14 3.58 –

KA2599G01 61.89–61.93 3.68 –

KA2599G01 70.60–70.64 2.84 2.84

KA2599G01 85.10–85.50 2.69 2.69

KA2599G01 101.85–101.89 3.11 3.11

KA2599G01 120.05–120.09 3.22 3.22

KA2599G01 126.35–126.39 3.55  –

Geometric	mean 2.96 2.75
Std 0.475 0.323

N 11 8

SCA 2.97 2.76
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7.5	 Extrapolation	of	spatial	variability	(B)
When modelling a domain according to the main approach the spatial variability “within 
rock types” may not be fully considered. The reason is that density loggings cannot be used 
for all rock types. In addition, some density logging data may be outside the range of valid
ity of the relationship. These sections get randomly assigned thermal conductivity values 
from the rock type models, resulting in that the variability “within rock types” will not be 
fully considered. In this approach, an attempt is made to correct for this.

It is assumed that all rock types have the same spatial variability. By replacing thermal 
conductivity values estimated from density logging with random PDF values it is possible 
to study the effect of ignoring the spatial variability “within rock type” for some parts of 
the borehole. By removing more and more values calculated from density loggings, and 
replacing them with random values from PDF:s, it is possible to construct a graph of how 
the variance is affected, see Figure 77. Extrapolation of the variance or standard deviation 
(for the selected scale) as a function of the percentage of spatial data used in the modelling 
of the domain can then be performed. 

It is reasonable to assume that the total variance estimated with this approach deviates from 
the true variance. The reason is that the spatial variation of other rock types than Ävrö 
granite probably is different, which is not considered in the correction. In most cases, an 
overestimation of the variance can be expected because the heterogeneity of Ävrö granite  
is expected to be larger than for other rock types.

Figure 7‑8.  Example of extrapolation of standard deviation for thermal conductivity at scale 
0.8 m for domain RSMA01 in Simpevarp. At point A, all data are randomly assigned without 
consideration of spatial variability within the Ävrö granite. Point B corresponds to 71.3% of the 
values estimated from density loggings. Point C is extrapolated and corresponds to 100% spatial 
data, assuming the same spatial variability as in Ävrö granite for the remaining 28.7% of data.
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7.6	 Addition	of	”within	rock	type”	variance:	From	stochastic	
simulation	(D)

One possible way of adding the spatial variability within rock types is the following:
1. For domains where the thermal conductivity of one or several rock types can be cal

culated from density loggings, both simulation (A) and (C) is performed, according 
to Figure 74. For simulation (A), the thermal conductivities are calculated both from 
PDF models and density loggings resulting in both “between rock type” and “within 
rock type” variability. For simulation (C), all thermal conductivity values are randomly 
selected from the rock type PDF models and no data from density loggings are used, 
resulting in only “between rock type” variability. The variance contributed by spatial 
correlation within rock types is assumed to be the difference between simulation (A)  
and (C), see Figure 74.

2. For domains where the thermal conductivity of the rock types cannot be calculated from 
density loggings only simulation (C) is performed. It is then assumed that the variance 
caused by spatial variability within the rock types is identical to that of the domains 
where both simulation (A) and (C) can be performed. The total variability is estimated 
by addition of the two types of variances.

The addition of variances is assumed valid, according to Equation 71 (see text in 
Section 7.3). According to this approach the total variance at domain level may be over  
or underestimated depending on the relation of the properties for the different rock types.

7.7	 Addition	of	“within	rock	type”	variance:	From	TPS	
data	(E)

In this approach, the spatial variability within the dominating rock type is estimated 
based on TPS measurements. Analysis of TPS data can provide a rough estimation of the 
spatial variability within the rock type. TPS measurements are classified in spatial groups 
depending on their location and the geometric mean is calculated for each group. This 
gives a set of data in the desired scale (based on the spatial groups). The variance for this 
data set is a rough estimate of the variance for the desired scale. This procedure can be 
repeated for different scales and the resulting variances can be plotted against the scale in a 
graph (see example in Figure 79. The variance for the desired scale can be estimated from 
the graph and this “within rock type” variance is then added to the “between rock type” 
variance calculated in the main approach (C).

For domains with several dominating rock types the concluding “within rock type” variance 
is estimated slightly differently. In such cases, the variance is estimated as a weighted sum 
of the spatial variances for the dominating rock types, where the weighting factors are the 
fractions of each rock type in the domain. Although this approach only provides a rough 
estimate of the total variability it encompasses all the major types of variability within the 
domain.

It is not easy to assess whether this approach under or overestimates the total variance for 
the domain. There are several factors that may influence this, such as the spatial variability 
in subordinate rock types compared to dominating rock types. Still, it is believed that 
this approach gives a quite reasonable estimate of the variability compared to the other 
approaches but a prerequisite is that a sufficient number of TPS measurements are available.
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7.8	 Subtraction	of	small	scale	variability:	From	
variogram	(F)

In this approach, variograms for the dominating rock type of the domain is used to estimate 
the small scale variance that is rapidly reduced when the scale increases. The variograms 
are based on data from boreholes representing the domain. The data may be both TPS 
data (see Figure 46) and calculated thermal conductivity values from density loggings 
(see Section 5.1). 

The smallscale variability for the scale of interest is determined from the variogram for 
the dominating rock type. It is subtracted from the total variability of the same rock type 
(variance of the rock type model, PDF). This residual variability is assumed to be the 
variance after upscaling to the desired scale. The basis for the approach is that variability  
in scales smaller than the desired is evened out.

Variograms of different boreholes within the same domain may indicate that there is a 
difference between the boreholes regarding spatial correlation. This can be a problem when 
only a few boreholes are available. It emphasises the question of representativeness of the 
boreholes for the domain modelling.

There is reason to believe that this approach underestimates the variance because only the 
dominating rock type is considered and the others are ignored, i.e. the “between rock type” 
variance is not considered. This is a major disadvantage of the approach if the domain is 
heterogeneous.

7.9	 Evaluation
The main approach (A) for upscaling results in a data set of thermal conductivity values 
at the desired scale. This data set can be visualised by statistical plots and any statistical 
parameter of the domain can be estimated; the mean, standard deviation, percentiles etc. 
However, for domains not composed of Ävrö granite no such reliable data set can be 
produced. The reason is that there are not enough measurements available for reliable mod
elling of spatial variability within other rock types than Ävrö granite. Therefore, indirect 

Figure 7‑9.  Example of a graph of the “within rock type” variance estimated from TPS data.
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techniques have been used to estimate statistical parameters of such domain. These statisti
cal parameters do not describe the domain satisfactory because the statistical distribution of 
data at the desired scale is not known. This may result in nonreliable estimates of the low 
tail of thermal conductivity values, which is problematic for the design of the repository.

The discussion above indicates that the approach needs to be developed to take spatial 
variability in all dominating rock types into account, so that data sets can be produced for 
any desired scale and for all relevant domains. This requires stochastic modelling in 3D. 
For modelling of spatial variability, variograms can be used, see examples in Section 7.2. 
Reliable variograms require that enough data are available for the rock types.
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8	 Uncertainty	in	thermal	data

8.1	 Uncertainty	model
All thermal data are associated with some uncertainty. Uncertainty occurs at three differ
ent levels: (1) data level, (2) rock type level, and (3) domain level. Uncertainty at the data 
level includes uncertainties about the true value of a sample or measurement. At the rock 
type level, uncertainties in the rock type models are addressed. Uncertainty at domain level 
refers to thermal conductivity at canister scale for the domain of interest. 

Qualitative estimates of the various types of uncertainties are given in Table 81, Table 82, 
and Table 83 for the three different levels. Of major interest is the total uncertainty at the 
canister scale at domain level, because this affects the design of the repository. This is 
discussed in the next section.

Table	8‑1.	 Uncertainty	in	thermal	conductivity	data	at	data	level.	Each	uncertainty	
consists	of	a	random	and	a	systematic	part.	Subjective	qualitative	estimates	are	given	
in	three	classes;	small,	medium,	and	large	uncertainty.

Uncertainty	in: Random	uncertainty	
(expected	random	variation)

Systematic	uncertainty	
(expected	bias)

TPS	data

Measurement technique Small Small

Measurement scale vs sample Medium Small

SCA	data

Determination volume fraction of minerals Small Medium

Alteration of minerals Medium Large

Thermal conductivity of minerals – Medium

Method of calculation Small Small

Modal analysis scale vs sample Large Small

Density	logging	data

Measurement technique Medium Medium

Filtering and recalibration Small Small

Measurement scale Small Small

Statistical relationship between thermal conductivity  
and density, including scale representativeness, 
laboratory density measurements, rock type 
classification, natural variability, and selection of 
regression model.

Medium Medium

All	data

Database errors (Sicada. Remaining after quality 
control)

Small Small
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Table	8‑2.	 Uncertainty	in	thermal	conductivity	data	at	rock	type	level.	Each	uncertainty	
consists	of	a	random	and	a	systematic	part.	Subjective	qualitative	estimates	are	given	
in	three	classes;	small,	medium,	and	large	uncertainty.

