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ABSTRACT (Swedish) 

Rapporten beskriver en jamforelse mellan stationara. och icke-stationara geostatistiska 
modeller for att beriikna den hydraulika konduktiviteten for bergblock fran 
hydraultester pa Aspo. Modellerna jamfors genom att utvardera korsvalideringsstatis­
tik for tre valideringsfall. Forsta fallet bestAr av en "Delete-1" test som tidigare bar 
anvants pa data fran Finnsjon. Det andra testet bestar av "Delete-10%" och det tredje 
testet ar "Delete-50% ". Analysen har genomforts med en komersiell programvara 
Isatis 1.3 (Geovariances, 1994). 

Den preliminara analysen visar att data fran hydraultester med 3 m och 30 m 
manschettavstand kan behandlas som stickprov frail samma population vid 
geostatistiska analyser, mojligen med undantag for data fran borrhAI KAS02. Analys 
av 3 m data ger ingen indikation pa nagon systematisk statistisk forandring med djup, 
bergart, sprickzon kontra icke-sprickzon eller nAgon annan .kartlagd faktor. 
Riktningsvariogram ar svm att berakna och utvardera pa grund av den ringa 
spridningen hos data (data ar grupperade langs borrhAlen), men visar ingen tydlig 
tendens till anisotropi. Kriging med 8 soksektorer och en sokradie pa 200 m ger goda 
resultat jamfort med andra testade sokkriterier och bar darfor anvants i den efter­
foljande analysen. 

Stationar analys antyder att det forekommer en stor rumsligt okorrelerad komponent 
("Nugget Effect") for 3 m data, i storleksordningen 60% av den observerade 
variansen for de olika modellerna. Fyra olika modeller bar anvants for automatisk 
anpassning till data: 

1) "Nugget Effect + Spherical" 
2) "Nugget Effect + Exponential" 
3) 11Nugget Effect + Spberical(short range) + Exponential(long range)" 
4) "Nugget Effect + Spberical(short range) + Spherical(long range)" 

Resultaten for alla modellerna vad betraffar korsvalideringsstatistik ar vfildigt 1ika for 
de tre valideringsfallen, men modell 3) ger generellt battre resultat och har darfor 
anvands i den efterfoljande korsvalideringen. 

Icke-stationar analys visar att bAde graden av "drift" och graden av "intrinsic random 
function" ar lag. For de sokkriterier som anvants ar "driften" antingen av ordningen 
noll eller ett och kovariansen av ordningen noll och tre. 

Vad gfiller korsvalideringsstatistik ar de icke-stationara modellerna nagot battre an de 
stationara modellema for "Mean Error (ME)", men mycket samre for "Mean Reduced 
Error (MRE)" och "Mean Squared Reduced Error (MSRE)". "Mean Squared Error 
(MSE)" ar nagot battre for det stationara fallet. Dessa resultat antyder starkt att 
stationara modeller kommer att producera mindre korsvalideringsfel for Aspo data. I 
motsats till situationen vid Finnsjon verkar data frail hydraultester vid Aspo vara 
mycket stationara utan "trend" och bara med lag grad av "drift", vilket innebar att det 
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inte ar nagon fordel att anvanda "intrinsic random functions" och att stationara model­
ler mojligen kan beskriva kovariansen battre. 

Uppskalning av konduktivitetsdata f:ran hydraultester i liten skala till storre skala 
(intervall) med Normans formel (1992a) overskattar den hydrauliska konduktiviteten 
for det uppskalade intervallet. Ett enkelt aritmetiskt medelvarde producerar ett 
jamforelsevis ba.ttre resultat, men all uppskalning av denna typ introducerar 
okorrelerat brus i data och tenderar att dolja de sanna rumsliga egenskaperna i 
konduktivitetsfiiltet. Uppskalningen med flytande medelvardesbildning, som for na.rva­
rande ar implementerad i INFERENS 1.1, kan ocksA introducera andra icke onsk­
varda effekter. Det rekommenderas da.rfor att geostatistisk analys och skattning utfors 
pa icke uppskalade data i liten skala och att uppskalning till konduktivitetsdata for 
bergblock i storre skala gors efter den geostatistiska skattningen (simuleringen). 

Denna studie foreslar ocksa att konventionella korsvalideringsstudier och automatisk 
variogramanpassning inte nodvandigtvis ger en mojlighet att bedoma hur bra en given 
modell skattar den hydrauliska konduktiviteten i blockskala. Det foreslAs att en serie 
av stokastiska rnodellexperiment utffirs for att utvardera hur kansliga resultaten fran 
den hydrologiska modellen ar for osakerheter i den geostatistiska slutledningsmodellen 
och uppskalningsprocessen. 
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ABSTRACT (English) 

This report describes the comparison of stationary and non-stationary geostatistical 

models for the purpose of inferring block-scale hydraulic conductivity values from 

packer tests at Aspo. The comparison between models is made through the evaluation 

of cross-validation statistics for three experimental designs. The first experiment 

consisted of a "Delete- I" test previously used at Finnsjon. The second test consisted 

of "Delete-10%" and the third test was a "Delete-50%" test. The analysis was 

carried out using the commercial code Isatis 1.3 (Geovariances, 1994). 

Preliminary data analysis showed that the 3 m and 30 m packer test data can be 

treated as a sample from a single population for the purposes of geostatistical 

analyses, with the possible exception of the data from well KAS02. Analysis of the 3 

m data does not indicate that there are any systematic statistical changes with depth, 

rock type, fracture zone vs non-fracture zone or other mappable factor. Directional 

variograms are ambiguous to interpret due to the clustered nature of the data, but do 

not show any obvious anistropy that should be accounted for in geostatistical analysis. 

A Kriging neighborhood divided into 8 angular sectors with a radius of 200 m 

provided good results while making computations efficient compared to the other 

neighborhoods tested. This neighborhood definition was used for the remainder of the 

analyses. 

Stationary analysis suggested that there exists a sizeable spatially uncorrelated 

component ("Nugget Effect") in the 3 m data, on the order of 60% of the observed 

variance for the various models fitted. Four different nested models were 

automatically fit to the data: 

1) Nugget Effect + Spherical 
2) Nugget Effect + Exponential 
3) Nugget Effect + Spherical(short range) + Exponential(long range) 

4) Nugget Effect + Spherical(short range) + Spherical(long range) 

Results for all models in terms of cross-validation statistics were very similar for the 

first set of validation tests, but the model consisting of the Nugget Effect, Spherical 

and Exponential elementary models performed slightly better overall and was chosen 

for the additional cross-validation tests. 

Non-stationary analysis established that both the order of drift and the order of the 

intrinsic random functions is low. For the neighborhood selected, drift is either zero­

th or first order; the elementary covariance models are zero and third order. 

In terms of cross-validation statistics, the non-stationary models were slightly better 

than the stationary models in terms of Mean Error (ME), but much worse in terms of 

Mean Reduced Error (MRE) and Mean Square Reduced Error (MSRE). Mean 

Squared Error (MSE) was slightly better for the stationary case. These results 

strongly suggest that stationary models will produce smaller cross-validation errors at 
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Aspo. Unlike the situation at Finnsjon, the packer test data at Aspo seem to be very 

stationary with no trend and only low order drift, so that advantages of using intrinsic 

random functions are lost and stationary models may more accurately model the 

covariance. 

Regularization of packer test data to larger intervals using Norman's (1992a) formula 

overpredicts the regularized interval hydraulic conductivity. A simple arithmetic 

average produces less biased results, but any regularization of this type introduces 

additional uncorrelated noise into the data, and will tend to obscure the true spatial 

properties of the hydraulic conductivity field. A moving average regularization 

process as currently implemente.d in Inferens 1.1 may also introduce other undesirable 

effects, and it is recommended that geostatistical analysis and estimation be performed 

on unregularized data. , with regularization to block-scale hydraulic conductivity 

values performed after geostatistical estimation or simulation. 

This study also suggests that conventional cross-validation studies and automatic 

variogram fitting are not necessarily evaluating how well a model will infer block 

scale hydraulic conductivity values. It is suggested that a series of stochastic 

rnodeling experiments be conducted to examine how sensitive the hydrological 

modeling results are to uncertainties in the geostatistical inference model and the 

upscaling process. 
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1 INTRODUCTION 

The goal of a useful stochastic inference model is the ability to make reliable 

predictions of conductivity properties of a rock mass at large distances away from 

measured data (Norman, 1992a, pg. 81). Optimizing geostatistical inference models 

with this goal in mind has been carried out by Norman (1992a) and Geier (1993a) at 

the Finnsjon site. 

Previous cross-validation studies of the Finnsjon rock mass using INFERENS 1.0 led 

to cross-validation results that were not thought to be sufficiently good (Norman, 

1982a, pg 82), in that the proposed geostatistical models with the best jackknife 

statistics would be rejected at a 95 % level of confidence. Examination of the results 

led to the suggestion that certain improvements to the geostatistical algorithms might 

improve the cross-validation results. Among the improvements suggested were the 

addition of nested variograms. These and other changes to Inferens 1.0 are described 

in detail by Geier (1993a). Subsequent cross validation studies (Geier, 1993a, pg. 64) 

using the INFERENS 1. 1 code, however, did not show much improvement at 

Finnsjon. 

