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1	 Introduction	

The role of the flow-dependent parameters τ [T] and β [T/L] in controlling transport and 
retention	in	heterogeneous	fractures	and	fracture	networks	was	established	in	previous	
SKB projects /e.g. Cvetkovic et al. 1999, 2004, Painter et al. 1998/. The non-reacting 
travel time τ [T] and cumulative reactivity parameter β [T/L] (also referred to as transport 
resistance	and	denoted	F)	are	cumulative	parameters	obtained	by	integrating	along	random	
streamlines. Once the probability distributions for these parameters are known, probabilistic 
simulations	of	transport	can	be	performed	with	relatively	little	effort.	

Detailed analyses /Cvetkovic et al. 2004/ of comprehensive discrete-fracture network simu-
lations using the FracMan platform /Outters 2003/ clearly demonstrate that the distributions 
of τ and β are highly non-Gaussian at the scales of interest, which is inconsistent with the 
results of continuum models and suggests that discrete fracture network (DFN) simulation 
is a more reliable method for assessing transport in sparsely fractured rock. However, DFN 
simulations are computationally expensive, and usually limited to relatively small scales. 
To overcome this limitation, a method /Painter and Cvetkovic 2005/ for direct upscaling of 
discrete	fracture	networks	was	developed	in	previous	SKB	projects.	The	upscaling	method	
allows	results	from	relatively	small-scale	DFN	simulations	to	be	used	in	probabilistic	
simulations	at	the	field	scale.	

To be accurate, any DFN-based simulation must adequately represent the transport pro-
cesses	at	small	scales.	Aperture	variability	within	individual	fractures	is	routinely	neglected	
in DFN simulations. That is, individual fractures are assumed to be homogeneous. The 
cumulative reactivity parameter β is then computed as a ratio of the “flow-wetted surface” 
and flow rate of an individual fracture. In reality, individual fractures are heterogeneous, 
which may cause flow to be “channelized” in individual fractures. However, the importance 
of	internal	variability	relative	to	other	sources	of	variability	in	the	flow	system	is	not	obvi-
ous. On the one hand, internal variability in aperture tends to be smaller than fracture-to-
fracture variability, which would suggest that internal aperture variability is less important. 
On the other hand, flow channeling in heterogeneous fractures tends to cause flow lines to 
coalesce in high-velocity regions, which may introduce a systematic bias toward lower β 
and	less	retention.	

Previous studies /Cvetkovic et al. 1999/ of the transport effects of flow channeling in 
variable-aperture	fractures	typically	considered	a	single	fracture	isolated	from	the	rest	of	the	
network. Although these studies yield some clear insights into the process, the unrealistic 
boundary	conditions	for	flow	limit	the	usefulness	of	the	results	for	field-scale	applications.	
Flow in an individual fracture is controlled not only by the aperture variability, but also 
by	the	boundary	conditions	that	are	determined	by	connections	with	other	fractures	in	the	
network.	Fluid	may	enter	and	leave	a	fracture	only	where	the	fracture	intersects	other	frac-
tures.	These	connections	may	represent	a	relatively	small	fraction	of	the	fracture	surface.	
This	limited	connection	to	other	fractures	introduces	a	certain	degree	of	flow	channeling	
independent	of	that	caused	by	aperture	variability.	The	relative	importance	of	the	two	chan-
neling	mechanisms	–	heterogeneity-induced	or	geometry-induced	–	cannot	be	investigated	
without	considering	heterogeneous	fractures	embedded	in	a	three-dimensional	network.	

The	effects	of	within-fracture	variability	relative	to	those	of	fracture-to-fracture	variability	
were investigated previously by /Painter and Cvetkovic 2001/. The conclusion from that 
study	was	that	within-fracture	aperture	variability	contributes	little	to	field-scale	transport	
because it is overwhelmed by the much larger fracture-to-fracture variability. However, that 
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study	used	a	kinematic	representation	of	the	streamline	that	did	not	explicitly	resolve	flow	
dynamics within the fracture. The consequences of this approximation are not clear, which 
leaves	the	issue	of	internal	variability	unresolved.

