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Abstract
X-ray micro-computed tomography (X-μCT) generates 3D mineral distribution maps currently with a resolution of about 
10 μm. For tight crystalline rocks, this implies that the mineral grains are well resolved, while micro-fractures, having 
apertures of less than 10 μm, are not resolved. In this study, we propose a method to analyze the properties (size, volume, 
surface area) of the mineral grains based on X-μCT data. The numerical approach uses a resolution similar to that of the 
X-μCT data and hence shares the same limitations. For example, it is clear that a large fraction of the mineral surface 
area is due to so-called roughness, with scales below 10 μm. In the second part of the study, methods to generate the 
diffusion-available pore space are discussed. The inter-granular space (distance between grains) is often smaller than 
10 μm, and we need to design methods to be able to perform diffusion simulations in the matrix. Three methods, all 
based on X-μCT, are discussed, and it is demonstrated that models with realistic global properties (mean porosity and 
effective diffusion coefficient) can be developed based on the suggested techniques.
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1  Introduction

The need for an accurate description and characterization of 
micro-scale physical and mineralogical properties of subsur-
face rock formations along with the increasing availability 
of X-ray micro-computed tomography (X-μCT) machiner-
ies have encouraged the use of pore-scale direct numerical 
modeling of single and multi-phase flow and multicompo-
nent reactive transport [3, 11, and references therein].

Most of these works focus on relatively permeable and 
porous rock samples, typically sandstones [1, 2, 16] or car-
bonates [2, 15] or synthetically generated sphere packs 
[4, 12], where flow plays a critical role and call for the use 
of appropriate equations (typically, Navier–Stokes) and 
numerical schemes.

In parallel to these applications, which are all some-
how motivated by oil- and gas-related projects, recently, 
increasing attention has been directed toward the use of 
micro-characterization data for numerical simulations for 
the support of safety analyses of deep geological reposi-
tories for nuclear waste. The main difference as compared 
to the previously mentioned oil- and gas-related works is 
that the focus here is mostly on the rock matrix of frac-
tured crystalline rocks, which could be unaltered or partly 
altered due to, e.g., hydrothermal alteration events and 
which is often characterized by low permeability. A sche-
matic view of the mineral structure and the inter-granular 
space is shown in Fig. 1. In these types of media, molecu-
lar diffusion is the main transport mechanism to be con-
sidered and, given the very low amount of available pore 
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space of these rock samples, which is typically below the 
resolution of X-μCT measurements, the related micro-
scale models have been denoted as grain-scale models. 
Grain-scale models have been used in combination with 
different numerical schemes and with different reactive 
transport mechanisms included.

Voutilainen et al. [27] used X-μCT and 14C-PMMA meas-
urements of an altered Tonalite sample to map porosity 
and diffusivity in an underlying continuum model. With 
the derived heterogeneous distribution of parameters, 
they simulated diffusion of a non-sorbing radionuclide 
using a time-domain particle tracking method. The same 
approach was recently further extended to account for 
spatially variable retention using a linear sorption model 
and with Kd values related to the underlying distribution 
of mineral grains [28]. A grain-scale continuum formula-
tion was also used by Trinchero et al. [24] to assess the 
influence of mineralogical heterogeneity on radionuclide 
breakthough curves in a single fracture-matrix system 
using multicomponent reactive transport calculations.

In parallel to the development of continuum-based 
models, efforts have been placed to map and represent 
the inter-granular pore space, which is where most of the 
reactive surface area is exposed to diffusive fluxes. Iraola 
et al. [7] mapped grain-to-grain discontinuities in a regular 
lattice, denoted as inter-granular network (IGN), which was 
used to carry out high-performance computing (HPC) cal-
culations of radionuclide diffusion. The model included an 
explicit description of mineral surfaces (at the discontinui-
ties of reactive mineral grains), whose sparse distribution 
was found to lead to anomalous signatures in the resulting 
diffusive penetration profiles. Svensson et al. [22] showed 

that the inter-granular space could be represented using 
a micro-discrete fracture network (micro-DFN), which was 
subsequently represented in an underlying micro-con-
tinuum model. Compared to the work of Iraola et al. [7], 
this approach offers the advantage of recasting small-
scale heterogeneity through an appropriate choice of the 
parameters of the micro-DFN.

