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Summary

In this study, probabilistic analysis of canister inserts for spent nuclear fuel has been 
performed. The main conclusions are:
1. For the baseline case, the probability of failure is insignificant (~ 2×10–9). This is the 

case even though several conservative assumptions have been made both in underlying 
deterministic analysis and in the probabilistic analysis.

2. The initiation event dominates (over the local collapse event) when the external pressure 
is below the baseline case (p = 44 MPa). The local collapse event dominates when the 
external pressure is above the baseline case.

3. The local collapse event is strongly dependent of the assumed external pressure.
4. The analysis of collapse only considers the first local collapse event, total collapse of the 

insert will occur at a much higher pressure.
5. The resulting probabilities are more dependent on the assumption regarding the 

eccentricity of the cassette than the assumption regarding outer corner radius of the 
profiles for steel section cassette. The results indicate that the maximum allowed 
eccentricity should not be larger than 5 mm.

6. The probability of initiation of crack growth is calculated using a defect distribution 
where one assumes the existence of one crack-like defect. A simple scaling argument can 
be applied to consider the number of defects through the thickness.
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1 Introduction

Nuclear waste in Sweden is handled by the Swedish Nuclear Fuel and Waste Management 
Co, SKB. Several decades of research and development has led SKB to put forward the 
KBS-3 method for the final stage of the spent nuclear fuel management. In this method, 
copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by 
bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock, see 
Figure 1-1.

Figure 1-1. SKB is going to build a deep repository for all spent nuclear fuel.
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The primary safety function of the KBS 3 system is to completely isolate the spent nuclear 
fuel within copper canisters over the entire assessment period. Should a canister be 
damaged, the secondary safety function is to retard any releases from the canisters. The two 
issues of isolation and retardation are thus in focus throughout the assessment.

The canister consists of a pressure-bearing insert of nodular iron with a steel lid, Figure 1-2. 
The insert contains channels for the fuel assemblies, 12 in the BWR version and 4 in the 
PWR version. The insert is surrounded by an outer corrosion barrier of copper. In the 
repository the canisters will be loaded in compression by the hydrostatic pressure and the 
swelling pressure from the surrounding bentonite, giving a total pressure of 14 MPa. During 
the extreme time scales, several ice ages are expected with a maximum ice-sheet of 3 km 
resulting in an additional pressure of 30 MPa. The maximum design pressure for the KBS-3 
canisters has therefore been assumed to be 44 MPa.

For the licensing procedures of depositories for spent nuclear fuel safety analyses are 
performed. Among other items it is required to obtain an estimate of the probability of 
mechanical failure of canisters even by considering the effects of a possible ice age. At 
the end of 2002 a project was initiated to obtain such an estimate. Different activities such 
as material testing, stress and strain calculations, full-scale testing as well as probabilistic 
analyses have been conducted by different organisations. In the present report the 
probabilistic analysis of canister inserts for spent nuclear fuel is summarised.

Figure 1-2. Canister for final depository of spent nuclear fuel.
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2 Parameters to be included in the analysis

When performing a probabilistic analysis of the canister inserts, the important parameters 
that influence the calculated failure probabilities should be identified. Within this project it 
was decided that the following parameters should be considered.

Material data

• Fracture toughness (KIc,JIc).
• Yield stress in tension ( 0.2

Tension
pR ).

• Ultimate strength in tension ( Tension
mR ).

• Yield stress in compression ( 0.2
Compression
pR ).

• Ultimate strength in compression ( Compression
mR ).

• Strain to be used in the material model definition (εfailure).

Geometry and defects

• Outer corner radius of the profiles for steel section cassette (rcorner).
• Eccentricity of the cassette (δcassette).
• Defect distribution (ƒa).

Loading

• External pressure (p).

These parameters are described in more detail below.

2.1 Fracture toughness
Fracture toughness testing has been performed by the department of solid mechanics (KTH) 
/1–2/, and also by JRC /3/. The tests were performed using three-point bend specimens at 
different temperatures (between 0°C and 100°C). The following remarks were made /1–4/.
• In all cases the fracture mechanics tests exhibited ductile behaviour with rising Jr curves. 

In the probabilistic analysis, only initiation values are used. The calculated probabilities 
will therefore be quite conservative because of the assumed failure mode without any 
consideration of stable crack growth.

• Slightly different results were achieved at different temperatures and also for different 
inserts (inserts I24, I25 and I26 were tested).

• There was no significant difference between specimens taken from the bottom and upper 
slab, neither between specimens taken from the transverse or longitudinal directions.

• The results presented by JRC are somewhat lower than the results presented by KTH. At 
present there is no explanation to why this difference occurs.
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Comparing the room temperature results from JRC and KTH shows that the JRC results are 
more conservative and will therefore be used in the probabilistic analysis. In the analysis 
one uses KIc-data (instead of the presented JIc-data /3/) given as ( )2

I I / 1c cK J E ν= − , where 
E = 172 GPa /5/ and ν = 0.3.