This	report	addresses	the	importance	of	internal	fracture	aperture	variability	in	determining	
field-scale	transport	in	fractured	rock.	Discrete	fracture	network	simulation	with	internal	
aperture	variability	within	each	fracture	is	the	primary	tool	for	the	investigation.	This	
approach	makes	it	possible	to	investigate	the	relative	importance	of	the	various	sources	of	
flow	channeling	and	their	effect	on	field-scale	transport.	
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2	 Methods	and	procedures	

DFN	simulation	and	particle	tracking	were	the	primary	tools	for	this	study.	Networks	of	
30–50 randomly placed fractures were simulated. Aperture variations within each fracture 
were modeled as random space functions, and simulated using stochastic simulation 
methods. After simulating the fracture network, Laplace’s equation was solved to establish 
the	steady-state	flow	field.	Particle	tracking	in	the	steady-state	velocity	field	was	then	
used to calculate random trajectories and the associated τ and β parameters. The set of 
the calculated τ and β represent a random sample from the underlying joint distribution. 
By	comparing	the	calculated	sample	distribution	for	various	degrees	of	assumed	internal	
aperture variability it is possible to quantify the effect of aperture variability. 

DFN	simulation	is	a	standard	approach	for	investigating	transport	in	sparsely	or	moderately	
fractured rock. However, particle tracking within three-dimensional DFNs is difficult to 
implement	accurately.	Numerical	implementation	of	particle	tracking	in	two-dimensional	
single fractures or fully three-dimensional aquifers is well understood. In three-dimensional 
DFNs, however, particles move in a random velocity field that is intermediate between 
two-dimensional and three-dimensional. Within a single fracture, the velocity field is 
two-dimensional, but at fracture intersections three-dimensional effects, which cause mass 
transfer between fractures, must be accounted for. Although conceptually straightforward, 
this	intermediate	situation	is	numerically	delicate	and	appears	to	be	susceptible	to	numerical	
artifacts. Significant numerical artifacts have been identified /Painter 2003/ in standard 
commercial software. To avoid these numerical artifacts, an approximate, but more robust, 
simulation	approach	was	developed.	This	alternative	simulation	method	is	based	on	
particles that “hop” from node to node on a regular finite-difference grid. 

Details	of	the	simulation	procedure	and	the	node-routing	particle	transport	method	are	
provided	in	the	following	subsections.	

2.1	 Simulation	procedure	
The	numerical	experiments	used	the	following	procedure.	
1. A realization of the DFN was created by sampling from pre-specified distributions of 

log-transmissivity	for	disk-shaped	fractures.	Log-transmissivity	in	this	context	refers	to	
an	average	value	for	the	individual	fracture.	

2. For each fracture in the network, a random field with zero mean and unit variance was 
generated	by	stochastic	simulation.	The	random	fields	were	saved.	

3.	 A	log-transmissivity	field	for	each	fracture	was	created	by	scaling	its	random	field	by	
σ and adding the result to the average value from Step 1. Here σ2	is	the	log-variance	for	
internal	variability.	The	result	was	then	exponentiated	to	obtain	a	transmissivity	field.	
Aperture was calculated from transmissivity using the quadratic law. 

4. Step 3 was repeated for different values of the parameter, σ, representing different 
heterogeneity levels. Four values of σ2 were used: 0, 1, 2, and 3. Thus, each realization 
of the DFN from Step 1 spawned four DFN realizations with internal aperture variability 
and	different	levels	of	heterogeneity.	

5. Flow fields, particle trajectories, and resulting τ,β distributions were generated for each 
of the four realizations in Step 4. 
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Steps	1–3	create	a	hierarchical	random	field	for	the	transmissivity;	the	geometric	mean	
transmissivity varies from fracture to fracture, and the local transmissivity within each 
fracture	varies	spatially	around	its	geometric	mean.	

The four realizations created in Step 4 are perfectly correlated but with different levels 
of	heterogeneity.	This	correlated	sampling	procedure	prevents	random	fluctuations	
from obscuring any heterogeneity-induced effects on the τ,β distribution, thus allowing 
meaningful results to be extracted from a relatively small number of realizations.

The 5-step procedure was repeated to create 10 independent realizations of the DFN. 
Because each independent realization results in 4 correlated realizations, the particle 
tracking calculation (Step 5) was performed on 40 realizations for each combination of 
input	parameters.