The type of variograms available in both releases of INFERENS presume that the data 

set analyzed is stationary; such variograms can yield poor results if the data is not 

stationary. A variety of geostatistical methods exist to interpolate data in certain 

types of non-stationary situations (Renard, 1989). The purpose of this project is to 

evaluate the performance of non-stationary geostatistical algorithms for use in 

interpolating packer test-derived permeability measurements, and to determine 

whether such algorithms should be incorporated into a new version of INFERENS and 

HYDRASTAR. The commercial code ISATIS 1.3 (Geovariances, 1994) was used to 

evaluate the new algorithms. This report also includes a discussion of other stochastic 

inference methods that might improve hydrological modeling. 
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The algorithms were applied to data for the Aspo Hard Rock Laboratory described by 

Nilsson (1989, 1990). The data consisted of 3 meter and 30 meter interval tests from 

wells KAS02, KAS03, KAS04, KAS05, KAS06, KAS07, KAS08 and KLXOl. The 

value of interval hydraulic conductivity that is used in this study were calculated by 

Nilsson (1989, 1990) using the Jacob interpretation method. As Follin (1992) has 

shown for stochastic porous media, intervals with higher conductivity values tend to 

have a larger region of influence or statistical support than do intervals with lower 

values. This difference in the support among the test intervals could affect the 

variogram calculations and Kriging cross-validation results. While a similar tendency 

may also pertain to packer tests in fractured rock, it is not possible to take results 

from porous media and transfer them to fractured rock. This is because the head or 

flow in any location in a fracture network connected to the borehole interval tested in 

a double packer well test is not a simple function of the Euclidian distance from the 

interval. Rather, it is the geometry and fluid flow characteristics of the fracture 

pathway from the interval to the location that affects the head or flow. It is not 

uncommon to find a very small response in nearby fractures not directly connected to 

the well, and larger responses at a greater distance. Because the actual geometry of 

the fracture network for each well test at Aspo is unknown, the potential difference in 

statistical support for the Jacob values was ignored. Table 1.1 summarizes the data 

used in this study and its completeness. As Table 1.1 shows, many of the 3 m 

interval tests produced results below the resolution of the instruments. This threshold 

varied from well to well (Nilsson, 1989, 1990). Approximately half of the 3 m data 

obtained is above the threshold. 

Utilizing data below measurement resolution to compute variograms has drawbacks. 

One strategy might be to use the data above measurement resolution to infer the 

statistical properties of the data below, and then to generate stochastic reafu:ations of 

the data below the threshold. However, this imposes a spatial correlation structure on 

the data below measurement resolution. When it is then combined with the other 
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data, the effect will be to artificially reduce the variability of the calculated 

variograrn. No new information will actually be added, and moreover, a model has 

been imposed upon a portion of the data that may actually not be accurate. 

Another strategy might be to discretize the well tests into classes and to apply 

Indicator geostatistical methods. In this scheme, measurements below the threshold 

would fall into classes. There are problems with this procedure for the Aspo data. 

The first problems is that the threshold varies from well to well, so it is not possible 

to put all of the below-threshold data into their own class or classes. Secondly, 

INFERENS and HYDRASTAR do not support Indicator geostaistical procedures. 

Finally, discretization of the measurements above threshold into classes reduces the 

precision of estimation for cross-validation tests and eventually, for creating 

permeability input for HYDRASTAR or similar code. For these reasons, only the 

measurements above the threshold were included. 

Figure 1-1 shows the spatial location of the 3 meter and 30 meter data. The fact that 

test data is very unevenly distributed and hierarchically structured (that is, it is 

acquired as a line sample) makes accurate interpolation quite challenging. However, 

this is exactly the situation that will be encountered in a typical site hydrological 

modeling effort, as it was in the Finnsjon study (Norman, 1992a), so the evaluation of 

the algorithmic performance under these conditions is appropriate. 

Well Name Total Number 
of 3 m Tests 

KAS02 
KAS03 
KAS04 

Table 1.1 

PACKER TEST DATA SUMMARY 
Number of 3 m % 3 m Tests Total Number of 30 m 
Tests Above Above Tests 
Measurement Threshold 

1 07 45.92 % 23 

113 75.33% 21 

68 62.96% none 

3 



@ 
KLx01 

\ 
KASDJ 

KAS D4 

\~ .. 

- - - - .... 

FIGURE 1 •1 
LOCATION OF WELL DATA USED IN THIS STUDY 

SKB/REPORT/SWEDEN 

PROJECT NO. IC3 1129.000 DRAWING NO. 40868 DATE 06127/94 DRAWN BY TB Golder Associates 



There are many ways to evaluate the performance of a model. The INFERENS codes 

use a jackknife cross-validation scheme in which each data point used to construct the 

variogram is deleted from the data set, and is then estimated based upon the 

remaining data and the variogram model selected. This type of cross-validation could 

be termed a "Delete-1" algorithm. The disparity between the predicted value and the 

actual value is quantified in terms of different error statistics. For the cross­

validation calculations in this report, the following statistics were used: the Mean 

Error (ME), the Mean Reduced Error (MRE), the Mean Square Reduced Error 

(MSRE), the Mean Squared Error (MSE) and Variance Ratio (R). Their definitions 

and their relation to error statistics used previously at Finnsjon are described in 

Figure 1-2. In the literature, there are different definitions of the ME and MRE 

statistics. The definitions for ME and MRE in this report follow Russo and Jury 

(1987, pg. 1260). MSRE is calculated using the equation presented in Norman 

(1992a, pg 46). R is a statistic is a ratio of the experimental and theoretical variances 

as described in Renard (1988, pg 586) and is similar to the MSRE statistic. R, 

estimated from a single estimation of one data set (or single data point) by another, is 

biased. This bias can be reduced by randomly dividing the data set into subsets and 

using each in turn to estimate the other. This procedure is followed in the third series 

of cross-validation experiments described in this report. Norman (1992a) presents an 

overview of the utility of error measures in ranking the performance of alternative 

models. For a perfectly self-consistent model, ME equals 0.0, MRE, MSRE and R 

equal 1.0 and MSE is small. 

Each error statistic shows different information about how well each model performs. 

In general, those with a theoretical value of O show how unbiased the model estimates 

are, while those with a theoretical value of 1 show how well the size of the error 

matches with the expected size distribution given the model and the geometrical 

arrangement of samples. It is more informative to consider these performance 

measures separately rather than combining them, as in Norman (1992a). For 

example, is it worse to have a model that consistently overestimates the permeability, 

but matches the variance range correctly? Such a model is unbiased, but may not be 
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very useful. Or is it worse to have a model which is unbiased, but makes much 

bigger errors than would be expected? Which error is more tolerable or preferable? 

For design purposes, both types of errors are important, and it is more useful to know 

which type of error, if any, is predominating. For this reason, it is not very useful to 

combine the different error statistics into a single score for ranking models. 

In addition to the "Delete-I" procedure, this study used two additional experimental 

designs to evaluate the performance of the algorithms under conditions that are closer 

to actual site modeling. In such situations, the amount of well test data represents a 

very small part of the rock mass to be modeled. It is worthwhile to see how well the 

model could estimate a much larger subset of the well test data, rather than single 

tests. The second set of cross-validation tests consisted of randomly deleting 10% of 

the well tests, and estimating it based upon the remaining 90%. These cross­

validation tests are termed the "Delete-I O % " tests. The final cross validation tests 

were designed to reduce the effect of outlier data on the cross validation results. In 

this third set of experiments, the data was randomly divided into two equal sets, and 

each was used to estimate the other. The statistics for the estimate of set 1 by set 2 

and set 2 by set 1 were combined in such a way so as to reduce the effect of outliers, 

as discussed in greater detail in Section 3 .1. Ten independent realizations each for 

the "Delete-10%" and the "Delete-50%" cross-validation tests were processed. 

The remainder of this report is divided into three sections: 

Section 2 describes the exploratory data analysis prior to geostatistical calculations. 

This exploratory analysis was use.d to confirm that the mathematical requirements of 

various geostatistical algorithms were or were not fulfilled by the Aspo data, and to 

determine if there were distinct populations that should not be merged. 

Section 3 summarizes the fitting of the stationary and non-stationary models and 

details the cross-validation results. 
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Section 4 summarizes the principal conclusions of this study, and describes alternative 

possibilities for creating stochastic hydrological models at Aspo. 
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Terminology, this Report Equivalent Statistic in Abbreviation 
Norman (1992a) and Geier 
(1993a) 

Reduced Error Reduced Kriging Error RE 

Mean Error Mean Reduced Error ME 

Mean-Square Reduced MSRE112 MAE 
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Mean Square Error MSE11.1 MSE 

Mean Square Reduced Not used MSRE Error 

R Not used R 
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Formulation 

RE(Xj) = 
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Var[u•(xi)-U(Xi)]112 

1 n 
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n i=1 

MRE = [ ~ _I. RE(xi)2]112 
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FIGURE 1•2 
DESCRIPTION OF ERROR STATISTICS 
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2 EXPLORATORY DATA ANALYSIS 

2.1 Overview 

It is important to understand the statistical properties of the packer test data and their 

relation to geology before carrying out geostatistical cross-validation computations. 

Geostatistical methods make certain requirements for interpolation or simulation, 

among them, that the data come from a population with certain types of stationarity, 

and a population frequency distribution that is Gaussian or can be transformed into a 

Gaussian distribution. These assumptions may be violated if otherwise statistically 

acceptable data subsets are indiscriminately mixed or lumped together. Moreover, the 

components of any statistically valid data set can be quite complex, and it is the 

purpose of preliminary data analysis to sort out some of the components for the 

appropriate type of analysis. A convenient way to organize the data is into 

populations, and for each population, to sort out the trend and residual. Trends are 

systematic or deterministic spatial changes in the statistical properties of the data. 