Data to be used in the probabilistic analysis:
• Fracture toughness (mean value) = 83.5 MPa m.
• Fracture toughness (standard deviation) = 11.8 MPa m.
• Fracture toughness distribution = Normal /6/.

2.2 Yield stress and ultimate strength in tension
JRC and the Swedish Foundry Association performed tensile tests on 50 specimens from 
each of the three inserts I24, I25 and I26. The yield stress, the ultimate tensile strength 
and the elongation after fracture were determined. The results from JRC and the Swedish 
Foundry Association were very consistent with respect to the mean and standard deviation 
of yield stress, ultimate tensile strength and elongation after fracture and also to systematic 
variation between different inserts and locations of specimen. A summary of test results and 
a statistical analysis of these data are given in /7/.

The large variations in the results are quite remarkable, especially for the elongation. 
Insert I25 has a significantly higher failure strain than specimens from inserts I24 and I26 
and the specimens from the bottom slab have a higher failure strain. However, the tensile 
curves measured by JRC were more or less identical until fracture occurs. This observation 
suggested that the fracture process was controlled by the nature and size of the defect(s) 
present in the specimen tested /4/.

However, stress analysis of the insert shows that the resulting stresses and strains are 
independent of the assumptions made, regarding yield stress and ultimate strength in 
tension, in the analysis. This is also true for the probabilistic analysis; the probability of 
initiation of crack growth and probability of local collapse are independent of the assumed 
values of yield stress and ultimate strength in tension. It was therefore decided to use the 
more relevant compression data for the failure mode “local collapse” also when calculating 
the probability of initiation of crack growth. Another possible approach would be to treat 
this data as being deterministic, but then the probabilistic model has to be somewhat 
redefined.

Data to be used in the probabilistic analysis:
• See the compression data below.

2.3 Yield stress and ultimate strength in compression
JRC and Kockums AB performed compression tests on a few specimens from each of 
the three inserts I24, I25 and I26 /8–9/. Kockums were only able to produce yield stress 
values. JRC did produce both yield stress and ultimate compression strength values. The 
compression test data delivered by JRC exhibited very small variations, which was expected 
since such data are not controlled by defects /4/.
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The six data points from JRC are used in the analysis (the only available data for this study). 
Yield stress data is taken directly from /9/, ultimate strength data is taken from the curve fits 
given in /9/ for a true strain of 10% (as defined in Section 2.4 below).

Data to be used in the probabilistic analysis:
• Yield stress in compression (mean value) = 270 MPa.
• Yield stress in compression (standard deviation) = 6 MPa.
• Ultimate strength in compression (mean value) = 478 MPa.
• Ultimate strength in compression (standard deviation) = 6 MPa.
• Yield stress distribution = Normal /6/.
• Ultimate compression strength distribution = Normal /6/.

2.4 Strain to be used in the material model definition
As input data for the probabilistic analysis, several deterministic stress analyses of the insert 
are needed. In these calculations a simplified bilinear elastic-plastic material model and the 
ANSYS finite element software are used /10–11/. The bilinear material model is defined 
using an elastic modulus (up to the yield stress, for the elastic part) and a tangent modulus 
(for the plastic part). The tangent modulus is, somewhat arbitrary, defined using the ultimate 
strength value at 10% true strain.

Doing a sensitivity analysis, with a complete stress strain curve, shows that this 
simplification is conservative and that the differences in the results are quite small (up to  
an applied external pressure of 100 MPa).

2.5 Outer corner radius of the profiles for steel  
section cassette

In the manufacturing of the inserts, the outer corner radius, rcorner, of the profiles for steel 
section cassette (see Figure 2-1) has a tolerance that allows for a variation of the radius 
between 15 and 25 mm. This has an influence on the stresses close to the corner, but also  
on the ligament stresses (because a smaller corner radius has a negative influence on the 
wall thickness).

Within this study, it was decided to treat this parameter deterministically. How the radius 
influence the calculated probabilities are therefore shown using different sensitivity studies 
as shown in Section 4.

Data to be used in the probabilistic analysis:
• rcorner = 15, 20, 25 mm.
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2.6 Eccentricity of the cassette
In the manufacturing of the inserts, there is a possibility that the steel section cassette will 
have an offset relative to the centre of the insert (see Figure 2-2). Within this study, we call 
this the eccentricity of the cassette, δcassette. The eccentricity has an influence on the ligament 
stresses (because a smaller corner radius has a negative influence on the wall thickness).

The eccentricity, as shown in Figure 2-2, was measured to be 12 mm, which is very large. 
As part of this study, SKB has recently decided that there should be a tolerance that allows 
for a variation of the eccentricity between 0 and 5 mm.

In the present study, it was decided to treat this parameter deterministically. How the 
eccentricity influence the calculated probabilities are therefore shown using different 
sensitivity studies as shown in Section 4.