2.2	 Lattice	representation	of	the	DFN	
A lattice-based approach similar to the smeared-fracture model /Svensson 2001/ was 
used to represent the DFN and the velocity field. In the particular variant used here, the 
simulation	domain	was	first	subdivided	into	a	large	number	of	rectangular	cells.	If	a	
simulated	fracture	intersected	the	face	between	two	adjacent	cells	the	link	between	those	
two	cells	was	activated	and	assigned	the	transmissivity	of	the	fracture.	If	a	cell	face	was	not	
intersected by a fracture, the link between the adjacent cells remained inactive. Repeating 
the	procedure	for	all	fractures	in	the	DFN	resulted	in	a	sparse	lattice	network	of	short	
pipe segments (links or bonds) representing the DFN (see Figure 2-1). Internal variability 
in	fracture	transmissivity	and	aperture	is	easily	incorporated	–	the	transmissivities	of	the	
bonds representing each fracture was assigned by stochastic simulation, as described later 
in this report. Steady-state hydraulic head on the lattice was solved by applying Kirchoff’s 
law	to	each	node.	A	sparse	linear	solver	was	then	used	to	solve	the	resulting	linear	system.	
/Svensson 2001/ used detailed numerical simulation to investigate the accuracy of the 
closely related smeared fracture model, and demonstrated that the method is accurate 
provided the cell size is sufficiently small. 
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2.3	 Node-routing	method	for	particle	transport	
Once the hydraulic head on the lattice network representing the DFN has been established, 
the	next	step	was	to	move	particles	through	the	lattice	network	and	accumulate	statistics	on	
τ and β. A node routing method was developed to mimic purely advective movement within 
a fracture and complete mixing at fracture intersections. In this method, a particle hops from 
node to neighboring node. If the starting node belongs to only one fracture, then the particle 
moves to a downstream node along the link (pipe segment) with the largest outgoing flux. 
This	choice	is	intended	to	mimic	purely	advective	transport	within	single	fractures.	If	the	
starting node belongs to multiple fractures, then the particle is moved along a link selected 
randomly	from	the	links	with	outgoing	flux.	The	probability	for	selecting	a	given	link	in	this	
case is weighted by the magnitude of the outgoing flux, thus mimicking complete mixing at 

Figure 2-1.  Example pipe network resulting from the lattice-based representation of a DFN. 
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fracture intersections. The residence time (and hence incremental increase in τ) in the 	
link connecting the two nodes is determined by the flow velocity in that link. Similarly, 	
the incremental increase in β is determined by the flow velocity and fracture aperture of 	
the	link.	

If the local velocity field is aligned with the regular lattice network, then the node routing 
approach provides an exact representation of the trajectory and the associated τ and β. If 
the velocity is misaligned from the lattice principal direction by 45°, then the simulated 
trajectory	will	oscillate	in	step-wise	manner	around	the	true	trajectory	and	the	travel	
distance	will	be	overestimated	by	a	factor	of	 2 . In addition, the flow velocity will be 
underestimated by the same factor, with the net effect being to overestimate τ and β by 
a	factor	of	2.	A	heuristic	correction	is	used	to	compensate	for	this	bias	in	the	estimated	
flow-dependent	transport	parameters.	The	heuristic	correction	is	calculated	by	first	finding	
the true flow direction as the resultant of the link velocities. The angle θ between the true 
flow	direction	and	the	selected	link	direction	is	then	calculated.	The	incremental	increase	
in τ and β along the link is then decreased by a factor of cos2(θ). This correction exactly 
compensates	the	bias	if	the	lattice	principal	direction	and	flow	direction	are	misaligned	by	
45°	and	has	no	effect	if	the	lattice	principal	direction	and	flow	direction	are	aligned.	Note	
that the procedure works on arbitrary unstructured grids, but is applied only to regular 
structured	grids	in	this	report.

Although	the	particular	variant	of	the	node-routing	method	developed	for	this	study	appears	
to be new, the method is related to the node-routing scheme used by /Desbarats 1990/ in his 
well-known study of transport in sand/shale sequences. The new aspects of the node-routing 
method developed for this study are the deterministic routing within individual fractures, 
the correction to remove the systematic bias in the trajectory lengths, and the validation 
efforts. Performance assessment calculations for the potential repository at Yucca Mountain, 
Nevada also use a particular type of node-routing scheme /Robinson et al. 2003/. Their 
“cell-based particle tracking” method included strong retention processes and was tested 
against	alternative	modeling	approaches.

