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1	 Introduction

The integrity of the canister/buffer system can be jeopardised by earthquakes that occur in 
the vicinity of the repository. To avoid mechanical damage due to earthquakes, SKB has 
adopted the notion of respect distance which, according to /Munier and Hökmark 2004/, 	
is defined as follows:

“The respect distance is the perpendicular distance from a deformation zone that defines 
the volume within which deposition of canisters is prohibited, due to anticipitated, future 
seismic effects on canister integrity.” 

The use of respect distance alone cannot, however, guarantee the integrity of the canister. 
There is a relation between the respect distance and the size of fractures that can be 
allowed to intersect the deposition holes. If a fracture is too large it might, when triggered 
by a nearby earthquake, host a slip exceeding the canister failure criterion, 10 cm with 
the current canister design /Börgesson et al. 2003/. Empirical and numerical studies have 
shown /Munier and Hökmark 2004/ that a fracture must have a radius exceeding 50 m to 
be able to host a maximum slip of 10 cm, using a respect distance of 100 m. The numerical 
methods have since developed to include fracture friction and recent studies /Fälth and 
Hökmark 2006/ has concluded that the size of acceptable fracture sizes in deposition 
holes can be increased to r = 75 m (100 m respect distance) and r = 150 m (200 m respect 
distance) respectively. A deposition hole not fulfilling these criteria will be rejected. We 
find it practical for the purposes of this report, to follow the terminology of /Munier and 
Hökmark 2004/, in which these fractures are termed “discriminating fracture”.

The problem is that the size of a fracture can rarely, if ever, be measured. A simple and 
uncontroversial indicator for a fracture being large is if its intersection with a tunnel can be 
traced around the full perimeter of the tunnel face (Figure 1‑1). Such fracture intersections 
are easy to observe and require no additional efforts than traditional fracture mapping.

Figure 1‑1.  Example of a full perimeter intersection, Grimsel test site, Switzerland.
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We here evaluate the efficiency of utilising a Full Perimeter Intersection (hereafter denoted 
FPI) criterion /e.g. Hagros et al. 2005/, for identifying discriminating fractures in deposition 
tunnels and deposition holes. We also evaluate the consequences of using FPI, expressed in 
terms of the degree of utilisation.

This is achieved by means of stochastic fracture simulation consisting of two steps. The 
first consists of computing intersection statistics between the tunnel and the fracture array. 
The second step consists of computing the degree of utilisation based on the statistics 
derived from the first step.

We base our simulations upon the DFN models produced for the Laxemar /Hermanson et al. 
2005/ and Forsmark /La Pointe et al. 2005/ study sites, versions 1.2. We anticipate that these 
models will mature further within the framework of SKB’s on-going site investigations 
and Site Modelling (versions 2.2 and onwards) and though we here discuss the impact of 
various DFN parameters on our results, it is beyond the scope of the work presented here 
to evaluate the validity of the published models. The DFN models have been used with no 
modifications and accepted as they were published. The uncertainties presented here thus 
mirror the uncertainties of the DFN models.
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2	 Simulation prerequisites

2.1	 DFN model
The site descriptions /e.g. SKB 2005c/ and references therein provide the necessary fracture 
statistics to construct a DFN model. Here we make use of the Laxemar /Hermanson et al. 
2005/ and Forsmark /La Pointe et al. 2005/ DFN versions 1.2, summarised and simplified 
in Table 2‑1 and Table 2‑2. A visualisation of the DFN models is displayed in Figure 2‑1 as 
traces on a tentative outcrop which highlights the differences in fracture intensities between 
the sites.

Table 2‑1.  Laxemar DFN, version 1.2.

Mean orientation of fracture poles Size Intensity
Trend Plunge Kappa kr r0 P32

338.1   4.5 13.06 2.85 0.328 1.310
100.4   0.2 19.62 3.04 0.977 1.026
212.9   0.9 10.46 3.01 0.858 0.975
    3.3 62.1 10.13 41 – 2.320
243.0 24.4 23.52 3.602 0.400 1.400

1  The distribution given by the DFN model is exponential with the parameter λ = 1/mean.
2  As the Laxemar model did not report any parameters for the Euclidian scaling we used the reported fractal 
scaling instead.

Table 2‑2.  Forsmark DFN, version 1.2.

Mean orientation of fracture poles Size Intensity
Trend Plunge Kappa kr r0 P32

  87.2   1.7 21.66 2.88 0.28 0.602
135.2   2.7 21.54 3.02 0.25 2.069
  40.6   2.2 23.9 2.81 0.14 0.448
190.4   0.7 30.63 2.95 0.15 0.226
342.9 80.3   8.18 2.92 0.25 0.605

Figure 2‑1.  DFN simulations of the size interval 1 < r < 250 m, here displayed as traces on a 
50×50 m simulated outcrop. a) = Laxemar 1.2, b) = Forsmark 1.2. Inserts are contoured (Kamb) 
stereonets of poles to simulated fracture planes.

b)a)
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2.2	 Intersection criteria
In this study, we idealise a tunnel as a cylinder, and a fracture as an infinitely thin, circular 
disc. The problem studied here, is thus essentially one of finding the intersection between a 
finite plane and a finite cylinder.

