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1	 Introduction 

The role of the flow-dependent parameters τ [T] and β [T/L] in controlling transport and 
retention in heterogeneous fractures and fracture networks was established in previous 
SKB projects /e.g. Cvetkovic et al. 1999, 2004, Painter et al. 1998/. The non-reacting 
travel time τ [T] and cumulative reactivity parameter β [T/L] (also referred to as transport 
resistance and denoted F) are cumulative parameters obtained by integrating along random 
streamlines. Once the probability distributions for these parameters are known, probabilistic 
simulations of transport can be performed with relatively little effort. 

Detailed analyses /Cvetkovic et al. 2004/ of comprehensive discrete-fracture network simu-
lations using the FracMan platform /Outters 2003/ clearly demonstrate that the distributions 
of τ and β are highly non-Gaussian at the scales of interest, which is inconsistent with the 
results of continuum models and suggests that discrete fracture network (DFN) simulation 
is a more reliable method for assessing transport in sparsely fractured rock. However, DFN 
simulations are computationally expensive, and usually limited to relatively small scales. 
To overcome this limitation, a method /Painter and Cvetkovic 2005/ for direct upscaling of 
discrete fracture networks was developed in previous SKB projects. The upscaling method 
allows results from relatively small-scale DFN simulations to be used in probabilistic 
simulations at the field scale. 

To be accurate, any DFN-based simulation must adequately represent the transport pro-
cesses at small scales. Aperture variability within individual fractures is routinely neglected 
in DFN simulations. That is, individual fractures are assumed to be homogeneous. The 
cumulative reactivity parameter β is then computed as a ratio of the “flow-wetted surface” 
and flow rate of an individual fracture. In reality, individual fractures are heterogeneous, 
which may cause flow to be “channelized” in individual fractures. However, the importance 
of internal variability relative to other sources of variability in the flow system is not obvi-
ous. On the one hand, internal variability in aperture tends to be smaller than fracture-to-
fracture variability, which would suggest that internal aperture variability is less important. 
On the other hand, flow channeling in heterogeneous fractures tends to cause flow lines to 
coalesce in high-velocity regions, which may introduce a systematic bias toward lower β 
and less retention. 

Previous studies /Cvetkovic et al. 1999/ of the transport effects of flow channeling in 
variable-aperture fractures typically considered a single fracture isolated from the rest of the 
network. Although these studies yield some clear insights into the process, the unrealistic 
boundary conditions for flow limit the usefulness of the results for field-scale applications. 
Flow in an individual fracture is controlled not only by the aperture variability, but also 
by the boundary conditions that are determined by connections with other fractures in the 
network. Fluid may enter and leave a fracture only where the fracture intersects other frac-
tures. These connections may represent a relatively small fraction of the fracture surface. 
This limited connection to other fractures introduces a certain degree of flow channeling 
independent of that caused by aperture variability. The relative importance of the two chan-
neling mechanisms – heterogeneity-induced or geometry-induced – cannot be investigated 
without considering heterogeneous fractures embedded in a three-dimensional network. 

The effects of within-fracture variability relative to those of fracture-to-fracture variability 
were investigated previously by /Painter and Cvetkovic 2001/. The conclusion from that 
study was that within-fracture aperture variability contributes little to field-scale transport 
because it is overwhelmed by the much larger fracture-to-fracture variability. However, that 
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study used a kinematic representation of the streamline that did not explicitly resolve flow 
dynamics within the fracture. The consequences of this approximation are not clear, which 
leaves the issue of internal variability unresolved.

This report addresses the importance of internal fracture aperture variability in determining 
field-scale transport in fractured rock. Discrete fracture network simulation with internal 
aperture variability within each fracture is the primary tool for the investigation. This 
approach makes it possible to investigate the relative importance of the various sources of 
flow channeling and their effect on field‑scale transport. 
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2	 Methods and procedures 

DFN simulation and particle tracking were the primary tools for this study. Networks of 
30–50 randomly placed fractures were simulated. Aperture variations within each fracture 
were modeled as random space functions, and simulated using stochastic simulation 
methods. After simulating the fracture network, Laplace’s equation was solved to establish 
the steady-state flow field. Particle tracking in the steady-state velocity field was then 
used to calculate random trajectories and the associated τ and β parameters. The set of 
the calculated τ and β represent a random sample from the underlying joint distribution. 
By comparing the calculated sample distribution for various degrees of assumed internal 
aperture variability it is possible to quantify the effect of aperture variability. 