Here, the approach of Svensson et al. [22] is extended 
and combined with available micro-characterization data 
of rock samples. More specifically, the proposed method is 
used to provide direct estimations of grain-related proper-
ties from X-μCT measurements (e.g., size, volume, surface 
area, shape factor, etc.). Moreover, different strategies to 
discretize the diffusion-available pore space are presented, 
in which X-μCT data are combined with micro-DFN reali-
zations. The resulting numerical grids are expected to be 
a valuable tool for, e.g., the study of scale dependence of 
mineral reaction rates.

2 � Rock samples

Two types of crystalline rock samples from Olkiluoto, Finland, 
will be analyzed in this work. The selected veined gneiss 
(VGN) and pegmatitic granite (PGR) samples represent the 
typical rock types of Olkiluoto. Their porosity, mineralogy and 
transport properties have been widely studied previously [6, 
8, 9, 13, 17, 18, 29]. The analyzed samples are collected from 
the experimental site of the “rock matrix REtention PROper-
ties” (REPRO) project carried out at the underground rock 
characterization facility of Olkiluoto (ONKALO), at a depth 
of around 400 m. The project consists of various in situ and 
laboratory experiments that aim at determining transport 
properties of the crystalline rock under in situ conditions. 
Porosities of the samples, obtained from the site, have been 
determined using water gravimetry, Ar-gas pycnometry [26] 
and 14C-PMMA autoradiography [5, 14]. The bedrock of the 
REPRO site consists of VGN, and PGR and they represent the 
typical rock types of Olkiluoto [23]. The values of porosity 
obtained for samples from the REPRO site vary between 
(0.3–1.3)% for VGN and (0.30–0.75)% for PGR [6, 9].

Furthermore, effective diffusion coefficients were 
determined using through-diffusion experiments of HTO 
and Cl-36 in the laboratory. The obtained values were 
in the range (1.7−3.9) × 10−13 m2∕s for VGN and around 
5 × 10−13 m2∕s for PGR [29]. Other experimental results, 
obtained with gas phase measurements [9], showed that 
slightly lower diffusion coefficients are obtained in VGN 
samples ((0.5−1.0) × 10−13 m2∕s ) and similar values as 
above for PGR samples.

Previously Voutilainen et  al.  [30] have resolved the 
3D mineral structure of the samples with X-μCT and 

Fig. 1   Sketch showing distribution of grains and pore space in a 
typical crystalline rock matrix. Red indicates reactive mineral
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determined the porosity distribution with C-14-PMMA 
autoradiography. Furthermore, they have constructed 3D 
grain maps of the samples by first segmentating differ-
ent main mineral phases from each other by their X-ray 
attenuation coefficient and then grains from mineral 
phases by running a watershed algorithm on 3D min-
eral phase images. The main minerals of the samples are 
quartz, plagioclase, K-feldspar and mica minerals. Unfor-
tunately, the X-ray attenuation of quartz and plagioclase 
overlap, and thus they cannot be segmented from each 
other directly. However, the grains belonging to a mineral 
phase that included quartz and plagioclase were artificially 
divided according to their known abundances [17]. The 
constructed 3D grain maps (see Fig. 2) form the base of 
the present work and are being further processed in order 
to create more realistic grain-scale models. The 3D grain 
maps were 8-bit gray scale images. The gray scale values 
of each grain were artificially selected so that different 
minerals had their own gray scale range and no grain has 
the same gray scale value as any of its neighboring grains 
(see Table 1).

3 � Methodology and results

3.1 � Grain and mineral surface analysis

As explained above, each grain type has its own gray scale 
value and a mineral phase is built up of a certain range of 
gray scale values (see Table 1). Here a numerical method 
will be used to analyze grain properties by considering one 
gray scale value at the time and then add up a range of 
gray scale values to get the properties of a mineral phase. 
The starting point of the procedure is the 3D grain maps 
obtained by Voutilainen et al. [30]. The analysis is carried 
out using the numerical groundwater flow and solute 

transport code DarcyTools [20, 21]. The following stepwise 
approach is adopted:

1.	 Each considered rock sample is “covered” with a uni-
form grid, with a resolution of 27.16 μm (i.e., twice as 
much as the resolution of the X-μCT data).