There are many possible intersection geometries (Figure 2‑2), all of which are discussed 
briefly below:

Intersection “b” is by far the most common and occurs when the plane intersects the 
cylinder at an oblique angle. Intersections “a” and “c” constitute special cases of “b” and 
occur when the plane is perpendicular or parallel to the cylinder respectively.

Intersection “d” requires the plane to be oriented exactly parallel to the tunnel, and located 
exactly at its tangent which is unlikely both in simulations and in a real tunnel system. 
The FPI criterion requires the fracture to be detectable by the naked eye and thus “d” type 
intersection will therefore not be included in the analyses. Intersections “f” and “g” are 
special cases of “d”.

Intersection “e” occurs if the fracture intersects the end-cap of the tunnel.

Figure 2‑2.  Possible intersection geometries between an infinite plane and a finite cylinder (a–g). 
Possible intersection between a finite plane and a finite cylinder (h).
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In addition to the intersections above, we can envisage intersections as parts of ellipses 
(intersection “h”), which would occur if the planes were not large enough to cut through the 
entire tunnel diameter or located such that only the tip of the plane intersects. Such intersec‑
tions are not relevant to our study. Thus, for the purpose of evaluating a FPI criterion, only 
intersections of type “a”, “b”, “c” and “e” were considered.

We define a plane P (Figure 2‑3) in terms of its centre point, Pc, its unit vector,  n̂ and its 
radius rp. A cylinder is defined in terms of its centre point C, its axis orientation, represented 
by the unit vector ĉ, its radius rc and its half- length (or half- height) h.

If the plane is perpendicular to the cylinder, then the absolute value of the dot product 
equals one, i.e.:

│ĉ ·  n̂│= 1

and we will, for an infinite plane, have an intersection if the distance between P and C is 
less than or equal to h, producing an intersection of type “a” or “g” respectively.

Figure 2‑3.  a) Criteria for elliptical intersections. b) Criteria for end-cap intersections /redrawn 
from Schneider and Eberly 2003/.
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If the plane is parallel to the cylinder, the dot product is zero, i.e.:

ĉ ·  n̂ = 0

and we will have an intersection if the distance between P and C is less than or equal to rc 
producing type “c” or type “d” intersections, respectively.

If the plane is neither parallel nor perpendicular to the cylinder we have an intersection if 
the intersection point, Ia, between the plane and the cylinder axis is closer to C than the half 
length, h, which produces an intersection of type “b” or “e” (or “h”). However, the plane 
might intersect the axis beyond the end caps and there might be an intersection depending 
on the relative location and orientation of the objects. The intersection, if it does occur, will 
be of the types “e” or “f”.

To check for an intersections of type “b” we compute the intersection between the plane, 
the cylinder axis and the cylinder which produces an intersection point Ia and an ellipse 
(Figure 2‑3a). Using the major axis of the ellipse, û, we check if the ellipse, represented 
by the points e1 and e2, lie entirely within the end caps of the tunnel. If so, we have an 
intersection of type “b”. If not, we may have an intersection of type “f” or “e”. The latter, 
end-cap intersection, is computed as follows:

Following the reasoning in /Schneider and Eberly 2003. Section 11.7.3, pages 553–555./, 
for the case Ia lies beyond the end-caps (Figure 2‑3b), we define a vector ŵ such that:

ŵ = ĉ×( n̂×ĉ), is a vector perpendicular to ĉ that lies in the plane, Pperp, containing both 	
 n̂ and ĉ  (see Figure 2‑3b). That is, we can always compute intersections in a coordinate 
system perpendicular to the fracture plane because of the rotational symmetry of the 
cylinder.

The angle θ between  n̂ and ŵ is:

cos(θ) =  n̂ · ŵ.

The distance a is known:

a = ║Ia – C║–h

and by definition we know that:

( )θ = .

Substituting, we get:

ˆ ˆ aI C h
n w

c
− −

⋅   =

and so

.

Since a2 + b2 = c2, then

If b2 ≤ rc
2 and ║Pc – Ic║≤ rp we have an intersection of type “e” (or “f”); otherwise, no 

intersection occurs.
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3	 Simulation procedure

We have implemented all simulations as Matlab /The MathWorks Inc 2006/ m‑scripts, 
available from the author upon request. This section describes briefly the applied simulation 
principles.

3.1	 Generation of fracture populations
The fractures in the DFN models used are assumed to possess a Poissonian spatial arrange‑
ment (i.e. non-correlated positions), and a lack of correlation between size, position and 
orientation within each defined fracture set. Simulation of a fracture population therefore 
constitutes no further complication than random sampling from the given distributions for 
each fracture set and joining all sets into a fracture population.

We made use of the inversion method /Devroye 1986/ to produce random numbers either 
using built-in routines in Matlab (applies to rectangular, exponential and lognormal distribu‑
tions) or by the expressions below.

