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Abstract (English) 

A simulator for 2D stochastic continuum simulation and inverse 
modelling of groundwater flow has been developed. The simulator is 
well suited for method evaluation and what-if simulation and written in 
MATLAB. Conductivity fields are generated by unconditional 
simulation, conditional simulation on measured conductivities and 
calibration on both steady-state head measurements and transient head 
histories. The fields can also include fracture zones and zones with 
different mean conductivities. Statistics of conductivity fields and 
particle travel times are recorded in Monte-Carlo simulations. 
The calibration uses the pilot point technique, an inverse technique 
proposed by RamaRao and La Venue. Several Kriging procedures are 
implemented, among others Kriging neighbourhoods. In cases where the 
expectation of the log-conductivity in the truth field is known the non­
bias condition can be omitted, which will make the variance in the 
conditionally simulated conductivity fields smaller. 

A simulation experiment, resembling the initial stages of a site 
investigation and devised in collaboration with SKB, is performed and 
interpreted. 
The results obtained in the present study show less uncertainty than in 
our preceding study. This is mainly due to the modification of the 
Kriging procedure but also to the use of more data. Still the large 
uncertainty in cases of sparse data is apparent. The variogram represents 
essential characteristics of the conductivity field. Thus, even 
unconditional simulations take account of important information. 
Significant improvements in variance by further conditioning will be 
obtained only as the number of data becomes much larger. 



Abstract (Swedish) 

En simulator for stokastisk kontinuum-simulering och inversmodellering 

av 2D grundvattenstromning bar utvecklats. Den ar val lampad for 

metodutvardering och "what-if' simulering och skriven i MATLAB. 

Konduktivitetsfalt genereras med obetingad simulering, betingad 

simulering pa uppmatta konduktiviteter och kalibrering pa uppmatta 

stationara och transienta potentialer. Falten kan innehalla sprickzoner 

och zoner med andra medelkonduktiviteter. Statistik pa konduktivitets­

falt och transporttider for partiklar registreras i i'v1onte-Carlo­

simuleringar. 
Kalibreringen gors med pilot-punktsmetoden, en inversteknik foreslagen 

av RamaRao och La Venue. Flera "Kriging" -forfaranden har imple­

menterats, bl. a. "Kriging neighbourhoods". I fall dar vantevardet for 

log-konduktiviteten i sanningsfiiltet ar kand, behover vantevardes­

riktigheten inte explicit kravas, vilket medfor att variansen i de betingade 

konduktivitetsfalten blir mindre. 

Ett simuleringsexperiment, beskrivande initialskedet vid en platsunder­

sokning och utformat i samarbete med SKB, har genomforts och tolkats. 

De erhallna resultaten visar mindre osakerhet an i var tidigare studie. 

Detta beror huvudsakligen pa modifieringen av "Kriging" -forfarandet 

och pa att mer data har anvants. Fortfarande ar dock den stora 

osakerheten i fall med glesa data tydlig. Variogrammet fangar manga av 

de viktigaste egenskaperna hos konduktivitetsfiiltet. Det betyder att aven 

obetingad simulering i sjalva verket tar hansyn till viktig information. 

Signifikant minskning i variansen genom ytterligare betingning fas bara 

om mangden data okas betydligt. 
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Summary 

Stochastic continuum models for simulation of groundwater flow in 

fractured rock, where the flow in fractures is modeled by Darcian flow 

through a set of blocks, each having a constant bulk conductivity and 

storativity are used for waste repository site evaluation. 

In unconditional simulation, the rock mass property is characterized only 

by statistical information. When specific measurements of conductivity, 

or other available data, such as recorded histories of hydraulic head and 

flow in boreholes are incorporated into the realizations of the fields in 

the Monte-Carlo simulations, we speak of conditional simulation. 

In a former project, a simulation tool was built, suitable for "what-if' 

studies of how best to use such information in conditional simulations. 
The simulator is based on the "pilot point method" with inverse 

mode ling and implemented in MATLAB. A simulation experiment 

devised in collaboration with SKB was then performed and interpreted. 

The results obtained in that simulation experiment contributed to the 

understanding of how the information contained in the history data can 

be used, and of the limitations inherent in the large uncertainty in cases 

of sparse data, as the case will be for initial site evaluations planned by 

SKB. Some suggestions of how the kriging methodology used in the 

conditioning could be improved to decrease the uncertainty were also 

gained. 

The aim of the present study is to further develop the simulation tool and 

to perform a simulation experiment with more but still realistically 

sparse data. 

The 2D simulator for method evaluation and what-if simulation has been 

further developed in MATLAB. Conductivity fields are generated by 

unconditional simulation, conditional simulation on measured 

conductivities and calibration on both steady-state head measurements 

and transient head histories. The fields can also include fracture zones 

and zones with different mean conductivities. Statistics of conductivity 
fields and particle travel times are recorded in Monte-Carlo simulations. 

Several kriging procedures are implemented, among others Kriging 
neighbourhoods. In cases where the expectation of the log-conductivity 

in the truth field is known the non-bias condition can be omitted, which 
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will make the variance in the conditionally simulated conductivity fields 
smaller. 

The results obtained in the present study show less uncertainty than in 
our preceding study. This is mainly due to the modification of the 
Kriging procedure but also to the use of more data. Still the large 
uncertainty in cases of sparse data is apparent. The variogram represents 
essential characteristics of the conductivity field. Thus, even 
unconditional simulations take account of important information. 
Significant improvements in variance by further conditioning will be 
obtained only as the number of data becomes much larger. 
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1. Introduction 

Simulation of groundwater flow in fractured rock is a key tool for waste 
repository site assessment. One of the approaches in use is the stochastic 
continuum model where the flow in fractures is modeled by Darcian 
flow through a set of blocks, each having a constant bulk conductivity 
and storativity. The property of greatest interest here is the bulk 
conductivity of the blocks. 

Monte-Carlo simulations are carried out to find the distribution and 
envelope of flow fields compatible with both statistical information and 
more specific site data. In unconditional simulation, the rock mass 
property is characterized only by statistical information, such as mean, 
pointwise distribution, and moments of two-point correlation functions, 
the spatial variogram. One usually assumes that conductivity has a log­
normal distribution. 

When specific measurements of conductivity, or other available data 
such as recorded histories of hydraulic head and flow in boreholes, are 
incorporated into the realizations of the fields in the Monte-Carlo 
simulations we speak of conditional simulations. 

How best to use the information available in conditional simulations is 
the subject of much research. de Marsily, Neumann & Carrera, and 
La Venue and RamaRao, (ref.[1], [2], [3], [15]), have proposed many of 
the techniques now in use. It is the purpose of this investigation to 
develop tools to help in understanding and assessing such proposals, the 
goal being an incorporation of the most efficient techniques into the 
SKB Waste Repository Assessment codes. 

In particular, the use of recorded head histories in interference pumping 
tests by inverse modeling requires substantial computer resources and 
code development and adaptation. 