DFN simulation is a standard approach for investigating transport in sparsely or moderately 
fractured rock. However, particle tracking within three-dimensional DFNs is difficult to 
implement accurately. Numerical implementation of particle tracking in two-dimensional 
single fractures or fully three-dimensional aquifers is well understood. In three-dimensional 
DFNs, however, particles move in a random velocity field that is intermediate between 
two-dimensional and three‑dimensional. Within a single fracture, the velocity field is 
two-dimensional, but at fracture intersections three-dimensional effects, which cause mass 
transfer between fractures, must be accounted for. Although conceptually straightforward, 
this intermediate situation is numerically delicate and appears to be susceptible to numerical 
artifacts. Significant numerical artifacts have been identified /Painter 2003/ in standard 
commercial software. To avoid these numerical artifacts, an approximate, but more robust, 
simulation approach was developed. This alternative simulation method is based on 
particles that “hop” from node to node on a regular finite-difference grid. 

Details of the simulation procedure and the node-routing particle transport method are 
provided in the following subsections. 

2.1	 Simulation procedure 
The numerical experiments used the following procedure. 
1.	 A realization of the DFN was created by sampling from pre-specified distributions of 

log-transmissivity for disk-shaped fractures. Log‑transmissivity in this context refers to 
an average value for the individual fracture. 

2.	 For each fracture in the network, a random field with zero mean and unit variance was 
generated by stochastic simulation. The random fields were saved. 

3.	 A log-transmissivity field for each fracture was created by scaling its random field by 
σ and adding the result to the average value from Step 1. Here σ2 is the log-variance for 
internal variability. The result was then exponentiated to obtain a transmissivity field. 
Aperture was calculated from transmissivity using the quadratic law. 

4.	 Step 3 was repeated for different values of the parameter, σ, representing different 
heterogeneity levels. Four values of σ2 were used: 0, 1, 2, and 3. Thus, each realization 
of the DFN from Step 1 spawned four DFN realizations with internal aperture variability 
and different levels of heterogeneity. 

5.	 Flow fields, particle trajectories, and resulting τ,β distributions were generated for each 
of the four realizations in Step 4. 
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Steps 1–3 create a hierarchical random field for the transmissivity; the geometric mean 
transmissivity varies from fracture to fracture, and the local transmissivity within each 
fracture varies spatially around its geometric mean. 

The four realizations created in Step 4 are perfectly correlated but with different levels 
of heterogeneity. This correlated sampling procedure prevents random fluctuations 
from obscuring any heterogeneity-induced effects on the τ,β distribution, thus allowing 
meaningful results to be extracted from a relatively small number of realizations.

The 5-step procedure was repeated to create 10 independent realizations of the DFN. 
Because each independent realization results in 4 correlated realizations, the particle 
tracking calculation (Step 5) was performed on 40 realizations for each combination of 
input parameters.

2.2	 Lattice representation of the DFN 
A lattice-based approach similar to the smeared-fracture model /Svensson 2001/ was 
used to represent the DFN and the velocity field. In the particular variant used here, the 
simulation domain was first subdivided into a large number of rectangular cells. If a 
simulated fracture intersected the face between two adjacent cells the link between those 
two cells was activated and assigned the transmissivity of the fracture. If a cell face was not 
intersected by a fracture, the link between the adjacent cells remained inactive. Repeating 
the procedure for all fractures in the DFN resulted in a sparse lattice network of short 
pipe segments (links or bonds) representing the DFN (see Figure 2-1). Internal variability 
in fracture transmissivity and aperture is easily incorporated – the transmissivities of the 
bonds representing each fracture was assigned by stochastic simulation, as described later 
in this report. Steady-state hydraulic head on the lattice was solved by applying Kirchoff’s 
law to each node. A sparse linear solver was then used to solve the resulting linear system. 
/Svensson 2001/ used detailed numerical simulation to investigate the accuracy of the 
closely related smeared fracture model, and demonstrated that the method is accurate 
provided the cell size is sufficiently small. 
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2.3	 Node-routing method for particle transport 
Once the hydraulic head on the lattice network representing the DFN has been established, 
the next step was to move particles through the lattice network and accumulate statistics on 
τ and β. A node routing method was developed to mimic purely advective movement within 
a fracture and complete mixing at fracture intersections. In this method, a particle hops from 
node to neighboring node. If the starting node belongs to only one fracture, then the particle 
moves to a downstream node along the link (pipe segment) with the largest outgoing flux. 
This choice is intended to mimic purely advective transport within single fractures. If the 
starting node belongs to multiple fractures, then the particle is moved along a link selected 
randomly from the links with outgoing flux. The probability for selecting a given link in this 
case is weighted by the magnitude of the outgoing flux, thus mimicking complete mixing at 