Uncertainty	in: Random	uncertainty	
(expected	random	variation)

Systematic	uncertainty	
(expected	bias)

All	thermal	data

Boremap logging and classification of rock samples Small Small – medium

Temperature and pressure effects Small Small

Representativeness of data – Large

Method of correction, SCA data – Medium

Spatial variability within rock type Natural (large) –

Statistical model, PDF (assumptions) Small Small

Table	8‑3.	 Uncertainty	in	thermal	conductivity	data	at	domain	level.	Each	uncertainty	
consists	of	a	random	and	a	systematic	part.	Subjective	qualitative	estimates	are	given	
in	three	classes;	small,	medium,	and	large	uncertainty.

Uncertainty	in: Random	uncertainty	
(expected	random	variation)

Systematic	uncertainty	
(expected	bias)

Canister	scale

Geological model (boremap logging, rock type 
occurrence, extension of domains)

Large –

Deformation zones, fractures etc. Medium Medium

Water flow Small Large

Representativeness of boreholes – Large

Spatial variability within domain Natural (large) –

Anisotropy Small Small

Upscaling methodology Medium Small

Significant scale for the canister Small Medium

Statistical model (assumptions of distribution, 
confidence intervals etc)

Small Small

8.2	 Evaluation	of	uncertainty	at	canister	scale
All of the uncertainties listed in Table 81, Table 82, and Table 83 more or less contribute 
to the total uncertainty of the thermal conductivity at canister scale. However, only a minor 
part of them are believed to significantly affect the result at canister scale. The uncertainties 
at canister scale are of two types: (1) a potential random error, and (2) a potential systematic 
error (bias). 

The representativeness of the boreholes is believed to be the most important uncertainty of 
all. Boreholes that do not represent the rock mass of interest will lead to biased results, and 
highly unrepresentative boreholes may give false indications of the thermal properties. A 
highly sophisticated modelling cannot combat this. Comparison of different boreholes may 
give indications if there is a potential for large bias due to bad representativeness.



�3

In addition to this major uncertainty there are some other important ones. These differ, 
depending on if Ävrö granite dominates or not. This is because different upscaling 
approaches are applied for domains where Ävrö granite dominates and domains dominated 
by other rock types (Chapter 7).

When Ävrö granite is the dominating rock type, data from density loggings is used in 
the upscaling model. It is believed that uncertainties associated with the density loggings 
dominate for such rock domains. The major uncertainties are uncertainty in:
• the noise in the density logging data (measurements),
• the statistical relationship between density and thermal conductivity.

Both a potential random error and a bias are believed to affect the results. The noise in 
density loggings can be reduced by improving the density logging technique. The statistical 
relationship between density and thermal conductivity can be improved by performing a 
large number of measurements (density and thermal conductivity) on rock samples of Ävrö 
granite. 

For rock domains where density loggings do not constitute an important part in the model
ling there are other uncertainties that dominate. These are mainly uncertainties associated 
with the rock type models (PDF:s). The most important are:
• spatial variability within the dominating rock types,
• representativeness of rock samples (SCA and TPS data),
• uncertainty in thermal conductivity estimates from modal analysis (SCA data).

The spatial variability within rock types is uncertain when the data set is scarce. Reduction 
of this uncertainty requires extensive sampling.

The representativeness of rock samples is a major uncertainty. So far, samples have been 
selected with different purposes, not only based on probabilistic principles. Nonprobabilis
tic sampling always results in biased data and it is not possible to determine the size of the 
bias. Therefore, a switch to probabilistic sample selection is desired.

The uncertainty in SCA data is important for rock types where the rock type model is based 
on such data. It results from a range of uncertain factors, such as the determination of the 
volume fraction of different minerals in a sample, alteration of minerals, correct values of 
thermal conductivity of minerals, and the scale issue. If possible, it is recommended that 
TPS data are used instead of SCA data because of the large uncertainties involved
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9	 Value	of	information	analysis	of	
thermal	investigations

9.1	 Introduction
The value of different investigation programs can be estimated by so called Value of 
Information Analysis (VOIA). In the field of hydrogeology the term Data Worth Analysis 
is also used for this type of analysis by some authors /Freeze et al. 1992/. The basic idea in 
VOIA is to estimate the value of additional information by studying how the new informa
tion reduces uncertainty, usually in relation to the cost of obtaining it. This is performed 
by analysing the uncertainty with present knowledge and comparing it with the reduced 
uncertainty that is expected when new information becomes available. Thereby, the value  
of an investigation program can be assessed.

The origin of VOIA is decision theory. Some examples of applications in engineering and 
hydrology are from the 1970’s /Davis and Dvoranchik 1971, Maddock 1973/. Several 
applications in hydrogeology were carried out in the 1990’s, introduced by /Freeze et al. 
1990/ in a series of papers.

Today, VOIA is used in e.g. information technology and economics but there are also 
examples of VOIA for geoenvironmental problems /Back 2003, IT Corporation 1997,  
James et al. 1996, McNulty et al. 1997/. As far as known, formal applications of VOIA  
for problems related to thermal properties of rock are lacking.

The purpose of this chapter is to present a methodology for VOIA for investigation pro
grams of thermal properties of rock at potential repository sites for spent nuclear fuel in 
Sweden. An application of the methodology is presented for the prototype repository at 
Äspö HRL. The aim is to demonstrate how the methodology can be applied on a practical 
problem to identify efficient investigation programs. Other possible applications of the 
methodology are discussed, aiming at the ongoing siteinvestigations performed by SKB.

9.2	 Methodology
9.2.1	 Objective	of	investigations

In this example it is assumed that the objective is to reduce the uncertainty about the mean 
thermal conductivity (design-parameter λd, see below) for the prototype repository and the 
adjacent rock mass. It is important to point out that the estimated value of information is 
only valid for this particular objective. Changing the objective to a different one, such as to 
reduce the uncertainty about the spatial variability in the rock mass, will result in different 
estimates of the value of information.

9.2.2	 The	value	of	information

There are several ways to measure the value of an investigation program. It is often desir
able to assess the economic value of the investigation. With a riskcostbenefit approach, 
both investment cost and probabilistic cost are considered. This is the highest level of 
complexity in Figure 91 (approach 3).
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A somewhat simplified approach is to only include the investigation cost in the analysis. 
In such a case, the measure of value can be uncertainty reduction per invested amount of 
money (approach 2 in Figure 91).

In cases were it is not practical to assess the value in monetary terms, some surrogate is 
often used /Dawdy 1979/. One such surrogate of value is reduction of uncertainty. The 
presumption is that an investigation program leading to a large uncertainty reduction has 
a larger value than a program with less reduction. This approach more or less resembles a 
traditional uncertainty analysis (approach 1 in Figure 91).

Here, two alternative measures of value will be used; (1) the uncertainty reduction, and 
(2) the uncertainty reduction per invested amount of money. The uncertainty reduction 
is associated with a design-parameter λd. The designparameter is to be used for design 
purposes of the repository, such as to determine the distance between canisters etc. The 
design-parameter is a statistical parameter and the random uncertainty of λd is quantified as 
a confidence interval of λd. When an investigation program is carried out, the confidence 
interval of λd will be reduced and this reduction of uncertainty is a measure of the value of 
information (approach 1).

As approach 2, the Expected Value of Information (EVI) is estimated. It is the expected 
reduction in the confidence interval per invested amount of money. By comparing the EVI 
for different investigation programs, the one with the largest value can be identified.

The design-parameter λd can be a confidence limit, a percentile, the mean, or some other 
statistical parameter. The presented model can handle different designparameters but in 
this presentation the mean thermal conductivity is used as a designparameter. The random 
uncertainty is defined as the twosided 95% confidence interval of the mean. The length of 
that confidence interval (CI) is referred to as CI95.

Figure 9‑1.  Three approaches for value of information analysis for geo-environmental problems. 
Approach 1 and 2 are applied in this chapter, whereas approach 3 corresponds to the risk-cost-
benefit approach demonstrated by /Freeze et al. 1992/. Approach 2 has been demonstrated by 
/McNulty et al. 1997/ and /IT Corporation 1997/.
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9.2.3	 Modelling	of	uncertainty	and	upscaling

Thermal conductivity data are available on a scale smaller than the significant scale for 
the canister. The significant scale is the scale at which thermal conductivity significantly 
affects the heat transfer from the repository canisters. A model has been developed for 
upscaling of thermal conductivity λ to the significant scale, in accordance with Chapter 7 
(see Figure 76). The relevant uncertainties are quantified, either by statistical techniques 
(hard data) or by expert opinion (soft data). Uncertainty is propagated through the model by 
stochastic simulation (Monte Carlo method). The result is a set of λ-values at the scale of 
interest.