Numerical	experiments	were	used	to	test	the	accuracy	of	the	lattice	hopping	method.	The	
scenario for the test was a single horizontal fracture placed at the horizontal midplane of 
a simulation volume. The fracture diameter is large compared to the domain size, thus 
generating	a	fully	two-dimensional	pathway	from	the	upstream	to	downstream	sides	of	the	
volume. The SGSIM code from GSLIB /Deutsch and Journel 1992/ was used to simulate 
three realizations of the transmissivity field for the fracture. The log-normal random space 
function model was used, with log-variance of 0.1, 1 and 3 for the three realizations of 
transmissivity. Aperture was calculated from transmissivity using a quadratic law /Outters 
2003/. A macroscopic hydraulic gradient was applied in one direction, with no-flow 
boundary	conditions	on	the	other	sides.	Because	the	flow	path	and	resulting	velocity	
field were fully two-dimensional, conventional particle tracking is straightforward, thus 
providing	an	independent	benchmark	solution.	Particles	were	released	on	the	upstream	side	
and	moved	through	the	velocity	field	by	conventional	particle	tracking	and	by	the	node-
hopping	method.	

Particle	trajectories	obtained	from	the	conventional	particle	tracking	and	the	node-hopping	
method	are	shown	in	Figure	2-2	for	the	test	case	with	log-variance	of	3.	The	particle	
trajectories, which are initially distributed across the upstream end of the fracture, tend to 
coalesce into a small number of relatively thin flowing zones as they move through the 
fracture. This general behavior is reproduced in the node-routing results. More importantly, 
the τ and β distributions obtained from the node-routing method are in close agreement 
with the conventional particle tracking results. Distributions of β as calculated by the 
two	methods	are	compared	in	Figure	2-3.	The	test	case	with	log-variance	of	1	is	shown	
in Figure 2-3a, and the more heterogeneous case with log-variance of 3 is shown in 
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Figure 2-3b. In both cases, the difference between the conventional particle tracking and 
the	node	routing	results	is	much	smaller	than	the	spread	in	the	distribution.	Similar	results	
(not shown) were obtained for the τ distributions and for the weak heterogeneity case. These 
successful tests demonstrate that the node-routing method is adequate for the purposes of 
this	study.	

Figure 2-2.  Single-fracture configuration used to test the accuracy of the node-routing scheme 
used in this report. Flow is from left to right. The hydraulic head on the single fracture is shown 
in color. Particle tracks obtained from the node routing (top) and conventional particle tracking 
(bottom) are also shown. 
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2.4	 Single-fracture	transmissivity	simulation	
The	transmissivity	fields	for	the	individual	fractures	were	generated	by	geostatistical	
stochastic simulation. This process requires a random space function (RSF) model for the 
transmissivity	variations.	

/Brown 1995/ measured surface profiles of several natural fractures, and found that surface 
roughness	is	accurately	represented	by	self-affine	fractal	models	that	lack	a	characteristic	
length scale. However, long wavelength variations in the two surfaces of each fracture are 
closely correlated, which introduces a wavelength cutoff in the aperture variability. Aperture 
variation	in	this	situation	is	consistent	with	a	conventional	geostatistical	model	with	a	single	
correlation	length.	

Mapped	distributions	of	void	space	in	natural	fractures	subject	to	applied	stress	generally	
show increasing contact area with increasing stress (Gale 2005). (Gale 2005) used the resin 
impregnation method to characterize the void-space geometry of several natural granite 
fractures subject to known stress, and found that the aperture distribution in the open part 	
of	the	fracture	is	well	approximated	by	a	log-normal	distribution.	

Figure 2-3.  Comparison of calculated cumulative reactive distribution based on traditional 
particle tracking (solid curves) and node-routing scheme (individual data points) on a single-
fracture with low (a) and high (b) variability. 
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Asperities	were	neglected	in	this	study	and	aperture	was	modeled	as	having	a	log-normal	
distribution.	The	log-normal	model	for	aperture	is	widely	used	in	studies	of	transport	in	
fractured rock, and is an appropriate first approximation for studying the relative effects 	
of	internal	aperture	variability.	

If	aperture	b	and	transmissivity	T	are	related	as	T	∝ ba, as is typically assumed, then a 
log-normal distribution of aperture implies a log-normal distribution of transmissivity, albeit 
with different distribution parameters. For a parallel plate model, a is equal to 3 (cubic law). 
A quadratic law (a = 2) sometimes provides a better fit to field data /Doe 1993/ and was 
used	in	this	study.	