Figure 2-1.  Example pipe network resulting from the lattice-based representation of a DFN. 
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fracture intersections. The residence time (and hence incremental increase in τ) in the 	
link connecting the two nodes is determined by the flow velocity in that link. Similarly, 	
the incremental increase in β is determined by the flow velocity and fracture aperture of 	
the link. 

If the local velocity field is aligned with the regular lattice network, then the node routing 
approach provides an exact representation of the trajectory and the associated τ and β. If 
the velocity is misaligned from the lattice principal direction by 45°, then the simulated 
trajectory will oscillate in step-wise manner around the true trajectory and the travel 
distance will be overestimated by a factor of 2 . In addition, the flow velocity will be 
underestimated by the same factor, with the net effect being to overestimate τ and β by 
a factor of 2. A heuristic correction is used to compensate for this bias in the estimated 
flow-dependent transport parameters. The heuristic correction is calculated by first finding 
the true flow direction as the resultant of the link velocities. The angle θ between the true 
flow direction and the selected link direction is then calculated. The incremental increase 
in τ and β along the link is then decreased by a factor of cos2(θ). This correction exactly 
compensates the bias if the lattice principal direction and flow direction are misaligned by 
45° and has no effect if the lattice principal direction and flow direction are aligned. Note 
that the procedure works on arbitrary unstructured grids, but is applied only to regular 
structured grids in this report.

Although the particular variant of the node-routing method developed for this study appears 
to be new, the method is related to the node-routing scheme used by /Desbarats 1990/ in his 
well-known study of transport in sand/shale sequences. The new aspects of the node-routing 
method developed for this study are the deterministic routing within individual fractures, 
the correction to remove the systematic bias in the trajectory lengths, and the validation 
efforts. Performance assessment calculations for the potential repository at Yucca Mountain, 
Nevada also use a particular type of node-routing scheme /Robinson et al. 2003/. Their 
“cell-based particle tracking” method included strong retention processes and was tested 
against alternative modeling approaches.

Numerical experiments were used to test the accuracy of the lattice hopping method. The 
scenario for the test was a single horizontal fracture placed at the horizontal midplane of 
a simulation volume. The fracture diameter is large compared to the domain size, thus 
generating a fully two-dimensional pathway from the upstream to downstream sides of the 
volume. The SGSIM code from GSLIB /Deutsch and Journel 1992/ was used to simulate 
three realizations of the transmissivity field for the fracture. The log-normal random space 
function model was used, with log‑variance of 0.1, 1 and 3 for the three realizations of 
transmissivity. Aperture was calculated from transmissivity using a quadratic law /Outters 
2003/. A macroscopic hydraulic gradient was applied in one direction, with no-flow 
boundary conditions on the other sides. Because the flow path and resulting velocity 
field were fully two-dimensional, conventional particle tracking is straightforward, thus 
providing an independent benchmark solution. Particles were released on the upstream side 
and moved through the velocity field by conventional particle tracking and by the node-
hopping method. 

Particle trajectories obtained from the conventional particle tracking and the node-hopping 
method are shown in Figure 2-2 for the test case with log-variance of 3. The particle 
trajectories, which are initially distributed across the upstream end of the fracture, tend to 
coalesce into a small number of relatively thin flowing zones as they move through the 
fracture. This general behavior is reproduced in the node-routing results. More importantly, 
the τ and β distributions obtained from the node-routing method are in close agreement 
with the conventional particle tracking results. Distributions of β as calculated by the 
two methods are compared in Figure 2-3. The test case with log-variance of 1 is shown 
in Figure 2-3a, and the more heterogeneous case with log-variance of 3 is shown in 
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Figure 2‑3b. In both cases, the difference between the conventional particle tracking and 
the node routing results is much smaller than the spread in the distribution. Similar results 
(not shown) were obtained for the τ distributions and for the weak heterogeneity case. These 
successful tests demonstrate that the node-routing method is adequate for the purposes of 
this study. 