Spatial variability includes variability due to the presence of different rock types as well 
as spatial variability within the dominating rock type. These are considered by including 
Boremap (lithology) and density loggings of boreholes in the simulation model. A statistical 
relationship (empirical) between density data and thermal conductivity is used to calculate 
thermal conductivity from density loggings. Thus, both variability between different rock 
types and variability within the dominating rock type is implicitly considered.

For sections of the boreholes where no valid statistical relationship exists, thermal conduc
tivity is modelled by probability density functions (PDF:s) for each rock type. Such rock 
type models are based on thermal conductivity measurements (TPS method) and calculated 
values based on modal analyses (SCA method). All subordinate rock sections with an exten
sion of at least 5 cm in the boreholes are considered in the modelling.

In addition to this inherent or natural variability (aleatory uncertainty) there are socalled 
“lack of knowledge” (epistemic) uncertainties /Lacasse and Nadim 1996/. Five such are 
considered in the model:
A. Lithological uncertain, expressed as uncertainty in the relative occurrence of different 

rock types.
B. Uncertain rock type model (PDF) for the dominating rock type Ävrö granite due to 

unknown representativeness of TPS and SCA data (potential bias).
C. Random prediction uncertainty in the statistical relationship between density and thermal 

conductivity.
D. Systematic prediction uncertainty (bias) in the statistical relationship between density 

and thermal conductivity.
E. Scaledependency of variability of data at the significant scale.

Inclusion of the “lack of knowledge” uncertainties is indicated by capital letters and red 
arrows in Figure 92. How each type of uncertainty is modelled is described below.

Lithological uncertainty (A)

Uncertainty in lithology is considered by defining the percentages of the two dominating 
rock types as stochastic variables. It is assumed that the contribution to the total uncertainty 
by the occurrence of subordinate rock types only is of minor importance.

Uncertain rock type model for the dominating rock type (B)

There is a potential for bias in the TPS and SCA data, most importantly for the dominating 
rock type Ävrö granite. Therefore, the rock type model (PDF) for Ävrö granite is uncertain. 
This is taken into account by assigning the mean of the PDF as a stochastic variable, see 
Table 94.
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Random prediction uncertainty (C)

The following relationship is used for calculation of thermal conductivity λ [W/(m×K)] 
from logged values of density ρ [g/cm3] /Sundberg et al. 2005/:

λ = 22.326–7.1668×ρ       Equation 91

The valid range for ρ is 2.6 – 2.85 g/cm3 and the equation is only applied within this 
range. Due to uncertainty in the regression e�uation, prediction of λ from density loggings 
is associated with prediction uncertainty. To account for this, a random component of 
prediction uncertainty is added to the calculated thermal conductivity. The stochastic 
thermal conductivity, denoted λPU, is estimated as /after Körner and Wahlgren 2000/:

( )
( ) 












−
−

++⋅+=
∑−

ρρ
ρρ

λλ    Equation 92

for each density value ρ0. Density ρi represents each value in the regression and ρ  is  
the mean of the density values. Variable t represents a randomised value from Student’s  
tdistribution as a function of probability p and n2 degrees of freedom, and MSE is the 
mean square error of the regression. Equation 92 is simply a reformulation of how a 
prediction interval is calculated.

The approach of adding a random prediction error according to Equation 92 is a correct 
way of modelling the uncertainty if the prediction errors are independent. In the case of 
spatially correlated prediction errors this approach will lead to an underestimation of the 
total variability after upscaling (too large variance reduction).

Figure 9‑2.  Principle for the upscaling model (simulation model). The five “lack of knowledge” 
uncertainties are indicated by red arrows and capital letters (see text).
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Systematic prediction uncertainty (D)

Comparison of calculated thermal conductivity from density and measurements indicates 
that there is a potential bias in the statistical relationship. Therefore, a correction is applied. 
Because the size of the bias is not fully known, the correction is modelled as a stochastic 
variable, according to Table 94.

Scale-dependency of variability (E)

Because the variability in data is scale dependant, simulation of thermal conductivity is 
performed at a scale that does not underestimate the variability. The scale 0.7 m is selected 
but it is believed that the significant scale for heat transfer from the repository canisters is 
somewhat larger.

9.2.4	 Value	of	Information	Analysis	(VOIA)

The VOIA is performed in three steps:
1. Prior analysis: The design-value λd and its associated uncertainty are estimated, based  

on present information.
2. Preposterior analysis: The design-value λd and its associated uncertainty are estimated 

for each investigation program, but before any investigations are carried out.
3. The value of information is estimated for each investigation program.

The value of investigation program i is estimated in two alternative ways.

Approach 1 – reduction of uncertainty

In this alternative, the value of information is estimated as the reduction of uncertainty 
in design-parameter λd. It is quantified as the percentage reduction of the length of the 
 confidence interval of the mean from the prior to the preposterior stage:

    Equation 93

where ΔC�95, i, [%] is the value of investigation program i, CI95prior is the confidence interval 
of the mean based on present information, and CI95preposterior is the confidence interval of the 
mean that is expected when investigation program i has been carried out. 

Approach 2 – reduction of CI per invested amount of money (EVI)

In this alternative, the reduction of the confidence interval is normalised with the investi
gation cost Ci for program i:

       Equation 94

where EVIi is the expected value of information for investigation program i.

Whether the reduction of uncertainty (approach 1) or the EVI (approach 2) should be used 
as a measure of value depends on the perspective of the decisionmaker. If investigation 
cost is of importance, approach 2 is the one to prefer. The different investigation programs 
can be classified according to their value and priority given to the most valuable ones.
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9.3	 Application
9.3.1	 Objective	and	investigation	programs

The model for VOIA was applied for the prototype repository at ÄSPÖ HRL. The objective 
was to estimate the value of four different investigation and modelling programs. The mean 
thermal conductivity is used as a design parameter for the prototype repository and the 
adjacent rock mass. The four evaluated programs are:
• Representative sampling of the rock mass, followed by laboratory measurements
• Modelling of the significant scale for heat transfer from the canister
• Largescale measurements of thermal conductivity (canister scale)
• Improved statistical relationship between density and thermal conductivity

The purpose of “Representative sampling” is to eliminate possible bias in the thermal 
conductivity data, especially for the dominating rock type Ävrö granite. For “Significant 
scale modelling”, the purpose is to determine the scale that is significant for the heat 
transfer from the canister. “Largescale measurements” is an investigation program with 
the aim to measure the thermal conductivity at the significant scale for the canister. The 
fourth evaluated investigation program is additional data collection to improve the statistical 
relationship between density and thermal conductivity. This relationship (Equation 52) is 
used for estimation of thermal conductivity from density loggings.

9.3.2	 Data

Nomenclature

Rock types will be referred to by the nomenclature used in the Simpevarp area, south of 
Äspö. This is because the rock type models (probability density functions, PDFs) and other 
relationships of thermal conductivity are based on this nomenclature /Sundberg et al. 2005/.

Lithology

Rock types in the prototype tunnel have been determined from rock cores and geological 
mapping of the tunnel wall. Rock types in the boreholes include Ävrö granite (including 
Äspö diorite), finegrained granite (including aplite), pegmatite, and small amounts 
of breccia. The distribution of rock types in section 1 (inner section) of the prototype 
repository was determined to 98% Ävrö granite and 2% Finegrained granite, based on  
rock cores from 43 boreholes. The distribution of rock types in section 2 (outer section)  
was determined to 100% Ävrö granite based on rock cores from 52 boreholes. For the 
whole tunnel, the distribution was 99% Ävrö granite and 1% finegrained granite, based  
on 95 boreholes. The length of the boreholes varies between 3 and 30 m.

The geological mapping of the tunnel wall gives similar results. For section 1, about 98% 
Ävrö granite and 2% finegrained granite was noted /Rhén 1995/. The distribution for the 
whole tunnel is about 99% Ävrö granite and 1% Finegrained granite.

Rock cores from three boreholes in the adjacent rock mass give a somewhat different 
picture, see Table 91. The total length of these boreholes is approximately 195 m.
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Table	9‑1.	 The	percentage	of	rock	types	in	three	boreholes	(KF0066A01,	KF0069A01,	
and	KA3386A01)	outside	the	prototype	repository,	including	subordinate	rock	types.

Rock	type Percentage Comment

Äspö diorite and Ävrö granite 82.2 Mainly mapped as Äspö diorite
Fine-grained granite 10.9 Mainly mapped as Aplite

Hybrid rock 4.1
Amphibolite 2.6
Other rock types 0.2

Thermal conductivity

The data of thermal conductivity applied in the modelling are of three types: (1) TPS 
measurements, (2) calculated values from modal analyses, and (3) calculated values from 
density loggings.

Table	9‑2.	 Different	data	sets	of	thermal	conductivity	of	Ävrö	granite.