2.	 Each cell in the grid is marked with a gray scale value, 
as given by the grain map. One of the gray scale values 
of the analyzed mineral phase is selected for analysis. 
All cells not having the selected value are removed 
from the grid.

3.	 The remaining grid will form patches that are not 
connected. Each such patch represents a grain, and 
the number of patches is thus equal to the number of 
grains of the considered type.

4.	 Each patch is analyzed individually by computing its 
total volume (m3) and total surface area (m2).

5.	 Results for each mineral type are computed by add-
ing up the contribution from their corresponding grain 
indexes (see Table 1). For example , if K-feldspar in PGR 
is to be analyzed, we need to consider gray scale val-
ues 41–53. Steps 2–4 are then repeated thirteen times 

Fig. 2   Three-dimensional visu-
alization of the two considered 
rock samples (left: pegmatitic 
granite, PGR; right: veined 
gneiss, VGN) after mineral 
segmentation. The size of each 
sample is 1 cm3. The mineral 
phases shown are : quartz 
(blue), plagioclase (green) , 
K-feldspar (yellow) and mica 
(red)

Table 1   Grain map: summary of mineral type, mineral volume frac-
tion and gray value indexes for each of the two considered samples

Rock Mineral Abun-
dance 
(%)

Gray value index

Veined gneiss (VGN) Quartz 28 40–52
Plagioclase 14 100–112
K-feldspar 16 120–132
Mica minerals 42 60–72

Pegmatitic granite 
(PGR)

Quartz 46 20–32
Plagioclase 21 100–112
K-feldspar 31 41–53
Mica minerals 2 60–72
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before adding up the contributions from the range of 
grains constituting K-feldspar.

Besides volume and surface area, a shape factor (–) is also 
computed as the ratio between the surface area of a given 
grain and the surface area of a sphere with the same volume 
as the considered grain. As a sphere encloses the maximum 
volume for a given surface area (minimum surface-to-vol-
ume ratio), the shape factor can be seen as a measure of the 
surface-to-volume ratio or irregularity of mineral grains. Note 
that here the grain size is not defined as typically in crystal-
lography. Here the fissures, fractures and grain boundaries 
are considered to divide crystallographic grains into multiple 
grains (for further details see Voutilainen et al. [30]).

Some numerical aspects of the calculation of grain sur-
face area and shape factor are given in “Appendix”.

The results of the analysis are summarized in Table 2. In 
VGN, the four identified mineral phases distribute in grains 
with a similar size (0.4–0.7 mm). Most of the available sur-
face area belongs to mica minerals: ≈ 49% . This relative 
amount is slightly higher than the mica mineral volume 
fraction ( ≈ 42% , see Table 1), due to the smaller size and 
higher surface-to-volume ratio of mica grains compared 
to, e.g., K-feldspar grains (11% of surface area and 16% of 
volume fraction).

The size of mineral grains in PGR spans a larger range: 
from 0.5 mm for K-feldspar to 1.1 mm for plagioclase. 
Around 58% of the available surface area belongs to these 
two mineral phases. K-feldspar grains are significantly 
smaller, which explains the fact that they account for 44% 
of the available mineral surface area with only 31% of the 
volume fraction.

Histograms and bar graphs for size and other metrics 
that characterize each mineral grain of a given mineral 
phase have been computed and are shown in Fig. 3 for 
mica minerals in VGN and Fig. 4 for plagioclase in PGR. Mica 
is the most abundant mineral phase in VGN and is consti-
tuted by more than 18,000 individual mineral grains, whose 
size spans a range from a few tens of micro-meters to a few 
millimeters, for the few larger grains. Despite accounting 

for 21% of the volume fraction in PGR, plagioclase is con-
stituted by a few hundred grains only. In fact, most of this 
volume fraction is associated with two single individual 
grains of diameter larger than 4 mm. The distribution of 
shape factors is significantly more scattered for mica min-
erals in VGN than plagioclase in PGR. Yet, a general trend 
can be observed for both phases, with the shape factor 
increasing from a value slightly higher than 1 for the small-
est grains to a plateau value, for grains with larger radii. 
This plateau value is slightly higher for mica minerals ( ≈ 2.8 
for mica minerals in VGN and ≈ 2.5 for plagioclase in PGR), 
which indicates that the mineral grains of this phase have 
a slightly higher surface-to-volume ratio . A close-up view 
of some plagioclase grains in VGN is shown in Fig. 5.