Data to be used in the probabilistic analysis:
• δcassette = 0, 5, 10, 15 mm.

2.7 Defect distribution
As stated in Section 2.2, the results from the tensile tests showed large variations regarding 
the failure strain and ultimate tensile strength. The conclusion was that the relevant fracture 
process was controlled by the nature and size of the defect(s) present in the specimen tested 
/4/. When calculating the probability of initiation of crack growth, one therefore has to 
include a defect size distribution.

JRC has conducted an extensive fractographic and metallographic study on broken 
specimens to check for defects /14/. This was done by first performing a detailed and 
unbiased analysis for a number of specimens to screen for defects or microstructural 
imperfections that might cause low failure strain. As indicated in Figure 2-3, there is a  
clear trend that the failure strain decreases with increasing defect size.

Figure 2-1. Outer corner radius, rcorner, of the profiles for steel section cassette /12/.
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Figure 2-2. Example with a large final eccentricity of the steel section cassette /13/.

Figure 2-3. The measured failure strain versus measured size of defects.
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A probabilistic model, that can be used to derive different defect distributions, was 
developed by JRC /14/. The model assumes the existence of one crack-like defect, and the 
size of this defect is characterised by an exponential distribution. Using different model 
assumptions (with and without a truncation of the failure strain) and data from the inserts 
I24 and I26, different exponential defect distributions were derived. The mean value of 
these distributions was estimated between 0.7 and 1.9 mm. In the probabilistic analysis,  
it is conservative to use an upper estimate. In order to simplify the analysis we assume  
that the defect is surface breaking, which is more severe than a subsurface defect and 
therefore conservative.

Data to be used in the probabilistic analysis:
• Defect geometry = a semi-elliptical surface defect.
• Defect length/depth = 6.
• Defect depth (mean value) = 1.9 mm.
• Defect distribution = Exponential /14/ (the JRC model assumes the existence of one 

crack-like defect, a simple scaling argument can be applied to consider the number of 
defects through the thickness).

2.8 External pressure
In the repository the canisters will be loaded in compression by the hydrostatic pressure and 
the swelling pressure from the surrounding bentonite, giving a total assumed pressure of 
14 MPa. During the extreme time scales, several ice ages are expected with a maximum ice-
sheet of 3 km resulting in an additional pressure of 30 MPa. The maximum design pressure 
for the KBS-3 canisters has therefore been assumed to be 44 MPa.

A large number of Finite Element stress analyses /15/, with aid of the software ANSYS 
/10–11/, were performed in order to provide input to the probabilistic analysis. It was 
decided to include an external pressure up to 60 MPa in these calculations.

Data to be used in the probabilistic analysis:
• External pressure = 0, 15, 25, 35, 40, 45, 50, 60 MPa.
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3 Deterministic stress analysis

A large number of Finite Element stress analyses /15/, with aid of the software ANSYS 
/10–11/, were performed in order to provide input to the probabilistic analysis. Since the 
amount of computational work was very large, the bulk of the analyses were performed 
on simplified two-dimensional models. In order to verify the relevance of this idealisation 
a comparison with full three-dimensional analysis was conducted. The results of this 
comparison showed that the two-dimensional computations gave satisfactory accurate 
results.

Also, in order to simplify the analysis, geometric symmetry showed that only 1/8 of the 
insert needed to be included in the finite element model (see Figure 3-1). Finally, the steel 
cassette and the outer corrosion barrier made of copper was not included in the model (a 
sensitivity analysis validated that this was a conservative idealisation). The resulting finite 
element model is shown in Figure 3-2 (using rcorner = 20 mm and δcassette = 0 mm).

The stress calculations were made using a simplified bilinear elastic-plastic material model. 
The bilinear material model is defined using an elastic modulus (up to the yield stress, 
for the elastic part) and a tangent modulus (for the plastic part). The tangent modulus 
is, somewhat arbitrary, defined using the ultimate strength value at 10% true strain (see 
Section 2.4).

Figure 3-1. Insert with symmetry lines that was used in finite element idealisation.
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From the base model, variations of the following parameters of the model were made.
• Influence of the outer corner radius (rcorner) of the profiles for steel section cassette.
• Influence of the eccentricity of the steel cassette (δcassette). This influence was simulated 

by changing the outer radius of the canister.
• Influence of change of the material properties i.e. yield stress ( 0.2

Compression
pR ) and ultimate 

strength ( Compression
mR ) in compression.

The total parameter matrix (the number of model combinations/analyses were 300) is 
summarised in Table 3-1.

In all cases the stress state of the insert was mainly compressive (see Section 3.1), but there 
was also a region with tensile stresses at the fuel channel facing the outside of the insert (see 
Section 3.2). The size of the region with tensile stresses increased with the applied pressure 
and also increased as the corner radius became smaller or as the eccentricity became larger.