Log-transmissivity	variation	within	individual	fractures	was	modeled	as	a	conventional	
multi-normal	random-space	function	with	an	exponentially	decaying	autocorrelation.	
The sequential Gaussian simulation code SGSIM from the GSLIB collection was used to 
generate	the	transmissivity	fields.	
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3	 Transport	effects	of	fracture		
aperture	variability	

3.1	 Parameters	for	the	reference	case	and	variants
Five sets of simulations were performed. The domain for each was 12×12×12 m in size 
and was subdivided into 81×81×81 computational cells. Ten realizations of the DFN 
were generated for each set. As described previously in this report, four simulations 
corresponding to different levels of internal variability were performed for each realization 
of the DFN. For each simulation, 500 particles were tracked. A flux-weighted particle 
source was used; that is, the probability for picking one of the cells on the upstream face 	
of	the	domain	as	a	starting	point	was	proportional	to	the	flux	through	that	location.	

Networks	of	35	fractures	were	simulated	for	the	reference	case.	Fracture	radius	was	
selected	from	a	log-normal	distribution	with	geometric	mean	of	3.5	m	and	log-variance	
of 0.3. Fracture orientation was random and isotropic. Fracture transmissivity (spatial 
average	for	fracture)	was	log-normal	with	log-variance	of	1.	The	log-normal	RSF	model	
with correlation length (isotropic) of 2 m was used to model the internal transmissivity 
variability.	

Five	variant	cases	were	considered:
• Case HD has a higher fracture density than the reference case. In this case 50 fractures 

were	simulated	in	each	DFN.	Other	parameters	are	the	same	as	the	reference	case.	
• Case LC has a longer correlation length (4 m), but is otherwise identical to the 	

reference	case.	
• Case SC has a shorter correlation length (1 m), but is otherwise identical to the 	

reference	case.	
• Case RV has reduced fracture-to-fracture variability in transmissivity. A log-variance 	

of 0.0025 was used instead of the reference-case value of 1. 
• Case RI is identical to the reference case except that a residence injection source is 	

used	instead	of	the	flux-weighted	source.	

3.2	 Reference	case	results	
Calculated hydraulic head for one realization from the reference case is shown in 
Figure 3-1. Flow is from left to right in this case. Note the unequal distribution of hydraulic 
head in the network. Particle tracks for the same realization are shown in Figure 3-2. 

Distributions of τ for the four levels of heterogeneity are shown in Figure 3-3a. The 
cumulative	distribution	and	complementary	cumulative	distribution	are	both	shown	on	a	
log-log scale to make both tails of the distribution visible. In this and the following figures, 
τ is shown in arbitrary, but internally consistent, units. Specifically, τ is normalized by 
the median of the σ2 = 0 result. It can be seen from Figure 3-3a, that heterogeneity has no 
significant effect on the τ distribution. 
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Distributions of β are shown in Figure 3-3b. The σ2	=	1	situation	is	not	significantly	
different from the σ2 = 0 case. For larger values of log-variance, internal heterogeneity 
causes a shift in the distribution to smaller values. However, the effect is modest and is 
only significant in the left tail of the distribution. In the σ2 = 2 situation, the 0.1 percentile 
is	approximately	half	of	the	corresponding	percentile	in	the	no-internal	variability	case	
(σ2 = 0). For larger percentiles, the shift is even smaller: the median β with σ2 = 2 is 0.85 	
of that of the σ2 = 0 situation. 

Figure 3-1.  Calculated hydraulic head from one discrete fracture network realization from the 
reference case set. Flow is from left to right. 
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Figure 3-2.  Example particle trajectories obtained by applying the node-routing scheme to the 
DFN of Figure 3-1. 
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3.3	 Parameter	sensitivity	
For all cases examined, internal heterogeneity had no significant effect on the τ distribution. 
For that reason, only β results are shown in this section. 

Distributions of β for the higher fracture density case (Case HD) are shown in Figure 3-4. 
The small β tail of the distribution, which is an important control on transport, is affected 
by heterogeneity in a manner similar to the reference case. However, the effect is somewhat 
reduced relative to the reference case. The large β tail is more sensitive to heterogeneity. 
However, the large β tail is relatively unimportant for transport. Moreover, the effect is to 
shift the distributions to higher values of β, implying reduced transport. Thus, it is conserva-
tive from a safety assessment perspective to simply ignore the effect on the large β tail. 

Distributions of β for the longer correlation (Case LC) and shorter correlation (Case SC) 
cases are shown in Figures 3-5 and 3-6, respectively. For both cases, the effect of hetero-
geneity on the small β tail is similar to that of the reference case. However, the effect is 
reduced	somewhat	compared	to	the	reference	case.	