3.2 � Grids generation

The objective here is to define and test methodologies for 
the generation of numerical grids that map the diffusion-
available porosity of a rock sample and that can be of use 
for transport calculations.

The basic idea is illustrated in Fig. 6. The inter-granular 
space is typically below the resolution of X-ray data (i.e., 
below 10 μm). Thus, a numerical grid, with refinement equal 
to the resolution of X-ray data, is used to “cover” the whole 
rock sample and only the grid cells located at boundaries 
between two different grains are retained. Based on this 
idea, three different approaches for mapping the inter-gran-
ular space and for defining local values of pore diffusivity 
and porosity are defined. A description of these approaches, 
and the related numerical grids, is as follows.

•	 Grid 1 The numerical grid is generated using the 
approach shown in Fig. 7a; i.e., two grid cells are used 
to describe the boundary between two adjacent min-
eral grains. Constant values of local pore diffusivity and 
porosity are assigned.

•	 Grid 2 A micro-discrete fracture network (micro-DFN, 
[22]) is generated in a volume slightly bigger than the 
considered sample. Only fractures having their center 

Table 2   Grain map: summary 
of number of grains, specific 
surface area (SSA), relative 
amount of surface area (SA) 
and mean diameter of the 
grains for each of the two 
considered samples

Rock Mineral Number of grains SSA 
(m2∕m3) × 103

SA (%) Mean diame-
ter (m) × 10−4

Veined gneiss (VGN) Quartz 7196 4.9 25 5.2
Plagioclase 7081 2.8 15 4.0
K-feldspar 1555 2.1 11 7.0
Mica minerals 18,563 9.4 49 4.2

Pegmatitic granite 
(PGR)

Quartz 6430 3.5 40 6.3
Plagioclase 528 1.2 14 11.2
K-feldspar 8209 3.9 44 5.3
Mica minerals 70 0.2 2 10.0
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inside the volume occupied by Grid 1 are retained. 
Those grid cells of Grid 1 not intersected by any frac-
ture are deactivated while DFN-derived diffusivity and 
porosity values are assigned to the other cells (see 
Svensson [19] for details on how DFN-derived values 
are computed). A sketch of this approach is shown in 
Fig. 7b. The topology of the resulting numerical grid is 
similar to that of Grid 1, the main difference being that 
Grid 2 is less connected.

•	 Grid 3. This numerical grid is generated in a way analogous 
to Grid 2, but here previously deactivated cells located at 
the far-end of fractures are re-activated. This grid aims at 
including the effect of intra-granular porosity.

It is worthwhile recalling that in DarcyTools, fracture 
orientation follows a Fisher distribution (here a random 
orientation is used) and spatial centers are statistically 
independent and follow a Poisson process. The number 
of fractures in the length interval l to l + dl is simulated 
using the following power law equation:

where n is the number of fractures per unit volume, I ( m−3 ) 
is the intensity, a (–) is the power law exponent and lref 

(1)n =
I

a

[(

l + dl

lref

)a

−

(

l

lref

)a]

Fig. 3   Mica minerals in VGN. For the given mineral, the histogram 
of size distribution (bin size 20  μm; the bin size defines the num-
ber of grains in the interval ( d, d + 20 μm )) is calculated (top left). 
The bar graphs for volume (top right) and area (bottom left) are 
also calculated using the same bin size. The volume of each grain 

is computed assuming a spherical shape in order to be able to use 
“diameter” as the variable on the horizontal axes. The surface area 
of the grain divided by the area of the sphere gives the shape fac-
tor (bottom right)
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(m) is the reference length, which is here set to 1 m. lref is 
strictly not needed as a variable as it could be included in 
the intensity. However, it is motivated by dimensional and 
numerical arguments.

The three approaches are here tested using the two 
data-sets described in Sect. 2. The target metrics that are 
used to fine-tune the grid parameterization are global 
properties typically obtained using laboratory experi-
ments, namely porosity and effective diffusivity, which 
are also summarized in Sect. 2.