Hereafter denoting a [0, 1] sample from a uniform distribution as U, we obtain random 
numbers from a power-law distribution, rPL, from:

	  	 	 	 	 	 [1]

Similarly, random numbers from the univariate Fisher distribution can be obtained by three 
separate steps. We first sample the angular deviation from the mean poles, θ, using:

	 	 	 	 	 	 [2]

These values can be regarded as the deviations from a vertical plunge (horizontal plane), i.e.

2
plunge π θ= −

As the trend for a vertical plunge is uniform in [0, 2π], we obtain the trend from:

trend = 2πU

The set of vertical fracture normals thus produced is then rotated to the mean direction of 
the fracture set by first tilting the array to the mean plunge (i.e. rotation about a horizontal 
axis) and then adding the mean trend (i.e. rotation about a vertical axis).

The number of fractures N to be simulated is governed by the fracture intensity, P32, 
provided by the DFN model. The intensity is defined as the fracture area per unit volume, 
and expressed in the unit m2/m3.
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Following the reasoning in /Hedin 2005/, the number of fractures per unit volume, P30, can 
be obtained from the relation:

P30 =  n0 f (r)  	 	 	 	 	 	 	 	 	 [3]

where f(r) is the probability density distribution of fracture sizes for a particular fracture 
set. Unlike /Hedin 2005/, we use a finite model volume which tends to underestimate P32 
because some portion of the simulated fracture will lie outside the finite model volume. 
This effect becomes smaller the larger the model volume (see Section 3.2). The factor n0 is 
obtained from P32 through:

	  	 	 	 	 	 	 	 [4]

Since we only simulate a portion of the population, f(r) in [3] must be integrated over 
the range (rmin, rmax). The number of fractures to simulate for each fracture set in a model 
volume, V, is then obtained by combining [3] and [4] into:

.	 	 	 	 	 	 [5]

To ensure homogeneous P32 throughout the model volume, in particular in the vicinity of the 
model boundaries, we implemented the fracture positions by sampling points randomly on 
the fracture surfaces, constraining the points to lie within the model volume. The procedure 
is described below.

A random point, Pr, is chosen from within the model volume as:

Prx = Udx,  Pry = Udy,  Prz = Udz

where dx, dy and dz are the dimensions of the model volume in each principal direction 
respectively, and U is, again, a uniform random number in [0, 1]. The unit vectors parallel to 
the strike and dip directions, ŝ and  d̂, respectively, are known. We rotate ŝ randomly about 
Pr in the plane containing ŝ and  d̂ using an angle:

ω = 2πU.

The distance between Pr and Pc, ║Pr–Pc║, is obtained from:

║Pr–Pc║= rU.

By trigonometry the centroid, Pc, can be obtained from:

Pc = Pr+║Pr–Pc║(ŝ cos ω+ d̂ sin ω).
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3.2	 Choice of appropriate model volumes
Simulation of fractures honouring a specific intensity, P32, requires the computation of 
fracture truncations against the boundaries of the model volume. This produces fractures 
of different shapes, each of which requires special handling, and is computationally 
expensive. To speed up simulations our procedures use P30, the number of fractures per 
unit volume, to obtain required fracture intensity according to the input DFN model.

We do so by using equations [3]–[4] to transform P32 into P30. This enables us to maintain 
the circular shape of the fractures and spares the routines from the burden of boundary 
intersection computations. The equations are, however, only valid for infinite volumes. 
There will always be a part of the fractures outside the finite model volume which do not 
contribute to P32.

As the model volume increases, the fracture area outside the model volume will be increas‑
ingly smaller compared to the fracture area within the model volume. For a sufficiently 
large model volume, the difference can be regarded negligible. The size of the required 
volume is unknown, and is governed by both the DFN, mainly the size of the largest 
fracture to include, and the shape of the model volume. 

As only fractures of radii up to a certain value, rmax, are of interest for this study, the simple 
and absolute upper bound on the required model volume is dz = dy = 2(rmax + rTunnel) and 
dx = 2rmax + LTunnel. The use of such a large model results in very long computation times 
and shortage of computer memory. It is, however, possible to test for an appropriate volume 
by increasing the volume in steps until some test statistic, e.g. the number of FPI per 100 m, 
stabilises. The result of such a test is displayed in (Figure 3‑2). The number of simulated 
FPI stabilises at model sides of approximately 150 m, for both Forsmark and Laxemar. 
Based on this analysis, we cautiously set the model side to 250 m, thereby decreasing both 
the model volume and computation time, by roughly a factor 6.

Figure 3‑1.  Illustration showing the principle of deducing the fracture centroid from a randomly 
chosen point on the fracture surface.
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To increase simulation efficiency further, we made use of nested volumes, within which the 
resolution was made to differ (Figure 3‑3), thereby dramatically decreasing the number of 
generated fractures which is the main factor governing computational speed. Additionally, 
we reduced the number of generated fractures by including only fractures equal to or 
exceeding the tunnel radius, which is required to produce an FPI. The fracture intensity 
has, naturally, to be rescaled to reflect the loss of small fractures. Furthermore, we presume 
that all fractures with radii exceeding r = 250 m, can be identified as minor deformation 
zones during tunnel mapping and hence can be safely excluded from the analyses. The 
tunnel length was set to 300 m, to reflect a realistic case, and its radius to 3.09 m, which 
corresponds to a cross-sectional area of 30 m2 /SKB 2002/. The model volume was set to: 
dz = dy = 250 m, dx = 550 m. 