Data,	Ävrö	granite Mean			
W/(m×K)

St	dev		
W/(m×K)

N

TPS	meaurements:
Prototype repository, section 1 2.44 0.08 6

Prototype repository, section 2 2.63 0.15 4
Section 1 + section 2 2.52 0.15 10
All measurements Äspö (Simpevarp nom.) 2.65 0.29 32
All meas. Äspö+Simp. (Simpevarp nom.) 2.73 0.35 37

Calculations	from	modal	analyses	(SCA):
All samples Äspö+Simp. (Simpevarp nom.) 2.72 0.33 39

Calculations	from	density	loggings:
Three boreholes outside prototype repos. 2.90 0.31 1,488
Two boreholes Simpevarp 2.96 0.36 13,037

The most important rock type model of thermal conductivity is the one for Ävrö granite 
since it is the dominating rock type. However, available thermal conductivity data are not 
easily interpreted. Table 92 summarises the different data sets available for Ävrö granite. 
Based on this data, a model (PDF) is selected. A normal PDF with standard deviation of 
0.3 W/(m×K) and an uncertain mean is believed to give a reasonable representation of 
Ävrö granite for the repository. The mean is uncertain due to potential bias and is therefore 
modelled as a stochastic variable with 2.70 W/(m×K) as the most likely value and a stand
ard deviation of 0.116 W/(m×K), see Table 94. This implies that the true mean is within 
the range 2.40–3.00 W/(m×K) with a probability of 99%. These values are estimates based 
on the variations in the different data sets summarised in Table 92. The applied rock type 
models are listed in Table 93.
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9.3.3	 Simulation	model

The simulation model illustrated in Figure 92 is applied for the prior and preposterior 
analysis. It is assumed that there is a relationship between density and thermal conductiv
ity. Three boreholes outside the prototype repository are assumed to be representative for 
the spatial distribution of thermal conductivity values in the Ävrö granite in the prototype 
repository and the adjacent rock mass. The locations of the boreholes are illustrated in 
/Staub et al. 2003/. Applied rock type models (PDF:s) are based on data from the prototype 
repository, other parts of Äspö HRL, from the Simpevarp area south of Äspö, and from 
literature (see Table 93).

Table	9‑3.	 Rock	type	models	(PDF:s)	applied	in	the	modelling.

Rock	type Mean	
W/(m×K)

St	dev	
W/(m×K)

Distribution

Ävrö granite1 See text and Table 9-4 0.30 Normal PDF
Fine-grained granite2 3.33 0.34 Normal PDF

Amphibolite3 3.31 0.48 Normal PDF
Hybrid rock Ignored Ignored
Other rock types Ignored Ignored

1 Model based on Table 9-2.
2 Model based on /Sundberg et al. 2005/.
3 Model based on /Sundberg 1988/.

9.3.4	 Prior	analysis

The prior analysis is based on present information. Uncertainties are quantified and 
implemented in the simulation model. A summary of the quantified “lack of knowledge” 
uncertainties is presented in Table 94. The scale 0.7 m is selected as the significant scale in 
the upscaling, in order not to underestimate the variability.

Table 9‑4. Modelling of “lack of knowledge” uncertainties of thermal conductivity λ for 
the	prior	analysis	at	the	prototype	repository,	Äspö	HRL.

Type	of	uncertainty Modelling	approach Properties

A. Lithological uncertainty: 
Percentage of Ävrö granite

Percentage of other rock types  
as a 3-parameter1 lognormal PDF.

Parameters: Min = 1%, mode = 4%, 
UCL99 = 17.8%

B. Uncertain rock type model of 
Ävrö granite

Mean of λ as a normal (gaussian) 
PDF.

Mean is between 2.40 and 
3.00 W/(m×K) with 99% confidence

C. Random prediction uncertainty Addition of random prediction  
error component.

See text and Equations 9-1 and 9-2.

D. Systematic prediction 
uncertainty

Correction for bias as a normal 
(gaussian) PDF.

Mean 0.20 and st dev 0.04 W/(m×K).

E. Scale-dependancy of variability Significant scale is assumed 
to be relatively small not to 
underestimate the variability.

The scale 0.7 m is selected.

1 The 3rd parameter of a 3-parameter lognormal probability density function defines the offset of the distribution 
from zero.



103

9.3.5	 Preposterior	analysis

Principles for reduction of uncertainty

In the preposterior analysis, the uncertainty is evaluated based on the investigation programs 
and their expected outcomes. The presumption is that the uncertainty is reduced when an 
investigation is performed. The simulation model has different principles of uncertainty 
reduction for each investigation program. The principles are compiled in Table 95 and 
described below.

Table	9‑5.	 Uncertainty	reduction	principles	for	preposterior	analysis	of	four	different	
investigation	programs	at	the	prototype	repository,	Äspö	HRL.

Investigation	program Uncertainty	reduction	
principle

Assumptions

Representative sampling and 
laboratory measurements

Stochastic simulation Uncertainty B (bias) is reduced by 75%.

Significant scale modelling Expert opinion +  
stochastic simulation

Significant scale is assumed to be 2.5 m.

Large-scale measurements Stochastic simulation + 
analytical estimation

Uncertainties B, C, and D is eliminated. Standard 
dev. of the mean is estimated analytically.

Improved statistical relationship 
between density and therm cond

Expert opinion +  
stochastic simulation

Uncertainty D (bias) is reduced by 75%.

For each stochastic simulation, 5,000 simulation steps where performed. According to /Alén 
1998/ this is a reasonable number for estimation of the 2percentile and should be well 
enough for estimation of the twosided 95% confidence interval of the mean.

Representative sampling and laboratory measurements

The investigation program “Representative sampling” aims at collecting rock samples 
that are representative for the rock mass and to perform laboratory measurements of 
thermal conductivity on the samples. This program will reduce the potential bias in the 
rock type model (PDF) for Ävrö granite. The reduction is simulated by reducing the 
standard deviation of the stochastic variable (uncertainty B) by 75%, from 0.116 W/(m×K) 
to 0.029 W/(m×K). This requires that the rock samples are selected in a probabilistic 
manner from the target population, i.e. the 3dimesional rock volume.

Significant scale modelling

The “Significant scale modelling” aims at finding the most relevant scale for the design
parameter λd. The expected significant scale is believed to be in the range of 1 m to 10 m 
with a most likely value of 2.5 m, based on expert opinion. Therefore, 2.5 m is used in the 
preposterior analysis for this investigation program, compared to 0.7 m in the prior analy
sis. Because of the geometric mean calculation during upscaling, the uncertainty will be 
reduced.
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Large-scale measurements

An investigation program of “Largescale measurements” will reduce many of the uncer
tainties included in the upscaling model. In fact, there is little need for an upscaling model 
when measurements are performed at a large scale. The remaining variability in data will 
consist of spatial variability at the measurement scale, measurement uncertainty, and ques
tions of representativeness. It is assumed that there are no measurement errors and no bias 
due to problems of representativeness.

The uncertainty in the mean can be estimated if we know the natural largescale variability, 
and given that data follows a normal distribution. Under these assumptions the standard 
deviation of the mean, sd, is:

=         Equation 95

where s is the standard deviation of the data at the measurement scale and n is the number 
of measurements. However, simulation results indicate that data are not normally distributed 
at the 2.5 m scale. Therefore, a modified approach is used:

The simulated standard deviation of the mean is not a reliable estimate of sd because much 
more data is used in the simulation than the expected number of largescale measurements 
in the investigation program. If we assume that the standard deviation of the mean is 
directly proportional to the square root of n, as in Equation 95, we have:

⋅≈        Equation 96

where ssim is the standard deviation of the mean from the simulation model, nsim is the 
number of simulated data values at the scale 2.5 m, and n is the number of measurements 
in the investigation program. The mean is approximately normally distributed and conse
quently the length of the confidence interval of the mean is:

CI95 = 2×tn–1×Sd       Equation 97

where tn–1 is the Student’s tstatistic for a twosided 95% confidence interval. It is assumed 
that a total of about 30 largescale measurements are performed.

This approach provides an upper limit of the value of information because measurement 
uncertainty and possible questions of representativeness are ignored.

Improved statistical relationship between density and thermal conductivity

The investigation program “Improved statistical relationship” aims at reducing the 
prediction uncertainty and the potential bias in the relationship between density and thermal 
conductivity. This is achieved by collecting additional rock samples and performing 
laboratory measurements of density and thermal conductivity. Due to natural variability, 
only a minor reduction of random prediction uncertainty is expected when more data 
are collected (n increases in Equation 92). This small reduction is not considered in the 
simulation. However, the potential bias in the statistical relationship is reduced significantly 
when more data is collected. The reduction is simulated by reducing the standard deviation 
of the corresponding stochastic variable (uncertainty D) by 75%, from 0.04 W/(m×K) down 
to 0.01 W/(m×K).
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Investigation costs

The investigation costs are required for estimation of the variance reduction per invested 
amount of money. Rough estimates of the investigation costs are given in Table 96. The 
actual costs can be larger or lower depending on the exact design of the investigations and 
the level of ambition.

Table	9‑6.	 Rough	estimates	of	the	investigation	costs	for	the	four	evaluated	
investigation	programs.