Residuals are stochastic. The residual itself may have three components; the drift, the 

spatially correlated component, and the non-spatially correlated component. 

Geostatistical analysis focuses on the three components of the residual. Preliminary 

data analysis usually focuses on the populations and their trend functions. 

2.2 Subpopulations 

All subsequent geostatistical analysis of the packer data rests upon how the data is 

initially divided into subpopulations. Since packer test results depend upon the 

properties of fractures intersecting the well interval, and fracture properties depend 

upon geology, it is worth testing whether mappable geological units can be correlated 

with fracture properties or well test results. Two possible geological factors have 

been considered as a basis for distinguishing subpopulations at Aspo: rock type and 

fracture zone vs. non-fracture zone. 
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Liedholm (1991; TN16) analyzed the relation between rock type and hydraulic 

conductivity measurements for the 3 m tests using stepwise multiple linear regression. 

The 3 m packer test data constitute the best data set for analysis since it has an order 

of magnitude more samples, and is spatially more extensive than the 30 m test data. 

Liedholm (1992) reports that the packer test data only weakly corresponds to 

mappable petrologic units at Aspo. 

This is not entirely unsurprising, as the geometry and intensity of fracturing may be 

more controlled by mappable mechanical boundaries than geological boundaries 

(Stearns and Friedman, 1972). Given the relatively high strength, stiffness, fracture 

toughness and others mechanical aspects of all of the crystalline rocks types found at 

Aspo, it is not unexpected that packer tests values do not strongly correspond with the 

mappable petrologic units. 

Another possibility is that packer test values can be split into two populations 

consisting of tests in identified fracture zones and those outside of fracture zones. If 

packer tests in fracture zones are a distinct population, then their first or second order 

statistical moments ought to be such that combining them with non-fracture zone 

measurements reduces geostatistical estimation/simulation performance. For example, 

clear evidence that fracture zones should be treated as a separate populations for 

geostatistical inference is if there are bi-modal distributions of packer tests results, 

and that each mode consists of either fracture zone and non-fracture zone components. 

Subpopulations might also occur for reasons not geologically obvious. Statistical 

analysis of the data can point out areas of Aspo that may have anomalously high or 

low packer test measurements, independent of whether there is a geological model to 

explain the results. If these regions have properties that would violate the 

assumptions underpinning the geostatistical methods, then it would be inappropriate to 

lump them together for analysis. 

10 



There are ways of qualitatively examining the possibility that fracture zones or other 

presently unknown geological units constitute distinct populations and that packer 

results from these zones should not be mixed with the remaining measurements. 

Several lines of investigation, however, do not indicate that there are distinct 

subpopulations in the 3 m Aspo data. 

Figures 2- la-g show the hydraulic conductivity values of the 3 m packer tests for 

wells KAS02 through KASOS as solid connected lines. The black squares represent 

the location of significant conductive features as identified by the spinner survey logs. 

The value of each black square is the inferred transmissivity of each conductive 

feature. In many cases, these spinner log anomalies correspond to packer tests with 

high values. However, there are also many packer tests with high values that do not 

correspond to spinner anomalies. 

Histograms of the 3 m packer data (Figures 2-2a through h) show no bi-modality, so 

that even if fracture zone tests are a different population, they seem to conform to a 

single uni-modal population that is suited to geostatistical methods. 

Cumulative histograms for each well (Figure 2-3) show that, with the possible 

exception of KAS02, all of the other wells have nearly the same cumulative 

distribution. This is consistent with the assumption that each set of packer 

measurements from a particular well can be viewed as a realiz.ation of a single 

underlying population that has reasonably stable (stationary) first and second-order 

moments over the region sampled by the wells. 

Geostatistical analysis described in Sec. 3.2 generates results consistent with a single 

population. As Geier (1994) mentions in describing the geological causes of nested 

variograms, a strongly nested variogram can occur when the fractures and well tests 

within a fracture zone are more similar over short distances than fractures or tests 

outside the zone. Another type a variograrn that occurs more frequently (La Pointe, 

1980) is a pseudo-periodicity imposed on the variogram. This leads to variograms of 

11 
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the "Hole Effect" variety, such as the Cardinal Sinus model or the Bessel models. 

The raw variogram data discussed in Section 3.2 does not indicate that the variograrns 

are strongly nested or well-approximated by a Cardinal Sinus or Bessel model. 

2.3 Trends 

Next, it is necessary to consider trends. Trends are described by global functions that 

relate the expected value of packer test data to their spatial position. Trends 

constitute a systematic or deterministic change in the statistics of the data to some 

underlying geological or spatial component. In folded sedimentary rocks, there may 

be systematic increases in fracture intensity and conductivity according to structural 

position, bedding thickness or curvature. At Aspo, the most obvious trend to 

consider is whether there is any regular change with depth. 

Liedholm, (1991; TN8) examined the 3 m packer data to determine whether there 

were changes in the magnitudes of conductivity measurements as a function of depth. 

He concluded that the wells showed no systematic change or weak increases or 

decreases with depth. In light of these results, it does not seem necessary to try to fit 

a global depth-related trend function to the Aspo data, and perform the geostatistical 

analyses on the residuals. 

The similarity in the cumulative histograms for each well (Figure 2-3) also suggests 

that there are no systematic areal changes in the sample data. 

2.4 Discussion 

An explanation for the reason why the Aspo packer data may constitute a single 

population is that fracturing at the Aspo site is a mechanical response of the rock to 

strain events that were more or less homogeneous at the scale of the site. Although 

there are mappable geological units, the differences in mechanical properties among 
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them is not sufficient to produce different fracture patterns. The fracture zones are 

part of the extremities of the natural fracture distribution. These fractures form an 

interconnected network, in many ways similar to a three-dimensional percolating 

lattice. 

In this model, flow through the Aspo fracture system occurs in the subset of fractures 

known as the "backbone" of the network. The term backbone is used in percolation 

theory (e.g. Feder, 1988) to describe the set consisting of all self-avoiding walks from 

point A to point B. In a network, the backbone is a small subset of the connected 

lattice, and the majority of fluid flow takes place through this subset. In this 

situation, one would expect to see the same types of correspondences and lack of 

correspondences between the spinner logs and the interval tests that one sees at Aspo. 

A packer test straddling the backbone would have both high conductivity and a 

spinner anomaly because the fractures are part of the regional well-connected 

conductive portion of the network. A test of the lattice outside of the backbone could 

intersect high conductivity fractures that were less well integrated. 

These and previous investigations suggest that the 3 m Aspo packer test hydraulic 

conductivity data can be treated as a single population for geostatistical inference, 

with the possible exception of the data from KAS02. There appear to be no 

systematic trends in the data, either with depth or in areal direction. This indicates 

that the data variability is mostly described by the three stochastic components of 

local drift, the spatially correlated component and the non-spatially correlated 

component. Variogram estimation and geostatistical interpolation or simulation are 

more accurate when the empirical data more closely match the model used to 

characterize the data. This self-evident statement implies that the greater the 

proportion of spatially correlated variability is to non-spatially correlated noise, the 

more effective will geostatistical methods be for estimation. Mixing data from 

different populations will reduce this proportion, and consequently, the estimation 

accuracy. Although the 3 m packer test data from KAS02 may not necessarily come 

from a different population, it has been excluded from all of the analyses reported in 

25 



Section 3 in order to avoid the risk of mis-estimating the spatial correlation structure 

of the data. 
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3 GEOSTATISTICAL ANALYSIS 

3.1 Overview 

The process of fitting stationary models and non-stationary models follows different 

paths. Stationary models require estimating parameters for a theoretical model 

composed of a nugget effect and one or more nested structures, along with 

anisotropy. Non-stationary models do not consist of estimating parameter values. 

Rather, it focuses on estimating the order of the drift and the determination of which 

elementary generalized covariance models should be used. Both processes depend 

upon the type and definition of the Kriging neighborhood. 

Section 3.2 describes the evaluation of anisotropy and different neighborhoods, 

leading to the selection of a single neighborhood and anisotropy model for subsequent 

cross-validation. 

Section 3.3 describes the results of the cross-validation calculations for the stationary 

models. 

Section 3 .4 describes the results of the cross-validation calculations for the non­

stationary intrinsic models. 

Section 3.5 is a general discussion of the comparison between the cross-validation 

results for the stationary and non-stationary models. 

Section 3. 6 discusses upscaling of 3 meter tests to 30 m scale tests and their 

geostatistical properties. 
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3.2 Anisotropy and Neighborhoods 

A key problem produced by this typical spatial arrangement of the packer test data is 

that only the short scale vertical correlation structure and the long scale horizontal 

correlation structure can be studied directly. This problem is often termed the "data 

clustering" problem. The maximum vertical or sub-vertical scale that can be robustly 

studied is on the order of half the distance of the length of a well, which is on the 

order of 200-400 meters. The horizontal scale is dictated by the spacing of the wells, 

and for the Aspo data, is on the order of hundreds of meters to kilometers and with 

many gaps in data over this range. The problem for interpolating well data is not so 

much that the long distance correlation structure cannot be directly calculated for the 

vertical direction, but rather that the shorter scale variogram cannot be calculated for 

the horizontal directions. In Kriging, the neighboring data values play a much more 

significant role than the distant data values. The way in which data is selected for 

Kriging, that is, the definition of the Kriging neighborhoods, can improve the 

clustering problem. 