Local properties are set, and manually calibrated, to 
match the range of diffusion-related global properties dis-
cussed previously. The calibration is done by adjusting the 
aperture and the diffusion coefficient. Global porosity is 

obtained as the arithmetic mean of local porosity, whereas 
global diffusivity is computed from numerical steady state 
through diffusion experiments. As an example, Fig. 8 shows 
the spatial distribution of steady-state concentration for 
one of the considered models (namely, Grid 2 for VGN).

The numerical experiment is set up as follows. A cube 
is given properties from the micro-DFN. Two opposing 
sides of the cube are given fixed value (Dirichlet) bound-
ary conditions; other boundaries are of zero flux type. A 
steady-state diffusion calculation is carried out and the flux 
through the cube is noted. From the flux and the concen-
tration gradient, the global diffusivity can be calculated.

For Grid 1, local porosity and pore diffusivity are set to 
constant values of 2% and 2 × 10−12 m2∕s , for VGN and 

Fig. 4   Plagioclase in PGR. For the given mineral, the histogram of size 
distribution (bin size 20 μm; the bin size defines the number of grains 
in the interval ( d, d + 20 μm )) is calculated (top left). The bar graphs 
for volume (top right) and surface area (bottom left) are also calcu-

lated using the same bin size. The volume of each grain is computed 
assuming a spherical shape in order to be able to use “diameter” as 
the variable on the horizontal axes. The area of the grain divided by 
the area of the sphere gives the shape factor (bottom right)
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5% and 1.0 × 10−11 m2∕s for PGR. For Grid 2 and Grid 3 
local parameters are defined based on the micro-DFN 
summarized in Table 3.

The resulting global properties computed for both the 
VGN and the PGR samples are listed in Table 4. The val-
ues of global porosity and effective diffusivity are within 
the range provided by the rock characterization studies 
discussed in Sect. 2. Slightly larger effective diffusivity 
values are obtained for the PGR sample. This is also con-
sistent with the results of Kuva et al. [9] and Voutilainen 
et al. [29] discussed before. The variation of the effective 
diffusion coefficient and the porosity between the three 
grids is of no significance as the only objective is to get 
the values within the desired range.

Ten to twenty-six million cells are required to map 
the diffusion-available pore space in VGN (less cells are 
required in the less connected Grid 2 while more cells 
are needed in Grid 3, which includes intra-granular pore 
space). Significantly less cells are used for the PGR sample 
(4.6 millions for Grid 2 and 12.5 millions for Grid 3) due to 
the fact that this sample is characterized by a significantly 
lower amount of grains (see Table 2).

Figures  9, 10, 11, 12, 13 and 14 show the different 
grids used to map the diffusion-available pore space of 
the VGN and PGR samples. For Grid 1 (Figs. 9, 10), grid 
cells are colored according to the grain value index of 
the neighboring grain. For Grid 2 and Grid 3 (Figs. 11, 12, 
13, 14) local porosity values are shown. The simple visual 
inspection of these numerical grids points out that Grid 1 

Fig. 5   Grain map analysis. Illustration of resolved plagioclase grains in VGN. The figure to the right is an enlargement of the bottom right 
part of the figure to the left, which is indicated by a red dashed frame. The cell size used for the analysis is 27.16 μm

Fig. 6   Transport grids. 
Concepts and Methods. The 
inter-granular region (left) is 
expected to have a spacing 
of 1–10 μm. X-ray data does 
not resolve this (center). The 
shaded cells (right) constitute 
the reference case computa-
tional grid
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is indeed over-connected, as a full layer of cells will sur-
round each grain. This over-connection is broken in Grid 2, 
which accounts for small-scale heterogeneity through an 
underlying micro-DFN (see, for instance, Fig. 15). Yet, it is 
worthwhile emphasizing that Grid 2 is still connected in 3D 
even though a visual inspection of a 2D cross section (e.g., 

Fig. 11) seems to indicate the opposite. In Grid 3 a signifi-
cantly larger number of cells are activated. This grid in fact 
accounts for the influence of intra-granular pore space. It 
is also possible to visually notice the difference between 
the VGN and the PGR samples. The latter is characterized 
by larger grains, which results in a smaller number of 