Investigation	program Cost	estimate	
(SEK)

Representative sampling and laboratory measurements 500,000
Significant scale modelling for the canister 100,000

Large-scale measurements 1,000,000
Improved statistical relationship between density and thermal cond. 300,000

9.4	 Results
The results of the simulations for the prior and preposterior stages are summarised in 
Table 96 and Figure 93, together with the estimated reduction of uncertainty. It is quite 
clear which investigation programs supply the most value when cost is not considered 
(approach 1). The investigation programs “�mproved relationship density vs λ” and “Large-
scale measurements” supply information of much higher value than do the “Representative 
sampling” program and the “Significant scale modelling”. “Largescale measurements” is 
the investigation program of preference, supplying up to 51% reduction of uncertainty of 
the mean thermal conductivity. This can be compared to a perfect investigation program  
that completely removes the uncertainty, i.e. 100% reduction of uncertainty.

Table	9‑7.	 Prior	and	preposterior	estimation	of	the	mean	thermal	conductivity	and	
its	associated	uncertainty.	The	value	of	information	is	quantified	as	the	percentage	
reduction of the 95% confidence interval of the mean λd.

Analysis λd	W/(m×K) CI95	
(W/(m×K))2

ΔCI95 Approach

Prior	analysis
Present state of knowledge 2.72 0.155 – Simulation

Preposterior	analysis
1. Representative sampling 2.72 0.137 11% Simulation
2. Significant scale modelling 2.71 0.153 1% Exp opinion + sim
3. Large-scale measurements 2.72 0.076 51% Sim + analytical 
4. Improved statistical relationship 2.72 0.091 41% Exp opinion + sim
A	perfect	investigation	program – – 100% EVPI
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If investigation cost is included in the VOIA (approach 2), the value of information can be 
defined as the percentage reduction of the confidence interval (CI) of the mean per invested 
100 kSEK. This results in a somewhat different picture compared to approach 1, as illus
trated in Figure 94 (note that estimated costs are only rough estimates illustrating the order 
of magnitude). With this definition of EVI the investigation program “Improved statistical 
relationship” supplies the most value per invested amount of money, and it is consequently 
the most costefficient alternative of the four evaluated ones.

Figure 95 illustrates how the reduction of CI varies with the invested amount of money. 
There is a trend of increasing cost for larger reduction of uncertainty.

Figure 9‑3.  The value of information estimated as the percentage reduction of the confidence 
interval of the mean λd.
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9.5	 Discussion
9.5.1	 The	application	at	Äspö	HRL

The presented results are not selfevident and could not easily have been predicted without a 
formal VOIA since the problem is quite complex. By performing a formalised but relatively 
simple VOIA the most valuable investigation programs were successfully identified. 
as discussed below, the result depend to some extend how the value of an investigation 
program is defined, i.e. approach 1 and 2, respectively.

Approach 1

Of the four evaluated investigation programs, “Largescale measurements” is expected to 
supply the most value, although the value is slightly overestimated because measurements 
errors are ignored. The program “Improved statistical relationship” is also of high value, 
significantly larger than “Representative sampling” and “Significant scale modelling”.

Somewhat surprisingly, “Significant scale modelling” is of almost no value. The reason is 
that the reduction in CI is small when the scale increases, compared to the other involved 
uncertainties. This is because the mean thermal conductivity is relatively insensitive to 
changes in scale.

Approach 2

Including investigation cost in the analysis makes it possible to determine the cost
efficiency of different investigation programs (approach 2). This is of help when a limited 
amount of money is available and the objective is to reduce uncertainty as much as possible 
given a certain amount of money. A matrix like Figure 95 is helpful when both uncertainty 
reduction and investigation cost should be considered. Programs occurring to the lower 
right in the matrix are most costefficient, whereas programs in the upper left should be 
avoided.

Figure 9‑5.  Result of the Value of Information Analysis for the prototype repository. The cost of a 
perfect investigation is not quantified, only indicated.
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When investigation cost is considered it is obvious that the most costefficient investigation 
strategy is to improve the statistical relationship between density and thermal conductivity. 
The value per invested amount of money (EVI) is lower for the program “Largescale 
measurements” because of the relatively high investigation costs.

Limitations and sensitivity

It is important to note that general conclusions of the value of information cannot be 
drawn from the results presented in this chapter. The reason is that value of information is 
use specific /Dawdy 1979/. Of course, the results depend on the assumptions made about 
the input parameters to the simulation model but most important is the objective of the 
investigation. It must be stressed that the presented results are limited to the objective to 
estimate the mean thermal conductivity in the rock mass and its associated uncertainty. 
Estimation of the spatial distribution of thermal conductivity is an example of a different 
objective and this problem would lead to different estimates of the value of information. 

The impact of different assumptions in input parameters can easily be assessed by changing 
the assumptions and studying the results (sensitivity analysis). Such an analysis indicates 
that the assumption regarding the prediction bias (uncertainty D) has a large influence on 
the result. However, increasing the potential bias by a factor of 2.5 (standard deviation 0.1 
instead of 0.04) does not change the relative order of the investigation programs although 
the absolute value of information changes.

9.5.2	 Other	possible	applications	for	SKB

There are several possible applications of VOIA for SKB:s ongoing site investigations.  
At least three types of applications can be identified:
1. A tool for comparing different data acquisition programs against one another, with the 

purpose to identify the program that supplies the most information for a given problem. 
2. A tool for determining when data acquisition should stop, i.e. when additional data do 

not supply enough new information.
3. A methodology for identification of uncertainties and how they relate. This improves  

the understanding of the problem and facilitates model building.

The first type has been demonstrated in this chapter for the problem of thermal conductivity 
in rock. Similar analyses can be performed on thermal problems in SKB:s site investiga
tions, for example to compare different field investigation techniques for determination of 
thermal conductivity. This can be achieved by comparing precision, accuracy, and cost
efficiency. There are also numerous other possible applications in other fields of the site 
investigations, such as hydrogeology, rock mechanics, geochemistry etc.

Application of VOIA to determine when data acquisition should stop requires some type 
of criterion to compare the expected value against. In its simplest form, such a criterion 
could be a defined variance or variance reduction. When the uncertainty is lower than the 
criterion, investigation can be terminated.

When a VOIA is performed it is necessary to identify and quantify the various uncertain
ties, resulting in a better understanding of the problem. This implies that such an analysis 
has a value even if no formal decision will be taken based on the results. Analysis can be 
performed at different levels of complexity. In situation where mathematical models are not 
available, expert opinion can be applied, as illustrated by for example /McNulty et al. 1997/.



10�

9.5.3	 Possible	developments	of	the	methodology

The analysis can be taken an additional step further by including probabilistic costs, i.e. 
costs that evolve from an uncertain event (approach 3 in Figure 91). The design cost of 
the repository is a function of λd and its uncertainty, and an investment costfunction can 
be coupled to λd and its associated uncertainty. An investigation program will result in 
a decrease in the expected total cost for the repository because the uncertainties will be 
reduced. The cost of an investigation program can be compared to the reduction in expected 
total cost, and thus the ENV of investigation programs can be estimated in monetary terms, 
and the most costefficient one be identified.

Investigation programs may have several different objectives. The methodology presented 
in this chapter is capable of handling one single objective, such as estimation of the mean 
thermal conductivity. The methodology can be developed to take several objectives into 
account in the analysis. Thus, a more complete picture of the value of a multiobjective 
investigation program could be presented. 
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10	 Conclusions	and	recommendations

10.1	 Conclusions
10.1.1	 Scale	and	methods

• The variation of the maximum canister/buffer temperature, for a large number of 
canisters, is dependent on the scale at which the thermal conductivity variation occurs. 
This variation is different in different rock types. However, in all rock types there is a 
smallscale variation.

• When modelling the temperature distribution for a large number of canisters the result 
depends on the method of modelling in combination with the thermal conductivity 
variation at different scales. The appropriate scale for thermal conductivity data therefore 
depends on the intended method of temperature modelling. 

• The scale at which variations of thermal conductivity is significant for the temperature 
on the canister has been investigated. Below a scale of approximately 1–2 m variation in 
thermal conductivities is mainly levelled out due to the size of the canister. Consequently 
it is possible to upscale the smallscale thermal conductivity to at least the 1–2 m scale 
when assessing the maximum temperature based on an effective thermal conductivity 
value. 

• At the modelling of the significant scale the variation (standard deviation) of temperature 
increases linearly up to about 10 m. However, this result is based on simulations with the 
same standard deviation of thermal conductivity for all scales. If the variance reduction 
due to upscaling had been considered and adjusted for, the increase in variability would 
have been smaller and the shape different. 

• The scale dependence for laboratory measurements of thermal conductivity with differ
ent sensor size seems to be small. Furthermore, thermal conductivity measurements are 
more reliable than the values calculated from mineral distribution and values estimated 
from density loggings.