It is possible to test whether some simple assumptions appear valid in order to 

estimate a reasonable short-scale horizontal variogram structure. The most 

straightforward way is to determine whether the correlation is isotropic. If this can 

be shown to be the case, then the short scale vertical variogram should be a 

reasonable surrogate for the short scale horizontal variogram. This is not a 

straightforward problem if the data come from non-coaxial wells in which the data 

have been regularized with overlapping support, see Sec. 3.6. The Aspo wells are 

definitely not co-axial. For this reason, the anisotropy was studied through analysis 

of the raw (unregularized) 3 m packer tests. 

ISATIS 1.3 contains some very flexible ways to estimate directional variograms that 

are not found in INFERENS or most other geostatistical software. A common way to 

estimate directional variograms (for example, Geier, 1993b, p. 15) is to specify and 

angular and radial tolerance about the desired variogram calculation direction. While 
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this works well for nearby points, data located hundreds of meters away will lie in 

sectors of considerable size. For example, a 10 degree horizontal sector 1 km from a 

data point will include points that extend nearly 100 meters above or below the 

horizontal (Fig. 3-la). This can have the effect of including in the directional 

variogram calculation many data points that are significantly out of the desired 

direction, which obscures directional correlation properties if they exist. ISA TIS 1. 3 

has a way of mitigating this problem. It allows the user to circumscribe the angular 

sectors by a three-dimensional box (Fig 3-lb). Points lying outside of the box are 

never used in the calculation, regardless of whether they belong to the angular sector 

class under consideration. In other words, a box with a vertical dimension of 10 m 

would prevent any points more than 5 m above or 5 m below the elevation of the 

origin from entering into the calculation. 

Figures 3-2a-g show directional variograms for the 3 m test data. For these 

variograms, only the most robust data was used. As described in section 2.2, the 

most robust data consists of the data above the measurement resolution. Moreover, 

because well KAS02 may not be part of the same population, all data from this well 

was excluded from the directional variogram analysis. 

The directional variograms shown in Figs. 3-2a-e used a box of dimension 10 m in 

the two directions perpendicular to the direction of estimation. The horizontal 

variogram (Fig. 3-2f) constrained the z-dimension to a 10 m window. There was no 

box for the isotropic variogram shown in Fig. 3-2g. Figure 3-2h shows the number 

of lag pairs as a function of distance superimposed on the isotropic variogram. 
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The vertical variogram (Fig. 3-2e) shows a reasonably well-defined variogram. For 

distances up to about 125 m, the variogram shows a Nugget Effect (N) around 1.4 

and an increasing variogram similar to the Spherical model in that its slope decreases 

with increasing distance and it appears to reach a sill (C) at a finite distance. The sill 

is somewhere on the order of 20% of N. This implies that geostatistical methods will 

not be as advantageous as they might were the proportion of the spatially correlated 

component higher. The fluctuation in the variogram after 150 m and its decrease is 

mostly due to the significant decrease in the amount of lag pairs that are used to 

estimate the variogram. The slight upturn of the variogram around 150 m may reflect 

underlying correlation structure or the decrease of lag pair data. Based upon the 

results from horizontal variogram calculations, it is likely that it is in part due to 

larger scale correlation structure. Without testing any models rigorously, it seems 

reasonable to fit the raw vertical variogram with a model consisting of a Nugget 

Effect and a Spherical variogram, which would ignore the upturn around 150 m, or a 

Nugget Effect and a Gaussian variogram with a long range that captured the upturn 

better. Another possibility is to fit a nested model with a shorter range Spherical 

variogram and some appropriate longer range model. However, the lack of 

significant spatial correlation at distance over 100 m suggests that either model would 

produce nearly the same results provided that they well-approximate the shorter scale 

data. 

The four horizontal variograms (Figs. 3-2a-d) were for the +X/-X, +Y/-Y, +X+Y/­

X-Y and +X-Y/-X+Y directions, referred to subsequently as the East/West, 

North/South, Northeast/Southwest and Northwest/Southeast directions, respectively. 

The purpose of calculating these four variograms was to assess any horizontal 

anisotropy. The problems caused by the horizontal spacing of the wells is quite 

evident. All four variograms show significant gaps in data and much noise. The 

North/South and Northwest/Southeast variograms show very little correlation at the 

scales for which there was data. The Northeast/Southwest variogram shows some 

correlation, which may be more a result of noise than true structure, since the number 

of data pairs used to calculate the small distance lag classes in this variogram are 
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small. The East/West variogram shows the most structure, with a Nugget Effect 

somewhere on the order of 1.0 to 1.5 and a spherical-like correlation structure with a 

range of about 200 meters. A global horizontal variogram (Fig. 3-2g) shows a 

similar structure - a Nugget Effect around 1.3 to 1. 7, and a Spherical correlation 

structure with a range around 200 m. The reason that this horizontal variogram 

shows the spherical structure is that the short scale lag pairs overwhelmingly come 

from the East/West variogram. The lack of correlation structure at short scales in the 

other directional horizontal variograms is quite possibly due to the very small number 

of data pairs that were used to calculate the variogram, which is graphically 

demonstrate.cl by the high variability of the raw variograms even at small lag 

distances. 

If this is true, then the one directional horizontal variogram where there are a greater 

number of data pairs shows very similar variogram structure to the vertical 

variogram. Both have Nugget Effect somewhere around 1.5, and both rise to sills of 

around 0.5 reminiscent of a spherical variogram model with a range 200 meters. The 

variance (o-2), represented by the dashed line on each variogram is not reached for at 

least 600 m in the horizontal direction. It is unknown whether the vertical variograrn 

would have reached its final sill at this point or not, since there is no data at these 

distances. All that can be deduce.cl from the vertical variogram is that the ultimate sill 

was not reached for distances less than 200m. 

The fact that the horizontal and vertical variograms are similar suggests that the 

correlation is reasonably isotropic. Moreover, there are no obvious geological 

re3.59ns why there should be correlational anisotropy, as might be expected were Aspo 

situate.cl in a layered sedimentary rock mass with strong bedding anisotropy. For 

these reasons, it appears defensible to assume that the correlation structure is 

isotropic. 

Figure 3-2g is the isotropic variogram in which only the distance, not the direction, 

was used to select lag pairs for the raw variogram. This raw variogram indicates that 
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there is a sizable Nugget Effect of around 1.4, and a Spherical correlation structure 

with a Sill about 0.6 and a range on the order of 200 m. At 500 m, there is an 

increase to the regional Sill (a2). The isotropic variogram (Fig. 3-2 g) does not reach 

the value of ,,.2 until about 500 m, although it is no more than 15% below this value 

for lags pairs greater than 200 m. This suggests that well test data within 500 m is of 

some limited use in predicting the value of other 3 m well tests because most of the 

isotropic variogram for the lag pairs between 200 m and 500 m consist of pairs of 

data from different wells. This contrasts with the variogram lag pairs for distance 

less than 200 m, which are increasingly dominated by data pairs from the same well. 

This correlation suggests that there may be some hydrologic features at Aspo that are 

on the scale of half a kilometer in their horizontal extent. While it might be possible 

to study the tests forming the lag pairs in this range to investigate this further, they 

will play a very minor role in spatial interpolation. 

Neighborhood definition also plays an important role in stationary and non-stationary 

geostatistics. There are several considerations and strategies for determining efficient 

and useful neighborhoods. Use of all of the samples in estimation is called a "Unique 

Neighborhood". Neighborhoods that do not use all of the available samples, so that 

different subsets of the data are used for each point or region estimated change, are 

termed "Moving Neighborhoods". The size of the neighborhood controls how much 

data will be used to estimate any sample or block. While using more data generally 

produces greater accuracy, there are pitfalls and pragmatic considerations to limit the 

amount of data. First, in realistically-sized problems such as the 3 m data at Aspo, 

there are over 500 well tests that are above the detection limits. If all of these points 

are used, very large matrices requiring long computer runs are required to perform 

cross-validation tests, with perhaps, not a great increase in accuracy, since samples 

more than a few tens of meters from the point to be estimated have negligible 

weights. Samples at distances greater than the range have no correlation to the point 

or block being estimated anyway, so the gain in estimation accuracy is small. For 

these reasons, Unique neighborhoods were not used for the Aspo analyses. 
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Although it may seem sensible to use the 10 or 20 closest samples for estimation in a 

Moving neighborhood, this can be a problem for data collected hierarchically (as line 

samples from wells). Selecting the N nearest samples can lead to using samples only 

from a single well for cross-validation calculations. If the region to be estimated lies 

between wells, the estimation becomes more an exercise in extrapolation than 

interpolation, with all of the inherent pitfalls. It should generally be more accurate to 

estimate data from samples obtained in several nearby wells, although the selected 

samples may not be the closest. This problem was evaluated by Norman (1992a) for 

the Finnsjon data. Possible strategies to deal with this problem include the use of 

nested models, prohibiting using more than K samples from any one well, requiring 

that the search neighborhood be divided into angular sectors, or computing cross­

validation statistics for more sizable deletion subsets. 