Figure 3‑2.  Effect of model volume on intersection statistics. The computed FPI reaches a plateau 
at box sides of roughly 150 m.
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3.3	 Computation of FPI
For computational convenience, we first compute the intersection between an infinite 
cylinder (the tunnel) and an infinite plane (the fracture). We then perform two tests to 
determine whether:
i)	 The intersection (both points e1 and e2 in Figure 2‑3a) lies within the end-caps of the 

cylinder and
ii)	The distance between the intersection (both points e1 and e2 in Figure 2‑3a) and the 

plane centre is smaller than or equal to the plane radius.

For each realisation, we mark all simulated fractures that produce FPIs, keeping all other 
parameters such as location, orientation and size intact. This enables us to compute various 
detailed statistics on the intersecting fractures.

Figure 3‑3.  Schematic figure showing the concept of nested volumes with fractures here 
represented by their centroids. Note that both the inner and outer boxes shown here are for 
illustration purposes only and are not drawn to scale.
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3.4	 Choice of the appropriate number of realisations
We computed cumulative means and cumulative standard deviations for both the number 
of FPIs and degree of utilisation (explained below) which were used as measures to address 
the required number of realisations. An example is shown in Figure 3‑4, using the Laxemar 
DFN and an EW trending tunnel. The mean and standard deviation of the number of FPI, as 
successively averaged over the realisations, stabilises after approximately 100 realisations.

To evaluate the impact of tunnel orientation on the computations, we rotated the tunnel 180° 
from East to West in steps of 10°. However, rather than rotating the tunnel itself, we mim‑
icked tunnel rotation by rotating the fracture array, as this was found more computationally 
efficient. The required number of realisations is found to be dependent on tunnel orientation 
but the difference is subordinate and 500 realisations were found to be sufficient to ensure 
adequately small confidence intervals of the means.

Figure 3‑4.  The mean number of FPI per 100 m tunnel stabilises after about 100 realisations.
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4	 Evaluation of Full Perimeter Intersections

Using the Laxemar DFN, the number of FPI varies with tunnel orientations between about 
14 and 17 per 100 m of tunnel, Figure 4‑1. The dependence on tunnel orientation is slightly 
more accentuated when using the Forsmark DFN, Figure 4‑2, though the number of FPI per 
100 m tunnel is lower and varies between approximately 4 and 8.

The noticeable difference between the two sites can be mainly attributed to the difference 
in P32 and r0. (Table 2‑1 and Table 2‑2). Note that the subhorizontal Laxemar set hardly 
contributes to simulations, as very few sufficiently large fractures are generated for the 
exponential size distribution. In the studied radius range 3.09–250 m, the fracture intensity 
at Laxemar is about 2.4 times larger than at Forsmark, despite the lack of contribution to 
P32 of the subhorizontal set. The Laxemar and Forsmark DFN have approximately the same 
kr as averaged over all fracture sets (2.97 and 2.92 respectively) but differ by a factor 3 in 
r0 (0.64 and 0.21 respectively). The effect of a larger r0 is that relatively more of the larger 
fractures are produced, everything else held equal. Since the largest fractures are those 
most likely to produce FPIs, we conclude that the difference in intersection statistics can be 
attributed mainly to the differences in P32 combined with, to a lesser extent, the differences 
in r0.

The computed number of FPIs agrees well with approximate analytical solutions which 
were derived (Hedin 2006, personal communication) by following the principles outlined 
for canister intersections in /Hedin 2005/. Strict lower and upper bounds were obtained and 
these are shown in Figure 4‑1 and Figure 4‑2.

Figure 4‑1.  Number of FPI per 100 m tunnel as a function of tunnel orientation (Laxemar 1.2). 
Dashed lines represent minimum and maximum number of FPI according to the analytical 
solution.

Mean Plot (Spreadsheet i Laxemar.stw 12v*9500c)

E
as

t

80 70 60 50 40 30 20 10

N
or

th -1
0

-2
0

-3
0

-4
0

-5
0

-6
0

-7
0

-8
0

W
es

t

Tunnel trend

0

2

4

6

8

10

12

14

16

18

20

FP
I/1

00
 m

 Mean  Mean±0.95 Conf. Interval 



18

Figure 4‑2.  Number of FPI per 100 m tunnel as a function of tunnel orientation (Forsmark 1.2). 
Dashed lines represent minimum and maximum number of FPI according to the analytical 
solution.
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5	 The Full Perimeter Criterion

5.1	 Definition
As stated above, the main objective of this work is to evaluate the possibility of using 
an easily identifiable characteristic of fractures, the Full Perimeter Intersection (FPI), to 
identify traces of large fractures in a tunnel. The ultimate goal is, however, to evaluate 
if FPIs can be used to identify deposition holes intersected by fractures large enough to 
constitute a seismic hazard. 