Figure 3-3.  Cumulative and complementary cumulative distributions of τ (top) and β (bottom) 
for the reference case. The four colors correspond to different levels of internal variability in 
transmissivity as quantified by the log-variance (σ2). 
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Figure 3-4. Cumulative and complementary cumulative distributions of β for the Case HD  
(higher fracture density). The four colors correspond to different levels of internal variability  
in transmissivity as quantified by the log-variance (σ2), as in Figure 3-3. 

Figure 3-5.  Cumulative and complementary cumulative distributions of β for the Case LC  
(longer correlation length). The four colors correspond to different levels of internal variability  
in transmissivity as quantified by the log-variance (σ2), as in Figure 3-3. 
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Results for Case RV (reduced fracture-to-fracture variability) are shown in Figure 3-7. For 
this case, internal variability has a greater effect on the β distribution. Specifically, the shift 
in the small β tail starts at smaller values of σ2, as opposed to the reference case, which 
requires a threshold value of σ2	be	reached	before	internal	heterogeneity	starts	to	shift	the	
distribution. A comparison between the reference case and Case RV lends support to the 
observation	that	internal	variability	must	exceed	fracture-to-fracture	variability	before	
internal variability starts to affect the β distribution. Note that Case RV has unrealistically 
low	fracture-to-fracture	variability	and	should	not	be	considered	representative	of	expected	
conditions.	

Results for Case RI (residence injection) are shown in Figure 3-8. The β distribution is 
broader	in	the	residence	injection	case	and	internal	variability	has	an	even	smaller	effect.	In	
fact, no significant effect on the β distribution can be seen in the residence injection case. 
It	is	to	be	expected	that	the	flux	weighted	injection	would	result	in	larger	effect	of	internal	
variability, because the starting locations with significantly higher fluxes receive compara-
tively larger number of particles with flux weighted injection, which tends to amplify the 
effects of internal variability. However, if the simulations are sufficiently large, it is also 
expected that the flux-weighted and residence injections would start to converge. That is, 
with larger simulations, the residence injection and flux-weighted cases are expected to 
become closer, but the flux-weighted case should always result in greater effect of internal 
variability. In either case, the effect of internal variability on β appears to be modest. 

Figure 3-6.  Cumulative and complementary cumulative distributions of β for the Case SC  
(shorter correlation length). The four colors correspond to different levels of internal variability  
in transmissivity as quantified by the log-variance (σ2), as in Figure 3-3. 
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Figure 3-7.  Cumulative and complementary cumulative distributions of β for the Case RV 
(reduced fracture-to-fracture variability). The four colors correspond to different levels of internal 
variability in transmissivity as quantified by the log-variance (σ2), as in Figure 3-3.

Figure 3-8.  Cumulative and complementary cumulative distributions of β for the Case RI 
(residence injection). The four colors correspond to different levels of internal variability in 
transmissivity as quantified by the log-variance (σ2), as in Figure 3-3.
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4	 Accounting	for	internal	variability	in	large-
scale	DFN	simulations	

The	relatively	small	effect	of	internal	variability	on	the	cumulative	reactivity	distribution	
observed	for	relevant	ranges	of	parameters	suggests	a	simple	scheme	for	accounting	for	
internal	variability	in	large-scale	DFN	simulations.	The	idea	is	to	use	small-scale	simula-
tions similar to those summarized in Section 3 to define an empirical transformation of the 
cumulative	reactivity	distribution.	Large-scale	DFN	simulations	without	internal	variability	
would	then	be	performed.	The	results	of	these	large-scale	DFN	simulations	could	then	
be	post-processed	using	the	empirical	transformation	before	the	results	are	used	in	safety	
assessment. Given that transport results are most sensitive to the left tail of the β distribu-
tion and that internal variability does not significantly affect the right tail of the distribution, 
the	transformation	need	only	be	applied	to	the	left	side	of	the	distribution.	Effect	of	internal	
variability on the τ distribution was found to be negligible in all cases and can be ignored. 

Exploring this idea further, let q*p	denote	the	p-th quantile of cumulative reactivity with 
internal variability as calculated from small-scale DFNs. The quantile is formally defined 	
as	the	solution	q*p	of	F*(q*p)	=	p	where	F* is the distribution function. In addition, let q * p	
denote the corresponding quantity without internal variability. These quantiles can be 
estimated from small DFN simulations similar to those summarized in this report. An 

empirical	ratio	function	ζ p( )≡
q* p

q * p

	can	then	be	fitted.	