The maximum effective stress is shown as function of the external pressure for different 
corner radius and for different eccentricities (in Figures 3-3 and 3-4, respectively) /15/.

As indicated in Figures 3-3 and 3-4, the insert has an elastic behaviour up to an external 
pressure of 15 MPa. Local collapse of the ligament (at the fuel channel facing the outside 
of the insert) begins at an external pressure of approximately 50 MPa (40 MPa if δcassette = 
15 mm).

Figure 3-2. Finite element model used in the stress analysis (example using rcorner = 20 mm and 
δcassette = 0 mm).
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Table 3-1. Parameter matrix for the deterministic stress analysis.

Parameter Variable Index Number 1 2 3 4 5 Unit

Outer radius router 1     4 474.5 469.5 464.5 459.5 mm

Corner radius rcorner 2     3   15   20   25 mm

Yield stress Rp0.2 3     5 200 250 270 290 350 MPa

Ultimate strength Rm 4     5 400 450 475 500 550 MPa

Total number of combinations (analyses) 300

Figure 3-3. Maximum effective stress, as a function of the external pressure, for different values 
of the corner radius (using mean values of yield stress and ultimate strength in compression) /15/.

Figure 3-4. Maximum effective stress, as a function of the external pressure, for different values 
of the eccentricity (using mean values of yield stress and ultimate strength in compression) /15/.
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3.1 Stress distribution – analysis of plastic collapse
In all cases the stress state of the insert was mainly compressive and when the external 
pressure is below ~ 30 MPa a stress concentration (in compression) dominates the stress 
field at the fuel channel facing the outside of the insert (see Figure 3-5). However, as the 
external pressure increases, also the plastic flow increases until a local collapse of the 
ligament occurs (see Figure 3-6). The dominating parameters that control the local collapse 
are the applied external pressure and the eccentricity of the steel cassette (see Figure 3-4).

The stress component that is most interesting, regarding a local collapse of the ligament, 
is related to the largest principal stress in compression (see Figure 3-7). This is the stress 
component that follows the corner radius and therefore perpendicular to a path through the 
thickness (starting at the stress/strain concentration at the corner).

The stress component perpendicular to a path through the thickness will therefore be used 
as input to the probabilistic analysis. Several other paths were also evaluated and typical 
examples are shown in Figure 3-8.

The probabilistic analysis of plastic collapse only considers the initial local collapse of the 
ligament. This is a conservative assumption since the final collapse of the insert will be 
at a much higher external pressure. The final collapse geometry (collapse analysis using 
ANSYS) is shown in Figure 3-9.

Figure 3-5. Effective stresses when p = 15 MPa (left plot) and p = 45 MPa (right plot). Results 
using rcorner = 20 mm, δcassette= 0 mm and mean material data.

Figure 3-6. Effective plastic strains when p = 45 MPa (left plot) and p = 60 MPa (right plot). 
Results using rcorner = 20 mm, δcassette = 0 mm and mean material data.
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Figure 3-7. Principal stresses close to the corner radius. The largest principal stress in 
compression is σ3 (PRIN3 in the plot).

Figure 3-8. Examples of two paths that have been used to generate stress input to the 
probabilistic analysis.
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3.2 Stress distribution – analysis of initiation of  
crack growth

As already stated above, the stress state of the insert was mainly compressive, but there was 
also a region with tensile stresses at the fuel channel facing the outside of the insert (see 
Figure 3-10). The size of the region with tensile stresses increased with the applied pressure 
and also increased as the corner radius became smaller or as the eccentricity became larger.

The stress component that is most interesting, regarding initiation of crack growth, is related 
to the principal stress (σ1) which could be in tension (see Figure 3-10). The largest principal 
stress is located within the material (when the external pressure is below ~ 45 MPa) or at 
the inner surface (when the external pressure is above ~ 45 MPa or when δcassette is larger 
than ~ 5 mm).

The principal stress (σ1) along a path through the thickness will therefore be used as input to 
the probabilistic analysis. Several paths were evaluated and typical examples are shown in 
Figure 3-11.

Figure 3-9. Final collapse geometry (collapse analysis using ANSYS, plot of the effective stress  
at the final collapse pressure).
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Figure 3-10. Principal stress (σ1) when p = 45 MPa (left plot) and p = 50 MPa (right plot). 
Results using rcorner = 20 mm, δcassette = 0 mm and mean material data.

Figure 3-11. Examples of two paths that have been used to generate stress input to the 
probabilistic analysis.

Examples of principal stresses along a typical path are found in Figure 3-12 (using rcorner = 
20 mm and δcassette = 0 mm). As shown in the figure, the largest principal stress is located 
within the material in this case. If rcorner = 15 mm, the stresses will be slightly larger and if 
rcorner = 25 mm, the stresses will be smaller.