We choose to do so by introducing the full perimeter criterion, FPC. Applying the FPC 
means that the (infinite) extrapolation of the earlier defined FPI (Figure 5‑1) is used to 
represent a fracture of unknown size. Any deposition hole intersected by such extrapolation 
will be considered for rejection regardless of the true fracture size.

Figure 5‑1.  The FPI mapped in the tunnel is judged to represent the trace of a discriminating 
fracture if its projection intersects the deposition hole.
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5.2	 Need for an expanded FPC
There is a complication, though, in that the FPC fails to detect all discriminating fractures. 
For instance, it is likely that large fractures that do not intersect the deposition tunnel but 
are sufficiently close, have the potential to intersect a relatively large number of deposition 
holes (Figure 5‑2), thereby further decreasing the degree of utilisation (see Chapter 6 for 
definition).

By analogy with the rationale for using the FPC, the size of these fractures will be unknown 
and we would need a similar criterion.

One criterion that could be used is the number of deposition holes across which the frac‑
ture can be traced. There will be a balance between the ability to trace the fracture across 
multiple deposition holes with confidence, and the acceptable degree of utilisation.

Figure 5‑3 shows a plan view of a deposition tunnel, and a subhorizontal fracture of size “r” 
cutting through 5 deposition holes. The radius of a fracture that encircles exactly 5 deposi‑
tion holes is denoted “r' ”. If it is reasonable to assume that a fracture can be confidently 
traced across, say, 5 deposition holes, the radius of the discriminating fracture is at least 
0.5x (4×6) = 12 m. More generally, if we denote the number of intersected position as “n' ”, 
and the standard distance between canisters as “D” then:

.	 	 	 	 	 	 	 	 [6]

Some fractures will escape detection despite this criterion. It is, for instance, possible for an 
r > 50 m fracture to intersect fewer than five deposition holes if it is located near the edge of 
the tunnel (e.g. Figure 5‑4). It is also possible, though less likely, that deposition holes are 
intersected close to the fracture tip. Both these effects can be taken into account by using a 
stricter criterion, e.g., using two intersections or more (rather than 5 or more) as the crite‑
rion, at the expense of the degree of utilisation (See Section 6.2 for details). The expanded 
FPC will hereafter be referred to as “EFPC” and, if not stated differently, will be composed 
of both FPC and the contribution of the so expanded criterion.

Figure 5‑2.  A potentially discriminating fracture can remain undetected despite the use of the full 
perimeter criterion in the deposition tunnel.
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Figure 5‑3.  Additional rejection criterion.

Figure 5‑4.  The figure illustrates two cases for which the expanded FPC (EFPC) fails to detect 
discriminating fractures.
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5.3	 Efficiencies of the criteria
An important question to address is how efficient the proposed criteria are in detecting 
the supposedly discriminating fractures. For this analysis, we restricted the number of 
simulations to 150 for each tunnel orientation, i.e. a total of 2,850 realisations (19 tunnel 
rotations), to obtain a manageable computation time and size of output.

We may regard each realisation as an equally possible, 300 m long, deposition tunnel 
randomly chosen from a repository layout. The spacing of deposition holes is, in the base 
case, 6 m. Consequence calculations should, according to SKB, be based on 6,000 canisters 
(the actual number, for which a license application will be made, will be determined at a 
later time). 2,850 realisations would correspond to 23.75 “repositories” (142,500 canisters).

Table 5‑1 shows the number of simulated fractures, intersecting deposition holes, and 
having 50 m radius or larger that were not detected with either of the criteria (see e.g. 
Figure 5‑4 for geometry), and the number of intersected deposition holes used as limit 
for EFPC. The total number of deposition holes intersected by undetected, discriminating 
fracture is 938 for all realisations. Normalised to a single, 6,000 canister large repository, 
the number of deposition holes is reduced to 40, or roughly 0.67%. That is, in a typical 
repository, 40 deposition holes will be intersected by discriminating fractures which would 
remain undetected by both criteria. The number of undetected and discriminating fractures 
decreases with fracture size as shown in Table 5‑2.

We can express an efficiency of the applied criteria by comparing the results of the simula‑
tions presented here, to the number of intersections with deposition holes calculated analyti‑
cally /Hedin 2005/ assuming no rejection criterion, which was used for the preliminary 
safety evaluations /SKB 2005ab/.

Table 5‑2 shows that the application of FPC and EFPC aid in detecting a substantial amount 
of deposition holes intersected by discriminating fractures. For the currently computed, 
largest acceptable fracture radii in deposition holes, r = 75 m (100 m respect distance) and 
r = 150 m (200 m respect distance) /Fälth and Hökmark 2006/, the use of the criteria aid in 
detecting 94% and 97% of the affected deposition holes respectively.

Similarly, the efficiency of the applied criteria using the Laxemar DFN is shown in 
Table 5‑3.

We accentuate, however, that only intersections with the canisters are of relevance for the 
safety assessments /e.g. SKB 2005ab/. As the intersection probability is lower for canisters 
than for deposition holes, due to the canisters smaller dimensions (r = 0.525 m, h = 4.83 m), 
the number of affected deposition holes will be lower than expressed in Table 5‑2 and 
Table 5‑3. Additionally, as the outermost portion of each fracture is unable to impose a 
threat to the canister integrity /see Hedin 2005 for discussion/, the number of affected 
deposition holes is further decreased.