• Density logging can be used to estimate thermal conductivity. A physical explanation  
of the relationship between density and thermal conductivity has been determined 
for granitic rock and tested for Ävrö granite. The method gives good possibilities 
to investigate the spatial distribution of thermal conductivity. However, there are 
uncertainties in the relationship. 

10.1.2	 Prototype	repository	–	inverse	modelling

• There is good agreement between prognosis of thermal conductivity in the prototype 
repository and the result from inverse modelling based on 37 different temperature 
sensors, and the rather low thermal conductivity is verified. Some of the temperature 
measurements seem to be influenced by ground water movements. The evaluated 
thermal conductivity is therefore an effective value (including convection) and is 
probably overestimating the real thermal conductivity. The variability in thermal 
conductivities from best fit of individual sensors seems to be the same as the variability 
in the prognosis, based on measurements. However, the analysis is simplified and more 
work is needed to analyse the scale dependence in a better way. 
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• There is a large discrepancy between the individual fit for some sensors and the overall 
best fit. The heat transport in the vicinity of these sensors is likely to be influenced by 
groundwater movements and thus the thermal conductivity is overestimated. 

• The relatively wide range of measured initial temperature shows that there is a consider
able thermal disturbance, which can be explained by the varying air temperature during 
the construction phase. The accuracy of the evaluation would have been improved if 
the rock temperature had been allowed to equilibrate after the sealing of the tunnel and 
verified to be stable before the heating of the canisters began. 

10.1.3	 Methodology	for	upscaling

• Different types of variograms can be used to analyse the spatial distribution of con
ductivities, preferably calculated from density loggings (semi variograms of thermal 
conductivity), and the spatial distribution of rock types (indicator variograms). The main 
challenge is to determine the spatial variability in rock domains where Ävrö granite is 
absent or subordinate. In order to model the spatial variability for these domains in a 
reliable way more measurements are required, especially for the dominating rock types.

• A methodology for upscaling of thermal conductivity from measurement scale to a 
significant scale for the canister has been developed. The variance is reduced when the 
scale increases but for some rock types the decrease in variance is low, mainly because 
of the high largescale spatial variability. 

10.1.4	 Uncertainties	and	value	of	information

• Uncertainties in the whole process have been analysed. The largest uncertainty is the 
representativity of the boreholes. Another major uncertainty is the statistical relationship 
between density and thermal conductivity for Ävrö granite. 

• A value of Information Analysis (VOIA) has been performed in order to estimate the 
value of additional investigations by studying how the new information reduces uncer
tainty in the mean thermal conductivity. Field measurements in a relevant scale supply 
the highest value, while an improved relationship between density and thermal conduc
tivity is the most costefficient alternative of the four investigated ones. 

• Smallscale measurements and the following upscaling are affected by uncertainties  
due to smallscale variability and the upscaling methodology. Measurements at larger 
scale reduce these uncertainties. Independent of the method of temperature modelling  
for design, measurements could be performed at a scale of at least about 2 m. However, 
the most appropriate scale depends on the method of temperature modelling for design  
of a repository. 

10.2	 Recommendations
• The modelling approach of thermal properties needs to be improved to take spatial 

variability fully into account, so that data sets can be produced for any desired scale  
and for all relevant domains. This will probably require stochastic simulation. 

• Field measurements in relevant scale decrease uncertainty in the thermal conductivity.  
It is recommended that a method for measurements at a larger scale is developed. 
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• The results of the inverse modelling at the prototype repository indicate that data is 
influenced by a temperature drift in the rock mass and by water movements. These 
“errors” are probably most significant in early data. It is recommended that data from a 
longer period of time are evaluated. Extending the duration of the measurement would 
also allow more initial data to be omitted in order to improve accuracy. This would also 
enhance prediction of groundwater flow effects. Furthermore, the evaluation of upscal
ing effects on the thermal conductivity distribution from the inverse modelling could be 
improved if a longer period is evaluated. 

• The simulation of “significant scale” shows that the statistical deviation of the maximum 
temperature increases until the scale of the heterogeneities is in the order of 8–10 m. 
However, this is partly a result of that the same standard deviation of thermal conductiv
ity has been used for all scales. In reality, the variability will decrease at larger scales and 
this would result in different scale dependence. It is recommended that this is investi
gated further. 

• At design of a repository the influence on the temperature distribution of the thermal 
conductivity variation is scale dependent. It is recommended that the result from the 
thermal site descriptive models is coupled to the modelling approach for the design, and 
vice versa.

There are several possible applications of VOIA for SKB:s ongoing site investigations.  
At least three types of applications can be identified:
1. A tool for comparing different data acquisition programs against one another, with the 

purpose to identify the program that supplies the most information for a given problem. 
2. A tool for determining when data acquisition should stop, i.e. when additional data do 

not supply enough new information.
3. A methodology for identification of uncertainties and how they relate. This improves  

the understanding of the problem and facilitates model building.
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Appendix	A

TPS	measurements	of	thermal	properties,	two	different	sensor	
sizes.	Hot	Disk	2004

Sample	1	
Sample Sensor TC	[W/mK]	 TD	[mm2/s] Cp	[MJ/m3K]	

1 4921 Average 2.39 1.13 2.11 
Stdav 0.02 0.04 0.07
Stdav % 0.80 3.22 3.24

5501 Average 2.155 1.31 1.64 
Stdav 0.008 0.02 0.03
Stdav % 0.358 1.75 2.04

Diff.	4921/5501	(%)	 9.8	 –16.1	 22.4

Sample	2
Sample Sensor	 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

2 4921 Average 2.927 1.272 2.30 
Stdav 0.003 0.019 0.03 
Stdav % 0.119 1.472 1.38 

5501 Average 2.869 1.322 2.170
Stdav 0.004 0.008 0.010
Stdav % 0.149 0.575 0.441 

Diff.	4921/5501	(%)	 2.0	 –3.9 5.7

Sample	3
Sample	 Sensor		 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

3 4921 Average 3.00 1.32 2.28 
Stdav 0.02 0.02 0.02 
Stdav % 0.76 1.48 1.03 

5501 Average 3.054 1.323 2.31 
Stdav 0.006 0.005 0.01 
Stdav % 0.209 0.400 0.51 

Diff.	4921/5501	(%)	 –1.7	 –0.5	 –1.2
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Sample	4
Sample	 Sensor	 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

4 4921 Average 2.860 1.33 2.15 
Stdav 0.007 0.02 0.02
Stdav % 0.229 1.17 0.95 

5501 Average 2.66 1.46 1.82 
Stdav 0.02 0.03 0.04 
Stdav % 0.57 1.92 2.32 

Diff.	4921/5501	(%)	 6.9	 –10.0	 15.3

Sample	5
Sample	 Sensor	 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

5 4921 Average 2.91 1.47 1.97 
Stdav 0.04 0.01 0.04 
Stdav % 1.31 0.67 1.80 

5501 Average 2.5 1.8 1.4 
Stdav 0.1 0.2 0.2 
Stdav % 4.1 10.5 16.6

Diff.	4921/5501	(%)	 13.5	 –19.5	 26.6

Sample	6
Sample	 Sensor	 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

6 4921 Average 2.551 1.10 2.31 
Stdav 0.002 0.02 0.03 
Stdav % 0.072 1.40 1.36 

5501 Average 2.61 1.120 2.33 
Stdav 0.01 0.005 0.02 
Stdav % 0.45 0.445 0.68

Diff.	4921/5501	(%)	 –2.4	 –1.5	 –0.9

Sample	7
Sample Sensor TC	[W/mK] TD	[mm2/s]	 Cp	[MJ/m3K]	

7 4921 Average 2.62 1.16 2.27 
Stdav 0.02 0.01 0.01 
Stdav % 0.59 1.19 0.60 

5501 Average 2.667 1.124 2.374
Stdav 0.001 0.005 0.009 
Stdav % 0.044 0.430 0.395

Diff.	4921/5501	(%)	 –1.7	 2.8	 –4.7
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Sample	8
Sample	 Sensor	 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

8 4921 Average 2.57 1.15 2.24 
Stdav 0.02 0.01 0.01 
Stdav % 0.67 1.13 0.49 

5501 Average 2.564 1.129 2.27 
Stdav 0.004 0.008 0.02 
Stdav % 0.142 0.708 0.79

Diff.	4921/5501	(%)	 0.1	 1.6	 –1.5

Sample	9	
Sample	 Sensor		 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

9 4921 Average 2.534 1.12 2.26 
Stdav 0.004 0.04 0.08 
Stdav % 0.177 3.63 3.53 

5501 Average 2.542 1.130 2.25 
Stdav 0.004 0.009 0.02 
Stdav % 0.160 0.804 0.81

Diff.	4921/5501	(%)	 –0.299	 –0.417	 0.215

Sample	10
Sample	 Sensor TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

10 4921 Average 2.496 1.086 2.298
Stdav 0.010 0.006 0.004 
Stdav % 0.398 0.546 0.183 