There is insufficient data in the Aspo data set to prohibit using more than K samples 

from a well, so this option was not tested. Thus, it was decided to compare six 

alternative neighborhoods. One set consisted of a spherical neighborhood divided into 

8 sectors, while the other set consisted of a single sector. The neighborhood radius 

took on three different vcµues: 25 m, ~O m, and 200 m. The comparison of 

neighborhoods consisted of visually evaluating the locations and weights of samples in 

these neighborhoods for typical situations in the Aspo rock mass and cross-validation 

statistics. An accurate and efficient neighborhood is one which contains very few 

low-weight samples and tends to select points from more than one well when there 

several wells at approximately the same distance from the estimation point. Kriging 

weights are a function of the variogram, so it is not possible to optimize the Kriging 

weights without specifying a variograrn model. The weights and subsequent "Delete-

1" cross-validation statistics were derived for the optimized non-stationary intrinsic 

random functions. Figure 3-3 shows the de-clustering effect of using a sectored 

neighborhood. The simple "Delete-I" cross-validation statistics are summarized in 

Table 3-1 and Figure 3-4. The error statistics reporte.d in this and following tables 

follow the definitions shown in Figure 1-2. The results show that the larger the 
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neighborhood and the more sectors, the better the statistics. The best overall statistics 

were achieved with a sectored neighborhood and 8 sectors. 

Table 3.1 

orhood Model MRE MSRE 
ector 
ector 

Sector 

3.3 Cro~Validation Results of Stationary Geostatistical Models 

3.3.1 "Delete-1" Cross-Validation Results 

Inferens 1. 1 supports simple or nested variogram models. The nested models may 

consist of a combination of spherical and exponential functions (Geier, 1993b). 

Nugget effects are not allowed in the current release, but the raw 3 m variograms 

suggest that a nugget effect is a prominent constituent of the Aspo data (Fig. 3-2g), 

making up over 60% of the observed variance. Thus the stationary models evaluated 

consisted of alternative combinations of a Nugget effect, a Spherical and an 

Exponential variogram. Alternative models were first evaluated using the "Delete-I" 

approach. The model that had the best cross-validation, a combination of a Nugget 

Effect, a medium range spherical variogram and a nested exponential variogram of 

longer range was then used in "Delete-10%" and "Delete-50%" cross-validation 

exercises. The fitted variograms are shown in Figures 3-5a-d. 

The results for the first set of cross-validation exercises, the "Delete-I" tests, are 

summarized in Table 3.2 and Table 3.3 and Figure 3-6. The results for the various 

combinations of nested structures are not entirely consistent; in some cases, one 

model is best in terms of one statistic but not as good in terms of another statistic. 
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Table 3.2 

Nugget + Exponential 

xponential 
pherica 

Table 3.3 

MSE 
1.73 
1.72 
1.687 

herical 1.6880 

The four stationary models are not very different from each other in terms of the 

cross-validation statistics reported in Table 3.3. The model with the lowest MSE is 

the nested Nugget-Spherical-Exponential model, which also has the second lowest 

ME. The simpler models, consisting of a Nugget plus either a Spherical or 

Exponential covariance model produce slightly better MRE or MSRE statistics. 

There was insufficient time to exhaustively test all four of the models in the remaining 

two cross-validation tests. The basis for selecting a model was somewhat arbitrary. 

Only the Nugget +Spherical and the Nugget+Spherical+Exponential models were 

not the worst in any statistical category. Moreover, the Nugget+Spherical+ 

Exponential scored the best in the MSE category. In addition, although cross 

validation results for "Delete-I" testing may not depend much upon the accuracy of 

the model's fit to long distance lag pairs, such a match may improve the results from 

the more demanding "Delete-50%" cross-validation (Sec. 3.3.3). As a result, it was 

chosen for further cross-validation tests. 

3.3.2 "Delete-JO%" Cross-Validation Results 

The "Delete-10%" test results are summarized in Table 3.4 and Figure 3-7. 
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Table 3.4 

1 
Average 

The mean error (ME) should theoretically be 0.0 for a perfect model. The value of 

ME for the ten realizations varies from -0.24 to +0.04, with an average of -0.08061. 

MRE, MSRE and R should all equal 1.0 for a perfect model. MRE varies from 0.77 

to 1.18, with an average of 0.96. MSRE varies from 0.60 to 1.41, with an average 

of 0.92, while R varies from 1.74 to 1.95, with an average of 1.85. Recall that for 

this type of cross-validation, the R statistic is biased, so it probably less accurately 

reflects the model's usefulness. MSE varies from 1.16 to 2 .4, with an average of 

1.68. For a perfect model, this error would be 0.0. Figure 3-7 shows that the 

statistics can vary from realization to realization, and it is hoped that the average 

values for the ten realizations more accurately reflect the model's estimation 

usefulness. 

3.3.3 "Delete-50%" Cross-Validation Results 

The final set of cross-validation calculations consisted of randomly dividing the packer 

data into two equal subsets. A model fitted to the first subset was used to estimate 

the second and vica-versa. This procedure produces two sets of error statistics for 

each realization. Renard (1988, pg. 586) shows how the biased estimate of the R 

statistic can be reduced in this situation according to the formula: 
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(3.1) 

where r1, r 2 are the ratios estimated for subsets 1 and 2, 

n1, n2 are the number of data points in subsets 1 and 2 

r is the biased estimate of the ratio obtained by combining both subsets, 

and 

p is the jackknife estimator with reduced bias. 

Table 3.5 and Figure 3-8 summarize the results of the cross-validation tests run on ten 

realizations of the 3 m packer test data. The values reported in the table for each 

realization are the average values calculated for the two subsets, with the exception of 

the R statistic, which was calculated according to Eq. 3.1. 

Table 3.5 

Realization# MSE ME MRE MSRE R 

1 1.838127 -0.00379 0.994006 1.001479 1.772505 

2 1.869077 -0.05514 1.047085 1.098143 1.692308 

3 1.815765 -0.01489 1.002333 1.007383 1.798029 

4 1.834063 0.003526 1.003378 1.007758 1.813946 

5 1.783045 -0.01547 1.027333 1.068933 1.622201 

6 1.902242 -0.04205 1.011991 1.035853 1.791049 

7 1.788827 -0.02121 0.974057 0.94884 1.88554 

8 1.818458 -0.03619 1.018813 1.039138 1.743592 

9 1.774343 -0.01155 1.026962 1.056559 1.672293 

10 1.961931 -0.03841 1.07977 1.174817 1.634208 

Average 1.838588 -0.02352 1.018573 1.04389 1.742567 

Interestingly, the statistics for the "Delete-50%" case are generally better and less 

variable than for the "Delete-10%" case. The MSE is the only statistic that did not 
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improve. The reasons for this are not clear, but the lower variability is possibly due 

to the averaging of the statistics for the two subsets in each realiz.ation. 

3.4 Cross-Validation Results of Non-Stationary Geostatistical Models 

3.4.1 "Delete-I" Cross-Validation Results 

Geostatistical interpolation or conditional simulation requires spe.cification of three 

components: the drift, the correlation model and the neighborhood. In this context, 

drift is used to describe the form of the "large" amplitude fluctuations in the data in 

the local region surrounding the data. In this sense, it is distinct from the concept of 

"trend", which is a model to approximate the global large amplitude structure of the 

data. The drift thus defined corresponds to the amplitude structure of the 

neighborhood used for Kriging or interpolation. The correlation model is the smaller 

scale model that describes the spatial structure of the data after the drift has been 

removed. Thus, the drift, the definition of the neighborhood and the variogram 

models are all interrelated and not separable. 

The drift function for intrinsic random functions of order k (IRF-k) are represented by 

polynomials of different degree Renard (1989). A zero-th order drift function is a 

constant that represents the local neighborhood's large amplitude fluctuations. A first 

order drift function is one in which these fluctuations are modeled by a linear 

combination of a constant term and the local X, Y or Z coordinates. A second order 

drift function includes the additional terms relating to x2, Y2, Z2, XY, XZ, YZ or 

some subset of them. A complete drift function consists of a linear combination of all 

terms of that order and lesser orders. In other words, all six second-order terms, all 

three first-order terms and the constant term would appear in a complete second-order 

drift function. Unless there are compelling geological arguments, such as a strong 

and evident grain in the correlation structure of the data, it is probably best to always 

use complete drift functions. For purposes of this study, only complete functions 
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were used. Four drift functions were evaluated: zeroth-, first-, second- and third­

order polynomials. 

F.ach drift function can be evaluated in terms of mean squared error (MSE) and a 

relative ranking measure based on the MSE. ISA TIS 1. 3 employs the following 

procedure for evaluating drift models. 

A variety of test points are selected according to an algorithm which tries to cover the 

region as regularly as possible, to de-clusterize clusterized information, and also to 

include isolated points. The goal is to test with as representative points as possible. 

Next, the samples belonging to the neighborhood for each test point are determined. 

The points in the neighborhood are sorted with respect to their distance from the test 

point, and then split into two subsets, Sl and S2. All of the odd numbered points go 

into one subset; all of the even numbered points into the other. This helps ensure that 

each subset is an equally valid independent realization of the neighborhood. The 

selected drift models are fitted to each subset of data using standard least-squares 

techniques. Each drift model fitted to the S 1 data is then used to predict the samples 

in S2, and each drift model fitted to data in S2 is used to predict samples in S 1. The 

MSE is computed for each drift model and for all of the test points. The drift model 

that produces the lowest overall MSE is not necessarily the best choice, since these 

errors are highly sensitive to anomalies. To provide a ranking procedure more robust 

against outliers, ISA TIS 1. 3 employs an ordinal ranking procedure for each test point. 

In other words, the MSE' s are computed for all of the drift models at a particular test 

point. Then, the drift models are ranked according to their respective MSE's. This 

is done for all test points and the overall average ranks for each model are computed. 