Table 5‑1.  Number of canisters not detected by either of the criteria, using r = 50 m as 
the limit for a fracture to be regarded discriminating.

Intersected dep. 
holes per fracture

Number of fractures Dep. holes

1 413 413

2 103 206

3   49 147

4   43 172

Sum 608 938
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Table 5‑2.  Comparison of the use of criteria (FPC + EFPC) and “blind” deposition. 
Figures for blind deposition were computed according to the method given in /Hedin 
2005/ using the dimensions of a deposition hole (r = 0.875 m, h = 7.833 m) and the full 
fracture area. Forsmark 1.2, 6,000 deposition hole layout.

FPC + EFPC “Blind” deposition
Fracture radius % Number of 

deposition holes
% Number of 

deposition holes
Efficiency of 
criteria (%)

≥ 50 0.66 40 7.56 454 91

≥ 75 0.26 16 4.50 270 94

≥ 100 0.13   8 2.93 176 96

≥ 150 0.04   2 1.33   80 97

Table 5‑3.  Comparison of the use of criteria and “blind” deposition. Figures for blind 
deposition were computed according to the method given in /Hedin 2005/ using the 
dimensions of a deposition hole (r = 0.875 m, h = 7.833 m) and the full fracture area. 
Laxemar 1.2, 6,000 deposition hole layout.

FPC + EFPC “Blind” deposition
Fracture radius % Number of 

deposition holes
% Number of 

deposition holes
Efficiency of 
criteria (%)

≥ 50 1.60 96 13.92 835 89

≥ 75 0.33 20   8.17 490 96

≥ 100 0.11   6   5.28 317 98

≥ 150 0.02   1   2.37 142 99

5.3.1	 Varying criteria within the repository

According to /Fälth and Hökmark 2006/, the size of discriminating fracture can be set 
to 75 m in deposition holes located between 100 and 200 m from the deformation zone 
boundary and set to 150 m elsewhere in the repository.

Applying the findings of our simulations (Table 5‑2) to the Forsmark layout, implies for 
instance, that if an earthquake of magnitude ≥ 6 would occur in the zone hosting the largest 
number of canisters within the 100 to 200 m band (the zone ZFMNE0060 with 563 such 
positions), see Figure 5‑5, this would threaten less than 4 (563×0.26% + 5,437×0.04%) 
canisters remaining in unfavourable positions after application of the EFPC. 

In Laxemar, the zone ZSMEW007A (Figure 5‑6) is the one that affects the largest number 
of deposition holes (693). Applying the findings of our simulations (Table 5‑3) to the 
Laxemar layout, implies that roughly 3 (693×0.33% + 5,307×0.02%) unfavourable canister 
positions will remain undetected using EFPC.

We again accentuate, however, that the reasoning here also assumes that the discriminating 
fractures are completely anonymous, displaying no geological information whatsoever that 
might reveal their size.



24

Figure 5‑5.  The figure shows deposition tunnel sections with canister positions within a band 
positioned 100–200 m from deformation zones (Forsmark). 

Figure 5‑6.  The figure shows deposition tunnel sections with canister positions within a band 
positioned 100–200 m from deformation zones (Laxemar). 
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5.3.2	 Fracture size

The mean fracture radius is, expectedly, largest for fractures contributed by the expansion 
of FPC to EFPC (Figure 5‑7). For the FPC alone, approximately 86% of the fractures indi‑
cated as potentially discriminating have radii smaller than 50 m, and approximately 96% 
have radii smaller than 100 m. For the contribution of EFPC, 78% of the fractures marked 
as discriminating have radii smaller than 50 m and 94% have radii smaller than 100 m. The 
size distributions for the fractures contributed by EFPC are shown in Figure 5‑8.

5.3.3	 Types of intersections

We computed the number of intersections of different types that were produced during 
simulations of all tunnel orientations. As expected, fractures producing the elliptical 
intersection, type “b”, dominate (Table 5‑4). End cap intersections (type “e”) are more rare, 
constituting roughly 2.7% of all intersections.

It is noticeable that very few fractures, approximately 1.2% of all simulated, contributed to 
EFPC.

Figure 5‑7.  Mean fracture radius for various intersection types at Forsmark.
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Figure 5-8. Histograms of fracture radii for EFPC at Forsmark.

Table 5-4. Summary of intersection types obtained for a simulation of Forsmark DFN, 
using all tunnel orientations and 150 realisations.