5501 Average 2.526 1.083 2.33 
Stdav 0.002 0.006 0.01 
Stdav % 0.081 0.581 0.52

Diff.	4921/5501	(%)	 –1.2	 0.2	 –1.4

Sample	11
Sample	 Sensor	 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

11 4921 Average 2.61 1.13 2.31 
Stdav 0.01 0.02 0.04 
Stdav % 0.52 2.19 1.71 

5501 Average 2.764 1.127 2.45 
Stdav 0.005 0.010 0.02 
Stdav % 0.199 0.868 0.72

Diff.	4921/5501	(%)	 –5.8	 0.2	 –6.0
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Sample	12
Sample	 Sensor TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

12 4921 Average 2.55 1.16 2.19 
Stdav 0.03 0.04 0.05 
Stdav % 1.22 3.54 2.23 

5501 Average 2.475 1.095 2.260 
Stdav 0.003 0.005 0.008 
Stdav % 0.107 0.421 0.374

Diff.	4921/5501	(%)	 3.0	 5.9	 –3.1

Sample	13
Sample	 Sensor		 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

13 4921 Average 2.599 1.115 2.33 
Stdav 0.009 0.005 0.02 
Stdav % 0.349 0.421 0.65 

5501 Average 2.573 1.071 2.402 
Stdav 0.003 0.002 0.005 
Stdav % 0.108 0.221 0.212

Diff.	4921/5501	(%)	 1.0	 4.0	 –3.1

Sample	14		
Sample	 Sensor	 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

14* 4921 Average 2.786 1.323 2.11 
Stdav 0.008 0.009 0.02 
Stdav % 0.285 0.671 0.93 

5501 Average 2.65 1.36 1.95 
Stdav 0.02 0.04 0.06 
Stdav % 0.64 2.66 3.20
Diff.	4921/5501	(%)	 5.0	 –2.7	 7.4	

14 4921 Average 2.81 1.30 2.16 
Stdav 0.01 0.03 0.04 
Stdav % 0.46 2.27 1.86 

5501 Average 2.720 1.240 2.19 
Stdav 0.010 0.008 0.02 
Stdav % 0.367 0.620 0.91 

Diff.	4921/5501	(%)	 3.3	 4.8	 –1.5
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Sample	15	
Sample	 Sensor		 TC	[W/mK]	 TD	[mm2/s]	 Cp	[MJ/m3K]	

15 4921 Average 3.70 1.57 2.36 
Stdav 0.01 0.03 0.04 
Stdav % 0.37 1.96 1.62 

5501 Average 3.56 1.65 2.16
Stdav 0.01 0.03 0.05 
Stdav % 0.31 1.80 2.12

Diff.	4921/5501	(%)	 3.8	 –5.3	 8.7
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Appendix	B

Porosity	and	density	measurements	of	core	samples
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Appendix	C	

TPS	measurements	of	thermal	properties,	five	repeated	
measurements	on	the	same	sample

Results: Sample	9	first Number	of	Rows:		21
File: (Points) Temperature Th.Conductivity Th.Diffusivity Spec.Heat Pr.Depth Temp.Incr. Temp.Drift Total/Char.Time Time	Corr. Mean	Dev.

Sample 1 (104- 200,tc) Room temp, 21°C 2.48562892 1.058849475 2.347480903 9.185694575 0.617341022 0 (No corr.) 0.513871537 0.060369213 6.008E-05

Sample 1 (113- 200,tc) Room temp, 21°C 2.451328879 1.100709935 2.227043476 9.365507833 0.543396177 0 (No corr.) 0.534186888 0.028677107 5.75349E-05

Sample 1 (98- 200,tc) Room temp, 21°C 2.457440102 1.095449572 2.243316501 9.343101854 0.682347102 0 (No corr.) 0.531633975 0.093614129 0.000103073

Sample 1 (111- 200,tc) Room temp, 21°C 2.486604994 1.099715683 2.261134429 9.36127703 0.552223213 0 (No corr.) 0.533704366 0.1 0.000100801

Sample 1 (113- 200,tc) Room temp, 21°C 2.511974131 1.068896952 2.35006202 9.229173442 0.531028815 0 (No corr.) 0.51874769 0.023369549 7.16501E-05

2.478595405 1.084724323 2.285807466
0.024590514 0.019463588 0.058736079

Sample 5 (92- 200,tc) Room temp, 21°C 2.999379761 1.346619209 2.227340692 10.35898707 0.60037 0 (No corr.) 0.653529419 0.079837388 9.2172E-05

Sample 5 (92- 200,tc) Room temp, 21°C 2.989081298 1.364133979 2.191193347 10.42613638 0.597423441 0 (No corr.) 0.662029533 0.1 0.000127456

Sample 5 (90- 200,tc) Room temp, 21°C 2.991130233 1.347800457 2.219267857 10.3635295 0.619350557 0 (No corr.) 0.654102692 0.07964545 8.44931E-05

Sample 5 (90- 200,tc) Room temp, 21°C 2.984519401 1.357145554 2.199115189 10.39939567 0.61962836 0 (No corr.) 0.658637972 0.064242585 7.28762E-05

Sample 5 (92- 200,tc) Room temp, 21°C 3.004411794 1.376061444 2.183341309 10.47161826 0.598434391 0 (No corr.) 0.667818066 0.084094635 0.000119172

2.993704497 1.358352129 2.204051679
0.008050181 0.012221954 0.018658345

Sample 8 (40- 200,tc) Room temp, 21°C 2.493525402 1.212693643 2.056187411 9.830383002 1.479053357 0 (No corr.) 0.588533838 0.018993678 3.88972E-05

Sample 8 (40- 200,tc) Room temp, 21°C 2.501877519 1.212416642 2.063546005 9.829260222 1.474675842 0 (No corr.) 0.588399407 0.023222922 4.24561E-05

Sample 8 (42- 200,tc) Room temp, 21°C 2.49649073 1.206508387 2.069186387 9.805281376 1.436877348 0 (No corr.) 0.585532064 0.029563482 4.13691E-05

Sample 8 (42- 200,tc) Room temp, 21°C 2.495949536 1.202278185 2.076016655 9.78807688 1.438739521 0 (No corr.) 0.5834791 0.038891039 3.45074E-05

Sample 8 (49- 200,tc) Room temp, 21°C 2.485859905 1.211961958 2.051103905 9.827416951 1.306018666 0 (No corr.) 0.588178744 0.011766742 3.69672E-05

2.494740618 1.209171763 2.063208073
0.005826739 0.004618795 0.009946291

Sample 9 (62- 200,tc) Room temp, 21°C 2.528407639 1.088847491 2.322095298 9.314904692 1.078017047 0 (No corr.) 0.528429911 0.1 8.76771E-05

Sample 9 (61- 200,tc) Room temp, 21°C 2.562346437 1.088998124 2.352939257 9.31554899 1.08213856 0 (No corr.) 0.528503015 0.071825393 7.08608E-05

Sample 9 (60- 200,tc) Room temp, 21°C 2.581241866 1.099997147 2.346589602 9.362474926 1.088556649 0 (No corr.) 0.533840964 0.071633455 6.6955E-05

Sample 9 (60- 200,tc) Room temp, 21°C 2.574896744 1.077643011 2.389378225 9.266854552 1.090414627 0 (No corr.) 0.522992251 0.067568146 6.85724E-05

Sample 9 (78- 200,tc) Room temp, 21°C 2.575913861 1.079972462 2.385166244 9.276864839 0.85855801 0 (No corr.) 0.524122759 0.090480506 4.26629E-05

2.56456131 1.087091647 2.359233725
0.021365487 0.00884914 0.028106687
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Appendix	D

Supporting	tables	to	Section	5.2.3	magma	composition	
and	mineralogy
Table	D‑1.	 Mineral	composition	of	schematically	created	samples	from	diagram	
presented	in	Figure	5‑5.	Mineral	components	are	in	percent.

Sample Quartz K‑feldspar Muscovite Biotite Plagioclase Amphibole Pyroxene Olivine

1 18 62 3 17
2 22 56 3 1 17 1

3 24 50 3 2.5 18 2.5
4 22 47 3 4 18 6
5 20 40 3 5 21 11
6 15 30 1 4 32 18
7 10 12 3 49 26
8 5 1 61 33
9 62 34 4
10 59 31 10
11 55 29 16
12 51 24 25
13 48 14 34 4
14 43 2 45 10
15 32 48 20
16 22 44 34
17 14 36 50
18 8 22 70
19 4 11 85
20 1 4 95
21 100

Table	D‑2.	 Mineral	properties	used	in	calculation	of	sample	densities	(kg/m³)	and	
thermal	conductivities	(W/(m×K)).

Mineral Density Thermal	conductivity

Quartz 2.647 7.69
K-feldspar 2.566 2.29

Muscovite 2.852 2.32
Biotite 2.981 2.02
Plagioclase 2.656 1.70
Amphibole 3.176 3.39
Pyroxene 3.248 3.20
Olivine 3.501 4.57
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Table	D‑3.	 Adjusted	mineral	property	of	the	thermal	conductivity	(W/(m×K))	due	to	
chemical	composition	for	the	different	schematically	created	samples.