It was decided that in-house competence and development management 
would be best served by building a simulation tool for "what-if" 
simulations which would be flexible and general enough to allow 
substantial experimentation. The simulation tool was developed for 2D 
cases in MATLAB, which enables quick code development and gives 
compact and clear code. The speed advantage of the 2D models were 
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deemed to outweigh the gain in realism of 3D models for the simulation 

experiments. 

After a pre-investigation (ref.[11]) and a pre-study (ref.[12]), the pilot 

point method proposed by LaVenue and RamaRao (ref.[3],[15]) was 

found to have the greatest potential for development and was selected as 

the first candidate. The main difference to their system, as we understand 

it, is that the La Venue simulator has a built-in scheme for sequential 

selection of pilot point locations whereas we have stopped at manual 

positioning. Beside this, we believe that just minor details in the 

technical implementation differ. 

The results obtained in the previous study (ref.[16]) contributed greatly 

to the understanding of the large uncertainties in cases with sparse data. 

We therefore stressed the use of Monte-Carlo simulation also over the 

actual "truth field" to be modeled. In particular, it was shown that the 

conditional simulations do not always give smaller variance than 

unconditional ones. When data are abundant, such as has been the case 
in the WIPP case studies (ref.[4], [15]), conditioning tends to give 

sharper results. Some ideas of how the kriging methodology used in the 

conditioning could be improved to decrease the uncertainty were also 

gained. 

The aim of the present study is to further develop and verify the 

simulation tool and to perform a simulation experiment with more but 
still realistically sparse data, as the case will be for an initial site 

evaluation. 

The results obtained in the present study show less uncertainty than in 

the preceding study. This is mainly due to a modification of the kriging 

procedure but also to the use of more data. Still the uncertainty in cases 

of sparse data is apparent. Significant improvements in the uncertainty 

will be obtained only as the number of data becomes much larger. 

The conclusions of the work to date are: 

• A quick 2D simulator for method evaluation and what-if simulation has 

been developed in MATLAB. Conductivity fields are generated by 

unconditional simulation, conditional simulation on measured 

conductivities and calibration on both steady-state head measurements 

and transient head histories. The fields can also include fracture zones 

and zones with different mean conductivities. Statistics of conductivity 

fields and particle travel times are recorded in Monte-Carlo simulations. 



3 

• Several kriging procedures are implemented, among others Kriging 
neighbourhoods. In cases where the expectation of the log-conductivity 
in the truth field is known the non-bias condition can be omitted, which 
will make the variance in the conditionally simulated conductivity fields 
smaller. 

• A simulation experiment devised m collaboration with SKB was 
performed and interpreted. 

• Large uncertainties in cases with few data are apparent. The variogram 
represents essential characteristics of the conductivity field. Thus, even 
unconditional simulations take account of important information. 
Significant improvements in variance by further conditioning will be 
obtained only as the number of data becomes much larger. 
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2. Mathematical Model 

In a transient interference test water is usually pumped at constant flow 

rate in a borehole or a packed off section of a borehole. The change in 

head (pressure) with time is recorded in this borehole and in packed off 

sections in other boreholes as well. The pumping phase is followed by a 

phase of recovery of about the same length. The duration of the pumping 

phase is usually some days but may in some cases last for months. The 

head histories recorded in transient interference tests provide information 

of the capability of bedrock to conduct and store water. For more 

information about the test procedure see ref. [13] and [ 14]. 

The situation we want to simulate is a long term interference pumping 

test. Conductivities are assumed known at some locations (obtained from 

single-hole water injection tests in a specific site investigation). These 

measurements also provide the spatial variability of the conductivity 

field in terms of a variogram. This information together with the specific 

storativity field is to be used for the conditioning and calibration of the 

conductivity field. In the estimated fields, particles in a hypothetical 

repository are released under steady state conditions and particle travel 

times are computed. 

2.1 Groundwater Flow Equation 

To describe the groundwater flow in fractured rock a stochastic 

continuum model is used. The flow is modeled by Darcian flow and 

given by the following equation together with appropriate initial 

conditions and boundary conditions: 

dh 
S/x) dt = V(c(x)Vh) + q(x, t) (1) 

h(x,0) = ho(x) . 

The initial head field h0(x) is at steady-state, i.e. it is given by 

In our study we have used boundary conditions of the form 
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dh an = a(x)(h(x, t) -hext (x, t)). 

Note that a = 0 gives the no-flow boundary condition, and that a very 

large a gives a prescribed hat the boundary. 

The notation used is as follows: 

h(x,t) 

Ss(X) 

c(x) 
q(x,t) 
a(x,t) 

hext(X,t) 
n 

2.2 Variogram 

hydraulic head [L] 

specific storativity [L -1] 

hydraulic conductivity [L T-1] 

pumping source [T-1] 

convection coefficient [L -1] 

external head [L] 

outward normal at boundary [L]. 

The standard way of describing the spatial variability in the conductivity 

field in fractured rock is in terms of a variogram fitted to measurements. 

In our study we assume intrinsic and isotropic conditions and use for the 

covariance function C(r) of the log-conductivity either a spherical model 

r > a 
(2) 

or an exponential model 

_L 

C( r) = Ve a , r ~ 0. (3) 

Here V denotes the variance or sill, r is the norm of the lag vector and a 

is the range parameter. 
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3. Solution technique 

3.1 Discretization 

The domain of computation is a (horizontal) 2D rectangular section, 
which is discretized by central differences. In each coordinate direction 
the grid size is constant. Denoting the vector of heads at the nodes by h 
the equation ( 1) is discretized by spatial finite differences into a system 
of ordinary differential equations, 

dh Sdt= Kh+s(t) 

with initial condition 

where 

h(O) = ho 

h = vector of hydraulic heads 
S = storativity matrix (diagonal) 
K = conductivity matrix 
s(t) = q(t) + b(t) = vector of source terms. 

(4) 

The source term s contains contributions from the boundary b as well as 
the physical sources q. The initial field ho is computed by solving the 

steady-state system 

Kho=-bo. 

For the discretization in time we use the Backward Euler method and 
arrive at the difference equation 

Ah I =Bh +s l n+ n n+ 
(5) 

with 
A = S/Lit-K 
B = S/Lit 
Lit = time step 
n = step number. 
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Figure 3.1: Spatial discretization of computational domain 

3.2 Simulation of conductivities 

In the discussion to follow (3.2, 3.3) we will mainly use c, C to denote 
vectors of conductivities and y, Y for their base 10 logarithms. Capital 

letters are used for vectors of ( lOlog-)conductivities from the whole 
discretization while lower case vectors contain measurements and/or 

pilot point (lOlog-)conductivities. Further we assume that the log­
conductivities obey a normal distribution. The mean of the log­
conductivities does not have to be constant in the computational domain. 
Fracture zones are allowed and defined by a different mean between 

specified lines. We emphasize that the simulation of ( lOlog­
)conductivities, Y and C, is done at the head nodes (see fig. 3.1) while 
the conductivity fields K, used in the transport equations of sections 3.1 
(discretization of the groundwater flow equation) and 3.4 (particle 
tracking), are represented at the midpoints between head nodes and 
computed as the geometric mean of the conductivities in the two 
neighboring head nodes. 