Figure 2-2.  Single-fracture configuration used to test the accuracy of the node‑routing scheme 
used in this report. Flow is from left to right. The hydraulic head on the single fracture is shown 
in color. Particle tracks obtained from the node routing (top) and conventional particle tracking 
(bottom) are also shown. 
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2.4	 Single-fracture transmissivity simulation 
The transmissivity fields for the individual fractures were generated by geostatistical 
stochastic simulation. This process requires a random space function (RSF) model for the 
transmissivity variations. 

/Brown 1995/ measured surface profiles of several natural fractures, and found that surface 
roughness is accurately represented by self-affine fractal models that lack a characteristic 
length scale. However, long wavelength variations in the two surfaces of each fracture are 
closely correlated, which introduces a wavelength cutoff in the aperture variability. Aperture 
variation in this situation is consistent with a conventional geostatistical model with a single 
correlation length. 

Mapped distributions of void space in natural fractures subject to applied stress generally 
show increasing contact area with increasing stress (Gale 2005). (Gale 2005) used the resin 
impregnation method to characterize the void-space geometry of several natural granite 
fractures subject to known stress, and found that the aperture distribution in the open part 	
of the fracture is well approximated by a log-normal distribution. 

Figure 2-3.  Comparison of calculated cumulative reactive distribution based on traditional 
particle tracking (solid curves) and node-routing scheme (individual data points) on a single-
fracture with low (a) and high (b) variability. 
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Asperities were neglected in this study and aperture was modeled as having a log-normal 
distribution. The log-normal model for aperture is widely used in studies of transport in 
fractured rock, and is an appropriate first approximation for studying the relative effects 	
of internal aperture variability. 

If aperture b and transmissivity T are related as T ∝ ba, as is typically assumed, then a 
log-normal distribution of aperture implies a log-normal distribution of transmissivity, albeit 
with different distribution parameters. For a parallel plate model, a is equal to 3 (cubic law). 
A quadratic law (a = 2) sometimes provides a better fit to field data /Doe 1993/ and was 
used in this study. 

Log-transmissivity variation within individual fractures was modeled as a conventional 
multi-normal random-space function with an exponentially decaying autocorrelation. 
The sequential Gaussian simulation code SGSIM from the GSLIB collection was used to 
generate the transmissivity fields. 
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3	 Transport effects of fracture 	
aperture variability 

3.1	 Parameters for the reference case and variants
Five sets of simulations were performed. The domain for each was 12×12×12 m in size 
and was subdivided into 81×81×81 computational cells. Ten realizations of the DFN 
were generated for each set. As described previously in this report, four simulations 
corresponding to different levels of internal variability were performed for each realization 
of the DFN. For each simulation, 500 particles were tracked. A flux-weighted particle 
source was used; that is, the probability for picking one of the cells on the upstream face 	
of the domain as a starting point was proportional to the flux through that location. 

Networks of 35 fractures were simulated for the reference case. Fracture radius was 
selected from a log-normal distribution with geometric mean of 3.5 m and log-variance 
of 0.3. Fracture orientation was random and isotropic. Fracture transmissivity (spatial 
average for fracture) was log-normal with log-variance of 1. The log-normal RSF model 
with correlation length (isotropic) of 2 m was used to model the internal transmissivity 
variability. 

Five variant cases were considered:
•	 Case HD has a higher fracture density than the reference case. In this case 50 fractures 

were simulated in each DFN. Other parameters are the same as the reference case. 
•	 Case LC has a longer correlation length (4 m), but is otherwise identical to the 	

reference case. 
•	 Case SC has a shorter correlation length (1 m), but is otherwise identical to the 	

reference case. 
•	 Case RV has reduced fracture-to-fracture variability in transmissivity. A log-variance 	

of 0.0025 was used instead of the reference-case value of 1. 
•	 Case RI is identical to the reference case except that a residence injection source is 	

used instead of the flux-weighted source. 