Fig. 7   Three approaches to the generation of grids for transport 
simulations. In this sketch the red line indicates the limit between 
two adjacent grains and cells belonging to two different grains 
are marked with a circle and a cross. a Grid 1: boundary cells are 
retained (i.e., all the cells shown in the plot) and the rest are deac-

tivated. b Grid 2: a discrete fracture network is generated and frac-
tures intersecting active grid cells are retained. Cells not intersected 
by fractures are also deactivated (gray shaded cells). c Grid 3: addi-
tional cells (marked with dashed lines) are added at the far-end of 
fractures to mimic intra-granular porosity

Fig. 8   Grid 2 of VGN: steady-
state distribution of concentra-
tion of a non-sorbing tracer. 
Concentration is normalized 
by the concentration at the 
upstream boundary. y-section 
is taken at y = 5 mm
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cells used to map the diffusion-available pore space (see 
Table 4). This explains also the higher value of local poros-
ity used in Grid 1 of PGR compared to the analogous values 
used in Grid 1 of VGN.

An illustration of a generated micro-DFN is given by 
Fig. 15. In the present context, we have chosen to only use 

the global porosity and the effective diffusivity as our target 
metrics. The micro-DFN approach can, however, be tuned 
to model other parameters (like tortuosity and porosity dis-
tributions) as shown in Svensson et al. [22]. Nevertheless, it 
should be emphasized that the micro-DFN is a model of the 
inter-granular space. For example, the length interval has 
been chosen to 50–100 μm, even though smaller fractures/
patches may contribute significantly to the total porosity. 
With the parameters in Table 3 this fracture length interval 
will result in 1–5 million fractures. For computational reasons 
we cannot use smaller fractures as too many fractures would 
be generated. Another simplification is that all fractures are 
rectangles with constant aperture and diffusivity. The tuning 
of the model can for these reasons not be based on direct 
observations of the inter-granular space; a more pragmatic 
view is needed. Here we have chosen a certain fracture 
length interval and a certain power law coefficient. We then 
tune the diffusivity, aperture and intensity. The task is simpli-
fied by noting that the apertures and intensities control the 
global porosity, while the diffusivities and apertures control 
the effective diffusivity. The DFN parameters in Table 3 can 
thus not be directly compared to measured data, but we still 
require that they are within certain limits. The diffusivities 
should, for example, be smaller than the molecular diffusiv-
ity in unconstrained solution and the apertures significantly 
smaller than the side length of the fracture.

4 � Discussion and conclusions

We have presented an approach for the direct analysis of 
grain properties (volume, surface area, size distribution, 
shape factor, etc.) from X-ray computed microtomography 

Table 3   Micro-DFN parameters: fracture diffusivity, fracture aper-
ture and intensity. Common for all: length interval ( 50 → 100 μm ), 
power law coefficient ( − 2.6 ) and random orientation. Note that D

f
 

is the local diffusivity value of each considered fracture

Property VGN PGR

Grid 2 Grid 3 Grid 2 Grid 3

D
f
 (m2∕s) × 10−10 2.0 1.0 9.0 3.0

Aperture (μm) 1.2 0.3 2.8 0.5
Intensity (1/m3) 100 400 100 400

Table 4   Global properties computed for the two different samples 
and with the different grids: effective diffusion coefficient ( D

e
 ), 

porosity ( � ), number of cells and grid volume fraction (i.e., percent-
age of the total volume occupied by active cells, Vf)

Rock Grid D
e
 

(m2∕s) × 10−13
� (%) Number of 

cells (million)
Vf  (%)

Veined gneiss 
(VGN)

1 2.9 0.58 14.4 29
2 3.2 0.58 10.1 20
3 4.0 0.75 26.0 52

Pegmatitic 
granite (PGR)

1 4.7 0.66 6.6 13
2 4.5 0.60 4.6 9
3 6.3 0.57 12.5 25

Fig. 9   (Left) Grid 1 of VGN and (right) close-view showing grid cells colored according to the grain value index of the neighboring grain. 
y-section is taken at y = 5 mm



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:1277 | https://doi.org/10.1007/s42452-019-1254-1

Fig. 10   (Left) Grid 1 of PGR and (right) close-view showing grid cells colored according to the grain value index of the neighboring grain. 
y-section is taken at y = 5mm