3.2.1 Unconditional simulation 

An unconditional simulation of a conductivity field produces a pseudo­
random field with the same moments (mean and variance) and the same 
spatial correlation as indicated by the measured conductivities, i.e. 
obeying the constructed variogram. One possible technique of 
constructing such a field is the Turning Bands Method (ref.[5]). Another 
possibility, which is attractive in the 2D case and which we have used, is 
to use Cholesky factorization of the covariance matrix. This is done as 
follows (ref.[6]): 
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1. Compute the covariance matrix V of the logarithms of the 
conductivities in the nodes, evaluated according to the variogram. 
2. Compute a lower triangular matrix L by Cholesky 

factorization V = LL T 

3. Generate a vector Z with independent standard normal 
components. 
4. Compute an unconditional simulation of the log-conductivity 

field Yus by 

Yus = Yµ + LZ (6) 

where the vector Y µ contains the mean field. As mentioned above this 

mean field is not necessarily constant but can contain a fracture zone 

with a different mean. 

3.2.2 Conditional simulation 

A conditional simulation of a conductivity field produces a field, which 

besides satisfying the requirements for an unconditional simulation, also 

reproduces the measured values. To create such a field we can modify 

the unconditional simulation using a procedure involving kriging. 
Kriging (ref.[7]) is a local estimation technique providing a linear, 

unbiased estimator which is best in the sense that the variance of the 
estimator is minimized. It can also be described in terms of a linear 

interpolation operator since it depends only on structural information; 

variogram and relative locations of supports (measurements) and 

estimation points. An estimated field has the property of reproducing the 

data in the supports. Let Gm denote the kriging (interpolation) matrix 

and Ym the vector of measurements. Then the kriged (interpolated) field 

Y m can be written 

Ym=GmYm• (7) 

Putting the values of the unconditional simulation Yus (6) in the 

measurement locations into the vector Um , another kriged field Um, now 

with respect to the simulated field, is obtained 

Um= Gm Um. 

The differences in the components of 
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Yus - Urn= Yus - Gm Urn 

constitute the kriging errors. As mentioned above these are zero at the 
locations of measurements and thus by adding them to the field Y rn (7) 

we obtain a conditional simulation 

Yes= Yrn + (Yus - Urn)= Yus + Gm (Yrn - Urn) (8) 

having the additional property of honoring the measured conductivities. 

We make some remarks regarding the kriging. Denote the mean in the 
unconditionally simulated field by mus and in the truth field, where the 

measurements are performed, by fit, Then, interpreting the content of eq. 

(8) as random functions rather than realizations, we can write the 
expectation of the conditionally simulated field as 

E{Ycs} = E{Yus}+ Grn(E{yrn}-E{ urn})= 

The desired property of the conditionally simulated field is to have the 
same expectation value as that of the truth field, i.e. 

Combining this with the former equation we get the following condition 
for the conditional simulation to have the same expectation mt as that of 

the truth field 

Two situations can be thought of. If the expectation mt of the truth field 

is not known then mus can not be set to make the first factor (mus - mt) 

zero and the second factor has to be zero, i.e. the non-bias condition 

Gm 1 = 1 

has to be imposed. In this case the mean set in the unconditional 
simulation has no effect at all on the conditional simulation. However if 
fit is known then we choose mus = mt and the non-bias condition can be 

omitted. In this case the variances in the conditionally simulated fields 
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will become smaller than or equal to the variances in conditional 

simulations obeying the non-bias condition (see appendix A). One can 

also show that they are smaller than or equal to the variances in the 

unconditionally simulated fields. In our simulation experiments we 

generate truth fields and compare travel times in unconditioned and 

conditioned fields. To get a fair comparison between the two one should 

fully utilize the known mean mt also in the conditional simulations by 

omitting the non-bias condition, which is done in the numerical 

experiment of this study. 
In appendix A descriptions of the implemented kriging procedures are 

given. 

3.3 Calibration 

The purpose of the calibration is to utilize also steady-state head 

measurements and transient head histories to improve the realization of 

the conductivity field. Doing this means that an inverse problem has to 

be solved. It is well-known that such a problem, i.e. the determination of 

a conductivity field from measured heads, is ill-posed in general. 

However it can be made computationally tractable by suitably restricting 

the high-frequency content in the degrees of freedom of the allowed 

conductivity field. In the inverse techniques we have chosen, proposed 

by B.S. RamaRao and A.M. LaVenue (ref.[3]), this is done by letting the 

log-conductivity in strategically chosen pilot points be the degrees of 

freedom in the calibration. 
Before describing the calibration we give an expression for the calibrated 

field Y cc in terms of the output from the calibration; the log-conductivity 

Yp in the pilot points. Let Yn = (Ym, Yp) denote the extended vector 

containing both measurements and computed pilot point values. 

Similarly, letting Un = (um, up) contain the values of the unconditional 

simulation Y us in the corresponding locations and Gn be the kriging 

matrix, Y cc can be expressed as a conditional simulation: 

(9) 
where 

Yn = Gn Yn and Un= Gn Un. 

Briefly the calibration means finding the pilot point conductivities that 

minimize the objective function of head errors for all head-measurement 

locations and all times. This is done by a conjugate gradient method with 
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line search, where the gradients are computed by solving the adjoint state 
equation. 

3.3.1 Objective function 

The objective function in the calibration is defined by 

(10) 

where 

T -( T T T )T e - e0 ,e1 , ... ,eN 
t 

T -( )T e. - e1.,e2 ., ... ,eN . 
J J J mJ 

Yp = IOlog(cp) = pilot point lOlog-conductivity 

eij = hij - hmeas,ij 
hmeas = measured head 
Nm = number of measurements 

Nr = number of timesteps 
W = matrix of weights. 

In the previous study (ref.[16]), we performed pure transient calibration 
with the weight 1 for each error eij corresponding to a diagonal weight 

matrix of 1 's except for the diagonal elements multiplying the initial 
errors, where there were 0's. In the present study we have generalized 
the calibration to take also steady-state head measurements of the initial 
head field into account. The possible options are now three: calibration 
on transient head histories, calibration on steady-state head 
measurements and a combination of the two. The latter technique has 
been used with good results by La Venue and RamaRao in a case study 
described in (ref.[4]); 
We note that in the steady-state calibration the computational work is 
reduced since less information is used. Each time integration in the 
transient calibration (Nt timesteps) is replaced by a single steady-state 

computation. On the other hand, one would expect to get a better 
estimation of the true conductivity field in the transient case in view of 
the richer access to information. 