Count Cum. Count Percent Cum. Percent

Ellipse intersection (type “b”) 49,771 49,771 96.13312   96.1331

End cap intersection (type “e”)   1,396 51,167   2.69639   98.8295

Two lines intersection (Type “c”)          1 51,168   0.00193   98.8314

Intersection by Expanded criterion      605 51,773   1.16856 100.0000

Histogram (Spreadsheet i Detailed analyses Forsmark.stw  10v*52381c)
Include condition: V9='Expanded FPC'
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6	 Consequences of using FPC

6.1	 Definition and model approach
In this section we explore the consequences of applying the FPC and expanded FPC in 
terms of the degree of utilisation. This entity, expressed in %, is defined as follows:

Number of accepted positions100  %
Planned number of positions

× 	  	 	 	 	 [7] 

As the number of canisters to emplace is fixed, any degree of utilisation less than 100% 
must be compensated for by increasing the length of the deposition tunnel. In other words, 
the degree of utilisation is a measure of the required space for the repository.

For these simulations, we used the output from the simulations described in Chapter 4. The 
principles of the simulations are as follows:

Starting from the position of the first deposition hole, we try all FPI fractures for potential 
intersection. If none intersects, the position is accepted and a new position is tested a 
standard‑distance D away. If, however, the position is intersected, we move the position 
until the fracture no longer intersects (Figure 6‑1). For computational convenience we 
implement this reasoning in the codes by moving a small distance d and test all fractures 
again. The latter step is repeated until either the position is accepted or the end of the 
tunnel is reached. Note that, for this study, we used only the axes of deposition holes for 	

Figure 6‑1.  Principles for simulating the degree of utilisation.
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the intersection tests. The use of cylinders with a diameter of the deposition holes will 
certainly increase the intersection probability but we do not anticipate any dramatic 
differences in results.

The standard‑distance, D, is governed by, among other factors, the thermal properties of the 
rock /SKB 2004/. We used D = 6 m as our base case. The distance “d” should be as small 
as possible but there will be a trade off between optimisation and computation speed. We 
found d = 1 m appropriate for the purpose of the simulations presented here.

In the following sections we present results for Forsmark and Laxemar using 500 realisa‑
tions for each tunnel direction. The large amount of realisations was judged necessary to 
demonstrate any potential difference between tunnel directions with statistical significance.

6.2	 Degree of utilisation
6.2.1	 Laxemar

The degree of utilisation for Laxemar, using FPC alone, varies with tunnel orientation 
between 87% and 89% when averaged over all realisations (Figure 6‑2). Using EFPC, the 
degrees of utilisation are slightly lower and vary between 86% and 88%. Note, however, 
that it is almost impossible to differentiate between the two criteria for most tunnel 
orientations.

Figure 6‑2.  Degree of utilisation as a function of tunnel orientation, Laxemar 1.2.
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6.2.2	 Forsmark

The degree of utilisation for Forsmark, using FPC alone, is found to be weakly dependent 
on the tunnel orientation and varies between 93% and almost 95% (Figure 6‑3) averaged 
over all realisations. Using EFPC, the degree of utilisation is noticeably lower and varies 
between 91% and 92%.

It can be seen in Figure 6‑2 and Figure 6‑3 that, for some tunnel orientations, the degree 
of utilisation is markedly lower than for others. These anomalies can be explained by the 
geometry of the fracture network. When the tunnel is parallel to any of the steep fracture 
sets for some realisations, a large number of deposition holes are affected by “chance”. This 
is mainly because of the small dispersion in orientation, manifested as a large κ value, and 
the relatively large r0, which tend to produce large fractures for some sets.

Figure 6‑3.  Degree of utilisation as a function of tunnel orientation, Forsmark 1.2.
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6.3 Comparing FPC to EFPC
The contribution of EFPC to the degree of utilisation is illustrated in Figure 6-4. The dia-
gram shows clearly that EFPC does not contribute significantly to the degree of utilisation 
for the vast majority, 7,719 out of a total of 9,500, of the realisations. However, the diagram 
also shows that for some realisations the contribution is significant, making up almost half 
of the loss of positions. As clearly shown in Figure 6-3 the difference in the results obtained 
between using FPC and EFPC, is caused by the relatively few realisations in which some 
large fractures with strikes sub-parallel to the deposition tunnels, have crosscut a large 
number of canister positions.

Figure 6-4. Histograms showing the relative contribution of EFPC to the degree of utilisation.
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7	 Sensitivity analyses

7.1	 Difference between realisations
The difference can be very large between realisations due to the stochastic approach of 
the computations, but the results also differ largely between the Forsmark and Laxemar 
DFN. A lesson learned is that the test statistic must be chosen with care, when determining 
a sufficient amount of realisations for stability in the simulations. We initially used the 
number of FPI fractures/100 m as the simplest test statistic, which stabilised after relatively 
few realisations (ca 100, see Figure 3‑4). However, using the same simulated data, com‑
putation of other statistics such as the confidence interval of the means required far more 
realisations to produce reliable results. We found, by trial, 500 realisations to be an appro‑
priate amount for comparing FPC to EFPC. When the number of realisations increases, 
the confidence interval of the means decreases, rendering differences between e.g. tunnel 
orientations more statistically accentuated. Also by trial, we found 150 realisations to be 
an adequate number of realisations to evaluate the efficiency of the criteria. However, as 
a by-effect, the range of the outcome increases.

To illustrate the concept, we display the range of simulation outcome for the Laxemar DFN 
in Figure 7‑1 and detailed in Figure 7‑2. The lowest utilisation ratio of all realisations is 0%, 
which occurred at 4 out of 9,500 realisations (500 realisations times 19 tunnel orientations). 