Fig. 11   (Left) Grid 2 of VGN and (right) close-view showing grid cells colored according to their porosity value. y-section is taken at y = 5mm

Fig. 12   (Left) Grid 2 of PGR and (right) close-view showing grid cells colored according to their porosity value. y-section is taken at y = 5mm
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Fig. 13   (Left) Grid 3 of VGN and (right) close-view showing grid cells colored according to their porosity value. y-section is taken at y = 5mm

Fig. 14   (Left) Grid 3 of PGR and (right) close-view showing grid cells colored according to their porosity value. y-section is taken at y = 5mm

Fig. 15   Fracture traces of the discrete fracture network used in Grid 3 of PGR
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data. The proposed methodology can be used to assess 
individually each grain of each mineral phase and to esti-
mate statistical properties of important parameters, such 
as the amount of surface area available for geochemical 
reactions. Bulk averaged values of specific surface area and 
grain size can also be derived for use in larger-scale reac-
tive transport models.

The estimates of mineral surface area are representa-
tive of the resolution of the X-μCT analyses ( ≈ 20 μm 
for the two rock samples considered in this work). This 
means that the amount of mineral surface area related to 
smaller-scale roughness is not resolved by the approach. 
This also explains the discrepancy between the esti-
mated value of mineral surface area and analogous esti-
mates obtained using the Brunauer–Emmett–Teller (BET) 
method. The latter is expected to be 1–2 orders of mag-
nitude higher than the values calculated from the X-ray 
data [10]. Muuri et al. [13] report BET value results for the 
typical rock types of Olkiluoto. For veined gneiss values 
of 1.4798 ± 0.0155m2∕g were determined, while for peg-
matitic granite lower values, 0.3416 ± 0.0034m2∕g , were 
found. From Table 2, the summed-up areas for the two rock 
types can be used to calculate the corresponding areas in 
m2∕g . Using a density of 2700 kg/m3 , we find a value of 
7.1 × 10−3 m2∕g for veined gneiss and 3.6 × 10−3 m2∕g for 
pegmatitic granite. Measured BET values are hence about 
two orders of magnitude larger, which agrees with the 
estimate by Lai et al. [10], discussed above.

We have also presented an approach to analyze and 
discretize the diffusion-available pore space of a con-
sidered rock sample. The approach is similar to that 
presented by Iraola et al. [7] in that the primary focus 
is placed on mapping the inter-granular space (i.e., the 
space between adjacent mineral grains). However, a 
combined use of micro-DFN and X-μCT data is here pro-
posed to recast smaller-scale heterogeneity (Grid 2) and 
to account for the influence of intra-granular space (Grid 
3). By calibrating the local values of porosity and diffusiv-
ity (Grid 1), or fine-tuning the statistics and parameters 
of the underlying micro-DFN (Grid 2 and 3), the different 

models have been able to provide bulk values of porosity 
and effective diffusivity consistent with laboratory meas-
urements carried out in similar rock samples. Interest-
ingly, despite being based on different approaches, the 
estimates of bulk mineral specific surface area obtained 
from the numerical grids are consistent with the values 
inferred from direct mapping of the X-μCT data (see 
Tables 2, 5). It turns out that the proposed numerical 
grid can be seen as a potential tool for, e.g., studying 
and upscaling the rate of mineral reaction (e.g., [25]) or 
to analyze the influence of mineralogical heterogeneity 
on radionuclide sorption and diffusion (e.g., [7]).
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Appendix: A note on the calculation of grain 
surface areas and grain shape factors

Introduction

A visualization of how grains are represented on the 
computational grid is given by Fig. 5. The grains can be 
analyzed individually and the volume, V, and surface 
area, A, are then obtained. A shape factor, SF, is defined 
as the ratio between the surface area of a given grain 
and the surface area of a sphere with the same volume 
as the considered grain:

From Fig. 5 it is clear that the grain surface area is described 
in a stair-case fashion, i.e., the normal vector of the faces is 
always in a coordinate direction. This is obviously an approx-
imation of a real grain surface area and in this Appendix, 
we will investigate the implications of this approximation.