12 

3.3.2 Minimization 

For the minimization of the objective function J(yp) a conjugate gradient 
(CG) method by Polak and Ribiere (ref.[8]) is used. In each CG iteration 
in a search direction di is computed according to 

where 
Pi--1 = search step in CG iteration i-1 
di = search direction in CG iteration i 
gi = gradient of J with respect to Yp 

T 
R _ gi gi 
JJ -- T 

gi-Igi-1 

(i) 

and a new estimate y P is obtained from 

To estimate <Xi , i.e. the steplength in the direction defined by di, a line 
search is performed to find a minimum for J in this direction. This is 
done by fitting a second order polynomial through three evaluations. The 
line search is where much of the computational effort lies since every 
evaluation of J means a time integration of the system (5). 

3.3.3 Gradient computation 

In each CG iteration the gradient of J with respect to Yp is needed. To 
obtain this we start by deriving an expression for the derivatives with 
respect to the vector C containing the conductivities at the head nodes. 
First we will rewrite eq. 5 and for this purpose we split the source terms 
in the following way 

s =q +b =q' +b 
n n n n 0 

where 

I 

q =q +b -b0. 
n n n 
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Note that Qi represents the pumping source and bi comes from the 

boundary conditions. Utilizing the initial condition 

Kho= - ho 

we can now write eq. (5) 

A(h -ho)=B(h 1-ho)+q' 
n n - n 

n = 1, ... ,Nt. 

These systems form the constraints under which the objective function is 
minimized and we write them in the form 

-Kb -b 0 0 

f(C,h)= {A(h -h )-B(h -h )-q' } = (11) 
n O n-1 0 n 

n = 1, N t 

-K 0 0 0 ho ho 
0 A 0 0 h1-ho ql 

= 0 -B A ... 0 h2-ho - q2 =Dh-9=0 
. . 

0 0 . -B A hN -ho qN 
t t 

where the matrix D and "super"vectors hand g have been defined. By 
defining h in this way we have succeeded in splitting the constraints into 
a steady-state part and a transient part since D consists of two diagonal 
blocks with zeroes outside. To fully utilize this feature it turns out that it 
is convenient to introduce new variables for the errors. Let hm be defined 

in a similar way as h 

hT = (hmT A 1..mT A 1..mT)T m O ,0111 , ... ,ouN 
t 

where 
hmT = (hmT hmT ... hmT )T 

j lj ' 2j ' ' N j 
m 

~hm =hm-hm 
ij ij iO 

h~=h ... 
IJ meas, lJ 

Then the new error .e_' is given by 
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where P is the matrix selecting the head measurement nodes out of the 

head nodes. The relation between~' and~ is now 

I 0 0 ... 0 
-I I 0 0 

' -I 0 e = I 0 ·e=Ve. (12) 

. 
-I 0 0 . I 

With this error the objective function takes the form 

where we choose W' as a diagonal matrix diag(yl, I, ... ,1). Thus we 

consider the errors of ~' to be uncorrelated. Here y can be viewed as a 

weight factor for the steady-state part of the objective function. 

Expressed in the original errors ~ this corresponds to minimization with 

the weight matrix W as 

(y+ Nt)I -I -I -I 

-I I 0 ... 0 
W=VTW'V= -I 0 I 0 

-I 0 0 I 

In the following we simplify the notation for the "super"vectors and use 

h, e and q instead of .h, .e and .9. Now the gradient dJ/dC can be 

expressed thus 

(13) 

since from f(C,h) = 0 (11) we have 
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The first term a11ac on the right hand side of (13) is zero because the 

error functional does not depend explicitly on the conductivities. The 
second term, however, looks quite unpleasant and this is where the 

adjoint state solution simplifies matters. Introduce the adjoint state 'A as 

the product of the first two factors through 

(14) 

By doing this product first we simply apply the analogy of the rule from 
linear algebra, which states that it is computationally more efficient to 
perform vector by matrix multiplication before matrix by matrix 

multiplication. From (11) we deduce af/oh = D and thus 

or equivalently 

-IUO+l~OJ = 0 

A\ -BA.n + 1 +(a(hnil~ ho) J = 0 • n = Nt , ... ,! (15) 

which are the adjoint state equations we solve, with the condition Ai= 0 

at i = Nt + 1. The source term (oJ/ah)T = (W'e')T contains the errors. 

Since the last factor in (13) can be expressed as 

Kh0 

ar =---t { K(h -h )} ac ac n 0 
n = l,N 

t 

where K is the conductivity matrix, the gradient becomes 
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Finally we have to find a transformation to a gradient with respect to Yp• 

From formula (9) we have 

Applying the chain rule gives 

dJ dJ . - = - · d1ag(C) · G · ln(lO) 
dy P dC P 

(17) 

which together with formula (16) defines the gradient. 

3.4 Particle tracking 

In the steady-state fields described by the simulated conductivity fields 
and the given boundary conditions, particle traces are computed. The 
particles are released from a region and their travel times to the boundary 
(breakthrough times) are recorded. Introducing r(t) for the location of a 
particle at time t initially at r(O), and v(x) for the pore velocity at x, the 
trace is described by the streamline equation 

dr 
dt = v(r). (18) 

The solution is done in two steps: 

1. Solve the steady state version of equation (5) (no pumping) for 
the head field h and use central differences to compute an 
approximation to the Darcy velocity field V(x) = - c(x) grad h in 
the nodes. Then divide by the porosity to obtain the pore velocity 
field v(x). 
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2. Integrate the stream line equation (18). In our study we have 
used the Euler method and evaluated the right hand side using 
bilinear interpolation in each grid block. 
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4. Computer implementation 

4.1 Flowchart 
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4.2MATLAB 

The implementation is done in the Numeric Computation and 
Visualization Software package MATLAB (ref[9]). The motivation for 
using MATLAB is that it supplies high level functions for most 
operations in linear algebra and provides excellent graphical facilities, 
which make the development of the code fast and keep the code size 
small. 
The code is divided into a computational part and a problem 
specification. The specification file is a MATLAB Mfile which contains 
information about geometry, discretization, boundary conditions, 
variogram, position of measurements etc.. An example of the problem 
specification file is shown in appendix C. 

4.3 Verification experiment 

In the study reported in SKB AR 94-01 (ref.[12]) and SKB AR 94-39 
(ref.[16]), many of the routines in our present code were developed. 
These studies also contained simulation experiments, in ID and 2D, 
which exercised and verified the code. The main developments in this 
study are the introduction of new options of kriging, implementation of 
fracture zone and the extension of the calibration also to utilize steady­
state head measurements. We will here show a verification example, 
where the steady-state calibration is tested. 