Examples of principal stresses along a typical path are found in Figure 3-13 (using rcorner = 
20 mm and δcassette = 10 mm). As shown in the figure, the largest principal stress is located at 
the inner surface in this case. If δcassette > 5 mm, then the tensile stresses at the inner surface 
will be very large (i.e. the probability of initiation of crack growth will also be large).
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Figure 3-12. Principal stress (σ1) when p = 40–50 MPa. Results using rcorner = 20 mm, δcassette = 
0 mm and mean material data.

Figure 3-13. Principal stress (σ1) when p = 40–50 MPa. Results using rcorner = 20 mm, δcassette = 
10 mm and mean material data.
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4 Probabilistic analysis

Using the input data as given in Section 2 (fracture toughness, yield stress in tension/ 
compression, ultimate strength in tension/compression, outer corner radius of the profiles 
for steel section cassette, eccentricity of the cassette, defect distribution, external pressure) 
and Section 3 (stresses), it is then possible to calculate the probability of a local plastic 
collapse of the ligament and the probability of initiation of crack growth.

4.1 Theoretical background
Before presenting the results from the probabilistic analysis, a theoretical background is 
given below /6/. In this report, two different probabilities are calculated:
• Probability of local plastic collapse.
• Probability of initiation of crack growth, defect not detected by NDT/NDE.

The underlying procedure /6/ uses two different limit state functions, g (X) (gFAD (X) and 
max
rL

g  (X)).

( ) ( ) ( )FAD FAD rg X f X K X= −  (initiation of crack growth),   (4.1)

max
max( ) ( ) ( )

r
r rL

g X L X L X= −  (plastic collapse).     (4.2)

These limit state functions are based on a simplified R6 failure assessment curve /6/. To 
calculate the probability of failure, a multi-dimensional integral has to be evaluated /6/:

[ ]
( ) 0

Pr ( ) 0 ( ) .F X

g X

P g X f x dx
<

= < = ∫       (4.3)

The set where the above analysed event is fulfilled, is formulated as g (X) < 0, and is 
called the failure set. The set where g (X) > 0 is called the safe set. ƒX (x) is a known joint 
probability density function of the random vector X. This integral is very hard (impossible) 
to evaluate, by numerical integration, if there are many random parameters. The random 
parameters (as given in Section 2) are treated as not being correlated with one another.

As mentioned above, the failure probability integral is very hard to solve using numerical 
integration. Instead, the following numerical algorithms are included within the procedure 
/6/:
• Simple Monte Carlo Simulation (MCS).
• First-Order Reliability Method (FORM).

Simple Monte Carlo Simulation (MCS)

MCS is a simple method that uses the fact that the failure probability integral can be 
interpreted as a mean value in a stochastic experiment. An estimate is therefore given 
by averaging a suitably large number of independent outcomes (simulations) of this 
experiment.
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The basic building block of this sampling is the generation of random numbers from a 
uniform distribution (between 0 and 1). Simple algorithms “repeats themselves” (already) 
after approximately 2×103 to 2×109 simulations and are therefore not suitable to calculate 
medium to small failure probabilities. The algorithm chosen within the procedure repeats 
itself after approx. 2×1018 simulations. This algorithm is approximately 20 times slower 
than the simpler algorithms mentioned above, but it is recommended if one needs more than 
1×108 simulations.

Once a random number u, between 0 and 1, has been generated, it can be used to generate 
a value of the desired random variable with a given distribution. A common method is the 
inverse transform method. Using the cumulative distribution function FX (x), the random 
variable would then be given as:

( )1 .Xx F u−=          (4.4)

To calculate the failure probability, one performs N deterministic simulations and for every 
simulation checks if the component analysed has failed (i.e. if g (X) < 0). The number of 
failures is NF, and an estimate of the mean probability of failure is:

, .F
F MCS

N
P

N
=         (4.5)

An advantage with MCS, is that it is robust and easy to implement into a computer program, 
and for a sample size N → ∞, the estimated probability converges to the exact result. 
Another advantage is that MCS works with any distribution of the random variables and 
there is no restriction on the limit state functions.

However, MCS is inefficient when calculating failure probabilities, since most of the 
contribution to PF is in a limited part of the integration interval.

First/Second-Order Reliability Method (FORM/SORM)

FORM/SORM uses a combination of both analytical and approximate methods, when 
estimating the probability of failure.

First, one transforms all the variables into equivalent normal variables in standard normal 
space (i.e. with mean = 0 and standard deviation = 1). This means that the original limit 
state surface g (x) = 0 then becomes mapped onto the new limit state surface gU (u) = 0.

Secondly, one calculates the shortest distance between the origin and the limit state surface 
(in a transformed standard normal space U). The answer is a point on this surface, and it 
is called the most probable point of failure (MPP), design point or β-point. The distance 
between the origin and the MPP is called the reliability index βHL (see Figure 4-1).

In general, it requires an appropriate non-linear optimisation algorithm to calculate the most 
probable point of failure. However, a linearization of the limit state function is commonly 
used to calculate the MPP.