Figure 7‑1.  Variability between realisations grouped by tunnel orientations, Laxemar 1.2. For 
clarity, the boxes are slightly offset on each side of the tunnel directions.
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This should be interpreted the following way: 9,500 realisations of 300 m long tunnels, 
containing 50 canister positions each, correspond to 475,000 canister positions. This in turn 
corresponds to roughly 80 complete repositories containing 6,000 canisters each. Out of 
these 80 repositories, we anticipate 4 tunnels to be discriminated for deposition. In other 
words, there is a possibility that an entire tunnel will be discriminated, but the probability 
for this to occur is remote.

The 0% degree of utilisation occur when a realisation produces a few, large and essentially 
horizontal fractures. Many such fractures can probably be detected in probing boreholes, 
and the tunnel position can be moved an appropriate distance. Hence, in a real situation, 
this effect should not have such a dramatic impact on the degree of utilisation.

7.2	 The effect of r’
We expanded FPC to discriminate also fractures that intersect 5 canister positions or 	
more (see Section 5.2). This limit was arbitrarily chosen and, certainly, the choice of 	
limit will steer the relative impact of EFPC upon the degree of utilisation. Using 5 canister 
positions, the minimum fracture radius to test, r’, is 12 m (cf equation [6]), of which there 
are relatively few. Besides, most fractures of this size are anticipated to possess some 
identifiable characteristic revealing their relative size, and more so, the larger the fracture. 
On the other hand, an anonymous fracture is probably very hard to trace over such distances 
in a normally fractured rock mass. This can be overcome by using fewer intersections for 
the criteria but that would decrease the degree of utilisation.

Figure 7‑2.  Variability between realisations grouped for a tunnel oriented 320 (–40 in 
Figure 7‑1), Laxemar 1.2.
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In Figure 7‑3 we display the difference in degree of utilisation using different limits of 
EFPC, using the same batch of simulations as used for Figure 6‑4. We increased the limit 
in steps from 2 canister intersections per fracture or more to 6 intersections or more. 
Naturally, as the limit increases, the degree of utilisation for EFPC approaches the degree 	
of utilisation for the FPC because fewer fractures will meet the criterion due to the power-
law size distribution. 

In Table 7‑1 we list the benefit of using a more restrictive limit for the EFPC. By 
discriminating fractures that intersect 2 deposition holes or more, we increase, to the 
cost of a lower degree of utilisation, the detection ratio from 91% (using 5 intersections) 
to 97%. Note that the efficiencies listed in Table 7‑1 concern fractures of radii r ≥ 50 m. 
For larger fractures, the efficiency is much higher.

Table 7‑1.  Efficiency of criteria using different limits on EFPC (r ≥ 50 m).

Number of 
intersection in EFPC

Missed canisters Efficiency

2 15 97%

3 23 95%

4 26 94%

5 39 91%

6 45 90%

Figure 7‑3.  Difference in degree of utilisation using different number of deposition hole 
intersections for EFPC.
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8	 Summary and conclusions

The consequence of using the Full Perimeter Criterion (FPC) has been quantified in terms 
of degree of utilisation which was judged reasonable. The degree of utilisation is higher in 
Forsmark as compared to Laxemar due to, mainly; the latter’s higher intensity of the steep 
fracture sets in the studied size interval.

The FPC was found insufficient to detect all potentially discriminating fractures. It needed 
to be complemented and we defined a new criterion, EFPC, to also address large fractures 
in the immediate vicinity of the tunnel, which remain undetected by tunnel mapping. We 
here proposed a criterion consisting in discriminating also all fractures that intersect 5 or 
more canister positions. The use of EFPC decreased the degree of utilisation further, though 
we still judge it to be reasonable.

A substantial reduction of unsuitable canister positions is obtained with the application of 
the suggested criterion. It is also noted that a substantial number of fractures are erroneously 
marked as being discriminating, thus implying a ‘cost’ in terms of degree-of-utilisation. 
Using the Forsmark and Laxemar repository layouts as example, we showed that site 
specific application of the criterion combined with respect distances significantly increased 
the efficiency of the criterion to a presumably acceptable level; only 3 canister positions in 
Laxemar and 4 positions in Forsmark out of 6,000 were erroneously marked as “approved” 
whereas around 182 and 98 deposition holes, for Laxemar and Forsmark respectively, are 
erroneously accepted if the criterion is not applied. The ‘cost’ in this case is an increase in 
the required total deposition tunnel length of 4.7 km and 3.2 km for Laxemar and Forsmark 
respectively (using 6 m spacing). As the fractures are cautiously assumed to be completely 
anonymous features possessing no indications of their size, we anticipate that the majority 
of the erroneously approved positions will in fact be detected if the criterion is linked to an 
adequate, qualitative judgement based on site understanding and underground information.

Despite the uncertainties in the DFN models, we found the results of the simulations 	
sufficiently encouraging to recommend the Full Perimeter Criterion and it’s expansion, 
EFPC, as a method to identify potentially discriminating fractures.
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