3.2	 Reference case results 
Calculated hydraulic head for one realization from the reference case is shown in 
Figure 3‑1. Flow is from left to right in this case. Note the unequal distribution of hydraulic 
head in the network. Particle tracks for the same realization are shown in Figure 3-2. 

Distributions of τ for the four levels of heterogeneity are shown in Figure 3-3a. The 
cumulative distribution and complementary cumulative distribution are both shown on a 
log-log scale to make both tails of the distribution visible. In this and the following figures, 
τ is shown in arbitrary, but internally consistent, units. Specifically, τ is normalized by 
the median of the σ2 = 0 result. It can be seen from Figure 3-3a, that heterogeneity has no 
significant effect on the τ distribution. 
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Distributions of β are shown in Figure 3-3b. The σ2 = 1 situation is not significantly 
different from the σ2 = 0 case. For larger values of log-variance, internal heterogeneity 
causes a shift in the distribution to smaller values. However, the effect is modest and is 
only significant in the left tail of the distribution. In the σ2 = 2 situation, the 0.1 percentile 
is approximately half of the corresponding percentile in the no-internal variability case 
(σ2 = 0). For larger percentiles, the shift is even smaller: the median β with σ2 = 2 is 0.85 	
of that of the σ2 = 0 situation. 

Figure 3-1.  Calculated hydraulic head from one discrete fracture network realization from the 
reference case set. Flow is from left to right. 
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Figure 3-2.  Example particle trajectories obtained by applying the node-routing scheme to the 
DFN of Figure 3-1. 
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3.3	 Parameter sensitivity 
For all cases examined, internal heterogeneity had no significant effect on the τ distribution. 
For that reason, only β results are shown in this section. 

Distributions of β for the higher fracture density case (Case HD) are shown in Figure 3-4. 
The small β tail of the distribution, which is an important control on transport, is affected 
by heterogeneity in a manner similar to the reference case. However, the effect is somewhat 
reduced relative to the reference case. The large β tail is more sensitive to heterogeneity. 
However, the large β tail is relatively unimportant for transport. Moreover, the effect is to 
shift the distributions to higher values of β, implying reduced transport. Thus, it is conserva-
tive from a safety assessment perspective to simply ignore the effect on the large β tail. 

Distributions of β for the longer correlation (Case LC) and shorter correlation (Case SC) 
cases are shown in Figures 3-5 and 3-6, respectively. For both cases, the effect of hetero-
geneity on the small β tail is similar to that of the reference case. However, the effect is 
reduced somewhat compared to the reference case. 

Figure 3-3.  Cumulative and complementary cumulative distributions of τ (top) and β (bottom) 
for the reference case. The four colors correspond to different levels of internal variability in 
transmissivity as quantified by the log-variance (σ2). 



19

Figure 3-4. Cumulative and complementary cumulative distributions of β for the Case HD  
(higher fracture density). The four colors correspond to different levels of internal variability  
in transmissivity as quantified by the log-variance (σ2), as in Figure 3-3. 

Figure 3-5.  Cumulative and complementary cumulative distributions of β for the Case LC  
(longer correlation length). The four colors correspond to different levels of internal variability  
in transmissivity as quantified by the log-variance (σ2), as in Figure 3-3. 
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Results for Case RV (reduced fracture-to-fracture variability) are shown in Figure 3-7. For 
this case, internal variability has a greater effect on the β distribution. Specifically, the shift 
in the small β tail starts at smaller values of σ2, as opposed to the reference case, which 
requires a threshold value of σ2 be reached before internal heterogeneity starts to shift the 
distribution. A comparison between the reference case and Case RV lends support to the 
observation that internal variability must exceed fracture-to-fracture variability before 
internal variability starts to affect the β distribution. Note that Case RV has unrealistically 
low fracture-to-fracture variability and should not be considered representative of expected 
conditions. 

Results for Case RI (residence injection) are shown in Figure 3-8. The β distribution is 
broader in the residence injection case and internal variability has an even smaller effect. In 
fact, no significant effect on the β distribution can be seen in the residence injection case. 
It is to be expected that the flux weighted injection would result in larger effect of internal 
variability, because the starting locations with significantly higher fluxes receive compara-
tively larger number of particles with flux weighted injection, which tends to amplify the 
effects of internal variability. However, if the simulations are sufficiently large, it is also 
expected that the flux-weighted and residence injections would start to converge. That is, 
with larger simulations, the residence injection and flux-weighted cases are expected to 
become closer, but the flux-weighted case should always result in greater effect of internal 
variability. In either case, the effect of internal variability on β appears to be modest. 