[ ]1 2

1
( ) ( ) ( ) ,

( )
T

i U i i U i U i

U i

y g y y g y g y
g y

+ = ⋅ ∇ ⋅ − ⋅∇
∇

   (4.6)

where yi is the current approximation to the MPP and ( )U ig y∇  is the gradient of the limit 
state function. This algorithm, generally called the Rackwitz & Fiessler (R & F) algorithm, 
is commonly used when evaluating PF, mainly because it is very easy to implement and it 
converges fast in many cases. However, the R & F algorithm converges extremely slowly in 
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some cases or oscillates about the solution without any convergence at all. In the procedure 
/6/ both of these problems occur when PF > 0.8 or when PF < 10–7 (also between these 
values in some cases). Therefore, the R & F algorithm was not chosen in the procedure /6/.

In the procedure, a modified Rackwitz & Fiessler algorithm was chosen. It works by 
“damping” the gradient contribution of the limit state function and this algorithm is very 
robust and converges quite fast for most cases. In this algorithm one defines a search 
direction vector di:

[ ]2

1
( ) ( ) ( ) .

( )
T

i U i i U i U i i

U i

d g y y g y g y y
g y

= ⋅ ∇ ⋅ − ⋅∇ −
∇

   (4.7)

A new approximation to the MPP can then be calculated:

1 .i i i iy y s d+ = + ⋅         (4.8)

The step size si was selected such that the inequality m (yi + sidi) < m (yi) holds, where m (yi) 
is the merit function:
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2i i U im y y c g y= ⋅ + ⋅        (4.9)

in which c is a parameter satisfying the condition / ( )i U ic y g y> ∇  at each step i. This 
algorithm is globally convergent, i.e. the sequence is guaranteed to converge to a minimum-
distance point on the limit state surface, provided gU (u) is continuous and differentiable.

Finally, one calculates the failure probability using an approximation of the limit state 
surface at the most probable point of failure. Using FORM, the surface is approximated 
to a hyperplane (a first order/linear approximation). SORM uses a second order/quadratic 
approximation to a hyperparaboloid (see Figure 4-2).

The probability of failure is given as:

[ ], HLPr ( ) 0 ( ) ,F FORM LinearP g u β= < = Φ −      (4.10)

( )
1

1/ 2

, HL HL
1

Pr ( ) 0 ( ) 1 ,
N

F SORM Quadratic i
i

P g u β κ β
−

−

=

 = < ≈ Φ − ⋅ − ⋅  ∏   (4.11)

where Φ (u) is the cumulative distribution function in standard normal space and κi are the 
principal curvatures of the limit state surface at the most probable point of failure (MPP).

Figure 4-1. The definition of design point/MPP and reliability index βHL.
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FORM/SORM are, as regards CPU-time, extremely efficient as compared to MCS. Using 
the FORM implementation within the procedure, you get quite accurate results for failure 
probabilities between 10–1 to 10–15. A disadvantage is that the random parameters must be 
continuous, and every limit state function must also be continuous.

4.2 Probability of local plastic collapse
The probability of plastic collapse is independent of the chosen defect distribution (because 
the collapse mode is in compression). Using the procedure in Section 4.1 and the data given 
in Section 2 and 3, the probability of plastic collapse is estimated to be Pcollapse = 1.40×10–21 
(using p = 44 MPa, rcorner = 20 mm, δcassette = 0 mm).

Sensitivity analysis (as a function of the applied external pressure) using different outer 
corner radius of the profiles for steel section cassette (rcorner) and eccentricity of the cassette 
(δcassette) are presented in Figures 4-3 and 4-4.

As shown in Figures 4-3 and 4-4, the parameters “applied external pressure” and 
“eccentricity of the cassette” has the strongest influence on the results. If δcassette is larger 
than ~ 5–10 mm, then the probability of plastic collapse is very large (if p = 44 MPa).

The results presented in Figures 4-3 and 4-4 are also summarised in Table 4-1.

In this study, the amount of tensile tests (more than one hundred data points according 
to Section 2.2) was much larger than the amount of compression tests (six data points 
according to Section 2.3). Therefore, it would be interesting to check the assumption 
regarding variation of the yield stress and ultimate strength in compression. The base 
line assumption is that the standard deviation is 6 MPa (using the six data points in 
compression). The result from this sensitivity study is presented in Figure 4-5 below.

Figure 4-2. Schematic difference between a linear and a quadratic approximation of the limit 
state surface.
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Figure 4-3. Probability of plastic collapse when p = 40–50 MPa. Results using rcorner =  
15–25 mm, δcassette = 0 mm.

Figure 4-4. Probability of plastic collapse when p = 40–50 MPa. Results using rcorner = 20 mm, 
δcassette = 0–15 mm.
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Table 4-1. Probability of plastic collapse when p = 40–50 MPa. Results using rcorner = 
15–25 mm and δcassette = 0–15 mm.