4.3. l Deterministic verification of steady-state calibration 

The purpose of this experiment is to verify that the calibration works 
also on steady-state head measurements. A case with known solution is 
constructed by letting the initial guess be the unconditionally simulated 
truth field plus a kriged field given by perturbations in the pilot points. 
Thus the truth field can actually be obtained by proper choice of the pilot 
point values. The reduction of the pilot point errors and the decrease in 
the value of the objective function are shown for two realizations in 
figures 4.1 and 4.2. These realizations are the same as those used in the 
corresponding verification of the calibration on transient head histories 
(ref.[16], figures 4.3 and 4.4). The case presented in figure 4.1 show the 
same rapid convergence as in the transient calibration. In the other case, 
figure 4.2, there is convergence not to the global minimum but rather a 
local minimum of the objective function. Note that in a realistic case the 
calibration cannot reproduce the truth field and one cannot distinguish 
global minima from local ones. 
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Figure 4.1: Reduction of log-conductivity error in pilot points (above) 

and reduction in objective function J (below) 
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and reduction in objective function J (below) 
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4.4 Comparison with pilot point technique by RamaRao & La Venue 

In our implementation the location of the pilot points are chosen 

manually, where we believe they have the largest potential of influencing 

the calibration. The incremental technique by La Venue and RamaRao, 

on the other hand, has a built-in scheme for sequential selection of pilot 

point locations. After convergence of the CG iterations new pilot points 

are selected based on the absolute value of the sensitivity coefficients 

dJ/dY (see section 3.3.3). Those with the largest absolute value, i.e. with 
the largest potential of decreasing the value of the objective function, are 

selected. The old pilot points are then treated as conductivity 

measurements, i.e. their computed values are fixed. 
To get some indications on whether the locations of the pilot points are 

critical in the calibration a comparison of the two procedures was done. 

This was done by performing a sequence of calibrations, where new pilot 

points were selected manually based on sensitivity coefficients and old 

ones were treated as measurements. All 21x31 gridpoints were 
considered candidates. 
The manual procedure involved made us limit the comparison to one 
realization. We choose to look at one realization of case 1 of the 

numerical experiment in our previous report (ref. [ 16]) and as a measure 

of how the calibration succeeds we used the reduction in the objective 

function. 
In figure 4.3 the computational domain with conductivity measurement 

locations (x) and their ranges (circles) are shown. The pumping source 

coincides with the conductivity measurement at the middle of the 

domain and the head histories are recorded at the three closest 
measurement locations. 
In the transient calibration based on our technique we used 12 manually 
positioned pilot points, marked ( +) in figure 4.3, and allowed 20 CG­

iterations. The reduction in the logarithm of the objective function J as a 

function of iteration number is shown in the figure 4.3. 
The calibration based on the technique by RamaRao and La Venue is 
illustrated in figure 4.4. To reproduce their technique we performed a 

sequence of four calibrations with different sets of pilot points. In the 

first calibration the three pilot points marked ( +) were used since the 

absolute value of the sensitivity coefficients dJ/dY were largest at these 
locations in the field conditioned on the conductivity measurements. 
After five CG-iterations three new pilot points (*) were chosen in a 

similar way in the calibrated field and in the following calibration the old 
pilot points with their computed conductivities were treated as 
conductivity measurements. In all, four calibrations were performed with 
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four sets of pilot points(+, *, o, .) yielding a total of 12 pilot points and 

20 CO-iterations, i.e. the same numbers as were used in the simulation 

based on our implemented technique. At the bottom of figure 4.4 the 

reduction in the objective function is shown. 
The improvement when new pilot points are added is clearly seen as 

jumps at 5 and 10 iterations. The last group has little effect. In this case 

the initial manual selection did better than the sequential. We note that 

the sequential algorithm clusters pilot points around measurement points. 

Thus, the grid of candidate points has a strong influence since it 

determines the minimum separation between pilot points. 
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5. Simulation experiment 

A simulation experiment has been performed to estimate the particle 
travel times from a repository to a given boundary. The computational 
model for the experiment was designed in cooperation with SKB to 
resemble a typical model in initial stages of a site investigation. The 
domain of computation is the same as in the numerical experiment 
performed in the previous study (ref.[16]) but modified in accordance 
with the experience from that study. It was decided to include more data, 
both conductivity measurements and head measurements, but within the 
frames of what is realistic in an initial site evaluation. In that study we 
also observed large differences in the results obtained for substantially 
different truth fields. Therefore we wanted to use a more representative 
set of truth fields. They were chosen to be approximately "normally" 
distributed with respect to the mean log-conductivity in an area covering 
the repository and a portion of the domain where the particles are most 
likely to travel. 

The simulation experiment is specified as follows: 

* Define 2D model (fig. 5.2) with 
boundary conditions, 
repository, 
boreholes with 

conductivity measurements, 
head measurements, 
pumping history, 

conductivity variogram. 
* Define result as 

particle log(travel time) from repository to boundary of 
computational model. 

* Define answer as 
mean log(travel time) in ensemble of Monte Carlo simulations. 

* Define accuracy/quality as 
log(travel time) variance. 

In our experiment we have 13 measurements of conductivity, which is 
very few compared to e.g. the WIPP site (ref.[4]) with conductivity 
measurements in 41 wells. Few measurements means large uncertainties 
in the truth field and therefore Monte Carlo simulations are performed 
also over the truth fields. Note that the answer was chosen to be 
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log(travel time) and not travel time, as in the previous study. Presenting 

the results in log(time) is more natural in view of the conductivities 

being log-normally distributed. 

The numerical experiment is carried out as follows: 

Do M times 
Choose as the truth a realization respecting the variogram. 
Generate simulated measurements from truth field for the 
conditioning. 
Do N times 

Make a realization Y us respecting the variogram. 

Record particle breakthrough times. 

Make a realization Y cs, based on Y us and conditioned on 

the conductivities only. 
Record particle breakthrough times. 

Make a realization Y cc, based on Y us and conditioned on 

the conductivities and head histories and/or steady-state 
head measurements. 
Record particle breakthrough times. 

In the experiment we had M = 6 and N = 100. We make some remarks 

on the experiment. 

1. The six truth fields are chosen out of a set of 100 unconditionally 

simulated realizations of the log-conductivity field. The criteria for the 

selection are two. Firstly they have to have different mean log­

conductivity in an area covering the repository and a portion of the 
domain where the particles are most likely to travel. Six fields with this 

mean "normally" distributed around the expectation are selected. Truth 

field 1 is assigned the field with the lowest mean, truth field 2 the next to 

the lowest etc .. These fields also satisfy the second criterion, which is 
that the mean of the 13 log-conductivity measurements be close to the 

expectation. 

2. The locations of pilot points are chosen manually (see fig.5.2). 

3. In the kriging procedure the non-bias condition is omitted. This will 
make the variances in the conditional simulations smaller. 
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4. The boundary conditions, which are of Dirichlet type and chosen to 
give an average flow towards the upper boundary of fig.5.2, are part of 
the computational model. As such they have a strong influence on the 
flow, which may seem unsatisfactory. In site modelling the boundary 
conditions should be considered uncertain as well as the conductivity 
field. Calibration with respect to boundary conditions could also be 
performed, but is excluded in the present study. 

4. For each realization travel times are saved for the 25 particles, starting 
from the 25 grid points of the deposit. Random number seeds are also 
saved to enable re-runs of individual realizations. 