The drift analysis results are shown in Table 3.6. The six combinations selected for 

drift analysis correspond to the neighborhoods previously discussed. Since the 

stationary geostatistical analysis revealed a very short range structure, another with a 

range from 50 to 80 m, and a third with a range greater than 200 m, these radial 

distances were selected for drift evaluation. Each distance neighborhood was also 
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divided into a single sector and an 8 sector neighborhood. Table 3.6 shows that the 

size and type of neighborhood effects which order of drift is optimal. Short range 

models favor a linear or zero-th order drift function. Longer range neighborhoods 

favor first or second order drift functions. In the cross validation results, single 

sector neighborhoods have an insignificant tendency to favor lower order drift. 

Table 3.6 

Order of Drift 

Neighborhood Model 0 1 2 3 

25 m 8 Sector 1.34 1.28 1.46 1.92 

25 m Single Sector 1.34 1.27 1.47 1.92 

80 m 8 Sector 1.56 1.47 1.38 1.59 

80 m Single Sector 1.53 1.46 1.41 1.6 

200 m 8 Sector 1.59 1.52 1.43 1.47 

200 m Single Sector 1.55 1.46 1.46 1.53 

It is worthwhile to point out that the optimal drift is a function of the actual data used 

in the cross-validation, independent of the neighborhood model. As a result, different 

"Delete-10%" and "Delete-50%" realizations may produce different optimal orders of 

drift than the "Delete-1" tests. 

The algorithms for determining optimal models for different intrinsic variogram 

models are reasonably complex, but are explained clearly by Renard (1989). For the 

Moving Neighborhood, the general idea of the algorithm is to select a subset of 

sample points as test points. One or more elementary covariance models are selected 

for testing either as separate models or as linear combinations. The goal is to 

calculate model parameters that produce the smallest jackknifed regression statistics in 

terms of ordinal rankings. The statistic used to evaluate a model consists of the ratio 
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between the experimentally calculated variance and the theoretical variance for the 

data subsets. In practice, the variances are not known, but are estimated from the 

samples, leading to a biased estimate of the ratio. To reduce this bias, the jackknife 

estimator of the ratio is computed according to equation 3.1. The covariance model 

that consistently produces the lowest ranked jackknife estimate is the model selected. 

Table 3. 7 summarizes the test statistics for the "Delete-1" cross-validation. 

Comparing these statistics with those in Table 3.3 shows that the stationary models all 

produce better MRE, MSRE and MSE statistics but worse ME values. Overall, the 

"Delete-1" cross-validation results strongly favor the stationary models over the non­

stationary models. 

Table 3.7 

MSE ME MRE MSRE 

1.90 -0.0048 0.81 0.66 

3.4.2 "Delete-I 0%" Cross-Validation Results 

The results of the automated drift calculations for the ten realizations (fable 3. 8) tend 

to favor a linear drift model slightly over a z.ero-order model. Regardless of the 

selected order of drift, the most frequently selected covariance model to go with the 

drift model is one of zero order. 
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Table 3.8 

Order o Dnft Rankin£? Selected Drift Uptimal 
Rea.11.Zation # u 1 2 

1 1.0I 0.98 1.02 lN 
2 1.04 0.95 LOI IN 
3 0.99 0.99 1.03 0 N+3rd Order 
4 1.01 o.~j 1.05 IN 
5 1.02 1.02 0.97 IN 
(j 0.95 1.02 1.02 0 N 
7 1 0.94 I.Lio 1 N 
8 o.~ o.~~ l.U2 1 N 
9 0.99 1.01 1 0 N 

10 1.01 0.92 1.06 lN 
Average I.WI 0.975 1.024 1 N 

*N = Nugget Effect; G.C. = Generalized Covariance 

Cross validation results for the "Delete-10 % " tests are summarized in Table 3. 9 and 

Figure 3-9. For this neighborhood definition, the optimal order of drift was generally 

of zeroth or first order, and the covariance consisted of zeroth or third order intrinsic 

functions. The mean error (ME) and R statistics are better than for the stationary 

models, but the MSE, MRE and MSRE are not as good. Even without additional 

statistical tests, it is clear that the MRE, MSRE and R statistics indicate that the 

model would be rejected with a high level of confidence. 

Table 3.9 

Realization # ME MSE MAE MSRE R 
1 -0.16031 1.799445 1.164301 1.355597 1.327419 
2 -0.15286 2.486622 1.353156 1.831032 1.358044 
3 -0.04848 1.211047 1.067958 1.140534 1.061825 
4 0.067297 1.711717 1.202929 1.447038 1.18291 
5 -0.22473 2.603512 1.16651 1.360746 1.913297 
6 -0.22018 2.498767 1.53355 2.351777 1.062502 
7 -0.05538 2.507085 1.206239 1.455013 1.723067 
8 0.086772 2.071585 1.301154 1.693001 1.223617 
9 0.131666 1.360024 1.131381 1.280022 1.062501 

10 0.066036 1.859356 1.173321 1.376681 1.350607 
Averaoe -0.05102 2.010916 1.2300~ 1.529144 1.326579 
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3.4.3 "Delete-50%" Cross-Validation Results 

The results of the automated drift calculations for the ten realizations (Table 3.10) 

also favor a linear drift model over a zero-order model. The most frequently selected 

covariance model to go with the drift model is one of zero order, although in a few 

instances when the drift selected is zero order, the optimal generalized covariance is a 

combination of zero order and third order functions. The similarity in the ranking 

statistics shown in Table 3 .10 for a particular realiz.ation and among all of the 

realizations shows that the degree of spatial correlation in the data is not strong. 

Most of the variability depends upon the specific data used to estimate the model. 

Table 3.10 

Order of Drift Rankine Selected Optimal Covariance 
Rea.llzation # 0 I 2 
la 0.9~ 0.92 1.1 IN 
lb 1.06 0.93 1 IN 
2a 0.99 0.98 1.03 lN 
12b 1.Uj o.~ l.U~ IN 
3a 0.97 0.98 1.05 0 N+3rd Order G.C. 
3b 0.9~ 0.94 1.07 IN 
'4a 1.02 1.05 0.9j 2 N 
4b l.U/ U.90 0.90 IN 
lja 1.U0 0.9~ 0.9t> 2 N 
5b 0.86 1 1.I4 0 N+3rd Order G.C. 
6a 0.95 0.92 1.13 IN 
6b 1.06 0.93 I lN 
7a 1.01 0.85 1.14 lN 
7b 1.01 0.97 l.u2 lN 
8a 1.02 0.99 0.99 lN 
~b 1.04 U.99 0.';1/ 2 N 

19a 1.01 0.9'/ 1.02 1 N 
9b 0.99 0.91 1.11 IN 
10a 1.09 0.91 1 I N 
l0b 1.02 0.9:l 1.06 I N 
Avera2e 1.01 0.95 1.039 1 N 

N = Nugget Effect; G.C. = Generalized Covariance 
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Table 3.11 and Figure 3-10 summarize the results of the "Delete-50%" cross­

validation calculations for the non-stationary model. As in the case for the stationary 

model, the statistics are less variable across realizations. The ME improves over the 

value for the "Delete-10 % " tests and is better than for the stationary models. The 

optimal intrinsic models were similar to those in the previous cross-validation tests in 

that the order of drift and the intrinsic random covariance function were a zeroth 

and/or third order. As in the case for the "Delete-10%" tests, the non-stationary 

models yielded MRE statistics quite close to 0.0. However, the values for MRE, 

MSRE and R are clearly too high, and would most certainly lead to rejection of the 

model with high confidence. 

Table 3.11 

1 
Average 

3.5 Discussion of Results 

Figure 3-1 la-e and Figure 3-12a-e compare statistical results between the stationary 

and non-stationary models for the "Delete-10%" and "Delete-50%" cases. The cross­

validation statistics for stationary models are as good or significantly better than 

results from non-stationary models for all cross-validation cases. For both models, 

the ME statistic is near 0.0, suggesting that the errors are unbiased. The stationary 

model produces MRE and MSRE values much closer to 1.0 than does the 

non-stationary model. This indicates that the non-stationary model is making 
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predictive errors with a greater variance than would be expected if the model and the 

data were consistent. A plot of the reduced squared error for both the stationary and 

non-stationary models shows that the variance for the non-stationary models is much 

greater. Many of the bigger errors are located at the end or beginning of a well. 

This is because well tests at ends or beginnings are estimated more through 

extrapolation rather than interpolation. It is not uncommon to see "edge effects" like 

these in kriged maps. A possible reason for the greater variance might be related to 

the previous observations in Section 2 that the packer test data at Aspo appears to be 

drawn from a reasonably spatially stable population. Hence there is no advantage for 

a non-stationary algorithm. In this situation, the elementary generalized covariance 

functions may not represent the local spatial correlation as well as a stationary model. 

As Figure 3-2g indicates, it is possible to obtain a very good match to the first 70 

meters of raw variogram data with a stationary model. 

Isatis 1.3 does not have a convenient method to sample three-dimensional simulated 

data sets in the manner of Inferens 1.1. As Norman (1992a) points out, the 

assumption that the cross-validation Kriging error is normally distributed and 

uncorrelated is probably wrong, so that the calculation of confidence intervals for 

MRE, MSRE and MSE must rely upon simulations. For this reason, it was not 

possible to calculate confidence limits for the alternative models. Even without the 

rigorous calculation of confidence limits, it is clear that the non-stationary models 

produce poorer results for the Aspo 3 m data than do the stationary models. 