Sample Plagioclase Olivine

1 2.34
2 2.34

3 1.92
4 1.92
5 1.63
6 1.63
7 1.46
8 1.46
9 1.46
10 1.46
11 1.46
12 1.46 5.10
13 1.46 5.10
14 1.46 4.27
15 1.59 3.60
16 1.59 3.60
17 1.59 3.18
18 1.72 3.18
19 1.72 3.05
20 1.72 3.05
21 1.72 3.14
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Table	D‑4.	 Calculated	densities	(kg/m³)	and	thermal	conductivities	(W/(m×K))	for	
schematically	created	samples.

Sample Density Thermal	conductivity		
(fixed	mineral	properties)

Thermal	conductivity		
(adjusted	mineral	properties	
of	plagioclase	and	olivine)

1 2.604 2.71 2.86
2 2.618 2.85 3.01

3 2.636 2.92 2.99
4 2.662 2.89 2.95
5 2.698 2.84 2.82
6 2.736 2.67 2.63
7 2.789 2.46 2.29
8 2.830 2.31 2.10
9 2.856 2.20 2.01
10 2.876 2.24 2.05
11 2.902 2.30 2.11
12 2.929 2.35 2.17
13 2.964 2.42 2.26
14 3.017 2.53 2.35
15 3.109 2.81 2.62
16 3.204 3.14 2.86
17 3.292 3.50 2.89
18 3.378 3.90 3.03
19 3.439 4.22 3.00
20 3.482 4.46 3.04
21 3.501 4.57 3.14
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Appendix	E

Inverse	modelling	of	prototype	repository.	
E1		 Location	of	temperature	sensors
Table	E1‑1.	 Sensor	locations	in	the	local	numerical	grid.	The	distances	from	a	
sensor	location	to	the	symmetry	axes	of	deposition	boreholes	1	to	6	are	denoted	D1	
to	D6	respectively.	The	right‑hand	column	gives	the	smallest	distance	to	any	of	the	
deposition	boreholes	symmetry	axis.	The	vertical	z‑axis	starts	from	the	bottom	level	
of	the	canisters	and	is	positive	in	the	upward	direction.	

Sensor	
label

Sensor	
label

X	(m) Y	(m) Z	(m) D1	(m) D2	(m) D3	(m) D4	(m) D5	(m) D6	(m) Min	
D1–D6

TROA310 PXPTA0310 0.00 –9.08 –1.72 9.08 15.08 21.08 27.08 45.08 51.08 9.08

TROA320 PXPTA0320 0.00 –9.08 0.99 9.08 15.08 21.08 27.08 45.08 51.08 9.08

TROA330 PXPTA0330 0.00 –9.08 3.38 9.08 15.08 21.08 27.08 45.08 51.08 9.08

TROA340 PXPTA0340 0.00 –9.08 5.78 9.08 15.08 21.08 27.08 45.08 51.08 9.08

TROA350 PXPTA0350 0.00 –9.08 7.78 9.08 15.08 21.08 27.08 45.08 51.08 9.08

TROA610 PXPTA0610 0.00 –4.95 –1.48 4.95 10.95 16.95 22.95 40.95 46.95 4.95

TROA620 PXPTA0620 0.00 –4.96 1.12 4.96 10.96 16.96 22.96 40.96 46.96 4.96

TROA630 PXPTA0630 0.00 –4.97 3.52 4.97 10.97 16.97 22.97 40.97 46.97 4.97

TROA640 PXPTA0640 0.00 –4.98 5.92 4.98 10.98 16.98 22.98 40.98 46.98 4.98

TROA650 PXPTA0650 0.00 –4.99 7.92 4.99 10.99 16.99 22.99 40.99 46.99 4.99

TROA1010 PXPTA1010 –0.04 –2.05 –1.84 2.05 8.05 14.05 20.05 38.05 44.05 2.05

TROA1020 PXPTA1020 –0.04 –2.04 0.86 2.04 8.04 14.04 20.04 38.04 44.04 2.04

TROA1030 PXPTA1030 –0.04 –2.03 3.26 2.03 8.03 14.03 20.03 38.03 44.03 2.03

TROA1040 PXPTA1040 –0.04 –2.02 5.66 2.02 8.02 14.02 20.02 38.02 44.02 2.02

TROA1050 PXPTA1050 –0.04 –2.01 7.66 2.01 8.01 14.01 20.01 38.01 44.01 2.01

TROA1810 PXPTA1810 0.04 8.54 –1.16 8.54 2.54 3.46 9.46 27.46 33.46 2.54

TROA1820 PXPTA1820 0.04 8.49 2.14 8.49 2.49 3.51 9.51 27.51 33.51 2.49

TROA1830 PXPTA1830 0.00 8.43 6.09 8.43 2.43 3.57 9.57 27.57 33.57 2.43

TROA1840 PXPTA1840 0.00 8.41 7.59 8.41 2.41 3.59 9.59 27.59 33.59 2.41

TROA1850 PXPTA1850 0.00 9.98 7.80 9.98 3.98 2.02 8.02 26.02 32.02 2.02

TROA2110 PXPTA2110 0.10 10.06 1.17 10.06 4.06 1.95 7.94 25.94 31.94 1.95

TROA2120 PXPTA2120 0.07 10.04 2.84 10.04 4.04 1.96 7.96 25.96 31.96 1.96

TROA2130 PXPTA2130 0.07 10.02 4.23 10.02 4.02 1.98 7.98 25.98 31.98 1.98

TROA2140 PXPTA2140 0.03 10.00 5.98 10.00 4.00 2.00 8.00 26.00 32.00 2.00

TROA2150 PXPTA2150 2.36 14.28 7.96 14.48 8.61 3.29 4.41 21.85 27.82 3.29

TROA2310 PXPTA2310 6.73 14.32 4.64 15.82 10.69 7.11 7.67 22.70 28.49 7.11

TROA2320 PXPTA2320 1.79 12.00 6.63 12.13 6.26 1.79 6.26 24.07 30.05 1.79

TROA2330 PXPTA2330 2.19 12.00 7.92 12.20 6.39 2.19 6.39 24.10 30.08 2.19

TROA2410 PXPTA2410 3.91 11.93 –3.30 12.56 7.11 3.91 7.22 24.38 30.32 3.91

TROA2420 PXPTA2420 2.74 11.95 1.45 12.26 6.55 2.74 6.64 24.20 30.17 2.74

TROA2430 PXPTA2430 2.19 12.00 4.32 12.20 6.39 2.19 6.39 24.10 30.08 2.19

TROA2440 PXPTA2440 3.39 14.29 7.17 14.68 8.95 4.09 5.03 21.98 27.92 4.09

TROA3010 PXPTA3010 –0.11 15.95 –1.78 15.95 9.95 3.95 2.05 20.05 26.05 2.05

TROA3020 PXPTA3020 –0.07 15.96 0.87 15.96 9.96 3.96 2.04 20.04 26.04 2.04

TROA3030 PXPTA3030 –0.07 15.97 3.27 15.97 9.97 3.97 2.03 20.03 26.03 2.03

TROA3040 PXPTA3040 –0.04 15.98 5.67 15.98 9.98 3.98 2.02 20.02 26.02 2.02

TROA3050 PXPTA3050 0.00 15.99 7.67 15.99 9.99 3.99 2.01 20.01 26.01 2.01
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E2		 Results	for	evaluation	period	160–365	days

Figure E2‑1.  Average measured rock temperature, average simulated temperature increase 
and difference between these values during the evaluation period 160–365 days for each of the 
37 temperature sensors. 

Figure E2‑2.  Measured initial temperature and fitted “initial” temperature for each of the 
37 temperature sensors. The period 160–365 days is used for fitting the measured and simulated 
response.
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Figure E2‑3.  Average deviation between measured and simulated temperatures in relation to 
simulated temperature increase. The period 160–365 days is used for fitting the measured and 
simulated response.

Figure E2‑4.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures during the evaluation period 160–365 days for each of the 37 temperature sensors. 
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E3		 Results	for	evaluation	period	160–525	days

Figure E3‑1.  Average measured rock temperature, average simulated temperature increase 
and difference between these values during the evaluation period 160–525 days for each of the 
37 temperature sensors. 

 
Figure E3‑2.  Measured initial temperature and fitted “initial” temperature for each of the 
37 temperature sensors. The period 160–525 days is used for fitting the measured and simulated 
response.
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Figure E3‑3.  Average deviation between measured and simulated temperatures in relation to 
simulated temperature increase. The period 160–525 days is used for fitting the measured and 
simulated response.

Figure E3‑4.  Rock thermal conductivity that gives the best fit between measured and simulated 
temperatures during the evaluation period 160–525 days for each of the 37 temperature sensors. 
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