For case I we show several statistics: 

- Particle trace of particle 5 in truth field (fig. 5.3). 
- Particle traces of particle 5 in the 100 unconditionally simulated 
fields (fig. 5.4). 
- Particle traces of particle 5 in the 100 conditionally simulated 
fields (fig. 5.5). 
- Particle traces of particle 5 in the 100 transient calibrated 
fields (fig. 5.6). 

For cases 1, 4 and 6 we show: 

- Six histograms with log(breakthrough times) for two particles, 
5 and 21, with no conditioning, with conditioning on measured 
conductivities and with transient calibrated conductivities 
(fig. 5.7 to 5.9). 

The following data were used in the simulation experiment . 

h prescribed on the boundary, a= 100, (see fig. 5.2), 
and 

<K> = 10-9 m/s 
Ss = 10-7 m- 1 

q(x,t) = point source q(t) at Xq (location Xq see fig. 5.2) 
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varies linearly along the boundaries as indicated and is 2 at (0,0), 1.5 at (600,0) and 
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Figure 5 .3: Trace of particle 5 in truth field 1 
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Figure 5.4: Traces of particle 5 in the unconditional simulations, case 1 
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Figure 5.5: Traces of particle 5 in the fields conditioned on conductivities, case 1 
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Figure 5.6: Traces of particle 5 in the transient calibrated fields, case 1 
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Particle 5 (uncond. simulation). Case 1. 
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Figure 5.7: Histograms showing log(breakthrough time) for particles 5 (left) 
and 21 (right), without conditioning (top), with conditioning on measured 

conductivities (middle) and with calibrated conductivities (bottom) for case 1 
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Particle 5 (uncond. simulation). Case 4. 
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Figure 5.8: Histograms showing log(breakthrough time) for particles 5 (left) 

and 21 (right), without conditioning (top), with conditioning on measured 
conductivities (middle) and with calibrated conductivities (bottom) for case 4 
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Particle 5 (uncond. simulation). Case 6. 
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Figure 5.9: Histograms showing log(breakthrough time) for particles 5 (left) 
and 21 (right), without conditioning (top), with conditioning on measured 

conductivities (middle) and with calibrated conductivities (bottom) for case 6 
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6. Results and discussion 

6.1 Simulation experiment 

The design of the simulation experiment is based on the experiences 
from our previous study (ref [16]). The results and patterns seen dimly in 
our earlier study have now taken more definite shape owing to the 
improvement in Kriging technique and a better designed experiment 
with more data. 
The basic question is the relation between precision of the answer 
obtained to cost of obtaining the data. 
In order of increasing cost (data and computation) the procedures 
employed are 

Name 
u 
C 
s 
T 

Data used 
Variogram 
U + K-measurements 
C + steady H-data 
C + transient H-data 

In figure 5 .10 we have summarized the travel time statistics of the 
numerical experiment. For U, C, S, and T of each of the six truth cases, 
the mean of the particle mean and variance (of log(travel time)) is 

displayed in terms of confidence intervals (±2a). As a reference, the 
mean in the truth field (E) is also displayed. 
The most striking feature is that variance differences overall are small: 
The U-variance is hardly significantly larger than the T-variance. The 
interpretation is as follows: all procedures use the same variogram, 
which in practice is obtained from the same borehole data as used for the 
conditioning. It appears that this is the most important datum; the 
unconditional simulations really use a lot of the data in the form of the 
vanogram. 
It is also seen that the more costly procedures give improved means in 
the cases where the U-mean deviates much from the correct, better the 
more data is used, an improvement not seen in the variance. 
We venture the following conjecture: The variance will be proportional 
to 1/N if N is a representative number for the amount of data used. This 
is a law of diminishing return for investment in data acquisition which 
effectively rules out high precision. Significant improvements in 
variance will be obtained only as the number of data becomes much 
larger. 
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Figure 5.10: Computed means and confidence intervals (±2<J, where <J is the standard 

deviation) of the logarithms of particle breakthrough times in the six Monte-Carlo 

simulations. Notation used is: unconditioned fields (U), fields conditioned on 

measured conductivities (C), steady-state calibrated fields (S) and transient calibrated 

fields (T). The means for the truth fields are denoted by (E). 

In the following we look in some detail at the results of the simulation 

experiment. 

Particle traces. 
Figures 5.3 to 5.6 show particle traces of particle 5 in case 1. In figure 

5.3 the path in the truth field is shown. In the following 3 figures, 5.4 

and 5.6, the effect of the conditioning on the dispersion of the particle 

paths in the I 00 realizations is demonstrated. The large dispersion in the 

conditional simulations, fig. 5.4, is decreased by conditioning on 

measured conductivities, fig. 5.5. In the calibrated fields the ensemble of 

travel paths is further centered around the true path. 

Travel time statistics. 
In figures 5.7 to 5.19 histograms of the logarithm of the travel times for 

two particles are shown. We note that in general conditioning and 

calibration successively reduce the variance and that the variance always 

is smallest in the conditioned fields, either calibrated or conditioned on 
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conductivities. For both particles the mean and variance differ very little 
in the unconditional simulations between the six cases. This indicates 
that 100 realizations per truth field is sufficient for the precision required 
in our numerical experiment. 

6.2 Development of simulation tool 

The current study has produced a refinement of the simulator developed 
in our previous study (ref [16]). It allows quick method evaluation and 
what-if simulations. 
The simulator has been developed in MATLAB. Conductivity fields are 
generated by unconditional simulation, conditional simulation on 
measured conductivities and calibration on both steady-state head 
measurements and transient head histories. The fields can also include 
fracture zones and zones with different mean conductivities. Statistics of 
conductivity fields and particle travel times are recorded in Monte-Carlo 
simulations. 
Several kriging procedures are implemented, among others Kriging 
neighbourhoods. In cases where the expectation of the log-conductivity 
in the truth field is known the non-bias condition can be omitted, which 
will make the variance in the conditionally simulated conductivity fields 
smaller. 
The results obtained in the present study show less uncertainty than in 
the preceding study. This is mainly due to a modification of the kriging 
procedure but also to the use of more data. Still the uncertainty in cases 
of sparse data is apparent. Significant improvements in the uncertainty 
will be obtained only as the number of data becomes much larger. 
It is now a flexible and useful tool for 2D stochastic continuum 
simulations of groundwater flow, including inverse modelling 
techniques. 

6.3 Inverse modelling by the Pilot point method 

The pilot point method was chosen for its flexibility in implementation 
and reportedly strong potential for variance reduction. The results of this 
study support the first statement clearly and do not contradict the second. 
It is not clear how sensitive the variance reduction is to pilot point 
locations. The small experiment of section 4.4 showed comparable 
improvements with the sequential technique by RamaRao and La Venue 
and the manual one. The sequential method uses a grid of candidate 
points which should not be too fine; better results could probably have 
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been obtained with the sequential method if pilot points had not been 
allowed to cluster. 
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Appendix A. 
Kriging procedures implemented. 