The sphere

Let us assume that a grain is a perfect sphere. The shape 
factor is then 1.0 by definition. How well the grain is 
represented on a Cartesian grid depends on the ratio 
between the cell size, h, and the diameter, d, of the 
grain. In Fig. 16 two examples are shown. As we have 
fixed a cell size and there is a range of grain sizes, a grain 
can be represented by one cell or by a large number (for 

(2)SF =
A

4�

(

3V

4�

)−
2

3

Table 5   Mineral specific surfaces as represented in the computa-
tional grids ( (m2∕m3) × 103)

Rock Mineral Grid 1 Grid 2 Grid 3

Veined gneiss (VGN) Quartz 3.3 3.4 3.2
Plagioclase 1.8 1.8 1.6
K-feldspar 1.5 1.5 1.6
Mica minerals 6.0 6.1 5.4

Pegmatitic granite (PGR) Quartz 2.3 2.4 2.6
Plagioclase 1.0 1.0 1.2
K-feldspar 2.6 2.6 2.6
Mica minerals 0.1 0.1 0.2
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Fig. 16   The sphere. The sphere as represented in a grid for h∕d = 0.039 (top left) and h∕d = 0.156 (top right). Normalized volume, area and 
shape factor, as a function of h / d. The x–y plots on the right are enlargements of the corresponding plots on the left
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a large grain) of cells. In Fig. 16 the calculated volume, 
surface area and shape factor are shown as a function 
of h / d. The volume and area are normalized with the 
correct values for a sphere. We find that the normal-
ized volume goes to 1.0 as h / d decreases, while the 
normalized area goes to a value of 1.6. This results in a 
SF that deviates from 1.0. From Fig. 16 the SF is seen to 
be around 1.5 for small h / d.

The fact that the volume converges to the right value 
while the area is calculated erroneously is explained by 
Fig. 17. A two-dimensional square with side length L 
is shown and we want to calculate the length of the 
diagonal. Using the same approach as in our surface 
area calculations, we approximate the length to 2L. 
Next, we refine the grid and obtain four cells. One of 
the new cells can be removed (and the volume calcula-
tion is improved) but the length estimate is still 2L. It 
is realized that grid refinement will not solve the prob-
lem and this explains the error in the grain surface area 
calculations.

The cube

Next, we assume that the grain is a cube of side length 
d. The shape factor for a cube is 1.2407. So, if a grain is 
represented by 1, 8, 27… cells the shape factor is 1.2407, 
provided the cells form a perfect cube. In Fig. 3, it is pos-
sible to see dots for a shape factor of 1.2407 and different 
diameters. If two cells represent a grain the shape factor 
is 1.39 and if three cells are contributing the number is 

1.48. For four cells, and more, different formations are 
possible.

However, since any surface that is not aligned with a 
coordinate direction causes an error in the surface area cal-
culation, the cubic grain orientation has been investigated. 
For this reason, successive rotations of the cube from 0° to 
45° in steps of 5° was performed around the three coor-
dinate directions. The worst case, in term of shape factor, 
was sought and the largest shape factor found was 2.06, 
this for a rotation of 45°–20°–45°. The rotation was made 
around the z-axis, then the y-axis and finally the x-axis with 
one corner fixed. Figure 18 illustrates the results for this 
worst orientation. The area is normalized with the area of 
the cube and the error factor is found to converge toward 
1.67. The shape factor can hence be regarded as having 
two components; a “true” shape factor of 1.2407 and a sur-
face representation error.

Conclusions

This brief investigation of the numerical estimates of grain 
surface area and grain shape factor has revealed two main 
issues:

•	 Grain surface area. A stair-case representation of 
the grain surface introduces an error that does not 
decrease with increased resolution, i.e., smaller cell 
sizes. For two idealized shapes, the sphere and the 
cube, factors of 1.50 and 1.67 were found.

•	 Grain shape factor. The calculation of the shape factor, 
as defined in the present work, is affected by the error 
in the grain surface area calculation. The calculated val-
ues can hence be regarded as the product of a “true” 
shape factor and the surface error factor.

Fig. 17   The estimated length of the diagonal is not improved by 
grid refinement

Fig. 18   The cube 45°–20°–45°. The cube as represented in a grid 
for h∕d = 0.0469 (top left) and h∕d = 0.1875 (top right). Normal-
ized volume, area and shape factor, as a function of h  / d. The x–y 
plots on the right are enlargements of the corresponding plots on 
the left

◂
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