Cross-validation statistics that fall within acceptable confidence limits do not 

guarantee that a model will be useful or successful for its intended purpose. Cross­

validation is a test of a model's self-consistency. That a model is consistent with a 

small set of data does not clarify whether the inherent model parameter uncertainty 

creates unacceptable estimation uncertainty in modeling results. In other words, does 

the model sufficiently constrain the uncertainty so that models using the data will 

come to the same conclusions for a high percentage of realizations? For the same 

model, would different model realfaations change the way in which a site is evaluated 
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or influence construction design alternatives? The typical mean squared errors 

(Tables 3-1 la, 3-12a) made by the stationary and non-stationary models for the 3 m 

Aspo data (in log-transformed values) are on the order of 1.5 to 2.5. Recall that the 

mean-squared error measures the raw mis-estimation of deleted data (Fig. 1-2). If the 

mean mis-estimation is 2.0 for the log-transformed interval test values, then the actual 

error is on the order of two orders of magnitude for the untransformed values. This 

suggests that estimation of conductivity values for HYDRAST AR or other model 

input away from well tests will be at least this much in error, on average. However, 

this may or may not be a problem. Is it sufficient to error by as much as two orders 

of magnitude in the conductivity assigned to a model grid cell away from the wells 

from the standpoint of site evaluation or construction planning? Answers to these 

questions are beyond the scope of cross-validation statistics, and must be answered 

through a combination of stochastic hydrologic modeling and its link to the decision 

making process appropriate for the Aspo site. 

3.6 Regularization and Upscaling of Packer Tests 

3.6.1 Regularization Strategy 

Hydrological modeling requires that hydraulic conductivity values be specified for 

volumes of rock larger than the typical packer test interval. A strategy imbedded in 

Inferens and Hydrastar (Norman, 1992a,b) is to average a series of shorter interval 

packer tests contained within a longer interval according to an upscaling formula 

developed by Norman (1992a). Geostatistical analysis is then performed on the 

estimates for the larger intervals. The geostatistical models for these larger intervals 

are then used in a Turning Bands procedure to simulate data for the flow simulator 

Hydrastar. 

Upscaling of measured hydraulic conductivity or permeability data is an area of 

intense, on-going research in reservoir simulation in the petroleum industry (e.g. 
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Wattenbarger and others, 1993), and it is not yet clear how best to approach this 

problem. Upscaling is a type of regularization. Regularization refers to a change in 

the statistical support of the data under analysis. The goal of hydrological modeling 

is to regularize 3 m packer test data to larger three-dimensional volumes of rock. 

Experience in reservoir simulation in fractured reservoirs indicates that the hydraulic 

conductivity calculated from a 50 m long well test has little to do with the effective 

block-scale hydraulic conductivity in a 50 m by 50 m by 50 m block. This suggests 

that scaling 3 m packer tests to equivalent 50 m tests, and then stochastically 

estimating the hydraulic conductivity of a 50 m test in an untested portion of the rock 

mass may not solve the problem, since the link between the 50 m test and the block­

scale conductivity is unknown. 

A more flexible approach to estimating the block scale conductivity for models is to 

make a series of estimates for each block at the scale of the measured data. In terms 

of the Aspo data, this would mean estimating a series of 3 m packer test for each 

block. Various types of upscaling could then be tried and tested without having to re­

do the geostatistical interpolation for each new upscaling method. It is unlikely that 

any one upscaling method will work best for all sites and conditions, so there is 

efficiency in separating the geostatistical component from the upscaling component 

and performing the upscaling after the interpolation. 

Previous geostatistical studies at Finnsjon (Norman, 1992a; Geier, 1993a) regularized 

the data to larger scales, usually 36 m, according to a moving average process, and 

then performed the geostatistical analyses. The current study did not adopt this 

method for analysis of the Aspo data, for several reasons. 

1) First, the wells at Aspo are deviated, and the deviation directions are different 

for different wells. As described in La Pointe (1994), such a moving average process 

leads to a variogram with a high degree of correlation for lag spacings less than the 

regularization length. As Norman (1994) correctly points out, this is due to the 

overlapping support of the moving average windows. There is nothing 
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mathematically incorrect about this method if care is taken in the Kriging algorithms 

to implement the formulation for non-disjoint support (Journal and Huijbregts, 1978, 

pg. 311). However, it will tend to obscure anisotropy and condition the fitted 

variogram to a portion of the raw variogram that is not as important for hydrological 

modeling. 

To understand how this moving average regularization obscures anisotropy, consider 

that data was derived from a series of horizontal and vertical wells in a data set 

composed of nothing but Gaussian noise. The horizontal variogram calculated from 

the horizontal wells will shows a pronounced correlation for distances less than the 

regularization scale. However, if the same horizontal variogram were calculated from 

the vertical wells, there would be no correlation. If these two sets of data were then 

treated as a single set, some composite variogram would emerge which could be fit 

with great accuracy, but would not properly represent either the correlation structure 

of overlapping tests or the randomness of disjoint tests. In actual application, this 

problem may not be too severe, since well spacing is usually not at the scale of the 

regularization length. 

2) A more practical problem is that the goal of the geostatistical analysis is to 

find a model which accurately predicts hydraulic conductivity at a distance from the 

wells. This distance is much greater than the regularization length. The moving 

average regularization creates a stronger degree of correlation over the lag pairs less 

than the regularization scale. The degree of correlation drives the automatic 

variogram fitting process, so that the result is that the variogram automatically fitted 

conforms to the short lag pairs. It may be a very poor fit to the data at scales greater 

than the regularization length. However, it is these larger scales that are most 

important to the actual interpolation accuracy. 

3) A final problem with averaging the data prior to geostatistical analysis is that it 

introduces unwanted noise into the data. Figure 3-13 shows the results of applying 

the regularization formula described in Norman (1992a, pg 12) to regularize 3 m 
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packer test data to 30 m lengths. The hole radius is assumed to be 28 mm. This 

leads to a correction factor of approximately 1.462. In order to check on the 

accuracy of this formula for Aspo, it is possible to compare the regularized 30 m 

intervals with identical interval in wells KAS02, KAS03 and KLX0l over which 

actual 30 m packer tests were conducted. The regularization tends to overestimate the 

30 m tests at Aspo introducing a bias. Bias in this instance is manifest in Fig. 3-13 in 

that many more points lie above the line than below it, and that the points above the 

line are often at a greater distance than those below. An unbiased regularization 

would over-predict and underpredict with equal probability. The same number of 

points would lie above and below, and their cumulative distance above and below 

would be equal. Fig. 3-14 is better than Fig. 3-13 in these respects. However, the 

bias would have no effect on the variogram analysis since multiplication of the data 

by a constant does not alter the variogram. 

More important is the scatter about the line on the figure which represents a perfect 

match between the actual and the regularized prediction. In order to make the scatter 

more apparent, Figure 3-14 shows the data shifted down by computing the arithmetic 

average of the 3 m tests to better center it about the line. This does not change the 

variance from the previous plot (Fig. 3-13), since the only difference is in the scalar 

constant by which the arithmetic average is multiplied. Errors in predicting the 30 m 

tests are around one to two orders of magnitude, which is similar in magnitude to the 

mean squared error reported for the best models in the previous section. It is not 

clear from the figures whether the error is spatially correlated, but it would certainly 

introduce substantial non-spatially correlated noise into the data sets, which would 

obscure the true spatial correlation structure. 

For all of these reasons, the 3 m data was not regularized and then analyzed. Rather, 

several calculations were performed on the 30 m packer test data for wells KAS02, 

KAS03 and KLX0l. The results are described in the next section. 
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3.6.2 Results of Geostatistical Analysis of 30 m Test Data 

Figure 3-15 shows the raw variogram and the variogram cloud for the 30 m data from 

the three wells. There does not appear to be any systematic change in correlation 

with distance. This may be more a function of the small amount of data used to 

construct the variogram rather than a reflection of the lack of spatial correlation. 

Automatic structural recognition fitted a pure Nugget Effect variogram to the data 

with the cross validation results shown in Table 3.12. 

Table 3.12 

30 m Interval Cross-Validation Statistics 
MSE 2.482669 
ME 0.00928 
MRE 1.514108 
MSRE 2.292522 

This table indicates that a model assuming no spatial correlation is unbiased but is less 

variable than the actual data, which is evident in the dispersion of the variogram 

cloud. 

The mean error is near to 0.0, which implies that the model makes as many 

overestimates as underestimates, in other words, is unbiased. However, the other 

error measures that should theoretically equal 1.0 are much greater than 1.0, which 

indicates that the model makes bigger errors than would be expected were the model a 

perfect representation of the 30 m data. 

The 30 m results are not entirely consistent with the 3 m results. The range of the 3 

m variogram was on the order of 70 m. This distance corresponds to the second lag 

class of the 30 m variogram, which has already reached the sill (Fig. 3-15). Perhaps 

the lower semivariance value for the first lag pair in the 30 m variogram reflects the 

existence of some spatial correlation for the shortest distance ranges, but in any case, 

the degree of spatial correlation for short lags pairs is a very small component in 
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proportion to the non-spatially correlated variability. The fact that both the 3 m and 

the 30 m variograms lose most of their spatial correlation by 70 meters, and that both 

have a high proportion of non-spatially correlated variability even a short lag pairs, is 

internally consistent. 

There are some inconsistencies, however. It is interesting to compare the 3 m and 30 

m variograms to further investigate how to regularize 3 m data. It is possible to 

calculate the range and variance of 3 m data regularized to 30 m, and then to compare 

it to the actual 30 m variograrn. Formulas for regularizing data are given in Journal 

and Huijbregts (1978) for a variety of different variograrn models. As shown in Sec. 