We will here describe the kriging procedures implemented in the 
MATLAB code. For this purpose we first derive theoretical estimations 
of the variances in conditioned log-conductivity fields. 
Denote a row of Gm (eq. (8)) by AT. Then the kriging system (ref[7]) for 

a point at x in a conditional simulation obeying the non-bias condition is 

where 

(A.1) 

K = covariance matrix for data supports (measurements) 
k = vector of covariances between current point and data supports 
A = vector of kriging weights 
µ = Lagrange parameter. 

The bottom partition of the system is the scalar version of the non-bias 
condition (see section 3.2.2) 

The solution A without and with this condition is 

without non - bias condition 
with non - bias condition 

(A.2) 

Using eq. (8) of 3.2.2, with content interpreted as random functions 
rather then realizations, and denoting the variance in the unconditional 

simulation by O"iis = o-2 the variance in the conditional simulation can be 
expressed 
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=E{[ Y0 ,(x)-/iTuJ 2 }= 

=E{[ Yu,(x)] 2 }-2E{[ /lorn Yu,(x)]}+E{[ Jlumu:A]} = 

without non - bias condition 
with non - bias condition 

Denote the variance in conditional simulations obeying the non-bias 

condition by O'~sn and in simulations not obeying the non-bias condition 

by cr2 b. Then, since K is positive definite, we have 
CS 

2 2 
O' csb ~ O'csn 

2 2 
O'csb ~ O'us 

i.e. conditional simulations not obeying the non-bias condition yield the 
smallest variances. 

In the previous study (ref[ 16]) we saw that O'~sn was larger than O'iis 

except in the vicinity of the measurements. This observation suggested 
the use of kriging neighbourhood as a mean of decreasing the variance. 

The following kriging procedures are implemented in the MATLAB 
code: 

1. Kriging with non-bias condition. The kriging weights A are 
computed according to eq. 2 of (A.2). 
2. Kriging neighbourhood within ranges. The weight vector A at a 
location x is computed for a local kriging system, of the form 
(A.1 ), constructed from the data supports, whose ranges contain 
the point x. Note that for points outside the ranges the weights are 
zero making the conditional simulation identical to the 
unconditional simulation there. 
3. Kriging neighbourhood where cr2 b ~ cr2 . At locations where 

CS 

this condition is satisfied the weight vector is computed 
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according to eq. 2 of (A.2) and set zero otherwise. In this case the 
neighbourhoods become smaller than in procedure 2 since the 
condition is satisfied only in parts of the ranges. 
4. Kriging without non-bias condition. The kriging weights A are 
computed according to eq. 1 of (A.2). We note that also in this 
case the kriging weights for points outside the ranges become 
zero, since k is a zero vector there. 

These procedures of kriging have been tested in Monte-Carlo 
simulations to estimate travel times. The results indicate that kriging 
without non-bias condition (procedure 4) gives the smallest variances in 
log(travel time). This is also what one would expect in view of the 
theoretical discussion above. The procedures of kriging neighbourhood, 
especially procedure 3, showed little improvement in variance compared 
to the unconditional simulations when applied in the numerical 
experiment of the previous study (ref[l6]). 
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Appendix B. 
An example of conditioning on more data. 

To illustrate the dependency on the amount of data in the conditioning 
we show an experiment with more data. The computational model is the 
same as in the numerical experiment (sec. 5) but instead of 13 
conductivity measurements there are 42. The locations of the 
measurements are shown in fig. B.l. We compare unconditional 
simulations, denoted by (U), and simulations conditioned on 
conductivities, denoted by (C). 
The comparison includes 11 truth cases, with 100 realizations for each. 
In figure B.2 we have summarized the travel time statistics of the 
experiment. For U and C of each of the eleven truth cases, the mean of 
the particle mean and variance (of log(travel time)) is displayed in terms 
of confidence intervals (±2cr). The mean in the truth field (E) is also 
displayed. 
An improvement, somewhat larger in average than in the numerical 
experiment with 13 measurements, is obtained in all 11 cases but not as 
big as one intuitively might expect. The conjecture of the numerical 
experiment is further supported: the unconditional simulations contain a 
lot of data in the form of the variogram and significant improvements in 
variance is obtained only as the number of data becomes much larger. 
Figure B.3 illustrates the effect on the computed particle traces. The 
paths of particle 5 in the conditioned fields are displayed for truth case 4, 
which is identical to truth case 1 of the numerical experiment in section 
5. Comparing figure B.3 with figures 5.3-6 a narrowing of the dispersion 
pattern around the true path, especially in the area of the 42 
measurements, is evident. 
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Figure B.1: Computational model with conductivity measurements (x). The external 
head varies linearly along the boundaries as indicated and is 2 at (0,0), 1.5 at (600,0) 
and 0 at (0,900) and (600,900). The repository is indicated by the square. 
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Figure B.2: Computed means and confidence intervals (±20') of the logarithms of 
particle breakthrough times in the eleven Monte-Carlo simulations. Notation used is : 
unconditioned fields (U) and fields conditioned on measured conductivities (C). The 
means for the truth fields are denoted by (E). 



45 

900 

800 

700 

600 

500 

400 

300 

200 

100 

0 
-200 0 200 400 600 800 

Figure B.3: Traces of particle 5 in the fields conditioned on conductivities, case 4 
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Appendix C. 
Example of problem specification file. 

The specification file contains information about geometry, 
discretization, boundary conditions, variogram, pos1t10n of 
measurements etc .. When running the program the name of this file is 
given interactively. 

An example, the input file for the example treated in our previous study 
(ref[16]), is shown below. It is a MATLAB script file with explanatory 
comments, which together with some knowledge of MATLAB should 
make it possible to modify or generate new problem specifications. Note 
that the percent symbol % denotes a comment. 

% 
% ----- Computational model---------
% 

axl , hext ( 4 , : ) % 
% 
% 
% 
% 
% 
% 

NY _______ (LX, LY) 

% a0y 
% hext (1,:) 

% 
% 
% 
% 
% 
% 
% 

(0 I 0) 
1 

jy - - -

ix 

ax0, hext ( 3 , : ) 
NX 

aly 
hext(2,:) 

% Input data--------------
% 
% 
% 

% 

# head nodes length 

NX = 21; 
NY= 31; 

LX = 600; 
LY= 900; 

% # time steps time step 
% 

dx = LX/ (NX-1); 
dy = LY/(NY-1); 

nmt = 53; dt = 181500.0; 
% 
% Storativity 
% -----------

SS = 1.0e-7; 
% 
% Conductivity 
% ------------
% lOLog-conductivity mean 
% 

% x-direction 
% y-direction 



ymean = -9; 
% 
% Fracture zone data 
% 
% additional loglO-conductivity 
% loglO_conductivity in fracture 
% 

dyfrac = O; 
% 
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ymean + dyfrac 

% 
% 
% 
% 
% 

A fracture zone is specified by two lines. Each line is 
given by a normal (nl resp. n2) pointing into the fracture 
zone and a point (pl resp. p2) which it passes through. 