Figure 3-6.  Cumulative and complementary cumulative distributions of β for the Case SC  
(shorter correlation length). The four colors correspond to different levels of internal variability  
in transmissivity as quantified by the log-variance (σ2), as in Figure 3-3. 
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Figure 3-7.  Cumulative and complementary cumulative distributions of β for the Case RV 
(reduced fracture-to-fracture variability). The four colors correspond to different levels of internal 
variability in transmissivity as quantified by the log‑variance (σ2), as in Figure 3-3.

Figure 3-8.  Cumulative and complementary cumulative distributions of β for the Case RI 
(residence injection). The four colors correspond to different levels of internal variability in 
transmissivity as quantified by the log-variance (σ2), as in Figure 3-3.
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4	 Accounting for internal variability in large-
scale DFN simulations 

The relatively small effect of internal variability on the cumulative reactivity distribution 
observed for relevant ranges of parameters suggests a simple scheme for accounting for 
internal variability in large-scale DFN simulations. The idea is to use small-scale simula-
tions similar to those summarized in Section 3 to define an empirical transformation of the 
cumulative reactivity distribution. Large‑scale DFN simulations without internal variability 
would then be performed. The results of these large-scale DFN simulations could then 
be post-processed using the empirical transformation before the results are used in safety 
assessment. Given that transport results are most sensitive to the left tail of the β distribu-
tion and that internal variability does not significantly affect the right tail of the distribution, 
the transformation need only be applied to the left side of the distribution. Effect of internal 
variability on the τ distribution was found to be negligible in all cases and can be ignored. 

Exploring this idea further, let q*p denote the p-th quantile of cumulative reactivity with 
internal variability as calculated from small-scale DFNs. The quantile is formally defined 	
as the solution q*p of F*(q*p) = p where F* is the distribution function. In addition, let q * p 
denote the corresponding quantity without internal variability. These quantiles can be 
estimated from small DFN simulations similar to those summarized in this report. An 

empirical ratio function ζ p( )≡
q* p

q * p

 can then be fitted. 

Now, let qp and q * p denote p-th quantiles of cumulative reactivity parameter at the larger 
scale with and without internal variability. The quantiles qp define the cumulative reactivity 
distribution at large scales including internal variability at the single-fracture scale, and can 
be calculated from 

qp = ζ p( )q p										          (1)

Thus, with this procedure, the cumulative reactivity distribution at large scales including the 
effect of internal variability is obtained. 

For the reference case simulations, ζ (p) can be relatively well fit by 

( ) pp 9.055.0 +=ζ 									         (2)

A check on the accuracy of this fit is shown in Figure 4-1. The curve was obtained by 
applying Equations 1 and 2 to the σ2 = 0 results. That is, the case without internal variability 
was transformed according to the Equations 1 and 2, to obtain the curve in Figure 4-1. This 
calculation corresponds to how the empirical adjustment might be used in practice once 
an empirical transform is developed from small-scale DFN simulations. As a check on the 
accuracy of that procedure, the individual data points representing the distribution obtained 
from DFN simulations with internal variability (σ2 = 2) are also plotted in Figure 4‑1. The 
agreement is very good except in the extreme left tail of the distribution, where the recon-
structed distribution is shifted slightly to larger values. This general agreement indicates that 
the suggested procedure is sufficiently accurate for use in performance assessment studies. 
However, the empirical transform Equation 2 was developed for a particular combination 	
of DFN parameters and should be revised in applications involving other DFN models. 
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Figure 4-1.  Test of a method for post-processing DFN results to account for internal variability, 
as described in Section 4. The solid curves are cumulative and complementary cumulative 
distributions of β from DFN simulations with internal variability. The data points represent the 
same distributions as calculated by post-processing of DFN simulations without variability. 
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5	 Conclusions and recommendations 

The following conclusions can be drawn from the simulations results. 
1.	 Internal variability in aperture and transmissivity causes no significant change in the 	

τ distribution. 
2.	 Internal aperture/transmissivity variability can decrease the cumulative reactivity 

parameter β, but only when the internal variability equals or exceeds the fracture-to-
fracture variability. 