3.3.1, a stationary model consisting of a Nugget of 1.4453 and a spherical variogram 

with sill equal to 0. 77 is a good model for the 3m data. Journal and Huijbregts 

(1978) show that, for distances h ~ L, where Lis the length of the sample, the 

regularized variogram is: 

(3.2) 

The term ':y(L;L) for L s a, where a is the range, is given by the expression: 

- L L 3 
'Y(L;L)=---

2a 20a3 
(3.3) 

The reduction in variance due to regularization can be calculated from this formula. 

For the short range spherical variogram, it becomes: 

(3.4) 
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or approximately 0.19, reducing the sill for the regularized 30 m variogram from 

0. 77 to 0.58. The Nugget Effect, whether due to sampling error or microstructure, 

should decre.ase by the ratio 3/30 = 0.1 (Rendu, 1981). This means that the nugget 

effect should be 0.145. The range for the spherical variogram should incre.ase 

approximately by 30 rn, to about 100 m. This is not what the variogram presented in 

Figure 3-15 shows. 

The 30 m variogram based upon 30 m well tests has a population variance virtually 

identical to the 3 m variogram - 2.61 for the 30 m and 2.59 for the 3 m (fable 3.13). 

While the variogram shown in Figure 3-15 might possibly show a range of 60 m or 

so, it is clear that the sill over the first 100 m is very much smaller than would have 

been predicted from the 3 m variogram, and the 30 m nugget effect is much larger. 

Table 3.13 also shows that most of the first and second-order population statistics do 

not differ much between the 3 m and 30 m tests. In other words, the interval 

perme.ability tests do not scale between 3 m and 30 m. If the 3 m and 30 m well tests 

essentially tested similar volumes of rock, then this might explain why the variance of 

the tests does not appear to scale. Another possibility is differences in test conditions 

between the 3 m and 30 m tests, such that additional measurement error entered into 

the 30 m test interpretations. 

Table 3.13 

Parameter 3 m Tests (no KAS02) 30 m Tests 

Mean -8.05 -8.75 

Standard Deviation 1.61 1.62 

Variance 2.59 2.61 

Mlilmum Value -11.56 -11.19 

Maximum Value -4.01 -5.77 

Number of Tests 553 b::S 
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4 CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions Concerning the Spatial Statistics of the Packer Test Data 

The following conclusions emerge from this study: 

1) The packer test data, with the possible exception of measurements made in 

KAS02, can be treated as a single population from the standpoint of geostatistical 

analyses. At this time, there are no obvious correlation with mappable geological 

units or systematic trends with depth or areal location. Most of the variability of the 

packer data consists of three components: drift, the spatially correlated component and 

the non-spatially correlated stochastic component. The non-spatially correlated 

component constitutes a greater portion of the variability than does the correlated 

component. 

2) There was no evidence found from analysis of directional variograms that the 

correlation structure was anisotropic on a regional scale. 

3) Cross-validation statistics stationary models composed of a Nugget Effect plus 

either a spherical, exponential or spherical plus exponential models yield 

approximately the same results. This may be due to the fact that all of these models 

fit the shorter lag classes of the raw semivariogram equally well, and only differ at 

longer ranges which do not play a significant role in the cross-validation process. 

4) Optimal Kriging neighborhoods are on the order of 200 m radius and partition 

the neighborhood into sectors. 

5) For the non-stationary models using a neighborhood of 200 m radius and 8 

sectors, the best order of drift was found to be zeroth or first order. The order of the 

intrinsic random functions was also of similar low order. 
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6) Cross-validation results for non-stationary models produced unacceptable 

MSRE and MRE and to a lesser extent, MSE statistics, while the ME statistics were 

the same or insignificantly better than for the stationary models. A possible 

explanation may be that the advantages of using non-stationary models may be lost at 

the Aspo site because the data appears to be very stationary. In such situations, 

stationary models may more accurately model the correlation structure. 

7) Geostatistical models for the Aspo site should consist of stationary models. 

The raw 3 m packer tests are well-described by a nested model consisting of a Nugget 

Effect of 1.25 , a mid-range spherical variogram with range on the order of 70 m and 

Sill equal to 0.68, and a longer range exponential variograrn with Sill equal to 0.30 

and range equal to 200 m. 

8) Regularized 3 m packer test data over-predicts 30 m tests conducted over the 

same intervals. A straight arithmetic average of the intervals produces less biased 

results, but both averaging methods introduce additional randomness into the data. 

9) Variograms computed from 30 m tests show very little spatial correlation, 

which may in part be a function of the small amount of data. The amount of spatial 

and non-spatial variance expected by regularizing 3 m tests using standard 

geostatistical methods is not consistent with the statistics of the 30 m tests. The 

reason for this is not known, but suggests that standard geostatistical regulation 

methods may not work at Aspo. 

4.2 Recommendations for Stochastic Hydrological Modeling at Aspo 

1) Stationary models make errors of more than two orders of magnitude in the 

hydraulic conductivity of packer tests, even when the tests are adjacent to measured 

data. Whether this amount of error is tolerable requires the investigation of this 

variability of hydrological modeling predictions for a particular set of purposes. At 
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some stage, it would be important to carry out a series of Hydrastar simulations to 

evaluate whether the uncertainty would lead to design or evaluation changes. 

2) If the errors discussed above are significant, it is unlikely that any stochastic 

inference method interpolating conductivity data from wells alone will much improve 

the situation. It will become essential to include other data that is more extensively 

distributed. For example, some component of geophysical data might relate to the 

hydraulic conductivity of the Aspo rock mass. If this type of additional "soft" data 

were available, then it would be possible to use it as a co-estimator in the form of co­

Kriging (Journal and Huijbregts, 1979), as an external drift function (Geovariances, 

1994) or as a trend surface. Non-geostatistical methods could also be employed, 

among them POCS (Projections on Convex Sets; Menke, 1991). 

Co-Kriging is a method used for using more abundant soft data to co-estimate less 

abundant hard data when the spatial correlation for both variables are represented by 

stationary models. External drift plays a similar role in the non-stationary case, 

where the "shape" of the soft data replaces the standard drift functions in the 

automatic fitting of the intrinsic random functions. Neither method requires that the 

"hard" and "soft" data have the same spatial structure (Journal and Huijbregts 1978). 

Co-Kriging and to a lesser extent, external drift, are well known in the literature. 

POCS is a very new algorithm with only a few publications describing it, but with 

much potential for stochastic modeling of flow properties (Malinverno, 1993). 

Because it may be .useful for Aspo, it is worth some additional explanation. POCS 

efficiently conditions stochastic simulations to a variety of constraints in a stationary 

region. Simulations generated through POCS can have self-affine fractal and many 

t'jpes of geostastical constraints. The correlation constraints are imposed by adjusting 

the amplitude spectrum of the data. Other constraints are imposed by means of 

mathematical projections. Among the types of constraints that can be imposed in 

addition to spatial correlation are: 
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• The simulation can take on the same values as measured data in wells 

or elsewhere 

• The simulated data can have the same mean, energy content and 

variance as the measured data 

• The values can be bounded. For example, it is possible to constrain all 

of the hydraulic conductivities to being positive or to be greater than 

some threshold value or less than some maximum credible value. This 

constraint could also be used to incorporate as a constraint nearly half 

the Aspo well data below threshold. 

• Faults or other discontinuities can be honored 

• The data can be forced to monotonically increase or decrease along a 

curve X(s). This feature makes it possible to replicate many types of 

drift. 

• Spatial correlation properties may be orthotopic 

POCS assumes that the data possesses second order stationarity throughout the 

simulation region, which appears to be clearly the case at Aspo. The advantage of a 

POCS approach is that it can enforce data constraints other than the spatial 

correlation, which the present study strongly suggests is insufficient in itself to make 

accurate estimation at Aspo. Another useful aspect of POCS is that it is an iterative 

procedure, and the order in which the constraints are imposed during each iteration 

effectively makes it possible to emphasize one constraint over another should there be 

an inconsistency or conflict between the model and the data. For example, imposition 

of the spatial correlation constraint first means that any later imposed constraint that 

conflicts with the spatial correlation model will be the one enforced. 
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However more appropriate the capabilities of POCS might be for Aspo, it too will be 

limited by the very sparse well data. Regardless of the stochastic inference algorithm 

employed, the well data must be supplemented with some more extensive "soft" data 

for estimation accuracy to improve. 

3) The issue of regularizing the packer test data prior to geostatistical analysis 

should be evaluated and tested. It would be worthwhile to create several simplified 

discrete fracture models, simulate packer tests in them, and then evaluate various 

strategies for predicting block scale fluid flow properties. The mathematical types 

that could be tested include models with no spatial correlation, those with a self-affine 

fractal structure, and those whose with a stationary spherical or exponential 

variogram. A series of wells based upon the well geometry of the packer tests at 

Aspo could be inserted into the model, and packer tests simulated. Block scale 

hydraulic conductivity could be calculated by simulating flow under a constant 

gradient using a code like MAFIC. The goal would then be to predict the block scale 

conductivity from the packer tests through different types of regularization both before 

and after the geostatistical analysis. 

These models could also help in evaluating different types of stochastic interpolation 

methods. It would be possible to compare performance of algorithms like POCS, or 

to evaluate the impact of including soft data through External Drift or Co-Kriging. 
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