% 
%% 
%% 
% 

The fracture zone is the intersection of the regions defined 
by the lines. 

nl 
n2 

= [ 1 -0.5]; 
= [-1 -0.5]; 

pl 
p2 

= [0 OJ; 
= [300 OJ; 

% Semivariogram 
% -------------
%model= spheric or exponen 

model= 'spheric'; 
semivar(l) = l; % variance (sill) 
semivar(2) = 100; % range 
semivar(3) 100; % in exponential case: distance outside which 

% the covariance is set zero, default is 3*range 
% 
% 
% 
% 
% 
% 

% 

krnb = 
= 
= 
= 

krnb = O; 

-1 kriging 
0 kriging 
1 kriging 
2 kriging 

% Boundary conditions 
% 

without non-bias condition 
in whole domain 
in whole ranges 
where kriging variance < sill 

% 
% 

Convection coefficients at the four sides 

aOy = 1.0e2; aly = 1.0e2; axO = 1.0e2; axl = 1.0e2; 
% 
% External heads. Linear variation along boundary from vall to val2 
% 
% vall val2 
% 

hext = 2, O; % along line ( 0, 0) 
1. 5, O; % along line (LX, 0) 

2, 1. 5; % along line ( 0, 0) 
o, 0 % along line ( 0,LY) 

l ; 
% 
% Pumping source 
% --------------
% Location in terms of head node indices in matrix 
% indq(# sources,2) 
% 
% ix jy; 
% 

indq = [11, 16 
] ; [nsrc, dum] = size ( indq) ; 

% 
% Time history in matrix q(# sources,# time steps+ 1) 
% q(:-,1) for time O and q(:,nmt+l) for time nmt*dt 
% 

to ( 0,LY) 
to (LX,LY) 
to (LX, 0) 
to (LX,LY) 

q = 1.0e-6*[ones(nsrc, (nmt-1)*3/4+1) zeros(nsrc,nmt-(nmt-1)*3/4)]; 



% 
% 
% 
% 
% 
% 
% 
% 
% 

-6 
10 

q" 

I 
I 

+-----------!----,-> 
0 3nmt/4 runt 
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% Initial positions for particles in row vectors xO and yO 
% 
% x-position 

x0=reshape(ones(4,1)*[5*dx,6*dx,7*dx,8*dx] ,1,16); 
% y-position 

y0=reshape([5*dy,6*dy,7*dy,B*dy] '*ones(l,4),1,16); 
% 
% Stations for head measurements in terms of head node 
% indices in matrix indm(# head measurements,2) 

% ---------------------------------------------
% 
% 

indm = 

ix 

(12 
6 

16 

jy; 

11; 
19; 
19 

l; [nmeas,dum] = size(indm); 
% 
% Stations for conductivity measurements and pilot points in 
% terms of head node indices in matrix 
% indpc(# cond.measurements and pilot points,2) 
% ---------------------------------------------
% 
% 

% 

% 

ix jy; 

indpc = [10 5; 
4 6; 

12 11; 
11 16; 

6 19; 
16 19; 
17 26 

indpc= [ indpc; 
8 17; 

14 18; 
11 13 

] ; [ncmeas,dum] = size(indpc); 

l; 
[ncmtot,dum] = size(indpc); npilot = ncmtot-ncmeas; 

% cstat = 0 
% 1 
% 

no statistics on conductivity fields 
statistics on conductivity fields 

cstat = O; 
% 
% opt =-2 
% -1 
% 0 
% 
% 
% 

1 
2 

statistics on conductivity fields only 
conditioning on conductivities only 
steady state calibration 
steady state+ transient calibration 
transient calibration 

% 
% 

wss is weight for steady state part of objective function 

% 
% Seed 
% 

opt= 2; wss = 1; 



seed=7; 
% 
% Method parameters 
% -----------------
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itmax = 5; % Maximum number of CG-iterations 
tol = 0.01; % Tolerance for terminating CG-iterations 

% 
ttol=l; % Tolerance for particle tracing 

% 
% Save particle traces 
% -------------
% isave = [1 1 1]; 
% tpar = [2 14]; 
% 
% Truth fields from tru sta to tru end are simulated (see below) 
% ------------

tru_sta = l; tru end= 5; 
% 
% Realizations from real_sta to real end are simulated 
% for truth field tru sta. Otherwise from 1 to real end. 
% 

real sta = l; real end= 100; 
% 
% cont= 1 if continuation of Monte Carlo simulations. Then seeds 
% for truth field tru sta and realization real sta are 
% read from file. 
% = 0 otherwise 
% 

cont= 0; 
% 
% The program works as follows: 
% ----------------------------
% 
% Doi= tru_sta : tru_end 
% 
% Save random number. 
% Choose as the truth a realization respecting the variogram. 
% Generate simulated measurements from truth field for the 
% conditioning. 
% If isave exists then 
% particle traces for particles tpar are saved 
% on file 'pm mod_nam(i) .mat' 
% else 
% save particle breakthrough times (tfinm), x- and y-coordinates 
% of exit (xfinm, yfinm), measured heads (Meas), 
% mean logl0-cond. in measurement- and pilot-points(cmeanmp) 
% and logl0-conductivity relative mean in these points (ctrump). 
% on file 'tm mod_nam(i) .mat' 
% end 
% 
% Do j = real_sta : real_end 
% 
% Save random number. 
% Make a realization Yus respecting the variograrn. 
% Record particle breakthrough times (tfinn) and 
% x- and y-coordinates of exit (xfinn, yfinn). 
% If isave(l)=l then 
% particle traces for particles tpar are saved 
% on file 'pn mod_nam(i) j.mat' 
% end 
% 
% Make a realization Yes, based on Yus and conditioned on 
% the conductivities only. 
% Record particle breakthrough times (tfinc) and 
% x- and y-coordinates of exit (xfinc, yfinc). 
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% If isave(2)=1 then 
% particle traces for particles tpar are saved 
% on file 'pc mod_nam(i) j.rnat' 
% end 
% 
% Make a realization Yee, based on Yus and conditioned on 
% the conductivities and head measurements. The conditioning 
% on the heads is either a steady state calibration, 
% a transient calibration or a combination of these. 
% Record particle breakthrough times (tfinh), x- and y-
% coordinates of exit (xfinh, yfinh) and errors in head (err). 
% Also record value of objective function (jvit) and 
% pilot point values (xpit) relative mean for each Cg-iteration. 
% If isave(3)=1 then 
% particle traces for particles tpar are saved 
% on file 'ph mod_nam(i) j.rnat' 
% end 
% 
% If isave doesn't exist then 
% save particle breakthrough times, x- and y-coordinates of 
% exit and errors in head on file 'tr mod_nam(i) j.mat'. 
% Save objective function and pilot point values on file 
% •jv mod_nam(i) j.mat'. 
% end 
% 
% end 
% 
% end 
% 
% mod_nam = [ , a , , b , , c , , a , , e , , f , , g , , h , , i , , j , , k , , 1 , , m , 

% "n' 'o' 'p' 'q' 'r' 's' 't' 'u' 'v' 'w' 'x' 'y' 'z']; 
% 
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