δcassette = 0 δcassette = 5 δcassette = 10 δcassette = 15

rcorner = 15 1.13×10–20 – – –

p = 40 rcorner = 20 1.96×10–44 3.78×10–20 2.28×10–9 0.142

rcorner = 25 < 1×10–50 – – –

rcorner = 15 1.56×10–7

p = 44 rcorner = 20 1.40×10–21 7.53×10–10 0.264 1.00

rcorner = 25 2.39×10–41

rcorner = 15 2.30×10–5 – – –

p = 45 rcorner = 20 3.47×10–17 6.85×10–8 0.751 1.00

rcorner = 25 7.37×10–35 – – –

rcorner = 15 0.877 – – –

p = 50 rcorner = 20 1.09×10–4 1.00 1.00 1.00

rcorner = 25 2.28×10–14 – – –

Note: Empty cells represent combinations that were not part of the sensitivity study.

Figure 4-5. Probability of plastic collapse when p = 40–50 MPa. Results using rcorner = 20 mm, 
δcassette = 0 mm, standard deviation ( 0.2

Compression
pR , Compression

mR ) = 6–15 MPa.
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4.3 Probability of initiation of crack growth
4.3.1 Probability of initiation of crack growth from one defect

Using the procedure in Section 4.1 and the data given in Section 2 and 3, the probability of 
initiation of crack growth is estimated to be Pinitiation = 7.57×10–13 (using p = 44 MPa, rcorner = 
20 mm, δcassette = 0 mm).

Sensitivity analysis (as a function of the applied external pressure) using different outer 
corner radius of the profiles for steel section cassette (rcorner) and eccentricity of the cassette 
(δcassette) are presented in Figures 4-6 and 4-7.

As shown in Figures 4-6 and 4-7, the parameters “applied external pressure” and 
“eccentricity of the cassette” has the strongest influence on the results. If δcassette is larger 
than ~ 10–15 mm, then the probability of initiation of crack growth is very large (if p = 
44 MPa).

The results presented in Figures 4-6 and 4-7 are also summarised in Table 4-2.

In this study, the mean value of the defect depth distribution was estimated between 0.7 and 
1.9 mm. It would be interesting to check this assumption (especially for larger assumed 
defect depths). The result from this sensitivity study is presented in Figure 4-8 below.

As seen in Figure 4-8, the resulting probability is rather insensitive to the assumed mean 
value of the defect depth distribution.

Figure 4-6. Probability of initiation of crack growth when p = 40–50 MPa. Results using  
rcorner = 15–25 mm, δcassette = 0 mm, µa = 1.9 mm.
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Figure 4-7. Probability of initiation of crack growth when p = 40–50 MPa. Results using  
rcorner = 20 mm, δcassette = 0–15 mm, µa = 1.9 mm.

Figure 4-8. Probability of initiation of crack growth when p = 44 MPa. Results using rcorner = 
20 mm, δcassette = 0–10 mm, µa = 0.7–5 mm.
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4.3.2 Combined probability of initiation of crack growth

As stated in Section 2.7, the defect distribution developed by JRC /14/ assumes the 
existence of one crack-like defect, and the size of this defect is characterised by an 
exponential distribution. The probabilistic analysis in Section 4.3.1 therefore calculates  
the probability of initiation of crack growth due to a single crack.

Using the analysis above, it is possible to calculate the combined probability of initiation 
of crack growth using a slice of the insert (along a path as defined by Figure 3-11). The 
thickness of the slice could be roughly assumed to be equal to diameter of the tensile 
specimen used to derive the defect distribution (d = 14 mm). Along the entire length of 
the insert (L = 4,573 mm), a number of such slices may be considered (n = L/d = 327). 
However, in the analysis we have only considered one of eight possible positions in the 
insert (because of the symmetry of the insert). Therefore, the number of slices should be 
equal to n = 8×327 = 2,616.

Assuming statistical independence, the combined probability of initiation of crack growth 
will be

( )1 1 ,
ncombined

initiation initiation initiationP P n P= − − ≈ ⋅      (4.12)

the latter since Pinitiation << 1.

The combined probability of initiation of crack growth are presented in Table 4-3 (using 
n = 2,616).

The combined probability of initiation of crack growth is therefore estimated to be 
combined

initiationP  = 1.98×10–9 (for the baseline case using p = 44 MPa, rcorner = 20 mm, δcassette = 0 mm).

Table 4-2. Probability of initiation of crack growth when p = 40–50 MPa. Results using 
rcorner = 15–25 mm, δcassette = 0–15 mm and µa = 1.9 mm.