3.	 The decrease in β caused by internal variability is modest. At the leading edge of the 
distribution, internal variability reduces β by about 50%. In other words, neglect of 
internal variability would result in about a factor of 2 error in β at the leading edge of 	
the distribution. The reduction is even smaller (~ 15%) in the center of the distribution. 

4.	 The node-routing method developed for this study provides a convenient and accurate 
approximation to advective transport within single fractures. 

The relatively small contribution of internal variability to field-scale transport is consistent 
with the previous results of /Painter and Cvetkovic 2001/ and lends further support for 
ignoring internal variability in geosphere-scale safety calculations.

These conclusions are based on the assumed model for single-fracture variability. Sensi
tivity studies described in this report suggest limited sensitivity to the assumed model. 
However, all of these sensitivity studies used a simple multi-gaussian random space 	
function model because of limited information on internal aperture variability. More 	
complicated models that include asperities or improved connectivity between large-	
aperture regions may lead to more channeling and smaller values of β. 

An empirical post-processing of the β distribution similar to that used in Figure 3-3 is 
recommended to account for internal variability in future safety assessment calculations. 
The proposed procedure is to perform a limited number of small-scale DFN simulations 
with internal variability to obtain an empirical relationship between the β distributions 	
with and without internal variability. This empirical transformation of the β distribution 
could then be applied to the results of large DFN simulations as a post-processing step. 	
In the absence of additional information on internal variability, Equation 1 is recommended 
as the transformation. However, improved models of internal variability are expected to 	
be available in the near future – as these become available, simulations like those in the 
report should be repeated to obtain an improved transformation. 



27

References

Brown S R, 1995. Simple mathematical model of a rough fracture, Journal of Geophysical 
Research, 100(84), 5,941–5,922.

Cvetkovic V, Selroos J-O, Cheng H, 1999. Transport of reactive tracers in rock fractures, 
Journal of Fluid Mechanics, 378, 335–356. 

Cvetkovic V, Painter S, Selroos J-O, Cheng H, 2004. Stochastic simulation of 
radionuclide migration in discretely fractured rock near the Aspo Hard Rock Laboratory, 
Water Resources Research 40, doi:10.1029/2003WR002655. 

Desbarats A J, 1990. Macrodispersion in sand-shale sequences, Water Resources Research 
26(1), 153–163. 

Deutsch C V, Journel A G, 1992. GSLIB: Geostatistical Software Library and User’s 
Guide, Oxford University Press, New York. 

Doe T, 1993. Derivation of fracture transport aperture. Unpublished report. Golder 
Associates Inc., Seattle Washington USA. 

Outters N, 2003. A generic study of discrete fracture network transport properties using 
FracMan/MAFIC, SKB R–03–13. Svensk Kärnbränslehantering AB.

Painter S, Cvetkovic V, Selroos J-O, 1998. Transport and retention in fractured rock: 
Consequences of a power-law distribution for fracture lengths, Physical Review E 57(6), 
6,917–6,922. 

Painter S, Cvetkovic V, 2001. Stochastic analysis of early tracer arrival in a segmented 
fracture pathway, Water Resources Research, 37(6), 1,669–1,680.

Painter S, 2003. Statistical analysis of discrete fracture network simulations, 
SKB TS‑03‑01. Svensk Kärnbränslehantering AB.

Painter S, Cvetkovic V, 2005. Upscaling discrete fracture network simulations: An 
alternative to continuum transport models, Water Resources Research, 41, doi:10.1029/
2004WR003682. 

Robinson B A, Li C, Ho C K, 2003. Performance assessment model development and 
analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada, Journal 
of Contaminant Hydrology 62, 249–268. 

Svensson U, 2001. A continuum representation of fracture networks. Part I: Method and 
basic test cases. Journal of Hydrology 250, 170–186. 


	Contents
	1	Introduction 
	2	Methods and procedures 
	2.1	Simulation procedure 
	2.2	Lattice representation of the DFN 
	2.3	Node-routing method for particle transport 
	2.4	Single-fracture transmissivity simulation 

	3	Transport effects of fracture aperture variability 
	3.1	Parameters for the reference case and variants
	3.2	Reference case results 
	3.3	Parameter sensitivity 

	4	Accounting for internal variability in large-scale DFN simulations 
	5	Conclusions and recommendations 
	References