Now, let qp	and	q * p	denote	p-th quantiles of cumulative reactivity parameter at the larger 
scale with and without internal variability. The quantiles qp	define	the	cumulative	reactivity	
distribution at large scales including internal variability at the single-fracture scale, and can 
be	calculated	from	

qp = ζ p( )q p          (1)

Thus, with this procedure, the cumulative reactivity distribution at large scales including the 
effect	of	internal	variability	is	obtained.	

For the reference case simulations, ζ (p)	can	be	relatively	well	fit	by	

( ) pp 9.055.0 +=ζ          (2)

A	check	on	the	accuracy	of	this	fit	is	shown	in	Figure	4-1.	The	curve	was	obtained	by	
applying Equations 1 and 2 to the σ2 = 0 results. That is, the case without internal variability 
was transformed according to the Equations 1 and 2, to obtain the curve in Figure 4-1. This 
calculation	corresponds	to	how	the	empirical	adjustment	might	be	used	in	practice	once	
an	empirical	transform	is	developed	from	small-scale	DFN	simulations.	As	a	check	on	the	
accuracy of that procedure, the individual data points representing the distribution obtained 
from DFN simulations with internal variability (σ2	=	2)	are	also	plotted	in	Figure	4-1.	The	
agreement is very good except in the extreme left tail of the distribution, where the recon-
structed	distribution	is	shifted	slightly	to	larger	values.	This	general	agreement	indicates	that	
the	suggested	procedure	is	sufficiently	accurate	for	use	in	performance	assessment	studies.	
However, the empirical transform Equation 2 was developed for a particular combination 	
of	DFN	parameters	and	should	be	revised	in	applications	involving	other	DFN	models.	
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Figure 4-1.  Test of a method for post-processing DFN results to account for internal variability, 
as described in Section 4. The solid curves are cumulative and complementary cumulative 
distributions of β from DFN simulations with internal variability. The data points represent the 
same distributions as calculated by post-processing of DFN simulations without variability. 



2�

5	 Conclusions	and	recommendations	

The	following	conclusions	can	be	drawn	from	the	simulations	results.	
1.	 Internal	variability	in	aperture	and	transmissivity	causes	no	significant	change	in	the		

τ distribution. 
2. Internal aperture/transmissivity variability can decrease the cumulative reactivity 

parameter β, but only when the internal variability equals or exceeds the fracture-to-
fracture	variability.	

3. The decrease in β caused by internal variability is modest. At the leading edge of the 
distribution, internal variability reduces β by about 50%. In other words, neglect of 
internal variability would result in about a factor of 2 error in β at the leading edge of 	
the distribution. The reduction is even smaller (~ 15%) in the center of the distribution. 

4.	 The	node-routing	method	developed	for	this	study	provides	a	convenient	and	accurate	
approximation	to	advective	transport	within	single	fractures.	

The	relatively	small	contribution	of	internal	variability	to	field-scale	transport	is	consistent	
with the previous results of /Painter and Cvetkovic 2001/ and lends further support for 
ignoring	internal	variability	in	geosphere-scale	safety	calculations.

These	conclusions	are	based	on	the	assumed	model	for	single-fracture	variability.	Sensi-
tivity	studies	described	in	this	report	suggest	limited	sensitivity	to	the	assumed	model.	
However, all of these sensitivity studies used a simple multi-gaussian random space 	
function	model	because	of	limited	information	on	internal	aperture	variability.	More		
complicated	models	that	include	asperities	or	improved	connectivity	between	large-	
aperture regions may lead to more channeling and smaller values of β. 

An empirical post-processing of the β distribution similar to that used in Figure 3-3 is 
recommended	to	account	for	internal	variability	in	future	safety	assessment	calculations.	
The	proposed	procedure	is	to	perform	a	limited	number	of	small-scale	DFN	simulations	
with internal variability to obtain an empirical relationship between the β distributions 	
with and without internal variability. This empirical transformation of the β distribution 
could	then	be	applied	to	the	results	of	large	DFN	simulations	as	a	post-processing	step.		
In the absence of additional information on internal variability, Equation 1 is recommended 
as the transformation. However, improved models of internal variability are expected to 	
be available in the near future – as these become available, simulations like those in the 
report	should	be	repeated	to	obtain	an	improved	transformation.	
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