δcassette = 0 δcassette = 5 δcassette = 10 δcassette = 15

rcorner = 15 8.48×10–13 – – –

p = 40 rcorner = 20 7.68×10–13 7.84×10–13 4.73×10–12 1.84×10–8

rcorner = 25 7.83×10–13 – – –

rcorner = 15 1.04×10–12 – – –

p = 44 rcorner = 20 7.57×10–13 7.79×10–13 2.36×10–10 6.80×10–7

rcorner = 25 8.27×10–13 – – –

rcorner = 15 1.10×10–12 – – –

p = 45 rcorner = 20 7.59×10–13 7.78×10–13 6.37×10–10 1.69×10–6

rcorner = 25 8.38×10–13 – – –

rcorner = 15 5.68×10–12 – – –

p = 50 rcorner = 20 1.19×10–12 8.26×10–12 1.19×10–6 7.66×10–7

rcorner = 25 7.76×10–13 – – –

Note: Empty cells represent combinations that were not part of the sensitivity study.
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4.4 Probability of failure of the canister insert
When evaluating the probability of failure of the canister insert, we have to compare the 
results from Section 4.2–4.3 and see what failure mechanism that is dominating. This 
comparison is presented in Figure 4-9 (using the assumptions regarding a combined 
probability of initiation of crack growth as presented in Section 4.3.2).

Obviously, the initiation event dominates when the external pressure is below the baseline 
case (p ≈ 44 MPa). Also the collapse event is strongly dependent of the assumed external 
pressure. The reason for this strong dependence is related to the pressure value at onset of 
local plastic collapse, if δcassette = 0 mm then collapse starts at p ≈ 50 MPa, if δcassette = 15 mm 
then collapse starts at p ≈ 40 MPa (see Figure 4-10). Since the baseline pressure is 44 MPa 
(i.e. between 40 and 50 MPa), then small deviations in the input data will produce large 
variations in the calculated probabilities of local collapse.

It has to be remembered that the analysis of collapse only considers the first local collapse 
event, total collapse of the insert will occur at a much higher pressure. If one conducts a full 
collapse finite element analysis of the insert (using a complete stress-strain curve /9/) the 
collapse pressure are calculated to be (see Figure 4-11):
• pmax = 104 MPa (only the pressure-bearing insert of nodular iron was included in  

 the model).
• pmax = 118 MPa (the outer corrosion barrier made of copper was also included).
• pmax = 130 MPa (estimate for the case when both the steel cassette and the corrosion  

 barrier was included in the model).

Table 4-3. The combined probability of initiation of crack growth when p = 40–50 MPa. 
Results using rcorner = 15–25 mm, δcassette = 0–15 mm and µa = 1.9 mm.

δcassette = 0 δcassette = 5 δcassette = 10 δcassette = 15

rcorner = 15 2.22×10–9 – – –

p = 40 rcorner = 20 2.01×10–9 2.05×10–9 1.24×10–8 4.81×10–5

rcorner = 25 2.05×10–9 – – –

rcorner = 15 2.72×10–9 – – –

p = 44 rcorner = 20 1.98×10–9 2.04×10–9 6.17×10–7 1.78×10–3

rcorner = 25 2.16×10–9 – – –

rcorner = 15 2.88×10–9 – – –

p = 45 rcorner = 20 1.99×10–9 2.04×10–9 1.67×10–6 4.42×10–3

rcorner = 25 2.19×10–9 – – –

rcorner = 15 1.49×10–8 – – –

p = 50 rcorner = 20 3.11×10–9 2.16×10–8 3.11×10–3 2.00×10–3

rcorner = 25 2.03×10–9 – – –

Note: Empty cells represent combinations that were not part of the sensitivity study.
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Figure 4-9. Probability of failure when p = 40–50 MPa. Results using rcorner = 15–25 mm, δcassette 
= 0 mm, µa = 1.9 mm.

Figure 4-10. Load-displacement curve, results using rcorner = 20 mm, δcassette = 0–15 mm.
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Figure 4-11. Load-displacement curve, results using rcorner = 20 mm, δcassette = 0 mm.
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5 Conclusions

In this study, probabilistic analysis of canister inserts for spent nuclear fuel has been 
performed. The main conclusions are:
1. For the baseline case, the probability of failure is insignificant (~ 2×10–9). This is the 

case even though several conservative assumptions have been made both in underlying 
deterministic analysis and in the probabilistic analysis.

2. The initiation event dominates (over the local collapse event) when the external pressure 
is below the baseline case (p = 44 MPa). The local collapse event dominates when 
the external pressure is above the baseline case (the two events are equal when p ≈ 
47.5 MPa).

3. The local collapse event is strongly dependent of the assumed external pressure.
4. The analysis of collapse only considers the first local collapse event; total collapse of  

the insert will occur at a much higher pressure.
5. The resulting probabilities are more dependent on the assumption regarding the 

eccentricity of the cassette than the assumption regarding outer corner radius of the 
profiles for steel section cassette. The results indicate that the maximum allowed 
eccentricity should not be larger than 5 mm.

6. The probability of initiation of crack growth is calculated using a defect distribution 
where one assumes the existence of one crack-like defect. A simple scaling argument  
can be applied to consider the number of defects through the thickness.
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